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Abstract

Tracking people around surveillance systems is becoming increasingly
important in the current security conscious environment. This thesis presents
a framework to automatically track the movements of individual people in
large video camera networks, even where there are gaps between camera
views. It is designed to assist security operators, or police investigations by
providing additional information about the location of individuals through-
out the surveillance area. Footage from an existing surveillance system has
been used to test the framework under real conditions. The framework uses
the similarity of robust shape and appearance features to match tracks. These
features are extracted to build an object feature model as people move within
a single camera view, which can be compared across cameras. The integra-
tion of matching similarities in the temporal domain increases the robustness
to errors of many kinds. Frames with significant segmentation errors can be
automatically detected and removed based upon their lack of similarity to
the other models within the same track, increasing robustness.

The shape and appearance features used to generate the object models
are based upon features humans habitually use for identifying individuals.
They include a height estimate, a Major Colour Representation (MCR) of
the individuals global colours, and estimates of the colours of the upper
and lower portions of clothing. The fusion of these features is shown to
be complementary, providing increased discrimination between individuals.
The MCR colour features are improved through the mitigation of illumi-
nation changes using controlled equalisation, which improves the accuracy
in matching colour under normal surveillance conditions and requires no
training or scene knowledge. The incorporation of other features into this
framework is also relatively straightforward.

This track matching framework was tested upon four individuals across
two video cameras of an existing surveillance system. Existing infrastruc-
ture and actors were used to ensure that ground truth is available. Specific
cases were constructed to test the limitations of the system when similar
clothing is worn. In the data, the height difference ranges from 5 to 30
centimetres, and individuals may only be wearing 50% of similar clothing
colours. The accuracy of matching an individual was as high as 91% with
only 5% false alarms when all the system components were used. This may
not become a fully automated system, but could be used in semi-automated
or human assisted systems, or as the basis for further research into improved
automated surveillance. Application areas range from forensic surveillance
to the matching of the movements of key individuals throughout a surveil-
lance network and possibly even target location.
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1 Introduction
Computer vision-based object tracking is a difficult task that is mainly based upon
shape, motion, and appearance features [47]. Motion features have tended to be
widely utilised in human environments, such as within buildings, because of the
previously limited camera resolution to exploit shape or appearance features ef-
fectively. Typical building or campus surveillance systems are created to assist
human operators to view key locations around the surveillance area, whilst also
considering the cost effectiveness of the security system. Thus they tend to con-
sist of a relatively small number of cameras, sometimes of varying quality and
differing camera properties. Such changing camera properties include colour sat-
uration levels and shutter speed control, which may vary significantly across the
cameras that are sparsely located around the surveillance area. Coverage of key
security locations is sometimes improved through the installation of overlapping
or near-overlapping cameras; however cost considerations make this uncommon
throughout the wider surveillance system. The video data acquired from cameras
throughout the surveillance system may also occur at different resolutions and
frame rates. The resolutions are often low to minimise the data transfer, whilst
still providing enough information change for a human operator to utilise the sys-
tem. Further minimising the size of the data through image compression may
also lead to considerable compression artefacts that can be problematic for au-
tomatic analysis. This creates a number of difficulties for automated computer
vision using the same surveillance system as large gaps in coverage lead to unre-
liable motion cues across portions of the surveillance space, illumination changes
between cameras or within a single camera over time, and internal camera param-
eters differ throughout the system.

Recent advances in affordable camera technology now provide increased cam-
era resolution and quality. Although it can not cost-effectively satisfy the cov-
erage problem for automated systems, it does provide improved image quality.
This leads to improved information about the object, including shape and ap-
pearance features. The cost of upgrading the whole surveillance infrastructure
can be considerable, leading to cameras of low resolution and quality often being
used. Motion features are still extremely useful in local single camera views, or
groups of overlapping or near overlapping camera view, where they are still the
main tracking feature used [125]; however they are not as useful for tracking, or
matching the tracks of individuals across regions where there is unreliable object
movement information. Such regions occur where there are large gaps in cover-
age and the movements of humans may not reflect average motion. Indeed the
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most important tracks may occur where an individual differs significantly from
the average pattern. Improved shape and appearance features provide promise for
an enhanced ability of automated security systems to mitigate some of the cur-
rent problems, and allow reasonable accuracy of matching individuals in different
cameras. Where the tracks of an individual are matched, they can be combined to
locate where individuals have been viewed over time, which is effectively tracking
individuals over the surveillance area. Articulated human movement adds extra
difficulty as a wide range of shape changes can occur within the normal range of
human movement, even with assumptions such as people generally walk upright.
Even though there is a limited range of expected natural and artificial illumination
conditions, these changes can still cause significant appearance changes. Effec-
tively utilising these features promises to reduce the time and human effort that
might be required to generate a set of tracks relating to how key individuals, or
possibly even all individuals, might have moved around within the surveillance
system.

This thesis presents research into a framework for the fusion of information
across a multi camera surveillance system to analyse the movements of individual
people using robust shape and appearance features. The presented work is based
upon the definition of the surveillance session as ’a portion of one day where
people enter the surveillance area from a known set of entry points to perform
their activities before leaving through known exit points’. This definition leads to
the following simplifying assumptions about the surveillance area, and the people
viewed within that area:

1. All entry and exit points of the surveillance area are in view of a surveillance
camera.

2. Individuals are unlikely to change their clothing or footwear; hence, many
of their intrinsic shape and appearance features will remain relatively con-
stant for the duration of the surveillance session.

3. Individuals are tracked reasonably accurately for a reasonable duration whilst
within the view of any of the system’s cameras, such that the correct object
regions are associated to a track.

4. Individuals are segmented from the background into a single blob, or singly
label group, but not necessarily accurately.

5. Individuals are often observed at a distance from the camera, so biometric
features such as faces may not be generally available.
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6. Where cameras are significantly disjoint, motion features may vary unpre-
dictably between those cameras as individuals are allowed free motion.

7. Illumination varies significantly, but within the limited range typical of nat-
ural or artificial lighting for public premises.

The above assumptions suggest that tracking is of a reasonable quality and
duration. These assumptions hold for current tracking software on video where
traffic is sparse. Some fragmentation of track can occur when conditions become
difficult or the level of traffic becomes high; however such cases can be treated
as extra tracks to be merged within the framework. They also suggest shape and
appearance features should be used rather than motion features to generate accu-
rate matching of information about object tracks within any surveillance system
where camera views do not overlap. Although motion features maybe reliable for
some portions of the system [123], these are only considered as a possible feature
and are not fully explored for enhancing the systems results. Unfortunately, due
to the articulated motion of people, few shape features other than height or gait
are likely to remain stable during walking. Most appearance features are likely to
remain stable within the extent of a surveillance session, although they may also
be affected by articulation. For these reasons, the track matching framework is
based upon extraction, comparison and fusion of upper clothing, lower clothing,
and global colour appearance as well as height feature information without the
use of motion models or expected transitions between camera views. Whilst ex-
ceptional cases may be easily constructed for this feature set to fail, it is designed
to provide sufficient discrimination (at the ground truth level) for a large major-
ity of real cases. Even where many people may be of similar appearance, it can
reduce the amount of manual footage revision that would be required for human
operators to perform the task alone.

The features identified can be made more robust by analysing for large changes
in features along the track obtained from a single camera view. Where large
changes are automatically detected from individual or small groups of frames,
they can be removed to reduce the impact of these feature errors and mitigate
their propagation into the surveillance system. This uses a small training set to
determine the statistical likelihood of matching and non-matching cases based
upon the features similarity values, which are fused using Bayes theorem. Where
frames of a track are determined to be non-matching they can be discarded as they
are likely to have significant errors. A similar Bayesian classification process into
matching and non-matching classes is also used to determine the tracks which are
from a single individual. Other key features, such as facial information, or camera
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transitions can be incorporated within this framework where they are available or
reliable. This could be achieved by extending the fusion framework to fuse the
additional feature or features; however the achieved accuracy without these fea-
tures is still adequate for a semi-automated system. It should also be noted that for
a human to search through and observe comparisons of every track is very time
consuming, but it much simpler to review potential matches that are incorrect and
separate them for rematching correctly. This should be taken into consideration
with a semi-automated version to optimise the system.

1.1 Aim
This thesis aims to address a shortage of work investigating tracking the move-
ments of individuals across real surveillance systems. Such systems cannot achieve
high accuracy by simply relying upon motion cues for tracking between cameras
with large blind areas between camera views. Therefore this thesis aims to explore
the usage of shape and appearance features that have recently become available
with increased camera resolution. The specific aims of this thesis are investigating
the research areas of:

1. Extracting invariant or quasi-invariant appearance features that are tolerant
to illumination changes - This explores extracting a variety of appearance
features focusing primarily upon colours and spatial colour components.
Methods that can be used to mitigate illumination changes are also investi-
gated in order to more accurately evaluate their stability both between and
within camera views, as well as their accuracy, discriminative ability, and
how complementary they are to other possible features.

2. Extracting invariant or quasi-invariant shape features - This explores ex-
tracting a variety of possible shape features, including height estimation, to
evaluate their usefulness for matching the tracks of individuals in terms of
stability, accuracy, discriminative ability, and complementary effect to other
features.

3. Identifying frames within tracks which have significant errors - This inves-
tigates the most effective methods that can be used to identify frames which
carry significant segmentation errors, so that they can be removed from the
feature extraction process to create more robust feature sets.

4. Integrate the results of the frame level features along the temporal axis -
This aims to compensate for minor changes that may occur due to small
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segmentation errors, and increases the robustness of individual feature mea-
surements.

5. Fusing features to improve the track matching accuracy - This investigates
some of the possible feature fusion processes for their suitability in a track
matching system. This evaluates the computational complexity, expandabil-
ity and accuracy of the system, as well as the training required.

1.2 Scope
The scope of this thesis has been carefully chosen to primarily explore those ar-
eas required for matching the tracks of individuals across cameras. This area has
not yet received much attention, and uses unrealistic assumptions about the in-
dividuals or the environment. Much of the research conducted for this thesis is
based upon a number of underlying technologies which are described in detail
throughout Section 2. These technologies, which include object segmentation and
tracking within a single camera, among others, have developed to a stage where
they provide reasonably reliable results upon which advanced methods can be de-
veloped. The scope of this thesis therefore assumes the reasonable reliability of
many of these reasonably accurate underlying technologies, primarily in the areas
of object segmentation and tracking. Areas such as segmentation can be a source
of error in extracted features; however rather than redeveloping them, this thesis
investigates techniques to identify and mitigate these errors and generate more
robust object features. Illumination changes are also a significant error source;
hence this thesis investigates the improved application of fast colour invariance
techniques to mitigate its effect.

In addition to utilising particular features that have already been used success-
fully, this work also looks to limit the usage of features and assumptions that use
general case statistics to improve their results. Although such statistical features
can improve the overall accuracy of a tracking system, they tend to dramatically
increase the error rate for anomalous cases. This occurs because the usage of
priors favours outcomes from the class or case that is more frequent, rather than
relying fully upon the feature information. This can become a problem because
within a surveillance scenario the anomalous cases are often the most important,
as people who commit offences are likely to exhibit anomalous behaviour pat-
terns. In order to reduce the possibility of errors with anomalous cases, this work
has been designed to stay ‘prior-neutral’. Thus it does not utilise popular statistics
such as path transitions or inter-camera walking time [123] in order to increase
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the overall system results. A second motive is reducing the need to generate and
maintain a detailed map of the specific camera locations and transitions, which are
yet to be proven for large surveillance installations with non-overlapping camera
views.

The methods used to fuse the results of the similarity of features have also
been explored to investigate both the lowest level of errors and the ease with which
other features can be included. The investigation of the results also looks at the
limitations of the proposed methods and how these are affected by the limitations
of reusing existing surveillance systems or the installation of new systems. One
important aspect that has not been fully explored, and therefore is mentioned min-
imally is the real-time requirements of surveillance systems. Full implementation
and optimisation has been outside the scope of this thesis due to time constraints.
Hence the system is being investigated for forensic or after the event analysis,
where real-time implementation is not as crucial.

1.3 Contribution
There are many contributions of this thesis to the wider research community.
These are generated specifically for the disjoint camera tracking problem, but
could also be used to improve results in other areas. These are the development
and automatic application of:

1. A non-parametric flexible clustered colour representation, Major Colour
Representation (MCR). This can be applied to provide accurate colour in-
formation about individual objects in a single frame region within a compact
notation that retains the three dimensional colour information. This thesis
currently focuses upon individual humans, however this method should be
suitable for general objects from single images or image sequences. A k-
means process is used to improve the accuracy of the MCR clusters to better
represent the pixels which are associated to them.

2. Averaging the MCR across a small window of frames corresponding to at
least half the gait period, creates IMCR features. This window reduces the
impact of articulated shape changes upon the appearance features.

3. Investigation of the usage of spatial colour features to represent object ap-
pearance in a spatially discriminative way. This led to the development of
spatial MCR and IMCR features, which can be used to extract spatial infor-
mation for matching individuals.
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4. Development of a symmetric similarity measurement for comparing MCR
features that is complementary to the Kolmogorov divergence [70].

5. Development of a ‘controlled equalisation’ technique than can be used to
mitigate illumination effects upon the colour histogram of an object. This
method makes an object’s colour information more matchable across a vari-
ety of illumination conditions, whilst still retaining the general profile of an
object’s colour histogram. It is also object dependent and does not require
either training, or prior scene knowledge.

6. Time-integrated matching of MCR or IMCR features along the track se-
quence of any two objects. This utilises a Bayesian fusion technique where
features to be integrated are dependent. This technique improves the robust-
ness of the matching results, especially where sections of the track may have
minor segmentation errors, or appearance changes according to the pose.

7. Identification of frames with major segmentation errors through an analysis
of the changes in features, especially using MCR based appearance features.

8. Improved height estimation for a moving human from a single calibrated
camera view. this is achieved through improved location of the feet and the
top of the head in a single image.

9. Development of a statistical similarity measurement for improving compar-
isons of frame based height estimates obtained from two tracks.

10. Investigation of a framework for the Bayesian fusion of multiple features
on a track level to achieve the maximum accuracy with a limited amount
of training. These features may be either dependent, where a weighted sum
is appropriate, or independent, where the product rule is most appropriate.
This framework also includes a bias term that allows for the selection of the
optimum operating point to either minimise the total error, or minimise a
function. Such a cost based approach is important in a system where the
cost of false positives differs from the cost of false alarms.

1.3.1 Publications

This work has been well received by the international community, as can be seen
by the number of accepted publications. These have been accepted into a variety
of conferences and journals:
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• Christopher Madden, Eric Dahai Cheng, Massimo Piccardi, “Tracking Peo-
ple across Disjoint Camera Views by an Illumination-Tolerant Appearance
Representation” Machine Vision and Applications Journal, Vol. 18, pp 234-
778, 2007.

• C. Madden and M. Piccardi, “Comparison of Techniques for Mitigating Il-
lumination Changes on Human Objects in Video Surveillance”, In Proceed-
ings of the International Symposium on Visual Computing (ISVC), 2007.

• C. Madden and M. Piccardi, “A Framework for Track Matching Across Dis-
joint Cameras using Robust Shape and Appearance Features”, In Proceed-
ings of the International Conference on Advanced Video and Signal Based
Surveillance (AVSS), 2007.

• C. Madden and M. Piccardi, “Detecting Major Segmentation Errors for a
Tracked Person Using Colour Feature Analysis”, In Proceedings of the In-
ternational Conference on Image Analysis and Processing (ICIAP), 2007.

• E. Cheng, C. Madden, M. Piccardi, “Mitigating the Effects of Variable Il-
lumination for Tracking Across Disjoint Camera Views”, In Proceedings of
the International Conference on Advanced Video and Signal Based Surveil-
lance (AVSS), pp 32-38, 2006.

• C. Madden and M. Piccardi, “Height Measurement as a Session-based Bio-
metric for People Matching Across Disjoint Camera Views”, In Proceed-
ings of the Image and Vision Computing New Zealand (IVCNZ), pp. 282-
286, 2005.

1.4 Thesis Overview
This thesis is organised into eight chapters, each focussing upon a component of
extracting and using robust object features for tracking through track matching
across a wide-area surveillance system. The chapters are organised to logically
follow the progression of the system. Chapter 2 is the literature review, which
is presented in six sections. The underlying technologies are described through
the first five sections, as these form the basis of the ability to build and analyse
the potential features of a tracked individual. The next section of the literature
review looks more specifically, and in more depth, at the literature on the tech-
niques used in applications proposed for tracking across disjoint camera systems.
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A final summary is provided for clarity. Chapter 3 explores how to extract the ap-
pearance features of an individual, including the incorporation of spatially based
upper and lower clothing colours, as well as global colours. It also investigates
how to make these features more robust to pose changes through integration over
time. Chapter 4 then looks at the mitigation of illumination effects upon the ap-
pearance of an observed individual including an analysis of a novel ‘controlled
equalisation’ technique. Chapter 5 describes the methods developed to identify
segmentation errors that might affect feature extraction, so that more robust fea-
tures can be utilised. Chapter 6 investigates the use of height as a stable shape
feature, and how an improved height estimate can be extracted from calibrated
monocular cameras. It also investigates how the height estimate can be analysed
along a track sequence to make it both more robust, and reduce the impact of gait
effects. Chapter 7 then investigates the different methods to fuse the results of the
robust features in order to distinguish between two individuals. This fusion also
explores the fusion of features in the temporal domain so that the features can be
fused and compared at the same level of time integration, whether that is frame
level, across a window of frames, or along the entire track. This provides many
results that are used to compare different fusion methods based upon the results of
the individual features. Finally Chapter 8 concludes the thesis by summarising the
results of the project including future research that would be required to fully de-
sign and implement a working system to effectively match two individuals based
upon their tracks in any of the camera views throughout the system.
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2 Literature Review
This literature review is separated into six distinct sections, with a final section
summarising the literature relating to tracking or track matching across disjoint
cameras. The first five sections explore components of literature that relate to
the underlying technologies that are important to surveillance. The broad cate-
gories summarised in these sections are motion detection and object segmenta-
tion, colour representation techniques, statistical similarity measurements, object
tracking and object classification. These sections are ordered specifically to reflect
their interrelation, with those provided later in the literature often building upon
aspects of the previous sections. This is especially true with many object tracking
and classification applications. Section 2.6 details a number of systems that have
been proposed in this area. The literature described builds upon advances in the
underlying technologies of the previous sections. Advances in the underlying sec-
tions are therefore likely to improve results in these systems. It is also expected
that new research areas into higher level applications, such as the extraction of
longer term behaviour patterns may build further upon this research.

This thesis considers the areas above to comprise the most relevant literature
on underlying technologies upon which the higher level tracking, or track match-
ing across disjoint cameras is built. Other research areas such as behaviour anal-
ysis or high resolution personal identification are generally outside of the scope
of this thesis, as it is focussed upon reliable information from existing surveil-
lance systems. This thesis does not aim to advance these underlying technologies,
rather it looks at mitigating the errors that propagate into higher applications from
them. The current literature related to tracking across disjoint cameras is explored
in detail within section 2.6. This examines how this relatively new research area
applies the techniques that have been developed in the wider tracking literature
specifically to tracking across multiple cameras that are not overlapping or near-
overlapping.

2.1 Motion Detection and Object Segmentation Techniques
Human brains and computers are not capable of detecting, tracking, and analysing
every pixel level change that occurs within the camera views of a wide area
surveillance network. In order to reduce the complexity of the information in
the system to a manageable size, some assumptions are made. The most widely
used assumption in video surveillance is that objects of interest within the field
of view are either moving, or once were moving. This is becoming increasingly
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important due to the increasing resolution of cameras. Although this improves the
amount of pixels upon the objects of interest, it also increases the amount of pixels
in the background that are not really of interest. In other areas, such as image anal-
ysis, there is only a single image to be analysed rather than an image sequence.
Segmenting objects in this area can not use object motion, so it is reliant upon
region analysis and edge analysis techniques. These segmentation techniques are
not considered widely in this literature review as the speed of motion based seg-
mentation is important. Most methods of motion-based object segmentation fall
within the following three categories: background subtraction, temporal differenc-
ing, or clustering optical flow. The current state of the art techniques all generate
a degree of errors in the objects that are segmented [96], hence a number of post-
processing techniques are also used to reduce the amount of pixel noise and to
remove object shadows as though they are moving with the object. The shadows
and noise are actually not part of the object and therefore are often not interesting
for further analysis. The most common of these techniques are outlined in Section
2.1.2.

Background subtraction is a popular method that compares the current image
to the background model. Once this model of the background scene has been de-
veloped, pixels that are changing from the background can be detected and com-
bined to form motion blobs, or connected regions of foreground pixels. The blobs
identified can then be analysed in further processes as regions of interest. Devel-
oping and updating the background model is explored in detail in section 2.1.1
as it is a difficult and active research area. This approach has proven very good
for static backgrounds, but recent research has focused upon improving the back-
ground models [28, 43, 64, 112] to better handle lighting changes and background
movement.

Temporal Differencing also uses pixel differences computed between two or
more consecutive frames to determine whether the pixels are changing over time
[98]. It is computationally simple and adapts well to dynamic environments, such
as changing lighting conditions; however it suffers from the foreground aperture
problem, where it usually misses detecting some pixels in the middle of an object
[47]. This approach is also reliant upon objects continually moving as they will
be incorporated into the background once they have paused even for just a few
frames. Background motion such as moving trees are problematic as they will
be classified as foreground regions, so it tends to be used in indoor environments
with simple backgrounds.

Optical flow based segmentation uses flow vectors of changes over time to de-
termine regions of movement. Vectors such as displacement vectors [78] can be
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used as the basis of contour tracking algorithms, or used for advanced tracking of
articulated bodies. Independent analysis of limb motion can be also be provided
and used for areas such as gait analysis, where the relative movements of com-
ponents of objects may provide extra information. Barron et al. [5] provides a
good overview of the theoretical basis of optical flow, and early work in the field,
with recent work [118] showing that this method can produce clear motion seg-
mentation results and may provide very useful results for the analysis of how the
different limbs of a person move. Optical flow could also help with the use of
moving cameras [107] as it allows for the estimation and removal of the camera
movement information; however it is extremely prone to data-association noise
and tends to be computationally intensive.

Background subtraction is the most popular technique for object segmentation
because it seems to offer greater accuracy than the simpler temporal differencing
technique. It is also more widely understood and considered faster and more reli-
able than the optical flow techniques for stationary cameras. Optical flow seems
to be becoming more popular as both techniques are computationally complex,
but optical flow may be able to provide more information about how portions of
an object are moving relative to each other, such as limb movements and be able
to work with moving cameras. Other approaches have been proposed which com-
bine the different techniques, or extend these techniques to model more than just
the background. These include extending the mixture of Gaussian model using
the Expectation Maximisation (EM) algorithm to classify pixels into background,
foreground, or shadows [36]. This model is continually updated based upon the
classification results. The Video Surveillance and Monitoring (VSAM) project
[12] combined a simple adaptive background subtraction technique with a three
frame differencing technique to create a fast algorithm that seems effective for
moving object detection. The trade-off between the accuracy of the information
provided and the algorithm speed required for an application is a researcher’s
most important consideration at this stage; yet it still has not been quantitatively
analysed in the literature.

2.1.1 Background Modelling

To correctly identify objects of interest moving in a frame using background sub-
traction, it is first necessary to model the environment, or background, within
which those objects are moving. This usually makes environment modelling the
first step of any visual surveillance algorithm. The type of camera and camera
motion is important as moving cameras have to be treated differently to fixed
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cameras. This is because their background is moving and can be more difficult
to model [107, 109]. Though some work has been conducted into recreating 3-
D environments [16], this is a computationally expensive technique that is not
typically used. Outdoor environments can also have significant motion in the
background due to trees and other objects that increase the difficulty of 3-D re-
constructions. Illumination modelling within this environment can also provide
for colour constancy within the scene; however the complex interplay of multi-
ple and time varying illumination sources on complex 3-D objects of previously
unknown composition can make such models computationally intensive and ulti-
mately unrealistic when applied to real surveillance images [72].

More common techniques aim to automatically create a 2-D model of the
background in the image plane from a video sequence. This model is usually
stored in the form of a background probability density function(pdf) for each pixel
location. If it can update for illumination changes and background motion, then
it can provide better foreground object segmentation [64]. Early models included
many pixel centred techniques such as temporal averaging techniques [60] and
adaptive Gaussian estimation [59]. These models worked well under specific con-
ditions, but some aspects of complex backgrounds generate significant errors. The
factors that make a background complex were addressed by Toyama et al. [112]
where they identified the following eight factors:

1. Bootstrapping, where there is no training period without moving foreground
objects to fully initialise the background model.

2. Foreground aperture, where the centre of objects may be detected incor-
rectly as background.

3. Background motion, where objects in the background, such as trees, move.

4. Gradual illumination changes, such as the sun moving through the day.

5. Sudden illumination changes, such as lights being switched on in a room.

6. Objects that have moved becoming stationary, and returning to the back-
ground

7. Camouflage of foreground objects, where a moving object looks similar to
the background.

8. Shadows effects which are not actual foreground objects are still often de-
tected as moving foreground regions, changing the objects appearance.
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The significance of these effects is widely discussed through the literature
[12, 28, 43, 45, 47, 90, 96] in the context of their effects on a particular author’s
video sequence. These discussions are aimed at providing additional motivation
for the author’s techniques and how they overcome the factors that occur within
their video sequence. This demonstrates which techniques can be used to over-
come particular factors; however a full analysis of how these factors affect the per-
centages of moving pixels detected has not been properly conducted. The more
commonly used techniques address many of the complexity factors, but Toyama et
al. [112] also raised the suggestion that some of these factors, especially shadow
removal, may be more appropriately addressed in higher models than the back-
ground model. This can simplify the motion detection aspect of the process at
the expense of adding an extra shadow compensation process; however in practise
this seems to be producing more useful results.

Grimson et al. [41] first introduce the widely popular Mixture Of Gaussian
(MOG) model to allow the background to adapt to small illumination changes and
small background movements, such as waving tree branches. This background
adaptation can also resolve bootstrapping, and allows for stationary objects that
were once moving to shift into the background when they have stopped. It tries
to find the most accurate match of a small set of Gaussian curves to the pdf of a
background pixel. This is useful as multiple background colours can occur at a
single location in the background when it moves slightly, such as a tree swaying.
In this instance a leaf may be showing at the pixel during one frame, a branch
showing in the next frame, and a wall in the following frame. Three different
curves could thus model these three different possible background colours. Much
research has been conducted into identifying the number of Gaussians that will
provide the most accurate model [90]. Determining the ideal number of Gaussians
for each pixel in a view is too computationally complex to run at real time speeds
given the current hardware. Typically values between 3 and 5 Gaussian curves
have been found to be sufficient in practical applications [41].

Other methods have used multiple levels, or a multiple parameter approach.
The Wallflower algorithm, proposed by Toyama et al. [112], performs three lev-
els of background maintenance for background subtraction. These are the pixel
level, region level, and the whole frame level. This level approach tries to incorpo-
rate information about the local, regional and global changes in a video sequence.
In the W4 system developed by Haritaoglu et al. [43] the three parameters of
minimum intensity, maximum intensity, and maximum intensity difference be-
tween consecutive frames form a pixel based statistical background model. This
system is designed to run in a real-time outdoor environment to perform person
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tracking with small background motions and illumination changes. The adaptive
background model developed by McKenna et al. [77] utilises colour and gradi-
ent information to minimise the effects of shadows and poor colour determination
effects. The adaptive nature of the model also allows it to compensate for small
lighting variations. Many other models [26, 41] can also utilise colour spaces that
involve chromaticity, or some other supposedly illumination independent colours,
in order to limit the effects of illumination changes, and shadow effects.

Elgammal et al. [25, 28] proposed a per pixel non-parametric statistical model
based upon Kernel Density Estimation (KDE). This model is adaptive, like the
MOG model, so it does not strictly require a training period without moving ob-
jects, and it can compensate for some background motion, moving objects be-
coming stationary and illumination changes. Unlike the MOG method where a
small number of Gaussians are used to accurately match the colour histogram,
this model uses a small Gaussian kernel for each value found in the history. With
typically 50 to 100 samples, this method allows the model to adapt to match the
background probability function with a high degree of accuracy, even where the
pixel’s pdf has many modes, or no obvious modes. Updating the KDE model
is also proposed to be simpler and more effective than the MOG model. Like
the MOG model, KDE provides consistent results, even with some background
motion and small illumination changes. It can be computationally costly though,
allowing little time for other information to be extracted in a real-time surveillance
system. Recently Elgammal et al. [26] has utilised fast Gauss transforms to min-
imise this problem, however it is still significant for current computer hardware.

More recently the codebook model has been proposed [57] to overcome some
of the limitations in the complexity of computation and memory that are asso-
ciated with the MOG and KDE models, whilst allowing for multimodal back-
grounds and varying illumination conditions. This method utilises a training
period to create multiple codebooks on a pixel level to create a compact repre-
sentation of possible background modes. These are modelled with an R̄i, Ḡi, B̄i

vector to represent the midpoint of the codebook colour cluster, Ǐ , Î to represent
the minimum and maximum brightness, f to represent the frequency of code-
book occurrence, λ as the maximum length the codebook is not accessed for, and
p, q representing the first and last access times. Multiple codebooks can be used
to represent multiple background modalities, allowing for complex backgrounds,
however unlike the KDE methods it does not require the storage of past pixel
values in memory. Unlike MOG it does not assume the number of modes in the
background, it can include brightness components, and also does not require the
memory of the KDE method. This model has been recently been extended to
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include modelling for the suppression of highlights and shadows [22]. This is
achieved through the application of the codebook within the HSV space to apply
shadow suppression [17].

The literature has presented a number of techniques for creating complex
background models. These models aim to address many of the factors that make
a background complex. Toyama et al. [112] performed a quantitative analysis of
background models presenting figures for false positives and false negatives under
the various problems they identified. This analysis does not look at the real-time
nature of the algorithms compared, and was also conducted before the KDE back-
ground model was proposed. The analysis also raised the issue of whether some of
these factors, such as shadows, should be addressed in a separate module, which
has not been adequately researched. Finally the question of quality versus speed
has not really been addressed in any significant way. Higher resolution images can
now provide clearer object information, but require more time to analyse. Com-
bining this increased resolution with the increased computational power available
has not yet been addressed, especially for the complex models, which are yet to
be proven at real-time speeds.

2.1.2 Removal of Shadow and other Segmentation Noise

This section describes the current techniques that are applied as a post processing
step after the segmentation process. It is not aimed at being a full review of the
topic, but is provides a consideration of the types of errors that can be mitigated
with these techniques. Much of the noise in segmented images is created due
to numerous factors ranging from imperfect background models as mentioned in
Section 2.1.1 above; however other aspects like vibrations in supposedly static
cameras can also be significant. This creates a range of noise types from speckled
images to noise around the edge of objects, or the segmentation of objects into
numerous parts.

The main methods used in the surveillance field to remove or reduce this noise
is morphological erosion and dilation [46]. These processes are generally applied
to the boundary of objects in a binary image to dilate (enlarge) or erode (shrink)
the object. This removes small regions of speckled noise, or to join together com-
ponents of an object that have been incorrectly segmented into separate parts.
Although these processes are generally applied to binary images describing back-
ground and foreground regions, it is also possible to apply them based upon the
colour image [122]. In this process, dilation only occurs on pixels of very similar
colour to those on the boundary, and erosion only occurs where the edge pixels
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are of differing colour to those on the inside of the object. Whilst such colour
morphology techniques may provide improved morphology, they have not been
widely applied in the surveillance literature, perhaps due to their computational
intensity. These morphological techniques can smooth the edges of objects, and
remove a significant amount of image noise; however they can lead to segmen-
tation errors where objects consist of narrow protrusions or have detailed outline
contours. The impact of such errors are reduced for higher resolution object views,
but can become significant when objects are small or far from the camera.

Shadow removal has been recognised as an important problem for the accurate
segmentation of objects [95] as object shadows are true changes in the image,but
are not actually part of the object itself. Prati et al. [95] provide a useful overview
of the techniques used to identify regions of shadow that might be segmented as
part of an object within an image. They separate the literature into the follow-
ing four approaches: statistical parametric, statistical non-parametric, determinis-
tic model-based, and deterministic non-model techniques. They suggest that the
complexity of generating a deterministic model that can handle many of the fac-
tors within cluttered general surveillance scenes with multiple time varying light
sources has limited the usefulness of current techniques in this approach. Their
results suggest that a general-purpose shadow detection system that uses minimal
assumptions should be based upon a deterministic non-model approach; however
each of the methods have their own advantages in certain scenarios. Therefore
whilst this approach would be widely deployable, improved results could be ob-
tained by utilising a model to make specific assumptions about the shadows that
occur within a given camera view. Statistical methods should prove more reliable
in indoor environments where the scenes are more stable, making the statistical
learning more effective. This approach of choosing the most appropriate method
would require camera calibration to improve shadow detection in a similar manner
to that suggested both geometrically, or spectrally, to improve colour information
or shape information. Indeed [95] suggests that further improvements could come
from such specific task/scene domain knowledge.

More recently approaches from other areas have been applied to improve
shadow detection. Although some of these techniques provide enhanced shadow
identification, most have not been used until recently due to real-time constraints
for surveillance images. One area has been the use of intrinsic images [108, 74,
115]. This approach aims to create a model of the illumination that can be re-
moved from an image to obtain a more accurate reflectance model. These tech-
niques have not been widely used in video surveillance because they can be time
consuming to optimise for an individual image. These techniques for extracting
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intrinsic images are more widely used for colour appearance and are more fully
described in section 2.2 below. Graph theory has also been advanced to enhance
shadow detection [120]; however the Expectation Maximisation (EM) approach
used to maximise the graph probabilities are likely to be too computationally in-
tensive for current surveillance applications.

Other recent work has looked at applying illumination and sometimes camera
models in order to identify regions of an image that are affected by shadow. [76]
has obtained a patent in the area of shadow edge identification through related
changes in all the colour channels within an image. Where the level of change in
the three colour channels at a given edge is roughly proportional, then that edge
is likely to be caused by shadow rather than a change in the underlying object.
[32] extend this idea using a camera model and directed lighting sources to iden-
tify shadow regions in greyscale, chromatic and even colour images. These areas
can then be backlit using an estimation of the level of shadow to produce images
that have used a reduced shadows. This technique seems to work well for out-
door scenes where the sun is a single strong illumination source is present; how-
ever may not be as applicable for scenes with multiple time-varying illumination
sources as occurs within a building, especially with exterior windows. Instanta-
neous estimations where illumination sources are only changing slowly may be
an easier problem to solve, though little work seems to have been directed at this
problem.

Essentially many of these techniques are widely used to minimise a range of
segmentation noise factors. Whilst many can improve the object segmentation,
mainly through the combination of object parts into a single region and the sup-
pression of shadows, errors still occur. The frequency of such errors is dependent
upon the complexity of the scene being observed, including the variation of colour
in the background environment, and the stability of the illumination conditions.
Significant errors can occur with reasonable frequency, especially in surveillance
systems where camera views are designed for human operators rather than auto-
matic computer analysis.

2.2 Colour Space Research
Colour features have long been considered as a significant feature in computer
vision, with many different representations and transformations proposed for dif-
ferent tasks. This review investigates some of the most common colour space
transformations, and their uses. For convenience the colour spaces are grouped in
this section similar to [110] into the RGB colour space, opponent colour spaces,
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phenomenal colour spaces, CIE colour spaces, and robust colour approaches. This
grouping allows for a discussion of the broad impacts of these approaches to
colour spaces, including their advantages and limitations.

The typicalRGB image model forms the basis of the standard bitmap image is
modelled upon the three channels of the human visual systems [110]. This model
is widely used as the basis of the digital imaging with an array of photorecep-
tors recording light over particular frequency ranges between 300nm and 830nm
[86, 117], making it device dependent. Other colour spaces have been developed
for their perceptual ability and other particular tasks. These colour spaces involve
a mathematical transformation of the RGB values. Once converted, these colour
spaces provide some advantages over the RGB space; however they often gener-
ate limitations in other areas [34, 110, 86, 117]. Transformations within a colour
space has also been proposed to reduce effects such as illumination [33].

