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Abstract

Relational information visualisation concerns viewing relational data, where the 

underlying data model is a graph. Hierarchical visualisation is one of hot topics in graph 

visualisation in which the data is organised in a hierarchical structure. As the amount of 

information, that we want to visualise, becomes larger and the relations become more

complex, classical visualisation techniques and hierarchical drawing methods tend to be

inadequate.

Traditional hierarchical visualisation algorithms are more concerned with the

readability of the layouts. They usually do not consider the efficient utilisation of the 

geometrical plane for the drawings. Therefore, for most hierarchical layouts, a large 

portion of display space is wasted as background.  The aim of this research is to 

investigate a space-efficient approach to handle the visualisation of large hierarchies in 

two-dimensional spaces. 

This thesis introduces a new graph visualisation approach called enclosure+

connection for visualizing large hierarchies. This approach maximises the space

utilisation by taking advantages of the traditional enclosure partitioning approach, while

it retains the display of a traditional node-link diagram to hopefully provide users a 

direct perception of relational structures. 

The main contribution of this thesis is layout and navigation algorithms for 

visualising large hierarchies. Two layout algorithms, the space-optimised tree and the 

EncCon tree, have been developed to achieve the space-efficient visualisation. Both 

algorithms use the enclosure concept to define layout of hierarchies, which ensure the 

efficient utilisation of display space. Two focus+context navigation and interaction 

methods have been proposed to cooperate with the visualization of large hierarchies. 

Several advanced computer graphics approaches, such as graphic distortion and 

transparency, are used for the development of these navigation methods.

Two case studies have been implemented to evaluate the layout algorithms and 

the associated navigation methods. The first case study is an application of a shared 

collaborative workspace which aims to provide users with a better assistance for visual

manipulation and navigation of knowledge-based information. The second case study is

a visual browser for navigating large-scale online product catalogues. 

xvii



Although the case studies have provided some useful evaluation, formal usability 

studies would be required to justify fully the effectiveness of these layout and 

navigation methods. Although this task has not carried out in this research, the author

has presented his usability study’s plan as a future work. 
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Terminology

A graph G = {V, E}: is defined as a pair (V, E), where V is a set of vertices, and 

E is a set of edges between the vertices E = {(u,v) | u, v  V}.

 A tree: is a connected graph without a cycle.

A rooted tree: consists of a tree T(r) and a distinguished vertex r. The vertex r

is called the root of T. In other words, T can be viewed as a directed acyclic 

graph with all edges oriented away from the root. If ( , ) is a directed edge in T,

we then say  is the father of , or  is a child of . If T contains vertex , then 

the sub-tree T( ) rooted at  is the sub-graph induced by all vertices on paths 

originating from .

A leaf vertex: is a vertex with no children.

A node: represents a vertex with its displaying properties. 

Weight w( ): represents the weight of vertex .

Wedge wg(v): is defined by a vertex , line l goes through , and a clockwise 

angle ( ); where is the father of . Thus, we have wg( ) = { , l, ( )} (see

Figure 2.3). 

Local region R(v): is an area which contains the drawing of a sub-tree T( ).

At the Space-Optimised Tree model: R(v) is a polygon that is defined by the 

wedge wg( ) and one (or more) cutting edges (boundaries of other local 

regions) that cross the line l in wg( ) (see Figure 2.4).

At the EncCon model: R(v) is a rectangle. 

Layered visualisation LV: consists of two graphical layers L1 and L2 of the 

information that are appeared in an overlapped manner in the visualisation, LV = 

L1 + L2 (see Figure 3.8). Each layer is the medium for the drawing of graph G or 

a sub-graph Gl G. At any time, a graph Gi drawn in L1 is always a sub-graph 

of Gj drawn in L2. Thus, we constantly have Gi Gj G.
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Chapter 1 Introduction

For the last two decades, the amount of information has boomed to almost double every 

year. Thank to the fast growth of technology, the computational power of the current 

computers has made many graphic aids for users to amplify the understanding of 

information. Visualisation has become a crucial and expanding role in current cognitive 

systems. Interactive visualisation has been more and more popular in many domains, 

such as business, education, and science for analysis, study, and manipulation of data. 

From the study of Colin Ware (Ware 2004), visualisation displays provide the highest 

perception from the computer to human. In other words, more information can be 

absorbed from a visualisation than any other senses combined. The benefit of a good 

visualisation is sometimes said as “a picture is worth ten thousand words”1.

1.1 Information Visualisation 

Visualisation is formally defined as “the use of computer-supported, interactive, visual 

representations of data to amplify cognition” (Card, Mackinlay & Shneiderman 1999). 

In other words, visualisation is an aid for discovery, decision making, and explanation 

of information. Visualisation is divided into main streams including scientific 

visualisation and information visualisation. Scientific visualisation is seen primarily 

relate to, and represent visually a physical thing such as the human body, the earth, 

molecules, etc. Scientific visualisation techniques are usually rendered in three-

dimension using powerful graphic workstations. On the other hand, information

visualisation concerns with reducing the cognitive overheads of understanding complex 

information structures through the use of visual representations. The definition of 

information visualisation formally is “the use of computer-supported, interactive visual 

representations of abstract, non-physically based data to amplify cognition” (Card, 

Mackinlay & Shneiderman 1999). Information visualisation can be applied to numerous 

1 This quotation was simply made up from “Chinese Proverb” and appeared in the advertising 

trade journal then called Printers' Ink, March 10, 1927.  
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areas through the workplace and science, wherever information is being handled. In 

addition, information visualisation techniques do not often require powerful computers

to run their applications. Although information visualisation is distinguished from

scientific visualisation, these two fields do not “conflict”, and are actually related. In 

some cases, the boundary of these two fields is blurred. More definition and description

about information visualisation can also be found in (Chi 2002; Herman, Melancon & 

Marshall 2000; Spence 2001). 

1.1.1 Origins in Information Visualisation 

Information visualisation evolved from scientific visualisation in the early 1990’s with 

the first use of the term information visualisation was Robertson, Card, and Mackinlay 

in 1989 (Robertson, Card & Mackinlay 1989). The first IEEE Visualisation conference 

was organised in 1990. This community was led by earth resource scientists, physicists 

and computer scientists in supercomputing, who were more concerned in scientific

visualisation. The annual IEEE Visualisation conference now becomes the leading 

event in both scientific and information visualisation. The early proposed and 

implemented information visualisation techniques notably are worlds within worlds

(Feiner & Beshers 1990), tree-maps (Johnson & Shneiderman 1991), and information

visualizer (Card, Robertson & Mackinlay 1991), and others. 

Since then, several refinements and new information visualisation methods have 

been proposed and implemented in several applications and communities. Along with 

IEEE Visualisation conference, there are several good conferences which directly or 

indirectly concern with information visualisation. Notably, they are the Graph Drawing 

Symposia, the CHI’XX, UIST’XX conferences, and the Information Visualization IV’XX,

etc. At the time of writing, the information visualisation journal, published by Palgrave

Macmillan2, has started more than three years ago. This event indicates the maturity of 

research in information visualisation as well as the public concern for this topic. 

2 http://www.palgrave-journals.com/ivs/
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1.1.2 Human Visual Perception 

Although a good visualisation can benefit users for rapid interpretation of large quantity 

of information, a bad visualisation can also cause the distortion or obscuration of the 

data which make much harder for viewers to understand or compare. Consequently, in 

addition to several good visualisation techniques, there are also a large numbers of poor 

visualisations which are responsible for misunderstanding, misinterpretation and 

misjudgement. Figure 1.1 shows an example of one of the best information visualisation 

techniques in which the disastrous result of Napoleon's failed Russian campaign in year 

1812 is well illustrated. Figure 1.2 also shows an example of a bad information 

visualisation technique which purports to show the mandated fuel economy standards 

set by the US department of transportation. Although this figure tries to show an

increase in mileage 53%, the magnitude of increase shown in the graph is 783%. More 

typical good and bad examples of data visualisation are critiqued by Friendly (Friendly 

2000). This raises a critical question “what is the best way to transform data into visual 

images or diagrams so that people can easily understand and interact with them”.

Human visual perception plays an essential role as a guideline in designing a good 

information visualisation system. Most information displays visualise information on 

computer monitors which are only a single rectangular planar surface. Thus, the 

perception of users might vary and bear on a number of display problems due to the 

mismatch of the eye and the display devices. These common problems are possibly 

from visible light, brightness, colour, contrast, size of the display device, resolution, etc 

and most importantly the quality of the lens system of the human eye. 

Colin Ware discussed the visual efficiency of a display screen for effective 

perception of a human eye (Ware 2000, 2004). In detail, he aimed to find out the 

optimal screen size that provides the best match of screen pixels to brain pixels. This 

study is very important as a design guideline for future large-scale information

visualisation research, which ensures the maximum information display and retains a 

good aspect for perception. The research shows that more information can be displayed 

on very high-resolution and large screen, but it does not necessarily provide very much 

more information into the brain. This is because the conventional monitor covers only

5-10% of visual field in the normal condition, but it uses as much as 50% of brain pixels 

(Wilkins 1995). The study also shows that the uniquely stimulated brain pixels peak at 
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the width of a normal monitor view, and it is effective (but not critical) to increase the 

number of pixels for the normal desktop to reach the limit of the brain pixels.

As a result of the above studies, the deployment of a large and high resolution 

display does not guarantee significant improvement of visualisation compared to a

standard display because of the constraint limits of our brain pixels. Therefore, 

researching a new optimal and efficient technique for visualising large datasets is more 

effective and efficient than expensive large display devices. 

Figure 1.1. An example of good information visualisation.

Mathematica graphic of Minard's depiction of the fate of Napoleon's army. 

Source from: (Shaw & Tigg 1993). 

Figure 1.2. An example of bad information visualisation.

The lie factor? Source from: (Friendly 2000). 
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1.2 Graphs in Information Visualisation 

Graph visualisation or graph drawing is the visualisation of relational information in 

which the structures of data is fundamentally modelled as graphs. Formally, it is defined

as the “problem of constructing geometric representations of graphs, networks, and 

related combinatorial structures” (Di Battista et al. 1999). In the graph visualisation,

nodes are represented as data items and edges are represented as relations. In several 

graph drawing applications, nodes are simply presented as small rectangles with or 

without labels, and edges are presented as straight or curved lines. Graph visualisation

has a wide range of applications such as data flow diagrams, entity-relationship

diagrams, organisation chats, state-transition diagrams, networks, and many more. 

Graph drawing research is divided into three directions including discrete 

mathematics, algorithmic and human-computer interaction (Di Battista et al. 1999). 

Discrete mathematics concerns the theories of graph topology, graph geometry and 

graph order. Research in graph algorithms concentrates on graph algorithms, data

structures, and computational geometry. Human-computer interaction is more about the

aspects of human perception and interaction, including visual languages, graphical user

interfaces, software visualisation, and so forth. 

A large number of graph drawing techniques use node-link diagrams to present 

the data and relationships among the items. These techniques are more concerned with 

aesthetics rules in the design of layouts. The aesthetical niceness’ rules of a graph layout

are commonly: minimising edge crossings, displaying symmetry of graph structures,

minimising bends in edges, and keeping multi-edge paths as straight as possible.

However, there is still little research on the empirical validation of the above layout 

aesthetics, or the perception and cognition in graph aesthetics (Ware et al. 2002).

1.3 Hierarchical Visualisation 

Hierarchical visualisation is a sub-section of the graph visualisation and it is one of the

hot topics in information visualisation. In this type of the visualisation, the data is 

organised in a hierarchical structure, and in graph theory, we usually call these 

structures as hierarchical trees. The importance of hierarchical visualisation is 

highlighted by the nature of a large quantity of hierarchical data in the real world, such
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as structures of classification systems, taxonomies of animals, product catalogues, file

systems, organization chats, etc. Chaomei Chen (1999) stated that: 

Hierarchies are one of the most commonly used structures…

Hierarchical structures not only play significant roles in their own 

right, but also provide a means of representing a complex structure in

a simplified form. 

The visualisation of hierarchical data improves not only the understanding of data 

and the relationship between data items, but also assists in manipulating information.

Research in hierarchical visualisation can be roughly classified into two main streams: 

the connection approach and the enclosure approach. They are both effective

approaches for the visualisation of hierarchies and which one we should use depending 

primarily on the properties of the data in a particular application domain.

The connection approach displays the relationships of information explicitly by 

drawing a set of graphical edges that gives users an immediate perception of the 

relationships (see an example at Figure 1.3). However, connection visualisation 

is not often efficient in term of utilising display space. Typical techniques in 

connection approach are classical hierarchical view (Reingold & Tilford 1981), 

h-tree layout (Shiloach 1976), radial view (Eades 1992), balloon view

(Melancon & Herman 1998), disk tree (Chi et al. 1998), NicheWorks (Wills

1999), rings (Teoh & Ma 2002), Narcissus (Hendley et al. 1995), hyperbolic

browser (Lamping & Rao 1996; Munzner 1997), cone-tree (Robertson,

Mackinlay & Card 1991), botanical visualisation (Kleiberg, van de Wetering & 

van Wijk 2001), etc. 

The enclosure approach, typically tree-maps (Johnson & Shneiderman 1991), 

cushion tree-maps (van Wijk & van de Wetering 1999), squarified tree-maps

(Bruls, Huizing & van Wijk 2000), Venn diagram (Herman, Melancon &

Marshall 2000), etc., is a better solution in term of optimising the use of display

space (see an example at Figure 1.11). However, these techniques do not show 

explicitly the relational structures of information. This costs extra cognitive

effort of viewers to understand the relational structures that are presented

implicitly in the enclosure manner.
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Although many techniques have been proposed and implemented, the size of the 

datasets is still a key issue in graph and hierarchical visualisation. Large graphs and 

trees can decrease significantly the performance of a visualisation technique which

normally performs well on small or medium datasets. In addition, the issue of “view-

ability” also arises because it will be impossible to discern between nodes and edges

(Herman, Melancon & Marshall 2000). As a result, large graph visualisation, or large

hierarchical visualisation in specific, has become one of the hot topics in information

visualisation.

The main concerns of information visualisation techniques are not only the

geometrical positioning of the hierarchy but also the navigation and interaction. This is

because no layout algorithms can work alone to overcome the problem of visualising 

and navigating large datasets using limited display spaces. Therefore, associated 

techniques for interactive navigation are becoming the essence in the design of 

visualisation of large size information spaces. 

We now review and discuss current hierarchical visualisation techniques. 

1.3.1 Hierarchical Layout Techniques 

Research in hierarchical visualisation in two-dimensional (2D) space can be roughly 

classified into two main streams the enclosure and the connection. They are both 

effective approaches for the visualisation of hierarchies and which one we should use

depending primarily on the properties of the data in a particular application domain.

Connection approach displays the relationships of information explicitly by drawing a

set of graphical edges in the diagram that gives users an immediate perception of the 

relationships. Enclosure approach is a better solution in term of optimising the use of 

display space. However, techniques in this approach do not show explicitly the 

relational structures of information. This can cost extra cognitive effort of viewers to 

understand the relational structures that are presented implicitly in the enclosure 

manner.

Three-dimensional (3D) hierarchical layout techniques are another approach that 

uses an extra dimension to achieve the display of more information on the screen. These 

techniques also aim to provide the “natural look” of the information. Three-dimensional

layout algorithms can also use enclosure to partition the layout or use node-link 
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diagrams in their displays. However, 3D techniques might suffer from viewing 

problems due to occlusion caused by the three-dimensional metaphor. In addition, the

computational time is also high to run those three-dimensional techniques. Some typical 

layout techniques are further discussed below. 

1.3.1.1 Connection Approach 

The connection approach is a natural way to draw a graph/tree structure in a node-link 

diagram. A set of visible graphical edges are drawn in the diagram to link nodes from

the parents to their children. The nodes present the data while these edges are used to 

present relationships among data items. Considerable research in this area has been 

carried out including hierarchical view (Reingold & Tilford 1981), h-tree layout

(Shiloach 1976), radial view (Eades 1992), balloon view (Melancon & Herman 1998), 

disk tree (Chi et al. 1998), NicheWorks (Wills 1999), rings (Teoh & Ma 2002), 

Narcissus (Hendley et al. 1995), hyperbolic browser (Lamping & Rao 1996; Munzner 

1997), cone-tree (Robertson, Mackinlay & Card 1991), botanical visualisation

(Kleiberg, van de Wetering & van Wijk 2001), etc. 

The advantage of using a node-link diagram to present hierarchical structures is 

that the human can directly see the relationships that are drawn as a set of graphical

edges appearing in the diagram. This makes it easier for the process of human

perception to understand the relational structures of the information. Typical connection 

techniques for visualising large hierarchies are discussed below.

The classical hierarchical view - The technique is based on the algorithms developed 

by (Reingold & Tilford 1981). The classical hierarchical view uses a modular approach 

to the positioning of nodes where child nodes are positioned “below” their common 

ancestor. The algorithm calculates independently the relative positions of sub-trees and

then joins them in a larger tree by placing these sub-trees as close together as possible.

The parent node is located at the centre above. The layout can vary as top-down, left-to-

right tree and grid-like positioning. The algorithm is simple, fast and predictable. The

classical hierarchical view is simple and widely used in many applications. The layout, 

however, tends to expand over the display area from one dimension. In addition, the

close positioning of nodes might cause problem in labelling. As a result, this technique

is not adequate for visualising large size hierarchies. Figure 1.3 shows an example of a 

visualisation of a small datasets using classical hierarchical view.
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Figure 1.3. A visualisation of classical hierarchical layout.

 Adapted from: (Reingold & Tilford 1981).

The radial view - This visualisation is based on an algorithm described in (Eades

1992). The algorithm recursively positions children of a sub-tree into circular wedges.

The angles of these wedges are proportional to the number of leaves of the sub-tree. In 

order to avoid an angle assigned to a node being too large, radial view layout forces all

wedges remain convex. The algorithm is simple, predictable and it behaves well in 

general. This technique, however, is also not optimal in the use of available space (see 

Figure 1.4a). This problem is overcome by simply dropping the convexity constrain 

property. In Figure 1.4b, we see that the space is used more efficiently. The new

algorithm, however, also leads to intersections when applied to big trees.

(Jankun-Kelly & Ma 2003) presented a variation from the original radial view

(Eades 1992), called MoireGraphs, for visualising graphs. This technique combines a

radial graph layout with a number of interaction techniques to achieve its 

focus+context visualisation. This technique produces reasonably nice layout and it is 

capable of visualising hundreds of nodes, as claimed by the authors. Similarly to 

original radial view, MoireGraphs does not concern about space utilisation which

make it difficult to visualising larger graphs or hierarchies with thousands of 

elements.
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(a) (b)

Figure 1.4. A visualisation of radial view.

(a) Radial view with convexity check and (b) radial view without convexity check 

and with statistical modification. Source from: (Herman et al. 1999). 

The balloon view (or circular view) - This layout is formed where siblings of sub-trees 

are included in circles attached to the parent node. In specific, the algorithm places 

every node at the centre of a circle, and each sub-tree rooted at the node is drawn into a 

smaller radii circle and is positioned on the circumference of the large circle (see Figure

1.5). The balloon view can also be obtained by projecting a cone tree (Robertson,

Mackinlay & Card 1991) onto a plane. The algorithm behaves well on balanced trees. In 

this algorithm, notation of a root is temporarily based on user interest. This means that 

the user can interactively select an arbitrary node to be a root, and the full tree is

reorganised based on this change. This property is an advantage of the balloon view in 

many applications. Like the radial view (Eades 1992), this layout wastes a large portion 

of the display space. 

(Teoh & Ma 2002) presented an optimised circular view called RINGS which

aimed to show more contextual information without loosing the clarity of the area in 

focus. The RINGS’s layout was based on a new ringed circular tree layout algorithm in 

which all nodes and their children are placed in circles. In summary, this technique

places nodes as equal-sized circles in concentric rings around the centre of the parent

circle. These circles can be either the large circles (for node with more children) or

small circles (for node with fewer children) which are placed at the respectively

outermost ring or at the inner ring. This technique also employs several visual cues such 

as colours and transparency to enhance the perception of graphs or trees. The authors
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Figure 1.5. A visualisation of balloon view.

Source from: (Melancon & Herman 1998). 

claimed that the RINGS is very efficient in term of utilising the limited display space,

and indeed it is more optimal than the original circular view. However, this technique

does not totally optimise the display space because of the different manners of circular 

layout and the rectangular display window. 

Disk-tree – this technique also uses a circular layout to visualise the hierarchy and it is 

mainly used to visualise the evolution of web ecology in term of time tube 

visualisations (Chi 1999; Chi et al. 1998). In its layout, each successive circle indicates

a level in a tree. Firstly, the algorithm calculates the number of leaf nodes and then the 

amount of angular space of each leaf node. Secondly, the algorithm traverses the 

hierarchy using breath-first traversal, and it calculates the angular space for each node

based on the number of leaf nodes rooted at the current node (see Figure 1.6). Disk-tree

is a good two-dimensional visualisation technique with the advantage that the entire

structure of the information is visualised compactly and the layout is pleasant to view. 

Although disk-tree is a good technique for visualising large tree, the algorithm is not 

optimal in terms of using display space, especially the areas near the border. In addition, 

this method does not have a good navigation algorithm in order to interactively browse 

through the hierarchies. 
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Figure 1.6. A visualisation of disk-tree. 

Source from: (Chi 1999). 

The hyperbolic browser - Hyperbolic layout was initially developed by Lamping and 

Rao (1996). This technique can be described informally as: 

The root node is initially placed at the centre of a circular display. 

All subordinate nodes of the root are arranged around it, and similarly to their 

own subordinate nodes, and so on. 

When the root is moved outward from the centre, the entire hierarchy is distorted

that it fits within the circular display area. 

Technically, this technique constructs the hierarchy in hyperbolic geometry and 

then maps that structure into ordinary Euclidean plane. The algorithm produces nice 

tree visualisation inside a disc and it provides an excellent focus+context navigation

technique. As a result, it is quite capable for visualising large hierarchies (see Figure 

1.3). Hyperbolic browser can be implemented in either a two-dimensional plane

(Lamping & Rao 1996) or a three-dimensional space (Munzner 1997). The original two-

dimensional hyperbolic browser uses Poincare model, while the three-dimensional
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Figure 1.7. A Visualisation of hyperbolic browser. 

Adapted from: (Lamping & Rao 1996). 

hyperbolic browser uses Klein model in its implementation. There are several

commercial implementations, also called star tree, are available at Inxight-Xerox. 

Although hyperbolic browser is a good layout technique, its algorithm is complex and

hard to understand due to its different geometrical background. 

Internet mapping - Cheswick et al. (2002) presented a nice technique for Internet and 

network mapping. The technique yields very large tree-like structures (100,000 nodes 

and more) by using a node-spring approach and a number of heuristics. The authors 

apply a force-directed method to lay out the graph. The standard model uses spring 

attraction to pull connected nodes together and it also employs ‘electrical repulsion’ to 

repel these nodes. The algorithm is relatively simple and produces a nice graph layout.

However, this layout technique is rather slow: A typical run requires 20 CPU hours on a 

400 MHz Pentium (Cheswick & Burch 2002). Figure 1.8 shows an example of the

internet mapping visualisation with a dataset of nearly 100,000 nodes. 
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Figure 1.8. A visualisation of internet mapping.

Source: (Cheswick & Burch 2002). 

NicheWorks - NicheWorks (Wills 1999) is a tool for visualising very large graphs. This

system was originally designed to examine large telecommunication networks and it has

been generalised to different areas including relationships between functions and files in 

a large software development effort, website analysis and correlation analysis in large

databases. In the NicheWorks system, a user can examine a variety of node and edge 

attributes in conjunction with their connectivity information. The layout of this system 

includes two types of algorithms: initial layout and incremental algorithms. The initial 

layout is fast which is capable of visualising up to a million nodes in a few minutes and 

it includes circular layout, hexagonal grid and tree layout. The user may then use

incremental algorithms to improve the graph layout. Finally, the system places all the 

components close to each other with the largest at the centre. This technique can show 

or hide parts of a graph by using interactive manipulation of views of node and edge 

attributes. Figure 1.9 shows a visualisation example of the NicheWorks.
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Figure 1.9. A visualisation of NicheWorks.

Source from: (Wills 1999). 

1.3.1.2 Enclosure Approach 

Another way to visualise hierarchical data in two-dimension is to use enclosure concept. 

Unlike the connection approach, the enclosure is the method of using enclosure to 

represent the tree structures. This partitioning ensures that all nodes and their sub-

hierarchies locate inside their father’s display region. Figure 1.10 shows a typical 

example of connection partitioning that each node is mapped to a rectangular area, then 

that area is subdivided in horizontal or vertical direction to show the relative size of the

children of the node. There is also some extensive research in this direction. Typical 

examples of this type of visualisation techniques are tree-maps (Johnson & 

Shneiderman 1991), cushion tree-maps (van Wijk & van de Wetering 1999), squarified

tree-maps (Bruls, Huizing & van Wijk 2000), sunburst (Stasko & Zhang 2000), 

inclusion tree (Eades, Lin & Lin 1993), expand-ahead (McGuffin, Davison & 

Balakrishnan 2004) and Venn diagram (Herman, Melancon & Marshall 2000).

