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(thick curves) or the bottom surface (thin curves), while the modes of the

compound woodpile are double-interface modes that propagate along the

interior surfaces (thick curves) or along the exterior surfaces (thin curves). 119
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Abstract

New semi-analytical methods are presented for modelling the electromagnetic fields of

three-dimensional photonic crystals that are composed of orthogonal layers of cylindrical

rods. Firstly, the multipole method is extended so that cylindrical defects, which act as

optical waveguides, can be introduced into such ‘woodpile’ structures. These waveguides

are important because they offer greater control over the mode dispersion and optical

losses than conventional waveguides do. The multipole method forms the basis of all of

the techniques presented in this thesis, and is employed here because it is considerably

faster than the pre-existing methods for modelling woodpile waveguides.

Two approaches for modelling linear defects are presented. The first approach uses a

grating super-cell to approximate a localised defect, and results are presented for both a

coupled resonator optical waveguide and for a linear waveguide, where each waveguide is

embedded in a finite woodpile cladding. The existence of waveguiding modes is inferred

from the transmission spectra, and is verified by numerically reconstructing the fields.

Furthermore, low loss waveguiding is observed for the linear waveguide.

To complement the super-cell approach, we have generalised the two-dimensional

fictitious source superposition method, whereby the defect modes of a woodpile are com-

puted directly. The principal advantage of this approach is that it is particularly efficient,

making this approach well-suited to the task of tuning the dispersion relationships of the

defect states; however, the performance gains are achieved by forgoing the ability to deal

with finite structures. The dependence of the dispersion on the refractive index and size

of the defect is investigated, and it is shown that tuning these parameters is an effective

method for optimising the waveguide for operation in the slow-light regime.

Lastly, a comprehensive analysis of the surface modes of photonic woodpiles is per-

formed. Specifically, the surface modes of both finite and semi-infinite woodpiles are

characterised using transfer matrix and plane wave matrix formulations. In the case of

finite structures, a general mathematical description of the modes that propagate simul-

taneously along the top and bottom surfaces is given. It is shown that when the number

of layers is even, such ‘double-interface’ modes only exist for specific directions of the

Brillouin zone. However, when the number of layers is odd, every surface mode is a

double-interface mode and, in this case, the direction of propagation plays an important

role in determining the coupling strength between the two surfaces: for certain directions,

the coupling is negligible even when the number of layers is small. The dispersion curves

xi



of two different double-interface modes can anticross or be interwoven, depending on the

symmetry of the modes. A Fabry-Pérot cavity comprising two woodpile barrier regions is

also considered. In particular, the conditions required in order for coupled surface modes

to exist in these ‘compound woodpile’ structures are described.
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Introduction

Over the last half-century, few of the advances made in the material sciences have had

more far-reaching effects on society than the advent of semiconductor based technology,

which ushered in the digital era. However, this technology is beginning to reach its phys-

ical limits, and so there is an increasing need to develop optical materials that are capable

of operating at far greater speeds than semiconductor components. Such ‘photonic’ mate-

rials are exemplified by optical fibres, which, because of their unprecedented bandwidth,

enabled the rapid growth of the telecommunication industry. One of the fundamental de-

signs to emerge from the fibre optics revolution was the fibre Bragg grating (FBG), which

was first demonstrated by Hill in 1978 [1], and which, due to the periodic variation of the

refractive index along the length of the fibre, was able to transmit light selectively.

The mechanism underlying the selectivity of one-dimensional periodic systems like

the FBG was elucidated by Lord Rayleigh in 1887 [2]: By adjusting the period, and

thereby the amount of refraction, one can, as a result of the multiple scattering events,

reflect target wavelengths while allowing the remaining light to be guided down the fibre.

The extension of this idea to higher dimensional systems has its origins in the pioneering

work on X-ray diffraction in crystals that was conducted by Sir William Lawrence Bragg,

and for which he was awarded the Nobel prize in physics in 1915. Although Bragg’s work

was concerned with atomic lattices, it has since been realised that his findings are also

applicable to macroscopic lattices, which, like FBGs, are periodic on a wavelength scale.