Although RGB is good for displaying images, it is not perceptually uniform,
as Euclidean distances in the space do not correspond to human perceptual dif-
ferences in colours. Investigations into normalised distances [70] have increased
the correlation between distances and perceptual differences; however research
has generally looked into other more perceptual colour spaces. Early work devel-
oped the rgs colour space as a minor change to reduce the influence of the overall
lighting level upon the spaces; however this still does not significantly reduce the
correlation of the three channels, nor the device dependence. Note that this space
is sometimes used as a normalised rgb space using a similar manner [77]. The
rgs space can be calculated from the RGB space according to:

r = R
R+G+B

g = G
R+G+B

s = R +G+B

(1)

The German physiologist Ewald Hering proposed the opponent colours theory
in the late 19th century [86]. This is based upon the observation that certain hues
are never described together, such as reddish-green or yellowish-blue. Whilst this
contradicts the theory of trichromaticity, Cotton [14] suggests that this component
of the human visual system occurs in the post-receptor retina cells called ganglion
cells. Many models of this opponent colour system have been proposed, which
are generally suggested to better model the human colour perception [34]. One of
the simpler transformations [34] can be calculated as:
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RG = R−G
Y eB = 2B −R−G
WhBl = R +G+B

(2)

A log form of this model has also been proposed. Ford and Roberts [34] also
describe another colour space proposed by Ohta that approximates a decorrelation
of the RGB channels. This would make it more suitable than RGB for many
image processing applications. It can be calculated as:

I1 = R+G+B
3

I2 = R−B
2

I3 = 2G−R−B
4

(3)

Y,Cr, Cb is another popular colour space that is proposed for looking at shadow
suppression [62]. They compared it with the RGB, normalised rgb, HSV , and
XY Z spaces finding it to provide the highest level of foreground object detec-
tions with minimal levels of included shadows. The Y,Cr, Cb colour space can be
calculated from RGB using: Y

Cr
Cb

 =

 0.257 0.504 0.098
0.439 − 0.386 − 0.071
−0.148 − 0.291 0.439

 16
128
128

 (4)

Isaac Newton arranged colour in a circle called Newton’s colour circle [14],
which forms the basis of a group sometimes referred to as the phenomenal colour
spaces. This circle neglects the brightness of a colour and uses the hue and satu-
ration to describe the colours. The Hue attribute refers to the whether the colour
is red, green, blue, etc. The Saturation attribute refers to how vivid the colour is,
sometimes referred to as the level of non-whiteness [110]. The brightness is also
calculated for these spaces as the intensity of the light. This brightness property
is often ignored to purposely reduce the impact of shadows in areas such as fore-
ground detection [95]. The Munsell colour space is an example of an attempt to
generate a perceptually uniform phenomenal colour space, with 1500 systemati-
cally ordered samples [14, 30]. The most common phenomenal space is known as
HSV and can be calculated from RGB values as [40]:

H =

{
θ

360− θ
ifB ≤ G
ifB > G

(5)

where θ = cos−1
1
9
[(R−G)+(R−B)]√

(R−G)2+(R−G)(B−G)
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S = 1− 3

R +G+B
min(R,G,B) (6)

V =
1

3
(R +G+B) (7)

These phenomenal colour spaces are intuitive to use, and have been included
in many commercial applications such as Photoshop; however they also have their
limitations [110]. They are mostly linear transformations of the RGB space, and
thus are device dependent. This occurs as there is no usage of information about
chromaticity or white point used. There is also a problem with the hue discontinu-
ity occurring at 360◦ making arithmetic calculations more difficult. Indeed [110]
suggest that a chromatic CIE Lab or CIE Luv colour space in polar coordinates
may be easier to work with.

The Commission Internationale de l’Eclairge (CIE) is an organisation devoted
to international cooperation and exchange of information on all matters relating to
the science and art of lighting [110].In 1976 they proposed two colour spaces to
provide a perceptually uniform colour space. These were designated CIELuv and
CIELab. This perceptual uniformity aimed to create a high correlation between
the Euclidean distance in CIELuv/CIELab and the human perception of colour
distances using chromatic adaptation and non-linear visual responses [110]. The
main difference between these two colour spaces is that CIE Lab normalises its
values by division with the white point reference, whilst CIE Luv normalises its
value by subtraction of the white point. Thus the transform from CIE XYZ to CIE
Luv is calculated using:

L∗ = 116( Y
Yn

)
1
3 − 16

u∗ = 13L∗(u′ − u′n)
v∗ = 13L∗(v′ − v′n)

(8)

for Y
Yn

> 0.01, otherwise L∗ = 903.3 Y
Yn

where u′, v′, and u′n, v′n are calculated
from:

u′ = 4X
X+15Y+3Z

u′n = 4Xn

Xn+15Yn+3Zn

v′ = 9Y
X+15Y+3Z

v′n = 9Yn

Xn+15Yn+3Zn

(9)

where the tristmulus values Xn, Yn, Zn are those of the nominally white object
colour.
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The transformation from CIE XYZ to CIE Lab is performed as:

L∗ = 116( Y
Yn

)
1
3 − 16

a∗ = 500[( X
Xn

)
1
3 − ( Y

Yn
)

1
3 )]

b∗ = 500[( Y
Yn

)
1
3 − ( Z

Zn
)

1
3 )]

(10)

The perceptual colour difference can then be calculated as:

∆E∗uv =
√

(∆L∗)2 + (∆u∗)2 + (∆v∗)2 (11)

∆E∗ab =
√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (12)

The correlation between the colour difference and human perception is often
cited as the main reason for using the CIE based colour spaces. This allows for a
reduction in the effects of shadowing and highlights, similar to the human visual
system. Whilst such effects may be beneficial for colour image processing, it is
does not follow that it provides the best ability to discriminate between objects of
differing colours.

Whilst transformations into other colour spaces are often useful for particu-
lar applications, especially where colour perception is involved, transformations
within a colour space are also possible. Numerous transformations have been
developed to improve particular qualities of images, without transferring to a dif-
ferent colour space. These are often based upon adapting the image level colour
statistics so that they fit criteria such as histogram spread, minimisation of low fre-
quency components, or other ideas on generating robust colours. The techniques
described here are intrinsic images, grey world, white patch, and rank preserv-
ing histogram adaptations. Other techniques such as colour clustering to extract
colour descriptions are not explored here as they tend to be dependent upon ap-
plication they are required for and the distance measures that are used to generate
the clusters.

Intrinsic images are a good example of using image statistics to adjust an im-
ages colours. They aim to generate the reflectance image by discounting sources
of light and shadows [108, 74, 115]. This is based upon the definition of an image
as a combination of the intrinsic object reflectance, R(i), and the incident illu-
mination, I(i) in the scene. If one considers a small part of the image, denoted
here as L(i), then its value is determined by the combination of the illumination
in the scene and its interplay with the reflectance of the materials that make up the
objects in the scene. This is a complicated combination as the light can bounce
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of many surfaces, and the interaction of the light with the object depends not only
upon the materials inherent reflectance, but also the angle of the material, and
illumination from other sources. This can be written in a simplified form as:

L(i) = R(i) ∗ I(i) (13)

A full description of how to derive an illumination image from an image se-
quence is provided by Weiss [115]. This is essentially based upon applying a
Maximum Likelihood approach to sets of filters on the image sequence that are
treated as independent. This approach thus aims to use the statistics to separate
the reflectance from the illumination model. The results provided seem promising,
although the filter process does seem to lead to the reflectance images appearing
washed out. More recently Tappen et al. [108] have proposed an approach for
generating intrinsic images from a single image. Again the reflectance image re-
sults seem to be washed out with problems in lighter regions, especially where
white regions appear close to shades of grey. Sometimes even the distinction be-
tween black regions an their white surrounds are poorly extracted. This is because
intrinsic images suffer from the same limitation as chromatic spaces in that spe-
cific colours, such as white and black, can be very similar chromatically; however
differ significantly in their intensity. Such colours are intrinsically different and
can be seen as such in colour spaces such as RGB, but appear similar when their
intrinsic difference in intensity is reduced or ignored.

Other transforms aim to extract robust device independent colours by analysing
the histogram of image colours. The white patch assumption aims to create stan-
dardised images by transforming the colour values such that the lightest region in
the image is assumed to be white. This then transforms all of the other colour to
more fully spread across the histogram, although it can be problematic where an
image is quite dark or does not actually include a white region. A somewhat simi-
lar approach has been proposed by Finlayson et al. [33] to maintain the rank order
of the colours in an image, but to fully utilise the full image spectrum through the
application of histogram equalisation. This approach forces the image to trans-
form the whitest regions to white, as well as the darkest regions to black, using
a non-linear spreading of the pixel colours. The grey world assumption [4] looks
to transform the colour at each pixel based upon its difference from the image
average for each colour channel. This assumes that although colours may vary
significantly, the average of the image should be in the centre of the histogram un-
less device properties have influenced the image. The grey world transformation
can be derived as:
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R
′
= R

Rave

G
′
= G

Gave

B
′
= B

Bave

(14)

whereRave, Gave, andBave denote the means of theR,G,B colour channel values
respectively across an entire image.

Many other approaches, such as Retinex and ACE [99], have also been pro-
posed to transform colours into a more useful form. These are often aimed at a
specific task such as removing device based artefacts, making the images appear
more natural, or restoring old or damaged images. Thus such transformations may
not necessarily make the colours of an object closer to their intrinsic properties,
especially where the scene does not include a broad range of colours across the
spectrum. It is also worth noting that such conditions are most likely to occur
within confined artificial environments, such as the building environments.

This section has described many of the more common colour spaces used in
image processing. It is by no means exhaustive as there are many colour spaces or
colour transformations which are often derived for specific tasks or applications.
It has described many of the advantages, limitations and applications that are ap-
propriate to categories of colour spaces. When determining which colour space to
use it is worth considering the specific application use and the impact of shadows.
Where shadows need to be minimised, then chromatic spaces such as HSV or
Y,Cr, Cb can be applied. Where human perception of the colours are important
then the CIE based colour spaces, or the Munsell space should be considered.
Where the intrinsic colour is important for comparison, then chromatic spaces,
as well as techniques like intrinsic images are not generally going to improve the
results over using the standard RGB colour space.

When using any of these colour spaces careful consideration needs to be used
to evaluate the impact of the colour space upon the system and its computational
complexity. Consideration of whether illumination changes need to be mitigated
and how such mitigation might influence the ability of a distance measure to deter-
mine the difference between colours. It is also important to consider the distance
measures used to evaluate the colour similarity, and how approaches such as nor-
malised distances might reduce the effect of colour saturation to create a better
level of colour discrimination. Finally, where automated processes are concerned,
the usage of a colour spaces that mimic the human visual perceptual ability may
not translate into improved overall results.
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2.3 Statistical Similarity Measurements
Colour features have been widely proposed in the surveillance literature as a useful
feature for a variety of tasks from tracking to identification [47]. Whilst the par-
ticular feature and its representation are important, the determination of the level
of similarity between those features are also important. Such similarity measures,
also sometimes called distance measures, have been developed in the numerous
fields ranging from pattern recognition [21, 23] to information theory [15], and
communication applications [54]. These measures are often applicable across
wider domains to determine the level of similarity between a variety of features,
including colour based features, that are commonly represented as histograms or
probability density functions over a spatial region. Zhou and Chellapa [127] have
recently surveyed a wide range of these measures. A brief description of the most
common probabilistic measures are provided here, outlining their similarities and
indicating any features particular to those methods. In order to provide compara-
ble notation, these cases consider a two class problem, where p1(x) refers to class
1, and class 2 is noted p2(x) defined for the space <d. Is should also be noted that
0 < α1, α2 < 1, α1 + α2 = 1, and π1 and π2 are prior probabilities of classes 1
and 2 respectively.

In 1952, Chernoff derived a method of determining the distance between two
probabilistic functions [11]. This is found by investigating the overlap of the two
probability functions across the entire space. It can be formally written as:

JC(p1, p2) = −log(

∫
X

pα2
1 (x)pα1

2 (x)dx) (15)

Where the special case occurs that α1 = α2 = 1/2, then the Chernoff distance
changes slightly and is known as the Bhattacharyya distance [127]. The Bhat-
tacharyya distance was originally derived as a geometric measure of the angle
between two vectors in a high dimensional space, which represent the two distri-
butions [8]. Thus where the distributions are similar, the measure approaches 1.
It can be written for the two class case as:

JB(p1, p2) = −log(

∫
X

√
[p1(x)p2(x)]dx) (16)

Another measure known as the Matusita distance [75] can be defined as:

JT (p1, p2) = (

∫
X

[
√
p1(x)−

√
p2(x)]2dx)

1/2

(17)
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Matusita [75] noted that his distance was related to the Bhattacharyya dis-
tance, though minimising the Matusita distance is equivalent to maximising the
Bhattacharyya distance. This relationship can be shown as:

JT =
√

2− 2exp(−JB) (18)

The KullbackLeibler (KL) divergence [61] is commonly used in information
and probability theory as a measure of the difference between two probability
distributions. It is labelled as a divergence as it is not symmetric and therefore
gives an indication of the divergence of one distribution from the other. It can be
written as:

JR(p1||p2) =

∫
X

p1(x)log(
p1(x)

p2(x)
)dx (19)

The original usage of the KL divergence [61] actually added equation 19 with
the divergence JR(p2||p1) in order to generate a symmetric measure. This sym-
metry is useful as it provides a stable measure for the divergence which is not
dependent upon whether p1 is compared to p2, or p2 is compared to p1. It can be
written as:

JD(p1, p2) =

∫
X

[p1(x)− p2(x)]log(
p1(x)

p2(x)
)dx (20)

Patrick and Fisher proposed a nonparametric method to determine the distance
between two probability density functions [89]. This measure has been used pri-
marily in information theory and does not rely upon fitting a particular distribution
to the data. As such it allows distances to be calculated between a very wide range
of probability distributions. It can be written as:

JP (p1, p2) = (

∫
X

[p1(x)π1 − p2(x)π2]
2dx)

1/2

(21)

The Kolmogorov distance, when applied to the two class problem, relates to
the amount of non-overlapping components of the probability density functions.
Thus the distance is 0 when the functions are overlapping, but will equal 2 where
the functions do not overlap at all. This can be formally written as:

JK(p1, p2) =

∫
X

|p1(x)π1 − p2(x)π2|dx (22)
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Lissack and Fu explored the existing distance measures through a thorough
analysis of the probability of error Pe [67]. They determined the relative proba-
bility of errors for existing measures for an M-class problem. For the case where
M = 2 they found that the upper bounds for the functions described here relative
Pe’s are:

Pe = UK < UB = UT (23)

where UK denotes Kolmogorov’s distance, UB denotes Bhattacharyyas distance,
UT denotes Matusitas distance.

It is also important to note that where M > 2, UK is no longer equal to Pe,
though it does tend to remain closer than the distance measures [67]. Given these
results, they decided to extend the distance measure to also include a proportion
relating to degree of overlap between the functions. For the two class case this
can be written as:

JL(p1, p2) =

∫
X

|p1(x)π1 − p2(x)π2|α1|p1(x)π1 − p2(x)π2|α2dx (24)

Thus the Kolmogorov distance is a special case of the Lissack-Fu distance where
α1 = 1 [127].

This section has provided a brief outline of a popular range of distance mea-
sures as they relate to the two class distance measures. This distinction is im-
portant as many other distance measures have been developed or enhanced to
specifically cater for cases where there may be more than two classes. It is im-
portant to note that distance measures determined by each of these criteria are not
necessarily directly comparable to each other, the probability of error Pe in class
distinction is a reasonable measure with which to compare these measures [67].
A further consideration is that computing such probabilitisic distance measures is
non-trivial, and only determined for a certain range of parametric families, such
as Gaussian densities [127].

Further details including other interesting properties of these and other possi-
ble distance measures can be found in a variety of sources, including [21, 54].

2.4 Object Tracking
Once objects have been detected and segmented, they can be tracked through the
application of probabilistic data association. This section recognises that much of
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the traditional tracking literature focuses upon techniques for the modelling and
prediction of object location, but only gives a brief overview of the definition of
the tracking problem before focusing upon the data association component which
forms the larger part of more recent surveillance based tracking techniques.

Tracking within the video surveillance scenario can be described as the up-
dating of an object model or feature set along a frame sequence where that ob-
ject is viewed [121]. This aims to associate the data about individual objects
together into sets, also called a track, as they are viewed throughout a camera.
This track data can provide information about that particular object, such as its
motion, where it is located in each frame of the sequence, as well as its shape
and appearance features. Within single camera views many approaches have been
proposed, though the most successful have been based upon object motion infor-
mation. These often use particle filters or variants upon these techniques, such
as those presented by Arulampalam et al. [3]. Arulampalam et al. presents the
tracking problem as a state based system that changes over time using a series
of often noisy measurements which are made upon that system. The state based
system model can be given by:

xk = fk (xk−1, vk−1) (25)

where fk is a possibly non-linear function xk−1 and vk−1 models the process noise.
Tracking aims to recursively estimate xk from the sensor measurements, or obser-
vations, which can be modelled as:

zk = hk (xk, nk) (26)

where hk is also a possibly non-linear function xk−1, with nk modelling the mea-
surement noise. Tracking is thus based upon the filtered estimates of xk based
upon the set of all available measurements z1:k = {zi, i = 1, . . . k} up to the time
k.

Arulampalam et al. [3] also describes this tracking problem from a Bayesian
perspective, which adds a level of belief to the state xk at time k based upon the
given data z1:k also up to the time k. This requires the construction of the pdf
p (xk|z1:k) assuming that the initial state vector, or prior, is known. The pdf may
then be obtained recursively through the two stages of prediction and update. The
prediction stage uses information from the pdf at time k−1 and the system model
to obtain the prior pdf of the state at the time k via the Chapman-Kolmogorov
equation:
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p (xk|z1:k−1) =

∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1 (27)

At the time step k, a measurement zk becomes available, which can be used to
update the prior using Bayes’ rule:

p (xk|z1:k) =
p (zk|xk) p (xk|z1:k−1)

p (zk|z1:k−1)
(28)

where this measurement is normalised using the constant

p (zk|z1:k−1) =

∫
p (zk|xk) p (xk|z1:k−1) dxk (29)

which in turn relies upon the likelihood function p (zk|xk) that is defined in the
measurement model.

It is worth noting that it is the recurrence relations between equations (27) and
(28) that form the basis of the optimal Bayesian solution. This theory has lead
to research suggesting a number of algorithms ranging from the popular Kalman
Filter and its extended version to grid-based methods and several other variants
on the particle filters.

The theoretical description of the tracking problem outlines the problem; how-
ever the surveillance community is actually more interested in the data associa-
tion that is associated with tracking. This area is focussed more upon the models
and features that are used for tracking purposes, rather than methods to solve the
tracking problem itself; however it is also important to note that a good predictive
model can help with the data association problem. These models are important
as tracking methods based purely upon the location of an object blob have many
limitations, and work best at high frame rates where the differences between the
predicted and observed positions are likely to be very small. Where there is a sig-
nificant time difference between prediction and measurement, the difference be-
tween prediction and measurement can cause significant errors in utilising these
techniques. These complexity factors can cause significant errors within single or
overlapping cameras; however the problems become so large when cameras are
significantly disjoint that this area of research is therefore considered to be of a
different nature to the traditional image tracking techniques as described in detail
in section 2.6.

The rest of this chapter focuses first upon exploring the factors that add com-
plexity to the tracking problem, Section 2.4.1, as well as the feature based track-
ing, Section 2.4.2, and model based tracking techniques, Section 2.4.3, that are
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used in the surveillance literature aimed many at single or overlapping camera
views. Finally the chapter ends with a summary of the ability of the tracking
techniques to overcome the complexity factors and how they trade off between
algorithm complexity and accuracy.

2.4.1 Complexity Factors within Object Tracking

Although much research has been conducted into effectively solving this tacking
problem, a number of factors still cause significant complexity and errors in even
the most sophisticated methods. These can be grouped into the six main complex-
ity factors:

1. Number of detectable objects, because tracking requires an algorithm to
match each object to a track to follow its motion in each frame.

2. Segmenting or tracking individual objects within a group as the group may
split up, or other objects may join the group for a period of time.

3. Partial object occlusion, where one object covers a portion of another object
in the cameras view

4. Total object occlusion, where an object is completely blocked from sight by
another object.

5. Poor object segmentation, because it can alter their appearance. This could
be due to a number of problems ranging from occlusions, to a lack of con-
trast between the object and the background.

6. Mutual similarity between objects, which could lead to incorrect data asso-
ciation.

Many of these factors are analysed in the literature when tracking methods
are compared [24, 36, 44, 47, 79, 107]. The focus on errors from occlusions and
object segmentation has lead to some quantitative analysis of methods [64]. Many
of the existing tracking algorithms lead to good results in simple video sequences,
and often reasonable results with limited errors for the authors chosen operational
environment; however little work has currently been done to fully compare many
of the common techniques quantitatively across this list of complexity factors,
making it difficult to evaluate their usage across a wide surveillance system. The
increasing amounts of available computational power and camera resolution have
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also lead many researchers to move on from evaluating the tracking problem to-
wards analysing higher level information from the tracks. The six main complex-
ity factors still cause error rates that may impact upon further analysis, yet there
has been little research into how increased resolution affects track analysis, or the
accuracy and speed of the existing tracking algorithms.

2.4.2 Feature-Based Tracking

Feature-based tracking algorithms extract geometric elements, such as corners and
vertices and cluster them into higher level features to perform object recognition
and tracking. These features can be matched between images to perform recog-
nition and tracking, and are often fused together to create stronger feature groups
that provide higher accuracy under partial matching . Three sub categories of the
feature based algorithms can be considered based upon the level of the feature
used. These are:

• Global feature-based algorithms use centroids, areas, colours, perimeters,
and other features as the basis of their features. An example is where a
person is tracked using their centroid and bounding box [92]. As long as
the centroid velocity of two people can be distinguished, then tracking is
successful even during occlusions.

• Local feature based algorithms use features such as line segments, curves,
and corner vertices.

• Dependence-graph-based algorithms include a variety of distances and fo-
cus on the geometric relations between features.

Hu et al. [47] indicates that feature-based algorithms, with the exception of
dependence-graphs, can adapt quickly and successfully as they operate within 2D
image planes. This makes them suitable for real-time tracking of multiple objects
in areas with high object traffic. For example Jang and Choi [51] have com-
bined features into an active template that dynamically characterises the structural
and regional features of an object based upon shape, colour, edge, and texture
features of the region. Minimising a feature energy function of a Kalman filter
based motion estimator during the feature matching process allows their system
to track non-rigid moving objects. Dependence-graph-based algorithms may pro-
vide more accurate results, but they do require computationally expensive feature
graph matching, making them only suitable for tracking where there are minimal
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objects, or offline analysis. These algorithms may handle a limited amount of par-
tial occlusions by utilising dependence graphs and local features; however these
algorithms have a low recognition rate due to image distortions in the camera pro-
jection, are generally unable to recover the 3D pose of objects. They also tend to
suffer significant degradation with poorly segmented foreground object regions.

2.4.3 Model-Based Tracking

Model-based tracking is perhaps the most common method in the tracking litera-
ture. The models are usually generated offline by combining features inherent to
the structure of the object using prior information about likely object types. These
models form the basis of the standard tracking equations (25) and (26). Appropri-
ately chosen models will allow for a system to become more robust to the expected
noise in the system, and can become robust to typical minor error sources such as
small segmentation errors. Tracking is usually performed by recursively predict-
ing the location of the model for the next frame in the sequence using equation
(27), and updating the measurement of the model based upon the actual view of
the object within that frame of the image sequence using equation (28). These
steps aim to produce the best ‘track’, or proposed position of the model location
in each frame of an image sequence. The models will sometimes incorporate an
object appearance component which is also updated to improve the model, as this
additional information assists with overcoming factors, such as occlusions. As
rigid bodies, such as vehicles, are often much simpler than their non-rigid bodies,
the literature tends to use simpler model assumptions. For this reason the liter-
ature tends to be separated into human body model tracking and vehicle model
tracking, with the majority of research in surveillance focusing on human body
movements. This thesis is based within a building surveillance environment, so
this section will focus upon the human model-based tracking methods.

Human body model-based tracking is often done in an analysis-by-synthesis
method [47], or through the application of generalised appearance models. In
analysis-by-synthesis the next pose for the human body is estimated and projected
into the image plane for comparison with the image data according to a similarity
function. This may be recursive, or use sampling techniques, but once a match
is found, then the model is updated. Hu et al. [47] highlights the main issues
with this method as constructing the human body models and their representation,
constraints, and the prediction and search strategies used to match the models with
the actual image data.

Four main structures are used throughout the literature to construct and rep-
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resent the human body models. These models use different assumptions about
the nature of the human body projected into the image plane, and the amount
of information required to model a human body accurately enough to effectively
track it. Again this is an example of the trade-off between model accuracy and
the algorithm speed required to reach real-time processing speeds. The four struc-
tures are: stick figures, 2D contours, volumetric models, and hierarchical models.
These human body models are combined with human motion models to provide
more body pose or behaviour information as well as more accurate tracking. Other
search strategies can also be used in combination with the human body model to
provide faster or more accurate model matching for the tracking process.

Stick models essentially model the body as a combination of rigid sticks, to
represent the bone structure of a human. These are allowed to move relative to
each other. Zhao and Nevatia [125] use such an articulated human stick model
to provide some robustness to occlusion and to perform gait analysis using leg
motion templates for walking and running. These motion templates are generated
offline for matching with humans in other video sequences.

2D contours, or edges, are developed from the projection of the human body
into the image plane, and consist of human body segments modelled by 2D rib-
bons or blobs. Elgammal et al. [28, 24, 27] constructs a three blob model con-
sisting of a head region positioned above the torso region, which is above the leg
region, where the region locations are determined from prior offline analysis of
upright humans. This colour model, bounded by the contours can then be used
to handle occlusions as the human model can be matched to the visible compo-
nent of the appearance model. This model is only useful where a human is in
the upright position; however this is common in video surveillance footage. Fur-
ther abstraction of this using human pose classification or a stronger model could
ensure the appearance is not corrupted by errors, or could adapt the model to be
more relevant for other positions such as crawling or sitting.

Active contour-based tracking methods also use 2D bounding contours, or
edges, to represent objects rather than extracting objects using background mod-
els. These active contours are updated dynamically to better fit the model through-
out successive frames of an image sequence [79]. Koller et al. [60] applied active
contour-based tracking to vehicle recognition, achieving real-time tracking of ve-
hicles through a road segment. This provided tracking of vehicle shapes through
a simple environment with a high degree of structure. Isard and Blake [50] use
stochastic differential equations as the basis of their condensation motion models,
and combine them with deformable templates to address the challenges of peo-
ple tracking in near real-time speeds. Paragios and Deriche [87] use a geodesic
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active contour and a level setting scheme to track various moving objects. The
tracking results for both human and vehicular objects using these techniqueslook
promising; however the computational cost of the algorithm seems quite high.

Active contour based algorithms generally provide a more simple and effective
representation than region-based tracking with lower computational complexity
[47]. They seem to provide more robust tracking under occlusions and back-
ground disturbances, but are still limited to contour based information. This can
make determining further information such as 3D object pose difficult. Initialisa-
tion sensitivity is also a large problem with some of these methods [87] making
automatic tracking initialisation difficult.

Volumetric models are constructed based upon the fact that humans are 3D
objects that are projected into the image plane. Thus the representation of the
object can be 3D and it can also be projected into the image plane to provide
more accurate representations under object rotations. Zhao and Nevatia [125] use
an ellipsoidal 3D model to represent people in their system and utilise a ground
plane constraint to minimise the effect of shadows, as these predictable occur
along the ground plane in open environments. The simplistic 3D modelling of the
environment and illumination sources also provides more information that can be
analysed in the scene.

Hierarchical models are seen as a way to more accurately model the complex
structure of the human body. Haritaoglu et al. [43, 44] use a hierarchical model
of human body parts on the body silhouette boundary. The position of body parts
is calculated using a likelihood function, and is further used to estimate the body
posture of a human in the scene. Plankers and Fua [91] present a model of the hu-
man body where the hierarchies are the skeleton, ellipsoid balls simulating tissues
and fats, polygonal skin surfaces, and shaded rendering.

Motion models of human limbs and joints are widely used in the literature be-
cause they provide strong and realistic model constraints. These use prior knowl-
edge of human motion to help recognise human behaviours [125]. These often
use Hidden Markov Models (HMM’s) and their variations generated from offline
image analysis for comparison with image data to determine human motion be-
haviour such as walking, running, or standing. Zhao et al. [126] use the minimum
description length (MDL) paradigm to develop their structured motion model for
ballet dancing. Ong and Gong [84] use a hierarchical Principal Component Anal-
ysis (PCA) to develop their motion model based upon the matrices describing the
transition probabilities within, and between global eigenspaces. Ning et al. [82]
develop their motion model from training examples and represent it using Gaus-
sian distributions.
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Other search strategies aim to reduce the computational time of pose esti-
mation and object matching for tracking by developing appropriate object con-
straints. The four most common areas of research are modelling the human body
dynamics, applying Taylor models or Kalman filters for estimating the position
or appearance, or using stochastic sampling. The most common stochastic sam-
pling technique is the CONDENSATION algorithm developed by Isard and Blake
[49, 50]; however Hu et al. [47] also point out that other strategies such as Markov
Chain Monte Carlo and Genetic Algorithms have also been applied.

Model-based tracking makes use of prior knowledge of the 3D shape of ob-
jects, and also online knowledge of the basic appearance of individuals. This
attempts to make them more robust under occlusion, self occlusion, and to distin-
guish objects moving within a close group. The structure and constraint of human
and vehicular motion can be used as prior knowledge which can be fused with
other methods. 3D models also naturally acquire the 3D pose of an object from
the calibrated 2D image scene. The models are also robust to orientation changes
that can generate significant changes in object appearance. Unfortunately these
methods do require fairly accurate 3D models, high computational cost, and they
can be affected by segmentation errors.

2.4.4 Mean Shift-based Tracking

Another commonly used tracking algorithm is based upon the mean shift algo-
rithm. This approach applies mean shift as a robust statistical method that looks
to find the local maxima in a given probability distribution. These methods use
a search window over a section of the possible distribution to find the maximum
in that window. The window can then be adjusted to this location with the search
recomputed. This process is repeated until the solution converges to a local max-
imum.

In video surveillance, many approaches have have proposed to use this method
for tracking individuals, with [13] being one of the more commonly referenced ap-
proaches. These methods use a probability value at each pixel to represent how
likely it is to be the location of the object being tracked, usually based upon its
colour. This creates a 2D probability distribution upon which the mean shift pro-
cess can be applied. The models used to generate the probability at each pixel are
becoming increasingly more complex and adaptable. This is increasing the ro-
bustness of the tracker; however they are relying upon increases in computational
power over time to allow these methods to run at real-time speeds.

A recent paper by Artner [2] has compared some of these mean shift trackers
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and found that they can provide reliable and robust results. It also outlines the
following six factors that are required to provide the best results:

• The target is mainly composed of a single colour.

• The target does not change colour.

• Illumination does not change dramatically.

• There are no other objects in the scene similar to the target.

• The colour of the background differs from that of the target.

• There is no full occlusion of the object.

Many of these factors do not occur very often for some camera views, suggest-
ing that the mean shift tracker may be appropriate in some cases. Unfortunately
in real surveillance systems many people may be observed at the same time with
similar colours, illumination can change significantly, and there are times where
the background may be similar to the target object. These often cause some de-
gree of error with other tracking techniques; however they tend to completely
break mean shift based tracks.

2.4.5 Summary of Tracking Literature

Many tracking methods are currently proposed for tracking objects in a variety
of scenes. These methods are essentially dependent upon the model that they
use, and so vary greatly in their complexity and accuracy. To date none of these
techniques have been proposed to work perfectly for use throughout an entire
surveillance, even though many have produced good results for tracking within
their specific assumptions. This is perhaps due to non-generalisation of models
between object classes, such as humans or vehicles, as different features remain-
ing invariant or discriminative within the different classes; however it is also likely
due to the focus of research groups upon particular solvable pieces of the very dif-
ficult surveillance task.

Many appearance based models can overcome some of the complexity factors
such as occlusions and poor segmentation using features such as object colours;
however sustained total occlusions as well as the combining and splitting of groups
of individuals still commonly cause errors. Post-tracking integration of tracks
which have become separated has not yet been widely addressed, even though the
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object models could potentially be matched to perform these tasks. The main dif-
ficulty is that the motion information can be unreliable and many models do not
provide enough information to correctly reconcile these tracks through feature
matching of the models.

2.5 Object Classification
Once moving regions have been identified and segmented, it is possible to try and
classify the object, or objects, within that region. The image sequences being anal-
ysed may contain many different object types such as humans, vehicles, and other
moving objects, like moving clouds. By classifying objects into broad groups,
more accurate assumptions can be made about the way they are likely to move
and behave for improved modelling, tracking, and other purposes. For example
cars are most likely to stay on paved roads with a relatively constant velocity,
whilst humans may have more erratic movement patterns.

Object classification is a pattern recognition problem with the two main ap-
proaches being shape-based classification, and motion-based classification. These
methods are both being improved by increased object resolution in the footage.
Shape-based classification is performed using a combination of a variety of object
information from silhouettes, to blobs, and the bounding boxes of a moving ob-
ject. The VSAM system [12] uses a combination of the image blob dispersedness,
image blob area, and apparent aspect ratios as key features to classify the mov-
ing objects in their system into four categories: single human, vehicles, human
groups, and clutter. This system uses a viewpoint-specific three-layer neural net-
work classifier, but has also been extended to further classify vehicle types such as
a van, or sedan. Lipton et al. [66] uses the area and dispersedness of image blobs
to classify their moving objects into humans, vehicles, and clutter. These classifi-
cation results are improved by including temporal consistency constraints within
the classification process. McKenna et al. [77] uses human silhouette patterns to
separate individual humans within a group based upon head location.

Motion-based classification tends to be based upon rigidity and periodicity of
moving objects. Lipton et al. [65] uses residual flow to analyse both the period-
icity, and rigidity of a moving object. Rigid objects are expected to produce little
residual flow, whilst non-rigid objects such as humans produce a higher average
residual flow, and also exhibit periodicity. Analysis of these features can then be
used to distinguish between human motion, and the motion of other rigid objects,
such as vehicles. Cutler and Davis [18] detect and analyse periodic object motion
using a similarity-based technique. A moving object is both tracked over time,
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and has a self-similarity measure computed over that track. For periodic motion,
the self-similarity measure should also show periodicity. Time-frequency analysis
can be used to analyse the self-similarity measure for periodicity, which can then
be used to classify the object.

These classification techniques utilise the similarity of object appearance, to
a model, or its change over time. Because the object appearance is reliant upon
the accuracy of the object segmentation and the illumination conditions, the type
of object segmentation is important to the classification accuracy. The literature
has not analysed the impact of the segmentation technique upon the accuracy of
classification and tends to present the object classification step as merely an ex-
tension of the object segmentation, rather than as an independent step. The impact
of illumination upon appearance, though widely recognised as a problem, is often
not mentioned unless the work directly relates to the mitigation of the illumination
effects.

2.6 Current Disjoint Camera Tracking Methods
Accurately identifying the movements and behaviours of individuals around a
surveillance system has been a focus of security systems long before the invention
of computing systems. Such systems have traditionally focussed upon securing
important objects, information or people within secure areas with limited access
for their protection; however an increasing amount of investigation, especially in
the area of policing, goes into understanding the movements or interactions of
individuals within areas of interest which may not be secure. With the develop-
ment and widespread instalment of video cameras in the form of Closed Circuit
Television (CCTV) systems, information from video cameras about events in the
vicinity of the investigation are increasingly being used to provide additional in-
formation. This is becoming important as groups such as terrorists increasingly
target publicly accessible locations to spread terror, rather than attacking secure
military installations, where the chances of success are more limited.