The enclosure approach is a better solution in terms of optimising the use of 

display space. However, techniques in this approach do not show explicitly the 

relational structures of information. This costs extra cognitive effort of viewers to
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understand the relational structures that are presented implicitly in the enclosure 

manner. Two typical enclosure techniques, tree-maps and sunburst, for visualising large

hierarchies are further discussed below. 

Tree-maps – Unlike the connection approach, tree-maps (Johnson & Shneiderman 

1991) represents hierarchical structures using enclosure for the partition of the display 

space to visualise the structural information. The drawing algorithm draws a node itself 

within its rectangular area with its display properties. The bound of the root is the 

entirely rectangular display area. Then the node sets a new bound within its rectangular 

bound and drawing properties for all its children. This process is repeated until all the

leaves are reached. Figure 1.10 shows an example of the tree-maps visualisation that 

each node is mapped to a rectangular area, then that area is subdivided in horizontal or

vertical directions to show the relative size of the children of the node. The process is 

recursively applied to the children nodes with the subdivisions on the X- or Y-axis.

There are two major variations of the tree-maps system namely cushion tree-maps

(van Wijk & van de Wetering 1999) and squarified tree-maps (Bruls, Huizing & van

Wijk 2000). The layout algorithm of cushion tree-maps is similar to the standard tree-

maps, but this technique uses intuitive shading to provide insight in the hierarchical

structure. Thus, this 3D shading is more effective and clearer than the original tree-

maps. On the other hand, the squarified tree-maps modifies the original horizontal and

vertical partitioning layout algorithms which ensures all the partitioned regions are 

roughly squared. This approach generally also provides better layout compared to the

standard tree-maps.

The tree-maps and its variations, as were claimed by (Johnson & Shneiderman

1991), optimises all available space for display information. These techniques can 

provide an overview of an entire hierarchy, as well as the detail view of the focus sub-

hierarchy. As a result, it makes the navigation of large hierarchies much easier 

especially when the quantitative variable is concerned. However, the lack of edges 

linking between nodes might prevent viewers from understanding the relationships of 

information because these relationships are not directly shown. Thus, it is much harder 

for the viewers to perceive and understand the structure of the relational hierarchies.
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Figure 1.10. A visualisation of tree-maps. 

Adapted from: (Johnson & Shneiderman 1991). 

Sunburst – As described above, tree-maps partitions a hierarchy rectangularly so that 

the display region of a node is a rectangle. The sunburst technique (Stasko & Zhang 

2000) also uses enclosure to partition the hierarchy, but in a circular or radial manner

(see Figure 1.11). The layout algorithm is based on the other radial space-filling 

techniques from the circular visual designs (Chuah 1998) and information slices 

(Andrews & Heidegger 1998). These radial space-filling techniques were proposed as

an alternative approach since some of the viewers might have better perception with a 

radial layout than a rectangular layout. However, the radial techniques are not fully 

optimised to the display space because of the different manner of a rectangular display

space and the circular geometry. Similar to the tree-maps, the sunburst does not use

edges to show the relations among nodes that increases the cognition of the user to 

perceive the relational information.
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Figure 1.11. A visualisation of sunburst. 

Source from: (Stasko & Zhang 2000). 

1.3.1.3 Three-Dimensional Layouts 

With the growth of technology, personal computers (PCs) have become much more

powerful with several enhanced three-dimensional (3D) devices. These technological

advances make three-dimensional information visualisation techniques feasible on PCs. 

Within the last decade, several 3D techniques have been invented for both research and 

commercial purposes. Thus, three-dimensional information visualisation has become

more and more common as an alternative approach for visualising large information

spaces such as networks, financial data, Internet, etc. 

There are several approaches to construct a three-dimensional information

visualisation. The simplest way is to generalise from two-dimensional (2D) layout 

algorithms to create a 3D visualisation. Similar to 2D layout techniques, 3D 

visualisations can also be classified as connection and enclosure approaches although 

the boundary is not as clear as from 2D. The connection approach uses node-link 

diagrams to indicate the relations among data items, such as cone tree  (Robertson, 

Mackinlay & Card 1991), botanical visualisation (Kleiberg, van de Wetering & van 

Wijk 2001), information landscape (Andrews 1995), 3D narcissus (Hendley et al. 

1995), 3D hyperbolic browser (Munzner 1997), SeeNet (Cox, Eick & He 1996), 

spanning trees (Herman, Melancon & Marshall 2000), etc. Three-dimensional enclosure
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techniques use enclosure to define the layout in two approaches. In the first approach, 

the layout is partitioned in a plane and then extruded to three-dimensional space. 

Typical techniques in this approach are information pyramids (Andrews, Wolte & 

Pichler 1997), information garden (Crossley et al. 1997), etc. In the second approach, 

the layout is partitioned directly in 3D as nested boxes in which the sub-hierarchies are 

always located inside their parent space. Typical techniques in this approach are 

information cube (Rekimoto & Green 1993), GeoGraph3D (Ghezzi 1997), and others. 

There are also some variations of nested design that only adopt partly the nesting 

metaphor, such as WebBook and Web Forager (Card, Robertson & York 1996). 

The main objective of three-dimensional layouts is to use an extra dimension to 

achieve the display of more data on the screen as well as to provide the “natural look” 

of the information. 3D information visualisation shows a promising future with great

support and effort from visualisation researchers. However, there are also several 

limitations of this approach. Firstly, creating a 3D visualisation is considerably more 

difficult than creating a 2D system. Secondly, three-dimensional techniques might

suffer from viewing problems due to occlusion caused by the three-dimensional

metaphor. In addition, there is a large amount of computational time is required to run 

these techniques. (Ware 2004) also shown that although 3D information visualisation 

was better in some tasks, a 2D solution was generally a better choice. 

This thesis primarily concerns about two-dimensional hierarchical information

visualisation. Within the scope, only three typical 3D information visualisation

techniques are reviewed and discussed in detail. 

Cone tree (or cam tree) – Since firstly introduced in 1991 by (Robertson, Mackinlay &

Card), cone tree has become one of the best known three-dimensional graph/tree layout 

techniques. The layout is mathematically quite simple in which nodes are placed at the

apex of a cone with its children placed evenly along its base (see Figure 1.12). Cone

tree provides a nice technique for interaction and navigation that some labels of the

nodes are transparent. The user can also pick any node and rotate the cone tree so that 

the chosen node is brought to front. This original idea of cone tree has been revisited 

and refined by Carriere and Kazman (1995). Cone tree is a good technique for

visualising balance tree. The method, however, has a few disadvantages that large three- 

dimensional trees become too cluttered, the execution requires large computational time

and it is incapable of displaying multiple hierarchical data structures.
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Figure 1.12. A visualisation of cone tree. 

Source from: (Robertson, Mackinlay & Card 1991). 

Botanical visualisation – Botanical visualisation is a new method for the visualisation 

of huge hierarchical data structures. In general, this technique uses the botanical-tree 

metaphor to visualise the huge hierarchy in three-dimensional space (Kleiberg, van de 

Wetering & van Wijk 2001). The visualisation provides beautiful layouts for the

hierarchies where information is arranged as branches and leaves on a botanical tree 

(see Figure 1.13a). However, this technique only supports its navigation through the 

zooming technique in which the context is lost during the navigation (see Figure 1.13b). 

The large rendering time is also a limitation of this technique. 

(a) (b)

Figure 1.13. A visualisation of botanical visualisation.

Source from: (Kleiberg, van de Wetering & van Wijk 2001). 
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Information cube – this visualisation can be considered as the generalisation of tree-

maps (Johnson & Shneiderman 1991) in three-dimensional space. Information cube

(Rekimoto & Green 1993) uses semi-transparent nested boxes or nested cubes to 

represent the hierarchical information. In detail, it presents the parent-child relationships 

by recursively placing child cubes inside their parent cubes that the outermost cube is 

the top level of data. All the cubes in this technique are transparent so that the nested

sub-tree can be viewed inside the cube (see Figure 1.14). The labels are displayed on the 

cube surfaces. The user can inspect the detail information by rotating or moving the 

cube. Although, the information cube provides an overall view of the information, this

technique does not show explicitly the relational structures of information. This costs 

extra cognitive effort of viewers to understand the relational structures that are 

presented implicitly similar to the two-dimensional enclosure approach. 

Figure 1.14. A visualisation of information cube.

Source from: (Rekimoto & Green 1993). 

1.3.2 Hierarchical Navigation and Interaction Techniques 

Another important step involved in the hierarchical visualisation process is navigation 

and interaction. Chaomei Chen (1999) stated that

Navigation in a hierarchical structure involves moving from one node 

to another, along the existing hierarchical links in the structure. When 
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the size of a hierarchy becomes large, it is desirable to enable users to 

have easy access to contextual information, as well as local details. 

One of the most important issues involved in navigation is that users can always see (or 

has easy access to) the contextual information. This allows the users to always perceive

where they are and where they move from in the large information space during the 

navigation. This also assists the users decide where they should go next, and how they

are interactively navigating through the information space. 

To achieve easy access to both the contextual and local information in large

hierarchies, there are several navigation solutions which have been developed in

accommodating geometrical layout techniques. Most of the current navigation

techniques can be roughly classified into three approaches: focus+context,

zooming+filtering, and incremental exploration. Focus+context techniques normally

provide a better solution for accessing the contextual information during navigations,

and it receives a large researching effort from information visualisation researchers. We

now review and discuss these approaches, especially the focus+context approach. 

1.3.2.1 Focus+Context Techniques 

Focus+context approach includes all navigation techniques that provide users with 

simultaneous dual views of a small focused area as well as the overall context. In other

words, it can be defined as detail views of particular parts of the information which is 

blended in some way with a view of the overall structure of the set. This approach 

improves the cost structure of the information space since the overview context is 

retained when enlarging the focus area. Thus, this idea amplifies the users’ cognition 

(Card, Mackinlay & Shneiderman 1999). 

Since the focus area is enlarged while the context is still maintained, the 

presentations of focus+context techniques are mainly distortion-oriented. This distorted 

transformation can be independent or dependent of the layout algorithms. Typical

distortion-oriented focus+context techniques in 2D are fisheye views (Furnas 1986; 

Sarkar & Brown 1994), polyfocal display (Kadmon & Shlomi 1978), bifocal lens

(Spence & Apperley 1982), perspective wall (Mackinlay, Robertson & Card 1991), and 

others. Foucs+context visualisation might also extend the distortion to three-

dimensional space. These techniques generally provide the entire context within a cube

(Carpendale, Cowperthwaite & Fracchia 1997) or a sphere (Munzner 1997) where the 
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visualisation is distorted in some way to provide both enlarged focus information as 

well as the reduced context information. A detail description and taxonomy of these

distortion techniques are also found in (Leung & Apperley 1994). 

Other approaches achieve the focus+context viewing by using different type of 

geometry or combining multiple viewing techniques. One of the popular techniques is 

hyperbolic browser (Lamping & Rao 1996) which provide the visualisation of the

information using on-Euclidian geometry. (Kreuseler & Schumann 1999) also proposed

a similar approach to achieve the focus+context visualisation, called magic eye view.

However, this technique does not construct the layout using hyperbolic geometry, but it

maps the graph layout onto a surface of a hemisphere and then it projects this image

onto a plane. This technique produces an interesting result where nodes lie on a

concentric circle of different radii. The focus sub-graph is enlarged by changing the 

centre of the projection. 

The focus+context can also be achieved using visual cues to highlight and 

enhance the clarity of the focus sub-hierarchy (Herman et al. 1999). The visual cues are 

also used to emphasize the schematic view or the skeleton of a tree or graph. Finally, the 

visualisation might also combine multiple techniques, such as focus+context, zooming,

filtering and animations to achieve their focus+context views, such as cone tree

(Robertson, Mackinlay & Card 1991), space-tree (Plaisant, Grosjean & Bederson 2002), 

etc. This approach often provides the users with a better browsing mechanism allowing 

them to interactively move the focus area into the centre of the screen.

A few typical distortion-oriented focus+context techniques will now be reviewed 

and discussed. 

Bifocal display – this technique was firstly introduced in 1982 by (Spence & Apperley) 

in a one-dimensional form. Bifocal display involves a combination of a detailed view

and two distorted side-views where the detailed view does not have demagnification and 

the side-views is compressed uniformly in the horizontal direction (see Figure 1.15). 

The bifocal display was also extended to 2D by Leung in (1989) where the visual area is 

subdivided into nine sub-regions. This technique is relatively simple to implement and

provides spatial continuity between regions. However, the discontinuity of 

magnification at the boundary between the detailed view and the distorted view is a 

disadvantage of this technique. 
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Figure 1.15. The bifocal display. 

(a) a typical transformation function; (b) the corresponding magnification

function; (c) the application of the display in one dimension; (d) the application

of the display in two dimensions. Source from: (Leung & Apperley 1994). 

Perspective wall - (Mackinlay, Robertson & Card 1991) described a similar concept to 

bifocal display (Spence & Apperley 1982) which was based on the notion of smoothly

integrating detailed and contextual views to assist the visualisation of linear 

information. The perspective wall is two dimensional and it includes a focus view called 

middle panel and two side panels. The two demagnified sides show the distorted view 

of the out-of-focus regions and the demagnification is proportional to their distance

from the viewer. Similar to bifocal display, the magnification function is also 

discontinuous and the discontinuity is proportionally dependent on the magnitude of the

angle  between the middle panel and the side panels (see Figure 1.16). 
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Figure 1.16. The perpective wall. 

(a) a typical transformation function; (b) the corresponding magnification

function; (c) the application of the wall in one dimension; (d) the application of 

the wall in two dimensions. Source from: (Leung & Apperley 1994).

Fisheye distortion (or fisheye views) – fisheye distortion navigation technique was 

firstly proposed by Furnas in (1986) as a presentation strategy for hierarchical data 

structure. The concept of the fisheye views is to enlarge an area of interest, while other 

portions of the image are shown with successively less detail. There are several

variations of fisheye navigation techniques including the fisheye views technique from 

(Hollands et al. 1989) and (Mitta 1990), and graphical fisheye views (Sarkar & Brown

1994). The graphical fisheye views (Sarkar & Brown 1994) includes two 

implementations based on a Cartesian coordinates transformation system and a polar

system (see Figure 1.17). Because of the nature of these transformations, a straight line

will be transformed into a curved line. This increases the complexity and

implementation time of the algorithm. This problem can be solved by drawing straight 

lines for the connections among nodes. However, this creates unexpected edges crossing 
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in the visualisation that decrease the quality of the display, in terms of human

understanding and comprehension. 

Figure 1.17. Fisheye views.

(a) the graph without fisheyes; (b) the graph with a polar fisheye; (c) the graph

with Cartesian fisheye. Source from: (Herman, Melancon & Marshall 2000). 

1.3.2.2 Zooming+Filtering Techniques 

Zooming+filtering is defined as a viewing approach that works by reducing the amount

of context in the display. The reduction is done by filtering the information in the form

of selecting a subset of the data along a range of numerical values of one or more

dimensions. There are two approaches for zooming including geometric zooming and 

semantic zooming. Geometric zooming is defined as the enlargement of the particular

geometry area or graph or tree content without modifying the layout manner of 

information. Semantic zooming also enlarges the focus section, but the information

content also changes so that more detail is shown at a particular sub-graph or sub-

hierarchy. Although zooming+filtering is a natural way to navigate through a graph or 

tree hierarchy, this technique also suffers from the limitation of loss of context 

information during the navigation. The lost of context content makes it much harder for

a user to navigate through a large information space.

There are several zooming+filtering techniques available, and they are generally 

dependant on the layout algorithms. Typical zooming+filtering techniques are starfield

display (Jog & Shneiderman 1995), tree navigation system (Herman, Delest & 

Melancon 1998), tree-maps (Johnson & Shneiderman 1991), Pad (Perlin & Fox 1993), 

Pad++ (Bederson et al. 1996), etc. (van Wijk & Nuij 2003) also presented a novel

smooth and efficient zooming and panning technique for transferring one view to 

another on two-dimensional visualisation models.
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Semantic Zooming

Figure 1.18. An example of semantic zooming of classical hierarchical layout. 

1.3.2.3 Incremental Exploration

Incremental exploration is defined as a viewing approach that displays only a small

portion of the full graph/tree incrementally following the user's exploration of 

information space (see Figure 1.19). Thus, these techniques are able to handle huge

datasets where it is impossible to display the entire hierarchy on the screen at a time. 

Although this approach is relatively new, it already produces some interesting results

from experiments. Typical incremental exploration techniques are described at (Huang 

& Eades 1998), (SC North 1995), (Brandes & Wagner 1997), etc. 

Figure 1.19. An example of incremental exploration of huge graph.

Source from: (Huang, Eades & Cohen 1998).
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1.3.3 Other Information Visualisation Approaches 

There are several layout and navigation techniques for visualising hierarchies or graphs

in both two-dimensional and three-dimensional space which do not belong to any of the 

above classifications. Each technique is normally suitable or best performed on a 

particular application. More detail about layout and navigation algorithms can also be

found at (Card, Mackinlay & Shneiderman 1999), (Spence 2001), (Herman, Melancon 

& Marshall 2000), (Chi 2002), and (Chen 1999). 

Layout techniques can also use force, or called spring-mass model, to define the 

positions of nodes and edges. In these techniques, each node may be given individual

weight and the edge is given strength. Several works in this direction have been 

proposed and implemented in both two-dimensional geometry and three-dimensional

space. Popular 2D graph layout algorithms in this approach were presented by (Eades

1984), (Eades 1984; Eades & Huang 2000), (Gansner & North 1998), (Cheswick, Burch 

& Branigan 2000), and others. Examples of 3D force-directed graph layout algorithms

are from (Osawa 2001), 3D narcissus (Hendley et al. 1995), and others. The spring-

mass model is even extended to a non-Euclidean geometry (Kobourov & Wampler

2004). Force-directed algorithms are simple and easy to implement, modify, and the

layouts are reasonably nice overall (see Figure 1.20). However, these techniques have 

very high computational times which might make them unsuitable for visualising the 

entire large hierarchies. 

Figure 1.20. A visualisation of spring-mass model.

Source from: (Huang, Eades & Cohen 1998).
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In order to avoid the visual complexity and density of the layout, some layouts use 

a clustering metaphor for their layout and navigation (Feng 1997; Kreuseler & 

Schumann 1999). These methods attempt to discover clusters within the data and reduce 

the number of elements to display by restricting the view to the clusters themselves.

This provides an overview of the structure and allows viewer to retain a context while

reducing visual complexity. A common approach is to present the clusters with glyphs

and treat them as super-nodes in a higher-level or compound graph which the user can 

navigate instead of the original graph. Huang and Eades (1998) defined an alternative 

approach, called abridgement, which allows edges between super-nodes to be induced. 

The detail of clustering algorithms can be found in Feng’s Ph.D. thesis (1997). 

Figure 1.21. A structure induced by hierarchical clustering.

Source from: (Eades & Feng 1996). 

1.3.4 Limitations of Existing Hierarchical Visualisation Techniques 

With the rapid growth of information, the size of datasets increases significantly each 

year. The traditional user interfaces of the information system, with the typical working

mode of textual display plus scrolling bar, have no longer meet the satisfaction of users 

in terms of human cognitive process. It is very time consuming for these users to read

through the text line by line through the whole page or several pages in order to find 

information they need. Furthermore, it is even hard for them to extract some inter-

relationships among the texts of one page or across several pages. Therefore, many

designers of the information systems have realised that the development of new visual

interface that can reduce the human cognitive cost for their next generation products

will be the key to the success.

Since the size of datasets is often very large with thousands or even millions of

items, the traditional visual user interfaces are unable to cope well with the display of 
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large visualisation on a standard monitor with the size around seventeen to nineteen 

inches. This is because that many of the existing visualisation methods use the virtual

page solution to this problem. That is, the graph is laid out on a virtual (very large) 

page, and then a small window and scroll bars are provided to allow users to navigate 

the visualisation. The main limitation of this solution is that the overall visualisation or

the global view of the information space is broken into several windows. This makes it

difficult for users to understand the scope of information spaces or to find where they 

are and where they should go to access information they need. Furthermore, this 

approach needs a huge memory to store and display the large virtual screen. 

In addition to above, the use of an expensive large and high resolution display 

does not guarantee the significant improvement of visualisation compared to a standard

display (Ware 2004). This is because of the constraint limits of our brain pixels. 

This section discusses specifically the limitations of existing hierarchical 

visualisation techniques which include both layout techniques as well as navigation and 

interaction techniques. 

1.3.4.1 Limitations of the Layout Techniques 

Although those proposed information visualisation techniques, as described at section 

1.3.1, can be used to deal with hierarchical visualisation, only a few are good candidates 

for visualising large hierarchies on a normal personal computer. The limitations of those

techniques can be summarised: 

The connection approach, such as hyperbolic tree, radial view, balloon view,

classical hierarchical tree, etc, uses node-link diagrams to present relationships 

among data. These techniques allow the viewer to directly see the relationships 

among data items as a set of graphical edges in the diagram. However, most

layouts produced by the connection approach inefficiently use of display spaces

and they usually contain many unused spaces that waste the display space. Thus 

this reduces significantly the number of nodes and edges to be displayed on the 

screen (see Figure 1.22). There are some typical connection based techniques for

visualising large hierarchies, such as hyperbolic browser, NicheWorks, and 

Internet mapping. The limitations of these techniques are further described 

below:
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o Hyperbolic browser (Lamping & Rao 1996) is an excellent focus+context 

technique for browsing large hierarchies. This technique, however, does not

use space efficiently so that it only displays information inside a circular disk 

or a sphere and it has a large portion of unused space. In addition, the 

algorithm is complex and hard to understand due to its different geometrical

background.

o NicheWorks (Wills 1999) overall gains better space efficiency compared to 

the hyperbolic browser, but this technique only supports zooming so that the 

context might be lost during navigation.

o Internet mapping (Cheswick & Burch 2002) is highly capable for very large 

tree-like structure (100,000 nodes or more). However, this technique is very 

slow so that a typical run requires 20 CPU hours on a 400 MHz Pentium.

Enclosure techniques, typically tree-maps (Johnson & Shneiderman 1991) and 

its variations (Bruls, Huizing & van Wijk 2000; van Wijk & van de Wetering 

1999) claim 100% efficiency of space utilisation. However, they do not show 

directly the relational structures of information by providing edge-links to 

connect nodes. This costs extra cognitive effort for viewers in understanding the 

relational structures that are presented in an enclosure manner (see Figure 1.10). 

Thus, investigating a new approach to overcome the above limitations of both 

approaches is essential for efficient visualisation of large hierarchies. The expected 

layout algorithms need to provide not only the solutions for optimising display space

allowing more information to be displayed in the limited display space, but it also 

retains reasonable clarity or quality of the visualisation. 

Three-dimensional visualisation methods such as cone trees (Robertson, 

Mackinlay & Card 1991), botanical tree (Kleiberg, van de Wetering & van Wijk 2001) 

and 3D hyperbolic browser (Munzner 1997) increase the density of information of the

screen by extending an extra dimensional of visual display space. However, this 

approach requires extra computational costs and possible special hardware and software 

supports, such as high speed graphic workstations with high display resolution, which 

are difficult to be applied in most ordinary personal computers. Furthermore, three-

dimensional techniques might suffer from the occlusion problem if a three-dimensional

metaphor is presented and navigated in a two-dimensional display medium.
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(a) Classical Hierarchical View (b) Radial View

(c) Balloon View (d) Hyperbolic Browser 

Figure 1.22. The inefficiency of space utilisation techniques in connection

approach.
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1.3.4.2 Limitations of the Navigation and Interaction Techniques 

As mentioned in section 1.3.2, there are three approaches for the navigation and 

interaction of hierarchies. In comparison to the above approaches, the focus+context

approach normally provides a better solution for accessing the contextual information

during navigation. To achieve this, it uses the enlarge+embedded or enlarge+blended

concept (see Figure 1.23), that usually uses a particular graphic technique such as

fisheye distortion or semantic zooming to enlarge a portion of information structure to 

form a detail view. Therefore, we sometimes call this detail view as focus view. It then 

embeds this focus view into the global view of the overall contextual information

structure for visualisation. This approach is one of the most efficient and effective 

navigation strategies in the current interactive visualisation design, and is widely used 

and commercialised in many visualisation and Graphic User Interface (GUI) tools.

However, one obvious limitation of this approach is the area division, that is the whole

geometrical area has to be divided into two parts; one for the drawing of local structure 

and another for the drawing of the rest of the global structure (see Figure 1.23). This, 

therefore, limits the display of details in the focus view. 

Global View

Detail View 

Transition

Figure 1.23. The traditional focus+context concept. 

Although many focus+context viewing techniques that have been developed and 

have worked well with medium size information spaces, the exploration of large 

information spaces becomes increasingly difficult as the volume of data grows. Most of 

the problems are related to the limited screen space of the display. A number of the 

existing focus+context techniques require the division of display space for displaying 

both global and detail views, such as (Andrews & Heidegger 1998), (Brandes &

Wagner 1997), (Cheswick, Burch & Branigan 2000), and others. Similarly, some other
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techniques also attempt to provide both global and detail views by splitting the display 

area or providing extra windows, typically called multiple-views techniques (Baldonado, 

Woodruff & Kuchinsky 2000; Convertino et al. 2003; C North 2001; Robert 1998). 

Thus, the available space left for displaying the large and complex global structure is

getting even smaller.