The defining feature of these types of macroscopic optical crystals, or photonic crystals

(PCs), is the periodic nature of their refractive index. Thus, an FBG is an example of a

one-dimensional PC in that its refractive index varies periodically in only one direction

and, hence, Bragg scattering only occurs for light travelling parallel to the axis of the

fiber. For certain wavelengths, this Bragg scattering results in the formation of gaps in the

optical frequency bands; a phenomenon that is referred to as a photonic bandgap. Simply

put, the multiple scattering conspires, through destructive interference, to suppress the

longitudinal propagation of light inside the fibre, leading to Bragg reflection.
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This thesis describes new semi-analytic methods for modelling a type of photonic

crystal that is known as a photonic woodpile, and results that were obtained using these

methods are presented herein. Woodpiles are layered structures in which each layer com-

prises a one-dimensional array of parallel rods, with the rods in each layer aligned or-

thogonally to those of the layer below, as illustrated in Fig. 1. Unlike FBGs, woodpiles

are three-dimensional (3D) PCs in that their refractive index varies periodically along the

three axes of the structure. The one-dimensionality of FBGs means that bandgaps can

only exist for light propagating down the length of the fibre. Similarly, bandgaps in 2D

PCs only exist for directions lying in the plane of periodicity. Woodpiles, however, can

possess a photonic bandgap that is capable of suppressing light of certain wavelengths

from propagating inside the crystal, irrespective of wave vector and polarisation (the pho-

tonic density of states vanishes). Such a bandgap is said to be complete, a property that is

unique to 3D PCs, and results in omnidirectional reflection over the wavelengths spanned

by the complete bandgap. Under certain conditions, periodic 1D dielectric stacks can also

exhibit omnidirectional polarisation-insensitive reflection [3]. However, unlike 3D PCs,

this phenomenon cannot be used to localise light in three dimensions since it relies on the

translational symmetry of the 1D PC. While 2D PCs can be used to localise light in three

dimensions, such confinement is not omnidirectional since it only occurs for directions

that lie above the critical angle for total internal reflection – a point that is discussed in

the next chapter.

Figure 1: The geometry of the photonic woodpile.

The earliest investigations into the properties of 3D PCs were made during the 1970s

by Vladamir Bykov [4] and Kazuo Ohtaka [5]. However, these papers went largely un-

noticed at the time, and it wasn’t until Eli Yablonovitch and Sajeev John, in 1987, pub-
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lished seminal papers on the subject that interest in 3D PCs was rekindled [6, 7]. Both

Yablonovitch and John were motivated by the prospect of using 3D PCs to control light

in a manner analogous to the transport of electrons in semiconductors. In his paper [6],

Yablonovitch demonstrated that 3D periodic systems made from lossless materials, such

as dielectrics, could in principle be used to inhibit the spontaneous emission process in

semiconductors. At the same time, John realised, by way of analogy with Anderson lo-

calisation [8] in amorphous semiconductors, that photons could be localised to defects

in disordered dielectric 3D ‘super-lattices’ [7]. This implied that it might be possible to

steer light along designed defects within the lattice. Thus, PCs can be thought of as ‘semi-

conductors for light’. Yablonovitch’s and John’s papers generated an intense interest in

PCs, and the first PCs with complete bandgaps were fabricated [9,10] not long after these

two papers were published.

Many uses for PCs have since been discovered. Compelling applications for PCs now

include the creation of, e.g., resonant cavities that have ultra-high quality-factors [11],

slow-light waveguides [12] and directional couplers [13], and also include the study of

non-linear processes such as third-harmonic generation [14]. Moreover, PCs need not be

made from just dielectric materials; it has been shown that metallic and metallo-dielectric

PCs are capable of low-loss guiding at long wavelengths [15], and also give rise to novel

optical phenomena such as waveguide-plasmon polaritons [16].

While designs based on 2D periodicity have been tremendously successful, so far

only a very small number of these designs have been realised using structures that are

periodic in three dimensions [17–20]. This is because fabricating high-quality 3D PCs, as

well as endowing these structures with functionality, is relatively difficult. Furthermore,

successful designs are often motivated by theoretical predictions; however, modelling

artificial defects in 3D PCs usually requires enormous amounts of computational power

and memory, and it is likely that this computational barrier has hindered the development

of functionalised 3D PC structures.