Locations of interest often consist of a set of buildings and their grounds, al-
though more widespread sets of connected infrastructure such as train systems
could also be considered. These areas often have surveillance systems installed
with many camera views displayed and monitored by security guards to attempt
to identify individuals or crowd behaviour that is out of the ordinary. Much
research has been conducted into understanding and identifying such behaviour
within a camera view; however many examples arise where the motion of individ-
uals throughout a surveillance system could provide extra information for forensic
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tracking, or for identifying the present location of key individuals to assist security
guards. If this could be automated, or even just parts of it automated with a man-
ual review process, then it could be used to process large numbers of cameras that
security operators find difficult to analyse, or could at least reduce the manpower
required to perform the task. Such systems could assist police or security officers
to monitor and follow suspects of interest throughout a system, or for forensic
analysis of events, such as identifying the movements of suspects throughout the
train network in the 2005 London bombings.

Working within surveillance systems that were designed primarily to assist
human operators raises many problems when trying to automate various tasks.
The two primary considerations in existing surveillance systems are the installa-
tion cost and operational requirements. The camera and system installation costs
leads to large areas which have limited or no camera coverage; however differ-
ing camera properties and viewpoints, imperfect object segmentation, occlusions,
and variable and unpredictable illumination conditions all increase the difficulty.
The operation of current surveillance systems are also reliant upon human moni-
toring rather than automated systems, as human inference does not rely upon full
coverage to track people throughout the system.

These difficulties have lead to a limited amount of literature aimed at address-
ing large scale surveillance within real systems. Recent advances in camera tech-
nologies and underlying research areas such as object segmentation and tracking
within a single camera have lead to increased interest in this area. Each of the key
approaches in the literature will be discussed in detail in this section along with
their assumptions and limitations. The approaches described in detail are given in
chronological order of publication and include the following papers:

1. Cai and Aggarwal [10] - Automatic Tracking of Human Motion in Indoor
Scenes Across Multiple Synchronized Video Streams

2. Huang and Russell [48] - Object Identification: A Bayesian Analysis with
Application to Traffic Surveillance

3. Orwell et al. [85] - Multi-camera Colour Tracking

4. Darrel et al. [19] - Integrated Person Tracking Using Stereo, Colour, and
Pattern Detection

5. Collins et al. [12] - Algorithms for Cooperative Multisensor Surveillance
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6. BenAbdekader et al. [7] - Person Identification using Automatic Height
and Stride Estimation

7. Tan and Ranganath [106] - Multi-Camera People Tracking Using Bayesian
Networks

8. Javed et al. [52, 53] - Tracking across multiple cameras with disjoint views
and Appearance Modeling for Tracking in Multiple Non-Overlapping Cam-
eras

9. Hampapur et al. [42] - Smart Video Surveillance: Exploring the Concept of
Multiscale Spatiotemporal Tracking

10. Zajdel and Krose [123] - A Sequential Algorithm for Surveillance with
Non-overlapping Cameras

11. Gandhi and Trivedi [38, 39] - Panoramic Appearance Map (PAM) for Multi-
Camera Based Person Re-Identification

12. Yang et al. [119] - Human Appearance Modeling for Matching Across
Video Sequences

Cai and Aggarwal [10] present what is possibly the earliest work in people
tracking across multiple cameras that are not necessarily overlapping. This work
looks at determining the components of their single view tracking system that
can remain stable across multiple cameras. They mainly utilise a location feature
within a scene model using camera calibration between the camera views, which
is only useful for overlapping or almost overlapping cameras. They propose using
an average between the image intensities in both cameras to model the difference
in illumination levels in the camera views so they can use intensity values of a
set of points along the medial axis of the upper body. Such camera dependent
transformations have formed a component of much subsequent work; however a
simple average difference between the illumination intensity in one camera view
and a second camera view is unlikely to effectively model the complex interplay
of multiple time-varying illumination sources.

The second approach by Huang and Russell [48] also performs disjoint camera
matching using a probabilistic approach to track the motion of vehicles that are
observed in two distant cameras along a motorway. They use a fully observable
model of the appearance to perform an exhaustive matching between the between
the car observed in one camera and then observed in a second camera. This model
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includes a number of parameters for each vehicle including colour statistics from
the HSV space as well as length and width. They also propose to use an online
recursive model to update the appearance parameters for changing conditions over
time, such as changing levels of sunlight. This system is also very dependent upon
the link travel time between the observing cameras. An association matrix is used
to select the most appropriate matches between the two observations, and is only
two-dimensional for this simple two camera case. Pasula et al. [88] expand this
work by exploring the scalability of this traffic tracking system to cover multi-
ple cameras. Their findings suggest that the original model does not scale well for
larger cameras systems, as the method requires a propagation of correct matchings
through the whole observation chain rather than being able to handle the decom-
position of a global model for many sensors. For instance, if an object is correctly
observed in cameras A and C, but in the intermediate camera B, then the cor-
rect object associations become more difficult than the two camera case as some
features such as the speed of travel and lane position are likely to become less
reliable. Other intrinsic features, such as colour, length and width, become con-
ditionally independent across the wider surveillance system and provide similar
levels of accuracy independently of which camera views they are being matched
from. This is a very important finding as it clearly demonstrates that the invariance
of the features over time are crucially important, especially when there are large
gaps between coverage leading to greater variability in motion based features.

The third early approach in tracking people across multiple cameras was con-
ducted by Orwell et al. [85] utilising the power of colour appearance for match-
ing individuals. This work is based upon extracting a model of an individual’s
colour by performing colour clustering using a mixture of Gaussians, which are
optimised by an Expectation-Maximisation algorithm. The changing illumination
level is mitigated by adding an expected level of noise to the system to model the
expected changes. Where there are multiple known observations of an individ-
ual within the system they propose to even estimate this illumination noise. As
with all illumination mitigation approaches this added level of noise allows for the
same colour under different illumination to be more accurately matched; however
it also allows for differing colours to have a higher level of similarity. This paper
also notes that other object features such as shape and position could be fused with
the colour features in order to improve the accuracy to a level where it might be
useful in an automated system.

The fourth approach by Darrel et al. [19] presents a system that could be used
for a true disjoint camera tracking system. It is based upon the fusion of height,
colour, and facial features from what seems to be a single stereo camera set which
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users interacted with over a period of time. The height estimates were obtained
using stereo depth perception to identify the best possible head point. This is
likely to produce very high levels of accuracy, which could potentially overcome
to some degree the similarity in height of many people [101]. The colour features
used in this work can be separated into skin colour, which is used to identify the
face and also seems to be compared for identification, the hair colour, consisting
of the candidate head region which is not identified as the facial skin colour, and
the colour of the rest of the person. The facial features used in this system are
of less interest because this system tends to have had users approach it to obtain
close facial shots. Such detailed facial images tend to be obtained sparsely in real
systems. The medium and long term results of this system are promising; how-
ever the object resolution seems to be considerably higher on average than what
would be typical for surveillance and the testing is performed on a single camera,
reducing scene illumination changes. Stereo cameras are often not available in
current surveillance systems.

The fifth approach is by Collins et al. [12] who created the VSAM system.
VSAM is aimed at tracking the ground position of vehicles, people and groups
of people throughout an entire site. This makes no assumptions about indoor or
outdoor environments, though the work presented was from outdoor scenes with
cameras that can move their field of view. This can be described as an active sys-
tem as it aims to utilize multiple redundant cameras in order to track a specified
object through the site to provide real-time information, rather than potential post-
event analysis. It uses multiple sensors to try to ensure that at least one sensor is
tracking the targeted object through a previously created three-dimensional model
of the site. Such a system is based largely upon the assumption that there are very
few regions where the object is out of view such that there is little uncertainty
about their group plane position or geolocation. This geolocation is the dominant
feature, with Multiple Hypotheses Tracking (MHT) performed if there is uncer-
tainty. The object classification of vehicle, person or group of people is used with
object colour to verify the most likely hypothesis. This work seems to be aimed
at continual active tracking of an object through the system, and does not provide
any provision for an object’s track being lost and later discovered. In such a case
the two object tracks seem to be considered as if they are separate objects, which
could perhaps be manually reconciled by a human operator. This system does not
consider reidentification or matching of objects other than reconciling their loca-
tion between two views, minimising its usefulness in real systems with large gaps
in coverage.

The sixth approach is by BenAbdekader et al. [7] who developed a system
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based upon height estimation and stride and cadence based gait measures for iden-
tification. The height estimates are obtained by converting the image based height
of the object’s bounding box into a real world height through camera calibration
with a reported accuracy of within 3.5 centimetres. This calibration is also used
with temporal information with respect to frame rates in order to provide the stride
and cadence-based gait information, although it is reliant upon a frame rate higher
than twice the gait frequency. The results presented for this system are promising;
however it appears to run on a single camera, in a single area. This reduces the
effect of errors in camera calibration and differing frame rates, as well as eliminat-
ing the variations in gait that might occur with different ground surfaces. These
factors make a full evaluation of the system to wider surveillance difficult.

The seventh approach by Tan and Ranganath [106] utilises facial features as
well as the colour and texture of clothing to determine the identity of an individual
from a database of possibilities. Their results indicate that individually clothing
texture is their most accurate feature, with clothing colour also providing high
accuracy. Facial features were not found to be as accurate with accuracy of only
58% recorded in the database of only 11 people. The fusion of these features
was found to provide matching accuracy of individuals over 95%, although this
also uses transitional dependencies, which may not be so useful for a wide area
surveillance system. Although the number of people investigated within this sys-
tem is low, the clothing colour and texture features would seem to be promising
techniques for future systems.

The eight approach by Javed et al. [52, 53], from the University of Central
Florida investigated tracking across disjoint cameras. Their two primary contri-
butions extended a probabilistic model to automatically determine transitions be-
tween non-overlapping cameras[52], and determining a method to generate inter-
camera Brightness Transfer Functions(BTFs) [53]. Initially the work investigated
automatically modelling path probabilities and the transition times between cam-
eras, as opposed to using the manually generated ones developed by Kettnaker
and Zabih [55]. They also allowed this camera transition model to automatically
update with changing traffic flow. Whilst the path probabilities in some situations
can correlate with actual movement, this is not necessarily generalisable to all ar-
eas under surveillance. For example, in a corridor where cameras are situated at
either end without any exits, a person moving into the corridor from the camera
view at one end could be expected to either enter the corridor view at the other
end after a period of time, or possibly turn around within the corridor and re-enter
the view of the first camera. Whilst most traffic may take approximately the same
time to move along the corridor, using such transition times may have a significant
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impact upon the accuracy where the individual does not conform to the general
model. This could be important as cases where the transition time is significantly
different could occur due to activities of interest between those views, such as
stopping to steal an art work. The second component of Javed et al. ’s work [53]
involves calculating BTFs. This is significant as it allows for people observed un-
der differing cameras to be transferred to a similar level of brightness in order to
compensate for illumination changes. These transfer functions require a number
of assumptions, such as the background indicating the scene level illumination
changes, and appropriate BTFs can be determined quickly where there are time
varying illumination levels, such as natural sunlight. It also assumes people within
the scene are flat to limit the complexity of the interplay between the illumination
and the observed individual. Even with the low dimensionality of the range of
BTF’s between cameras, the effect of illumination sources on the background are
often not necessary a good indication of the complicated interplay of time-varying
illumination sources on the 3-D surface of an articulated moving object.

The ninth approach is the People Vision project conducted at the IBM T.J.
Watson Research by Hampapur et al. [42]. This is possibly one of the most
complete video surveillance projects designed around improving a surveillance
system to be more effective. It combines and improves upon a variety of base-
line technologies whilst keeping in mind the implications of large surveillance in-
stallations. The system aims to improve baseline object segmentation techniques
through the application of optical flow to determine salient motion. The tracking
system is based upon the development of a multi-blob tracking system that uses
shape and appearance measures to overcome occlusions [104]. Such shape and
appearance models can also be used to perform tracking between disjoint cameras
around the surveillance system, although this is not explicitly stated within their
research. The suggestion of the usage of wide-baseline stereo to obtain accurate
localisation of an individual is also very useful where they are available; however
the prominence of stereo cameras would suggest its increased usage when con-
sidering automated surveillance system. Object classification is also discussed as
a technique to extract extra information about the objects within the system at
real time speeds. They also propose to identify the head location of an individ-
ual through an analysis of the silhouette to identify the extremities through their
distance from the centroid of the object. Once the head is located, then a PTZ
camera could be used to obtained a zoomed facial shot that could be useful for
either surveillance personnel, or an automated facial identification system. When
these technologies are applied with long term monitoring and motion analysis,
this research promises to provide a powerful tool for surveillance.
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This system [42] provides many possibilities for the identification of abnor-
mal behaviour to alert security staff; however the most powerful concept proposed
by this group is the semantic storage of the data into the Viewable Video Index
(VVI). This searchable database promises to provide queryable semantic infor-
mation in the form of object, temporal, or spatially based information. Obviously
the most powerful queries are likely to cross these boundaries, such as finding
all the red cars that travel over 20 kph in the viewable region that relates to the
car park. The combination of all of these technologies and techniques provides
probably the most sophisticated surveillance research system to date and also in-
dicates that future surveillance installations should seriously consider their tech-
nologies to provide useful automated or improved semi-automated surveillance.
These considerations include spending more money upon infrastructure such as
wide-baseline stereo cameras as well as PTZ cameras for large common areas, as
well as serious consideration for the placement of cameras to cover other areas
such as building corridors.

Much work has been conducted into the determining path probabilities, cul-
mination in the tenth approach in a recent article by Zajdel and Krose [123]. This
work looks at using Dynamic Bayes Networks to automatically determine a set
of interconnected graphs that model the transitions of individuals between cam-
eras in a system. The transition probabilities between cameras can be determined
automatically using the observed appearance of individual objects through the
system. The appearance of an object is modelled by three strips relating to the
upper, middle and lower appearance colours, with the very top and bottom of the
object discarded. These three appearance strips, each consisting of 25% of the ob-
ject height, can be compared to identify individuals; however this work is based
more significantly around the geolocation and camera view transition information
throughout a set of corridors. This information can be very useful for corridor
areas where transitions between camera views can be limited to a small number,
but are not so useful in broader areas where transitions between views may not be
so limited.

Gandhi and Trivedi [38, 39] present a colour representation method which
stores a representation of an individuals colours based upon their spatial position
within a cylindrical representation of the individual. This cylindrical surface con-
sists of a number of regions which are rectangular on their surface, with the colour
of that region being represented as the average of the pixels within that region that
are observed by each camera view. Thus the representation includes information
from each camera view to create a full model of an observed person; however the
size of the rectangular pieces is likely to determine the ability to represent varia-
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tions in clothing or appearance which may be of multiple hues. Thus significant
colour information loss may occur with strongly patterned clothing. The represent
is also likely to be very sensitive to the alignment of the cylindrical representation.
The main concern with such an approach would be the automatic registration of
an individual into the system to begin the matching process where most of the
regions in the surveillance system consists of only single camera views.

The final approach considered here is by Yang et al. [119] who present a new
human appearance model aimed at tracking across video sequences. This model
is based upon the usage of a brightness colour feature, an RGB rank feature, and
a path length of those features from the top of the head of the individual person.
This aims to incorporate spatial information with the illumination invariant colour
features to become more invariant to pose without requiring a three-dimensional
model with articulated joints. They also propose to limit the track comparisons
required by selecting key frames for matching between tracks, and match the ap-
pearance models using the Kullback-Leibler distance. The results presented in
this paper clearly demonstrate that the RGB colours are so affected by illumina-
tion that illumination mitigation or illumination invariance is required for colour
appearance features. Using RGB rank is clearly shown to be more effective than
their method of separating colour and brightness, with both methods being tol-
erant of downscaling the original image. These results present a very recently
developed promising appearance model that is tolerant to many factors includ-
ing pose and illumination. The results presented do not necessarily present the
full picture of this method though, as only the true matching rates are reported
and analysed across only two different cameras. These matching results are based
upon minimising the overall error rate; however this total error rate is not reported.
This article also does not report upon whether their spatial colour representation
is able to perform accurate partial matches, such as where a portion of the object
is occluded. Such accuracy of partial matching is important for cases such as their
subway scenario, where people are often only partially viewable.

These twelve systems have put together many components to build models
which can be used to attempt to identify, or match people across disjoint cameras.
These techniques use a variety of shape, appearance, camera transition time esti-
mation, and localisation techniques. The combination of these matched tracks can
allow for individuals to be tracked across a whole surveillance system. Some of
these techniques rely heavily upon path probabilities, or camera transition time es-
timates between camera views to increase the accuracy of the system by limiting
the possible transitions between cameras, though the limitations of these tech-
niques are often not widely discussed due to the simulated surveillance systems.
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Matching tracks can improve the information available if applied with realistic
assumptions that work for abnormal cases in real systems. It has to be carefully
applied to ensure that all possible transitions are allowed because often the cases of
abnormal movement occur for the individuals of real interest, such as where they
stop to steal an object. The free nature of human motion makes the transition times
between largely spaced cameras unreliable at best, and possibly even misleading.
The appearance of an individual is also widely used because although appearance
is not biometric in nature, it is very visible and tends to remain invariant within
a surveillance session, as people do not often change their clothing within most
surveillance environments. Where such changes do occur manual reconciliation
of the tracks by a human operator may be required, although humans also find
such appearance changes difficult. The major difficulties are how to effectively
incorporate the spatial component of the appearance features, and how to mitigate
or make the appearance invariant to illumination. Shape features have also been
proposed with height and gait both being used for humans, as well as width and
length for cars. Shape features for humans are often applied with very limiting
assumptions or conditions, such as utilising single cameras in a single location
to observe people over long periods of time; however they still promise to add
significant information to that provided by appearance.

Of the small number of surveillance companies developing commercial soft-
ware in this area, most address the area by analysing individual cameras for in-
formation that is sent for combination in a central location. Their focus is largely
upon providing accurate information to the operators with a minimum of false
alarms. Thus their software tends to lag the cutting edge research until their re-
sults have been proven to be very reliable under a wide range of conditions. Thus
even the major companies with commercial products in this area, such as Ob-
ject Video and IBM are yet to begin addressing tracking across mutiple cameras,
especially where there may be gaps between their views.

2.7 Literature Summary
The literature has shown that there is a wide range of research into video surveil-
lance. This research has focused upon many of the underlying technologies, as
well as describing some of the current approaches to wide area video surveillance.
Though there is still opportunities to improve many of the underlying technolo-
gies, they are adequate enough to build upon for further research into subsequent
tasks such as tracking, object analysis, or content based image retrieval. This ad-
vance in computer vision techniques has also been helped by advances in camera
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resolutions and reductions in cameras prices to expand upon the traditional focus
on single or multiple overlapping cameras. This area of disjoint camera tracking
or track matching is a recent area of study that has few publications yet, as the mo-
tion features that form the basis of most of the current tracking literature are often
unreliable. This makes research into other possible shape and appearance features
necessary to provide an adequate solution to the problem to overcome some of
the limitations of path probabilities for camera transitions. With the increasing fo-
cus upon terrorist activities it seems that intelligent building surveillance systems
developed for realistic environments would be beneficial for increased security.
Commercial products to date have focussed upon extracting accurate useful in-
formation from individual cameras, but are yet to adequately combine much of
this information across cameras due to the limited accuracy of research results at
this stage. Tracking across cameras is still important, even where real-time ap-
plications are unachievable, as the most significant usage of surveillance systems
is probably for post event analysis. Such analysis involves video reviewing after
the 2005 London bombings, where even if the results are only accurate under a
semi-automated approach, they can still save considerable time and manpower for
video analysis.

The literature has presented many features to model the shape and appearance
of humans and other possible objects of interest. The most common features used
for humans have been colour appearance, height, gait and facial features. Each of
these features has its limitations in identification accuracy and long term stabil-
ity, with the best results being obtained when multiple features are fused together.
The current limitations in appearance features occur in their limited invariance
to illumination changes, their often limited spatial information, and the inherent
lack of discrimination when people are wearing similar colours. Height features
are often not available with a high degree of accuracy throughout the majority of
surveillance cameras, where there are only a single camera views available. Gait
features have not been reliably tested for their accuracy across wide surveillance
systems with multiple floor surfaces and often limited resolution. Facial features
have provided high levels of accuracy for small facial databases; however results
for large databases are not so promising, especially when obtained at low resolu-
tions. Addressing these limitations in object features and investigating combining
them would therefore provide a significant contribution to literature.
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3 Colour-based Robust Appearance Features
This chapter explores the usage of colour-based appearance features for tracking,
matching, and identification of individual objects throughout a surveillance sys-
tem. Appearance features have often been utilised in surveillance to distinguish
differing objects of interest [47]. Colour features have been the main focus of
appearance in video surveillance because of the low level of object resolution to
distinguish other possible features, such as textures. This set of colour features
within the object has to be differentiated from the use of colour to segment an
object from the background, as it is the colours themselves that are important,
not their level of contrast from a background model. An important consideration
for the usage and storage of colour features is the representation that is used to
store that information. This is not trivial as in the case of a single value for rep-
resenting a height estimate, as a range of presentation possibilities are available.
These range from directly using the R,G, and B histograms, to the histograms
from other colour spaces such as HSV , as described in section 2.2, to represen-
tative colour clusters. These can be obtained from either key frames, or from the
entire track of the object within a given camera view. The choice of colour repre-
sentation will also affect how they can be compared to determine the appearance
similarity of objects. A general discussion of probabilistic distance measures that
can be applied to colour features is provided in section 2.3 of the literature review.

This chapter first presents an overview of the background information to ap-
pearance features, including discussing many of the assumptions that are com-
monly applied to the representation of appearance and the limitations of using
appearance features. Section 3.2 then describes a technique to extract a com-
pact colour representation that stores pixel level information in the full three-
dimensional colour spaces into its Major Colour Representation (MCR). Section
3.2.1 explores how the MCR features can be optimised using an online k-means
algorithm. Section 3.3 explores how these MCR features can be integrated along
a time sequence into MCRs to improve its robustness to gait effects and small
segmentation errors. Section 3.4 shows how these features can be compared to
determine a level of similarity between two MCR appearance features, with Sec-
tion 3.4.1 expanding this comparison to be integrated along the tracks of the two
objects through time. Although this method can be used to compare the MCR of
entire objects, Section 3.5 explores how spatial regions of the object can be used
to extract spatial MCR features. These can be used to represent spatial appear-
ance components, such as clothing colour. The results of the comparison of MCR
features for a set of people are explored in Section 3.6. The initial results on the
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global MCRs of manually segmented individuals are given in Section 3.6.1. The
results of the fully automated system are then given in Section 3.6.2, where the
global MCRs are compared with the Upper and Lower MCRs. The discussion of
these results is then outlined in Section 3.7. The chapter then concludes with a
summary of the MCR extraction and comparison process, along with a discussion
of possible future research directions.

3.1 Appearance Feature Background
The two major problems with the colour features of an object are that they can be
altered under differing illumination conditions, and they are not truly biometric for
particular objects, such as humans, where colour appearance often changes. This
is because people often change clothes depending upon their activities, unlike
other objects such as vehicles. Even features such as hair colour are relatively
easily changed when compared to true biometric features such as fingerprints. In
fact it is this ability to change the colour appearance of clothing that can make it
good for differentiating individual people due to the large possible variations.

Although humans can change clothing colours, assumptions can be made within
each surveillance environment about the likelihood that people will change their
clothing. These assumptions are based upon the surveillance area because al-
though people will often change their appearance dramatically in their home en-
vironment, often through large changes in clothing, they are unlikely to change
their clothing within a work environment. This thesis is therefore based upon the
assumption that an individual is unlikely to change their clothing within a surveil-
lance session. The surveillance session is defined as the period of time between
when an individual enters the surveillance system through one of the possibly en-
trances, until the person has finished their business within the surveillance area
and they exit the system through one of the possible exits. When this surveillance
session is applied to the working day, within a typical working environment, then
people are unlikely to change their clothing. A discussion about the violation of
this assumption occurs in section 3.7 at the end of this chapter.

Colour features are second only to location in their application within the re-
search aimed at probabilistic data association, or tracking across disjoint cameras;
however little work has currently been applied to mitigate the effects of errors,
such as illumination or the impact of segmentation errors upon these features in
this context. The most common approach is to model the histogram of colours
within an object tracked in one camera, to compare to those observed in another
camera [19, 53]. Although the intrinsic colour of an individual is assumed to be
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constant, illumination factors can shift the appearance observed in the two dif-
ferenct cameras. The mitigation of these illumination influences is explored in
Chapter 4. The impact of segmentation errors is also a consideration as the in-
correct inclusion or exclusion of parts of an individual can affect the proportional
amount of colours identified as part of the object. In fact this research has found
that the impact of large segmentation errors upon spatial colour features, such
as clothing colours, and even global colour features can be significant enough to
dramatically change these features. Chapter 5 describes in detail the technique
that has been developed to use these changes to identify segmentation errors and
remove them from a robust appearance representation. This chapter instead fo-
cuses upon extracting a colour representation feature that can be used to store and
compare the colours of a given object or region.

Much research has been conducted into the best way to represent colour ap-
pearance features for comparison. Colour spaces and transfer functions between
them are described in Section 2.2, whilst this section focuses more upon the rep-
resentations. Each of colour space has its own advantages and limitations [110],
with the most common space being the three channel RGB space.RGB allows
for over 16 million possible colour combinations in a 3-D space, which can be
very cumbersome and time consuming to work within. Traditionally the three
colour channels are therefore considered separately as 256 colour spaces; how-
ever this technique completely disregards the coordination that naturally exists
between the colour channels to truly represent the colours. Other colour spaces,
such as HSV , have been introduced as a pixel based representation to incorporate
a degree of invariance to illumination changes, whilst retaining chromatic infor-
mation. Colour clustering techniques have been proposed as a method to reduce
the large 3-D colour space into a small number of key representative colours. Un-
fortunately adjusting the size and spread of these colour clusters can be very time
consuming; however with a compact representation of the colours into a few key
clusters makes comparing those colours can become faster and easier. The Prin-
cipal Colour Representation (PCR) is a colour clustering technique developed by
Li et al. [63] that uses fixed cluster sizes rather than fixed cluster numbers to
improve speed and accuracy. This cluster based representation reduces the search
space by only storing colour values which have significance to the current image,
or the most common colours. It also allows for a somewhat reduced cluster set for
performing comparisons between colour feature.

A final critical aspect of appearance features are the proportions or regions
of appearance that they represent. Previous research within the surveillance field
has focussed upon the broad object histogram, which consists of all of the colours
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observable within an object [19], or specific appearance templates that show pixel
level colour occurrence [107]. These two approaches include either no spatial
information, reducing the information available, or have high spatial information
such that the articulation of humans creates problems with matching the tem-
plates. More recent research has started to look at the spatial relationship of colour
within an object without explicitly using templates. Gandhi et al. [38, 39] pro-
posed a cylindrical representation consisting of regular blocks of average colour.
Although it is reliant upon multiple overlapping cameras and accurate object ori-
entation alignment, it creates a representation that inherently includes the spatial
relationship of the object’s colours. Such interest in the spatial location of colours
allows for a greater analysis of an individuals appearance. Spatial colours, such
as the colour strips used by Zajdel and Krose [123] have also been proposed to
distinguish colours within specific regions of objects. Yang et al. [119] propose
a path length coding of pixel colours to retain the information of the distance of
a colour in pixels from the top of the head. If extracted correctly, then this spa-
tial information can be used to distinguish improved appearance features that can
spatially relate to aspects such as clothing colours. Further representations like
spatiograms [9, 83] have also been proposed to include spatial information within
colour. Figure 1 shows an overview of these current approaches to spatial colour
information.

Figure 1: Approaches incorporating spatial colour information

This literature demonstrates that both the appearance representation and the
spatial region which the colour represents are important to extracting useful ap-
pearance features. The representation needs to be a trade off between accuracy,
compactness, the ability to describe colour variations, and the computational com-
plexity. It also needs to have an appropriate method for comparing the similarity
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between representations in order to allow for the comparison of appearance fea-
tures. Other methods such as compensating for illumination can be incorporated
to a degree into the colour representations through the usage of normalised colour
distances; however this step is best preformed upon the object before the appear-
ance representation is calculated. Colour appearance features also tend to be ro-
bust to a degree of segmentation errors and object pose changes through their
usage of large colour regions.

3.2 MCR Colour Feature Extraction
This section describes the technique used to determine the Major Colour Repre-
sentation of a given object or region within an image. This representation is based
upon the same principles as the Principal Colour Representation (PCR) proposed
by Li et al. [63] for tracking people using their colours. It aims to accurately
model the most common, or major, colours of an object within a 3D colour space
using a compact representation. This ensures that it retains all the colour informa-
tion about the combination of the three colour channels at a pixel level together.
It is also more compact than histograms as it only stores colours which repre-
sent actual pixels rather than the entire colour space. This reduced representation
requires colour clustering, although the computational cost is reduced by minimis-
ing the parameters to optimise through using a fixed cluster size and allowing for
an arbitrary number of clusters. This allows the representation to work similar to a
Kernel Density Estimator for probability density functions, such that it can easily
adapt to represent any spread of colour information, like the difference between
plain colour, or patterned shirts. The representation itself does not utilise any spa-
tial object information, but it can if it is applied on a spatial region, as described
in section 3.5. This MCR feature is not inherently robust to illumination changes,
but its invariance can be improved through either utilising a low number of very
large clusters, although this reduces the amount of colour variation stored in the
MCR, or through the application of illumination mitigation, as detailed in chapter
4, as a pre-processing step to extracting the object appearance.

The concept of clustering colours is dependent upon choosing a threshold of
colour distance within which to group similar colours. From the many possible
distance measures, this work uses a normalised geometric distance in the RGB
colour space. This distance is normalised in the Euclidean distance between two
RGB colours is divided by the sum of their magnitudes. This allows for the equal
comparison of the greater perceivable differences in high illumination with the re-
duced perception of colour differences under low illumination levels. This choice
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is similar to the colour distance developed by Li et al. [63], which was shown
to be robust to some illumination changes and noise. This normalised geometric
colour distance between any two colour pixels can be defined as:

d(C1, C2) =
|C1 − C2|
|C1|+ |C2|

=

√
(R1 −R2)2 + (G1 −G2)2 + (B1 −B2)2√
(R2

1 +G2
1 +B2

1) +
√

(R2
2 +G2

2 +B2
2)

(30)

where C1 and C2 represent the colour vectors for the two RGB pixels.
Given this colour distance, it is possible to cluster the colours of a segmented

object which are close without losing any significant accuracy in representing its
appearance. Several colour clustering methods are available from the literature
[69, 80, 85, 100, 104, 124, 128]; however the ability to accurately represent a wide
variety of possible colour and colour variations should be maximised. In [85], a
method for clustering colours of moving objects was proposed based on a mixture
of Gaussians. Each Gaussian component in the mixture is associated with a cluster
and the number, relative weights, means and covariances of the Gaussian compo-
nents are optimised with an Expectation-Maximisation algorithm. This leads to
lower computational complexity to achieve an accurate and compact set of colour
clusters. The proposed colour clustering process aims to minimise this compu-
tational complexity by reducing the number of parameters to be optimised. This
is achieved by allowing a variable number of simple spherical clusters, which all
have the same radius under the normalised distance given in equation (30). Thus
the parameters to be optimised are reduced to the mean location of the cluster and
the weighting of the cluster, or number of pixels associated with that cluster.

This fixed cluster size reduces the parameters to be optimised and provides an
accurate representation even in the frequent case of data that do not clearly sep-
arate into a fixed number of large clusters. As opposed to other methods such as
[63, 85] the MCR technique does not look for a set number of clusters, but rather
uses as many clusters as necessary to represent 90-95% of the pixels associated
with the object or object region. This allows for a large set of clusters to represent
complex objects with multiple colours of varying shades, whilst still providing a
very compact notation when colours are uniform or have little variation. Exper-
iments upon individuals observed in surveillance cameras have shown that this
final 5-10% of less significant colour clusters actually consists of up to 70% of
the colour clusters extracted. Thus they can be removed to leave only the major
colour clusters, dramatically limiting the amount of clusters without significantly
impacting upon the accuracy of the object appearance representation.
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The initial colour clustering step combines pixels whose colours are within a
given threshold in the normalised colour space. This is similar to Li et al. [63],
except that the MCR process considers that all pixels equally corresponding to the
appearance of the object, so this process does not use any pixel based weighting
process. The process proceeds by scanning the object’s pixels in row-major order.
As the first pixel appears, its colour is set as the centre of the first cluster. If each
following pixel is within a threshold under the normalised RGB distance from an
existing clusters centre, the pixel count for that cluster is increased by one; oth-
erwise, a new cluster is created, centred on that pixel. The size of this distance
threshold is critical to size of the MCR and the amount of colour shade variations
that can be captured. In the normalised colour space, this clustering is equivalent
to having clusters with a common radius, spaced where the object’s pixels are lo-
cated. In theRGB colour space, clusters can be denser at lower magnitudes where
the ability to perceive intrinsic differences in colour are reduced. The accuracy of
the initial major colour clusters is also improved by using an online k-means al-
gorithm to optimise the initial colours. This expectation maximisation technique
iteratively alternates between membership calculation and centroid adjustment to
improve the colour representation as described in full in section 3.2.1.

Figure 2 shows a picture of a flower containing several tones of yellow and
green, as well as the MCR outcome of this first step. The original image is de-
picted in Figure 2a and has 115,537 different colours in a 150 x 113 pixel image.
These colours can be clustered using the MCR process with a cluster threshold of
0.01 in the normalised distance measure to extract 839 clusters. Figure 2b displays
the twenty most common colour clusters within the MCR as coloured bars. The
height of the bar is proportional to the clusters pixel association count, given as the
percentage of overall colour pixels. Figure 2c shows the ten colour clusters with
highest count in the MCR, which are displayed by small coloured spheres with
their size proportional to the colours count. The MCR for this image is further
simplified by only storing the most common, or major clusters representing 90%
of the pixels for later use. This reduces the number of clusters from 839 to 297
whilst still representing the majority of pixels in the image as can be shown by the
reprojection of these colour clusters in Figure 2d. This reprojected image substi-
tutes the cluster colour for the true image colour, with the white areas occuring for
those pixels in the 542 less common clusters which are removed from the tail of
the MCR. Clearly the MCR is capable of providing a compact representation that
is flexible enough to to allow for accurate storage of varying shades of colours, as
well as the dramatically different colours.
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a) Original ‘tn flower’ image b)Initial top 20 MCR clusters

c) Top 10 MCR clusters with size d) Reprojection of MCR clusters to
proportional to cluster significance recreate the image

Figure 2: Major Colour Representation of ‘tn flower’

3.2.1 Optimising MCR Using an Online k-means Algorithm

The extraction of initial colour cluster centres utilises a reasonably simple initial
cluster creation procedure. Thus the cluster centres may be significantly displaced
with respect to the clusters centroid i.e. the average position of its member pix-
els. In initial experiments it was found that this may affect the comparisons be-
tween object representations. This demonstrates that using a technique such as
the k-means algorithm to refine the clusters of centroids, such as that proposed
by Lloyd [68], can have a significant impact upon the accuracy of the final MCR.
The k-means algorithm is an Expectation-Maximisation technique iteratively al-
ternating membership calculation and centroid adjustment. Such algorithms are
notoriously sensitive to the initial choice of parameters as they converge to local
optima; however the usage of the initial clustering step allows the k-means algo-
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rithm to start from reasonable initial values. Thus the local optima generally prove
to be an adequate solution.