Despite the potential of current focus+context navigation techniques, this 

approach is still an open problem for further improvement. Thus investigating an 

alternative focus+context technique that can take advantage of the current 

focus+context viewing scheme, but avoid the limitation of the “area division” concept is

desirable. The expected new focus+context navigation technique should increase the 

area of focus view allowing more information to be displayed in this view while retains

the quality of the context view.

1.4 Challenges

The major problems with the current systems for visualising and navigating large

hierarchies may be outlined as below:

Node-link diagrams use the display space inefficiently: a large portion of screen 

pixels are used as background (see Figure 1.22). Therefore, existing systems are 

seldom able to display a global view of medium or large size information spaces 

on one screen for navigation. For example, they are unable to display a complete 

on-line file structure of Java JDK v.1.4.1 documentation with approx. 9,500 

directories and files on one screen. This blocks users from gaining an overall

view of the entire file system, and navigating the file system in a single screen 

without scrolling. A split view can show only part of the information space 

which may not contain what is needed. Furthermore, the currently visible part in 

most cases does not indicate where the user should go to locate particular data

items. Scrolling among split views will break a user’s mental map of the global 

view and create extra cognition overheads to identify connections between 

views. Thus, the first challenge of this research is: how to visualise large

relational hierarchies efficiently on a limited display space without losing its 

visualisation quality?
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The computation of layouts of large node-link diagrams with thousands of nodes 

is very expensive. Most existing graph layout algorithms have super-linear time

complexity, and in practice are too slow for the calculation of geometry if the

number of nodes is larger than a few hundred. Thus, the second challenge of this 

research is: how to find out an optimised layout algorithm that can complete the 

computation of geometrical layout of large hierarchies in minimal time, i.e. in

linear time?

Traditional focus+context techniques use the area division concept (see Figure 

1.23) to calculate the focus view. They then embed the focus view into the

global view for displaying information spaces. This limits the size of screen 

space allocated for displaying the focus view. It means that the amount of 

information that can be displayed with more details in the focus view is limited.

Thus, the third challenge of this research is: how to navigate through large

relational hierarchies effectively to access information they need?

This thesis proposes new layout and navigation techniques for the visualisation of 

large hierarchies due to these challenges. Section 1.6 describes the author’s

contributions in the area of computer science.

1.5 Research Objectives

The overall objective of this research is to investigate visualisation techniques which

address all of the problems mentioned in the challenges section. More specifically my 

research objectives are described below: 

To define a new visualisation approach that supports the space-efficient

visualisation of large relational hierarchies, which can be displayed on ordinary 

PCs with limited screen size and computational power. 

To investigate efficient layout algorithms which enable the display of many

items on a screen by maximising the utilisation of geometrical spaces, while 

retaining good readability of the visualisation. 

To investigate a navigation method that can produce a series of navigational 

focus views that can display more detailed information. 
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To investigate a navigation method that can simplify fisheye distortional views 

so that reduce the computational cost during the navigation. 

To conduct an experimental evaluation of the above layout algorithms for

aesthetics and efficient space utilisation. 

1.6 Author’s Contributions in the Thesis

The overall contribution of this thesis is the introduction of a new hierarchical

visualisation approach, space-efficient visualisation, which is the first attempt to use a 

space-efficient approach to address the problem of visualising large hierarchies. This 

approach differs from other approaches, such as the virtual page and the three-

dimensional approaches. It is one of the most cost-effective ways to solve the problem,

by which the extra hardware and software requirements for visualising large hierarchies

are minimised.

Specific contributions of this thesis are: 

A new type of hierarchical visualisation techniques, called

enclosure+connection, that inherits the advantages of both enclosure and 

connection approaches.

Two space-efficient layout algorithms, space-optimised tree and EncCon tree 

that use the area partitioning approach to lay out the node-link diagrams. Both 

algorithms can generate hierarchical layouts with not only the efficient 

utilisation of display space, but also a direct perception of the hierarchical

relationships.

A new focus+context navigation method, called hybrid view that simplifies the 

fisheye distortion to speed up the navigation.

A new focus+context navigation method, called layering view that uses 

transparent graphics to achieve the dual-layer display of information. This 

approach enables not only a full display of focus view but also a display of 

context view.
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Two practical systems have been developed as case studies, including a visual

interface in shared collaborative workspaces and a visual browser for large-

scale online auctions.

The author has also carried out an experimental evaluation to justify the 

effectiveness of the EncCon tree layout algorithm based on the aesthetic rules of 

graph drawing.

Finally, this thesis proposes a possible extension of our algorithms to three-

dimensional space, and an effective technique for the navigation of classical

hierarchical layout. 

This thesis covers the research results obtained by the author when studying for

his Ph.D. Most of the results have been published as research papers in journals and 

refereed conference proceedings (see section Author’s Publications for the Ph.D). The 

details of author’s contributions will be presented in the following chapters.

1.7 Thesis Organisation 

This thesis is organised by chapters as follows: 

Chapter 2 describes the technical detail of a new space-efficient hierarchical

visualisation including an enclosure+connection visualisation model and two 

geometrical layout algorithms, called space-optimised tree and EncCon tree. This 

chapter discusses the computational complexity of both algorithms as well as provides

examples of the visualisations resulting from the layout algorithms. An experimental

evaluation is also presented in this chapter to justify the effectiveness of the EncCon

tree layout algorithm against the popular tree-maps algorithms, especially squarified

tree-maps.

Chapter 3 describes the technical detail of two new interactive navigation 

methods, namely hybrid view, and layering view. This chapter first describes the hybrid

view technique which includes semantic zooming, browsing and distortion algorithms. It 

next presents the technical detail of the layering view technique which includes layering 

display, interactive navigation and animation.



Chapter 1 - Introduction 38

Chapter 4 shows the detail of a practical application which has been developed as 

a case study. This application is a visual interface in shared collaborative workspaces 

and a visual browser for large-scale online auctions.

Chapter 5 also describes another practical application in e-commerce. The system

applies layout and navigation algorithms for browsing and analysing product catalogues

of large-scale online auctions. 

Chapter 6 describes a preliminary work of the extension of the layout algorithms

to three-dimensional space. This chapter also shows an effective technique for the 

navigation of classical hierarchical layout. 

Chapter 7 concludes this thesis by giving a summary of the points presented, the 

contributions made, and the possibility of future work. 



Chapter 2 Space-Efficient Visualisation

This chapter describes the technical detail of a new space-efficient hierarchical 

visualisation including an enclosure+connection visualisation model and two 

geometrical layout algorithms, the space-optimised tree and the EncCon tree, that are 

the core of this new visualisation. Essentially, the enclosure+connection visualisation 

uses the area partitioning to recursively lay out the entire hierarchy while a node-link 

diagram is also used to present the hierarchical relationships explicitly. The layout

algorithms used in this visualisation can maximise the utilisation of display space. 

These layout algorithms calculate the position of a node-link diagram based on its 

weight property. 

This chapter also discusses the computational complexity of both layout 

algorithms and some example layouts generated by these algorithms. A comparison of 

area partitioning algorithms between EncCon tree and tree-maps (including squarified,

strip and slice and dice tree-maps) is then discussed. Finally, we present an 

experimental evaluation of two ‘square-like’ partitioning algorithms: EncCon tree and 

squarified tree-maps. This evaluation is conducted based on four typical aesthetic rules 

of graph drawing including edge crossings, angular resolution, total edge length, and 

uniform edge length.

2.1 The Enclosure+Connection Visualisation Model 

The enclosure+connection visualisation takes the advantages of both the ordinary 

enclosure and connection visualisation approaches. Particularly, it inherits the area 

partitioning technique from the enclosure approach to ensure the maximum utilisation 

of geometrical space for displaying trees, while still uses a node-link diagram to 

represent the relational structures explicitly to reduce the cognition overhead. The steps 

of constructing such visualisation can be described as below: 

Step1 – calculate an associated weight for every vertex v in the tree T. A weight 

is a value associated with the property of a vertex. The weight of a vertex might 

be dependent to the domain-specific attributes of that vertex such as the size of a 
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file or an object, the role of a person in an organisation, etc. In this thesis, the 

weight of a vertex is simply defined based on the numbers of its descendants. 

The system calculates the weights of all vertices before starting the geometrical 

partitioning of the hierarchy. 

Step 2 - recursively partition the entire display area into a set of sub-display 

areas, called local regions, and then assign these local regions to every vertex in 

the tree T. Each vertex vi is bounded by a local region R(vi) and the drawing of 

the sub-tree T(vi) is restricted to inside the geometrical area of R(vi). Therefore, 

the local region R(vi) of vertex vi is the sum of the areas assigned to its children. 

The size of a local region R(vi) is depends on the value of weight associated with 

the vertex vi.

Step 3 - position all vertices and their sub-trees inside their display local regions. 

In most cases, the position of a vertex is simply located at the centre of its local 

region. The layout algorithm, which is responsible for positioning of all the 

vertices {v1, v2, …,vn} of the given tree T in a two-dimensional geometrical 

space, is governed by a particular area partitioning algorithm described in step 2.  

Step 4 - assign the graphical attributes, including the size, label, shape, and 

colour to all vertices and edges based on their levelling property in the 

hierarchy. Under the enclosure+connection visualisation scheme, the local 

region assigned to a child vertex is always smaller than the one assigned to its 

parent. Therefore, in order to display the complete hierarchical structure with 

thousands of vertices and edges in a limited display space, we assign different 

graphic properties to vertices and edges at different levels of the hierarchy. For 

example, the closer to the root, the larger size of graphical nodes and the wider 

of links are. This rule improves the clarity of the presentation of hierarchical 

structure by avoiding overcrowded and overlaps among graphical nodes and 

links. We then display the visualisation on the screen. 

2.2 Weight Calculation 

We assign a weight w(v) to each vertex v for the calculation of the local region R(v) that 

relates to the regions of its father and siblings. There are many ways to define the 
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weight of a vertex, and one way to do it is based on the vertex property. This thesis,

however, defines the weight of a node simply based on its descendant. The calculation 

of nodes’ weights is independent to the layout algorithms and this process starts before 

the geometrical partition. Weights of vertices are calculated before starting the 

partitioning of geometrical layout. The layout algorithms of both space-optimised tree

and EncCon tree will then partition the geometry based on the weights of nodes. 

Each vertex vi in tree T is associated with a weight w(vi) and thus we have a set of 

weights {w(v1), w(v2), …, w(vn)} associated with the vertex set {v1, v2, …,vn} in T. The

set of vertex’s weights can be calculated recursively from leaves in the following rules:

If a vertex v is a leaf, its weight is defaulted as w(v) = 1. 

If vertex v has k children {vl+1, vl+2, …, vl+k}, its weight is calculated by using 

formula:

k

i
ilvwCvw

1
)(1)(

Equation 2.1

where C is a constant (0 < C < 1), and w(vl+i) is the weight assigned to the ith child 

of vertex v. Constant C is a scalar that determines the difference of local regions’ sizes 

based on the number of descendants of these vertexes. In other words, the larger the C’s 

value is, the bigger the difference of local regions R(v) of vertices with more 

descendants and vertices with fewer descendants. Figure 2.1 is an example of space-

optimised tree’s area division with a small dataset, using different C’s values. Similarly,

Figure 2.2 also shows an example of EncCon tree’s area division with another small 

dataset, using different C’s values. We can see that in Figure 2.1a and Figure 2.2a, the 

differences among local regions are much larger than those in Figure 2.1b and Figure 

2.2b, respectively. 

The value of constant C can be adjusted to ensure the best performance in each

application. In general, the layout-optimised tree performs well with C = 0.6 for the first

approach and C = 0.45 for the second approach. The EncCon tree layout algorithm

produces overall good results with C = 0.45. 
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(a) (b)

Figure 2.1. An example of space-optimised t ee’s area partitioning.r

Using (a) C = 0.6 and (b) C = 0.1. 

(a) (b)

Figure 2.2. An example of EncCon tree area partitioning.

Using (a) C = 0.45 and (b) C = 0.1. 
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2.3 Space-Optimised Tree 

The geometrical drawing D(T) of a tree T is responsible for the positioning of a set of 

vertices {v1, v2, …, vn} and the computation of polygonal local regions {R(v1), R(v2), …, 

R(vn)} for the drawing of sub-trees {T(v1), T(v2), …, T(vn)} in a two-dimensional plane. 

In general, the space-optimised tree uses enclosure approach to partition the 

geometrical display in which each vertex vi is bounded by a polygonal local region 

R(vi). The area of R(vi) is equal to the sum of the areas of its children. The drawing of a 

sub-tree T(vi) is restricted within the boundary of the polygon R(vi) (see an example in 

Figure 2.1). A geometrical layout of sub-tree T(vi) rooted at vi is calculated based on the 

weight w(vi) of vi and its local region R(vi).

We initially define the local region R(vr) for root vertex vr as the entire rectangular 

display area, and then we position root vr at the centre of R(vr). Then, all other local 

regions {R(v1), R(v2), …, R(vn)} are calculated in sequence from the root outward to the 

leaf vertices. Suppose that we want to calculate the region R(vi) of the sub-tree T(vi)

rooted at vi which has k children {vl+1, vl+2, …,vl+k}. The geometrical portioning of these 

child vertices is generally defined by the process:

We first calculate local regions {R(vl+1), R(vl+2), …, R(vl+k)} for the children  

{{vl+1, vl+2, …,vl+k}}.

We then calculate positions of vertices {vl+1, vl+2, …,vl+k} that are inside their 

local regions {R(vl+1), R(vl+2), …, R(vl+k)}.

We repeat the above steps to all sub-trees from the top to the bottom of the tree 

hierarchy and stop when all leaves of the tree are reached. 

We ignore the layout calculations for those sub-trees when local regions of these 

sub-trees are too small to be displayed by the current screen resolution. 

We eventually get R(vi) = R(vl+1)  R(vl+2)  …  R(vl+k).

There are two approaches for the local area division in the space-optimised tree.

The detail of both approaches is described in the following sections. 
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2.3.1 Local Area Partition – Approach 1 

Suppose that a vertex vi has k children {vl+1, vl+2, …,vl+k} located in a local region R(vi).

The polygon R(vi) is already defined and we want to divide R(vi) into sub-regions

{R(vl+1), R(vl+2), …,R(vl+k)} for the drawings of sub-trees {T(vl+1), T(vl+2), …, T(vl+k)}.

Wedges are used to calculate the local regions of vertices as well as their geometrical

positions. In this approach, a wedge is defined and calculated in the following

subsections:

2.3.1.1 Wedge Calculation 

Formally, the wedge of the child vertex vl+m is defined as wg(vl+m) = {vi, l, (vl+m)}

where vi is the father of vl+m and l is a straight line going through vi (that determines the 

boundary of vertex vl+m  and its nearest sibling) and anti-clockwise angle (vl+m) of the 

wedge (see Figure 2.3). 

Figure 2.3. A wedge wg(v).

The angle (vl+m) of the wedge wg(vl+m) of the mth child is calculated by the

formula below: 
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Equation 2.2
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where A is a constant and w(vl+j) is the weight associated with vertex vl+j. The

value of A can be adjusted to produce the variations of layout. However, the prototype

assigns the entire circular degree to A, i.e. A = 360, in all its demonstration.

We repeat the above calculation to get a set of wedges {wg(v1), wg(v2), …, w(vn)}

associated with every vertex in tree T. These wedges determine the area division of 

local regions which is described in the next section. 

2.3.1.2 Local Region Division 

A local region R(vl+m) of the mth child vertex of vi consists of a wedge wg(vl+m) and one 

(or more) cutting edge(s) intersects with the boundary of polygonal local region T(vi)

(see Figure 2.4). Thus, R(vl+m) of vertex vl+m is calculated as soon as the wedge wg(vl+m)

is defined. The local region R(vl+m) contains the drawing of a sub-tree T(vl+m) and a 

directed edge (vi, vl+m) where vi is the father of vl+m.

Figure 2.4. A local region R(v).

Suppose that R(vi) is the local region of vertex vi, and vi has k children {vl+1, vl+2,

…, vl+k}. The wedges of these child vertices are respectively {wg(vl+1), wg(vl+2), …, 

wg(vl+k)}. The local regions of the child vertices {R(vl+1), R(vl+2), …, R(vl+k)} are 

respectively polygons that are formed by the intersection of {wg(vl+1), wg(vl+2), …,

wg(vl+k)} and R(v), R(vl+1), R(vl+2), …, R(vl+k-1). Figure 2.5 shows an example of 

dividing vi’s local region into four sub-regions for its children {vl+1, vl+2, vl+3, vl+4}. The 

local region R(vi) of vi is a pentagon and { (vl+1), (vl+2), (vl+3), (vl+4)} are

respectively the angles of wedges {wg(vl+1), wg(vl+2), wg(vl+3), wg(vl+4)}. This figure

also indicates that the weight of vertices increases in order respectively {vl+4, vl+1, vl+2,

vl+3}.
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Figure 2.5. An example of partitioning vl’ s local region into four sub-regions. 

2.3.2 Local Area Partition – Approach 2 

This section presents a variation of the local area partition’s algorithm for space-

optimised trees. Similar to the first approach, this technique also partitions the local

areas of vertices using on wedges. However, a wedge, in this approach, is now then 

redefined so that the areas of local regions are dependant to the weight of vertices. This

approach aims to produce better layout in terms of space optimisation, consistency of 

the layout and the balance of visualisation. Nevertheless, this technique is slightly more

computational-expensive compared to the original algorithm. Detail of this approach is

described below. 

The new partitioning algorithm follows the same process as the approach 1. The 

weight w(v) of a vertex v is calculated with the same formula (see Equation 2.1), but the 

constant C is assigned to 0.45 instead of 0.6 in this approach. The second approach also 

uses a wedge to define the local region and position of a vertex. The calculation of the

local region can be found at section 2.3.1.2. As from section 2.3.1, the first layout 

algorithm divides the boundary polygon by using wedges where the wedges’ angles are 

dependent on the weight of vertices. Thus, the actual areas of polygonal local regions

might not be proportional to the wedges’ angles (or vertices’ weights) because of the

different property between an angle and style of a polygon. This approach, however, 

partitions the boundary polygon into sub-polygons where the areas of these sub-

polygons are dependent on the weight of vertices.
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Suppose that A(vi) is the area of local region R(vi) at vertex vi, and v has k children

{vl+1, vl+2, …, vl+k} and their wedges are respectively {wg(vl+1), wg(vl+2), …, wg(vl+k)}.

The local regions of the child vertices {R(vl+1), R(vl+2), …, R(vl+k)} are respectively 

polygons that are formed by the intersection of {wg(vl+1), wg(vl+2), …, wg(vl+k)} and 

R(v), R(vl+1), R(vl+2), …, R(vl+k-1) have areas of {A(vl+1), A(vl+2), …, A(vl+k)}

respectively. The value of A(vl+m) of the mth child is calculated by the formula: 
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Equation 2.3

The area A(vl+m) of the local region R(vl+m) is dependent on the area magnitudes A(vi) of 

its parent’s local region as well as the weight of vertex vl+m. In other words, a wedge

does not use its angle  to define the size of a local region, but this size is calculated

based on the weight ratio of the vertex and its siblings. This algorithm ensures that the 

local region’s area of a vertex is proportional to its weight. 

Examples of layouts produced from both approaches on several datasets are 

presented at section 2.3.6. 

2.3.3 Vertex Positioning

This section describes the technical detail of how to define the vertex position inside its

polygonal local area. The position of vertex vi is computed after the calculation of local 

region. Suppose that the local region R(vl+m) of the mth child vertex of vi is already 

defined. The next step will calculate the position of the child vertex vl+m.

Firstly, the algorithm finds a point Q in the polygon R(vl+m) of vertex vl+m that the 

straight line connecting Q and its father vertex vi divides the polygon R(vl+m) into two 

halves of the same area. Next step is to define the position of vertex vl+m from point Q.

This position can be anywhere on the segment from the father vertex vi to point Q and it 

can be adjusted in order to optimise the visualisation for each type of applications. We, 

however, decide to position the vertex vl+m simply at the midpoint of the segment in the

prototype demonstration (see Figure 2.6). In the special case, when vertex vi has only 

one child vl+1, this means its local region and the child’s local region are the same. The 



Chapter 2 - Space-Efficient Visualisation 48

system will define the position of the child vertex vl+1 in the segment from vi to point Q.

In this case, vi is not a vertex of the local region polygon but a point inside the polygon. 

The detailed process of finding point Q is described in following paragraphs. 

Figure 2.6. An example of positioning a vertex in its local region. 

Suppose that R is a local region polygon that has n vertices {A1, A2, …, An}, we 

need to find a point Q on a polygon R that the segment A1Q divides R into two small

polygons of equal area. There are several possible ways to calculate the position of 

point Q. We just describe in detail a solution of finding the position Q.

From the first vertex A1 of R, we divide the polygon R into several triangles

namely {A1A2A3, A1A3A4, …, A1Ak-1Ak, …, A1An-1An}. The area of polygon R is the sum 

of total areas of triangles A1A2A3, A1A3A4, …, A1Ak-1Ak, …, A1An-1An. The next step is to 

find the side-edge in R that point Q lies on, called AjAj+1. This process can be executes

linearly via the summation of area of these triangles and finishes when the sum of areas 

of triangles A1A2A3, A1A3A4, …, A1Aj-1Aj is less than half of the area of R and sum of 

areas of triangles A1A2A3, A1A3A4, …, A1Aj-1Aj, A1AjAj+1 is greater or equal to half of the 

area of R. When the side-edge AjAj+1 has been found, the next step is to compute the 

position of Q on AjAj+1. This process can be narrowed as finding a point Q on a side

AjAj+1 of the triangle A1AjAj+1 which the areas of triangles A1AjQ and A1AjAj+1 are

already known. The position of point Q can be easily calculated using geometrical
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formulas found in most of popular geometry books. Figure 2.6 shows an example of the 

positioning of a vertex via point Q.

2.3.4 Graphical Properties for Displaying Space-Optimised Tree 

In order to display the complete hierarchical structure of space-optimised tree thousands 

of vertices and edges in a limited display space, we assign different node sizes to 

vertices at the different levels, and also assign different link thicknesses to   edges at the 

different levels of the hierarchy. Particularly the closer to the root, the larger the node 

size and the wider of edges are. It is quite possible in our visualisation that some nodes 

and edges might be graphically invisible if they are in the lower levels of the hierarchy. 

This improves the clarity of the presentation of hierarchical structure by avoiding 

overcrowded and overlaps among graphical nodes and links. We then display the 

visualisation on the screen. These graphical properties can be adjusted via an interactive 

menu to suit with user’s preference of viewing. 

2.3.5 Computational Complexity of the Algorithm 

The computational time for running the above two layout algorithms (approach 1 and 

approach 2) involves the cost of three separate processes including calculating the 

weights of all vertices, partitioning the local regions of all vertices, and positioning all 

vertices on the geometrical area. The process of calculating the weights of all vertices 

involves a post-order traversal through the tree. This means that all nodes are visited 

only once so the running time for this step is linear. The other two processes, computing 

the bounded polygons and the location of all vertices, are mixed in sequence. In other 

words, the layout algorithm partitions the local region of a vertex, and then locates the 

position of this vertex inside the local region; and so on for other vertices. This 

composite process involves an in-order traversal through the tree which is also linear. 

The sum of these linear processes is also linear. As a result, the total computational 

complexity of the space-optimised tree layout algorithm is linear or O(N). 
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2.3.6 Examples of the Space-Optimised Tree’s Visualisation 

Figure 2.7 through Figure 2.10 show examples of applying the space-optimised tree

layout algorithm on various datasets. These figures illustrate the layouts generated by 

both approaches in which images labelled (a) show the layout generated by approach 1 

and images labelled (b) show the layouts generated by approach 2. These figures are 

screen dumps collected from a personal computer with the hardware specification of 

800 Mhz CPU, 256 Mbs RAM, 17 inches monitor at 1024x768 resolution. The sizes of 

the figures’ display spaces are all 750x750 pixels. 

Figure 2.7 shows the visualisation of a medium large size dataset of 

approximately 170 nodes where viewers can easily see all data items and 

relations among nodes. The running times of the figures in both approaches are 

less than a second. 

Figure 2.8 shows the visualisation of an entire file system of approximately 

3,700 directories and files. Note that the positions of vertices in this figure are 

slightly modified so that the leaf vertices locate two-third in the segments 

instead of at the middle (see section 2.3.3). This figure shows clearly that three 

directories in this file system contain many more sub-directories and files than 

others. The typical running time of the Figure 2.8 is approximately 6 seconds.  

Figure 2.9 shows the visualisation of a very large uniform data structure of 

approximately 22,000 nodes. This figure presents well the uniform property of 

the dataset which each non-leaf node has four children. The typical running time 

of the Figure 2.9 is approximately 2 minutes and 45 seconds. 

Figure 2.10 shows the visualisation of a huge relational dataset of approximately 

50,000 nodes. Overall, the amount of data does not significantly affect the 

display of the overall tree structure by using our layout technique. The typical 

running time of the Figure 2.10 is approximately 7 minutes. 

These examples illustrate the high capability of our technique for visualising large 

hierarchical structures for various datasets. 
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(a)

(b)

Figure 2.7. An example of a medium large dataset of approximately 170 nodes. 

That uses algorithms from respectively (a) approach 1 and (b) approach 2.
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(a)

(b)

Figure 2.8. An example of a file system with approximately 3,700 nodes. 