The woodpile is one of the most promising 3D PC geometries because it is amenable

to several nanoscale fabrication techniques, each with its own advantages, and each ca-

pable of accurately incorporating defects into the structure. There are two general ap-

proaches for fabricating photonic woodpiles. The first involves using lithographic tech-

niques to construct the woodpile in a layer-by-layer fashion, and is exemplified by the

wafer bonding method [21], which has been used to create high-quality defect structures

within the woodpile [17–19]. In addition, with this approach, incorporating layers made

from active materials (e.g., in the control of spontaneous emission processes) is straight-
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forward [17]. The woodpiles produced using wafer bonding are already of sufficient

quality and size for them to be used as optical interconnects. The other prominent fabri-

cation approach utilises high-speed lasers to write the entire woodpile at once [22]. These

‘direct writing’ methods are fast, accurate (though not yet as accurate as lithography) and

can been used to create fairly arbitrary defects [23].

Modelling woodpiles that contain defects is performed exclusively using the finite

difference time domain [37] and planewave expansion methods [24]. These methods are

important because the constraints they impose on the geometry are minimal. Furthermore,

there are publicly available implementations that are moderately simple to use. The gen-

erality of such methods comes at the cost of efficiency; typically, simulations are limited

to a small region of the parameter space. This shortcoming is addressed in this thesis.

Specifically, new semi-analytical methods for modelling defect layers in photonic wood-

piles are presented. The methods described herein significantly reduce the computational

burden of modelling woodpile waveguides. In addition, we use semi-analytical methods

to perform a comprehensive study of the waves that propagate along the top and bottom

surfaces of woodpiles.

Overview of the Thesis

The structure of this thesis is as follows. Chapter 1 provides some context for this work.

To this end, a review of the literature pertaining to woodpiles is provided. Although this

thesis concerns methods for modelling photonic woodpiles, we nonetheless include wood-

pile fabrication methods in the review because woodpiles are not as yet commonplace in

the study of photonic crystals, and so the reader might not be aware of the practicalities

of the geometry. By also including a review of the experimental and theoretical investi-

gations in which the woodpile is the novel optical element, we aim to give the reader an

understanding of the types of applications that the woodpile is well-suited for. Chapter

1 concludes with a brief discussion of how the pre-existing methods for modelling pho-

tonic woodpiles compare with the semi-analytical methods that we have developed for

modelling these structures.

Chapter 2 explains the basic theoretical framework for the methods described in later

chapters. Firstly, a brief account of the general optical modes of PCs is given. These

properties are essential to the understanding of the methods and results presented in later

chapters. However, because the layers of the woodpile usually do not interpenetrate, it

is better to regard the structure as an assemblage of diffraction gratings. The problem of
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determining the modes then becomes one of determining the amplitudes of the diffracted

fields generated by each layer. For circular rods, the diffracted fields can be found by

applying the multipole method, whereby the fields in the vicinity of each rod are expanded

in terms of cylindrical harmonics. The multipole method is the most efficient basis in

which to compute the scattered fields produced by circular rods because very few basis

functions are required in order to obtain well converged approximations for the fields1.

For this reason, the multipole method is employed in all of the techniques that we have

developed for modelling woodpiles.

Chapter 3 describes a new generalisation of the pre-existing multipole framework for

woodpiles [25, 26]. It is shown how a grating super-cell can be incorporated into the

existing framework, thereby allowing periodic defects to be introduced into the lattice.

Super-cells are frequently employed in the study of PCs because they can be used to

simulate localised defects, provided that the super-cell is sufficiently large. In addition,

super-cells preserve the periodicity of the structure and, by doing so, effectively reduce

the size of the problem domain. For 3D problems, the running time and memory require-

ments increase rapidly as the size of the super-cell increases, making this approach as

much an exercise in computing as it is in mathematical modelling. We use the method to

model a coupled-resonator optical waveguide, as well as a linear waveguide, where each

waveguide comprises a defect layer embedded in a finite woodpile cladding.

Although the super-cell method is capable of approximating local defects, it is only

of utility when the fields along the waveguide layer can be approximated using a small

super-cell. If the fields require a large super-cell, as sometimes happens for linear waveg-

uides, the computational load can be high, and in such instances one should look for more

germane methods. To this end, we have generalised the Fictitious Source Superposition

(FSS) method, described in Chapter 4, so that it can be used to model woodpile waveg-

uides. This method obviates the need for a super-cell, and instead proceeds by placing an

artificial source inside each rod of the defect layer and then subsequently taking an appro-

priate field superposition to remove all but one of these sources. The remaining source

can then be used to mimic the fields that would be produced by a defect rod. This can

be done efficiently because the multipole formulation lets one manipulate the outgoing

fields directly; however, the FSS method forgoes the ability to deal with a finite number

of layers. The FSS method is utilised in the study of 2D PCs [27] because it is one of

the few methods that models local defects exactly, and that can thus cope with highly-

extended fields, such as those that result from shallow structural perturbations. Here, the