Figure 3: Original ore gold rose image (left) and reprojection of the 90% most
frequent pixel clusters after 7 k-means iterations (right)

(a) Iter 0 (b) Iter 2 (c) Iter 7

Figure 4: MCR changes for 20 most significant colours with iterations of the k-
means optimisation

The online k-means major colour clustering algorithm works by scanning the
object pixels in row major order. For the current pixel, the closest cluster centre is
computed and the pixel assigned to it. Then, the centre of this cluster is updated
as:

Rc(i) = w(i)R(i) + (1− w(i))Rc(i− 1) (31)
Gc(i) = w(i)G(i) + (1− w(i))Gc(i− 1) (32)
Bc(i) = w(i)B(i) + (1− w(i))Bc(i− 1) (33)
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where R(i), G(i), B(i) are the RGB components of the ith (current) pixel, Rc(i),
Gc(i), Bc(i) are those of the cluster’s centre after the ith pixel has been processed,
and w(i) = 1/n the current weighting coefficient. Here n is the current number
of pixels in the colour cluster.

It can be seen that with the increase in the number of pixels falling into a
cluster, the weighting coefficient decreases. Thus changes in the centroid position
tend to gradually slow down as the scanning of the pixels progresses. Since cluster
centres are moving, iterations are necessary until all pixel assignments and cluster
centres stabilise. In these experiments, between 80 and 90% of pixels are usually
already member of their final cluster after the first iteration.

Figure 3 shows the picture of an Ore Gold rose captured at a resolution of 480
x 322 pixels, which is very rich in tones and shades, as well as a reproject of the
MCR representing the 90% most common colour clusters. This reprojection again
demonstrates the ability of this clustering process to represent the major colours
and even a degree of the subtle nuances in those colours. Figure 4 shows the 20
most significant colour clusters in its initial MCR, as well as those top 20 clusters
of the MCR calculated at 2 iterations and 7 iterations of the described online k-
means clustering algorithm. It shows that no major improvement was made by
increasing the number of iterations from two (b) to seven (c), yet the increase in
computation time is significant, especially for larger images. This would suggest
that 2 iterations is sufficient even where there are a variety of tonal variations in
the image.

Figure 5 shows the MCR from objects automatically segmented from three dif-
ferent frames from a single camera. The similarity between the MCR for frames
775 and 1297 demonstrates the ability of this representation to capture the dom-
inant colours, which also appear similar in the frames. The MCR is also clearly
distinct in frame 997 where a different person is observed in the same area.

3.3 Improving Robustness Using Incremental MCRs
After computing an objects MCR for each frame in its track, these frame based
MCRs can be integrated over the window of the last k frames. This window of
frames aims to make the MCR more robust to any errors that might occur in a
given frame, including its invariance to pose changes that might occur during a
gait period. This is achieved where k is chosen to be a small value of frames
that is larger than half of the perceived gait period, as it allows for the full range
of changes for a step within each window. Thus the optimum window size can
differ for different camera speeds and gait periods; however in practise it is much
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(a) Person A, frame 775 (b) Person A, frame 1297 (c) Person B, frame 997

Figure 5: MCR from three automatically detected people

more reliant upon camera speeds, as gait periods typically lie within a small range
of often less than a second. This choice of k aims to keep the window short,
yet provide maximum information about object’s appearance under pose variation
along the track. The data was obtained at approximately six frames per second,
so k was chosen as 3. Indeed experimental results indicated that very marginal
improvements were made with a larger window size, though the computational
increase was also minor.

This augmented representation over a window of frames is denoted as the In-
cremental MCR (IMCR). It is based upon the merging of the frame based MCRs
by combining similar colour clusters throughout the window together by merging
their significance across the frames. This effectively combines the pixel associa-
tions to those clusters. Once combined, then a tail of clusters can be found that
represent the last 5-10% of the minor colour clusters. This clusters generally do
not occur very often across the window of frames and can be removed to reduce
the IMCR size. This process of MCR integration can be formulated as follows:

Given the MCR of an object, A, at frame q represented as:
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MCR(Aq) = C1(Aq), C2(Aq), . . . , CM(Aq) (34)

where Ci, i = 1, 2, . . . ,M are the major colours centres and
p(Aq) = p1(Aq), p2(Aq), . . . , pMq(Aq) their bin counts. The IMCR of the object
at the q-th frame can be represented as:

IMCR(Aq) =
0∑

k=−(K−1)

MCR(Aq+k) (35)

PIMCR(Aq) =
0∑

k=−(K−1)

p(Aq+k) (36)

The sign
∑

in equations (35) and (36) is used here to mean a special ‘summa-
tion’, i.e. the merging accumulation of the MCRs of frames (q − (K − 1)), . . . , q
based on the colour threshold. As the experiments reported in this thesis are all
based upon cameras with a frame rate of approximately 6 frames per second, K
was set to three in all of these experiments.

The combination of the IMCR representation with the illumination mitiga-
tion technique outlined in chapter 4, has proved robust to a number of factors
that might introduce errors including minor segmentation errors, changes in shape
through changes in pose, and even illumination variation that occur in typical
surveillance scenarios. This technique therefore promises to provide an accurate
yet compact appearance representation that is robust to a variety of the typical
errors that occur.

3.4 Comparing MCR or IMCR Appearance Features
The main reason for extracting appearance features is to compare them to quantify
the similarity of appearance between objects of interest. Within this section the
term MCR is used to refer to either an MCR or IMCR as they both utilise the same
representation, which can be of variable length, and indeed only differ in whether
they were obtained from a single frame, or a small window of frames. This sim-
ilarity in representation occurs as the same technique can be used to compare
MCRs and IMCRs, and also allows them to be compared to each other if nec-
essary. This allows the appearance within a single image to be compared to the
appearance of a tracked object, or vice versa, allowing for a wider usefulness in
forensic application as well as real-time surveillance purposes. For the purpose
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of similarity, one could use a standard distribution distance such as the Kullback-
Leibler divergence to compute the distance between the two MCRs and use its
reciprocal as the similarity [127]. The similarity measure presented here is based
upon the similarity measure derived by Li et al. [63], except that it does not allow
the possibility of one to many cluster matching. This distinction is significant as
it prevents groups of clusters from being counted multiple times in the similarity
process, which could artificially boost the similarity measurement.

The MCR similarity measure presented is based on searching and comparing
the most-similar colour clusters to determine the amount of similarity between the
MCR of object A, MCRA, and the MCR of object B, MCRB. This is achieved
by determining the percentage of overlap between colour cluster frequencies for
matching clusters.

The process begins by assuming that there exist M major colour clusters in
object A which can be represented as:

MCR(A) = CA1 , CA2 , . . . , CAi
, . . . , CAM

(37)

with their cluster frequencies represented as:

p(A) = p(A1), p(A2), . . . , p(Ai), . . . , p(AM) (38)

Object B can be represented similarly over N major colours by the MCR(B)
and p(B) vectors. In order to define the similarity between two objects, a subset
of MCR(B) is firstly defined as:

MCR′(B|CAi
, σ) =

{
CB′

1
, CB′

2
, . . . , CB′

N

}
(39)

where the distance between CB′
j
, j = 1, 2, . . . , N and CAi

is less than a given
threshold, σ.

This subset represents the colour clusters that are considered to be close enough
to CAi

to be potential matches. CBj |Ai
is defined as the most similar colour to CAi

in subset MCR(B) satisfying:

CBj
|Ai : j = argmink=1,...,N

{
d(CB′

k
, CAi

}
(40)

Then the similarity of colours CAi
and CBj

|Ai can be defined as:

Sim
(
CAi

, CBj
|Ai
)

= min
{
p (Ai) , p

[Ai](Bj)
}

(41)

where p[Ai] (Bj) is the frequency of CBj |Ai
. The min operator in equation

(43) is used to retain the ‘common part’ of p(Ai) and p[Ai](Bj) as the similarity
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between the two colours. It is possible to note that their ‘different part’, or absolute
difference,

∣∣p(Ai)− p[Ai](Bj)
∣∣, is the well known Kolmogorov divergence under

equal priors [127]. In this sense, the similarity measurement presented here is
analogous to the complement of the Kolmogorov divergence as in:

Sim(CAi
, CBj

|Ai) = maxp(Ai, p
[Ai](Bj − p(Ai)− p[Ai](Bj) (42)

The similarity between the whole objects A and B, in the direction from A to
B is then given by:

Sim(A,B) =
M∑
i=1

Sim
(
CAi

, CBj |Ai

)
(43)

The similarity between object A and object B in the direction from B to A,
Sim(B,A), is defined in a similar way. Note that Sim(B,A) generally differs
from Sim(A,B) as for any given CBj |Ai

and CAk|Bj
, i 6= k. That is to say that

the closest colour cluster of Object B, Bj , for any given cluster of Object A, Ai,
does not always ensure that the colour cluster Ai is the closest colour cluster in
A to the colour cluster Bj . This property can generate asymmetric similarities
depending upon the direction of calculation, which indicates that sometimes the
colours in object B may in large part form a subset of object A. Such cases of
asymmetric similarity measurements are not indicative of matching appearances,
and hence need to be considered in determining the final similarity measurement
of the MCRs. Thus deriving a symmetric similarity measurement first takes the
minimum and maximum similarities between the two MCRs:

Simmin(A,B) = min {Sim(A,B), Sim(B,A)} (44)

Simmax(A,B) = max {Sim(A,B), Sim(B,A)} (45)

These values can be combined into a single final value, Similarity(A,B)
based upon their symmetry. Where Simmin(A,B) is less than a given discrimi-
nation threshold, ηdiscrim, the similarity of objects A and B is defined as:

Similarity(A,B) = Simmin(A,B) (46)

The rationale in this case is that Sim(A,B) and Sim(B,A) are either very
asymmetric or both low. Hence it is appropriate to bound Similarity(A,B) by
their lowest value. Where Simmin(A,B) is ≥ ηdiscrim, the symmetry of the
values can be incorporated as:
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Similarity(A,B) = 1− Simmax(A,B)− Simmin(A,B)

Simmax(A,B) + Simmin(A,B)
(47)

In this case, the two visual objects are likely to be the same physical one. As
a further verification, the difference between the maximum and minimum simi-
larities in a ratio form is used. In equation (47), a large difference between the
maximum and minimum similarity leads to a low similarity value. The definition
of Similarity(A,B) in equations (46) and (47) aims to prevent asymmetric, par-
tial matches between two objects and allows for a final similarity threshold for
matching assessment to be determined more easily. In practice, the measurements
above are usually computed over IMCR values to increase the robustness of the
similarity measurement to pose changes.

Whilst this similarity measurement is computed between any two appearance
features, multiple appearance features are generated whilst the individuals are
tracked through their camera views. Each of these features can be compared to
determine the level of similarity between the frames. The availability of multiple
comparisons allows for the extension of analysing these similarity values in time
along the tracks of the two individuals.

3.4.1 Time Integration of Similarity

In order to evaluate the matching between the two tracks of objects A and B over
a sequence of N frames, two basic alternatives are possible: (a) extending the ob-
ject representation to cover whole track and performing a single, overall matching
operation, or (b) repeatedly comparing pairs of IMCRs from the two tracks and
integrating the results. The latter option is intrinsically more robust to segmen-
tation errors which may occur occasionally at the frame level and could possibly
pollute an overall track MCR. By using multiple matches integrated along the
track, segmentation errors may pollute some of the frames and their correspond-
ing similarity measurements; however the larger majority will remain unaffected,
assuming that the majority are free from significant segmentation errors.

Two approaches are possible for this integration of similarity: fusing decisions
or posteriors, as explored in Chapter 7, based upon statistics of the similarity val-
ues, or through fusion of the similarity values directly. Both of these approaches
compare IMCR pairs in frame order along a sequence of N frame windows. This
linearity of comparisons between frame pairs in frame order is aimed at keeping
a linear computational complexity, O(N), for the algorithm; however comparison
of all IMCRs is possible at a higher complexity. Linear computational complexity
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Figure 6: IMCR matching of two tracks using time integration

in the number of frames is considered the minimum reasonable complexity for
matching over a frame sequence and allows the algorithm to meet real-time con-
straints. It also makes an on-line version of the post-matching integration possible
as the surveillance application scenario implies that the two tracks cannot be ac-
quired from a single individual at the same time. The main difference between the
two approaches is that decision fusion assigns a value of 1 to those comparisons
above a threshold, and a value of 0 when below the threshold. Two tracks can then
be considered as matching when the percentage of matching IMCR pairs is above
a second threshold. This process is shown in Figure 6.

A fusion of similarity values can be considered as a series of dependent clas-
sifiers. They are considered dependent as each classifier is performed upon same
data at a different times, and thus no single classifier could be considered more ac-
curate than another. Fumera and Roli [37] demonstrate that the optimum Bayesian
fusion is thus obtained using a simple average of each of the classifiers. The simi-
larity for MCR features between Track A and Track B, SMCR(A,B), gives a value
between 0 and 1 to evaluate the level of track similarity, and is written as Equation
48.

SMCR(A,B) =

∑N
i=1 Similarityi(A,B)

N
(48)
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Assuming one track has already been recorded in the system and the other is
forming, matching can be stated as soon as N frame windows from the forming
track become available; however subsequent frames can still be incorporated to
improve the matching accuracy. The difference in output between the decision
based time integration and the Bayesian based time integration is the end result
being either a matching decision based upon a set thresholds, or providing a quan-
titative number to relay the amount of similarity. This time integration is explored
further in Chapter 7, where the advantages of Bayesian fusion are explored in
detail.

3.5 Extracting Spatial MCR Colour Features
Although the MCR feature is compact and flexible enough to represent all of the
global colours of an object, it can also be used to capture spatial colour features of
an object. Global colour appearance has been widely used in the literature [47];
however more recently colours are being incorporated with their spatial location
to provide more information about an individual object of interest [39, 123]. Such
methods aim to separately model components of the object’s appearance to pro-
vide added information about those appearance components. When such spatial
appearance features are applied appropriately, they can be used to model the ap-
pearance of object features, such as clothing colour or texture, hair colour, skin
colour, or a variety of other possible appearance features. The main difficulty
occurs with extracting these features adequately, as well as their usefulness in
discriminating between people for matching purposes.

These spatial appearance features should be distinguished from other work
aimed at illumination invariant colour features, such as CSIFT [1]. The spatial
appearance features are based upon the colour information itself, rather than di-
recting it to be colour information at identified ‘key’ geometric locations, like in
the CSIFT approach. This is because the articulated movement of humans makes
the stability of these ‘key’ geometric locations unreliable, leading to dramatically
reduced accuracy when compared to using these same features on static or mov-
ing rigid objects [1], such as cars. Thus appropriate spatial regions need to be
carefully considered for each class of objects of interest.

Although there are many possible spatial colour features that could be used
for analysing individual humans, only a limited number of these can be accurately
extracted and used to discriminate between individuals. The most obvious fea-
tures are the upper and lower clothing colours, which are often a single intrinsic
appearance, and thus can be pose independent in typical office building environ-
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ments. Sometimes this clothing can be of a multi-coloured appearance, and can be
pose dependent with colours that differ on the front and back; however this thesis
does not address these concerns directly. A discussion of the impact of the non-
uniform intrinsic clothing colour can be found at the end of the chapter in Section
3.7. Skin colour is also another widely used feature, although its main usage is for
classification of object colour regions as skin regions, often for performing face
identification. The usage of skin as a classification feature is based upon its lim-
ited chromatic variation, suggesting that it may not have enough variation to be
useful in the identification of individuals. Hair colour has also been suggested as
a feature [19] to provide an added degree of discrimination between individuals,
especially those wearing similar clothing colours like uniforms. Although hair
colour often remains stable for long periods of time, unless a person uses hair die
to change it, the main difficulty occurs because it is observed on a small region on
the upper extremities of a person, especially for frontal views. This makes it sen-
sitive to even relatively minor segmentation errors. Footwear appearance is also
a possibility, although it suffers from many of the similar segmentation problems
that affect hair colour, as well as possible problems with shadows that may not be
adequately removed close to the feet.

This section focuses upon two spatial MCR colour features, as well as the
global colours. These two features aim to extract the upper and lower clothing
colours of an individual, which are commonly used along with an estimate of
height for police descriptions. These features tend to be robust to segmentation
errors as they do not include the extremities, and cover large portions of the in-
dividual. They also tend to be uniform in colour within most business or office
environments. The effects of illumination sources, as well as crumpled, creases,
and the cut of the clothes tend to make the MCR a small number of similar colour
clusters rather than a single intrinsic cluster. These features can be compared to
the usage of a single global MCR, which uses all of the colour information without
spatial information. In such a case the global MCR may not be able to distinguish
between a person wearing a white shirt and black pants, versus a person wearing
a black shirt and white pants.

The three colour features explored and compared within this section are:

1. The global MCR feature, which represents the colours of the whole seg-
mented object without any spatial information.

2. The upper MCR feature, which represents the colour of the top portion of
clothing. This corresponds to the region from 30− 40% of the person from
the top of the object’s bounding box as shown in Figure 7. This narrow band

66



was chosen to ensure that it avoids the inclusion of the head and hair of the
object, as well as low necklines, but does not go so low to overlap with the
leg area.

3. The lower MCR feature is aimed to represent the colour of the lower portion
of clothing. This corresponds to the region from 65−80% of the object from
the top of the object’s bounding box as shown in Figure 7. This narrow band
avoids the very bottom of the object which can be prone to shadows, or
artefacts where the feet touch the ground. It also tries to avoid overlapping
with the belt or upper torso area of the person.

Figure 7: Examples of upper and lower regions of segmented individuals

The narrowness and positioning of both of the upper and lower MCR regions,
as shown in Figure 7, also allow for them to remain constant under minor seg-
mentation errors that will only have a minimal impact upon a person’s appearance
features. This choice was based upon an analysis of samples of various people ob-
served under differing walking poses through different camera views to identify
relatively stable colour regions under normal circumstances. The spatial regions
identified are sensitive to large segmentation errors as they change the proportions
of the object such that the bands will include regions which are not just the cloth-
ing colour. Where segmentation is known to be reliable, these bands could be
expanded to include more information on the clothing colour, as it increases their
sensitivity to segmentation errors, as discussed in Chapter 5. These spatial MCR
features can improve the identification of differences between individuals, such
as where people are wearing similar global colours due to matches between ones
upper clothing with the others lower clothing. These spatial features may also be
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useful to improve the MCR matching process not only across cameras, but also to
correct tracking errors.

One obvious limitation is the size of the region, as small objects may not
provide enough colour information for accurate MCRs. Often thresholds are used
to remove foreground regions that are too small to be important. Where objects are
less than 50 pixels high, they can be difficult to segment without significant errors
and can only provide minimal object information. Where other frames observe
the object in higher resolution, small frames should probably be discounted from
the process as their probability of being erroneous is much higher.

Figure 7 shows both the upper MCR feature region (enclosed between the two
top lines) and the lower MCR feature region (between the two bottom lines) for
an object viewed in three different frames. These features include the main colour
of the upper and lower clothing, but minimise the pollution of the feature with
regions that are unrepresentative of the colours. The full removal of colour regions
outside the clothing colour is difficult as it would require either the assumption of
a single uniform colour, which could be problematic for even minimally patterned
or multicoloured shirts, or it could be based upon estimating a full body model
of the individual, which is computationally complex for highly articulated models
such as people. For these reasons this research is based upon ratios defining the
colour regions to statistically limit the inclusion of erroneous colours. This choice
also allows for easy adaptation to the changing image size of objects viewed as
they move around within the camera view.

3.6 Experimental Validation of MCR Appearance Features
This section outlines the experimental results achieved for the matching of MCR
based appearance features. Early results presented in Section 3.6.1 are based upon
a limited number of manually segmented tracks from individuals obtained across
four cameras. These results show that the time integration of similarity using de-
cision fusion could accurately match the same individual, whilst distinguishing
between the differing individuals. These promising results have lead to larger
experiments based upon automating the process, which are presented in Section
3.6.2. The results consist of an initial analysis of 26 automatically extracted tracks
obtained from four individuals across two cameras with differing illumination
conditions. This dataset is the same dataset used for the evaluation of results from
the automatic height estimation in Chapter 6, and the fusion of features in Chapter
7. This dataset was specifically chosen to provide challenging cases where some
of the upper or lower clothing were very similar in colour, although the overall
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global colour set differs. The cameras used in these experiments are installed in
the Faculty of Information Technology building at the University of Technology,
Sydney, and were chosen for their differing illumination conditions. The cameras
are operated daily for surveillance purposes by the University’s security services
and have not been installed or chosen to ease the performance of automated video
surveillance tasks. This makes the footage obtained a good example of the tech-
nology used in existing surveillance systems.

The results of the initial manual and automated global MCR comparisons,
even with the time integration of similarity are promising, but lack the accuracy to
be used widely by itself. The development of the spatial MCR’s to represent the
upper and lower clothing colours, which were analysed across the same 26 tracks.
The results obtained for these features show they are more useful than the global
colours, but further work was required to increase the accuracy and robustness of
these features. This has lead to many of the advances in the following chapters.
These results would also suggest that higher resolution cameras, and higher frame
rates would improve the overall results.

3.6.1 Colour Experiments on Manually Segmented Individuals

Figure 8: Same individuals observed in camera 3a and camera 5

The initial results were obtained from the analysis of manually segmented and
tracked objects to determine the accuracy of MCR appearance features. These
MCR results are based solely upon the extraction of the entire, or global, object
histogram. They are based upon the time integration using decision fusion, though
similar results are obtained when time integration is based upon Bayesian fusion.
Three different sets of images and tables are provided. They first detail the case
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Table 1: Results of IMCR Matching - same person
Test Case Frame No. Camera Similarity Matching Results

1 001-005 3a 0.9817 1 (Matching)
300-304 5

2 003-007 3a 0.9758 1 (Matching)
302-306 5

3 005-009 3a 0.9772 1 (Matching)
304-308 5

4 007-011 3a 0.9856 1 (Matching)
306-310 5

5 009-013 3a 0.9452 1 (Matching)
308-312 5

Integration 001-019 3a 100% (Match)
300-318 5

of a matching individual, then show the results where two non-matching indi-
viduals are observed. Finally a number of key cases are presented to outline the
overall accuracy of the IMCR similarity method for matching and non-matching
cases both within the same camera view, and across camera views where illumi-
nation may be expected to change significantly. The two cameras are significantly
disjoint in both space and time, and the person’s appearance in the two tracks
could not be trivially matched. Moreover, illumination varies significantly with
the object’s position within each camera view. The results given in Table 1 show
that the IMCR matching and post-matching integration are capable of coping with
such variations in appearance, and the person is reliably matched even at very low
frame rates.

Figure 8 shows sample frames from the two tracks of the same individual ob-
served in two video surveillance cameras (camera 3a, frames 001-019, and camera
5, frames 300-318). These were analysed using five sets of overlapping five frame
windows, with similarity values for each IMCR window considered matching if
they exceeded the threshold of 0.8. If more than 80% of the IMCR windows are
matching, then the two tracks are considered to be matching. The results given in
Table 1 show that the IMCR matching and post-matching integration on manually
segmented individuals is capable of coping with such variations in appearance.

Figure 9 shows sample frames from the two tracks of two differing individuals
observed in the same two video surveillance cameras (camera 3a, frames 001-
019, and camera 5, frames 010-018). These were also analysed using five sets of
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Figure 9: Differing individuals observed in camera 3a and camera 5

overlapping five frame windows, with the same similarity threshold. In this case
only 40% of the IMCR windows were determined to be matching, much less than
the 80% threshold, thus the tracks are considered to be non-matching. The results
given in Table 2 show that the IMCR matching and post-matching integration are
capable of discriminating between individuals who have significant differences
in appearances, even if portions of their clothing have similar appearances. It is
also worth noting these results are successful even though no explicit illumination
mitigation is used as this stage.

These two examples of the track matching process clearly indicate that the
IMCR appearance comparison method can work across different cameras to match
an individual and distinguish between two differing individuals. To give a broader
indication of the accuracy of the system 5 manually segmented tracks were com-
pared from the two individuals across four cameras to outline five possible test
cases. The results of the integrated IMCR matching are given in Table 3 with
samples of the frames used given as Figure 10. These indicate that the system
can be useful for the typical cases of tracks viewed at different times in the same
camera, or across differing cameras in order to match an individual, whilst dis-
criminating between differing individuals.

The results presented in this section are based upon manually segmented ob-
jects from a limited number of tracks. They demonstrate the usefulness of this
technique to perform an appearance based analysis to determine matching objects
throughout a wider surveillance system. These results are limited in that they do
not have to deal with the effects of poorly segmented objects, and they are subject
to problems with varying illumination levels and the inability of the global his-
togram to reflect the spatial location of colours. These results therefore prompted
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Table 2: Results of IMCR Matching - differing people
Test Case Frames Camera Similarity Matching Results

1 001-005 3a 0.3538 0 (No Match)
010-014 5

2 003-007 3a 0.7588 0 (No Match)
012-016 5

3 005-009 3a 0.7224 0 (No Match)
014-018 5

4 007-011 3a 0.8348 1 (Match)
016-020 5

5 009-013 3a 0.8075 1 (Match)
018-022 5

Integration 001-019 3a 40% (No match)
010-022 5

Figure 10: Typical frames used for test cases

a wider evaluation of MCR appearance features based upon automatically seg-
mented and tracked objects that are analysed with spatial MCR’s to compare with
the global appearance information. It also suggested exploring techniques to mit-
igate the effect of illumination, as detailed in Chapter 4.

3.6.2 Colour Experiments on Automatically Obtained Tracks

The manually segmented MCR results demonstrated that this technique could be
useful for comparing objects that were segmented and tracked perfectly. Automa-
tion of the entire process is required to evaluate the system in greater detail. This
section presents two distinct sets of results for the automated system. The initial
automated results were limited to just global MCR features. These results show
that a global colour feature alone is useful; however more information about the
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Table 3: Results of IMCR matching - differing people
Test Case Frame No. Cam Typical Sim Integrated Match

1 (Same object, 282-294 3 0 0.9785 80% (Match)
time disjoint) 001-013 3a

2 (Same object, 001-013 3a 0.9817 100% (Match)
space disjoint) 300-312 5

3 (Different objects, 050-062 4 0.3696 20% (No Match)
time and space disjoint) 010-022 5

4 (Same object, 282-294 3 0 0.8410 100% (Match)
time and space disjoint) 300-312 5

5 (Different objects, 050-062 4 0.3696 20% (No Match)
space disjoint) 010-022 5

object is required to improve accuracy. The second set of results revises the same
data; however it applies spatial MCR features along with the global MCR, as well
using the controlled equalisation approach for mitigating illumination changes as
described in Chapter 4. The used of spatial features also allows for the application
of segmentation error removal to be applied as detailed in Chapter 5.

Figure 11: Typical backgrounds used for test cases

The first set of results is based upon an analysis of four individuals viewed
across two cameras with differing illumination conditions. These cameras are
part of the existing surveillance system at the University of Technology, Sydney,
and are installed for normal security and surveillance services. The background
view from these cameras is given in Figure 11, showing that the scenes are rea-
sonably complex for automated surveillance; however are fairly typical of the
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views that occur in typical surveillance systems. These views have differing back-
ground colours and varying illumination conditions both along the camera view,
and between camera views, creating significant challenges for segmentation and
the constancy of appearance.

Figure 12: Four people of interest (Person’s A, B, C, D from left) and good auto-
matically segmented masks (from frames 775, 1095, 1542, 2044)

The actual track data consists of four individuals of interest who are recorded
across two camera views. Their clothing, shown in Figure 12 was selected to be
typical to indoor environments and are not intended to be of high contrast to the
background for easy segmentation. Indeed the segmentation shown is of fairly
high accuracy as significant segmentation errors, including object fragmentation,
does occur in some frames. The global appearance of these individuals were com-
pared both within cameras, and across cameras to produce the results about six
key cases given in Table 4.

The results given in Table 4 demonstrate that even though the original assump-
tion of correct segmentation is broken, correct matching of individuals is high and
discrimination between two individuals is largely maintained, even without ad-
hoc tuning of the parameters. Particular cases, such as where Person Ds legs are
not segmented correctly create false impressions of largely homogeneous dark
colour. This can then be incorrectly matched with Person A, who is actually of
a similar, but truly homogeneous dark colour. This case of segmentation error
accounts for the majority of cases where two individuals are incorrectly matched
both within the same camera, and across cameras, and suggests that the usage of
separate clothing colour features could improve the final accuracy. The impact
of segmentation errors is also noticeable in correctly matched objects, where a
minority of windows are not matched. This shows the effectiveness of the inte-
gration of the IMCR process. It also indicates that occlusions of objects may lead
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Table 4: Results of automated IMCR matching - 6 different cases
Test Case Cases Camera Typical Sim Match NonMatch

1 (Same person, 10 5 corridor 0.9436 10 0
Same camera) or 5 lift

2 (Same person, 13 5 corridor 0.8214 9 4
Disjoint camera) and 5 lift

3 (Different people, 8 5 corridor 0.3726 0 8
Same camera) or 5 lift

4 (Different people, 10 5 corridor 0.3913 4 6
Disjoint camera) and 5 lift
5 (Person A in 1 5 corridor 0.9187 1 0
cluttered track)
6 (Person B in 1 5 corridor 0.9408 1 0
cluttered track)

to incorrect results, and need to be identified for removal from comparisons. The
dramatically improved results within the same camera view compared to differ-
ing camera views are likely caused by the differing chromatic responses of the
individual cameras, illumination changes, though these are already mitigated with
controlled equalisation, segmentation errors, which tend to both more frequent
and larger in the 5 lifts camera, and also possibly the pose or direction of travel.

Cluttered scenes also lead to significant segmentation errors with individuals
incorrectly joined together and need to be identified as a source of possible errors.
Two cases are shown in Figure 13 and reported in Table 4 as Cases 5 and 6. These
cluttered scenes were correctly matched because the cluttering was transient and
only polluted a small number of the frames within the track (four frames, or less
than 20% within each case).

The second automated experiment expands upon these findings by applying
extra upper and lower clothing colour as well as global colour to measure the ob-
ject appearance features and applying major segmentation error removal. These
extra features also allow for the automatic identification and removal of frames
with large segmentation errors as detailed in Chapter 5. Due to the large numbers
of segmentation errors in portions of the track data, 26 reasonably reliable tracks
were used, which have fewer than 35% of their frames affected by segmentation
errors. This demonstrates the complex nature of the scene and the difficulty of the
segmentation process using the fast online-adaptive Guassian background model
[116]. Although improved segmentation could be used, there are still sizable er-
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Figure 13: Poor segmentation in two sample cluttered frames

rors in even the most complex techniques [96]. The segmentation removal tech-
nique, detailed in Chapter 5 removed over 80% of erroneously segmented frames,
leaving significantly more robust appearance information from the tracked indi-
viduals. These carefully selected tracks were compared to each other in a pairwise
fashion, giving over 300 possible comparison combinations. Of these, 60 com-
parison combinations are used as training data, with the remaining used for test-
ing. Figure 12 shows that each of the four people is of a minimum 50% different
colouring. The results from the testing data are presented as Reciever Operating
Characteristic (ROC) curves in Figure 14 for each of the individual features.

The ROC curve is a graphical method that can show how the variation of the
operation threshold affects the performance of the binary classifier [31]. In this
case the curve compares the percentage of correctly matched individuals against
the number of incorrectly matched individuals as the operating point of the sys-
tem is adjusted. For a detailed understanding of ROC curves and their analysis
see [31].

Figure 14 clearly demonstrates that the individual upper and lower MCR fea-
tures are more accurate than the global MCR feature. This may be due to a num-
ber of factors including the inclusion of regions such as skin colours in the global
colours, which have less variation than clothing colours, and are likely to increase
the object similarity. The upper MCR provides greater accuracy than the lower
MCR, likely due to the greater variation in upper clothing colours. Only two in-
dividuals are wearing similar upper clothing colours, the lower clothing colours
of the four individuals are either black or white. Even with these similarities in
intrinsic colour, the upper MCR produces matching at 72% with only 10% false
alarms. The lower clothing colours reach 70% accuracy with 20% false alarms,
but the global MCR feature only reaches 70% accuracy with 45% false alarms.

76



Figure 14: Accuracy of individual colour features

This shows the enhancement of colour appearance features through the incorpo-
ration of spatial information.

Each of these features show that the accuracy of matching individuals is only
likely to be achieved when multiple features are fused together. The main prob-
lem with these features are the high rates of false alarms that occur for acceptable
levels of matching accuracy. It is also important to note that track combinations
obtained from four individuals across two cameras were chosen to represent key
difficult cases, and thus provide a proof of the concept case. Larger experiments
based upon more statistically significant data would be required to fully demon-
strate and quantitatively analyse the effectiveness of this system.

3.7 Discussion of MCR Appearance Results
This work has investigated the implementation of appearance feature representa-
tions for the analysis of individual humans. The representation needs to be com-
pact, allow for some colour variation and be robust to variety of influencing fac-

77



tors, primarily in illumination variations and segmentation errors. It also needs to
provide for a method of determining the similarity between two representations.
This thesis presents a method based upon the Principal Colour Representation
(PCR) developed by Li et al. [63]. It expands this work by adding an optimi-
sation step to improve its accuracy, and investigating the removal of non-major
colour clusters, those clusters that have a low pixel association level. The rep-
resentation is further improved by extracting MCRs across a window of frames.
An incremental similarity process is used where objects are compared a number
of times to reduce the impact of segmentation errors and pose variations. Finally
the extraction of these MCR features are explored for spatial regions which are of
particular interest for a given object. These relate to regions of clothing colours
for the analysis of humans as objects of interest.

Numerous results are presented that show the MCR features achieve the ability
to extract a compact representation of the colour appearance of an object. Exper-
iments looking at the tone variation of flowers are given as Figures 2 and 3. They
show through reprojection that MCR’s can capture colour tone variations in a
compact manner. This ability is likely to increase the accuracy of this representa-
tion over those which use a fixed number of clusters in a variety of circumstances
where the number of fixed clusters may not match the object analysed. The re-
tention of the major colours representing the top 90% of the pixels increases the
compactness of the representation by removing up to 70% of the less significant
colour clusters. This removal may also reduce the impact of minor segmenation
errors as they are likely to relate to small clusters; however devising an experiment
to quantify this impact is difficult. The usage of a normalised colour distance in
the clustering process, equation (30), is also significant as it provides a small de-
gree of compensation for illumination changes. It allows for the increased percep-
tion at higher illumination levels which tend to amplify colour changes, which are
suppressed at low illumination levels. This method also allows for explicit pixel
based illumination mitigation, such as that detailed in Chapter 4, to be performed
upon objects before the representation is calculated to improve the robustness to
illumination changes, as it is not illumination invariant itself.

The results from the experiments conducted on automatically segmented indi-
viduals demonstrates that the global colours are a useful measure of appearance,
but the spatial colours can provide improved accuracy. The accuracy of these
individual features are not sufficiently high to be used alone, suggesting that fea-
ture fusion, is going to be important. This is also important as one of the ma-
jor limitations on appearance features are their non-unique, non-biometric nature.
Individuals can change clothes, but are unlikely to during a surveillance session;
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however the likelihood of two differing individuals wearing similar clothes is non-
negligible. Fortunately the manual review of falsely matched individuals is rela-
tively easy for a human operator, when compared to performing manual correction
of unmatched individuals by manually searching the video data.

Where uniforms are dominant, such appearance features will not distinguish
individuals, except for those not in uniform. For most scenarios, these individuals
are likely to be of higher interest. The spatial colour features are also likely to be
more sensitive to minor differences in clothing than a global feature, due to their
narrower focus. They could be extracted as simple strips as proposed by Zajdel
and Krose [123]; however this work has looked at extracting more semantic in-
formation. The spatial colour features proposed relate directly to clothing colours
upon the upper and lower body regions, as these two regions are often different in
colour to each other, yet reasonably uniform within that region. The regions have
also been chosen to reduce the impact of poor segmentation, minimise the inclu-
sion of shadows, and minimise the influence of walking pose changes. Achieving
such goals could become more difficult where simple arbitrary strips are used,
rather than object class specific stable colour regions.