That uses algorithms from respectively (a) approach 1 and (b) approach 2. 
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(a)

(b)

Figure 2.9. An example of a uniform dataset of approximately 22,000 nodes.

That uses algorithms from respectively (a) approach 1 and (b) approach 2. 
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(a)

(b)

Figure 2.10. An example of a huge dataset of approximately 50,000 nodes. 

That uses algorithms from respectively (a) approach 1 and (b) approach 2. 
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2.4 EncCon Tree 

EncCon tree is an alternative enclosure+connection approach for visualising and 

navigating large hierarchical information in a two-dimensional space. EncCon tree

layout algorithm inherits the advantage of space-optimised tree or SO-Tree (see section 

2.3) that maximises the utilisation of display space by using connection approach. 

However, this technique uses a rectangular division method for partitioning the layout, 

rather than a polygonal partitioning method used in the SO-Tree. This partitioning 

concept aims to provide users a more straightforward way to perceive the relational 

information. The detailed technical specification of the EncCon tree is now further 

described.

EncCon tree layout algorithm is responsible for the positioning of a set of vertices 

{v1, v2, …, vn} of a tree T and the computation of rectangular local regions {R(v1), R(v2), 

…, R(vn)} for the drawing of sub-trees {T(v1), T(v2), …, T(vn)} in a two-dimensional 

plane. Similarly to the space-optimised tree, the EncCon tree also uses enclosure 

approach to partition the geometrical display which each vertex vi is bounded by a 

rectangular local region R(vi). The area of R(vi) is equal to the sum of the areas of its 

children. The drawing of a sub-tree T(vi) is restricted within the boundary of the 

rectangle R(vi) (see an example in Figure 2.2). A geometrical location of sub-tree T(vi)

rooted at vi is calculated based on the weight w(vi) of vi and its local region R(vi). The 

local regions produced by the EncCon tree are square-like rectangles.

Squarified tree-maps (Bruls, Huizing & van Wijk 2000) also aims to produce 

square-like rectangles and it produces similar space partitioning  outcomes as the 

EncCon tree does. Therefore, the partitioning outcomes produced by the squarified tree-

maps also satisfy the space partitioning requirements of the EncCon tree visualisation. 

However, technically these two approaches are different. The EncCon tree partitioning 

algorithm places the local regions around four sides  (east-south-west-north) of the 

parent rectangle in a circular manner (see Figure 2.11a), while most of other space-

filling algorithms including the squarified tree-maps partition rectangles in a vertical-

horizontal manner as illustrated in Figure 2.11b. This partitioning algorithm ensures the 

efficiency of space utilisation as most of the space-filling approaches do. This process 

also aims to enhance a good distribution of nodes and edges of a given node-link 

diagram in its rectangular local region. 
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Figure 2.11. Diagram of partitioning direction.

Diagram (a) shows the partitioning direction in EncCon tree and diagram (b) 

shows the partitioning direction in squari ied tree-maps.f

The geometrical position of a sub-tree T(vi) rooted at vertex vi is calculated based

on the properties of vi and  its local region R(vi). Each vertex is associated with a weight

and the size of vertex’s local region is calculated proportionally to its weight. The

process of weight calculation is independent to layout algorithm and is executed before 

the geometrical partitioning. Algorithm for calculating vertices’ weights is described at 

section 2.1. The partitioning algorithm is firstly illustrated from an example presented in 

the next subsection. 

2.4.1 An Example of the Partition 

Suppose we have a rectangle R with width = 6 and height = 4, we need to divide this 

rectangle into 5 sub-rectangles {R1, R2, R3, R4, R5} whose weights are respectively {4, 4, 

2, 1, 2}. The starting partitioning side is assumed at the left-hand side. The weight of 

this rectangle is 13 which equals to the sum of the weights from the above sub-

rectangles.

The first step is to add a single rectangle with weight = 4 into the first partitioning side, 

i.e. left-hand side. This step produces a rectangle R1 whose width and height are 

respectively Width(R1) = 4*6/13 = 1.85 and Height(R1) =  4. Next, we add the second 

rectangle R2 (weight = 4) below the first rectangle R1, i.e. they both share the common 

left-hand side from rectangle R. These two rectangles will have the same dimension
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respectively of Width(R1) = 8*6/13 = 3.69, Height(R2) = 4*4/8 = 2, and Width(R2) =

8*6/13 = 3.69, Height(R2) = 4*4/8 = 2. The third step tries to insert the third rectangle

R3 (weight = 2) below rectangle R2. However, this process is dismissed because the 

rectangle R3 is too thin whose width and height are respectively Width(R3) = 10*6/13 =

4.62 and Height(R3) = 2*4/10 = 0.8. We now start the second partitioning circle, which 

the partitioning side moves from the left-hand side to the top side. The remaining

rectangle for the partitioning now has width and height of 2.31 and 4. These steps are 

repeated on other sides of the remaining rectangle until all sub-rectangles {R1, R2, R3,

R4, R5} are placed inside the large rectangle R (see Figure 2.12). We next describe the

technical details of the partitioning algorithm.

Figure 2.12. An illustrated example of the partitioning process.

2.4.2 Local Region Partition 

Similarly to space-optimised tree, this algorithm firstly defines the local region R(vr) for 

root vertex vr as the entire rectangular display area, and then the root vr is positioned at 

the centre of R(vr). Then, all other local regions {R(v1), R(v2), …, R(vn)} are calculated in
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sequence from the root outward to the leaf vertices. The sequence of this partitioning 

process is also described at section 2.3. 

Suppose that the rectangular local region R(vi) of vertex vi is already defined, and 

the position of vertex vi is at the centre of R(vi). We then need to calculate the local

regions {R(vl+1), R(vl+2), …, R(vl+k)} for all the child vertices {vl+1, vl+2, …, vl+k} of vi.

This partitioning ensures that the size of rectangle R(vl+i) of vertex vl+i is proportional to 

its weight w(vl+i). The further description of the partitioning of a rectangle R(vi) into 

sub-rectangles {R(vl+1), R(vl+2), …, R(vl+k)} is as below. 

Assumably, the vertex µ is the parent of vertex vi. We firstly find a side on 

rectangle R(vi), called initial-side, where vector i  cuts the rectangle R(vi) or where it

is closest to the vertex µ if vector i  does not cut the rectangle. If vi is the root vertex 

then its initial-side is defaulted as the bottom-side of R(vi). When the initial-side of 

rectangle R(vi) is defined, the algorithm starts it partitioning. This process starts on the

opposite side of the defined initial-side, and the partitioning is applied respectively to all

four sides of R(vi) in a clock-wise direction. This procedure is shown in Pseudo Code 

2.1:

procedure rectangle-partition(array children, rectangle div-rect) 

begin

rectangle remaining-rect := firstside-partition(children, div-rect);

if remaining-rect != null then

      remaining-rect := secondside-partition(get_remaining_chidlren(), remaining-rect);

if remaining-rect != null then

         remaining-rect := thirdside-partition(get_remaining_chidlren(), remaining-rect);

if remaining-rect != null then

            remaining-rect := fourthside-partition(get_remaining_chidlren(), remaining-rect);

fi

fi

fi

return remaining-rect; 

end

Pseudo Code 2.1 
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On each side of rectangle R(vi), the partitioning creates and fills in m (m  k) sub-

rectangles {R(vl+s+1), R(vl+s+2), …, R(vl+s+m)} with the same width (or height depending 

on which side). This property is formulated as: 

))((...))(())(( 21 mslslsl vRWidthvRWidthvRWidth  or 
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Equation 2.4

These sub-regions will form a larger rectangle inside R(vi), and thus also leave a

rectangular non-partitioned area (see Figure 2.13). This non-partitioned rectangle (or 

also called remaining rectangle RR(vi)) will be reused for the next partitioning at the 

next side of R(vi). This means that for the partitioning at the next side, R(vi) is now 

considered as RR(vi), and before the partitioning RR(vi) = R(vi). The value m is 

determined by the size of the R(vi) (or RR(vi)) as well as the constraint of smallest ratio

l+s+j  (1 j m) of all ratios { l+s+1, k+s+2,…, k+s+m}, where we have: 
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Equation 2.5

Suppose that the partitioning is at a side of the remaining rectangle. The 

algorithm firstly checks the numbers of vertexes that can be added into this side. This

aims to maximise the value m, but also ensure that every sub-rectangle at the partitioned

side is roughly square, which must satisfy the Equation 2.6: 

jsk
1

Equation 2.6

where  is a constant and  = 1.5 in our prototype implementation. The checking 

process to find out the smallest ratio l+s+j is quite computationally expensive. In order 

to reduce this computational cost, the layout algorithm only checks the ratio l+s+m of 

the last child’s rectangular local region. Since all the vertices are initially sorted in 
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ascendant order of weight, the ratio l+s+m is also the smallest ratio of all { l+s+1,

k+s+2,…, k+s+m}.

As above, there are m child vertices {vl+s+1, vl+s+2, …, vl+s+m} of vertex vi which

need to be added into a side of the remaining rectangle RR(vi)  inside the rectangular

local region R(vi), with respective sub-regions {R(vl+s+1), R(vl+s+2), …, R(vl+s+m)}.

Suppose that the width-side of sub-rectangles {R(vl+s+1), R(vl+s+2), …, R(vl+s+m)} is same

as the direction of the current partitioned side in RR(vi); the length of partitioned side in 

RR(vi) is l1 and the length of the other side is l2. Then the width and height of a rectangle

R(vl+s+j) are calculated respectively by the following formulas:
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Equation 2.8

Where w(v) is the weight of vertex v, and thus w(vk+s+j) is the weight of vertex 

vk+s+j which is already calculated from section 2.1. w(RR(vi)) is the weight of the 

remaining rectangle RR(vi). w(RR(vi)) is initially defined as the sum of total weight of 

all the children {vl+1, vl+2, …, vl+k} which is also the weight of rectangle R(vi). The value

of w(RR(vi)) after this partitioning is calculated by formula:
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Equation 2.9

The above formulas ensure the size of rectangular local area of each vertex is 

proportional to its weight or the numbers of descendants. This partitioning repeats

around 4 sides of the rectangle R(vi). Figure 2.13 illustrates an example of the 

partitioning on the left side of a remaining rectangle.
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l2

R(v1+s+1)

R(v1+s+n)

l1

Height(R(vk+i))

The remaining

rectangle after

the partitioning

Width(R(vl+s+n))

R(v1+m)

Figure 2.13. An example of the partitioning on the left side of the rectangle.

However, this division might not complete because the ratio of width and height 

of a particular rectangle from Equation 2.5 does not satisfy the constraint of Equation 

2.6. This means that after the partitioning (all around 4 sides), there are still a number of 

non-partitioned child vertices and the remaining rectangle is not empty. This thesis

proposes two approaches to solve this problem.

2.4.2.1 Local Region Partition - Approach 1 

The initial weight w(R(vi)) of the rectangle R(vi) increases slightly, so that the total 

weight of all children {vl+1, vl+2, …, vl+k} is less than w(R(vi)). This also means, initially 

the weight of remaining rectangle RR(vi) (also initially is R(vi)) is greater than the sum

of weights of all child vertices. Then, the partitioning around four sides of the rectangle

are reprocessed (see Pseudo Code 2.1). If this partitioning still does not complete

because of the constraint of Equation 2.6, the initial weight w(R(vi)) continues to 

increase and all the above steps are repeated until all the sub-rectangles are fitted inside

the rectangle R(vi). The above steps ensure all the sub-rectangles are placed circularly 

around four sides of the R(vi). Thus, the aesthetics of the overall enclosure layout is

retained. Nevertheless, this approach also looses the utilisation of display space there

might be unused space inside the partitioned rectangles. Figure 2.14 shows an example 



Chapter 2 - Space-Efficient Visualisation 62

of a layout of a medium-large dataset using this approach. This approach is formally

defined as procedure below: 

procedure partition (array children, rectangle div-rect) 

begin

rectangle remaining-rect = rectangle-partition(children, div-rect);

if remaining-rect != null then

      div-rect.weight := C*div-rect.weight; /* C is a constant to increase the weight*/

      partition(children, div-rect);

fi

end

Pseudo Code 2.2 

Figure 2.14. An example of EncCon tree visualisation using approach 1. 
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2.4.2.2 Local Region Partition - Approach 2 

In this approach, the partitioning continues to execute at the remaining rectangle RR(vi) 

until all local regions of remaining child vertices are fitted inside the rectangle R(vi). 

This means that the partitioning procedure (see Pseudo Code 2.1) is repeated where the 

partitioned rectangle is now the remaining rectangle RR(vi) and the list of children are 

remaining vertices. If this step still does not complete, the above procedure is repeated 

until all the sub-rectangles are fitted inside the rectangle R(vi). The constraint of 

Equation 2.6 is not applied to the procedure of partitioning to the last node on the side. 

This property ensures the partitioning loop is finite.  

The above algorithm ensures 100% space efficiency. However, it also does not 

ensure that all the sub-rectangles are placed circularly around four sides of a rectangle. 

Thus, it might also reduce the aesthetics of the overall enclosure layout in comparison 

with the first approach. This approach works best with the list of vertexes in ascendant 

order of weight. Thus, the list of all vertices {v1, v2, …, vn} is sorted in ascendant order 

of weights. This step is executed before starting the partitioning of the sub-regions for 

these vertices. Figure 2.15 shows an example of a layout of a medium-large dataset 

using approach 2; this example uses the same dataset as in Figure 2.14. The second 

approach is formally defined as produce below: 

procedure partition (array children, rectangle div-rect) 

begin 
   rectangle remaining-rect = rectangle-partition(children, div-rect); 

   if remaining-rect != null then 

      partition(get_remaining_chidlren(), remaining-rect);  

      fi 
end 

Pseudo Code 2.3 
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Figure 2.15. An example of EncCon tree layout using approach 2. 

2.4.3 Graphical Properties for Displaying EncCon Tree 

The design rule and the assignments of graphical properties to nodes and links in 

EncCon tree is similar to those we used in space-optimised tree (see section 2.3.4). 

Therefore, we skip the full description of this step. 

2.4.4 Computational Complexity of the Algorithm 

The computational time for running the above EncCon tree layout algorithms (approach 

1 and approach 2) involves the cost of three separate processes including the weight 

calculation of all vertices, nodes sorting, and the local regions partitioning of all 

vertices. Similarly to space-optimised tree, the process of calculating the weights of all 

vertices involves a post-order traversal through the tree. This means all nodes are visited 

only once so the running time for this step is linear. The sorting process involves all 
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children of a vertex. We used the quick sort algorithm which has the complexity of 

Nlog(N). This sorting process is independent to the partitioning algorithm and it runs 

before the partitioning step. The partitioning process uses an in-order traversal through 

the tree so that the local region of a node is defined before partitioning the local regions 

for its children. In detail, at each node, the layout algorithm calculates the local regions 

of all its children around the sides of the node’s rectangular local region until all the 

children’s local regions are fitted inside the rectangle.  

The computational cost for the partitioning at each side involves the adding of m 

children into the side. This step includes the process of counting the number of child 

vertices that can be added into the side, the process of calculating the width and height 

of each local region and finally the weight of the remaining rectangle after the 

partitioning. The process of counting the number of children has m steps to ensure the 

ratio of width and height a rectangle satisfies Equation 2.6. Each step uses a constant 

processing time because the algorithm only needs to check the ratio of the last child (see 

section 2.4.2). Thus, total processing time for partitioning m child vertices at the side of 

the rectangle is mC where C is a constant. 

The computational cost of rectangle partitions includes the cost of the partition 

around four sides of the rectangle (see Pseudo Code 2.1). Suppose that {m1, m2, m3, m4} 

are respectively the numbers of children that can be added into each side of the 

rectangle. The layout algorithm only adds the child vertices inside their father’s local 

region, thus we have: m1 + m2 + m3 + m4 ≤ k, where k is the total numbers of children of 

the vertex. Thus, the processing time for partitioning k children into a given rectangle is 

less than kC. In other words, the worst case for running Pseudo Code 2.1 is kC. 

This thesis proposes two approaches for this partitioning whose procedures are 

described respectively at Pseudo Code 2.2 and Pseudo Code 2.3. The computational 

complexity of each algorithm is described below. 

• The first approach increases the weight of the remaining-rectangle and repeats 

process from Pseudo Code 2.1. This process stops when all the local regions of 

the child vertices are inserted properly inside the large rectangle. There are finite 

repetitions of the above processes. Thus, the computational cost in worse case 

for this approach is rkC, where r is the repeating times for the recalculation from 

Pseudo Code 2.1 and r is finite. This partitioning involves the in-order traversal 

through the tree where each node is visited only one. Consequently, the total 
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cost for partitioning the entire tree hierarchy can be considered as rnC, where r 

is a finite number indicating the repeating times and n is the number of vertices. 

In other words, this computational cost of this approach is linear or O(N). 

• The second approach continues the process from Pseudo Code 2.1 for the 

remaining rectangle and non-partitioned children and so on. This loop exists 

when all the local regions of the child vertices are added inside the large 

rectangle. Thus, the computational cost for this approach is the sum of {k1C + 

k2C + …+ knC}, where ki is number of children that can be added inside a 

remaining-rectangle. Obviously, we know that the sum of k = {k1 + k2 + …+ kn} 

is also the numbers of the child vertices. Similarly to approach 1, the partitioning 

involves the in-order traversal through the tree; therefore, the total cost for 

partitioning the entire tree hierarchy is as nC, where n is the number of vertices. 

In other words, this computational cost of this approach is also linear or O(N). 

The sum of weight calculation and partitioning processes are also linear. Although 

the sorting algorithm is not linear, it is independent to the partitioning process. 

Therefore, regardless this sorting process, the total computational complexity of the 

EncCon tree layout algorithm is linear or O(N). 

2.4.5 Examples of the EncCon Tree 

 Figure 2.16 through Figure 2.21 are examples of applying the EncCon tree layout 

algorithm on various datasets. From the experiments, approach 2 often produces more 

efficient and better layouts than approach 1 does. Thus, the algorithm from second 

approach is used in most of our applications. Figure 2.16 and Figure 2.17 are examples 

of approach 1. And Figure 2.18 to Figure 2.21 are four examples of approach 2. All 

these figures are screen dumps collected from a personal computer with the hardware 

specification of 800 Mhz CPU, 256 Mbs RAM, 17 inches monitor at 1024x768 

resolution. The sizes of the figures’ display spaces are all 750x750 pixels. 

• Figure 2.16 shows the visualisation using approach 1’s algorithm of a large file 

system of approximately 2,750 directories and files. This figure shows clearly 

the abstract view of the file system, such as the directory ‘LiveNet’ contains a 

folder with very large numbers of files (at the near bottom of the figure). The 

typical running time of this dataset is approximately 5 seconds.  
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• Figure 2.17 shows the visualisation using approach 1’s algorithm of a very large 

file system of approximately 11,000 directories and files. This figure shows 

quite well the abstract view of the file system. The typical running time of this 

figure is approximately 25 seconds.  

• Figure 2.18 shows the visualisation using approach 2’s algorithm of a medium 

large dataset of approximately 900 directories and files. This figure displays 

clearly the structure of the file system, such as the folder ‘medijobs’ contains 

one folder in which contains a large numbers of files. The typical running time 

of this figure is approximately 4 seconds.  

• Figure 2.19 shows the visualisation using approach 2’s algorithm of a large 

dataset of approximately 3,660 directories and files. As can be seen from the 

figure, the directories ‘sotree’ or ‘enccon’ or ‘focus’, etc have mostly three 

levels where the these directories contain a number of folders and each folder 

also contains a numbers of files. The typical running time of this figure is 

approximately 9 seconds. 

• Figure 2.20 shows the visualisation using approach 2’s algorithm of the entire 

Java v.1.4.1 Documentation of approximately 9,500 directories and files. This 

visualisation displays quite clearly the relational structure of information. The 

typical running time of this figure is approximately 45 seconds. 

• Figure 2.21 shows the visualisation using approach 2’s algorithm of a huge 

dataset of approximately 50,000 nodes. The abstract view of the hierarchy is 

presented well in this visualisation. The average running time of this dataset is 

approximately 15 minutes.  
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Figure 2.16. An example of a file system with approximately 2,750 nodes. 
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Figure 2.17. An example of a file system with approximately 11,000 nodes. 
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Figure 2.18. An example of a file system with approximately 900 nodes.
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Figure 2.19. An example of a file system with approximately 3,600 nodes. 
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Figure 2.20. An example of the entire Java v.1.4.1 documentation with 

approximately 9,500 nodes.  
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Figure 2.21. An example of a huge dataset of approximately 50,000 nodes. 
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2.4.6 The Comparison of Different Partitioning Algorithms 

The one of the objectives of this research is finding algorithms which can optimise the 

display space while the layout still satisfies the aesthetical pleasant. Therefore, the 

partitioning algorithms must address a specific area partitioning criteria, to derive a 

complete set of rectangular local regions that can produce a high quality layout of the 

node-link diagram, in terms of satisfying the following general aesthetics rules defined 

by Di Battista,  Eade, Tamassia, and Tollis in their Graph Drawing book (Di Battista et 

al. 1999). Typical aesthetics rules are listed as: 

• Edge Crossings - edge crossings make it difficult to trace paths. So all edge 

crossings should be removed if the graph is planar, otherwise the total number of 

edge crossings should be minimised. 

• Angular Resolution - the angle between the edges of any vertex should be 

maximised. This aesthetic rule is especially relevant for straight-line drawings. 

• Total Edge Length - the sum of edge lengths should be minimum, or the 

average of all edge lengths should be as small as possible.  

• Uniform Edge Length - the variance of the lengths of the edges should be 

minimum. This aesthetic rule includes the minimisation of the number of long 

edges as well as very short edges. The long edges usually cost extra cognitive 

effort to perceive the parent-child relationships while the short edge sometimes 

cause overlaps among the graphical nodes (see Figure 2.22). 

Obviously, from Figure 2.22a we can see that the use of thin rectangular local regions 

for placing node-link diagrams will significantly reduce the quality of graph 

presentation. Therefore, the squarification of local regions is essential in the design of 

the space partitioning algorithms, especially when node-link diagrams are placed to 

show relationships among vertices. 
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(a) (b) 

Figure 2.22. An example of node-link diagram at different type of rectangles. 

The left-hand side image shows an example of placing a node-link diagram in a 

thin rectangle. We can see that the quality of the graph presentation in this thin 

rectangle is much lower, in terms of Angular Resolution and Uniform Edge 

Length aesthetic rules, than the quality of layout of the same graph presented in 

a square-like rectangle on the right-hand side. Note that the left-hand side 

diagram contains an overlapping node. 

Figure 2.23 shows an example of space partitioning using four different 

partitioning algorithms, including EncCon tree, squarified tree-maps (Bruls, Huizing & 

van Wijk 2000), strip tree-maps (Bederson, Shneiderman & Wattenberg 2002), and 

slice and dice tree-maps (Johnson & Shneiderman 1991). The EncCon tree’s vertex 

positioning rules are then used to place a small node-link diagram in each of these 

images so that we can observe the quality of these layouts generated by different 

partitioning algorithms. Clearly, for small datasets the differences between these 

algorithms, in terms of layout quality, computational time and space utilisation, are not 

significant. We can see from these images in Figure 2.23 that the output layouts are 

similar, except for the layout generated by the original tree-maps algorithm as shown in 

Figure 2.23d. The use of the slice and dice tree-maps for the partitioning, the 

hierarchical node-link diagram is heavily overlapped and hard to be seen. From this 

figure, we see that the partitioning of the squarified tree-maps and the EncCon tree 

produces relatively good layouts for small node-link diagrams. However, the real 

advantage of the EncCon tree visualisation is to present large datasets with high density 

layouts, where vertices of the graph are well distributed and the space utilisation is 

maximised (see Figure 2.26 and Figure 2.27). The next section describes an evaluation 
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of these square-like area partitioning algorithms, including the squarified tree-maps and 

the EncCon tree, applying the aesthetics rules defined as above. This will enable us to 

compare these algorithms in terms of producing high quality layouts. 

 

  
(a) EncCon tree (b) Squarified Tree-Maps 

 

  
(c) Strip Tree-Maps (d) Original Tree-Maps 

Figure 2.23. The layouts of a tree generated by four area partitioning algorithms. 

Image (a) shows a layout using EncCon tree’ s partitioning algorithm. Image (b) 

shows a layout using squarified tree-maps’ partitioning algorithm. Image (c) 

shows a layout using strip tree-maps’ partitioning algorithm. Image (d) shows a 

layout using the original slice and dice tree-maps’ partitioning algorithm. 
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2.4.7 An Experimental Evaluation 

From the comparison of four partitioning algorithms shown in Figure 2.23, we see that 

the square-like partitioning algorithms, which include squarified tree-maps and EncCon 

tree, usually produce better layouts for the placement of small node-link diagrams. 

Other partitioning algorithms, such as strip tree-maps and slice and dice tree-maps, are 

not as good in this kind of visualisation. Therefore, in this section we only evaluate 

squarified tree-maps’ and EncCon tree’s partitioning algorithms, and then compare the 

outcomes of the evaluation against the aesthetics rules defined at Graph Drawing book 

(Di Battista et al. 1999). This experimental evaluation was carried out with five datasets 

consisting of 26, 900, 3660, 9500 and 50,000 nodes. The layouts of these datasets in 

both algorithms are presented respectively from Figure 2.23 to Figure 2.27. The 

aesthetic rules we are using for the evaluation include edge crossings, angular 

resolution, total edge length, and uniform edge length.  