1The multipole method is semi-analytical because the basis functions are defined using infinite series.
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FSS method is employed because its running time compares extremely favourably with

that of other methods, including our super-cell code, making it possible to investigate a

large area of the parameter space of the defect. It is shown that the waveguide can be opti-

mised for operation in the slow-light regime by simply tuning either the size or refractive

index of the defect.

Lastly, an immediate application of the basic multipole framework is described in

Chapter 5. Specifically, a comprehensive study of the surface waves that are supported

by finite and semi-infinite woodpiles is carried out. Much of the chapter is devoted to

surface modes that propagate simultaneously along both the top and bottom layers of the

woodpile, and it is shown that the behaviour of such coupled surface modes is highly

anisotropic. We also investigate the basic properties of coupled surface-modes of com-

pound woodpiles, which comprise two half-stacks that are separated by a homogeneous

region.
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Chapter 1

Background

This chapter serves to put the methods and results presented in later chapters in a practical

context by way of a literature review, wherein the fabrication methods (Sec. 1.1), appli-

cations (Sec. 1.2) and theoretical studies (Sec. 1.3) are discussed in turn. In the course of

the review, it will become apparent that the woodpile, which is a relatively new geometry,

is highly relevant not only in the area of 3D bandgap confinement for optical wavelengths,

but also as a transparent material that offers 3D control over the optical dispersion. The

chapter concludes with a short comparison between the various methods for modelling

photonic woodpiles (Sec. 1.4), including the methods that we have developed for mod-

elling these structures. The principle advantages of the multipole method employed that

is employed in this thesis, are that it is considerably faster than conventional methods

(which are purely numerical) for modelling linear defects contained within woodpiles,

and it often provides greater physical insight into the problem at hand.

1.1 Fabrication

The woodpile geometry was proposed in 1994 by a number of authors [28, 29] and, in

1994, the first woodpile (indeed, one of the first 3D PCs) to be reported was constructed

from macroscopic alumina rods. Transmission measurements showed that the structure

possessed a complete bandgap in the microwave region [30]. This structure was also the

first in which light was successfully localised to intentional defects [15, 31]; however,

this work did not address the main technical challenge, which was to develop fabrication

methods that could be used to create woodpiles capable of operating at optical wave-

lengths (< 100μm) and, most significantly, near the telecommunications band at 1.5μm.

To this end, Noda et al. employed 2D lithographic techniques to print individual lay-
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ers, which were then bonded together [32]. The rods can be made from gallium arsenide

(GaAs), or other III-V semiconductors, making these woodpiles relevant in the field of

optoelectronics. Importantly, the wafer bonding process is epitaxial in that the woodpile

is assembled layer by layer, allowing defects or active materials to be incorporated into the

structure in an extremely precise manner. Not long after this milestone, the same group,

in 1998, used the wafer bonding method to fabricate a four-layer GaAs (refractive index

of n ≈ 3.38) woodpile that had a rod spacing of just d = 4μm, resulting in a predicted and

observed photonic bandgap (PBG) that spanned the wavelengths 5 < λ < 10μm [21].

At the same time, Lin and Fleming [33] developed an epitaxial method for creating

high-quality silicon woodpiles (n = 3.6) that have complete PBGs in the infrared (10-

14.5μm). An SEM image of such a woodpile is shown in Fig. 1.1. One of the appealing

features of these woodpiles is that, being made of silicon, they can be made using exist-

ing microelectronics fabrication facilities. The silicon woodpiles can also be used as a

template for fabricating metallic woodpiles, e.g., those made from tungsten by Fleming et

al. [34]. Although these tungsten woodpiles absorb light at shorter wavelengths (< 6μm),

there is a large region of low absorption, and this region coincides with a PBG that spans

the infrared wavelengths from 8 < λ < 20μm. Within the PBG, the attenuation of elec-

tromagnetic fields inside the tungsten structure is greater than that typically observed in

dielectric PCs. Hence, compared to dielectric PCs, metallic woodpiles require fewer lay-

ers and smaller rod volumes relative to the rod spacing (i.e., metallic woodpiles can be

smaller and lighter) — a four-layer tungsten woodpile can exhibit high omnidirectional

reflectivity. The presence of a strong absorption peak at λ ≈ 6μm led Fleming et al. to

propose that such tungsten woodpiles could be used as selective emitters in thermophoto-

voltaic applications, where the PBG suppresses broadband thermal (infrared) radiation.