The most time consuming step of the track matching process is the extraction
of the MCR features from each frame due to the complexity of colour clustering.
Thus where the MCR features are already being used for track matching pur-
poses around the surveillance system, utilising these features to enhance robust-
ness would not add significantly to the computational complexity. These features
could be compared to identify and remove segmentation errors, or possibly cor-
rect tracking errors. This suggestion of little added computational cost to utilise
MCR features to improve the robustness of a number of surveillance components
from segmentation to tracking provides additional usefulness.

3.8 Summary of MCR Appearance Features and Future En-
hancements

This section summarises both the extraction, and comparison of MCR based ap-
pearance features. It outlines the steps involved in both the extraction of IMCR
features from an image sequence, and the integrated comparison of those features
between two tracks in simple terms. Possible extensions to these processes are
also given in the form of future work that might be useful to improve the perfor-
mance of the MCR based appearance features.

The extraction of IMCR’s can be summarised as the following four step pro-
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cess for an individual person tracked in a video sequence. First the individual
needs to be segmented from the background. Then the initial MCR colour clus-
tering can be performed for the global, upper and lower object regions. This
clustering can then be optimised using the on-line k-means process. Finally the
MCR’s can be merged across a small window of frames equal to a minimum of
half the gait period to add time integration and improve robustness to pose related
changes.

The comparison of IMCR’s can be summarised as the following five step pro-
cess once the features have been extracted. It begins by finding the MCR cluster
for Person B that is closest to each of the MCR clusters for Person A, within a
distance threshold. Their significance can be added with that of other matching
clusters in order to assess the similarity of Person B to Person A. This process
is repeated to compare Person A to Person B. The overall similarity of the two
individuals can then be assessed based upon the symmetry of Person A to Person
B and vice versa. A threshold can then be used to generate decisions about the
matching of individual MCRs or IMCRs. Such decisions can be merged to deter-
mine the overall track matchability. Alternatively the similarity can be statistically
modelled from a training set as pdfs from the non-matching (H0) and matching
(H1) classes. These probabilities can then be used to determine thresholds, or
form the basis of Bayesian fusion to determine track level similarity.

These two processes form the basis of the extraction and comparison of a
colour appearance representation. The results presented here show that the ap-
pearance features can provide significant discrimination and are likely to be very
useful when fused with other features, as explored in Chapter 7. Further en-
hancements could be performed to identify other alternative appearance features
that might be useful where clothing colour may not provide high discrimination.
Such situations occur where uniforms are worn; however often regions of skin and
sometimes even hair are left uncovered. An investigation of the variation of skin
colour observed in surveillance quality footage would be needed to determine if
such a skin feature might provide a useful level of discrimination between individ-
uals. Skin regions also tend to change slowly over time due to sun exposure, and
are likely to be semi-biometric in nature. Such skin regions have been proposed
to identify faces throughout the literature, and could be used with the direction of
travel to identify the pose, or walking direction, of an individual. Such informa-
tion could lead to pose related appearance information, which may improve the
accuracy of a wide surveillance system across areas such as University campuses
where the clothing of an individual may be of differing colour or design on the
front or back. The difficulty of this approach is the ability to relate together the
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varying pose related appearance information of a single individual. The identifi-
cation of a face region, or advanced shape analysis, could also lead to the accurate
identification of a stable hair region. The appearance of hair often remains stable
for long periods of time, and is likely to provide additional appearance informa-
tion if a uniform is worn that does not include head wear. The main limitation of a
hair feature is currently the poor reliability of the segmentation at the extremities
of an object, where the hair occurs; however this feature could be used if the hair
can be reliably separated from the rest of the object.

A significant extension of this method could look at the appropriate spatial
appearance features for various classes of objects. Currently this project has fo-
cussed upon humans as the main object of interest as their highly articulated mo-
tion makes reliable features hard to determine. Other object classes, such as ve-
hicles, robots, or even natural objects which might be of interest, such as trees or
animals, are likely to have different stable appearance features that could possibly
be determined by different spatial appearance features. These features are likely
to be dependent upon the object class, where a range of such class based object
appearance features could be useful in a variety of computer vision research areas
ranging from video surveillance to robotics. Such an individualised class based
feature set is unfortunately also likely to be rapidly expanding as further object
classes are explored.

The aim of this research is to improve the accuracy of automating video surveil-
lance using the existing surveillance systems. A number of general and clothing
based appearance features have been explored, with other features like skin colour
or hair colour being identified as obvious possible expansions of the appearance
features. It is also important to consider that the accuracy of these features should
improve through more robust scene modelling to improve the mitigation of il-
lumination, and with accurate object segmentation techniques. It could be that
such improvements may improve the system accuracy further than other advances
identifying appearance regions like skin or hair.
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4 Mitigating the Effects of Changes in Illumination
This chapter explores techniques that can be used to mitigate the effect of changes
in illumination upon the appearance of a moving individual. Considering illumi-
nation effects is important because applications in the computer vision field that
extract information about humans are often built upon the exploitation of appear-
ance cues in videos. Colour based appearance features are increasingly being
used due to the recent availability of cheaper, higher resolution cameras of good
pixel quality; however, significant problems still affect the reliable use of appear-
ance features for the analysis of humans in videos. The previous chapter explored
the extraction of appearance representations, and identified variations in illumi-
nation and the articulated human geometry as the most significant challenges for
appearance features. This chapter looks at practically improving the invariance of
appearance features to illumination changes.

Colour invariance is needed because the colour appearance of an object in
a camera view is not the intrinsic colour of the object itself, but rather a view-
dependent measurement of the light reflected from an object, and the camera sen-
sitivity to that light [33]. This problem is different from building local colour
invariants such as those derived using CSIFT [1]. Such local colour descriptors
describe the object’s colour in a spatial neighbourhood, and are not actually colour
invariant. Improvement in the colour invariance itself is actually the important
component when looking at broader colour comparisons. This chapter focuses
upon techniques can be applied and evaluated across objects viewed in differ-
ing illumination conditions to make similar objects more matchable, whilst still
discriminating between differing objects. We refer to these techniques as ‘illumi-
nation mitigation’ techniques as they aim to substantially remove the effects of
variable illumination on the object appearance.

Figure 15 shows examples of two such people of interest automatically seg-
mented from the background, and how their red channel colour appearance may
alter under differing illumination conditions and pose changes. This figure clearly
shows the illumination problem that can occur with appearance features.

This chapter first describes the background of the illumination mitigation ap-
proaches including common approaches to colour invariance. Additional infor-
mation on common colour spaces and their properties are provided earlier in the
broad literature review in Section 2.2. Sections 4.2-4.4 outline the common tech-
niques used to mitigate the effects of illumination through transformations that
remove some of the effects of illumination that are compared in this chapter.
These common techniques include illumination filtration, histogram stretching,
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Figure 15: Sample people of interest and their red histograms under differing
illumination conditions

histogram equalisation and were chosen to avoid the construction of a scene de-
pendent illumination model. The novel techniques of controlled equalisation and
a centralised version are also described and compared here to explore the en-
hancement of the equalisation approach. Section 4.5 outlines the process used to
evaluate the mitigation of the illumination for surveillance images by comparing
object similarities. Section 4.6 reports the experimental results of compared tech-
niques, with a full discussion provided in section 4.7. The chapter then concludes
with a final summary of the process and discusses future enhancements.

4.1 Illumination Mitigation Background
The colour appearance of any object observed in a camera is a view-dependent
measurement of the light reflected from an object, and the camera sensitivity to
that light [33]. This is given using an assumption of Lambertian surfaces. This
suggests that although the colour is a useful feature for describing an individual
person, the perceived colour of that person depends upon the scene illumination
I , as well as the intrinsic object reflectance R. Indeed the camera sensitivity to
particular wavelengths also needs to be considered where colours may be matched
between different cameras. This section focuses upon techniques to mitigate il-
lumination changes, with the literature on colour spaces provided in section 2.2,
and research relating to colour representations provided earlier in Chapter 3.
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In automated applications, segmentation of the individual is always affected
by a certain degree of error, which can also add errors to the colour appearance, but
currently can only be truly addressed through improved segmentation techniques,
or the identification of seriously erroneous frames. Where large regions of colours
are used, such as on the torso or legs areas of a person, the effects of segmentation
errors are minimised.

Compensating for illumination changes are broadly classified by Finlayson et
al. [33] into colour invariants and colour constancy. Colour invariants aim to ap-
ply transformations to the appearance that make the observed colours independent
of the illumination of the scene. Colour constancy seeks to estimate the illumina-
tion of the scene to discount it from the appearance so as to extract the intrinsic
colours of objects. Whilst accurate models of the illumination of the scene could
extract the intrinsic colours of objects, the implementation of this technique is
very difficult for complex scenes with multiple illumination sources that may also
be time-varying. In previous work, Javed et al. [52, 53] propose to estimate the
intensity transfer functions between camera pairs during an initial training phase.
Such functions are estimated by displaying common targets to the two cameras
under a significant range of illumination conditions, and modelling correspon-
dences in the targets’ colour histograms. However, the authors’ assumptions in
[52, 53] that objects are planar, radiance is diffuse and illumination is the same
throughout the whole field of view do not hold in real life. Illumination varies at
pixel-level resolution and such variations have first-order effects on appearance.
In addition to this new lighting conditions that may occur over time would require
identification so that a new training phase could be conducted to include these
conditions. Weiss [115] proposed an effective method to estimate illumination
from a sequence of frames of the same scene. Though the method works well
for static objects such as the background scene, it is not designed for moving tar-
gets. Indeed these targets tended to be included into the illumination component
as they are transient in the scene, as are the illumination changes. Even where
they were identified as part of the image and not illumination, this technique is
not designed to estimate the effects of the illumination changes over 3D moving
targets, especially highly articulated ones such as people.

Approaches to colour invariance have had greater success in mitigating the ef-
fects of illumination, which Finlayson et al. [33] suggest occur because although
the RGB values change, the rank ordering of the responses of each sensor is pre-
served. This implies that the values for a particular colour channel, such as R, will
change from illumination source A to source B; however the ordering of those
values will remain invariant, as shown in Figure 15. Recent work by Yang et al.
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[119] also shows that the accuracy of matching the appearance of individuals can
be improved by using a ranked RGB rather than simple RGB values. This ob-
servation of rank preservation has been demonstrated for what can be assumed as
typical lighting in human environments, which largely consists of natural sunlight,
fluorescent lighting, or incandescent lighting. Although other lighting sources are
sometimes used, they are rarely used in open common spaces where surveillance
occurs, so consideration of these sources is outside the scope of this investigation.

A range of techniques are used to provide colours that are invariant to illumi-
nation, or at least less dependent upon illumination, with the most common being
chromaticity spaces. Chromaticity can be simply derived from the RGB space
using the following transformation:

r =
R

R +G+B
, g =

G

R +G+B
, b =

B

R +G+B
(49)

This chromaticity vector (r,g,b) has only two independent co-ordinates and is
defined such that it is invariant to the intensity of an illumination source. Changes
to the illumination will scale the RGB values by a factor s as (sR,sG,sB), leaving
r,g,b invariant. If the illumination source changes in spectral output, say from
a white fluorescent source to a yellow incandescent source, then a single scale
factor is not sufficient to compensate for such a change. A second diagonal space
has also been proposed where each sensor response in the R, G, or B spaces can
be independently derived. This model allows for a shift in illumination intensity
as well as a possible shift in the frequency spectrum for that illumination. The
response could be modelled using the grey-world representation [4], which was
described in Section 2.2.

These common techniques are useful for providing measurements that are
somewhat invariant to illumination; however they have a degree of difficulty in
adequately compensating for the multiple illumination sources that could also be
time varying, in the case of natural sunlight. These multiple illumination sources
also have complicated interplay with the complex 3-D surfaces of moving objects,
such as humans, where the effect of illumination in the background, or portions
of the background may vary significantly from its effect upon foreground objects.
Chromaticity techniques also have difficulty in identifying the difference in intrin-
sic black and white surfaces, or differing shades of grey which may have similar
chromatic values, but be distinct colours. For these reasons this work investigates
various illumination mitigation techniques that transform theRGB data of the ob-
ject to make the same object more similar under varying illumination conditions,
whilst still allowing for the discrimination of differing colours without requiring
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either training or other assumed scene knowledge. With the exception of illumi-
nation filtration, these techniques aim to maintain the rank ordering of the colours,
but look to spread the object information across the entire channel bandwidth to
reduce the impact of illumination. Filtration looks to adapt the colours in a manner
that is dependent upon the brightness information of a pixel in a spatial manner.

Many methods have been proposed to mitigate the effects of illumination on
colour appearance, or to extract colour related features that are invariant to illumi-
nation. Less research has looked to how to compare these techniques to identify
which are the most useful for a given scenario. The research area of content based
image retrieval has developed many techniques for quantitatively comparing his-
tograms, such as the Kolmogorov divergence with equal priors [127]; however
there is little work that has investigated the comparison of techniques for the mit-
igation of illumination effects on colours for surveillance specific tasks. This
requires methods that can deal with low resolution images from poor quality sen-
sors at frame rate speeds. This is perhaps due to the focus upon other features such
as facial or shape information that are less affected by illumination. Essentially
the basis of the problem is similar to that of comparing two histograms that are
supposed to be either from the same object or differing ones. Thus an appropriate
technique for quantitatively comparing the similarity of object appearance could
be used after the illumination mitigation to compare the effects of the technique
or techniques to an unmodified object. The nature of the observed object could
also be chosen depending upon the scenario, such as focussing upon individual
humans for a surveillance scenario.

This literature suggests that although much research has focussed upon the
mitigation or invariance of colour based features, there has been little application
of techniques to quantitatively evaluate these techniques. This is especially true
for assessing the quality of human comparison in surveillance images. This is in
part due to the application dependent nature of the ‘quality’ of an image, as accu-
rate object information is important for surveillance, whilst enhanced contrast is
seen to improve the human perception of general images. Also a complex model
of multiple time varying illumination sources would be required for each and ev-
ery camera in a surveillance system to provide colour constancy for evaluation.
Such a large task currently seems infeasible. The quantitative evaluation of ap-
plying other illumination mitigation techniques is of interest to a variety of areas,
suggesting that a technique which could be adjusted to evaluate a variety of tech-
niques within a variety of domains from surveillance to image retrieval and even
robotics could be widely useful. A focus upon fast data dependent techniques is
performed here due to the complexity of illumination in surveillance scenes, and
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the desire for real-time applications.

4.2 Illumination Filtration
This section outlines a technique of homomorphic filtering of the illumination
effects from the image based upon the method described by Toth et al. [111]. This
technique assumes objects consist of Lambertian surfaces and that illumination
only changes slowly over space in the image. Toth et al. [111] suggests that this
low frequency component can be filtered out by converting values to a logarithmic
scale then a applying high pass filter, leaving the mid to high frequency details
which in practise relate to the reflectance component of the image.

The intensity of the illumination on the surface of the object in the τ -th frame
in an image sequence can be modelled as:

yτ (k) = Iτ (k) ·Rτ (k) (50)

where k is the pixel index in the image, I is the illumination component and R is
the reflective component in the image y.

If the reflectance component R can be separated from the illumination com-
ponent I , then it can be used as an illumination invariant representation of the
appearance. The slow rate of change of illumination over the space of the image
means that it will consist of low frequency components of the image, whilst the
reflectance model will consist significantly of mid to high frequency components.
Applying the logarithm to (50) transforms the multiplicative relationship between
y, I , and R into an additive one:

log (yτ (k)) = log (Iτ (k)) + log (Rτ (k)) (51)

A high pass filter kernel can then applied to remove the low frequency illumi-
nation component I . Toth et al. [111] do not describe the choice of parameters
within this process. Hence this work has looked to apply a Gaussian filter kernel
with a small range of adjustable parameters, and retain the complementary fea-
tures in order to achieve the desired high-pass filtration effect. An exponentiation
of the filtered image therefore contains the illumination invariant image consist-
ing of the reflectance information. The parameters of the Gaussian filter applied to
remove the illumination relate to the filter size, standard deviation, and a weight-
ing parameter which controls the amount of filtration applied. These parameters
were adjusted independently to provide a variety of filters which were applied in-
dependently to evaluate the effects of each parameter. The parameters for each
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application of homomorphic filtering are given as filter size, standard deviation,
and weighting when the results are presented in results in section 4.6.

Figure 16: Individuals R values before and after illumination filtration

An example of the results of this filtration process is given as Figure 16.
Although the output histogram does not appear to have changed much, small
portions of the histogram have been adjusted to remove the low frequency spa-
tially based co-occurance in colour channels. It is these components that Toth et
al. [111] suggest relate to the slowly changing illumination levels.

4.3 Histogram Stretching
This section outlines the use of histogram stretching to perform the illumination
transformation. This method proposes to stretch the object’s histogram separately
for each of the RGB components to allow for changes in the illumination spec-
trum. Stretching the histogram can make it appear more similar across a range of
illuminations conditions without explicitly modelling those illumination sources.
It also preserves the rank ordering of the histogram, which Finlayson et al. [33]
suggest adds to the success of many of the colour invariance techniques.

The key points for histogram stretching are the selection of the upper and
lower limits of the output histogram, and the upper and lower limits of the input
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histogram for each colour channel. Histogram stretching then performs a linear
mapping of the input to output values. We maximise the spread of the histogram
by choosing the upper and lower limits of the stretched output to be 255 and 0
respectively. We choose the upper and lower limits of the object histogram based
upon a single parameter a which denotes the percentage amount of histogram
tails to be ignored. The removal of these tail components of the histogram aims to
reduce the amount of noise in the input histogram. It is calculated by cumulating
the count in each histogram bin from either end until the percentage a is reached.

If one denotes the lower input limit as b and the upper input limit as c, then
the output of the stretching r′ for any given input value in that channel can be
calculated as:

r′ = (r − b)
(

255

c− b

)
(52)

This stretching transformation is performed upon each object pixel to gen-
erate a new object image which should have a higher tolerance to illumination
changes without requiring either training or other assumed scene knowledge. This
stretching provides a linear transformation of values so they lie across the entire
histogram, whilst still retaining a similar shape to the original object component.
The results of the stretching for global colour histograms is presented in Table 5
in Section 4.6 for a range of a values to explore the effect of changing the amount
of the histogram that is ignored. The effect upon narrow spatial histograms for
upper and lower clothing colour are presented in Tables 6 and 7 respectively. This
technique is demonstrated in Figure 17.

Although simple linear stretching has been proposed to maximised the usage
of the colour channel, a second form of centralised stretching has also been ex-
plored. This is based upon ideas similar to the Greyworld theory [4] in its intent to
shift the colours based upon their mean value. For the R channel this is calculated
by determining the mean value of the R histogram, µ(R), which is shifted to the
centre of the histogram. The other values are then stretched in a similar manner
between the centre and edges of the histogram space. Where the lower input limit
as b and the upper input limit as c, this can be calculated as:

r′ = (r − µ(R))(
123

c− µ(R)
) (53)

for r > µ(R)
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Figure 17: Histogram stretching of the individual’s pixels

r′ = (µ(R)− r)( 123

µ(R)− b
) (54)

for r ≤ µ(R)
This centralised linear stretching transformation is performed in the same

manner as the normal stretching transformation. It also requires no training or
other scene knowledge; however the mean of the input histogram will be centred
in the output histogram. The results for this centralised stretching technique are
also presented in Table 5 in Section 4.6 for a range of a values. The effect upon
narrow spatial histograms for upper and lower clothing colour are also presented
in Tables 6 and 7 respectively.

4.4 Histogram Equalisation
This section outlines the use of equalisation to perform a data-dependent transfor-
mation of an individual’s histogram. This method differs from histogram stretch-
ing as it can provide a non-linear transformation. First this section explains the
application of histogram equalisation for the compensation of illumination effects
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as proposed by Finlayson et al. [33], before defining a novel ‘controlled equalisa-
tion’ method.

Histogram equalisation, called here as full equalisation, aims to spread a given
histogram across the entire bandwidth in order to equalise as far as possible the
histogram values in the frequency domain. This operation is data-dependent and
inherently non-linear as shown in Figure 18, but it retains the rank order of the
colours within the histogram. The equalisation process is applied separately in
each of the R,G and B colour components to remap their values according to the
following transformation functions:

Tr (i) =
255

N

i∑
j=0

pr (j) (55)

Tg (i) =
255

N

i∑
j=0

pg (j) (56)

Tb (i) =
255

N

i∑
j=0

pb (j) (57)

Figure 18: Full equalisation of the individual’s pixels
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This thesis also introduces here a form of ‘controlled equalisation’. This pro-
cess is based upon equalising a combination of the object pixels and an amount of
pre-equalised pixels that is a proportion k of the object size. These pre-equalised
pixels effectively ‘control’ the amount of equalisation such that the pixels are
spread to a limited degree within the spectrum instead of being spread fully. Thus
although an object should become more matchable under a range of illumination
conditions, it is still likely to retain a higher degree of discrimination from objects
of differing intrinsic colour. This controlled equalisation is shown in Figure 19.

Figure 19: Controlled equalisation of the individual’s pixels with varying k values

This equalisation can be formally described by designating the set of N pix-
els in a generic object as A, and calling B a second set of kN pixels which are
perfectly equalised in their R,G, and B components. Note that the parameter k
designates the proportionality of the amount of equalised pixels to the amount of
pixels inA. From their unionA∪B, the cumulative histograms of theR,G, andB
components, pr (i) , pg (i), and pr (i) for i = 0 . . . 255 are computed. A histogram
equalisation of the individual colour channels is then derived as shown in 58-60:

Tr (i) =
255

(1 + k)N

i∑
j=0

pr (j) (58)
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Tg (i) =
255

(1 + k)N

i∑
j=0

pg (j) (59)

Tb (i) =
255

(1 + k)N

i∑
j=0

pb (j) (60)

These intensity transforms can be applied to re-map the R,G, and B compo-
nents in the object’s pixels providing the ‘controlled equalisation’. The parameter
k controls the amount of pre-equalised pixels used, which controls the spread of
the object histogram. Higher values of k restrict the equalisation to the point that
it approaches no equalisation, and as k approaches 0, the results approximate full
equalisation.

A second variation on controlled equalisation is also possible by considering
a technique that will shift the mean of the object’s histogram to the centre of
histogram space. This can be conducted similar to the centralised stretching tech-
nique presented in Section 4.3, by first finding the mean of the object histogram
and performing the equalisation independently on each side of this mean. This is
achieved simply by applying an equalised set of pixels equal to (1+k)N

2
to the left

side of the mean value, and a similar number of equalised pixels to the right of the
mean value. This positioning of equalised pixels ensures that the mean value of
the object’s histogram is shifted to the centre of the histogram space, whilst still
allowing for controlled equalisation of the other histogram values, if at a differing
non-linear rate on either side of that mean.

4.5 Comparing Illumination Mitigation Techniques
This section outlines the process that can be used to compare techniques for the
mitigation of the effect of illumination changes upon colour appearance. The goal
is to quantitatively evaluate the effectiveness of the various techniques by measur-
ing similarities between colour appearance computed over objects. As this thesis
is aimed at the analysis of humans as the objects of interest, the objects analysed
are humans extracted from surveillance videos. The process occurs in five stages
relating to the segmentation, application of illumination mitigation, extraction of
colour features, comparison of the colour features, and for the training phase, the
statistical analysis of results from objects known to be matching or non-matching.

The first stage of the process is to automatically extract the objects from the
background in each frame of the videos. This research has utilised an adaptive
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mixture model based upon that derived by Wren et al. [116], which quickly pro-
vides reasonably segmented objects. All the objects extracted along the frame
sequence from a single individual are then manually collected into a single track
so as to ensure correct data association. The particular segmentation method is not
as important as using the same segmentation technique for all of the illumination
mitigation techniques. This reduces any impact that differing segmentation might
have upon the final results.

The second stage applies each of the different techniques in turn for each ob-
ject in each frame so that the values of the object’s pixels are remapped. The
third stage then extracts the MCR histogram of the object’s appearance in both
global and spatial regions for the remapped images. This utilises the process de-
scribed in sections 3.2 and 3.5. This produces the MCR histogram which is a
3-D, non-parametric sparse representation of an object’s colour values that have
already had the illumination mitigation applied. Each bin of the MCR therefore
represents the illumination mitigated colour clusters, which still utilise the same
normalised colour distance as the standard MCR. The number of such bins is not
bounded apriori, and the position of their centroids is optimised through a k-means
procedure as outlined in section 3.2.1.

In the fourth stage of processing, tracks of an individual are considered in
pairs. One frame from each track is taken and a similarity measurement, Sf , is
computed between their two MCR’s based upon the method described in sec-
tion 3.4. In a similar way, Sf values are computed for all other possible frame
combinations from the two tracks and averaged so as to achieve a similarity mea-
surement at the track level, St. A number of track pairs are built for both the cases
of two different people (non-match case, or H0 hypothesis) or a single person
(match case, or H1 hypothesis) and all St computed and stored for the two cases.

In the fifth stage, the distributions of the St values for each of the two hy-
potheses, H0 and H1, are statistically modelled by optimally fitting a Gaussian
distribution on each. This is shown as Figure 20. In this way the likelihoods of
each case can be described by their statistical averages, µH0 and µH1, and their
standard deviations, σH0 and σH1. The posterior for each case can therefore be
written as:

P (H0|St) = PH0P (St|H0)P (H1|St) = PH1P (St|H1) (61)

where the priors PH0 and PH1 are assumed to be equal to 1. Thus the results are
not using prior information about number of matching or non-matching cases.

The Gaussian assumption seems to well model the data, with σH0 significantly
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Figure 20: Intersection of the H0 and H1 curves of the height feature

larger than σH1 (the dispersion of similarity values for different objects is obvi-
ously greater than that for different views of a same object). The performance
evaluation for the different illumination mitigation techniques is then performed
by computing the false alarm rate and the missed detection rate directly from
P (H0) and P (H1), assuming H0 and H1 have equal priors. We derive the simi-
larity value, Stth , for which P (H0|St) = P (H1|St) as:

Stth =
−b−

√
b2 − 4ac

2a
(62)

with
a = σ2

H0 − σ2
H1

b = 2(µH0σ
2
H1 − µH1σ

2
H0)

c = σ2
H0µ

2
H1 − σ2

H1µH02 + 2σ2
H0σ

2
H1 ln(

σ2
H1

σ2
H0

)

The false alarm rate, PFA, is then given by the tail P (H0|St) below P (H1|St),
(St ≥ Stth) and the missed detection rate, PMD, from the tail of P (H1|St) below
P (H0|St), (St < Stth). By identifying the matching errors from the estimated sta-
tistical distributions, one can calculate the most effective illumination technique.
This is found by identifying the best possible trade-off between false alarm and
missed detection rates using a minimum total error rate. Alternatively these statis-
tics can also be analysed using priors that might reflect relative costs of missed
detections and false alarms, or the expected rates of matching and non-matching
classes.
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4.6 Experimental Comparison of Mitigation Techniques
This section details the results from the comparison of these data-dependent, rank-
preserving illumination mitigation techniques for a range of their parameters.
These techniques are compared to the case of no attempt at illumination miti-
gation (i.e. leaving the colour values unaltered). These results are based upon an
analysis of 15 tracks obtained from 4 individuals across 2 cameras with illumina-
tion from both natural sunlight and artificial sources. These tracks are a subset of
the tracks experimented with elsewhere in this thesis and were chosen as the more
reliably segmented tracks. This decision was made as the illumination mitigation
experiment is not aiming at investigate the impact of segmentation errors upon
the system, which might reduce the effectiveness of the system irrespective of the
mitigation techniques. The similarity values are obtained from the 50 matching
and 70 non-matching track pairs. The results investigate the effectiveness of the
compared illumination mitigation techniques by comparing their estimated PFA,
PMD and total error rate.

The results analyse three colour features: the global MCR, the upper clothing
MCR, and the lower clothing MCR. The results for the global MCR features are
presented first in Table 5 to show the effect that illumination mitigation can have
across the entire object. The results presented include the mean and standard devi-
ation of the both the non-matching and matching classes that are used to generate
the P (H0) and P (H1) functions. These functions are then used to determine
the theoretical errors relating to the probability of missed detection (PMD), the
probability of false alarms (PFA), and the total error rate.

The results in Table 5 clearly demonstrate that applying histogram stretching
reduces the similarity compared to the case of no mitigation attempt (first row).
Even when the mean of the histogram is shifted to the centre of the colour channel,
the linear stretching method actually increases the overall error rate. This occurs
through an undesirable reduction in the similarity of matching objects, which is
more significant than the decrease in the similarity of differing objects. The ap-
plication of illumination filtration is suggested to remove highlights upon objects,
as well as compensating for general illumination. The results show that vary-
ing the filter parameters to increase the size and variation of the Gaussian filter
produces some improvement in both the matching of similar colours and that of
differing colours with respect to no mitigation attempt; however these improve-
ments are small. This would be consistent with a small reduction in the highlight
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Table 5: Global similarity measurements for matching and non-matching tracks
Method Param Matching Non-Matching Theoretical Err%

mean var mean var PMD PFA total
None 0.8548 0.0965 0.2051 0.3421 1.94 9.39 11.34
Equal Full 0.9104 0.0468 0.2313 0.3727 0.57 6.63 7.19
Equal 0.5 0.9118 0.0405 0.2410 0.3856 0.49 7.10 7.59
Equal 1 0.9147 0.0329 0.2456 0.3923 0.37 6.93 7.30
Equal 2 0.9155 0.0370 0.2487 0.3968 0.45 7.54 7.99

Cent Equal 0.5 0.9159 0.0282 0.2451 0.3912 0.30 6.47 6.77
Cent Equal 1 0.9169 0.0266 0.2435 0.3887 0.27 6.15 6.42
Cent Equal 2 0.9150 0.0237 0.2451 0.3912 0.24 6.17 6.40

Stretch 0.1% 0.7899 0.1067 0.1910 0.3092 2.66 10.21 12.87
Stretch 1% 0.7712 0.1128 0.1797 0.2926 2.93 9.81 12.74
Stretch 5% 0.7464 0.1176 0.1617 0.2659 3.05 8.52 11.57
Cent Str 0.1% 0.7040 0.0956 0.1806 0.2912 2.88 12.02 14.90
Cent Str 1% 0.6869 0.1109 0.1806 0.2904 3.97 14.14 18.11
Cent Str 5% 0.6376 0.1236 0.1665 0.2672 5.40 15.39 20.79

Filter 5 1 0.5 0.8559 0.0860 0.2108 0.3479 1.64 9.23 10.87
Filter 7 2 0.4 0.8536 0.0832 0.2089 0.3452 1.54 8.90 10.44
Filter 7 3 0.5 0.8657 0.0785 0.2127 0.3507 1.37 8.56 9.93
Filter 7 2 0.6 0.8719 0.0759 0.2190 0.3598 1.32 8.90 10.23

and shadowing effects which slightly vary appearance. The results for the colour
equalisation techniques show the best improvement in matching scores, indicating
that as Finlayson et al. suggest [33], they are capable of providing colours that
are more illumination invariant. Equalisation reallocates the histogram bins to
dynamically compress the bins with low counts and expand non-linearly the bins
with high counts. This non-linear reallocation seems to better compensate for the
appearance changes occurring under the limited illumination variations observed
both within and between the two cameras. Whilst full equalisation produces a
reduced overall error rate that is lower than that of the controlled equalisation,
the controlled version seems to provide increased similarity in the histograms of
matching individuals. The improved error rate also occurs because of the reduced
level of variation in the matching results as they are consistently more matchable.
These rates are even further improved when the mean of the histogram is cen-
tralised as a part of the equalisation approach. Picking the ‘best’ technique for
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global features between these full, controlled and centralised controlled equali-
sation approaches would require one to define costs for both a false alarm and
a missed detection. This is required because although the centralised controlled
equalisation approach minimises the overall error rate, other techniques provide
increased accuracy in matching. Deriving appropriate costs depends significantly
on the actual application, as some will require high matching accuracy, and other
application may be able to minimise the cost of false matches using semi auto-
mated techniques.

Table 6: Upper MCR similarity for matching and non-matching tracks
Method Param Matching Non-Matching Theoretical Err%

mean var mean var PMD PFA total
None 0.7256 0.1549 0.1680 0.2865 5.91 13.54 19.45
Equal Full 0.7329 0.1220 0.1562 0.2637 3.38 8.99 12.37
Equal 0.5 0.7647 0.1130 0.1597 0.2679 2.57 7.53 10.11
Equal 1 0.7903 0.0938 0.1724 0.2878 1.81 7.16 8.97
Equal 2 0.7989 0.0724 0.1731 0.2923 1.09 5.79 6.88

Cent Equal 0.5 0.7953 0.0885 0.1754 0.2882 1.61 6.77 8.38
Cent Equal 1 0.8064 0.0906 0.1836 0.3006 1.74 7.56 9.29
Cent Equal 2 0.8007 0.0849 0.1889 0.3105 1.67 8.25 9.92

Stretch 0.1% 0.5876 0.1535 0.1343 0.2270 8.34 14.41 22.75
Stretch 1% 0.5446 0.1531 0.1185 0.2019 9.18 13.52 22.70
Stretch 5% 0.4739 0.1656 0.0875 0.1489 11.75 10.13 21.87
Cent Str 0.1% 0.6757 0.1242 0.1670 0.2690 4.72 13.16 17.88
Cent Str 1% 0.6471 0.1114 0.1608 0.2579 4.22 12.71 16.93
Cent Str 5% 0.6356 0.1293 0.1598 0.2586 5.73 14.66 20.39

Filter 5 1 0.5 0.7367 0.1443 0.1607 0.2781 4.80 11.36 16.16
Filter 7 2 0.4 0.7348 0.1537 0.1683 0.2886 5.65 13.15 18.80
Filter 7 3 0.5 0.7402 0.1459 0.1655 0.2874 4.98 12.22 17.21
Filter 7 2 0.6 0.7468 0.1286 0.1700 0.2952 3.97 11.70 15.67

Table 6 demonstrates the effect of applying these techniques upon a narrow
spatial object histogram. These results are from the upper clothing colours which
consist of a much smaller set of colour clusters than the global histogram. It is
also important to note that although these results are based upon four individuals
of differing clothing, some of the upper clothing are similar in colour. Whilst one
individual is wearing a white top, and one a blue shirt, the other two are wearing
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black tops, one a suit jacket, and the other a black jumper. For the purposes of
these results, each individual is considered as a separate entity, and thus whilst
the two black tops may be of similar colour, if they are matched it is considered
a false alarm. The results clearly demonstrate that the overall error rate in this
individual feature are generally higher than those for the global histogram as the
differences between the histograms is not as distinct. The table also shows that
the mean similarity of such narrow histograms is considerably lower, although the
mean similarity of non-matching is also lower. The effects of the techniques are
very similar to the global results, with histogram stretching variations worsening
error rates, and homomorphic filtering providing marginal improvements. Again
the equalisation based approaches provide significant improvements, with overall
error rates reduced to almost a third of that achieved with the natural image. Un-
like the global results, all of the controlled equalisation approaches improve upon
full equalisation, with the controlled equalisation at k = 2 providing the best re-
sults. It is also worth noting that these improvements are the most significant in
lowering missed detections, where less than 20% of these errors occur using the
best mitigation when compared to the unmitigated approach.