 

  
(a) (b) 

Figure 2.24. The layouts of the 2nd experimental dataset. 

This dataset is an Unix file system with approximately 900 directories and files 

that are visualised by (a) EncCon tree’s partitioning algorithm and (b) squari ied 

tree-maps’ partitioning algorithm . 

f



Chapter 2 - Space-Efficient Visualisation 78

 

 

  
(a) (b) 

Figure 2.25. The layouts of the 3rd experimental dataset. 

This dataset is a file system with approximately 3,600 directories and files that 

are visualised by (a). EncCon t ee’s partitioning algorithm and (b) squari ied 

tree-maps’ partitioning algorithm. 

r f

  
(a) (b) 

Figure 2.26. The layouts of the 4th experimental dataset. 

This dataset is the entire Java SDK v.1.4.1 Documentation with approximately 

9,500 directories and files that are visualised by (a). EncCon tree’s partitioning 

algorithm and (b) squari ed tree-maps’ partitioning algorithm. fi
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(a) (b) 

Figure 2.27. The layouts of the 5th experimental dataset. 

This dataset is a very large data with approximately 50,000 nodes that are 

generated by (a). EncCon tree’s partitioning algorithm and (b) squari ed tree-

maps’ partitioning algorithm. 

fi

In the following subsection, we evaluate the partitioning algorithms against each 

of these aesthetic rules. 

2.4.7.1 Edge Crossings 

Edge crossings make it difficult to trace paths and to interpret the relationships. 

Therefore, all edge crossings should be removed or the number of edge crossings should 

be minimised. To reduce the complexity of evaluation, we only consider the edge 

crossings in the top three levels of the hierarchy. This is because those small graphical 

edges in the lower levels of the hierarchy can only show the global “density” 

information of the datasets, rather than particular detailed relationships. They are too 

small to be seen, and crossings among these small edges are not significant, in terms of 

interpreting particular relationships. Therefore, we can ignore counting these edge 

crossings in the lower levels of the hierarchy. The following table shows the actual 

number of edge crossings occurred in five different layouts generated by EncCon tree 

and  squarified tree-maps algorithms. 
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 Squarified tree-maps EncCon tree 

No. of crossings in dataset 1 0 0 

No. of crossings in dataset 2 32 8 

No. of crossings in dataset 3 812 276 

No. of crossings in dataset 4 44 58 

No. of crossings in dataset 5 8 12 

 

Table 1. Edges Crossings of the Top Three Levels. 

We can see from the above table that EncCon tree’s partitioning algorithm 

produces fewer edge crossings for datasets 2 and 3, while squarified tree-maps’ 

partitioning algorithm produces slightly fewer crossings for datasets 4 and 5. 

2.4.7.2   Angular Resolution 

The angular resolution aesthetic rule measures the average angular variance of all 

angles formed by edges of a non-leaf node and its child vertices. Suppose that vertex vi 

has k children {vl+1, vl+2, …, vl+k} and the angle formed by edges {vivl+1, vivl+2, …, vivl+k} 

are respectively {θl+1, θl+2, …,θl+k}. The average angle θi of vertex vi is calculated by the 

following formula: 
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Equation 2.10 

Then, the average angular variance AVi (in percentage scale) of all the angles 

{θl+1, θl+2, …,θl+k,} at vertex vi is calculated by: 
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Equation 2.11 
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Ideally, if all angles at vertex vi are equal then AVi = 0. Finally the overall average 

angular variance AV of the entire tree T, which consists of n vertices {ν1,ν2, …,νn}  is 

calculated by the following formula: 
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Equation 2.12 

We aim to minimise the value of AV for the layout of given trees.  The following 

table shows the angular resolution in five different layouts generated by EncCon’s and  

squarified tree-maps’ algorithms. 

  

 Squarified tree-maps EncCon tree 

AV value in dataset 1 11.08 15 

AV value in dataset 2 42.97 32.42 

AV value in dataset 3 43.44 43.35 

AV value in dataset 4 48.73 45.28 

AV value in dataset 5 30.71 25.88 

 

Table 2. Angular resolution. 

As can be seen from the above table, the EncCon tree’s partitioning algorithm 

produces a better angular resolution with datasets of 2, 3, 4 and 5, while the squarified 

tree-maps’ partitioning algorithm performs slightly better with the small dataset 1. 

2.4.7.3 Total Edge Length 

To satisfy the total edge length aesthetic of graph drawing, the sum of the lengths of all 

edges of the graph should be minimised. This aesthetic rule is usually measured through 

the value of average edge length. In other word, the average of all edge lengths in 

optimised graph layouts should be as small as possible. 
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Suppose that G = {V, E} is a graph, where the edge set E = {e1, e2, …, en}. The 

length of each edge e
iel i linking between two vertices va(xa, ya) and vb(xb, yb) can be 

easily calculated by the following formula: 
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Equation 2.13 

Then the average edge length AL of all edges in graph G can be calculated by the 

following formula: 
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Equation 2.14 

This aesthetic rule, in conventional graph drawing, is defined based on the 

assumption that all edges and vertices of a given graph are assigned the same value for 

their graphical attributes. For example, under this assumption all vertices will use the 

same style of icons (nodes) with the same size and same background for their visual 

presentation, and all edges will use the same graphical line-type with the same thickness 

and the same brightness for their visual presentation. 

However, in enclosure+connection visualisation, the above assumption no longer 

holds. In EncCon tree, vertices and edges at different levels of the hierarchy are 

associated with different graphical attributes or different values of the same attributes. 

Fortunately, all vertices and edges in the same level of the hierarchy are assigned the 

same graphical attributes and the same value of these graphical attributes.  

We believe that it is unfair to count all edges of different levels with different 

visual effects for the calculation of this single measurement. Therefore, this aesthetic is 

modified by calculating the average edge length AL0, AL1, and AL2 of all edges at 

different levels, respectively levels 0, 1, and 2, of the hierarchy separately. The 

following table shows the average edge length of five different layouts at the top three 

levels of the hierarchy, generated by squarified tree-maps’ and EncCon tree’s 

partitioning algorithms. 
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Level 0 – AL0 Level 1 – AL1 Level 2 – AL2 

Squarified EncCon Squarified EncCon Squarified EncCon 

Dataset 1 265.06 263.9 117.25 116.2 0 0 

Dataset 2 309.11 300.06 97.6 99.52 105.83 112.08 

Dataset 3 339.91 339.86 76.09 87.82 29.59 31.26 

Dataset 4 326.91 307.95 155.97 168.44 38.52 48.41 

Dataset 5 268.73 279 92.3 92.55 41.29 45.47 

 

Table 3. Average edge length (the size of display is: 700x700 pixies). 

2.4.7.4 Uniform Edge Length 

Like the angular resolution aesthetic rule, the uniform edge length aesthetic rule is for 

the measurement of the average length variance of all edges of a given graph (or a sub-

graph). We aim to minimise the variance of the lengths of the edges. An optimised 

graph layout should have all edge lengths as uniform as possible. 

Suppose that G = {V, E} is a graph, where the edge set E = {e1, e2, …, en} with the 

corresponding edge lengths of {le1, le2, …, len}. The length lei of each edge ei can be 

easily calculated by Equation 2.13, and the average edge length AL of all edges in graph 

G can be calculated by Equation 2.14. Thus, the average length variance ALV (in 

percentage scale) of all edges in graph G can be calculated by the formula in Equation 

2.15. 
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Equation 2.15 

We also calculate three values ALV0, ALV1, and ALV2 for three different levels of 

the hierarchy separately because of the above reason. Table 4 shows the average length 
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variance of five different layouts at the top three levels of the hierarchy, generated by 

squarified tree-maps’ and EncCon tree’s partitioning algorithms. 

 

Level 0 – ALV0 Level 1 – ALV1 Level 2 – ALV2
 

Squarified EncCon Squarified EncCon Squarified EncCon 

Dataset 1 16.68 16.33 29.78 32.14 0 0 

Dataset 2 20.21 16.04 42.27 35.63 46.72 38.92 

Dataset 3 24.79 18.56 55.13 40.46 37.57 38.05 

Dataset 4 31.27 27.64 66.15 51.14 61.61 58.86 

Dataset 5 25.7 23.05 38.78 32.7 40.75 42.61 

 

Table 4. Average length variance (the size of display is: 700x700 pixies). 

2.4.7.5 Experimental Results and Discussion 

The results of this evaluation, based on the above criteria and five datasets, are 

summarised at Figure 2.28. This figure shows a comparison of the aesthetic rules, 

including edge crossings, angular resolution, total edge length, and uniform edge 

length, between two layouts squarified tree-maps and EncCon tree. Five experiments 

were carried out with the five different datasets, covering small, medium, moderately 

large, large and very large hierarchical data examples (see those layouts from Figure 

2.23 to Figure 2.27). 

The result of the above comparisons is that for medium and moderately large 

datasets, EncCon tree’s partitioning performs significantly better than squarified tree-

maps in terms of minimising edge crossings. The layout of a medium (or moderately 

large) size graph generated by the EncCon tree’s partitioning algorithm contains only 

approximately 25% of the edge crossings which occur in the layout of the same graph 

generated by the squarified tree-maps. 

We can also see that EncCon tree’s partitioning produces a better angular 

resolution in layout of datasets 2, 3, 4 and 5, while squarified tree-maps’ partitioning 

produces a slightly better angular resolution in layout of dataset 1 with a small number 

of nodes. 
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There is no significant difference between these two algorithms in the aesthetical 

criteria average edge length. However, EncCon tree’s partitioning does significantly 

reduce the average length variance in the layouts of moderately large or large graphs. 

 

 
Figure 2.28. A summary of the experimental evaluation results. 

2.5 Summary 

This chapter has presented a new visualisation model, called enclosure+connection that 

is different from the traditional methods. It can not only ensure the efficient utilisation 

of display space, but also show the relational structure explicitly by using a node-link 

diagram.   

We have introduced two new geometrical layout algorithms, space-optimised tree 

and EncCon tree, to support our new model. Both algorithms are efficient for 

visualising large hierarchies. Technically, the space-optimised tree layout algorithm 

uses a polygonal partitioning for drawing trees, while the EncCon tree uses a simple 

rectangular partitioning. The rectangular partitioning method used in the EncCon tree is 

similar to the method used in squarified tree-maps and both methods try to produce a 

sequence of square-like rectangles. Similarly to the space-optimised tree, the EncCon 
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tree can also maximises the utilisation of display space. However, its rectangular 

partitioning provides users with a more straightforward way to perceive the relational 

structures. 

To illustrate the technical advantages of EncCon tree’s partitioning algorithm, we 

conducted an experimental evaluation between the EncCon tree and the squarified tree-

maps’ partitioning algorithms based on four aesthetic rules. The outcome of the 

evaluation shows that the EncCon tree’s algorithm usually performs better than the 

squarified tree-maps’s algorithm, especially for partitioning large datasets. 



Chapter 3 Navigation Methods 

Another major problem of the hierarchical visualisation is the navigation which is 

defined as how to use visual interactions to find particular data items in the information 

space. Although some existing navigation techniques, as discussed at section 1.3.2, have 

been developed to facilitate the retrieval and viewing of data items in medium size 

information spaces, the exploration of large information spaces remains a challenging 

task in the design of graph and/or hierarchical visualisation. Even if advances in graph 

visualisation are able to geometrically place and display large graphs and/or hierarchies 

on the screen, the retrieval of actual data items through the visualisation would still be 

impossible unless an effective navigation mechanism is provided. For example, without 

navigation how could we find a particular data item from an efficient visualisation of 

very large hierarchy of thousands of nodes? (See examples at Figure 2.8, Figure 2.10  

Figure 2.20, and Figure 2.21)  

Visual navigation is basically a mechanism that constantly guides users to jump 

from one part of the visualisation to another, allowing them to move quickly around the 

corresponding information space to find and access particular pieces of information.  An 

efficient navigation mechanism with a set of clear navigational views will help users to 

gain an idea of the scope of the information source, to find where they are in the 

information space, to go where they can find information they want, and to go back to 

where they have been. When the visualisation is created, the design of associated 

navigation is a crucial task that should also be carried afterwards. Without providing 

efficient navigation mechanism in collaborating with the large display, the visualisation 

technique is useless in the field of information retrieval that aims to assist users to 

retrieve particular data items they want. 

Focus+context viewing is one of the most advanced and commonly used 

navigation technique cooperated with many existing visualisation systems. This thesis 

also focuses on the use of the principle of this approach and the investigation of 

alternative focus+context methods.  

Chapter 2 has described the space-efficient visualisation model and two associated 

layout algorithms which for visualising large hierarchies. These algorithms can 

effectively display the entire of a hierarchy within a limited display screen. They utilise 

the space to allow the display of a large amount of information on one screen (see an 
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example at Figure 2.21). Although the original visualisations produced by these layout 

algorithms can provide an overall view of the large hierarchy, these visualisations alone 

do not provide the detailed view of a particular subset and they do not help at all for 

finding particular data items the user wants. Thus, the navigation mechanisms are 

necessary to enable users browsing through the large hierarchy. 

In this chapter, we concern with the problem of how to navigate through such 

large visualisation. We describe the technical detail of two main navigation algorithms, 

called hybrid view, and layering view. These methods are both focus+context 

approaches and are independent to the layout algorithms although they are implemented 

based on the prototypes of respectively space-optimised tree and EncCon tree. Thus, all 

the figures and examples from the hybrid view and the layering view are built 

respectively from the prototype of the space-optimised tree and the EncCon tree layout 

algorithms. This is due to the historical reason when these interactive navigation 

methods were developed. 

The hybrid view technique includes a browsing algorithm and a distortion 

algorithm. The browsing technique is responsible for bringing a sub-hierarchy to the 

focus region while the distortion technique is used to enlarge information at the focus 

area. This technique also employs a semantic zooming to enhance the navigation when 

the visualisation is too overcrowded. On the other hand, the layering view technique 

uses the semantic zooming and layering to achieve the focus+context visualisation. 

Technically, it employs semi-transparency to archive the display of layers at the same 

display space. This allows both context view and detailed view to be displayed at two 

separate layers in an overlapping manner at the same physical screen space. The detail 

of these two interactive navigation methods is described below. 

3.1 The Hybrid View 

Hybrid view includes a focus+context technique called DualView and a semantic 

zooming technique. The semantic zooming is applied to the situation when a very high 

dense visualisation is displayed in which the ordinary distortion are hard to be 

implemented because of a large number of nodes and edges. Particularly, this is because 

that the computational complexity is significantly high for calculating a large number of 

distorted nodes and edges.  Furthermore, the high density of nodes and edges at the 

 



Chapter 3 - Navigation Methods  89

 

focus view might also make it difficult to perceive the information. The DualView 

provides an interactive focus+context solution to help users browse through the 

hierarchy when the visualisation is not very dense. 

Sematic zooming can be used to enlarge a focused sub-tree and filter out the 

others. This interactive zooming responds to the mouse-click event. When a node is 

clicked, this focused node moves toward to the centre of the display area. The layout of 

its sub-tree then expands to the entire display space accordingly. Technically, the layout 

of sub-tree is recalculated for its new geometrical position. All other sub-trees are 

disappeared in the new visualisation. However, the direct-ancestors of the selected node 

are still displayed at the history path for keeping track of the current navigation. This 

path displays all direct-ancestors of the selected node in order. We also assign different 

graphical properties to these ancestors to distinguish them from the normal nodes. The 

user can easily move back to the visualisation of an upper level hierarchy by simply 

clicking on an ancestor node along the history path. Figure 3.1 shows an example of the 

semantic zooming in space-optimised tree when a sub-tree is selected to be viewed in 

detail. 

 

 

 
Figure 3.1. An example of semantic zooming when a sub-tree is selected to be 

viewed in detail. 
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Animation is used to preserve a mental map when the view is changing. It is a real 

challenge to implement animation in viewing very large hierarchies. The expensive 

computational cost of view transformations of large datasets (with more than 10,000 

nodes) might disrupt the smooth animation. Therefore, to reduce the computational cost 

we only apply animation to those nodes that are graphically visible within the screen 

resolution. This property ensures that the number of nodes involved in animation is 

reduced to a few tens or hundreds. 

Semantic zooming is an excellent technique for navigating very large hierarchies. 

However, the lack of displaying contextual information might prevent users from 

viewing other parts of the hierarchy. In order to overcome this problem, we also use 

DualView, a focus+context technique, as a supplementary technique for the navigation 

of large hierarchies. This method applies a simplified fisheye distortion transformation 

to speed up the calculation of views. 

DualView technique technically includes two transformations, the browsing and 

the distortion. We use browsing transformation to bring interested information into the 

focus region while a fisheye-like distortion transformation is applied to increase the 

magnification of information at the focus area. These two transformations are applied 

independently onto both horizontal and vertical directions. The browsing and the 

distortion transformations are also independent to the layout algorithms, and thus this 

technique can be applied to any tree visualisation system. In order to reduce the 

computation cost, we only apply the transformation functions to visible nodes on a 

layout and edges are all redrawn as straight lines. Two independent transformations are 

then applied to every node when the user interacts with our system. Thus, the final 

transformation of DualView is defined by Equation 3.1. 

 

distortiongbrowDualView TTT osin=  

Equation 3.1 

There are three types of coordinate systems used in the transformations including 

normal coordinate, browsing coordinate, and distortion coordinate. The coordinate 

system of the visualisation in the normal display is called the normal coordinate. The 

coordinate system in browsing transformation is called the browsing coordinate. And 

the coordinate in distortion transformation is called the distortion coordinate. The 
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coordinate of a point in the normal coordinate, browsing coordinate and distortion 

coordinate are called (xn, yn), (xb, yb) and (xd, yd) respectively. 

The following sub-sections explain the technical details of the browsing and 

distortion transformations. 

3.1.1 Browsing Transformation 

Browsing technique is used to transform the visualisation to a new location when the 

mouse drags a node from one point to another. This transformation is independent of the 

layout algorithm, and the movement of a point must satisfy the following properties: 

• If a point is near to the centre, it will move faster then a point which is far from 

the centre (see Figure 3.2). 

• All points in the displaying area must not move outside the display area during 

this transformation. 

 

 
Figure 3.2. An example of the movement of points. 

In the normal coordinate system, suppose that the mouse drags a point A(xno, yno) 

to a new position B(xno’, yno’); and thus a node N(xn, yn) in the tree visualisation will 

move to a new location with coordinate of (xn’, yn’). The values of xn’ and yn’ are 

calculated independently based on the browsing transformation function called Tbrowsing. 

Suppose that in horizontal direction, the function Tbrowsing is called Tbrowsing(xb) 

where xb is the x-coordinate in the browsing coordinate system. The movement property 

ensures that the value xb of point B in this coordinate system has to satisfy conditions: 1) 

function Tbrowsing(xb) is continuous, and 2) Tbrowsing(xb) towards negative or positive 

infinites when xb closes to its minimum or maximum boundaries. Although there are a 

number of functions which satisfy the above conditions, we simply use the equation: 

 

)()( bbbroswing xTangentxT =  

Equation 3.2 
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where value of xb varies in the domain of )
2

,
2

(
ππ

− , and thus Tbrowsing(xb) varies in 

the domain of (-∞, ∞).  

When xn0 moves to xn0’ in the normal coordinate system, correspondingly xb0 

moves to xb0’ in the browsing coordinate system. The function Tbrowsing(xb) then becomes 

Tbrowsing(xb) + K, where K is the offset value and is defined as K = Tbrowsing(xb0’) – 

Tbrowsing(xb0). As a result, the new value of xb is recalculated by the equation: 

 

))(( sin1 bgbrowb xTTangentx −=  

Equation 3.3 

3.1.2 Distortion Transformation 

Distortion magnification is used to enlarge the focus area when the content in this area 

is too dense. The browsing transformation is responsible for moving and enlarging the 

focus information. However, its magnification sometimes is not sufficient enough to 

display clearly information in the focus area. Thus, a distortion transformation is applied 

so that the focus point is at the centre of the display area. Similar to the browsing 

transformation, the distortion function Tdistortion is applied independently in the 

horizontal and vertical directions. We normalise the distortion coordinate to [-1, 1]. In 

its half domain [0, 1], Tdistortion(xd) is a curve that goes through two points (0, 0) and (1, 

1) and above the straight line l(xd) = xd. The transformation function Tdistortion(xd) has the 

same property at other half domain of [-1, 0] that is a curve that goes through two points 

(0, 0) and (-1, -1) and below the straight line l(xd) = xd. Simply, our transformation is 

the function of an arc that goes through 3 points (0, 0), (1, 1) and C(xd0, yd0), where 

C(xd0, yd0) defines the distorted magnitude of its magnification (see Figure 3.3). 
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Figure 3.3. Graph of the distortion transformation. 

In our prototype, the magnification is simply defined as: 

0)( 2 ≥−−+= dddistortion xforaxcbT  

02)( <+−−−= dddistortion xforaxcbT  

Equation 3.4 

where a, b, and c are constants. 

3.1.3 The Hybrid View’s Examples 

Images from Figure 3.4 to Figure 3.7 illustrate the examples of the Hybrid View 

navigation technique applied on very large trees. Figure 3.4 shows the entire tree layout 

which is too dense for using the DualView, a focus+context navigation technique. 

Figure 3.5 shows the sub-tree layout when we apply the semantic zooming to enlarge 

the focus sub-tree and reduce the amount of displayed information. Figure 3.6 shows the 

layout when we apply the browsing transformation to bring interested information into 

the focus region. Figure 3.7 shows the layout when we apply the distortion 

transformation to increase the magnification to the information at the focus region (i.e. 

around the central region). This transformation is applied when the information at the 

focus area is still dense. 
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Figure 3.4. The visualisation of an entire tree layout. 

 
Figure 3.5. The visualisation of a sub-tree of the entire tree shown in Figure 3.4 

when semantic zooming is applied. 
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Figure 3.6. The same visualisation as shown in Figure 3.5 when a browsing 

transformation is applied. 

 
Figure 3.7. The same visualisation as shown in Figure 3.6 when a distortion 

transformation is applied. 
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3.2 The Layering View 

Most existing focus+context techniques uses an enlarge+embedding approach which 

requires the division of the display area for the display of the global view (or context 

view) and the detailed view (or focus view). Examples of these techniques include the 

information slices (Andrews & Heidegger 1998) and bifocal tree (Cava, Luzzardi & 

Freitas 2002). Thus, the display space available for displaying the global structure as 

well as the focus view is limited. Similarly, other techniques might also display the 

context view and focus view of information using a number of separated display 

windows, which are typically called multiple-views technique (Baldonado, Woodruff & 

Kuchinsky 2000; Convertino et al. 2003; C North 2001; Robert 1998). However, the use 

of separate windows might break the context (or nature connection) between two views. 

This costs viewers extra cognitive effort to link two views into one mental map. 

Therefore, researching a new method to overcome the limitations of the above 

techniques is necessary for the visualisation of large hierarchies.  

This section describes a new zooming+layering approach which can achieve the 

focus+context navigation with enlarged focus view and context view. This technique is 

different from the traditional enlarge+embedded approach (see Figure 1.23). 

Technically, it employs a semi-transparent graphical technique to achieve the 

visualisation of two layers of information in the virtual z-coordination of the display 

space. This allows both context view and detailed view to be drawn at two separate 

layers in an overlapped manner on the same physical screen space. This technique 

always keeps one view highlighted and another not highlighted. The technical details of 

zooming+layering viewing technique are described in the following sections, including 

layering display and interactive navigation.  

3.2.1 Layering Display 

Layering display applies semi-transparency to display both global view and detailed 

view at two separate layers in the same display space (see Figure 3.8). The detailed view 

is displayed in a full display screen while the global view is displayed in a small screen 

at the background. The system allows the users interactively to shift their focus by 

switching the view to the front or back between the two views. This technique aims to 
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improve the utilisation of the display space while still providing both the focus and the 

context information. The layering display technique is independent of the layout 

algorithm, and thus, it can be applied to any layout algorithm.  

In our visualisation, the global view is overlapped with the detailed view and these 

views are displayed in two separate graphical layers of the same physical screen with 

different visibility values. As the default mode of the display, the focus view is drawn in 

full screen size on layer 1 (L1) of the display while the context view is drawn in a 

smaller size at the centre on layer 2 (L2) (see Figure 3.8). The display on L1 is defaulted 

with normal colours and L2 is defaulted with semi-transparent colours. The purpose of 

this arrangement is to reduce the distraction between two views. The distraction might 

occur when too many overlaps of nodes and edges between the two views. The size of 

the global view can be interactively adjusted to suit the user's preference. In our 

application, the default size of the global view is half of the entire display area. An 

example of layering display using transparency can be found at Figure 3.9. Although the 

layering display is independent to the layout algorithms, it works best for connection 

based visualisation techniques, which use a node-link diagram to present the 

relationships. This is because that the connection based techniques often leave a large 

portion of unused space. Thus, the overlaps among nodes between the context view and 

detailed view is not much significant. 

 

 

Context View 

 

 

 

 

Focus View 
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Layer 1 

Layer 2 

 

Figure 3.8. Layering display. 
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Figure 3.9. An example of focus+context viewing of a file system using semi-

transparency technique. 