In 1999, Lin and Fleming used these same fabrication techniques to create the first

3D PC, a woodpile made from silicon [35], to have a complete bandgap in the near-

infrared (near-IR). In particular, the PBG covered the telecommunications wavelengths

of greatest importance (λ ≈ 1.55μm). Shortly thereafter, the wafer bonding method was

used to fabricate a GaAs woodpile that possessed an appreciable complete gap in the near

IR [36]. When 8 GaAs layers were used, the bandgap covered the wavelengths from 1.3-

1.55μm (99.99% or better reflection measured over this region); the rod spacing used to

achieve this was d = 0.7± 0.03μm. The first woodpile to contain a designed, submicron

sized defect was also presented in [36]. The defect was a high quality 90◦ bend that had a

predicted transmittance of 95% over a substantial frequency range. (This prediction was

determined numerically using finite difference time domain simulations [37].) The fact
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.

Figure 1.1: An SEM image of a silicon woodpile, which was fabricated in a layer-by-layer

fashion using photolithography. Image taken from Lin et al. [33].

that the structure was made from GaAs, an important semiconductor in optoelectronics,

was also seen as a desirable feature because it meant that the waveguide could conceivably

be used as an interconnect betwen optical and electronic components.

The latter two methods for creating woodpiles involve mask lithography. An alterna-

tive microfabrication technique was reported in 2000 by Feigel et al. [38], and employs

maskless holography in order to overcome the technological demands of the lithographic

approaches. Two lasers are used to generate a sinusoidal interference pattern inside a

chalcogenide glass photoresist. The underexposed regions are then removed chemically,

leaving behind a grating whose period is determined by periodicity of the interference

fringes (in this instance, d ≈ 1μm, however, d = 0.75μm structures have also been made

in this way [39]). This procedure exploits both the photosensitivity and the non-linear

optical response of chalcogenide glasses; the latter property ensures that the grating has a

binary profile, rather than a profile that varies smoothly. The significance of these struc-

tures is that chalcogenide has a high refractive index (n as large as ∼ 3) compared to other

glasses, and it is also highly non-linear, making these woodpiles relevant in the area of

optical signal processing [40]. Furthermore, the layers are deposited one at a time, and

so introducing a defect would be quite straightforward. A drawback of this approach is

that the rod width is strongly dependent on the rod spacing. In addition, some surface

roughness is inevitable because spurious reflections from the substrate interfere with the

writing beams.

Holographic techniques can also be used to write many layers at once by using a phase

mask to split a single beam into many writing beams (typically four or more beams). The
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beams are then used to create a three-dimensionally periodic interference pattern inside

the photoresist. These fringes determine the lattice type of the woodpile [41]. While

holography is less suitable for producing artificial defects than the epitaxial appraches

are, it is much faster and has modest technological requirements in comparison. Typi-

cally, polymers are used as the photoresist, and so the index of the resulting woodpile is

usually too low (n ≈ 1.6) for there to be a complete bandgap, although the low index

woodpiles can, in principle, be used as a template for making high index structures. The

polymer structures also show varying degrees of distortion. It has been suggested that

using an alternative photoresist, such as a gelatin emulsion [42], will alleviate this prob-

lem. Holography can also be used to produce orthorhombic lattices, whereby each layer

is rotated by an amount α �= 90◦ about the stacking axis relative to the layer below [43]. It

was shown theoretically that when α = 55◦ the size of the bandgap of the polymer wood-

piles could be up to twice as large as the bandgap of the face-centred tetragonal (α = 90◦)

configuration.