Table 7 also shows the effect of applying these techniques upon a narrow spa-
tial object histogram; however this time based upon the lower clothing colours.
Of the four individuals, two of the individuals are wearing white pants, whilst
the other two individuals are wearing dark coloured pants. As with the results
for the upper clothing similarities, each individual is considered a separate entity,
and whilst they may have similar lower clothing colours, it is considered a false
match where they are deemed matching. Although one might expect this similar-
ity in clothing colour to lead to greater error rates, the results actually show higher
accuracy than the global MCR features. The difference is evident from Table 6
in that whilst the mean similarity of non-matching lower MCR’s is much lower
than for the other features, so are the mean similarity of the matching cases. This
lower level of matching similarity is likely be the main factor that leads to the
greater probability of missed detection (PMD) for this case. Table 7 demonstrates
different results to those shown in the previous results in this section. Firstly
the most promising equalisation based approaches sometimes provide decreased
overall accuracy, although the centralised controlled equalisation does show the
lowest error rate for missed detections. Histogram stretching, contrary to previous
results, show generally promising results, even though they don’t tend to improve
the detection rate; however the centralised stretching method shows the worst er-
ror rates. The homomorphic filtration method shows the same slight improvement
in error rates, consistent with the previous results. This would tend to show its
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Table 7: Lower MCR similarity for matching and non-matching tracks
Method Param Matching Non-Matching Theoretical Err%

mean var mean var PMD PFA total
None 0.7256 0.1598 0.1126 0.2181 4.17 6.16 10.33
Equal Full 0.7275 0.1634 0.1132 0.2077 4.13 5.57 9.70
Equal 0.5 0.7339 0.1535 0.1286 0.2293 4.17 6.93 11.10
Equal 1 0.7396 0.1578 0.1339 0.2385 4.57 7.74 12.31
Equal 2 0.7508 0.1508 0.1331 0.2397 3.94 7.06 11.00

Cent Equal 0.5 0.7655 0.1466 0.1376 0.2413 3.54 6.62 10.16
Cent Equal 1 0.7791 0.1276 0.1540 0.2637 2.94 7.27 10.21
Cent Equal 2 0.7961 0.0988 0.1712 0.2878 1.94 7.19 9.13

Stretch 0.1% 0.6942 0.1579 0.1099 0.2048 4.44 6.16 10.61
Stretch 1% 0.6518 0.1569 0.0951 0.1694 4.18 4.60 8.78
Stretch 5% 0.5818 0.1866 0.0702 0.1228 6.00 3.56 9.56
Cent Str 0.1% 0.7148 0.1352 0.1514 0.2536 4.27 9.60 13.87
Cent Str 1% 0.7127 0.1595 0.1381 0.2319 5.30 8.60 13.90
Cent Str 5% 0.6952 0.1367 0.1356 0.2240 4.05 7.58 11.63

Filter 5 1 0.5 0.7388 0.1679 0.1041 0.2033 3.83 4.85 8.68
Filter 7 2 0.4 0.7368 0.1640 0.1066 0.2076 3.81 5.10 8.91
Filter 7 3 0.5 0.7390 0.1586 0.1114 0.2160 3.75 5.51 9.25
Filter 7 2 0.6 0.7515 0.1606 0.1142 0.2202 3.74 5.54 9.28

usefulness in smoothing out shading and highlights, perhaps even indicating its
usefulness in combination with other techniques.

4.7 Discussion of Illumination Mitigation
This chapter compared various data-dependent, rank-preserving techniques in an
attempt at improving the invariance of a person’s appearance across camera views
without exploiting any scene knowledge. These techniques were chosen because
of their lack of requirements on the knowledge of scene illumination, and their
low computational complexity. This makes such techniques ideal for complex
surveillance scenes where the real-time implementation is important, but illumi-
nation changes may be complex and time varying. The results presented show
that some of these techniques can significantly mitigate the effects of illumination
variations, with varying levels of improvement to the matching error rate, and the
total error rate. Therefore, their use seems strongly beneficial for surveillance ap-
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plications which may have varying illumination levels. The histogram stretching
technique tends to diminish the similarity of matching objects and increase that
of differing objects and its use is therefore not recommended. The illumination
filtration technique alone provides a marginal improvement in the similarity of an
object’s appearance under illumination changes, which is likely due to its removal
of illumination highlights on the object. These results were the most consistent;
however are not likely to provide reasonable improvement alone. The equali-
sation of an individual’s colour histograms provides a significant improvement in
appearance similarity under differing illumination in most of the results presented.
Whilst full equalisation produces a good improvement in overall error rate, con-
trolled equalisation produces more improvement in similarity between matching
objects. The centralised controlled equalisation tends to provide the best overall
error rate, with often the lowest level of missed detections.

The results of these experiments are a little varied depending upon the level
of colour variation and the complexity of the MCR histogram which is observed.
The most promising results were obtained using the centralised version of the con-
trolled histogram equalisation. This combination tends to produce the best overall
error rate, whilst reducing the amount of missed detection errors. The results
are not totally conclusive however, and suggest that similar experiments might be
useful for any particular application in order to determine the most appropriate
techniques. An investigation of the costs of missed detections and false alarms is
also necessary for the particular application in order to select the best techniques
as most applications are likely to require different interventions depending upon
the error type. It is also worth noting that although these techniques have been
applied independently, improved results may be obtained by combining the cen-
tralised controlled equalisation and filtration processes. Such combinations may
seem beneficial; however an evaluation of the error rates for such combinations
would be required along with a deeper investigation of the trade off between com-
putational complexity and accuracy should be considered.

4.8 Summary of Illumination Mitigation and Future Enhance-
ments

Many techniques have been suggested in the literature to compensate for the ef-
fects of variable illumination over an object’s appearance. In a scenario of video
surveillance, explicitly estimating the illumination over 3-D deformable moving
targets such as humans simply proves impractical. This chapter has therefore
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looked to develop a five step process that can be used to compare techniques for
mitigating the effects of illumination changes upon colour appearance for a given
scenario. This scenario can be adapted based upon the objects of interest; however
the results may be generalisable for wider applications with typical illumination
conditions. The process used to compare the improvements achieved using the
various techniques can be summarised:

1. Segmentation of the object from the background.

2. Apply illumination mitigation technique.

3. Extract the MCR appearance feature(s).

4. Compare the MCR appearance features between tracks that are known to be
matching or non-matching.

5. Analyse the theoretical error for the illumination mitigation techniques ap-
plied to determine the most accurate method

This process has been applied in the surveillance domain to find that illumi-
nation filtration provides a small degree of improvement in the identification error
rates, likely due to the reduction of patches with saturated colours which show
very low frequency spatial changes. Equalisation techniques seem to provide sig-
nificantly greater error reduction, especially the centralised controlled equalisation
technique; however there is no reason that these two techniques could not be both
applied to both remove illumination highlights and equalise the image. Indeed
the framework provided could be used in future investigations of this nature, or
to evaluate the usage of a range of other scene independent techniques, or even to
evaluate the usage of scene information for reducing the effect of illumination on
colour appearance. This would be achieved using the same process as the scene
information would be incorporated as a component of step 2 through the appli-
cation of assumptions about the general illumination level based upon changes in
background colours, and would therefore be automatically incorporated into the
MCR features for quantitative evaluation.

A second area of possible future enhancements would be to create a general
database of objects moving through scenes of typical illumination for general sce-
narios. Such a database would be especially useful where algorithms were made
available for easy comparison to new techniques; however a number of difficul-
ties could arise. Primarily the size of the database is determined based upon the
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number of scenarios considered, as well the range of illumination conditions that
might be captured for evaluation. Secondly where the database allows for scene
information to be used, that scene information needs to be captured in enough de-
tail to provide for future possibilities that might become available with significant
increases in computer power. Such information may potentially progress as far
as ray tracing from illumination sources to objects. The level of detail required
for future experiments about the illumination sources is difficult to ascertain, and
could be extremely difficult to extract and record effectively.
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5 Identification of Segmentation Errors
This chapter looks to identify frames with significant segmentation errors in an in-
dividual’s track. Such erroneous frames are a significant source of error for further
processes, such as wide area tracking. These can cause changes in object features,
as they lead to both the inclusion of regions that are not part of the object, or the
removal of regions that are part of the object, reducing the effectiveness of subse-
quent processes. Whilst this can become a problem for any system, these changes
in features can also be analysed along the known track of an object to identify
those erroneous frames. The identification of segmentation errors through their
effect on object features is explored through an analysis of the changes in colour
appearance and size features along the frame sequence. This is possible as such
features have been designed to be invariant to illumination and viewpoint varia-
tion, and thus should remain intrinsically the same for correctly tracked objects
within a single camera view. The features used and compared include the global
MCR, upper and lower clothing MCR’s and the relative changes in bounding box
size. Note that the extraction and comparison of such MCR features are described
earlier in Chapter 3. The identified errors can then be compared to those identified
by human expert identified major segmentation errors, which are defined here as
errors which affect more than 15% of the pixels that are, or should be associated
with an object. Errors due to the incorrect removal of pixels from an object are
considered just as important as errors associated with the addition of incorrect
pixels to an object. Rather than a comparison of a manually selected pixel based
object model, this method looks at a less time consuming and more qualitative
evaluation of the human expert on the overall segmentation at the object level.

As this technique is aimed at automatically identifying segmentation errors,
rather than analysing the quality of the segmentation, no comparison of segmen-
tation techniques is performed. The segmentation used is based upon an adaptive
Gaussian model, similar to that used in the Pfinder project [116], because of its
speed and reasonable accuracy. Major segmentation errors may occur more fre-
quently than they do with other more complex background modelling techniques;
however, this is less of a problem where such errors can be identified. This tech-
nique is likely to be most useful where it allows for significant error removal with
minimal impact to the reliable portions of the data, especially where frame rates
are low and track lengths are short. This identification of segmentation errors
could be useful to improve a range of applications including, but not limited to:
a) matching single objects from disjoint camera views, where matching is en-
abled by accurate extraction of features such as shape and appearance in each
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view [53, 70, 123]; b) creating a synthetic and faithful pictorial summary of a
tracked object using one or a small number of frames where the object is not af-
fected by major segmentation errors; or c) accurate searching for the object in
image or video archives.

This chapter begins by providing the background and literature aimed at the
identification of segmentation errors. This is distinct from the object segmentation
literature outlined in Section 2.1, as it aims to identify those frames in a video se-
quence where the errors are significant, not to evaluate the segmentation quality.
Two methods are then proposed to do this, firstly Section 5.2 looks at investi-
gating the changes in bounding box size over the time to identify errors, whilst
Section 5.3 looks at analysing the change in appearance features along the track
of an object to identify errors. The experimental techniques to verify and compare
these techniques are presented in Section 5.4 along with the results of those exper-
iments. The implication of these results are then discussed broadly in Section 5.5.
The chapter concludes with a summary of the techniques and possible expansions
of the technique into other application areas.

5.1 Segmentation Error Identification Background
Segmentation of moving objects has been widely used through the computer vi-
sion literature to extract objects which are moving compared to the background.
This is based upon the assumption that objects which are not currently moving,
and have not been moving are likely to be of little interest. A full review of the dif-
ficulties associated directly with segmentation is given within the literature review
chapter as section 2.1. This background looks more specifically at the difficulties
associated with identifying major errors in this process. Essentially this review of
the literature suggests that errors in segmentation of both minor and major propor-
tions occur when using all of the common segmentation techniques [96]. Some
segmentation techniques perform better in specific circumstances; however errors
still occur, with minor errors around the edges of objects being frequent in the
complex scenes that dominate the real surveillance environment.

Identifying segmentation errors is made more difficult for articulated objects
which can change their shape within constraints, as this can lead to appearance
changes through self occlusions. A number of hypotheses do hold in a statistical
sense for tracked humans in a surveillance environment: they tend to walk upright,
wear clothing that may differ for the vertical layers relating to the torso and legs,
and have an appearance that is often similar for different equatorial views. Illumi-
nation provides another challenge as it can vary over time, and in different patterns
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depending upon camera location and whether it is indoor or outdoor. This change
perceived appearance features and the contrast of the object and the background.
The literature on identifying segmentation errors in a track seems to be relatively
limited. For instance, Erdem et al. [29] have tried to reduce segmentation errors
for a 3D television application, to improve the temporal stability of object seg-
mentation, rather than identify and remove errors. They achieved their aim by
minimising changes in the global colour histogram and turning angle function of
the boundary pixels of the segmented object in each frame to maximise temporal
stability. Little other research has really looked at the idea of identifying frames
that might have erroneously segmented objects from a video sequence without
either manual assessment, or a pixel level manual annotation of the ground truth
objects. Instead the focus has remained upon directly improving the segmentation.

5.2 Identifying Segmentation Errors Through Changes in Bound-
ing Box Height

Bounding boxes have been widely used in the literature to speed up the analysis
of objects by creating a simple rectangular model of the object. This can then
be used to identify object bounds and when they overlap. Hence it is a good
candidate for fast identification of segmentation errors in a person’s track, if that
object is correctly tracked either manually or by using one of the many popular
motion estimation techniques, such as [125]. Once accounting for perspective
distortion, the changes in the object or bounding box size are likely caused by
large segmentation errors, or possibly occlusions.

As people are articulated objects, their position as well as their size and shape
can change within limits. Thus, bounding boxes for an accurately segmented
person can change due to movement actions such as walking, or from the camera
perspective as a person moves towards or away from the camera position. The
expected limits on the size changes can be modelled for a given camera as a part
of camera calibration. This could either be through a manual assessment of the
changes in bounding box for a given individual, or could be automated through
statical analysis of a number of individuals moving through the scene. A more
complex model based upon expected changes in the direction an individual is
moving is also possible. This may allow for a greater sensitivity to segmentation
errors; however this hypothesis has not yet been tested.

The expected changes in the bounding box size can be simplified by assuming
that the camera frame rate is not slower than a few frames per second, and people
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are walking upright in the viewed area. These two assumptions generally hold for
the video surveillance environment where people are traversing a space viewed by
the camera in order to travel from point A to point B. For most typical frame rates,
the allowable amount of low impact segmentation errors is often higher than the
changes due to perspective distortion. This notes that some level of segmentation
errors are to be expected, especially in complex environments [96]; however often
this low level of segmentation only has a minimal impact upon object features.
Although many object statistics could be used to analyse changes in the shape
of an object, this study found the changes in vertical height of the bounding box
tends to remain invariant whilst a person is walking, once perspective distortion is
discounted. This measure still remains sensitive to actions where a person might
bend over, or become partially occluded; however these actions may also cause
significant change in the appearance of an individual. Typical values of the ratio
in vertical size between one frame and the next vary in a small range around one,
depending upon frame rate and the amount of perspective distortion present in the
camera view.

Figure 21 shows an example of the ratios of bounding box height obtained
between one frame and the next for a track where there is a single frame with
a large segmentation error. The error is clearly indicated by the change in ratio
value to below 0.6, as the subsequent frame is dramatically shorter than the current
frame. The next ratio is over 1.5, indicating that the next frame is much larger
than the erroneous frame as it has returned to the normal size. The 5 sample
frames from the track show that the image height of the object is diminishing
along the track as the object moves away from the camera. The three middle
frames show the frame before the error, the frame with the error and the frame
after the error. The other two frames from the start and end of the track illustrate
the change in object size due to the increased distance from the camera along the
track. The change in image height of the individual when incorrectly segmented
is evident, as is the loss of legs in this frame. Although this method works well
for errors in a single frame, or a short run of frames, analysis of gradual increases
in segmentation errors remains a problem for this method.

5.3 Identifying Segmentation Errors Through Appearance Fea-
ture Analysis

Large segmentation errors have a significant impact upon colour appearance fea-
tures. Thus the changes in the similarity of these features along a track are likely
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Figure 21: Example of changes in bounding box height ratios where a large seg-
mentation errors occurs and 5 sample frames from the track including the erro-
neous frame

to indicate such errors. The (MCR) features used in this analysis as colour fea-
tures are based upon the method previously described in Chapter 3. MCR are
essentially colour histograms in the joint R, G, B space, built with sparse bins
whose position and number is adjusted to fit the pixel distribution. Instead of just
using a global colour feature, as in [29], this method also proposes to compare the
use of the two extra spatial colour features relating to the upper and lower clothing
colours of a person, which were detailed previously in Section 3.5. These features
are chosen to represent the differing colours that often occur for the clothing on
the torso, and those on the legs and are outlined below. The narrow spatial aspect
of these features also allows for a more sensitive analysis of the spatial positioning
of a person’s colours. This ensures that changes in the position of the colours can
also be detected, such as where segmentation errors remove large portions of the
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object. The process for extracting the MCR’s is summarised again here as:

1. The individual is segmented from the background

2. A controlled equalisation step performs a data-dependent intensity trans-
form. This spreads the histogram to compensate for minor illumination
changes that can be expected within the indoor and outdoor surveillance
environments.

3. Initial MCR features are generated using colour clusters based upon the
RGB values of the segmented individual

4. Online K-means clustering of pixels of similar colour within a normalised
colour distance δ generates the MCR of each spatial region. The cluster
centre is the average of the colour values within δ, allowing it to better rep-
resent the colour cluster. Due to the movement of colour clusters iteration
of cluster improvement and cluster assignment are necessary; however, as
explained in [70], three iterations provide an accurate representation with a
minimum of computational cost.

The three MCR features are defined as:

1. The global MCR feature, which represents the colours of the whole seg-
mented object without any spatial information.

2. The upper MCR feature, which represents the colour of the top portion of
clothing. This corresponds to the region from 30-40% of the person from
the top of the object’s bounding box as shown between the lines towards
the top in Figures 22 and 23. This narrow band was chosen to ensure that
it avoids the inclusion of the head and hair of the object, as well as low
necklines, but does not go so low that it includes the belt area, or overlaps
with the lower colour, or bottom area.

3. The lower MCR feature aims to represent the colour of the lower portion
of clothing. This corresponds to the region from 65-80% of the object from
the top of the object’s bounding box as shown between the lines towards the
bottom in Figures 22 and 23. This narrow band avoids the very bottom of
the object which can be prone to shadows, or artefacts where the feet touch
the ground. It also tries to avoid overlapping with the belt or upper torso
area of the person.
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The narrowness and positioning of both of the upper and lower MCR regions
allows for them to remain constant under minor segmentation errors. Such errors
are common and will only have a minimal impact upon a person’s features, hence
they need to be allowed whilst still remaining sensitive to large segmentation er-
rors. These features also allow for the inclusion of spatial colour features which
could possibly identify the difference between people when tracking is incorrect.
Increasing the width of the spatial bands of the colour regions is likely to make the
features more sensitive to segmentation errors, whilst not necessarily improving
the quality of the features for clothing with limited colour variation.

Figure 22: Example of upper and lower regions from three segmentations of one
person

Figure 23: Example of upper and lower regions from three segmentations of a
second person

Figures 22 and 23 show the upper MCR feature region between the lines to-
ward the top of the person, and the lower MCR feature region between the lines
toward the bottom of the person. Figure 22 demonstrates three frames showing
frontal and rear views of a person, and a frontal view with a significant segmenta-
tion error where the lower half of the person is not found. In this frame the colours
within the upper and lower regions change significantly from those in the other
two frames. Figure 23 shows two views of a second person where segmentation is
arguably reasonable, even if a portion of the head is not correctly segmented in the
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first frame. The frame shown in the middle is poorly segmented; however a white
object above the person is partially included within the object. This leads to an
added amount of white in the global colours, that is not entirely dissimilar to the
pants colour. Such an error leads to the frame having little discernible difference
in global colours; however the upper and lower colour regions clearly indicate a
change in the spatial positioning of the colours, which can be used to identify this
poorly segmented frame.

5.3.1 Comparing Colour Features Between Frames

Once extracted, the MCR features can be compared to each other to determine if
the features change over time along the track of the object. We begin by assum-
ing that objects are tracked correctly, even though large and sustained changes in
human object features may indicate potential data association errors. This anal-
ysis of tracking errors is not explored within this thesis, as the individual’s are
manually tracked. This choice has allowed the project to focus on the analysis of
data from single individuals that are reliably tracked. Changes in object features
along the track are therefore likely to be caused by errors in the identification of
foreground pixels, or through other causes such as occlusion, cluttering, or major
lighting changes.

This method performs an automatic comparison between the frames of a track
to identify frames affected by major segmentation errors. It utilises the global, up-
per, and lower MCR colour features using the similarity measurement described in
section 3.4. Given any two MCRs, A and B, for each bin of A a search is conducted
for a matching bin in B to calculate their intersection. Such intersections are added
up for all matching pairs, providing a similarity measurement that is equivalent to
the complement of the Kolmogorov distance between two distributions with equal
priors [127].

This process is used to generate pairwise similarity values for the three MCR
features in each frame to every other frame in the track. We apply a statistical
analysis of a known training set of the non-matching H0 or the matching H1 sets
of features to determine Gaussian likelihood functions for given similarities be-
ing matching or non matching [37]. Classification can also be obtained by fusing
together the matching and non-matching likelihoods of each of the three feature
comparisons in an ensemble of classifiers. We assume the features to be condi-
tionally independent and so apply Bayes theorem as:
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P (H0|sG, sU , sL) = B (P (sG|H0)P (sU |H0)P (sL|H0)) (63)

P (H1|sG, sU , sL) = (P (sG|H1)P (sU |H1)P (sL|H1)) (64)

where B is a prior that can be used to bias the operating point of the system.

5.3.2 Typical MCR Patterns of Major Segmentation Errors

Appearance changes are generally caused by either major segmentation errors,
where portions of the object are not extracted correctly from the background, by
large changes in the illumination conditions, or by tracking errors. Segmentation
errors of less than 15% are considered as minor in this process as they commonly
occur [96], and they will often only cause limited changes in object appearance.
Major errors produce significant changes in the appearance of a single frame;
however, they often have a different impact upon the segmentation results when
considering their difference across the whole track. Three different error patterns
are demonstrated in Figure 24, highlighting how the different errors tend to influ-
ence the similarity of the proposed features.

The first error pattern in Figure 24a shows how large segmentation errors cause
a very low similarity in the fused features between that frame and every other
frame causing a characteristic ‘cross’ in the pairwise comparisons. Where a small
number of frames have similar large segmentation errors, such as losing the lower
half of the object, these frames will tend to be similar to each other, but distinct
from the rest of the track.

Figure 24b shows the second error pattern where the portions of the track
are self similar, but persistently different from each other. This occurs for large
illumination changes, such as switching a light on. It might also be expected
for tracking errors, although this research has not investigated this concept as
manual tracking is currently used. In this case extracting both sets of feature
representations could be useful for manual analysis of the object’s track. The
bounding box is not directly affected by large illumination changes; however in
practise the change in the amount of contrast between the object and background
often leads to major segmentation errors as well.

Figure 24c shows the third error pattern, which occurs for gradual illumination
changes, such as clouds moving to cover the sun. The error pattern shows that
each frame is still likely to match the majority of the rest of the track, however the
initial frames could have a large difference in appearance to the frames toward the
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a) Track P showing a single large segmentation error

b) Track Z showing large illumination changes

c) Track W showing a gradual illumination change

Figure 24: Three typical error patterns of frame based pairwise similarity com-
parisons given between 0 and 1

end. This case is not caused by segmentation errors, so each frame is considered
equally suitable to be included in a robust track.

A final pattern which may emerge is where there are multiple portions of the
track that are self similar, but significantly differing from the other regions within
the rest of the track. Where no region of reasonable length is available, this could
identify a track which is not of reasonable quality to use for automatic analysis.
Such patterns of inconsistent features are not currently considered in this work, but
may be considered in the future for manual revision of the object segmentation or
tracking.
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5.4 Experimental Validation for the Identification of Major Seg-
mentation Errors

The experiment used to validate the identification of segmentation errors is based
upon the comparisons of the four object features consisting of global MCR, up-
per MCR, lower MCR and fused MCR results based upon a self-comparison of
26 tracks from four people across two cameras, consisting of over 300 frames.
These tracks are automatically analysed to identify frames with significant seg-
mentation errors, when compared to ground-truth analysis performed by human
experts. Examples of good segmentation and the clothing worn by the four indi-
viduals studied for this experiment are given in Figure 25. Of the 26 data sets, 5
were used for training the Gaussian likelihood functions of the non-matching H0
or the matching H1 data sets on a frame by frame basis. The remaining 21 tracks
are used as a testing set for evaluation.

Figure 25: Four people of interest and automatically segmented masks of good
quality

The results are given as a ROC curve in Figure 26, similar to the results in the
previous chapters, showing the detection rate compared to false detections when
compared to the human expert based ground truth. These results are given to com-
pare each individual feature, as well as the fusion of the MCR based appearance
features. The ROC curve clearly demonstrates that the fused MCR features can
provide a significantly higher level of accuracy, whilst also limiting the amount of
false detections.

Table 8 gives the probability of detection (PD) and probability of false alarm
(PFA) for each of the MCR features analysed at the selected operating point com-
pared to the expert determined ground truth. A more detailed analysis based upon
the individual people who were tracked, as well as the overall quality of the tracks
analysed indicates that this method works best with individuals who are not of a
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Figure 26: ROC curves of the height, colour and fused feature results

Feature PD as % PFA as %
Vertical Bounding Box changes 72 9
Global MCR 66 31
Upper MCR 53 11
Lower MCR 66 5
Fused MCR 84 3

Table 8: PD and PFA values of Bounding Box and MCR features for detecting
segmentation errors

uniform colour, and where the overall quality of the segmentation of the tracked
object is good; although the accuracy as shown is still high under less optimal
conditions. The results also indicate that the use of upper and lower MCR fea-
tures dramatically improves the ability of the system to detect major errors which
may not be detected adequately with the global colour or bounding box analysis
alone. The major limitation of the bounding box change ratio analysis is that grad-
ually increasing or decreasing segmentation errors are hard to identify, especially
where there are multiple concurrent major or minor segmentation errors. This
creates a limit to the overall accuracy of such analysis that is not inherent in the
fused colour features. The bounding box height also does not consider the pixels
that may be incorrectly segmented through the middle of the individual. Large
gaps in the individual that are not located at the top or bottom of the individual, or
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do not split the individual into fragments may affect appearance or shape features
without necessarily affecting the image height of the segmented blob.

Note that PD can be taken close to 100% if one can accept a PFA of approx-
imately 30%. This operating point is of interest if a system looks to remove all
frames with major errors, and the number of frames left by the selection procedure
is still sufficient for later stages of processing. Such an operating point would be
of interest where a system has high frame rates, and the tracks of individuals are
reasonably long.

5.5 Discussion of Segmentation Error Identification
A number of factors ranging from the contrast of the person from the background,
to occlusions and illumination changes, ensure that segmentation will often in-
clude a degree of errors, some of which might be very large. These errors could
propagate into a number of subsequent tasks, ranging from feature extraction to
tracking through matching of individuals across disjointed camera views, or accu-
rate searching for the person in image or video archives. Other tasks could also be
generated through a method similar to the identification of errors, such as creating
a faithful pictorial summary of a tracked object. This pictorial summary could
be made by using one frame, or possibly a few frames, where the object is not
affected by large segmentation errors. If large segmentation errors can be identi-
fied and removed from the automated process, then such subsequent processes are
likely to be made more robust and accurate.

This chapter has suggested how two different types of features can be analysed
to identify frames in which major segmentation errors occur. The results indicate
that almost all the errors can be identified for removal if enough false alarms
are allowed. Even without accepting many false alarms, a significant amount of
erroneous frames can be identified using either the fused appearance features, or
the bounding box height changes. Although this chapter has focussed upon MCR
appearance and bounding box height features, a variety of other features could
be used, as long as they can be compared and remain stable along a track. For
example a true height estimate could be used in the place of the bounding box
as it should remain static regardless of the object size; however many such shape
based features can also be dramatically affected by small segmentation errors,
which are quite common. Such flexibility in the possible features is important as
it can allow the system to more fully utilise the features that are already being used
within a given surveillance system. For instance other appearance features, such
as colours coded by path length [119], could also be compared on a frame by frame
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basis, with the results reflecting the sensitivity of that feature to segmentation
errors. Feature consideration is especially important where tracks are short and
segmentation is noisy, as is the case with the data used here. By identifying errors
this automated method can also give an indication of the overall feature quality
for a given track, by indicating the rates of errors in that track. This additional
information is provided at a minimum of computational cost where features that
are already being extracted can be compared quickly.

The other important consideration is the acceptable amount of false detec-
tions of segmentation errors. Increasing the amount of errors that are removed is
likely to lead to an increased rate of frames that are removed even though they
don’t have errors. This consideration is important as tracks that are of consider-
able length may not be affected, but shorter tracks or those where individuals are
often partially obscured may be dramatically affected by high false alarm rates.
Although this technique may reduce the amount of erroneous frames, efforts are
still required to make features robust to the errors that occur with even the most
advanced image processing techniques.

5.6 Summary of Segmentation Error Identification and Future
Enhancements

This chapter has demonstrated that the effect of large segmentation errors upon
features can actually be used to identify the frames where those errors occur. This
chapter explored and compared two different features that could be analysed to
identify segmentation errors. Although the fused MCR appearance features pro-
vided the most accurate, the exploration of the bounding box height feature also
demonstrates that as long as a stable feature is chosen, then large segmentation
errors can be identified. The process identifying these errors can be summarised
as:

1. Extract the feature for each frame within the track, or a sizeable portion of
the track.

2. Compare the features between each and every frame to evaluate their simi-
larity.

3. Analyse the pattern of errors in the inter-frame similarities of the features to
determine where frames are dramatically different, or are simply adapting
slowly to conditions over time.
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The results obtained from this process demonstrate that the effect of segmen-
tation errors, like many other sources of errors, can be minimised by analysing
their effects upon the features along a frame sequence. Although the fused MCR
features achieved a segmentation error detection rate of 84% with only 3% of
false alarms on the data analysed in this project, the results would seem to be de-
pendent upon the features analysed. With a wide range of reasonably invariant
features available, there is considerable scope to investigate the accuracy achiev-
able with other shape or appearance features. The process could also be enhanced
through the investigation of changes over portions of longer tracks in order to
provide more timely identification of errors, allowing features to be utilised even
before the whole track is available. The amount of frames required for analysis
before errors could be identified would need to be considered carefully; however
for reasonably well segmented tracks, the number of frames required could be as
low as ten.
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6 Height Based Robust Shape Feature
This chapter explores the use of height as a shape feature for tracking, matching,
and identification of individuals through a wide area surveillance system. Height
estimates, as a useful general identity descriptor, are conducted widely by the
police for identifying suspects in their investigations, as well as in computer vi-
sion based identification [93]. Other shape related features, such as gait based
stride length, have been proposed for human identification or matching individ-
uals; however these often rely upon high resolution images, sometimes specific
installations of cameras, and are often tested in simple laboratory environments or
under a variety of assumptions. Thus, the achievable accuracy of these features in
real surveillance systems is often not clear. As opposed to other features, height
estimated from images has been used to a varying degree of success in various
applications in complex scenes [7, 16, 19, 71, 73]. Indeed its limitations in distin-
guishing between individuals mostly arise from the limitations in height variance
of the population [101], and the noise within the pixel based resolution of objects
from which height is determined. To date little research has investigated reducing
the impact of these limitations, even though it could be beneficial to other popular
topics such as gait based identification.

This chapter proposes how to overcome the limitations of previous research
into the estimation of height as people move within the view of monocular cam-
eras. This is important in video surveillance as stereo or overlapping cameras are
often not available, and other features such as motion information can become
unreliable when there are large gaps in camera coverage. This chapter explores
the use of the height feature in isolation to determine the maximum accuracy
that might be achievable. When attempting to achieve accurate individual re-
identification, it should be noted that the intrinsic discriminative power of height
throughout the observed population is likely to be too limited. Instead this feature
may be used as an accurate partial descriptor of an individual that could be com-
bined, or fused with other features in order to obtain the overall desired accuracy.
Whilst this chapter focuses upon the accuracy estimate of differing individuals,
Chapter 7 investigates the usage of the height estimate feature as a component of
a features based re-identification framework.

The chapter begins by providing an investigation of the background of the us-
age of height estimation for the identification or matching of individuals as com-
pared to other possible shape features. Section 6.2 then describes how camera
calibration can be used to extract estimates of an individual person or an object’s
height from a single image. Section 6.3 describes the technique developed to im-
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prove the extraction of height estimates from a single camera view and how the
height estimates along the track of an image sequence can be used to mitigate
gait effects. Methods that can be used to statistically compare height estimates
to both real estimates, or estimates from other tracks are described in section 6.4.
The experimental verification of these methods are described in 6.5, where they
are broken into the logical development steps based upon manual data, the initial
automatically extracted data, and finally a large scale experimental verification.
These results along with the identified limitations of the process are discussed
in section 6.6. The chapter concludes with a summary of the height estimation
procedure and future enhancements that could improve the accuracy of extracted
height features.

6.1 Shape Feature Background
Shape features have been utilised successfully for object classification [6, 102]
Shape has been exploited within many projects as a powerful feature for the clas-
sification of objects into groups or classes, which have the same type of shape or
shape features. Indeed shape based template matching is used widely within ma-
chine vision applications in factory situations for quality assurance, with accuracy
often being much higher than a human is capable of achieving. The accuracy of
this process is achievable due to the objects being as identical as possible in shape.
This similarity of shape within groups of objects is very powerful for classifica-
tion purposes, but it limits the amount of detectable variation that could be used
to identify particular instances of an object. This is exacerbated by the increased
probability of errors in the segmentation around the edges of the object, making it
difficult to determine if changes in the shape are part of the individual variation,
or if they are just errors within the segmentation process. For example ground ve-
hicles such as cars all tend to have the same streamlined shape with four wheels,
a protruding bonnet, and doors down the side. Variations in the basic shape such
as a tray back or hatch back, emblems and even the specific streamlining of the
shape can be very useful to further classify the specific model of the vehicle; how-
ever they do not provide much information on the specific instance of the actual
vehicle that could be used to identify it. Indeed identification of specific vehicles
who belong to specific owners is so difficult from shape and appearance features
that number plates are used to identify individual cars. Natural objects, as op-
posed to manufactured objects, tend to have a higher level of individual variation,
also known as intra-class variation; however they also tend to have some degree
of articulation making shape features less invariant both across camera views and
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within a single camera view due to changes in the object’s articulated pose.
Shape features which are used for the identification of individual objects are

often used as a component of an object model, or to understand articulated object
motion. Model based features are prominent in the literature for classification [47]
to provide more accurate shape information for understanding human movement,
which in turn may provide identification clues. General shape features that are not
model based, are often dependent upon the relative orientation of the object to the
camera, and the level of object articulation. For instance a person walking across a
camera view could have a significantly different width to that same person walking
toward the camera, even when they are observed at the same distance from the
camera. Indeed low level Scale-Invariant Feature Transform (SIFT) features, and
the colour based CSIFT variant [1], are widely used to obtain low level object
shape descriptors for classification purposes. Few of these shape features remain
invariant or at least quasi-invariant over even short periods of time and hence can
not be used to identify particular individuals. Of the shape features that have been
widely used for identification or matching purposes, object gait and height are the
main two features that have shown promise. Stevenage et al. [105] suggests that
people can be identified from their movements through an understanding of how
their shape changes; however the complexity of the problem is very high with a
limited range of accuracy using recent methods [103].

Height estimation has been used many times as a stable biometric shape fea-
ture for the identification of individual people [7, 19]. Height changes gradually
as a person initially grows into adulthood, but then remains very stable throughout
the rest of a person’s life. Height is traditionally measured with a person standing
next to a flat surface, where the measurement runs from the floor to the top of the
skull. This measurement is a minimally invasive technique which requires the co-
operation of the individual to stand straight and still. The two main limitations of
height when observed from an image are the accuracy camera calibration, and thus
of obtained measurements, and the ability of height to discriminate between two
arbitrary individuals. The main factors that influence the accuracy of the height
estimation obtained from a walking individual are the effect of gait on the height
within any single image, the accuracy of the segmentation of the selected object,
and the accuracy of calibration for the method of estimation, being either from
a single or multiple overlapping cameras. A person’s actions can also influence
the observed height, such as whether they are walking or bending over, as well
clothing factors, such as the size of soles or heels of an individuals footwear and
the person’s hairstyle or hat. Whilst improving camera quality and calibration
techniques can improve accuracy of the measurements, the gait of an individual is
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inherent to their movement. Attempts to mitigate for the change in height using
the cyclical nature of this influence along a frame sequence can be used to increase
the robustness of any estimates. Such estimates are also compromised when in-
dividuals are not standing or walking upright, although often these cases can be
identified and removed from the estimation of the object’s true height. The impact
of inaccurate segmentation of an individual from the background is significant,
but highly dependent upon the segmentation method used, and the complexity of
the scene being observed. The impact of very high shoes and high hats are usually
minimal throughout typical buildings, as they are not generally part of typical at-
tire, and they often tend to remain stable throughout a surveillance session. Thus
their impact is often negated when individuals are matched throughout a single
surveillance session within a building environment.