Both of the views are displayed at the same area, the context view is 

deemphasised and displayed transparently within the small area at the centre 

and the detail view is focused and occupies the entire display area. 

The navigation in the layering display is achieved interactively by semantic 

zooming, updating views and swapping views between two layers. All these 

transactions are accommodated by animation to preserve the users’ mental map of 

views. 

There are two modes of the display: ‘default’ and ‘context’. In the ‘default’ mode, 

we assume that the users’ attention is on the content of a particular detailed sub-

structure from the entire information structure. However, it is quite possible that the 
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users move their attention from a detailed sub-structure to the content of the global 

structure during the navigation.  Therefore, we defined a ‘context’ display mode that 

shifts the visibility values between two display layers. Practically, we reassign a visible 

value to L2 (i.e. the global view) allowing users to see the content of the global structure 

and change the current visible layer L1 (i.e. the detail view) to semi-transparency. In the 

‘context’ mode, the display is reversed so that the global view is brought from the back 

to the front and highlighted while the detail view is sent from the front to the back and 

displayed in a semi-transparent manner (see Figure 3.10d). These two views can be 

shifted interactively by using a left mouse-click on the background of each layer. The 

shift between views is accommodated by fade in/out animation to preserve the users’ 

mental map of views. 

The background of the context view is painted with slightly darkened colour in 

comparison with the detail view’s background. This helps the context view to stand out 

from the focus view. The selected sub-hierarchy is also highlighted in the context view 

by using a different background colour as well as a selected node (see Figure 3.10b and 

Figure 3.10d). This property helps to improve the clarity of the display. The context 

view in this visualisation can be either the view of the entire hierarchy or the view of a 

sub-hierarchy which is previously displayed as a detail view before a user selects a 

particular subset from this context. Showing the entire context makes it easier to 

navigate through the hierarchy. However, the major problem arises when this technique 

is applied for a very deep hierarchy. In this case, a focus sub-hierarchy might become 

small or even unidentified from the whole context if it locates at several levels away 

from the root node. On the other hand, showing only the most current history 

information can overcome the above problem, but it will loose the whole context. 

Therefore, the choice of which approach to use is dependent on the nature of each 

application, in order to archive a better result in the navigation. The second method is 

applied in our demonstration prototype. 

3.2.2 Interactive Navigation 

In our visualisation, the selection of a focused visual node is the main mode of 

interactions taken by users during the navigation. This interaction can be applied to any 

visible vertex v at the detail view or context view in order to utilise the semantic 

zooming technique to enlarge the display of sub-tree T(v) into the full screen and bring 
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it to L1 as a new detail view, which overrides the previous display of this layer. The 

system can also return the context view back to the detail view by a right mouse click.  

The context view then will be enlarged through semantic zooming and can be brought 

from L2 to L1 for full screen display. The types of interactive navigation and their 

associated animation are described below. 

3.2.2.1 Navigation in the Detail View 

When a vertex v of a sub-tree T in L1 is selected, its sub-tree T(v) expands smoothly to 

occupy the entire display area by using semantic zooming. Accordingly, the size of the 

node of its sub-tree increases to match the consistency of the new view. The previous 

layout of the hierarchy T is reduced and overwritten to L2 simultaneously, and T now 

replaces the old context view in L2 smoothly by using fade animation. The colour of the 

nodes in the previous display of T will now become semi-transparent and lighter. Figure 

3.10c shows the animation of the intermediate state of the transition from Figure 3.10a 

to Figure 3.10b. 

3.2.2.2 Navigation in the Context View 

When a mouse click occurs on the local region of the root of the context view of sub-

tree T in L2, the focus is switched to T in L2. The layout of the context view T is now 

activated and highlighted (see Figure 3.10d). The user then can select any node in T to 

enlarge a particular sub-hierarchy of T into the full screen display by using semantic 

zooming. When a node at the context hierarchy T is selected, its entire sub-hierarchy 

expands from the context region to the detail region occupying the entire display area. 

In addition, the indication of selected sub-hierarchy at the history layer L2 is also 

changed to selected node (see those images at Figure 3.10: (d), (e), and (f)). 

3.2.2.3 Recalling the Previous Context Display 

We also provide a reversed navigation mechanism to allow users to move back to the 

previous context views. This can be done through a right mouse-click. During the 

reverse navigation, the nodes in the history layer L2 will change their colour back to the 

normal colour and increase their size gradually to the normal size as they use to be in L1. 

The display area of the history hierarchy in L2 also expands smoothly into the entire 

display area while the nodes displayed in L1 fade into the background colour. 
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(e) (f) 

 

 

 
(g) (h) 

 

Figure 3.10. Examples of viewing, interactive navigation and animation in 

layering display and interactive navigation. 
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Figure 3.10 shows an example of the interactive navigation process through a 

small dataset. Image (a) shows the layout of the entire hierarchy before navigation. You 

can see that a user is focusing on a sub-hierarchy rooted at ‘Fresh Foods’ and is 

intending to navigate the detail of this sub-tree. Image (b) shows the display of after 

clicking on the focused node ‘Fresh Foods’. This is at the ‘default’ mode of the display 

in which the detail view is highlighted in L1 and the context view is displayed with 

lighter and semi-transparent colours in L2. Image (c) illustrates an animated transition 

between images in (a) and (b). Image (d) presents the same visualisation as shown in 

image (b) after switching to the ‘context’ mode in which the context view is brought 

into L1 and highlighted while the detail view is sent back to the L2 with lighter and semi-

transparent colours. We can also see that the user is now focusing on the node ‘Pet 

Foods’ and is intending to view the detail of this sub-hierarchy. Image (e) shows the 

visualisation after clicking on the focused node ‘Pet Foods’. Image (f) illustrates an 

animated transition between images in (d) and (e). Image (g) is the visualisation of the 

entire hierarchy after a right click on the node ‘Grocery Store’ (reverse navigation). 

Finally, image (h) shows an animated transition between images in (e) and (g). 

3.3 Summary 

This chapter has presented the technical details of two new focus+context interactive 

navigation techniques called the hybrid view, and the layering view. These navigation 

techniques are independent to the layout algorithms. In short, the hybrid view method 

consists of two parts: the browsing and the distortion. The browsing is responsible for 

bringing a sub-hierarchy to the focus region while the distortion is used to enlarge 

information at the focus area. Hybrid view also employs semantic zooming to reduce the 

amount of information displayed in the focus view when the visualisation is 

overcrowded. On the other hand, the layering view uses the layering and semantic 

zooming to archive the focus+context navigation. Technically, the layering view 

employs semi-transparency to display concurrently both the context and the focus views 

at two separate layers. This technique also provides mechanisms to switch between 

views for the navigation. This allows users to easily navigate across the context layer or 

the focus layer. 
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The advantage of the hybrid view technique is that it speeds up the navigation 

process allowing a very large dataset to be quickly visited on a normal personal 

computer. The semantic zooming in hybrid view can quickly reduce the density of 

information by enlarging a focused sub-tree and removing the context information from 

the display. The employment of a simplified fisheye distortional technique also reduces 

the computational cost during the navigation. On the other hand, the layering view can 

display both the focus view and the context view on two separate layers of the same 

display medium by using the semi-transparent technique. This allows more information 

to be displayed in both the context view and the focus view because there is no area 

division required. 

The selection of a particular navigation method depends on the property of a 

particular system that needs to be visualised. If the space utilisation is the main concern, 

then the layering view technique would be a better choice. Otherwise, the hybrid view 

might be preferred if the interactive speed is the main issue in the design of the 

visualisation. 

 

 



Chapter 4 Case Study 1: A Visual Interface in 

Shared Collaborative Workspaces 

Shared collaborative workspaces provide computer-based virtual environments 

supporting collaboration among organisational members. They allow organizational 

members to share documents or artefacts; to communicate through discussion forums, 

text chat and audio/video conferences; and to define and enact work processes. The use 

of shared workspace systems is increasingly becoming part of current work practice, 

particularly in large, distributed organisations where virtual teams form in order to 

jointly carry out collaborative project work. 

One application area where there has been little research attention to the visual 

interface is that collaborative workspaces. Most of the current interfaces in collaborative 

workspaces display information via text-based interfaces. These presentations do not 

provide a meaningful visual representation of various types of the logical relationships 

among the objects which are involved in a collaborative learning environment. Thus, it 

becomes difficult for non-expert users to understand the logical relationships among 

objects in a working-window of the collaborative environment. Furthermore, the logical 

relationships among data objects across different working-windows are also almost 

impossible to be visualised using the traditional textual interface.  

This chapter presents a visual interface for visualising and manipulating 

collaborative objects in a shared workspace, called LiveNet. Our new visualisation not 

only provides users with a Graphical User Interface (GUI) for viewing, browsing, 

analysing and manipulating collaborative objects, but it also visualises multiple 

relationships among these collaborative objects. The new visualisation consists of five 

main properties:  

• a modified EncCon tree layout algorithm,  

• a semi-transparent viewing technique,  

• a clustered viewing technique,  

• an animated focus+context interactive navigation technique,  
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• and a set of rich graphical properties, including a variety of icons, pop-up 

windows, shapes, colours, and others.  

The combination of these properties aims to achieve the effective visualisation of 

multiple relational structures on the same display window. This visualisation is built 

into a GUI prototype that provides users with not only a two-dimensional graphical 

visual interface for direct data manipulation, but also a combined view of multiple 

relationships among the collaborative objects in shared workspaces. 

4.1 Shared Workspaces - LiveNet 

Shared collaborative workspaces are defined as the use of computer-based virtual 

environments to support collaboration among organisational members. These 

workspaces allow organisational members to share documents or artefacts; to 

communicate through discussion forums, text chat and audio/video conferences; and to 

define and enact work processes. The use of shared workspace systems is increasingly 

part of current work practice, particularly in large, distributed organisations where 

virtual teams form in order to jointly carry out collaborative project work. 

Collaboration through shared workspaces brings challenges in displaying the 

relation in multiple relationships, types and properties of collaborative objects through 

the user interfaces. The traditional text-oriented interfaces from shared workspaces in 

(Hawryszkiewycz 1999), (Appelt 1999), and (Roseman & Greenberg 1996) are seldom 

comprehensible to the user in terms of presenting relationships among collaborative 

elements. This costs extra cognitive overhead for users to understand the underlying 

structures and interrelations behind the datasets where the users are manipulating. 

LiveNet (Hawryszkiewycz 1999) is one such shared workspace system developed 

in 1999, which provides the flexibility to customise workspaces by adding roles and 

artefacts, assigning permissions, adding actions and so on. LiveNet workspace is based 

on a meta-model that is stored as a relational database. This system is developed using 

Java 2 Enterprise Edition (J2EE) platform which provides the flexibility to both easily 

add new components as well as develop specialised interfaces. A development server of 

LiveNet collaborative workspace can be accessed at http://138.25.13.210:8000/ln4-1 

(accessed 19/05/2004). 

 

http://138.25.13.210:8000/ln4-1
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Although LiveNet is an excellent system for knowledge management and 

collaborative environment, its text-oriented interface is seldom comprehensible to the 

users. It costs extra cognitive overhead in understanding the underlying structures and 

interrelations behind the datasets that LiveNet is manipulating. For example, the current 

text-based interface in LiveNet does not provide a meaningful visual presentation of 

various types of the logical relationships among the objects which are involved in a 

collaborative learning environment. Thus, it becomes very difficult for non-expert users 

to understand the logical relationships among objects in a working-window of the 

collaborative environment as well as the logical relationships among data objects across 

different working-windows. In addition, the current user interfaces in shared workspace 

systems are not efficient for displaying large scale information because of the nature of 

the text-based interfaces. Figure 4.1 shows an example of the current text-based 

interface of the LiveNet system. 

 

 
Figure 4.1. An example of the current text-based LiveNet’s interface. 
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4.2 Related Works 

The application of visual shared workspaces has still received little research attention. 

This is especially true for viewing multiple relationships among collaborative objects. 

Most existing shared workspace systems use traditional textual interfaces. (Roth et al. 

1997) presented several systems for visualising and manipulating information in 

electronic workspaces including Visage, SAGE and SDM. Each system was designed to 

perform on a particular task. Particularly, Visage was used as user interfaces for 

multiple visualisation, analysis and communication applications. SAGE was designed as 

a tool for users to automatically and interactively create visualisations. Finally, SDM 

was a system for prototyping techniques for interacting with visualisations to modify 

their appearance (Roth et al. 1997). These systems, however, do not display 

simultaneously the multiple relationships among the workspaces’ objects. 

(Biuk-Aghai 1999, 2001) implemented a system to visualise the structural and 

behaviour aspects of virtual collaboration environments. This technique employed the 

force-directed animated visualisation algorithm to show the relational structures. The 

author also used colouring graphics to indicate the workspace’s density. Similarly to 

(Roth et al. 1997), the logical relations among the information were not presented in its 

visualisation. This technique is not also able to visualise very large and complex 

collaboration environments due to the inefficient layout and navigation algorithms. 

Visualisation of multiple relations has become one of the important topics in 

information visualisation research community. Although several available techniques 

are aimed to visualise simultaneously multiple relationships, few of them concern or use 

in visualising collaborative workspaces. We next review a few typical techniques in 

visualising multiple relations. 

(Hao et al. 2003) described an approach to simultaneously layout in a graph the 

multiple relationships of web transactions. The idea of this technique is to freeze one set 

of objects before laying out the next set of objects during the construction of the graph. 

This technique was implemented in three-dimensional space and the relations were 

shown by freezing others. Although this technique visualise well the web transactions, it 

is not quite suitable for shared workspaces domains. 

Another approach of visualising multiple relational structures (graphs) was 

proposed by (Erten et al. 2003). In the paper, the authors concerned more about 
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theoretical perspective in drawing multiple graphs rather than the real world 

applications. This technique was based on a modification of the force-directed algorithm 

to visualise the multiple relational structures simultaneously. However, the visualisation 

proposed in the paper did not provide any mechanism for navigation through the 

structures and the use of slow force-directed layout algorithm might not be appropriate 

for handling large datasets. 

The most common approach to visualise multiple relationships and/or multiple 

attributes of the data is to use multiple-views. It usually uses a sequence of small sub-

windows to display the multiple views of the information. Each sub-window displays 

the data and data structures from one particular user’s perspective. However, these 

techniques require the division of display space for presenting information. Thus, the 

available space left for displaying the information is getting even smaller. In addition, 

the users might be affected with distraction when switching their view from one 

window to the other window. More information about multiple-view techniques can be 

found at (Robert 2000), (Baldonado, Woodruff & Kuchinsky 2000), (C North & 

Shneiderman 2000, 2001), (Convertino et al. 2003), etc. 

4.3 LiveNet’s Visual Interface 

To overcome the limitation of the current text-based interface and the above simple 

visual interfaces, as well as to explore internal structure of shared workspace, we 

present a new visualisation component that appears as an additional window embedded 

in LiveNet system. This visual interface can be used for viewing, learning, browsing, 

editing and manipulating collaborative information. This visual component employs 

EncCon tree layout algorithm and a semi-transparent navigation mechanism to handle 

large scale of learning information. The new visual interface aims to provide a better 

assistance to the users for visual manipulation and navigation of objects stored in a 

relational database. The use of visualisation techniques in the LiveNet provides the users 

with not only a two-dimensional graphical visual interface for direct data manipulation, 

but also views of the interrelations among the data objects which enhances the 

understanding of relational information that the users want to see.  

In the design of visualisation component, the following objectives need to be 

achieved: 
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• Provide an interactive graphical interface in which users can view, learn, 

navigate and manipulate the entire information of the shared workspace. 

• Improve the users’ understanding of the underlying structures and internal 

relationships of the information. Thus, the new visual interface is able to 

visualise multiple relationships among collaborative objects in shared 

workspaces. 

• Provide the overall context view of the entire workspace as well as a focused 

sub-workspace corresponding to a particular user. 

• Be able to handle large amount of information. 

Base on the original LiveNet’s system, its visual interface has been implemented 

using Java 2 Enterprise Edition (J2EE) technology to control the interaction between the 

client interfaces and the core system. With this dynamic data retrieval, the system is 

able to reflex the changes from the data source which makes it be valuable for 

collaborative environments. This applet window does not aim to replace entirely the 

traditional text-based interface, but it is as an extra assistance to the users. 

This visualisation is built into a GUI prototype that provides users with 1) a two-

dimensional graphical visual interface for direct data manipulation, 2) a combined view 

of multiple relationships among the collaborative objects, and 3) an attributed 

visualisation of collaborative objects and their relations in the shared workspaces. In 

order to display concurrently the visualisation of multiple relationships among the 

collaborative objects, we employ some advanced computer graphical techniques and 

animations to build a combined visualisation that can simultaneously display several 

relational structures (visual contexts) in the same window. This interface also provides 

the users an effective mechanism to switch between different visual contexts. The 

system is also able to display two or more visual contexts concurrently in the LiveNet 

shared workspaces. Finally, the system employs a numerous rich graphical elements to 

emphasize the property of all nodes and edges in the final drawing. 

4.3.1 Relations in LiveNet Shared Workspaces 

A database in a shared workspace system usually consists of multiple relations that are 

linked together conceptually via entity-relationship links in the design of the relational 
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database schema. However, most information visualisation techniques only work on a 

single node-link representation of relational databases, in which the underlying data 

model is a graph G = (V, E), where V is a set of vertices and E is a set of edges. It is 

usually difficult to represent multiple relational structures in a single visualisation, 

which usually only involves the drawing and displaying of one single graph G. 

As mentioned above, LiveNet is a shared workspace containing several types of 

the collaborative objects, including activities, artefacts, groups/roles, members, and 

action objects. Note that the current LiveNet system does not identify the difference 

between a role and a group. Thus, a role can also be considered as a group. An object in 

the LiveNet can link to one or more objects with different types of relationships, 

including categorising, accessing, participating, sharing, and occupying. We now 

define some common relationships one by one below: 

• Categorising relationship – this type of relationship is the classification relation 

that represents the nature ordering/grouping of the collaborative objects in the 

relational database. This hierarchical structure illustrates the relation among a 

group to a subgroup, an activity to a sub-activity, and any other type of parent-

child relationships in the LiveNet system. 

• Accessing relationship – this presents relationships among documents (or 

artefacts) and activities. The visual interface only displays the documents and 

activities which the current user has been authorised to access to. 

• Participating relationship – this type of relationship shows the relation between 

an activity and a role (or a group). In other words, this relationship indicates the 

participation of role corresponding to an activity in the collaborative process.  

• Sharing relationship – this is the relationship between two objects that share the 

same information, i.e. artefact’s sharing. The sharing relationship is inherited 

when an artefact is copied and sent to another activity. 

• Occupying relationship – the relationship represents the relation between a role 

and a user who occupies this role in the shared workspace. This relationship is 

recorded as a role’s attribute from the user. 
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4.3.2 The Frame-Work of Visual User Interface 

The LiveNet system was developed using Java 2 Enterprise Edition (J2EE) platform and 

was made of several components. Within the scope of this thesis, we concentrate only 

on the discussion of visual interface component and its associations from the shared 

workspace. Figure 4.2 shows the components and tiers of the visual user interface. 

 

 
Figure 4.2. The framework of the visualisation system. 

• Attributed visual interface – this is a visual navigational interface that 

automatically displays the entire workspace of a user. Objects in a shared 

workspace include activities, groups, artefacts, agent, events, and others. This 

interface is implemented using a Java Applet programming language and is 

intended to visualise not only the multiple relations of the entire collaborative 

workspaces but also a visualisation of attributes associated with collaborative 

objects and relations. From this interface, the users can also view, analyse, 

navigate, interact and manipulate collaborative objects in their workspaces. 

Detail of all components in the attributed visual interface is described below. 

o Structural property – this component is a set of nodes and edges which 

represents the relational structure of the entire collaborative workspace. 

Formally, it can be defined as a graph G = (N, E) consisting a finite set N of 
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nodes and a finite set E of edges. A node represents a collaborative element 

and an edge represents a relation of two objects. 

o Attributed property – this component is a set of domain-specific attributes or 

properties that are associated with collaborative elements and/or relations. 

There are two types of attributes: node attributes and edge attributes which 

represents the properties of collaborative elements and relationships among 

objects in the workspaces. The attributes of the nodes and edges are 

dynamically retrieved and updated from the server-side to client-side and 

vice versa. 

o Final visualisation – this is the final attributed representation of the 

collaboration workspaces. This includes the representation of collaborative 

elements, relational structure and the attributes that are associated with a 

node and/or an edge. The system first produces a geometrical layout of the 

entire collaborative workspaces using EncCon tree layout algorithm. The 

system next applies the graphical properties, such as transparency, shape, 

size, colour, brightness, edge thickness, etc, to represent concurrently 

multiple relations as well as the attributes of nodes and edges.  

• Interaction controller – this component is the web server tier which is 

responsible for creating the initial visual interface, as well as receiving requests, 

executing, and sending responds to the visual interface component. This 

component is implemented using a Java Servlet programming language. 

• LiveNet foundation – this core component contains a collection of classes and/or 

functions that perform the LiveNet functionalities as well as the database 

connections.  

• Databases – these are relational databases where all information (collaborative 

objects and relations) of the LiveNet system is stored. 

4.3.3 Combined Visualisation 

Several techniques are employed in the visual interface component which aims to 

satisfy the following expectations: 
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• Provide the concurrent visualisation of multiple relationships among 

collaborative objects within the users’ workspaces. 

• Provide an effective interactive visual interface from where users can 

interactively view, navigate and manipulate objects in the entire workspaces. 

• Provide an effective visualisation of attributes associated with collaborative 

objects and the relationships among those objects. 

• Be able to handle large amount of information. 

In our visualisation system, a node represents a collaborative object, while an 

edge represents a relationship between two objects. The geometrical layout of objects is 

based on either their categorising relation or accessing relation. This ensures the order 

of structural hierarchy of the entire workspace as well as a particular section of the 

workspace. Figure 4.3 shows an example of the entire workspace corresponding to a 

particular user. This visualisation aims to provide 1) a two-dimensional graphical visual 

interface for direct data manipulation, 2) a combined view of multiple relationships 

among the collaborative objects, and 3) an attributed visualisation of collaborative 

objects and their relations in the shared workspaces which enhances the understanding 

of the collaborative workspaces.  

EncCon tree layout algorithm was used to present the hierarchical structure of the 

collaborative workspaces. This algorithm was chosen for our implementation in order to 

take advantage of its efficient utilisation of geometrical space, fast calculation, and 

aesthetic quality. Figure 2.18 to Figure 2.21 are examples of the visualisation using the 

EncCon tree layout algorithm. 

We visualise concurrently all kinds of relationships among collaborative objects 

within users’ workspaces in a single display window. As mentioned above, the types of 

relations in LiveNet system include: categorising, accessing, participating, and sharing. 

Several techniques are provided to support the concurrent display of multiple 

relationships. The visualisation only allows one or two certain types of relations to be 

actively shown at a time while the other relations are deemphasised using lighter and 

semi-transparent colours. This property aims to solve the problem of distraction caused 

by many types of the relations, yet the users can still see all of the relationships. Further 

description of the concurrent visualisation of multiple relations using semi-transparency 

is presented in section 4.3.3.1. 
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Figure 4.3. An example of the visualisation of a particular user’s shared 

workspace. 

The visual interface employs several graphical techniques, such as colours,  

brightness, shapes, sizes, icon styles, edge thickness, etc to visualise the attributed 

properties of all elements and relations in the workspaces. This visualisation provides 

not only a clear structural view of the entire workspace but also a view of associated 

attributes of all collaborative objects and their relations in a single display window. As a 

result, the users can easily identify the types and properties associated with each 

collaborative element as well as its relationships. More description of attributed 

visualisation of the collaborative workspaces is shown at section 4.3.3.2. 

We use layering view navigation in collaborating with the fade in/out animation 

and semi-transparent viewing to support fast navigation of large graphs. In this 

navigation, the focused sub-graph is displayed as the detail-view and the context is 

displayed as the global-view in a semi-transparent manner. This allows users to explore 

through entire workspace quickly by moving around the structure by switching between 

the detail-view and the global view. We also use the pop-up windows to identify the 

occupying relationship when the mouse is over a node. Further description of the 

interactive navigation method is given at section 4.3.3.3. 
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4.3.3.1 Concurrent Visualisation of Multiple Relationships 

As mentioned at section 4.3.1, there are several types of relationships existing among 

the collaborative objects, namely categorising, accessing, participating, sharing, and 

occupying. To be able to concurrently display these multiple relationships in a single 

visualisation, three graphical techniques are employed including colouring, semi-

transparency, and clustered viewing. 

In this system, each type of relation is drawn with a different colour in order to 

make the relation stand out from other types of relations. The default colours of 

categorising, accessing, participating, and sharing relations are respectively grey, 

sandy-brown, light-blue and green. These colours can be adjusted by the users. The 

occupying relation is associated with each activity or group/role object. Thus, we do not 

use edges to show this type of relationships rather we use pop-up windows. 

In the visualisation, each type of relation displayed in the screen must be in either 

the active or inactive state. The active relations are drawn using real colours while the 

inactive relations are drawn with lighter, semi-transparent colours. Figure 4.4 shows an 

example of the display when the categorising and the accessing relations are at the 

active state, and the participating and the sharing relations are at the inactive state. 