More recently, ‘direct laser-writing’ (DLW) methods have been attracting attention

because they can be used to fabricate fairly arbitrary 3D geometries [44]. A high-speed

(femtosecond) laser is focused to a spot inside the photoresist, thereby initiating two-

photon polymerisation in the vicinity of the focal point. The structure is then written

by dragging the focal spot through the sample, and the unexposed volume is subse-

quently removed via a selective chemical etching process. This procedure can be used

to inscribe woodpiles directly into both low- and high-index materials, e.g., chalcogenide

glass [45, 46] using this approach. Furthermore, DLW can be used to write features, such

as cavities and elaborate channels [23], that are as small as 100nm in diameter. How-

ever, the focal spot of the writing beam tends to be elongated in the direction parallel to

the beam, and this can lead to longitudinal distortion in the features, especially when a

high-index material is used. Wong et al. (2006) [47] showed that this aberration can be

partially compensated for by overlapping two writing elements and, by doing this, the

authors were able to fabricate chalcogenide glass woodpiles whose rods were largely free

of distortion (see Fig. 1.2). Direct laser writing methods are not yet as accurate as litho-

graphic techniques, and so the scattering losses inside woodpiles that are created using

DLW are expected to be greater than in woodpiles created using, e.g., the wafer bond-

ing method. Another drawback of the DLW method is that active materials can not be

incorporated precisely into the sample.

Direct laser writing has also been employed to make ‘inverse’ woodpiles (low-index

rods in a high-index background). In the simplest case, DLW is used to construct a
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.

Figure 1.2: An SEM image of chalcogenide (As2S3) woodpile, which was fabricated

using direct laser writing techniques. Image taken from Wong et al. [47].

polymer template, which is then infiltrated with the higher-index material, e.g., TiO2

(n ≈ 2.7), and the polymer is subsequently removed [48]. It is also possible to make in-

verse woodpiles made from germanium (n = 4.1) [49], and silicon (n = 3.95) [50]. The

advantage of using an inverse structure is that it scatters light much more strongly than

the complement structure does and, hence, will usually have a much wider bandgap. For

example, the germanium inverse woodpile fabricated by Garcia-Santamaria et al. [49] had

a complete bandgap that had a predicted width (i.e., gap-to-midgap ratio) of 25% (verified

experimentally for one direction), while a silicon inverse woodpile having elliptical rods

can, in theory, have a bandgap that is as large as 28% [28].

1.2 Applications

Woodpiles have already been used successively in a number of applications, which fall

roughly into two categories: applications that exploit the selective opacity of the PC, e.g.,

waveguiding and the control of the spontaneous emission of light, and applications that

exploit the transmission properties, e.g., superprism effects and optical cloaking.

One of the earliest demonstrations of the woodpile’s ability to suppress spontaneous

emission was reported by de Dood et al. in 2003 [51]. Erbium ions were distributed

throughout an Si woodpile, which was fabricated using the lithographic techniques devel-
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oped by Lin et al. [33]. Despite being only five layers high, the woodpile suppressed the

radiative rate of the Er3+ ions by 25% at wavelengths near 1.53μm, and there was strong

evidence to suggest that the reduced emission was due to the presence of a PBG that cov-

ered this wavelength region. Similar experiments have been performed using quantum

dots (QD), i.e., semiconducting nanoparticles. For instance, direct laser writing was used

to fabricate a woodpile out of a low-index QD composite consisting of a polymer resin

doped with PbSe QDs [52]. The PbSe QDs had an emission band at 1.6μm that coincided

with the partial PBG of the woodpile, resulting in a 50% suppression rate in the stacking

direction.

The behaviour of light-emitting structures embedded inside a woodpile has also been

examined (2004) [17]. Both five- and nine-layer GaAs woodpile structures were fabri-

cated using the wafer-bonding approach [36], where the rods of the middle layer were

multiple-quantum-wells (MQW; three-layer laminar structures made from semiconduc-

tors, in this case InGaAsP) having an emission peak near 1.55μm. Since GaAs has a

high refractive index (n ≈ 3.38), the field attenuation due to complete PBG was high,

leading to a strong suppression of light emission from the MQW layer. In the case of the

9-layer woodpile, the suppression was as much as -20 dB from 1.45-1.6μm, and was in

agreement with numerical modelling. When a cavity consisting of the InGaAsP MQW

material was introduced into the MQW layer, the emission from the cavity was enhanced

for wavelengths inside the PBG because of the presence of cavity modes, suggesting that

the PBG inhibits other leakage mechanisms. As the size of the cavity was decreased,

the spectral features sharpened until a critical cavity size was reached, at which point the

cavity modes became indistinguishable from one another, and a single emission peak was

observed. It was shown, both experimentally and using numerical modelling, that the Q

factor, which is defined as the wavelength of the spectral line divided by the linewidth