Stereo cameras can determine the height of an individual directly from the
accurate location of the point at the top of the head. Thus the height estimates
are not necessarily affected even when segmentation affects significant portions
of the rest of the body [19]. Single camera views, or monocular cameras, require
the entire person to be extracted into a single blob as both the top of the head
and the bottom of the person need to be accurately located to produce an accurate
height estimate [7, 71]. Within both of these methods degradations in the accuracy
of segmentation can lead to reduced accuracy which is inversely proportional to
the size of the object within the image. That is to say the greater the number of
pixels that comprise the object, the greater the degree of accuracy will be as each
pixel error will correspond to a smaller percentage of the estimated height. Thus
cameras that can obtain zoomed views of a person are likely to improve accuracy;
however these are not widely available and it could be difficult to maintain camera
calibration.

When considering the problem of extracting height measurements from an
automated system, one first needs to consider the reality of existing surveillance
systems. Although multiple overlapping cameras can mitigate segmentation prob-
lems, and possibly increase accuracy, the majority of camera coverage is by single
cameras. Such views can also cover difficult areas such as stairs and ramps, which
create many difficulties in defining assumptions such as the ground plane. Camera
quality and typical object resolution are also important as such factors can limit
the accuracy of height from quantisation errors, and also relate to how large an
impact pixel level segmentation errors can cause. Consideration of many of these
factors are very important to the development of a working system; however are
not often considered in laboratory experiments.

The limited availability of overlapping cameras is very important, but not
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widely discussed in the literature. Such single images do not provide in-depth
information about how far away from the camera an object is; however this can
be overcome by assuming that people will be walking touching the ground plane.
This allows for a ground plane homography to be calculated, which determines
the real coordinates on the ground plane of an individual. This in turn provides
additional constraints on the position of the top of the head, allowing a height es-
timate to be obtained. This technique has been demonstrated in BenAbdekader et
al. [7] where the top and bottom image positions of an individual are determined
using the centre of the top and bottom of the bounding box. It is also important
to note that although this work focuses upon humans as the object of interest, the
height of other objects that are sitting on the ground plane could be estimated
using a similar technique.

The usage of the bounding box of an individual as an estimate of the height
of the object in the image is reasonably common and is often used as a part of
other object blob statistics; however when those measurements are converted to
real world coordinates, they can provide a true estimate of the height of a person
[7, 16]. The height measurement within any single image may be more than a few
centimetres higher or lower than their true height under a normal walking gait;
however an average of these measurements has been found to remain stable [71].

Even when the accuracy of the overall estimated height is high, many peo-
ple may be of a similar height, limiting the ability of this feature to discriminate
between the individuals. Statistics on the height of people across a sample popu-
lation of Australian people [101] indicate that men have a mean height of approx-
imately 174.8 centimetres with a standard deviation of 7.1 centimetres, whilst
women have a mean height of 161.4 centimetres with a standard deviation of
6.7 centimetres. These statistics published by the Australian Bureau of Statistics
(ABS)[101] also suggest that the height statistics are roughly indicative of heights
around the world, although heights through Asian regions tend to be approxi-
mately 5 centimetres lower. These height statistics indicate that the probability
of two random people being of similar height is reasonably low; however not low
enough to guarantee that reliable accuracy of height estimations will automatically
translate into accurate discrimination between people. Thus although height may
be accurate, it is only likely to be one useful component to discriminate between
two differing individuals, and needs to be combined with other features to provide
reasonable discrimination.

123



6.2 Obtaining Height Estimates Using Camera Calibration
Camera calibration forms the basis of extracting real world height measurements
from either multiple or single camera images. A detailed description of camera
calibration can be found in many sources, such as Hartley and Zisserman’s book
titled ‘Multiple Camera Geometry’ [46]. Often full camera calibration is sug-
gested to provide the most accurate measurements possible; however Criminisi et
al. [16] show that a partial calibration of an image which contains known refer-
ence lengths can be used to obtain measurements of reasonable accuracy. Such
partial calibration are significant when only images are available; however the
general video surveillance context does allow for full calibration either through an
explicit optimisation of the real world positions and their image coordinates [113],
or through one of the many recent methods that simplify the process [20, 97].

Camera calibration for a single camera view is not sufficient to obtain real
world coordinates from image coordinates [113]. This is demonstrated in the
camera calibration matrix given as equation (65) below, where the term s refers
to the distance of an object from the focal point of the camera, also known as the
object depth. The depth of object from the camera is usually determined using
multiple overlapping camera views which combine multiple image coordinates, u
and v, and their calibration matrices for the same real world coordinates X, Y and
Z, which provides a unique solution for the equations.

 su
sv
1

 =

 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



X
Y
Z
1

 (65)

The depth of an object from a single image can be obtained by adding further
constraints to the real world coordinates. This usually comes in the form of a
ground plane homography [46], where the bottom of an object is assumed to be
touching the ground, constraining equation (65) by using Z = 0. This homog-
raphy is a subset of the camera calibration matrix which allows the two image
coordinates to directly relate to the real world X and Y coordinates on the ground.
As most people are observed walking upright and other moving objects tend to be
rigid throughout typical surveillance scenarios, one can reasonably assume that
the top of the object is directly over the top of the ground plane point. Other re-
search into human movement and behaviour could also be applied to enforce this
constraint for useful measurements; however this is not the focus of this thesis.
This assumption can be used to constrain the real world position of the top of
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the head using the X and Y values of the bottom point of the object. Expanding
equation (65) for the image coordinates u and v gives:

u =
p11X + p12Y + p13Z + p14

p31X + p32Y + p33Z + p34

(66)

v =
p21X + p22Y + p23Z + p24

p31X + p32Y + p33Z + p34

(67)

These two equations relate the top of an object in image coordinates u and v to
its real world coordinates, each with a single unknown, Z obtained from a single
image. Rearranging equations (65) and (66) obtains the following formula which
provides a single estimate of height of an object as constrained by its position on
the ground plane:

Z =
(p11 − up31)X + (p12 − up32)Y + p14 − up34

up33 − p13

(68)

Figure 27: Accurate location of the bottom point improves height estimates

This height estimation method is not new as BenAbdekader et al. [7] have pre-
viously used a similar procedure to try to identify people walking through a single
camera based upon their height and the two gait characteristics of stride length
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and cadence, or periodicity. Their height estimation was based upon automat-
ically segmenting people from the background into a single blob. A rectangular
bounding box was used to outline the object such that it encloses all of the object’s
pixels. BenAbdekader et al. [7] selected the bottom point of the object as the mid-
dle of the lower edge of the bounding box, with the top point being the middle of
the top of the bounding box. This allows for fast and easy selection of the key top
and bottom points; however Figure 27 shows that this might not be the best se-
lection of top and bottom points. Significant improvement for the bottom point is
achievable as the bounding box location does not account for the true positioning
of the feet of a person within an image. This could distort the true ground plane
position of the object as well as the image height of the object. Images where the
head is not in the direct centre of the bounding box could also benefit from more
accurate estimation. Such errors are likely to vary from frame to frame, and are
likely to be in the order of a few pixels; however this could lead to a centimeter or
more error in the estimation of an individual’s height, depending upon the height
of the individual in the image.

Although the image based improvement of the manually extracted key top
and bottom points shown in Figure 28 is obvious, the main difficulty occurs with
the automatic extraction of these points and the mitigation of gait effects. The
bounding box measurements are available simply from the extraction of the ob-
ject; however calculation of improved key points requires a detailed automatic
analysis of the segmented object. This automatic analysis of an individual’s sil-
houette to improve the ground plane location of a person was not found in the
literature, so a detailed analysis of the approach is provided in the next section.

The major difficulty with estimating the height of an individual arises from
the change in the height of the top of a person’s head as they walk. Increasing the
accuracy in estimating the height actually leads to an increased variation in the
height of the individual, shown in Figure 30 in the following section. The peri-
odicity of these estimates are also noticeable indicating that a statistical analysis
such as the average of the height estimates along a track is likely to produce a
more accurate estimate of the true height. Although the periodicity of measure-
ments is obvious, significant errors can occur due to error in segmentation of an
individual from the background. Indeed such errors are recognised as common
throughout all segmentation methods [96] of an individual and would need to be
further explored before reliable periodicity measurements could be used.

The key steps for the automatic estimation of a robust measurement of an
individuals height begins with extracting estimates of the height from each frame,
then removing errors before using statistical analysis to provide a robust estimate.

126



Figure 28: Manually identified key image points for the track of one individual

This can be summarised as the following steps:

1. For each frame

(a) Segment the individual from the background

(b) Automatically estimate the key top and bottom point locations within
the image

(c) Estimate the location of the individual on the ground plane

(d) Use the ground plane location estimate in equation (68) to obtain a
height estimate

2. Remove height estimates from frames with major errors, such as those from
incorrect segmentation

3. Statistically analyse the set of height estimates from each frame to remove
outliers

4. Statistically extract the robust estimate of the individual’s height from the
data without outliers
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This process is likely to be reliable enough to provide a description of an
individual’s height with a similar or greater level of accuracy to those provided
by the police when searching for a suspect. Thus it may be useful in a number
of applications including non invasive biometric security and general surveillance
applications.

6.3 Improved Automatic Monocular Height Estimates
Whilst the previous section outlined a method that produces an estimate of a per-
son’s height, the bounding box used does not necessary best represent the top and
bottom of an object. Even with perfect segmentation of an object, the top of the
head is does not necessarily lie directly at the centre of the bounding box, nor is
the centre of balance at the bottom of the object always in the middle of the bot-
tom of the bounding box. Indeed figure 27 shows that this is not the case. Many
other objects might not receive much improvement in location over the simple
bounding box measurements; however it is the highly articulated human motion
with moving arms and legs that allow for these discrepancies from the bounding
box based positions. Although many research areas from gait analysis to human
behaviour modelling do perform an analysis of body part location and movement
to a greater or lesser degree, most of this research is aimed at inferring more infor-
mation about the motion of the person, rather than their biometric such as height.
This section describes how silhouette curvature techniques can be used to more
accurately identify the location of the head and feet, which in turn improves the
location of the key top and bottom points, and the overall height estimate.

In order to improve the accuracy of height estimation, the position of the top
of the head and the feet position needs to be determined as precisely as possible
from a monocular view. Due to the typical resolution of surveillance footage,
an improvement of even a small number of pixels in image height estimate can
translate to a significant difference in height estimate. This improvement is shown
in Figure 27 above, where the bottom centre point of the person is shown as a
more accurate image position when compared to the bounding box. The feet
positions are found using a k-curvature technique [35] after the object has been
segmented from the background. This segmentation is currently done using a
modified Pfinder [116] method, where colour based morphology [122] is used to
close internal object gaps and to join body parts that have been segmented into
separate blobs. When the object is segmented or joined into a single blob, then its
key points can be identified from silhouette curvature. The k-curvature technique
follows the chain of silhouette pixels and determines the curvature of the silhouette
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at each pixel based on three pixels along the curvilinear coordinate, x1, x2 and x3:

k = tan−1

(
x1 − x2

y1 − y2

)
− tan−1

(
x3 − x2

y3 − y2

)
(69)

If k < 0 then one can use k = 2π + k to ensure 0 < k < 2π.
This equation allows for an analysis of the curvature around the silhouette of

an object such that key points can be accurately located. These key points are
found by local minima and maxima in the level of curvature as these relate to
the extremities of the object. These key points can also be analysed with respect
to their location within the object. For example a high curvature region at the
top of the object is likely to represent the head of the object, especially where
the assumption of the individual merely walking through the scene holds. This
region is shown at the start and end of the curvature values in Figure 29. The
second key points of interest are those areas of high curvature near the bottom of
the object which correspond to the feet of the object. These values can be more
difficult to analyse due to the articulated motion of the feet during walking. Thus
in any frame one or two feet could be observed, and the high curvature points of
these feet could relate to the toes or heels of an object. Analysis of high curvature
points in the middle of the object could be used to located the hands of an object;
however currently this research does not use this information.

Analysing the k-curvature has found little difference in identifying the head
point location h(u, v) than simply using the midpoint of the highest row of object
pixels of walking individuals. Thus one can use the former as it is faster to calcu-
late. It is important to note that this point is not necessarily same as the midpoint
of the top of the bounding box as outstretched arms or legs could also influence
the width of the bounding box. An optimum location of the bottom point b(u, v) is
more difficult because of the articulated motion of the two legs being important to
the centre of gravity and hence the optimum location. One can identify a bottom
point location by averaging the location of the feet positions, which are found as
the high curvature regions near the bottom of the object. The method for deriving
this point is outlined in the following panel:

ifu > (fract× obj height)
if(dist(ka(u, v), kb(u, v)) < th)
thenfoot(u, v) = (ka+ kb)/2
elsefoota(u, v) = ka(u, v)and, footb(u, v) = kb(u, v)
andb(u, v) = (foota(u, v) + footb(u, v))/2

where obj height refers to the person’s pixel height, and fract = 0.7 in our
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Figure 29: Curvature values for a single individual showing curvature key points
beginning at the top left most object pixel

experiments. This excludes the top 70% of an object, measured vertically from
the top of the object, from being considered as potential feet.

This panel shows how a bottom point can be found by assuming that areas
of high k-curvature within the bottom 30% of the object are likely to correspond
with an individual’s feet, or more particularly their toes or heels. This assumption
holds when there are no other objects near the feet of the object and the feet are
reasonably well segmented as the other body extremities such as the arms or head
will not protrude so low for a walking individual. Although shadow removal still
retains some problem, many techniques are available to minimise this problem
[17, 22, 56, 114, 125]. If the two distinct points of key curvature in the lower
portion of the object are located close together around the silhouette, then they are
likely to correspond to the heel and toe of one foot of the object, and can be aver-
aged to produce a foot position estimate. Otherwise, the single significant curved
area is used as the foot position estimate. Where two areas are found with high
curvature in the lower portion of the object, but are relatively far apart on the sil-
houette, then they are assumed to represent the two separate feet, and are analysed
accordingly. The two feet estimates can then be found and averaged to provide
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an estimate of a midpoint at the bottom of the object b(u, v) as shown in Figure
27. This image plane position can then be used to find the ground plane position
b(x, y, z) through the ground plane homography transformation found by setting
Z = 0 in equation (65). The usage of a bottom point tends to produce a better
height estimate than simply using the middle of the bottom of the bounding box,
especially as it better conforms to gait effects so they can be removed statistically.
This method may also produce a better estimate of the ground plane position of
the object, though this has not been extensively tested.

The automatically extracted head h(u,v) and bottom positions b(u,v) can then
be converted from the top left image plane coordinate system into real world
ground plane coordinates using camera calibration matrix given as equation (65)
[71]. This produces an estimate of the height of the segmented object from that
single frame. These estimates are obtained along each of the frames in the image
sequence, as can be seen in Figure 30. It is important to note that these estimates
are also influenced by gait along the frame sequence; however under reliable seg-
mentation and high frame rates, relatively stable sinusoidal pattern emerges for
the measurements. When the sample rate of the person walking is low due to low
frame rates, such as that used in our surveillance system experiments, this peri-
odicity can be difficult to see, especially in the presence of minor segmentation
errors. The presence of this sinusoidal pattern would suggest that a simple average
is likely to produce a stable height estimate.

A simple average of the height estimates along the frame sequence is adequate
for manually estimated key points; however due to occasionally large segmenta-
tion errors, outlier elimination techniques such as those described by Mosteller
and Tukey [81] should be applied to ensure that these errors are removed before
the mean is calculated as a robust estimate of the individuals height. Such errors
are also likely to be removed through the application of the segmentation error
removal technique detailed in Chapter 5. The standard deviation of the height
estimates after outlier removal may possibly be used as a gait estimation feature;
however such a feature would also be subjected to possible variations through
footwear and surface types. The effects of these variations have not been fully
investigated to determine the level of this features invariance. It is also important
to note that this step of outlier removal and gait mitigation is just as important for
height estimation from stereo cameras as it is from monocular camera views.

131



Figure 30: Height estimates for 5 tracks demonstrating the manual height esti-
mates

6.4 Statistically Comparing Height Features
This section outlines a technique that can be used to compare height estimates
found using either the method for monocular camera views as outlined in section
6.2, or the method using stereo cameras given in [46]. Common practise is to
directly compare the robust estimate of one person’s height to another. Indeed
forms to fill out to report suspects involved in alleged criminal activity often pro-
vide height as a descriptive feature [93] and sometimes suggest a 5 centimetre
range for height estimates [94]. This is perhaps due to the difficulty people have
in estimating height to a greater accuracy than this. Such estimates are also given
in police media reports, along with other features like hair or clothing colour, to
describe individuals of interest. These height descriptions would suggest that es-
timates within approximately 5 centimetres of each other are possibly obtained
from an individual or individuals of similar height, whilst estimates that differ by
more than 10 centimetres are unlikely to be obtained from the same individual.
For the case where the height is automatically estimated from video footage of
an individual walking upright through the scene, such a height comparison should
also hold. This comparison could be useful for police evaluating suspects seen in
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video surveillance; however it does not consider the inherent accuracy limitations
within the estimates obtained from video cameras, nor whether the individuals
behaviour might influence the accuracy measurements, such as exaggerated gait
effects, arm waving, or long periods of remaining motionless. Such accuracy lim-
itations occur due to the relative amount of height represented by each pixel, as
well as the fluctuations due to minor segmentation errors. These accuracy limi-
tations can cause extra fluctuations in the height estimations, which can also be
statistically analysed, but might bias the estimate to some degree.

An analysis of the statistical uncertainty of the height measurements can be
incorporated into a measurement of the similarity in height of two objects, espe-
cially where they are obtained from two tracks obtained within the surveillance
system. A simple measurement of the standard deviation of the frame level height
estimates could be used to add information as to the variation of the estimate from
a single track, such as where a height estimate is compared to a real world individ-
ual. When the height estimates are obtained from two tracks in the surveillance
system one can define a height difference measure to use rather than simply com-
bining the mean and standard deviation to define a region of overlap. The height
difference measure can be calculated as a vector Hd containing the absolute dif-
ference in estimated height between each frame in track A with each frame in
track B, calculated in a pairwise manner. This measurement could also be ob-
tained using a linear comparison of a single frame in each sequence; however the
periodic sinusoidal nature of the changes in height due to gait could lead to a sig-
nificant offset being measured where the tracks are not aligned due to their gait
period. The pairwise comparison can be used because although it is of quadratic
complexity, it is actually of a very lightweight computational complexity. Thus
this comparison is likely to overcome the problem of gait based height measure-
ment alignment, whilst not compromising upon the real-time performance of an
system.

The proposed height difference vector Hd thus contains a series of measure-
ments representing the difference in height of the individual in track A and the
individual in track B. A similarity measurement sH can be defined by statistically
analysing Hd using:

sH =
σ(Hd)

µ(Hd)
(70)

This similarity estimate combines both the mean value, µ(Hd) as well as the
standard deviation σ(Hd) within height differences and is the reciprocal of the
well known standardised distance. This aims to provide a measurement that not
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only relies upon the mean difference in heights along the frame sequence, but also
incorporates the inherent variations within the height estimates obtained through
the two tracks. This measure promises to be more reliable in the presence of extra
noise, which might occur in areas of poor segmentation. When this measure is
considered with the limitations due to the statistical possibility of the similarity
of many individuals in any observed population [101], it becomes evident that
though this measure is biometric, it should be used in combination with other
features to provide accurate discrimination.

6.5 Experimental Verification of Height Estimation
This section explores the experimental verification of the height estimation method.
The results presented in this section are based upon the analysis of two differing
experimental sets. The first dataset contains 15 tracks of a single individual ob-
tained from image sequences with a resolution of 293 x 214 pixels in two cameras,
which were extensively tested to compare the manual and automatic height esti-
mates. A second experiment was conducted on 26 tracks obtained from four indi-
viduals across two cameras, giving over 300 possible comparison combinations.
The ground truth height difference of these individuals ranged from 5 centimetres
to 30 centimetres. The automatically extracted height estimates were obtained for
the purposes of matching tracks of an individual throughout the system.

6.5.1 Height Experiments Comparing Manual and Automatic Height Esti-
mates

A comparison between the manually estimated ground truth and automatic esti-
mates of a single individual’s height was conducted upon the first dataset. This
contained data from 15 separate tracks in image sequences with a resolution of
293 pixels x 214 pixels. Such resolution is due to the acquisition system (a video
surveillance system in operation at the University of Technology Sydney) and can
be regarded as fairly low resolution. The automatically extracted height estimates
are compared to a set of 3 manually extracted tracks. The physically measured
ground truth was found to be 171 centimetres using traditional measurement tech-
niques. The manually analysed tracks found the individual’s height based upon
manually identified head and bottom points h(u,v) and b(u,v) to be on average
between 1706 millimetres and 1719 millimetres. This manual data also had an
average standard deviation of 16 millimetres. This standard deviation in the data
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is due to rise and fall of the head as a part of a person’s gait, rather than measure-
ment errors, and is clearly very close to the ground truth measurement.

Figure 31: An individual’s key points and height estimates using automatic and
manual techniques on the poorly segmented track 13

The automation of finding of the head and bottom points with object segmen-
tation and object analysis steps has introduced extra sources of error in the height
estimations. Figure 31 shows the worst case scenario where a significant por-
tion of the track is poorly segmented leading to a significant number of incorrect
height estimates. It shows that the automated technique does produce more erro-
neous height estimates on a frame by frame basis. Significant segmentation errors
occur at the start of the track where the face appears similar to the background
and is lost, whilst errors at the end of the track show how shadowing effects can
change the estimated height if they are not adequately removed. This analysis is
important as these errors are actually typical from this camera view where por-
tions of the track are known to produce large systematic segmentation errors for
the tracks obtained. It can also be seen by the entry for this track, track number
13 in Table 9 that once these automated height estimates are analysed with outlier
correction techniques over the track, they still produce very similar estimates to
the expected ground truth of approximately 1710 millimetres. The results given in
this table are obtained before the segmentation error removal techniques described
in Chapter 5 are applied.

Table 9 demonstrates the difference in the statistics of automatic height esti-
mations over 15 tracks of the same individual across 2 cameras under differing
illumination conditions. It also compares the usage of a simple average, a robust
average, a robust median, and a Tukey weighted mean [81] on producing a stable
height estimate. The robust average and median iteratively remove those points
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Table 9: Auto height estimates of a 1710 mm individual over 15 tracks
Track Mean Robust mean Robust median Tukey mean

2 1418 1418 1434 1434
15 1424 1468 1464 1485
3 1466 1466 1471 1489

13 1437 1513 1484 1509
4 1519 1519 1505 1520

11 1604 1683 1673 1667
1 1565 1668 1679 1660

12 1603 1679 1695 1670
14 1536 1710 1704 1708
10 1708 1708 1713 1706
9 1581 1703 1714 1689
7 1609 1674 1717 1670
5 1720 1755 1748 1759
8 1861 1917 1813 1888
6 1589 1815 1821 1779

that lie the furthest from the current median value if that distance is more than two
2 standard deviations. Because of the high number of erroneous regions in some
of the data, the standard deviations of the original data can be as high as 300-400
mm. After outlier removal the standard deviation tends to approach 150mm, with
many tracks being as low as 70 mm. It is important to note that these variations
are still high due to the poor quality of the video data being used. With the appli-
cation of segmentation error removal this level of variation can be lowered further,
leading to improved height estimate.

The robust median approach seems to produce the result that is closest to
the manually extracted value range if segmentation error identification is not per-
formed; however even then only 8 of the 15 tracks are within 50 mm of the ground
truth height of 1700 mm. It is important to note that these tracks include the height
estimates of each and every frame that is related to an object as it is tracked within
a camera view. This can include significant regions where only part of the object
is in camera view, such as where an object is entering or leaving the view, or where
the object height is a few pixels (in the order of 35 pixels high). These cases are
likely to introduce extra errors in the data, which makes the statistical robustness
of the true height more difficult to estimate. Weighting of the importance of the
height estimates based upon the pixel size of the individual may also be possible
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if a weighted average was used; however such concepts have not been explored in
this thesis.

These results confirm the idea that this technique will have regions in the view
that are less likely to be accurate, and that the overall accuracy of this process
can be very poor if these errors are not addressed. Regions where a person has
not entered the full view of a camera can be easily identified as the object will
be touching the image edge; however other regions where the person’s head or
feet are occluded or are poorly segmented will be much more difficult to find.
Detections of occlusions has been the subject of some work [24, 104]; though this
is currently only approached from an object tracking view, rather than improving
feature robustness. Regions where the person has a small number of vertical pixels
are also of concern. If a person of 1700 mm height appears 100 pixels high, then
the pixel-based height resolution is approximately 17 mm. At 25 pixels high,
the same person has a pixel-based height resolution of 68 mm. Thus such image
regions are unlikely to provide very accurate height estimations, and even minor
segmentation errors will become significant.

A second experiment was performed upon the same dataset of 15 tracks from
the individual of approximately 171 centimetres. This time additional steps were
taken to improve the results by automatically identifying regions where the in-
dividual is not in full view, and applying segmentation error detection through
analysis of appearance features as described in chapter 5. The results of removing
these errors from the tracks analysed demonstrates that significant improvements
can be made even for very noisy data with significant regions of error, so long
as more than half the track is reasonably reliably segmented. With 13 out of the
15 tracks now being within 50 millimetres of the ground truth, and the other two
tracks having a very high proportion of frames segmented poorly. In fact these
tracks are identified as being very unstable and unreliable with the majority of the
frames likely to have varying levels of error when the automated segmentation
identification process is applied.

6.5.2 Height Experiments Using a Larger Dataset

A larger experiment was devised to analyse the height estimation results from the
comparison 26 tracks from four people across two cameras, giving a total of 325
possible comparison combinations. Of these, 42 comparison combinations are
used as training data and the remaining 283 for testing. Height differences be-
tween the individuals range from approximately 5 centimetres to 30 centimetres.
These results were analysed based upon the similarity measure given in equation
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(70). The training set was broken into known matching and non-matching track
pairs and used to determine likelihood functions for the matching H1, P (sH |H1),
and non-matching H0 sets, P (sH |H0). By modelling the matching and non-
matching cases in the training set as Gaussian curves, these probabilistic likeli-
hood functions can be calculated. These functions are similar to those used in
determining the similarity of MCR features in Chapter 3.

Figure 32: ROC curves of the height feature results

From these likelihood functions two methods can be used to determine if the
two tracks are of a matching height. First an optimum threshold can be determined
based upon the statistics of the training data to minimise the overall error. This
threshold could be adjusted to allow for a higher probability of matching, or lower
levels of false matches, but is ultimately used to make a decision about matcha-
bility. When this threshold was used upon the evaluation dataset it achieved a
probability of detection of 91.4% with 23.5% false alarms. Alternatively the eval-
uation can be made based by using the observed sH to determine the maximum
of P (sH |H1) or P (sH |H0). For the single feature case this method will produce
the same decision result as utilising the threshold. It can also be adjusted to al-
low for different levels missed matches or false matches by multiplying one of
the probabilities by a biasing term. Unlike the threshold decision the probability
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measurements can be used in a non-decision based feature fusion process later
in the system. The results for the accuracy of the height feature are given as an
ROC curve in Figure 32. They indicate that the height feature alone can produce
some discrimination between individuals of reasonably differing height; however
as with other individual features, they are likely to be best used in a general sce-
nario when combined with other complementary features.

6.6 Discussion of Height Results
Due to the sensitivity of the height estimation to segmentation errors, especially
when they are large, techniques need to be used to increase the robustness of the
final estimates that are used. Improving this robustness to erroneous measure-
ments has traditionally been performed through the usage of statistics for outlier
removal [81]; however chapter 5 outlines an object feature based method to iden-
tify errors through the changes in features along an object’s track. These methods
aim to identify frames, or the data obtained from those frames, which provides
erroneous estimations in order to remove those data points from the overall esti-
mation. Once these errors are identified and removed, then statistical measures
of the dataset, such as the mean and standard deviation, can be applied to the
data to provide the robust height estimate and an indication of the errors in the
measurements obtained.

The analysis of an object’s shape features has been used in a variety of com-
puter vision processes including video surveillance. These shape features have
been used as a basis of many quality assurance techniques in the manufactur-
ing industries, as well as identification of parts through shape template matching.
Shape features have also been used widely in the classification literature, but have
featured minimally in video surveillance. This is due in a large part to the ar-
ticulated motion of humans, who are often the primary object of interest. This
articulation leads to few invariant shape features from one frame to the next. The
previously low resolution of images and low quality of segmentation have also
lead to less reliable shape information for analysis.

The main shape features proposed in the video surveillance literature for the
identification or matching of an individual are gait features, and less prominently
height estimates. Gait identification is currently a hot topic, especially since the
formulation of the gait identification challenge [103]. Although this feature has
been much studied, current methods often use stereo cameras and constant frame
rates, which are not widely available in current video surveillance, and they do
not investigate the effect of surfaces and shoe types upon the gait of an individual.
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The results of this feature alone also do not seem to be as high as those found
with the proposed height comparison techniques, leading to the question of just
how much inherent variation there is in this feature between individuals. Facial
feature based identification is also a well studied topic with a variety of promising
results initially published. Unfortunately the accuracy of many of these techniques
are based upon specialised hardware such as multiple camera systems, or using
zoomed facial views to improve facial features. Although such techniques could
be very useful where they are available, current surveillance systems do not always
include the hardware to make these features very useful.

Height estimation has also been proposed as a shape feature for identifying
individuals [7, 16, 19]. The results have indicated it as a useful feature for iden-
tifying an individual; however these methods have not addressed how height es-
timation is affected by errors from segmentation, or how these estimates can be
made more robust through statistical analysis along an individuals track. This
chapter has outlined the work done in this project to investigate and mitigate these
effects, showing that height estimation can be made more robust to errors and
improving its discriminative ability to enhance a general track matching system.
Unfortunately there are still likely to be many regions where height estimates are
unreliable. These areas generally consist of areas where the ground plane is poorly
defined, such as stairs or escalators. Other areas such as where objects are par-
tially occluded are also problematic for monocular height estimates. Finally the
use of PTZ cameras may be able to provide accurate height estimates, so long as
the camera calibration through the camera movement can be maintained or recon-
ciled. Where these errors occur, the height estimate may become very unreliable
and should not be used to attempt track matching.

6.7 Summary of Height Feature and Future Enhancements
Height estimates are a common tool used in a variety of areas, including police
descriptions, for identifying an individual. It is traditionally combined with other
features such as clothing colour and ethnicity in order to improve the uniqueness
of the description. Statistics on the height of people across a sample population
of Australian people [101] indicate that men have a mean height of approximately
174.8 centimetres with a standard deviation of 7.1 centimetres, whilst women
have a mean height of 161.4 centimetres with a standard deviation of 6.7 centime-
tres. These statistics are roughly indicative of heights around the world, although
heights through Asian regions do tend to be up to 5 centimetres lower. These
height statistics indicate that the probability of two random people being of sim-
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ilar height is reasonably low; however not low enough to guarantee that reliable
accuracy of height estimations will automatically translate into accurate discrimi-
nation between people. Also compared to colour based features, height estimates
have a number of restrictions where the ground plane is ill defined, or individuals
in monocular cameras are partially occluded. This confirms that height needs to
be combined with other features to provide a more discriminative description.

The key steps for the automatic estimation of a robust measurement of an
individuals height begin with extracting estimates of the height from each frame,
then removing errors before using statistical analysis to provide a robust estimate.
This can be summarised as the following steps:

1. For each frame

(a) Segment the individual from the background

(b) Automatically estimate the key top and bottom point locations within
the image

(c) Estimate the location of the individual on the ground plane

(d) Use the ground plane location estimate in equation (68) to obtain a
height estimate

2. Remove height estimates from frames with major errors, such as those from
incorrect segmentation

3. Statistically analyse the set of height estimates from each frame to remove
outliers

4. Statistically extract the robust estimate of the individual’s height from the
data without outliers

This estimate for an individuals height can then be compared to a real world
estimate of the person’s height, or can be statistically compared to another height
estimate. This statistical comparison can be performed using equation (70) based
upon the mean and standard deviation of the frame level differences in the height
of the individual. High levels of similarity are thus found where the means are
close to each other, and the standard deviations are low. This is confirmed with
the results of the experiment showing a matching accuracy as high as 91.4%,
although the rate of false alarms at 23.5% is too high for it to be used in isolation.
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7 Fusion Methods and Results for Combining Ro-
bust Features

The features available from typical existing video surveillance systems are not
necessarily biometric in nature, nor of sufficient resolution to provide significant
discrimination between individuals alone. This chapter therefore investigates a
framework to combine multiple features to increase the level of discrimination
between individuals. There are many possibilities to combine or fuse such fea-
tures together [37, 58]; however it is important to note that even the best fusion
methods require complementary features to improve its results. In the building
surveillance scenario presented in this thesis, improvement in overall accuracy
can be achieved through improvement in the accuracy of matching an individual,
or through improved discrimination between differing individuals, or through im-
provement in both. Thus this chapter looks at applying the main results from the
literature on an ensemble of classifiers for this application. Whilst this is a well
researched topic, the contributions to the field of this work include:

1. The analysis of the likelihood functions specific to this project.

2. The modelling of optimal thresholds from those functions.

3. Developing a method to determine which of the investigated surveillance
based features are the most effective. This includes studying which fea-
tures provide the most accurate results, as well as how to determine the
complementary nature of these features to improve the overall accuracy and
investigating computational speed through the identification of minimally
useful features.

The chapter begins with a short background to classifier-based fusion, allow-
ing the focus of the chapter to remain upon the improvements and results of the
system performance. Section 7.2 then outlines how to apply the fusion techniques
in the temporal domain to integrate features to the same temporal level if neces-
sary. The system results are then given in Section 7.3. These results begin with
a validation of the likelihood functions used for the matching and non-matching
cases for the features used. The broader system based results are then presented,
where they explore how each of the features adds information into the overall fu-
sion process. The chapter concludes with a summary of the fusion method which
has been found to provide the most accurate results for this surveillance scenario.
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7.1 Classifier-based Fusion Background
Much research has investigated the use of Bayesian fusion methods as an ensem-
bles of classifiers for a collection of features [37, 58]. The application of Bayes
theorem shows that where features are independent, the application of a prod-
uct rule provides the desired joint probability, whilst an averaging rule is to be
preferred where features are dependent. It is worth noting that measuring or esti-
mating the degree of dependence between features does not always prove obvious.
[37] has also demonstrated that the highest results can be theoretically achieved by
using weighted average fusion, where each classifier is assigned a weighting based
upon its performance and reliability. Unfortunately the performance of the system
can be substantially impacted by incorrect weights, leading to worse results than
if no weighting was used at all. This is an especially important consideration in an
environment where the reliability of features can change over time due to chang-
ing error patterns. Where such changing reliability can be estimated, weights can
be updated and used effectively; however such a process is often difficult in prac-
tise.

Bayesian theory provides the basis for the fusion framework that is presented
in this thesis to combine the features within the proposed system. The chosen
features for inclusion in this framework are the appearance based upper clothing
MCR (UC), lower clothing MCR (LC), the global MCR (GC), and the height es-
timate (H). Although these four features are the only ones currently included, it
is easy to see how the method could be extended to include other features as they
become available and reliable. These extra features would become another classi-
fier in the ensemble, and should therefore be included through the addition of an
extra term, or terms, in the matching or non-matching equations. As the proposed
system is reliant upon features that can become less reliable as aspects like illu-
mination change, identifying and updating the correct weights would be difficult,
and thus they may detract from the overall system accuracy. It is also important to
consider the level of time integration at which the features are robustly available,
as some features are available at a frame level, whilst others like height similari-
ties are only reliably available at a track level. An exploration of the integration
of information at different levels is provided in section 7.2.