Figure 4.5 shows the display of the same dataset when the participating and sharing 

relations are switched to the active state, and the categorising and the accessing 

relations are at the inactive state. 

In order to reduce the complexity of the visualisation, at any time, only two types 

of relations at most are shown with the active state while the other types of relations are 

shown at the inactive state. A particular user can interactively change the state of each 

type of the relations through the option menu, to switch to a specific visual context 

he/she wants.  

We also provide a clustered viewing approach to enhance the clarity of the 

visualisation by reducing the complexity of the display of logical edges. Users can 

interactively switch between the normal view and clustered view. At the clustered view, 

if there are more than two links from a node to a sub-graph, i.e. a group participates in 

an activity as well as its sub-activities, and then a thick edge is drawn to replace a set of 

edges showing high level abstracted linkage information. The other edges are drawn as 

thin lines.  
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Figure 4.4. An example of the display where the categorising and the accessing 

relations are at the active state.  

 
Figure 4.5. An example of the display where the participating and the sharing 

relations are at the active state.  
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Figure 4.6. An example of the display or a workspace with a normal view. 

 
Figure 4.7. An example of the display of a workspace with a clustered view. 
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Figure 4.6 shows a workspace with the normal view. Figure 4.7 shows the same 

workspace with a clustered view with the relations from nodes ‘Client’, ‘Supervisor’ 

and ‘Observer’, etc, clustered and drawn as thick edges. Obviously, Figure 4.7 gives a 

much clearer view than what Figure 4.6 does. This is because many edges are filtered 

from the visualisation shown in Figure 4.6. 

4.3.3.2 Attributed Visualisation 

In this application, we employed several graphical attributes to visualise the domain-

specific attributes associated with the collaborative elements and relations in the 

workspaces. We next describe details of attributed properties of the collaborative 

entities as well as their relations. 

Entity attributes - an entity or a collaboration object and its domain-specific properties 

are represented as a node with attributed graphics in our visualisation. The attributed 

mapping between the collaborative workspaces and the visualisation is: 

• Node-size represents the hierarchical level or the depth of a node in the 

hierarchy. In our visualisation, the size of a node at a deeper level is smaller than 

a node at a higher level (see Figure 4.4, Figure 4.8 and Figure 4.10). 

• Node-colour represents a particular group of collaborative objects. There are two 

major groups of objects in LiveNet workspaces. Group-one includes all 

activities, sub-activities and artefact objects and group-two includes member 

groups in the workspaces. The colours of group 1 and group 2 are respectively 

yellow and blue (see Figure 4.8). 

• Node-brightness represents the degree of importance which is roughly called a 

weight of an element. In our implementation, a node with darker colour is more 

weight than a brighter node. Specifically, the weight of an object is defined as 

below:  

o If a node is a group object, the weight represents the number of members of 

the group. 

o If a node is an activity or a sub-activity, the weight represents the number of 

participants involved in the activity or sub-activity. 

o If a node is an artefact, the weight represents a property of the artefact 

corresponding to each type of artefact. In short, if the artefact is a forum or a 
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chat-room, the weight is calculated based on the scale, i.e. numbers of 

messages in the forum or the chat-room; or if the artefact is an uploading 

file, a view folder or a text message, the weight is calculated based on the 

size of the file, folder and message, and so on. 

• Node-icon and/or node-shape are used to represent the type of a collaborative 

object. The iconic visualisation can slightly reduce the clarity of node-colour and 

node-brightness compared to the other style. This visualisation, however, 

improves perception significantly when a user analyses the types of 

collaborative objects in the workspace (see Figure 4.10). In our system, the user 

can easily switch the display between the iconic mode and the rich-graphics 

mode. In the rich-graphics mode, an artefact is drawn as rounded-rectangle while 

an activity or a sub-activity is drawn as a normal rectangle. This simple node-

shape style allows the user to quickly clarify the differences between two types 

of objects (see Figure 4.9). 

 

 
Figure 4.8. An example of the attributed visualisation of a large workspace. 
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Figure 4.9. An example of a detail look from the attributed visualisation when a 

subsection is enlarged during the navigation. 

 

Figure 4.10. An example of the attributed visualisation when nodes are 

represented as icons corresponding to their types. 
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Figure 4.8 shows an example of the overview of the entire workspace that the 

important degree of each collaborative object is shown on each node. Figure 4.9 is 

another example of the structural detail of a focused activity in the workspace. In short, 

this figure shows clearly that the activity ‘Slembek’ Thesis” has several sub-activities 

and four artefacts. As can be easily seen, the artefact ‘Thesis Structure’ has the most 

weight while the artefact ‘Thesis Awareness’ has the least weight. Figure 4.10 illustrates 

the visualisation when icons are used to represent the types of collaborative objects. 

This figure indicates that the system currently has only one type group object, one type 

activity object, and several types of artefacts. 

4.3.3.3 Interactive Navigation Technique 

As mentioned above, we use the layering view approach with fade animation and semi-

transparent viewing to support fast navigation of large workspaces. The semi-

transparent viewing technique is used to support fast navigation of large graphs in 

which a focused sub-graph is displayed as the detail-view in a full display and the 

context of the sub-graph is displayed as the global-view with reduced size appearing in 

a semi-transparent presentation. These two views can be toggled smoothly through the 

fade in/out animation interactively. This allows users to explore through entire 

workspace quickly by moving around the sub-graphs. Each visual interaction is 

accommodated by a fade animation in order to preserve user’s cognitive-map of views 

during the navigation. 

More information about how to implement semi-transparency and fade animation 

techniques for achieving the layering view navigation can be found in section 3.2. 

Figure 4.11 shows the display of the entire workspace and the user is currently focusing 

on the node ‘My Activities’. Figure 4.12 shows an example of the navigation using 

semi-transparency when the node ‘My Activities’ is selected from Figure 4.11. You can 

see from the display of Figure 4.12 that the content of the node ‘My Activities’ is 

enlarged to occupy the entire screen, while the previous context view in Figure 4.11 is 

reduced and sent to the background with semi-transparency. Animation is used to 

preserve the user’s mental maps for the transitions from Figure 4.11 to Figure 4.12 and 

vice versa. Technically, the detail view is enlarged smoothly through the fade animation 

to the entire display area, while the context view is reduced and sent back to the 

background of the window at the centre, and the current focused section is bolded at the 

context view. 
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Figure 4.11. An example of the display when the view at Figure 4.3 is switched 

to iconic mode.  

This image also indicates that the node ‘My Activities’ is being selected. 

 
Figure 4.12. An example of the display when the node ‘My Activities’ is selected. 
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Figure 4.13. An example of the interaction when the user is pointing the mouse 

over a node. 

 
Figure 4.14. An example of the interaction when the view is held and the user 

can interact with more information through linked nodes. 
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We also provide interactive techniques to highlight both focused object and 

relations (including participating and sharing relations), as well as display the 

occupying relations. The occupying relationships indicate the members of a group (or a 

role) or participants of an activity. Figure 4.13 shows a screen dump of the visualisation 

that when the user rollovers the mouse to a group node ‘group-member’, we can see that 

a pop-up window is appeared that shows all the members belonging to the group. We 

can see also from the figure that all relationships linked to/from this focused group are 

activated and highlighted (including the activity ‘case-study’ and its two sub- activities 

‘step 1 – case study and make initial plan’ and ‘step 2 – complete impact table’). Those 

edges and nodes that are directly linked with the focus node are highlighted using 

respectively the red colour and light yellow. While a node is being focused, the user can 

press the control-key to hold the view (with highlighted linkage information) in order to 

further view, interact and navigate from the highlighted edges and nodes. The holding 

can be released when the control-key is pressed again. Figure 4.14 shows that the node 

‘Organizational Reference Material’ is focused and its corresponding highlighted view 

is hold so that the user can release the mouse for further viewing and interacting with 

the ‘Observer’ group. 

4.4 Summary 

This chapter has presented technical details of a visualisation component as an 

additional window in shared collaborative workspaces. This component employs 

EncCon tree algorithm and the layering view techniques allowing users to view, browse, 

edit and manipulate collaborative objects/relations in LiveNet system. The EncCon tree 

is responsible for handling the geometrical layout of large hierarchical information. The 

system is able to visualise multiple relationships among collaborative objects. In 

particular five types of relationships, including categorising, accessing, participating, 

sharing and occupying, are concurrently displayed in a single visualisation by using 

semi-transparency, clustered viewing and pop-up windows. The visual interface also 

employs several graphical properties, such as colours, brightness, shapes, sizes, icon 

styles, edge thickness, and others to visualise the domain-specific attributes of all 

collaborative objects and relations in the workspaces. Therefore, in comparison with the 

traditional interfaces of collaborative systems, this visualisation component provides 
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users with better assistance for viewing, navigating, understanding, analysing and 

manipulating of the collaborative elements in shared workspaces. The layering view 

navigation used in this application provides the capability of enlarged display of both 

the context view and the focus view, allowing more collaborative elements to be 

displayed in the focus view. 

 

 



Chapter 5 Case Study 2: A Visual Browser for 

Large-Scale Online Auctions 

The fast growth of the Internet has dramatically brought together more and more buyers 

and sellers in electronic marketplaces. Despite the rapid growth of interest and research 

into internet-based online e-commerce systems, the design of efficient mechanisms for 

navigating online product catalogues is still quite limited, especially for online auctions. 

This chapter describes an interactive visual interface for navigating product catalogues 

of large online auction sites. The EncCon tree layout algorithm was used to display the 

entire, as well as a portion of product hierarchy. The display of the hierarchy is 

accommodated with our new layering view technique for moving the focus point of 

users around the product hierarchy. An online auction prototype was developed to 

simulate the ordinary auction activities with the assistance of a proposed visual 

interface. 

5.1 Product Catalogue’s Navigation in Online Auctions 

Over the past few years, electronic commerce (or e-commerce) has emerged as a 

dramatic new model of business (Bakos 1998). One of the greatest potentials of e-

commerce is its ability to bring the effectiveness and unprecedented massive scale of 

buyers and sellers from all over the world. This property benefits both sides so that the 

buyers might have greater product diversity with potentially lower prices, and the sellers 

are able to reach a greater numbers of potential customers (Hahn 2001). At any time, 

through the online shopping stores (or auction websites), customers can learn more 

about the products, buy goods with electronic cash, and even have information goods 

delivered over the network. On the other hands, suppliers can reduce the overhead costs 

by investigating less in physical stores and distribution channels (Kim 1999). 

An important precondition to the success of e-commerce systems, or specifically 

online auctions, is the construction of appropriate customer interfaces, from which 

online product catalogues can be retrieved, is one of the key elements. Many extensive 

research projects have been done on both components of the online product catalogue 
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including the content management and the catalogue interface. For content 

management, a number of products have been developed and used at commercial 

website such as CardoNet, Interwoven, OnDisplay, Poet Software, Vignette, etc 

(Neumann 2000). Various methods that support product search and navigation have 

been developed for catalogue interface such as those systems in (Callahan & 

Koenemann 2000), and (Huang & Zhang 2002). 

Currently, the majority of commercial auction websites provide users with both 

the basic click-through navigation scheme, which is based on HTML pages, tables and 

lists, and add-on navigation aids. The add-on navigation aids aim to provide navigation 

functions customisable to each user’s need, such as search engines, and personalised 

recommendations. In addition, multiple views of lists are usually used for the ease of 

seeking interesting items. These views include ‘Current’ (i.e. the default view of all 

items), ‘New Today’ (i.e. the new items posted today), and ‘Ending Today’ (i.e. the 

items ending today), etc. 

Although the available navigation techniques can effectively assist sellers/buyers 

in searching and accessing product information over the World Wide Web, they mainly 

use the text-based interface that allows users to navigate by clicking-through several 

pages via URL links. Thus, it could be difficult for the users to perceive the overall 

structure of the product hierarchy by reading these textural lists. Figure 5.1 shows an 

example of a text-based interface that is used on eBay’s online auction website for 

browsing the product catalogue. 

 
Figure 5.1. An example of the traditional text-based interface for online auction. 

Source from: (http://www.ebay.com, accessed 20/03/2004). 

 

http://www.ebay.com/
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Some newly developed visualisation approaches have been proposed and 

implemented to enhance the presentation of product hierarchies for navigation. They 

aim to improve the readability, understandability, and comprehension of underlying 

hierarchical structure and to reduce the cognitive overhead for understanding the 

structure. These techniques are primarily for two-dimensional graph/tree visualisation 

techniques to display and navigate the product catalogues. The technical detail of these 

visualisation techniques can be found at (Huang & Zhang 2002), (Lee, Lee & Wang 

2001), and (Inxight). However, there is still little research on the visual navigation of 

online auctions. 

This chapter describes a new visualisation approach for navigating large-scale 

online product catalogues of online auction stores. The visualisation technique uses 

EncCon tree layout algorithm that displays the entire product hierarchy as well as a 

small portion of focused sub-hierarchy. Users can browse through the entire product 

catalogue via layering view technique. A prototype was developed to demonstrate the 

effectiveness of this visualisation technique in the area of online auction. 

5.2 The Framework of Visual Online Auction Store 

The proposed visual online auction store consists of several components. Within the 

scope of this thesis, we consider only the display and navigation components of the 

online auction. Figure 5.2 shows the components and interconnections among them in 

the context of online auction. 

• Product database is a relational database used to store product information, 

including all data fields, attributes, and bidding information associated with a 

particular product that is available for auctioning. We used a MySQL database in 

our implementation. 

• Product Catalogue is a content management system that assembles, indexes, 

aggregates and normalises product information from the product database, and 

quickly distributes the product catalogue information. 
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Figure 5.2. The framework of a visual online auction store. 

• Catalogue Visualisation is a visual navigational interface that automatically 

displays the entire product catalogue’s hierarchy, including categories, 

subcategories, and products. This component employs the focus+context visual 

layout and navigation mechanism from sections of respectively 2.4 and 3.2 that 

allows users not only to view the entire product hierarchy, but also to 

interactively browse down to a particular auctioned item. 

• Product Detail Display is a web page generated on the server side by a 

particular scripting language, PHP, in our implementation, to show all the 

appropriate information of the selected product. This page also displays the 

product’s bidding information, and it allows the authenticated bidder to input the 

bidding price for the product. 
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5.3 Dynamic Visualisation of Online Auction’s Product 

Catalogue 

The visualisation of the product catalogue for online auction is implemented using the 

Java programming language. The applet retrieves and updates information from the 

database via the PHP programming language. This visual browsing window does not 

replace entirely the traditional text-based interface, but provides extra assistance to 

users. In addition, the size of this applet window can be adjusted to suit each user’s 

preference. 

EncCon tree algorithm was used to lay out the structure of the product catalogues. 

In this visualisation, nodes are used to represent the objects (such as categories, 

subcategories and auction items), while edges are used to present relationships among 

the objects or the relations among auction items and categories.  

There are several alternative approaches in the design of a navigational structure 

for online auction sites. The navigational structure can be either breadth-oriented or 

depth-oriented. The breadth-oriented structure has the advantage of guiding users to 

their target item with the minimised number of mouse clicks, while depth-oriented 

structure enables the user to browse through more specific sub-category of interesting 

items effectively. However, the depth-oriented navigational structure requires more 

intermediate levels of retrieval (Hahn 2001). Although the use of appropriate 

navigational structure purely depends on the nature of applications, our auction 

prototype system uses breadth-orientated structure in its implementation. On the other 

hand, the navigational structure can be either single-only or multiple hierarchies. The 

use of multiple hierarchies may increase the chance of locating a target item of interest, 

but it often confuses the user because of its inconsistency through the site. The 

navigation structure used in our implementation is a single-only hierarchy.  

It is desired that the chosen layout algorithm takes its advantage of geometric 

space efficiency, speed, and aesthetics. The above features and advantages of our layout 

technique ensure the capability of handling large or very large scale visualisation with 

several levels of hierarchical views, i.e. a complex online auction’s product catalogue 

with thousands of auction items. In other words, this could improve the scalability of 

the traditional interface. The layout also provides an overview of the entire category. 

This helps users have a better understanding of the overall structure of the product 
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catalogue. Figure 5.3 shows an example of the visual navigational window (that 

displays all categories, subcategories and auction items) and the main window for 

browsing online auction’s product catalogue.  
 

 
Figure 5.3. An example of the visual navigation window and the main window of 

the online auction’s prototype. 

We use our new layering view technique for navigating product catalogues. In the 

visualisation, the layout of the overall context is overlapped with the layout of focused 

sub-hierarchy. Specifically, a semi-transparent technique is employed to display these 

dual views in the same geometric area, in which the focused sub-hierarchy is called the 

detail-view and the context of the hierarchy is called the global-view. This allows users 

to explore the entire hierarchy quickly by moving around the sub-hierarchies. Each 

visual interaction is accommodated by an animation in order to preserve the mental-map 

of the user during the navigation. In more detail, there are two states of the 

visualisation: normal and context. Normally, the users’ attention is on a particular sub-

catalogue from the detail-view, and when the context state turns on, users’ attention 

moves to the content of the global-view. At the normal state, the selected sub-hierarchy 

is displayed with no transparency, while the context is partly transparent and is 
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displayed in brighter colour (see Figure 5.5). At the context state, the context is brought 

from the back to the front and displayed with no transparency, while the detail 

information is sent from the front to the back and displayed with brighter and partly 

transparent colour (see Figure 5.6). These two views can be shifted interactively by 

using a left mouse-click on the background of each layer. 

The visualisation uses different colours to present items and subcategories of 

different categories. The categories and subcategories are also presented with bold 

boundary to identify auction items within the domain. These displays aim to improve 

the clarity of the visualisation. The system also provides a mechanism to highlight the 

new products, ending-today products, and others. This aim to improve the overall 

display where the users can easily find the special items through the product catalogue 

(see Figure 5.4). We also provide an interactive menu allowing users to adjust the 

display to their preferred styles. When the mouse is moving over a node, the sub-

hierarchy of the focused node is highlighted to emphasize the selection (see Figure 5.4). 

In addition, if the focused node is an auctioned item, brief information of this product 

will be displayed. This property reduces the navigation time since the users can quickly 

view information of the item from the visual navigation window. In our prototype, the 

brief information includes current bid price, starting date and closing date (see Figure 

5.7). Finally, from the focused item, the bidders can also double-click on a particular 

product node in order to display all of the information associated with that auction item 

in the main window (see Figure 5.8). 

Figure 5.4 shows a global view of a product catalogue of the prototype system, 

MLH Online Auction. From this figure, we can quickly identify a new product at the 

‘Computers-Games’ categories. This item is highlighted by being painted with darker 

colour at their front-end. Figure 5.4 also indicates that the user is focusing on the 

category ‘Computers’. Figure 5.5 shows the next display when the node ‘Computers’ is 

selected. You can see from the display of Figure 5.5 that the subcategories and product 

of the category ‘Computers’ are enlarged and occupied the entire screen, while the 

previous context view in Figure 5.4 is reduced and sent to the background with semi-

transparency. Figure 5.6 is the display when the global-view active state is selected. One 

can see that the display is reversed and that the context is brought from the background 

to the front and displayed with full colours, and the detail-view is sent from the front to 

the back and displayed with semi-transparent colours. 
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Figure 5.4. The global view of the entire product catalogue.  

 
Figure 5.5. The display of all subcategories and auctioned items belonging to 

the category “Computer”. 
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Figure 5.6. The display when the global-view is switched to active state. 

 
Figure 5.7. The display when the mouse is over a product. The system pop-ups 

a layer to show more detail of the auctioned item. 
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Figure 5.8. An example of the display of both visual navigation and the main 

window when the bidder double-clicks on the item “JavaScript 3” from 

categories “Computers-Computer Books”. 

5.4 Summary 

This chapter has presented a new dynamic visual user interface that appears as an 

additional window and can be used for assisting the online auction process. This visual 

interface enables users to view and browse the auction catalogue with a large number of 

the auction items. A new focus+context viewing technique called layering view is 

employed to handle the overlapped display of both the context view and the focus view. 

This visualisation combines the EncCon tree layout and the layering view method to 

provide users with a visual aid for the fast and effective product navigation. Although 

this application has not been completely finished and commercialised, we believe that 

this system is very valuable as it can improve the understanding of the product 

categories during the navigation of auction websites.  

 

 



Chapter 6 Ongoing Research 

This chapter describes two additional techniques, a three-dimensional EncCon tree and 

a fast navigation technique for the classical hierarchical layouts, which have been 

conducted during my Ph.D research. Although these techniques are not the main stream 

of the study, they are closely related to the research. We now describe these techniques 

respectively at section 6.1 and section 6.2. 

6.1 A Preliminary Three-Dimensional Extension of EncCon 

Tree 

This section describes a preliminary three-dimensional extension of the EncCon tree 

visualisation (see section 2.4). This three-dimensional visualisation includes two parts: 

layout and navigation. The layout algorithm directly generalises the two-dimensional 

EncCon tree layout algorithm to three-dimensional space in which nodes at the same 

level of the hierarchy are placed in the same plane. The interactive navigation uses 

standard three-dimensional viewing techniques which include view transformation, 

rotation and zoom. 

6.1.1 Motivation 

With the fast growth of technology, hardware devices for supporting three-dimensional 

graphics have become more and more powerful. The price of such devices is decreasing 

rapidly. This makes three-dimensional information visualisation more feasible on a 

normal personal computer compared to a decade ago. 

Chapter 2 has presented two two-dimensional layout algorithms which aim to 

optimise the display space while retaining the clarity of the display by using a node-link 

diagram. The success of these layout algorithms motivates me to study the feasibility of 

extending these algorithms in three-dimensions. The model reuses the above two-

dimensional layout algorithms to display the hierarchical data in three-dimensional (3D) 

space so that nodes at same level are projected onto the same plane. This property aims 

to provide not only an alternative approach to the visualisation, but also a more realistic 
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look to the three-dimensional model as well as a possible improvement of the clarity in 

layout. 

6.1.2 Layout Algorithm 

The layout algorithm of this 3D model is simply a generalisation of EncCon tree layout 

algorithm. This three-dimensional algorithm is described by following processes. 

1. First, the x-, and y-coordinate value of every node is calculated using the 

EncCon tree layout algorithm (see section 2.4). In this partitioning process, the 

width and height of the display are normalised as one unit. This step ensures the 

utilisation of the display space when the layout is projected onto a plane. 

2. Next, the z-coordinate value of each node is calculated based on its level that 

nodes with the same level have the same z-coordinate value. This step is 

formalised as a projection of the entire hierarchy on the different planes. The 

number of planes in equal to the number of levels of the hierarchy. These planes 

are placed along the z-axis. Although the distance between two planes can be 

adjusted and varied for each level, this prototype only applies the same distance 

between each two planes. Suppose that the z-coordinate value of the root node is 

z = 0 and the distance between two planes is D, the z-coordinate value of a node 

at level k is calculated by the formula: 

kDz −=  

Equation 6.1 

3. Finally, the (x, y, z) coordinate value of every node is recalculated to translate 

from the normalised coordinate system to the display system. 
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(a) 

 
(b)  

Figure 6.1. An example of thee-dimensional extension of the EncCon tree. 

That uses the datasets of respectively (a) 170 nodes and (b) 6500 nodes. 
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(a) 

 

(b) 

Figure 6.2. The same visualisation as shown in Figure 6.1 with modified 

representation of edges. 

That uses the same datasets of respectively (a) 170 nodes and (b) 6500 nodes. 
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Figure 6.1 shows an example of thee-dimensional extension of the EncCon tree’s 

layout that uses the datasets of respectively 170 nodes and 6,500 nodes. Although the 

three-dimensional visualisation from this algorithm performs reasonable well on several 

datasets, the overcrowded look of edges could reduce the visualisation quality. This 

problem normally occurs with a very large datasets that a node might have several child 

nodes (see Figure 6.1b). To overcome this limitation, we modify the representation of 

edges by replacing straight-line links with bended links. Technically, an edge is not 

drawn directly from a parent node to a child node through a straight-line link, but a 

bended link which includes two segments. The first segment is drawn from this node to 

the centre of the rectangular local area of its child nodes. And the second segment is 

drawn from this centre point to a child node. Figure 6.2 shows an example of the 

visualisation from this modification that uses the same datasets as Figure 6.1. 

6.1.3 Summary 

This section has presented an ongoing three-dimensional extension of the EncCon tree 

visualisation. The layout algorithm used for this visualisation extends the original two-

dimensional EncCon tree to a three-dimensional space. This property aims to provide 

not only an alternative approach of the visualisation, but also a more realistic look of the 

three-dimensional model as well as a possible improvement of the clarity in layout. We 

use two different edge representations, the straight-line and the bended-line, to 

implement this three-dimensional EncCon tree. This three-dimensional system is just at 

the initial state and there is still need for improvement. However, this initial work shows 

a great potential in developing alternative EncCon tree visualisation.  

6.2 A Fast Focus+Context Viewing Technique for the 

Navigation of Classical Hierarchical Layout 

This section presents a fast focus+context viewing technique for the navigation of 

classical hierarchical layouts (see an example at Figure 1.3). In classical hierarchical 

layouts, the density of display information expands only in one dimension. Based on 

this property, we only consider one dimension of distortion of views for the navigation 
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of hierarchical structures. This section first discusses the features, advantages and 

limitations of layout and navigation of current classical hierarchical layouts. It then 

describes new a focus+context technique for the navigation and exploration of the 

classical hierarchical layouts. 