(full width at half maximum), and which is inversely proportional to the optical losses, is

a constant function of the cavity size. By comparison, the Q factors of the cavity modes of

2D PCs decrease as the size of the cavity increases, since total internal reflection does not

confine light as strongly as the complete PBG of the woodpile does. The results of finite

difference time domain modelling (FDTD) suggested that a 17-layer structure would have

a cavity Q factor of over 3,000. In fact, very recently a woodpile cavity having a Q factor

of 38,500 was realised and, by coupling one of the cavity modes to a quantum dot layer,

was used to create the first 3D PC laser [20].

A cavity has also been created on the top layer of a GaAs woodpile by inorporating a

2D PC, which contained a dielectric strip that served as the cavity, into the top layer. A Q
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factor of 9,000 was attained by choosing the parameters of the top layer so that there was

‘a bandgap for surface modes’ [53]. In theory, the Q factor of such surface cavities can be

made to exceed 100,000 simply by increasing the number of layers of the woodpile.

For wavelengths outside of the PBG, photonic crystals are useful as dispersive optical

media that offer some control over the dispersion. Woodpiles are especially interesting

in this regard as they are both three-dimensional and highly anisotropic. A striking ex-

ample of the novel tranmission properties of PCs is the superprism effect [54], which is

analogous to the wavelength dependent refraction that occurs in homogeneous dispersive

prisms; however, the effect can be markedly stronger in PCs. Superprism phenomena

have been observed in polymer woodpiles [55], where the angle of refraction was found

to vary by 60◦ as the wavelength was increased from 860-960nm, with both positive and

negative refraction occuring in this wavelength range. This change in deflection is two

orders of magnitude higher than that of conventional prisms.

One of the most astonishing instances of a woodpile being used to manipulate opti-

cal dispersion was the creation of a 3D ‘carpet cloak’ for optical wavelengths [56]. The

cloak causes irregularities on the surface of the object of interest to become indistinguish-

able from the rest of the object when they are viewed through the cloak. In the case of

the woodpile cloak, a gold sheet containing a small bump was placed under a polymer

woodpile. The rods of the woodpile were arranged into an face-centred cubic lattice so

that the woodpile would behave as though it were isotropic for wavelengths λ � 1.6μm,

i.e., for wavelengths longer than about twice the period d = 0.8μm of one of the layers.

This measure ensured that the cloak operated for a wide cone of viewing directions. In

the vicinity of the bump, the average ε of each unit cell was chosen so as to cause the

reflected fields generated by the bump to be cancelled inside the woodpile. The presence

of a marked 3D cloaking effect for the wavelengths 1.6− 2.6μm was confirmed by using

a microscope to collect the reflected fields over a 60◦ field of view.

Waves that propagate on the surface of a woodpile are also important since, in princi-

ple, they can be engineered to improve the coupling efficiency between an external source

and a defect embedded inside a woodpile, or to improve the directivity of antennas placed

on a woodpile substrate [57], for example. So far, experimental progress towards manip-

ulating woodpile surface waves has been limited to the excitation of surface waves and of

the modes of cavity resonators situated on the surface of a woodpile [53].

The type of woodpile structure that has attracted the most interest (and which con-

cerns this thesis) is the woodpile waveguide. The principal advantage of this structure is

that, because the waveguide is surrounded by a woodpile cladding, it does not rely on total
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internal reflection at all and, therefore, scattering losses are much less of a problem. In

addition, such a waveguide offers three-dimensional control over the waveguide modes,

and is relatively easy to fabricate. As we have already touched upon, much work has

been done towards reducing the dimensions of the structure, with the aim of making a

waveguide small enough to function at telecommunications wavelengths. In 2006, Imada

et al. reported the first woodpile waveguide to be operated successfully at the telecom-

munications band near 1.55μm [18] (this was also a first for any 3D PC). The waveg-

uide was formed by increasing the width of a single rod of the middle layer of a 9 layer

GaAs woodpile. Adding dielectric in this way also increased the confinement strength in

the stacking direction. The band structure1 calculations showed that there were several

waveguide modes, some of which were slow-light modes, i.e., modes having a very low

group velocity vg = ∂ω/∂kx in the waveguiding (x) direction. The propagation lengths

inside the waveguide were found experimentally to be as large as ∼ 30μm for the 9 layer

structure, and were in good agreement with FDTD simulations. Moreover, the presence

of both low and high vg modes could be inferred from the propagation lengths, which are

proportional to both vg and Q. Numerical modelling was used to confirm that the Q fac-

tors increased exponentially as the number of layers increases (an intrinsic property of all

PCs); while a 9 layer waveguide has a Q of about 300, which corresponds to 10% trans-

mittance after 50μm of propagation, a 25 layer waveguide has an expected Q of 3× 105,

which corresponds to lossless propagation over distances in excess of 500μm.