The features fused is this section are considered to be at an equivalent level of
time integration, which is considered here to be the track level. Thus the results
presented here indicate the final probability of the matching of two tracks. The
features can also to be largely independent of each other as they rely upon large
components of differing data, even if there is some overlap between features. This
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overlap exists in the narrow band component of the spatial MCR features with the
global MCR feature; however the level of overlap for each of the spatial MCRs
is only approximately 20% of the global MCR. Given these considerations, [37]
demonstrate that the optimal theoretical fusion can be achieved at a track level
using:
P (H0|sH , sUC , sLC , sGC) =

B (P (sH |H0)P (sUC |H0)P (sLC |H0)P (sGC |H0)) (71)

P (H1|sH , sUC , sLC , sGC) =

P (sH |H1)P (sUC |H1)P (sLC |H1)P (sGC |H1) (72)

It is important to note that these equations use P (sx|H0) or P (sx|H1) rather
than the similarity values that have been derived in the previous chapters. Also
B in equation 71 is given by P (H0)/P (H1) in Bayesian classification, but can
be set to other values to achieve a different bias of missed detections and false
alarms, depending upon the desired results. Whilst a simple threshold can be
chosen for a single feature, the multiple feature space becomes more difficult to
analyse in either the similarity measure space, or a probabilistic statistical space.
For this analysis, it is important to note that the similarity measures are very fea-
ture dependent. Thus distances in one features similarity space may not relate
well to distances in another features similarity space. When a statistical analysis
of the expected similarity values for matching or non-matching individuals is per-
formed, it can be used to apply probability models that represent the probability of
a given feature being either non-matching H1 or matching H0. These statistical
probabilities are important as they are directly comparable between each of the
features, and their validity for any given feature can be determined by comparing
the feature similarity values with the probability curve.

In order to obtain the statistical probabilities for use in this framework, a train-
ing period with a known number of matching and non-matching individuals is
needed. This training period provides the samples to build the statistical models
of each case. The samples can be modelled using many functions, with Gaus-
sian curves being common in the literature, as Gaussian functions only have the
mean µ and σ for each of the matching H1 and non-matching H0 cases needing
to be calculated using simple statistics. These parameters can be used to recreate
the P (sx|H0) and P (sx|H1) curves as shown in Figure 33 and even estimate the
optimum threshold for the single feature where the curves overlap. Although this
threshold is not so useful for fusing multiple features, it can be used to evaluate the
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usefulness of this Gaussian statistical model as it should also model the expected
changes in error patterns when the threshold is adjusted. Such an evaluation is
performed in section 7.3.1 to explore the results.

Figure 33: Example P (sUC |H0) and P (sUC |H1)

A physical interpretation of P (sx|H0) and P (sx|H1) for colour-based fea-
tures is as follows: P (sx|H1) could be described as the pdf of a Gaussian random
variable, u, accounting for the variations of illumination and view on single ob-
jects. In turn, P (sx|H0) could be described as the pdf of the sum of two random
variables, u and v, with u the same as before and v describing the variations in in-
trinsic colours between objects, that can still be assumed Gaussian but with much
greater variance than u. Given that the sum of two Gaussian variables is still
Gaussian, P (sx|H0) is Gaussian, too. However, given that its variance is large,
its exact shape becomes less relevant. Similar considerations can be made for
features of other nature.

The proposed fusion method is given as Equations (71) and (72) above to
combine the information from all of the features. For each feature, including
additional features that might become available, a probability term is required to
represent it within the ensemble. Thus the modelling process is required for each
feature that is to be used.
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7.2 Classifier-based Fusion for Integrating Features across Dif-
fering Time Scales

The level of time integration at which the feature similarities and their equivalent
likelihoods are obtained is also important to this process. As mentioned in pre-
vious chapters, the level at which a feature is obtained could be at a single frame
level, across a window of frames, or generated from the entire track. Whilst some
features are available at multiple levels, others such as the height similarity may
only be robustly available at a track level, and thus cannot be fused with frame
or window level features. One of the main considerations with the differing time
scales for features is that multiple MCR feature similarities are available across a
set of windows, whilst a single similarity is available from height estimation. The
appropriate fusion of these features is to obtain a single similarity for each feature
to be fused with the ensemble of classifier mentioned in the previous section. This
idea was investigated with respect to the time integration for MCR appearance fea-
tures in Section 3.4.1. This investigation demonstrated that either an average of
the similarity values, or a threshold based decision fusion process could be used
to determine the track level results. Whilst the decision based approach differs
significantly from the track level Bayesian fusion described above, the averaging
of similarity measurements is not entirely consistent with the usage of statistical
likelihoods either.

Where features are to be fused to create a higher level of time integration, a
new form of fusion is required. The fusion required here is distinct from both that
required to fuse different features and fusing feature information to make it more
robust. It differs from fusing multiple features in that the similarities are obviously
dependent as they are derived from the same information from the same object. It
differs from increasing robustness as it aims to combine the features to create an
estimate of the feature similarity at a higher level of time integration. There is also
no reason to expect one probability measurement to be more reliable than another,
therefore weighting is not required for this fusion step. Thus the likelihoods of a
feature similarity, sx, for each frame can be combined into a higher level of time
integration, P ′ , across N instances using the Bayesian average fusion rule:

P
′
(sx|H0) =

N∑
i=1

P (sxi
|H0) (73)

P
′
(sx|H1) =

N∑
i=1

P (sxi
|H1) (74)
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This provides a powerful addition to the fusion framework for combining fea-
tures to a common level, such as a window of frames, or a track level. Ultimately
the aim of this fusion process is to fused the features at the track level in order
to generate an indication of track similarity from the given features. Once the
features are all at a common level of time integration, in this case the track level,
they can then be fused using the ensemble of classifiers given as equations (71)
and (72) in the previous section.

7.3 Results From Fused Features
This section looks to validate the usage of the Bayesian fusion techniques and
models chosen. This is achieved by providing a detailed analysis of the fused
results from footage obtained in a video surveillance scenario. The experiments
use data obtained from a real surveillance system in order to provide realistic
views; however the individuals observed are actors to follow privacy laws, and
to ensure that individual ground-truth height and clothing colour measurements
can be obtained. It also allows for specific difficult cases to be constructed to test
some of the limitations of the system. The first experiment looks at validating the
Gaussian probability model of the two classes. It looks at validating the model
by exploring the difference between theoretical and actual error values when the
threshold is varied from the theoretical optimum. The model can be assumed to
be accurate enough where the error behaviour of the model changes in the same
manner as the real data.

With the model validated, the second experiment looks at the evaluation of the
results for the individual features, and their fused results across a set of over 300
recorded track pairs obtained from two cameras with differing lighting conditions.
These are presented as ROC curves showing the discriminative power of each of
the individual features and the fused features. Further analysis of these results
are then provided by comparing the fusion of selected features. This allows for
an evaluation of combining particular features to investigate their effects upon the
fused results.

The two experiments are performed on a dataset based upon a comparison
of four people across two cameras from over 300 possible comparison combi-
nations. The data was obtained from a real surveillance system situated within
the University of Technology, Sydney’s Information Technology building in order
to provide for realistic views. Thus the data includes a degree of the compres-
sion artefacts and other errors that occur in systems which are currently used for
operator based surveillance. An indication of the clothing’s colour and good seg-
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Figure 34: Four people of interest

mentation examples for the four individuals is given in Figure 34, where it is easy
to see that the individuals are wearing clothing of approximately 50% or more
differing colours. Ground-truth height differences between the individuals range
from approximately 5 centimetres to 30 centimetres. The accuracy of each fea-
ture component is shown and can then be compared with the fused results. From
the tracks, 60 comparison combinations are used as training dataset with the re-
maining used for the evaluation dataset, ensuring that there is a sizable amount of
unseen data.

Person Height(mm) Upper Clothing Lower Clothing
A 1600 Black Black
B 1550 Red White
C 1900 Light Blue Black
D 1710 Black White

Table 10: Ground Truth of Participants

7.3.1 Evaluation of the Statistical Models

Using the statistical probability of a feature given a similarity value allows for
the features to be easily fused; however it also requires a statistical model to be
applied. In order to validate the statistical model, an experiment is required which
compares the theoretical error rates with the error rates obtained with real data. If
the model is correct, then the real and theoretical rates should change in similar
patterns when the threshold is varied from the theoretical optimum. This was
tested based upon both the changes in the real and theoretical errors from the
training set of known matching and non-matching data, and an evaluation set that
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was not used to generate the model. Whilst the evaluation of the error changes
in the training dataset is useful for evaluating the Gaussian statistical models, the
evaluation data should give an indication of the wider applicability of the model
for the broader unseen data.

This evaluation of the statistical models was performed on a dataset of 15
tracks across 2 cameras, with the results given in Table 11. The results are eval-
uated for the features investigated when controlled equalisation with k = 2 was
applied. The threshold stth in equation 62, was adjusted from its theoretically
determined optimum by multiplying it by an adjustment factor, with 0 indicating
the error rate at the theoretical maximum. The error rates are all given here as
percentages.

Table 11: How variations to the optimum threshold affect% error rates
Feature -50% -25% -10% 0 +10% +25% +50%

Upper MCR total err 52.5 38.3 33.3 33.3 34.2 33.3 29.17
Upper MCR MD 0.00 0.03 0.07 0.08 0.09 0.13 23.3
Upper MCR FA 52.5 35.8 26.7 25.8 25.0 20.8 0.58

Lower MCR total err 36.7 29.2 29.2 29.2 28.3 27.5 33.3
Lower MCR MD 0.03 0.04 0.04 0.04 0.05 0.07 19.2
Lower MCR FA 33.3 25.0 25.0 25.0 23.3 20.8 14.2

Global MCR total err 57.5 54.17 43.3 38.3 30.8 37.5 37.5
Global MCR MD 0.00 0.01 0.08 10.8 18.3 37.5 37.5
Global MCR FA 57.5 53.3 35.8 27.5 12.5 0.00 0.00

Table 11 demonstrates that varying the threshold from the statistically deter-
mined optimum generally leads to a higher overall error rate. Although the model
is not perfectly fitted to the data, it does suggest that the Gaussian model of the
non-matching H0 and matching H1 cases provides an acceptable model for each
feature. When the errors are separated into false detections (FD) and false alarms
(FA), it becomes obvious that the theoretical point is where the errors change from
being mainly false alarms to being increasing missed detection. Thus probabilities
for each class based upon this model should provide results that will lead to reli-
able fusion of the features under the proposed framework. The evaluation results
indicate that the model obtained is applicable to the wider dataset, and should
provide a good model for a general system.
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7.3.2 Evaluation of Fusing Features

This section investigates using the fusion of multiple features method described,
and how it improves the results of matching individuals over using individual fea-
tures. This experiment was performed using the small carefully crafted dataset
from 4 individuals across two cameras to provide a series of results that compares
the accuracy of the individual features with a combination of fused features. The
fusion results presented here utilise all of the techniques presented in the previous
chapters for feature extraction, as well as the techniques for improving feature
robustness to errors such as those that occur with poor segmentation. The initial
results provided as Figure 35 show how the fusion of all the features provides an
improvement in accuracy over each of the individual features. A broader investi-
gation is then performed by comparing the fusion of all the features to the fusion
of selected features to determine how much each of the features add to final fusion
results.

Although the method of fusion is important to provide the best results, im-
proved results from fused features only occurs where those features are comple-
mentary. This occurs where the information from each of the features adds to
the information provided by the other features. An example of this can be seen
through the usage of height and colour information. The two features can be made
reasonably accurate, but rely upon very different measurements of the individual.
Thus the information obtained is likely to be affected by different error modes,
such as segmentation errors affecting height, whilst illumination changes affect
colour appearance. The sensitivities to different error sources is likely to make
these features complementary, which in turn is likely to lead to more accurate
results if they are combined effectively. Where there are large inaccuracies in fea-
tures, especially where the features are not complementary, the fusion of multiple
features can lead to the multiplication of errors, dramatically reducing their com-
bined accuracy. For this reason it is important to evaluate the fusion framework
using all of the features, but also to investigate whether other feature combination
might produce better results.

The first results comparing the individual features with the fused results are
shown in Figure 35. They demonstrate that the fusion of the chosen features can
provide a probability of detection of 91% with only 5% false alarms at the chosen
operating point. The fusion of the features clearly outperforms any of the individ-
ual features, indicating the complementary nature of the features. The accuracy
of these results are obviously not high enough for a fully automated system in a
critical area such as security and video surveillance; however they are a promising
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Figure 35: ROC curves of the height, MCR and fused feature results

indication that a system such as this could be useful for providing additional infor-
mation to security officers in a semi-automated system. Although this points out
the increased effectiveness of the fused features, it does not necessarily provide
the complete picture of how each feature might contribute to the overall result.
Thus further investigation of how the features compliment each other through the
fusion of other feature combinations is required.

An interesting aspect of the features used is that the spatial colour MCR fea-
tures individually have a higher degree of accuracy than the global colour MCR’s.
Thus if the number of features is limited, then the use of spatial colours would be
preferred over the global colours. Where all of the colour features are available it
is also interesting to investigate whether the addition of the global colour MCR to
the other spatial colour features adds any extra information to improve the accu-
racy of the results. Figure 36 shows the results on the comparison of tracks using
either the fused spatial colour MCR’s, fusing both the spatial and global colour
MCR’s, and fusing all the features. This clearly shows that the spatial colours are
individually more accurate than the global colour MCR, and that the global MCR
may slightly reduce the overall fused results. This would suggest that incorporat-
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ing the global MCR information about the object is largely redundant.

Figure 36: ROC curves for fusing spatial colour MCR’s, fusing all the colour
MCR’s, and fusing all the features

The other significant feature proposed in this work is the height feature, which
can be obtained from either a monocular, or stereo cameras. This feature is obvi-
ously derived from very different aspects of the observed individuals, and is sen-
sitive to different error patterns than the colour appearance based features. The
additional information provided by this height feature can also be determined by
looking at how the results differ between the inclusion or exclusion of the height
feature. These results are also shown in Figure 36, demonstrating that the addi-
tion of the height feature adds considerably to the accuracy of the fused results.
This shows that the improvements that can be made through the complementary
nature of height as shape based feature to other appearance based features. Such
comparisons of the results obtained through the inclusion or exclusion of partic-
ular features could be a powerful tool to determine whether they are useful for
improving the overall results achieved within the system. Such an experiment is
also likely to be very useful especially where real time system requirements limit
the computational power available for extracting the useful features.
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This thesis investigated the mitigation of many sources of error to obtain the
overall system results demonstrated. It is important to note that these sources of
error are likely to occur at different rates in different components of any surveil-
lance system. Some camera views are likely to have greater problems with seg-
mentation due to the particular colouring of portions of its background, whilst
other areas, especially those open to sunlight, are likely to suffer from greater
changes in illumination. These changing conditions will affect how error sources
impact upon the system, but may be most significant for comparisons within a
given camera view, or across specific camera pairs. An analysis of results with
a view to matching across specific camera views, or within a single view is also
likely to identify these comparisons within the system that are likely to have either
increased or decreased accuracy within a system. This is obvious when you con-
sider that the error conditions within a single camera are likely to be more stable
and lead to more accurate results than those comparisons between camera views.

7.4 Summary of Fused Features
This chapter has presented a framework based upon an ensemble of classifiers to
fuse multiple features of an individual to compare them when they are tracked
within a surveillance system. This framework has been based upon research into
applying the Bayesian fusion framework [37, 58]. It investigated the theoretical
accuracy obtained by various combinations with dependent or independent fea-
tures, using statistical likelihood functions. These likelihood functions can be
easily determined from a small training set of known matching and non-matching
tracks with the parameters stored as the mean µ and standard deviation σ of the
non-matching H0 and matching H1 cases. Given a similarity measure for each
feature, the decision about whether an individual is matched is determined by
the maximum likelihood of the particular comparison being matching or non-
matching as calculated by the maximum of equation (71) or equation (72). These
equations are derived by fusing the likelihood values of each feature fitting the
H0 or H1 cases, increasing the discrimination between individuals where some
of their features are similar. This framework also allows for an investigation of the
lowest level of time integration inherent to each feature. This could be the frame
level, a window of frames, or an analysis from the entire track, depending upon
how stable the feature is at a given level. These features can then be fused up to
the track level using equations (73) and (74) for track level matching is performed
using Equations (71) and (72).

This chapter has also provided a detailed analysis of the results of fusing the
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features using this framework. Matching accuracy as high as 91% with only 5%
false alarms was achieved using a fusion of all features on the evaluation set. The
information provided by each feature has been combined to provide this result,
demonstrating the complementary nature of most of the features. An investigation
into improving the usage of inter-camera and intra-camera statistics to optimise
parameters may be able to improve upon these results; however investigating other
areas of error source reduction, including segmentation errors and illumination
changes, may also provide increased results. These results suggest that the fusion
framework presented within this chapter provides a solid basis for developing
a tracking by matching surveillance system. Improvements in the accuracy of
the system could be improved by the addition of other strongly discriminative
features; however improvement in the accuracy of the underlying features through
the usage of longer tracks, higher resolution cameras, and more accurate object
segmentation techniques are likely to create greater improvements in the overall
accuracy.

The results of this fusion framework provide an indication of which track pairs
are likely to be matching, and can be combined together to provide an indication
of the movements of individuals around the system. This similarity is very depen-
dent upon the assumption that their clothing and footwear do not change during a
surveillance session; however where such changes occur, it is likely that a human
operator may be capable of rectifying. Obtaining the full track of an individual
from entrance to exit is also likely to be difficult to obtain in its entirety, given
the 91% overall accuracy of matching. Thus if the assumption of viewing the
entry or exit points of the surveilled system is broken, then only a partial track
of the individuals movements can be obtained; however even this partial infor-
mation may provide important information about the movements of individuals.
Unfortunately not knowing when an individual has exited the system could lead
to extra comparisons within the system that are unnecessary. Thus when looking
in detail at the results from the combination of framework and features presented,
automatically obtaining a full track of individuals within this system is unlikely,
especially for long paths; however a significant amount of additional information
can be provided that is beneficial for a human operator. Such a system would
require significant development and experimentation outside of the scope of this
thesis.

This fusion framework can provide information to security officers about the
movements of individuals throughout a wide-area surveillance system. The track
similarity measurements have been found to provide high level of accuracy; how-
ever there are still considerable false alarms. To overcome such limitations one
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Figure 37: Pictorial storyboard summary of potentially matching tracks

could also look to minimise the cost on the overall system to the operator. This
could be achieved using a ‘storyboard’ approach to the semi-automated tracking
system, as shown in Figure 37. This involves creating a short pictorial summary
of the given tracks, either by selecting the first and last frames as well as inter-
mediate frames at regular intervals, or by using the similarity measurements to
identify the key frames from the track. This pictorial summary of each track that
can be compared visually by the human operator. Such a pictorial system is likely
to dramatically reduce the human cost of the revision of false alarms, especially
compared to the manual search that would be required to find and match the tracks
from a pool of all possible tracks. Once track matching has been approved, the
system can add it to other known tracks from that individual to build up the move-
ments within the system. Although such a system may be possible at real-time,
or near real-time speeds in areas that have low levels of traffic, it is likely to be
most useful for forensic investigations of stored surveillance data. Here real-time
computation is not essential, though fast processing is desired. The advantage
however from the selection of key individuals of interest to track, where a set of
the tracks that might relate to the individual could be automatically identified and
manually assessed with high accuracy. This could dramatically reduce the search
time required for an operator to manually identify and assess those tracks.
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8 Conclusions
This project has combined a range of research from a variety of areas in order
to address the challenging topic of tracking individuals across a real surveillance
system. The system investigated is aimed at building surveillance in both public
buildings or secure buildings where human traffic allows for the segmentation of
individuals into single objects. The recent advances in the resolution and qual-
ity of video systems are capable of providing more accurate information for per-
forming automated computer vision. However real video surveillance systems are
generally upgraded only every few years with the major consideration being the
trade off between camera resolution, quality, and the cost of installing significant
numbers of such cameras. Automating the system is only a minor consideration
in such upgrades as the current research into automated surveillance is mainly
focussed upon using the latest high resolution cameras, often with overlapping
fields of view. Such installations do not generally reflect the existing real surveil-
lance systems, except for the most secure locations. Direct camera level control
is also often performed under laboratory conditions, sometimes in environments
that have simplified backgrounds. Instead the focus of such upgrades is upon pro-
viding a cost effective upgrade that can allow human operators to identify events,
behaviours, and individuals more accurately in a distributed system where only
key locations are observed.

This thesis has focussed upon automatically utilising the information available
from existing wide area surveillance systems for tracking individuals. This focus
included the four broad research aims of exploring appearance features, shape fea-
tures, making these features more robust to their error sources, and fusing these
robust features in an accurate manner. These four broad aims have been explored
in the scope of a real surveillance system without requiring any knowledge of
topological information from the system, such as camera locations or path transi-
tions and transition times between cameras. Exploring these aims led to significant
contributions to the video surveillance field, which are explained in the following
five paragraphs that summarise the chapters of the thesis. These chapters explore
the colour appearance features, the mitigation of illumination effects upon appear-
ance, the identifying of segmentation errors, the height estimate feature, and the
fusion of all the features to explore system accuracy.

The literature review has shown colour appearance features to be widely used
in the area of human tracking and the matching of individuals. The exploration
within this thesis has looked at both the colour representation aspect, as well as
looking at how to apply those representations to measure similarity. The inves-
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tigation of the colour feature representation found many colour spaces aimed at
particular goals, such as illumination tolerance; however with each step informa-
tion is lost, such as the co-occurrence of the colour channels if the RGB values
are separated into the three channels. To overcome the size problems with the full
RGB space this work has contributed the Major Colour Representation (MCR) to
the literature. This colour space retains the co-occurrence of the colour channels,
whilst retaining a compact nature by storing only the components of the regions
of the sparse histogram that are populated by pixels. These regions are found
by colour clustering, whose accuracy is improved through iterative k-means op-
timisation of the clusters. It is also worth noting that colour calibration has not
been performed upon the cameras, and such a process may provide an improve-
ment in the colour related features. A second contribution in improving the MCR
features was found by averaging the features across a small window of frames.
This window has been found to reduce the impact of shape changes and minor
segmentation errors upon the MCR features. A third contribution has been to
identify spatial regions upon which the MCR colour features can be extracted. An
analysis of similarity results of the spatial features representing upper and lower
clothing colour regions clearly shows the additional information about the posi-
tioning of colours that can be achieved using a simple global colour scheme. The
final contribution of the MCR representation has been the development of a sym-
metric similarity measurement based upon the compliment of the Kolmogorov
divergence. This measure can quantify how much of each object’s colours occurs
within the other object, allowing for feature fusion processes that are quantitative
and not purely decision based. This combination of contributions to the effective
extraction and usage of colour appearance features has also allowed for a quantita-
tive investigation of feature based error sources as well as exploring the accuracy
of a colour appearance based matching system.

A major problem with the usage of colour appearance features in a wide area
surveillance system are the changes in the perceived colour across the system.
These changes can be due to the camera, although colour calibration could possi-
bly reduce this, or through changing levels and sources of illumination. As a full
three dimensional model incorporating light sources as well as background and
shape and properties is infeasible, this thesis has investigated techniques that can
mitigate the effect of illumination upon the colour appearance of objects. Based
upon the promising results of histogram equalisation for mitigating the effects of
illumination on colour appearance, this thesis has contributed ‘controlled’ equali-
sation and its centralised version to allow for increased matching, whilst retaining
discriminative ability. This technique equalises a combination of the object’s his-
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togram and a ratio of pre-equalised pixels to control the amount of stretching to
prevent it from equalising too far. The centralised version adjusts the level of
pre-equalised pixels to force the mean of the object’s histogram to the centre of
the output histogram. In developing a method for the comparison of colour ap-
pearance features, this work has indirectly contributed a method for evaluating
the usefulness of a variety of techniques for mitigating the effects of changes
in illumination. Using this method, an analysis of the effects of homomorphic
image filtration, histogram stretching, histogram equalisation, and controlled his-
togram equalisation were contributed to the literature. This clearly showed that
the histogram equalisation based techniques provided the greatest improvements
in error reductions, whilst controlled equalisation provided the greatest similar-
ity for matching colours. The reductions in errors from 13% without mitigating
illumination effects, to 8% with full histogram equalisation, 8.5% for controlled
equalisation and as low as 7% for centralised controlled equalisation demonstrates
that this can be a very useful preprocessing step to the extraction of colour appear-
ance features.

Poor segmentation is also a significant source of error in video surveillance,
as well as many image analysis applications. This thesis has investigated many
aspects of the analysis of object features both for the purposes of track matching,
but also for increasing the robustness of those features. The quantitative analysis
of the changes in the similarity of features along the known track of an individual
has contributed to the area of video analysis by showing it can provide a good
indication of frames where segmentation errors occur. The results show that iden-
tification of over 80% of erroneously segmented frames is achieveable by looking
for changes in the MCR colour appearance features, with only 3% false detections.
These results indicate that this method is useful even when tracks consisting of as
few as 10 frames are analysed. Where longer tracks are available, higher detection
rates can be achieved as there is a greater number of frames available, allowing
for extra redundancy where higher false alarms occur. This focus upon the identi-
fication of erroneous frames still allows for improved results through advances in
latest segmentation techniques; however it also counters those segmenation errors
that occasionally occur with even the most accurate of the current techniques.

Height estimates are a shape feature that has been used both in the video
surveillance literature, and also as a descriptive feature for the police to identify
suspects. This feature has been extracted in both multi-camera, as well as monoc-
ular camera views; however this thesis contributes to the accuracy of the height
estimate from any single camera frame by improving the location of the key top
and bottom points from simple bounding box measurements. This increases the
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accuracy of the estimate of an individual’s height in any given frame, even though
this also increases the influence of gait on the height estimates. This gait effect al-
though more pronounced, is periodic in nature and has been found to be averaged
out when considering the entire track of an object, or at a minimum a number of
frames greater than the period of an individual’s gait. Increased accuracy can be
achieved where statistical outliers are removed, and also where frames with large
segmentation errors are removed. Thus an automatic estimate of an individual’s
height is possible for comparison to real world estimates of a person’s height. A
second contribution of this thesis’ investigation of height estimates has been to
provide a similarity measurement based upon the statistical analysis of the frame
based height difference obtained from two tracks. This similarity measurement
not only considers the difference in height between the individual’s in the two
tracks, but also the noise within those measurements. The results obtained using
this height similarity measurement show that this feature provides similar accu-
racy to the spatial MCR features on the data set analysed, with accuracy as high
as 86% with only 15% false alarms where error rates are minimised.

This thesis has investigated a number of features that can be fused together to
provide greater overall system accuracy. As each of the features provide a range
of similarity measurements, rather than just matching or non-matching decisions,
Bayesian fusion methods were investigated. The existing theoretical literature, as
well as system tests, demonstrated that multiplicative Bayesian fusion tended to
provide the best results where the fusion was between the independent features.
Where the fusion is within a single feature to raise it to a higher feature level, such
as from a collection of window similarities to a track level similarity, the feature
is dependent upon the same data and therefore the literature indicates fusion using
the average rule. The contributions of this chapter begin with the analysis of the
results of fusing the features through the changes of accuracy when each feature is
included. This analysis clearly showed that the height feature is complementary to
the appearance features, as it provides a significant improvement when included
in the fusion process. This point is also significant as the height feature is sensi-
tive to segmentation errors, whilst the appearance features are more sensitive to
illumination changes. This combination may help to minimise the impact of ei-
ther form of error on the overall results. Additionally the spatial colour features
were also found to add significantly to the fused results, whilst the global colour
feature, with its dispersed range of colours, provides little additional information.
The final system results achieved a matching accuracy as high as 91% with only
5% false matches on the evaluation data. These results are not accurate enough for
a fully automated surveillance system, yet they are significant enough to provide
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additional information for a human operator to review. The proposed framework
for feature integration exploring the time and feature levels can also be used as a
general framework for integration of features of various natures. The feature set
used in this work can be extended with other features as they become available
without any significant modifications to the approach.

This thesis has proposed a fusion framework aimed at combining shape and
appearance features to determine if two observed tracks are from the same in-
dividual or differing individuals. Where tracks have been matched to the same
individual, they can be combined over time to describe the observed movements
of an individual throughout the surveillance area. This framework and the fea-
tures used within it have been based upon a number of assumptions to simplify
the system to a manageable size. Unfortunately in any real system the developers
assumptions may be violated at times. Thus the seven main assumptions listed in
the introduction are analysed here to examine the impact of breaking them:

1. All entry and exit points of the surveillance area are in view of a surveil-
lance camera - Breaking this assumption may lead to difficulty in obtaining
the entire track of an individual. More importantly it will make it difficult
to determine when an individual enters or leaves the system. Although en-
try is not so important as tracks could be generated from any starting point,
missing an individual leaving the system could lead to significant extra com-
parisons between old tracks and newly observed individuals. These are un-
necessary because the previously observed individual is no longer present
within the area. Although an individual’s status could be set to expire after
a period of time, this could lead to hours of footage undergoing unnecessary
comparisons, or the separation of an individual’s track where they remain
for long times within the system.

2. Individuals are unlikely to change their clothing or footwear; hence, many
of their intrinsic shape and appearance features will remain relatively con-
stant for the duration of the surveillance session - Significant changes in
footwear is likely to impact upon the height estimates of an individual,
though often by only a few centimetres unless they include large heels. This
will increase the possibility of errors but may not be large enough to have
a major impact. Changes in clothing are likely to cause more significant
errors as they are likely to generate dramatic changes in similarity of the
MCR features. This is likely to lead to an individual no longer matching
his former appearance creating a single system wide disjoint track. The two
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or more segments with differing appearances will be somewhat likely to be
tracked effectively in the parts and could possibly be reconciled by a human
operator. Sometimes, where the change is dramatic, even human operators
may fail at this task.

3. Individuals are tracked accurately whilst within the view of any of the sys-
tem’s cameras - Where individual tracks become incorrect, the features are
likely to change suddenly where tracking becomes erroneous. This informa-
tion could possibly be used to automatically identify incorrect or unreliable
tracks, or could be used by a human operator to reconcile the error. Where
the lengths of the track components are long, the features obtained could
potentially also be used to reconcile the tracking automatically; however
such investigations have been outside the scope of this thesis. The frame-
work provided can be used to evaluate similarity along the track, and where
this similarity is low, the poor quality of the track can be identified.

4. Individuals are segmented from the background into a single blob, but not
necessarily accurately - The extraction of features within this thesis are
based upon the object being contained within a single blob, with the features
changing significantly where this does not occur. Such changes in features
currently form the basis of identifying frames with major segmentation er-
rors; however incorrect segmentation is hard to identify where such errors
occur frequently. Breaking this assumption is therefore likely to cause sig-
nificant errors within the system, although this may be rectified through op-
erator intervention. Areas were objects don’t have strong contrast from the
background is an existing problem, even for human surveillance operators.

5. Individuals are generally observed at a distance from the camera, so bio-
metric features such as faces may not be always available - This assumption
has led to a focus upon robust shape and appearance based features; how-
ever where biometric features are available and reliable, they could also be
added as a feature within the system. Such features are also likely to in-
crease the overall accuracy of the system.

6. Where cameras are significantly disjoint, motion features may vary unpre-
dictably between those cameras as individual’s are allowed free motion -
This assumption may be broken in areas such as hallways or near overlap-
ping views where there is a very predictable motion or transition between
cameras. If such information was found to be reliable, then it could be used
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either as an additional feature to increase the accuracy of the system, or as
a method to restrict which tracks are compared to reduce the computational
load. Using such information is outside the scope of this thesis in order
to focus upon maximising the information obtained through feature analy-
sis and fusion alone. Additionally this information may be included only
through the expansion of the manual calibration required for operating on a
real system, and may be too time consuming to be feasible.

7. Illumination varies significantly, but within the limited range typical of nat-
ural or artificial lighting - Illumination within human environments only
tends to vary within a limited range as very bright or dark environments tend
to be stressful to the human visual system. Changes outside of this limited
range are also a major problem for object segmentation and appearance fea-
tures, and are likely to severely impair any surveillance system. Alternative
illumination sources, such as blue lighting, are also very problematic, but
are often used only within toilets, where surveillance cameras are intrusive
upon an individual’s privacy, and illegal in many countries.

This indicates that where the major assumptions of the system are broken,
then either inaccurate, or incomplete information is likely to be obtained. Given
the 91% accuracy of the fusion framework with the current features on a small
carefully constructed dataset, a fully automated system is unlikely to be imple-
mented directly; however the information provided by a semi-automated system
will be beneficial to a human operator, under ideal conditions. Even under ad-
verse conditions, the track information provided is likely to be either reconciled
by a human operator through a suitable interface, such as a track based story-
board. Where this is not possible, then the system errors may be significant and
could not be guaranteed to provide anything more than an improved starting point
for human investigation over having no information at all. It is important to note
that further invesitgation is required into the experimental accuracy of both the
fusion framework, through the analysis of larger and more diverse datasets, and
through experiments to invesitgate the usefulness of the story boarding approach
through such techniques like the information gain of the system operators. Whilst
the analysis of larger datasets is planned as a future publication from this work,
inverstigation of the system applications and information gain are likely to form a
significant portion of the future user centred component of the surveillance field.

The research conducted here focuses upon the results that are achievable with
currently installed technology. This focus makes the assumption that both the
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camera technology and the communications bandwidth may cause limitations to
the image size and quality obtained. Such restrictions are commonly found in
the majority of building surveillance systems, where criminal activity and terror-
ism are considered to be of very low likelihood. Whilst this research does not
currently make use of the very latest high resolution technology, or placements
of large numbers of cameras, there is no reason that it could not be exploited
where available. Higher resolution cameras with good quality colour sensors and
high bandwidth are often used in laboratory conditions, and where available in
a surveillance system would only improve the accuracy of this method. The ac-
curacy of matching individuals where cameras are placed close together or even
overlapping is also likely to increase as effects such as illumination are also likely
to improve. These increases in technology and knowledge of the surveillance area
can all be used to improve the system through the expansion of the framework
to include other features, limitation in the variance of effects like illumination, or
by limiting the potential match search space where absolute path transitions are
physically limited, such as within corridors. Additionally such a system could also
generate statistics on the movement of individuals, such as average path transition
time, in order to determine the normal cases and alert an operator when anoma-
lous cases occur. Therefore it is envisaged that improvements in technology and
surveillance infrastructure will only improve a system based upon this method,
and will certainly not make it redundant.

This thesis has presented a system that can provide additional information
to security officers about the movements of individuals throughout a wide-area
surveillance system. Such a system would be able to attract the officer’s attention
to those areas where motion is occurring, but more powerfully it would be able to
provide information about tracks that are likely to be obtained from the same indi-
vidual. The track similarity measurements have been found to provide a high level
of accuracy; however there are still considerable false alarms. Such a high level
of false alarms are undesirable, especially in security and safety critical systems
such as surveillance. In order to overcome such a problem, one could also look to
minimise the cost on the overall system to the operator. This could be achieved us-
ing a ‘storyboard’ approach to the semi-automated tracking system. This involves
creating a short pictorial summary of the given tracks, either by selecting the first
and last frames as well as intermediate frames at regular intervals, or by using the
similarity measurements to identify the frames that are the most similar to the rest
of the track. This pictorial summary of each track can be compared visually by
the human operator. Such a pictorial system is likely to dramatically reduce the
human cost of false alarms, especially compared to the manual search that would
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be required to manually find and match the tracks from a pool of all the possible
ones. Once track matching has been approved, then the system can add it to other
known tracks from that individual to build up the movements within the system.
Although such a system may be possible at real-time, or near real-time speeds
in areas that have a relatively low level of traffic, it is likely to be most useful
for forensic investigations of surveillance data. Here real-time computation is not
essential, though fast processing is desired. The real advantage however occurs
from the selection of key individuals of interest, where a set of tracks that might
relate to the individual could be automatically identified and manually assessed
with high accuracy. This could dramatically reduce the search time that would be
required for an operator to manually identify and assess those tracks.
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