6.2.1 Classical Hierarchical Layout 

The classical hierarchical layout is based on the algorithm developed by (Reingold & 

Tilford 1981) which is also called the RT algorithm. In this algorithm, children nodes 

are positioned below their common ancestor (see Figure 1.3). In short, the RT algorithm 

calculates the relative position of sub-trees independently and then it joins them in a 

larger tree by placing these sub-trees as close as possible. The detail of this algorithm is 

described at the section 6.2.2. 

Currently, several newly two-dimensional layout techniques have been proposed 

and  developed such as radial view (Eades 1992), balloon view (Melancon & Herman 

1998),  hyperbolic browser (Lamping & Rao 1996; Munzner 1997), disk tree (Chi et al. 

1998), NicheWorks (Wills 1999), rings (Teoh & Ma 2002), and others. These 

techniques are often superior in term of space-efficiency, navigation, and large-scale 

visualisation. However, these new techniques cannot match the RT algorithm in terms of 

simplicity, predictability and aesthetics of trees visualisation. As a result, the RT 

algorithm is widely used in many applications where datasets are reasonably small.  

The hierarchical layout, however, still has limitations that its layout tends to be 

too wide to be displayed within a screen size. As a result, the classical hierarchical 

layout is not very applicable to large datasets. There are a few variations to this layout 

technique which was described by (Kennedy 1996), (Bruggemann-Klein & Wood 

1988), and (Herman, Delest & Melancon 1998), etc. In addition, there are few good 

available navigation techniques for viewing large classical hierarchical layouts. Typical 

viewing techniques available for navigating classical hierarchical layouts are zooming 

(Herman, Delest & Melancon 1998) and fisheye-view (Furnas 1986). When a focused 

area is zoomed, the overall context is lost. This might lead to a broken mental map 

during the navigation in the zooming techniques. On the other hand, fisheye-view is a 

focus+context technique where the context is kept during the navigation. However, this 

technique causes the distortion of views which might reduce the quality of the 

visualisation of both context and detail information. Furthermore, most classical 
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focus+context methods use two-dimensional distortion technique for viewing 

hierarchies. This technique costs considerable a large amount of the computation time 

for view transformations during the navigation, especially for viewing large hierarchies. 

This problem sometimes slows down the navigation activities. 

(Plaisant, Grosjean & Bederson 2002) described an excellent navigation technique 

for navigating hierarchical layouts. This technique provides a browsing mechanism 

allowing a user to interactively move the selected sub-hierarchy into the centre of the 

display area. The algorithm also enlarges and displays more detail the focus sub-tree, 

and it reduces and filters the others. However, this technique does not apply the RT 

algorithm in its implementation which is the main concern of my research. 

This section describes a fast and simple focus+context technique for the classical 

hierarchical tree visualisation. This technique applies Reingold & Tilford algorithm in 

its layout and it attempts to retain the shape of the layout during the navigation. This 

addresses the problem of preserving a mental map. Specifically, the hierarchical layout 

is presented in vertically top-down manner where nodes in the equal-level are placed at 

the same horizontal line. The navigation operates horizontally and focus regions are 

dragged into the middle. This reduces the computation time for changing views as we 

only consider one-dimensional distortion of views for the browsing of hierarchies. A 

mechanism is also provided to solve the problem of labelling, especially the problem of 

displaying a very long node label. 

6.2.2 Technical Detail 

Our viewing technique can be applied to any layouts where only one-dimensional 

distortion is considerably important. In the scope of this paper, we only apply our 

viewing technique to rooted trees where their layouts are based on Reingold and Tilford 

algorithm (Reingold & Tilford 1981). This layout algorithm was chosen to demonstrate 

our viewing technique because it is simple, fast, well known and produces a nice layout 

overall. The system includes two major sections: layout and interactive navigation. The 

layout section is responsible for constructing the tree layout while the interactive 

navigation section is used for the viewing and navigation of these hierarchies. 
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6.2.2.1 The Layout 

There are two separate steps in this section. The system first constructs a tree layout 

based on the RT algorithm. A transformation is then applied to every node in order to 

achieve the final drawing. 

The RT algorithm takes a modular approach to calculate positions of nodes. The 

relative positions of the nodes in a sub-tree are calculated independently from the rest of 

the tree. Conceptually, the algorithm recursively traverses through the tree and place the 

nodes from leaves upward to the root of the tree. The process uses bottom-up direction 

in our system. Each sub-tree is considered as a local unit. From left to right direction, 

the siblings of a node in a sub-tree are placed at a proper minimal distance from one 

another. Then, all nodes of each sub-tree are shifted to the right in order to avoid 

intersection between sub-trees (see Figure 6.3). 

 

 
Figure 6.3. The Reingold and Tilford algorithm. 

The shifting of all nodes in the sub-tree is time consuming. To overcome this 

problem, Reingold and Tilford used the concept of a preliminary x-coordinate and a 

modifier field for each node. The tree placement is recursively calculated in two 

separate traversals, namely post-order and pre-order traversals. In the first tree traversal, 

the intermediate x-coordinate and the modifier value are set. The modifier value is used 

to indicate the amount to be added to the intermediate x-coordinate of all nodes of the 

corresponding sub-tree.  Then, the pre-order traversal is applied for calculating the final 

x-coordinate values of each node by accumulating the modifier values in the process. 

This traversal also calculates the y-coordinate values based on the level of each node in 

the hierarchy. The detail of this algorithm is described in the conference paper titled 

‘Tidier drawing of trees’ (Reingold & Tilford 1981). Figure 6.4 shows an example of 

the display when the RT algorithm is applied to visualise a hierarchical data structure. 
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Figure 6.4. An example of displaying a tree layout using RT algorithm. 

The final displacement of the hierarchy is then calculated based on values from 

the above RT algorithm. For each node of the hierarchy, we apply a transformation 

function in order to get the final coordinate value. In our system, the point (0, 0) is 

located at the top-left of the display window. For each node N, suppose that (xrt, yrt) is 

the coordinate of node N after using RT algorithm.  The final coordinate (x, y) is 

calculated by the formula in Equation 6.2: 
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Equation 6.2 

where C is a constant and is equal to half the width of the display window. In 

other words, C is the offset value of two coordinate systems (transformation and 

normal). In our transformation coordinate, the value x = 0 is defined at the centre of the 

window in horizontal direction. M is also a constant and it defines the magnification of 

the distortion. The magnification is proportional to the value of M. This magnification 

value can be adjusted during the navigation in order to archive a suitable view. Figure 
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6.5a and Figure 6.5b are two examples of the final display, where respectively M = 0.02 

and M = 0.04. 

 

  
(a) (b) 

Figure 6.5. An example of the layout where (a) M = 0.02 and (b) M = 0.04. 

6.2.2.2 Interactive Navigation 

In our system, the navigation operates horizontally by dragging information to the focus 

area, i.e. the centre area. Suppose that the mouse drags in the horizontal direction a 

distance K. For each node N in the tree, its x-coordinate value is recalculated in 

Equation 6.3. 

 

C
MKxC

x old +
+

=
−

π
))(tan2 1

 

Equation 6.3 

where C and M are constants that are defined at Equation 6.2, and xold is the 

original x-coordinate value of node N. The y-coordinate value is unchanged during the 

navigation. Figure 6.6a is an example of the original display of a large dataset. Figure 

6.6b shows the display when focused node, labelled ‘Champagne’, is dragged to the 

centre area. 
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(a) (b) 

Figure 6.6. An example of the navigation and interaction. 

Figure (a) shows the original display, and figure (b) shows the display when a 

node labelled ‘Champagne’ in (a) is dragged to the centre. 

6.2.2.3 Display Property 

In our system, we only display the detail of nodes that are not very close to their 

siblings. Similarly to the classical hierarchical layout technique, we also have problems 

with labelling when the label of a node is very long. To overcome this problem, a node 

label is drawn just below the normal position if the label is too long and it clashes with 

others (see Figure 6.6). This property aims to improve the clarity of layout overall. 

6.2.2.4 Complexity 

The above layout algorithm includes two separate steps: the first step uses Reingold and 

Tilford algorithm and a transformation function. The run time complexity of Reingold 

and Tilford algorithm is O(N) where N is the number of nodes (Reingold & Tilford 

1981). The transformation function presented in Equation 6.2 is linearly applied to 

every node of the hierarchy which also costs O(N). As a result, our layout complexity is 

O(N) or linear. The navigation and interaction also applies a transformation function to 

every node as Equation 6.3. This means that the computational cost of each navigation 

is linear or O(N). In conclusion, the complexity of both layout and navigation is linear 

or O(N). 
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6.2.3 Summary 

This section has presented a fast focus+context technique for the viewing and 

navigation of classical hierarchical layouts in which only one dimensional distortion of 

view is considerably important. Our technique employs a simple and fast one-

dimensional distortion of views to help users browse and retrieve the hierarchical 

information without losing the context view. The Reingold & Tilford layout algorithm 

was chosen for the implementation of our technique because this algorithm is simple, 

fast, predictable and it produces a nice-layout overall. Although this technique still 

needs to be improved, we believe that it is a good method for navigating hierarchical 

information with the classical hierarchical layout.  

 



Chapter 7 Conclusions and Future Work 

The preceding chapters have presented, discussed and illustrated all of the technical 

elements of this research. The current chapter concludes the thesis by providing a 

summary of the main points and the major contributions of this thesis in information 

visualisation. Finally, this chapter outlines the areas for future work and the sketch plan 

of two usability studies. 

7.1 Conclusions 

Most existing visualisation systems do not consider the issue of increasing the 

utilisation of display space for visualising large graphs and/or hierarchies. Hierarchical 

layouts generated by the existing visualisation systems usually contain a large portion of 

the screen pixels that are wasted as background (see detail discussion at section 1.3). 

Consequently, we are unable to fit large amount of contextual information (the global 

view) with thousands of items onto a computer screen. The traditional virtual page 

solution used by many existing systems, however, breaks the global view of the 

information into several windows. This makes it difficult for users to understand the 

scope of information spaces or to find where they are and where they should go to 

access information they need. Furthermore, this virtual page approach requires a huge 

memory to store and display the large virtual screen. An effective strategy to improve 

this situation is to increase the utilisation of display space to allow more nodes/edges to 

be fitted into the screen.  

This thesis has presented a new space-efficient model and associated algorithms to 

handle the visualisation of large hierarchies in a two-dimensional space. It is the first 

attempt to use a space-efficient approach to address the problem of visualising large 

hierarchies which differs from other approaches. Our new model inherits the advantage 

of efficient space utilisation from the enclosure approach while it tries to retain the 

clarity of hierarchical representation by using node-link diagrams. This approach does 

not require high hardware support, such as memories, screen resolution and 

computational power, which makes it possible to be run on most ordinary personal 
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computers. We have shown that this approach could be one of the cost-effective ways to 

solve the problem in comparison with other approaches.  

We next summarise the main points of our layout algorithms and navigation 

methods, as well as the major contributions of the thesis. 

7.1.1 Space-Efficient Visualisation 

Traditional hierarchical visualisation algorithms are more concerned with the readability 

of drawings. This can be measured by a set of aesthetics, such as the minimisation of 

edge crossings, total edge length and the variance of the lengths of the edges.  They 

usually do not consider the efficient utilisation of the geometrical plane for drawings. 

However, when the user wishes to have the entire layout of a large graph with (tens of) 

thousands of nodes/links displayed within a single screen, the efficient utilisation of the 

geometrical plane becomes a crucial issue and more important than aesthetics in the 

production of large layouts. We first need to consider how to fit a large number of 

nodes/links on a screen before we should consider the aesthetics needed to enhance the 

readability of layouts. In this research, we have investigated new hierarchical drawing 

algorithms that aim to produce high quality layouts of large hierarchies, which could 

satisfy both the aesthetic rules of graph drawing and utilisation of the geometric plane 

thus allowing more nodes/links to be displayed on the screen. 

This thesis has presented two layout algorithms for visualising large hierarchical 

information. They are space-optimised tree and EncCon tree that support the space-

efficient principle. Space-optimised tree (or SO tree) is an effective partitioning 

algorithm for laying out large hierarchical information. This algorithm optimises the 

space to display information at a limited screen resolution. It partitions the geometrical 

layout as polygons in which each polygon is formed by the intersection of a wedge and 

the given polygonal local region. Space-optimised tree is quite capable of visualising 

the entire tree structure of large datasets at the available screen resolution (see examples 

from Figure 2.7 to Figure 2.10). 

EncCon tree is another enclosure partitioning algorithm that uses a rectangular 

space-filling method for recursively positioning of trees in the display space. The space-

filling method used in the EncCon tree is similar to Squarified Tree-Maps (Bruls, 

Huizing & van Wijk 2000). In comparison with the above SO tree, the rectangular 
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space-filling method is generally easier for viewers to perceive hierarchical 

relationships. Furthermore, the rectangular space-filling algorithm used in the EncCon 

tree is relatively simple and requires less computational time than the polygonal space-

filling algorithm. 

In Chapter 2, we have also conducted an experimental evaluation of EncCon 

tree’s partitioning algorithm in comparison with several tree-maps algorithms. The 

comparison result shows that only the ‘square-like’ partitioning algorithms, including 

the EncCon tree and the squarified tree-maps, are better for our enclosure+connection 

visualisation. Further analysis using graph drawing aesthetic rules at section 2.4.7 also 

indicates that the EncCon tree algorithm often performs better than the squarified tree-

maps algorithm, especially for large datasets (see Figure 2.28). 

7.1.2 Navigation Methods 

Navigation of large hierarchies is the second key issue raised in the design of interactive 

visualisation. Even if the advances in graph drawing research have enabled the efficient 

geometrical positioning of trees and their displays, a visualisation of large trees would 

still be useless in terms of assisting users to retrieve particular data items, unless they 

provides efficient navigation mechanisms in collaboration with the layout algorithms. 

As a result, navigation and interaction techniques are generally implemented in 

information visualisation system in conjunction with the layouts. 

In Chapter 3, we have described the technical detail of two new interactive 

navigation methods, called hybrid view, and layering view. These two techniques use 

focus+context approach by which both the global and the detail information are 

displayed concurrently. Although these interactive navigation methods are independent 

to the layout algorithms, the prototypes we used to demonstrate these methods are based 

on the space-optimised tree and EncCon tree layout algorithms. 

The hybrid view technique includes a browsing algorithm and a simplified 

fisheye-like distortion algorithm. The browsing section is responsible for bringing a 

sub-hierarchy to the focus area, while the distortion section enlarges the information at 

the focus area. This technique also applies semantic zooming to reduce the amount of 

visual information when the display is overcrowded. The low computational-cost 
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property of hybrid view speeds up the navigation process allowing a very large dataset 

to be quickly visited on a normal personal computer. 

Layering view uses a new zooming+layering concept (see section 3.2.1) to 

achieve the focus+context viewing of large hierarchies; rather than the traditional 

enlarge+embedded approach which is used by most of the existing focus+context 

techniques. As a result, this technique is generally better in term of utilisation space for 

displaying information. Technically, it employs a semi-transparent graphical technique 

to achieve the concurrent display of two separate layers of information on the same 

physical screen. This alternative approach enlarges the display areas for displaying 

context view and detailed view and allows more information to be presented in both 

views. The interactive navigation is achieved by semantic zooming, updating views and 

swapping views between layers. All these transactions are accommodated by animation 

to preserve the user’s mental map of the views. 

7.1.3 Case Studies 

In Chapter 4, we have presented the first application of our layout and navigation 

techniques in the domain of collaborative workspaces. This visualisation component 

appears as an additional window to the main text-based user interface, and can be used 

for viewing, browsing, analysing, and manipulating LiveNet collaborative workspaces. 

This visual interface consists of five main techniques: 1) a modified EncCon tree layout 

algorithm, 2) a semi-transparent viewing technique, 3) a clustered viewing technique, 4) 

an animated focus+context interactive navigation technique, and 5) a set of rich 

graphical techniques, including icons, pop-up windows, shapes, sizes, colours, 

brightness, to visualise the attributed properties of the collaborative workspaces. The 

system visualises multiple relationships among collaborative objects of shared 

workspaces. These types of relationships include categorising, accessing, participating, 

sharing and occupying. These relationships are concurrently displayed at a single 

display space using the above techniques. The visualisation also employs several 

graphical techniques to visualise the attributed properties of all collaborative objects and 

relations in the workspaces. Therefore, this visual interface provides the users with a 

better assistance for visual learning, manipulation and navigation in collaborative 

workspaces. In addition, this chapter also describes an approach for navigating, 

highlighting, as well as viewing the associative information of workspace elements. 
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In Chapter 5, we have described the second application of our new visualisation in 

the domain of e-business. This system is a prototype of a visual interface for viewing 

and navigating product catalogues of large-scale online auction websites. This system 

also employs EncCon tree layout algorithm to display the entire as well as a portion of 

product hierarchy. This visual interface provides not only a focus+context viewing 

technique to allow a user to browse the entire the product catalogue, but also a 

mechanism for quickly analysing and recognising special auctioned items. 

Consequently, this system has shown its potential for assisting the user in online 

auctions. 

7.1.4 Ongoing Research 

In Chapter 6, we have presented two additional studies which have been recently 

conducted. These include a preliminary three-dimensional extension of EncCon tree 

layout algorithm and a fast focus+context viewing technique for the navigation of 

classical hierarchical layout. Although these techniques are not the main focus of this 

research, they are natural extensions of the core research and showing the potential 

value as alternative research directions for my future research. 

7.2 Future Work 

The preceding sections have summarised all the main points and the major contributions 

of this thesis in information visualisation. This section outlines the possible directions of 

future work from this research. 

As part of this research, we have made a preliminary three-dimensional extension 

of EncCon tree layout algorithm. Although this initial prototype shows its potential, the 

work we have done is still in the early stage. In the future we will improve our initial 

prototype and make a formal study of three-dimensional hierarchical visualisation. We 

will also conduct a usability study to evaluate this three-dimensional technique.  

In the thesis, we have demonstrated that our two-dimensional EncCon tree is an 

effective approach for laying out large tree structures. However, there are still some 

problems need to be improved in the near future, such as the problem of overlapping 

among nodes. 
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The author will investigate optimised viewing techniques and layout algorithms to 

minimise the effect of our layering view in human cognition processes. A usability 

study will also be carried out to evaluate the effectiveness of transparent layering for 

visualising graph or hierarchical data. Although the layering navigation technique is 

independent of the layout, it works better with optimised layouts of the node-link 

diagram. We believe that by adopting optimised layout algorithms, the overlaps among 

nodes between the context view and the detail view will become insignificant. 

Although an experimental evaluation has been conducted to evaluate our 

partitioning and layout algorithms through the comparison of several tree-maps 

algorithms, a usability test for our new navigation methods that enable users to explore 

large scale visualisation efficiently will be carried out in the near future. The test will try 

to compare several human perception aspects of our method with other navigation 

methods, such as the fisheye view. Some initial sketch of the usability studies is further 

described.  

7.2.1 Usability Study – Topology of Tree 

7.2.1.1 Type of Layouts 

The experiment evaluates our space-optimised tree (Nguyen & Huang 2003), and 

EncCon tree (Nguyen & Huang 2005) layouts against the other typical tree visualisation 

techniques. Two popular layout techniques are selected in our experiment. They are the 

classical hierarchical layout (Reingold & Tilford 1981) and tree-maps (Johnson & 

Shneiderman 1991) which represent connection approach and enclosure approach 

respectively. 

7.2.1.2 Criteria for Evaluating Layouts - Topology of Tree Visualization 

• Ease of interpretation: this indicates how well a user understands the parent-

child and sibling relationships of any tree. The user should be able to recognise 

the property of the relational hierarchies, such as identifying the largest sub-tree, 

identifying the number of levels of a tree, by viewing the entire display. 

• Comparison of node size: this indicates how well a user recognises a node’s 

property. 
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• User preference: this indicates the user preference of above tree layout 

interfaces. 

7.2.1.3 Design 

The experimental design is a variation of a 4 (views) x 5 (tasks), repeated-measures the 

interfaces with different tree datasets as a random factor. This experiment is applied for 

medium to large tree hierarchies. 

7.2.1.4 Participants 

• Non-expert participants: selected from computer science undergraduate or 

postgraduate students who are not or little familiar with information 

visualisation, especially in hierarchical information visualisation including 

classical hierarchical view, tree-maps, space-optimized tree, and EncCon tree. 

• Expert participants: selected from research students who are familiar with 

information visualisation, especially hierarchical information visualisation. 

7.2.1.5 Tasks 

We design 5 tasks to test the ability of the view to communicate the tree topology. 

4. Binary or n-ary: participants have to design if the tree is binary or n-ary (more 

than 2 children at a node). All the trees in this task are not uniform. 

5. Balanced or unbalanced: participants decide if a tree is balanced or unbalanced. 

6. Deepest common ancestor: participants decide which node is the deepest 

common ancestor of two highlighted nodes. 

7. Number of levels: participants count the number of levels in the tree. 

8. Three largest sub-trees: participants decide three largest sub-trees in descendant 

order from a given tree. 

7.2.1.6 Procedure 

• All the figures from this test have size of 700x700 pixels. 
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• Screen size is a standard 17 inches monitor with 1024x768 pixels resolution. 

• Eight samples datasets are selected in the experiment. 

• Two samples are randomly selected on each task.  

7.2.1.7 Measurement 

• Response time: the time to answer questions. 

• Accuracy: correctness. 

7.2.1.8 Questionnaires 

• Q.1. is the tree binary or n-ary? A binary tree is a tree which all of the parents 

have almost 2 children. An n-ary tree is a tree which most of the parents have 

more than 2 children. 

• Q.2. is the tree balanced or unbalanced? A balanced tree is a tree which has 

leaves on the same level or two consecutive levels. 

• Q.3. what is the deepest common ancestor of the two highlighted nodes? The 

deepest common ancestor of two nodes is the node which is the closest direct 

ancestor of these two nodes. 

• Q.4. how many levels does the tree have? The number of levels of a tree is the 

level of the deepest leaf. The root level is 1. 

• Q.5. select three largest sub-trees in order 1st, 2nd, and 3rd? A sub-tree of a tree 

is the tree whose root is the node having level 2 or level 3 (if there are only one 

node at level 2). The largest sub-tree is a sub-tree which has most number of 

descendants. Only two sub-trees are listed if the tree is a binary tree. 

7.2.2 Usability Study – Navigation and Topology of Tree 

7.2.2.1 Type of Tree Visualisation Systems 

This experiment evaluates the EncCon tree (Nguyen & Huang 2005) against three 

popular tree-browsing techniques including hyperbolic browser (Lamping & Rao 1996), 
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tree-maps (Johnson & Shneiderman 1991), and space-tree (Plaisant, Grosjean & 

Bederson 2002).  

7.2.2.2 Criteria for Evaluating Tree Visualisation Systems 

• Navigations: this indicates how fast and effective a user navigates through a 

very large hierarchical tree. 

• Topology: this indicates how well a user understands the topology the tree 

beside the navigation. 

• User preference: this indicates the user preference of above systems. 

7.2.2.3 Design 

The experiment uses four data sets (file systems) which are carefully selected to ensure 

they are similar in terms of number of levels traversed and semantic complexity of the 

data explored. We randomly selected one data set for each experimental system. 

7.2.2.4 Participants 

• Non-expert participants: selected from computer science undergraduate or 

postgraduate students who are not or little familiar with information 

visualisation, especially in hierarchical information visualisation including 

hyperbolic browser, tree-maps, spacetree, and EncCon tree. 

• Expert participants: selected from research students who are familiar with 

information visualisation, especially hierarchical information visualisation. 

7.2.2.5 Tasks 

We design 3 tasks to test the ability of navigating through a hierarchy and 2 tasks of 

communicating the tree topology. These tasks are further described. 

9. First-time node finding: this task is to find 3 nodes which have never seen 

before. 

10. Returning to previously visited nodes: this task is to find the first visited node 

from the first task. 
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11. Listing all the ancestors of a node: this task involves when the user is finished 

task 2. 

12. Finding nodes with property: this task is to find three nodes which have more 

than fifteen direct children. 

13. Topology of tree: this task is to find the three sub-hierarchies with most number 

of nodes. 

7.2.2.6  Procedure 

• All the programs running from this test have size of 700x700 pixels. 

• Screen size is a standard 17 inches monitor with 1024x768 pixels resolution. 

• Four computers are used and each of them is applied for one visualisation 

technique using one random data set from 4 samples. No same data set is used in 

any two techniques to ensure the minimisation of learning effect. 

• A stop watch is used to count the reaction time. 

• Four different datasets are used with similar number of levels traversed and 

semantic complexity. 

7.2.2.7 Measurement 

• Response time: the time to answer questions. 

• Accuracy: correctness. 

7.2.2.8 Questionnaires 

• Q.1. first-time node finding: this task is to finding three nodes which have never 

seen before. 

• Q.2. returning to previously visited nodes: this task is to finding the first visited 

node from task 1. 

• Q.3. listing all the direct ancestors of a node: this question involves when the 

user is finished task 2. 
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• Q.4. finding nodes with property: this task is to finding three nodes which have 

more than twenty direct children (this apply to the entire data set). 

• Q.5. topology of tree: finding the three sub-hierarchies with most number of 

nodes. 
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