In 2009, the same group demonstrated vertical and L-shaped waveguides operating at

∼ 1.5μm [19]. The vertical waveguide comprised an empty channel that extended down-

wards through a 4 layer GaAs woodpile. The channel was able to guide light efficiently,

irrespective of the polarisation of the incident laser beam. The vertical wavegude was

then bonded to a horizontal waveguide, which was created by removing half a rod from

the top layer of a 5-layer stack, resulting in a 9 layer L-shaped waveguide. Numerical

modelling showed that the horizontal arm of the bend had guided modes that, potentially,

could couple to those of the vertical arm, and these predictions were borne out in practice;

the compound structure was able to transmit light efficiently for one polarisation. A ver-

tical waveguide, similar to the one just described, was fabricated recently (2011) by using

direct laser writing [23]. The waveguide spanned 22 layers of a silicon woodpile, illus-

trating the suitability of DLW for producing many-period structures, and had computed

and measured resonances near 1.75μm.

1The band structure is discussed in the next chapter.
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1.3 Theoretical and Numerical Studies

Amongst the literature on woodpiles, there are a number of purely theoretical studies in

which the behaviour of light inside existing or new woodpile designs is elucidated. In this

section, we review these studies so that we may, in section Sec. 1.4, delineate our work

from the pre-existing theoretical studies.

Much of the early work devoted to woodpiles was theoretical. The woodpile geometry

was proposed independently by Ho et al. [28] and Sözüer and Dowling [29] in 1994 (al-

though, according to the latter authors, priority probably belongs to John Pendry). These

groups used Fourier expansion techniques to demonstrate theoretically that diamond lat-

tice configurations (i.e., a four layer stacking unit in which the first pair of gratings is

offset laterally by half a period with respect to the second pair, as in Fig. 1) possessed

complete bandgaps when the dielectric rods were rectangular or cylindrical. Both Ho

and Sözüer judged correctly that fabricating and incorporating defects into these type of

structures would be relatively simple.

Linear waveguides based on the woodpile geometry were first analysed in 1999 by

Chutinan [58], who modelled the types of structures that would be fabricated later us-

ing the wafer bonding method [18, 36]. In the study, plane wave expansion (PWE) [59]

and FDTD methods [37] were used to show that the removal of a single rod from the

middle layer of the woodpile would result in a channel that supported several waveguide

modes. Two different 90◦ bend waveguides were also examined, and it was found that

removing half a rod in each of two successive layers would result in a bend that would

outperform conventional sharp-bend waveguides; reflection calculations for a 12 layer

stack suggested that such a bend would be capable of guiding light with 95% efficiency

over a large frequency range. A limitation of the study was that, due to the enormous

computional cost (at the time) of the numerical models, the error in the estimates of the

mode frequencies was quite large (about 15% of the size of the bandgap).

The same methods were used to study the interactions between the linear waveguide

just mentioned and a cavity that was created by attaching a small dielectric block to one of

the rods in, or just above, the waveguide layer (2003) [60]. The waveguide layer, in turn,

was sandwiched between two woodpiles. It was shown that the Q factor of the uncoupled

cavity increased exponentially as the number of periods in either the lateral or stacking

direction increased (Q as large as 106 for a 29 layer stack). When the waveguide was

present, coupling between the two defects occurred for asymmetric configurations only,

and the patterns of the uncoupled modes were used to explain the oscillatory dependence
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of coupling strength on the in-plane distance between the defects. Also, the effect of

the number of layers and waveguide position on the efficiency of light extraction was

quantified.

Kawashima et al. (2005) proposed that adding dielectric (a ‘donor-defect’) to create a

linear waveguide would allow for stronger light-matter interactions [61]. Several designs

were examined and, of these, ‘cross-rod’ defects, whereby the defect rod interpenetrates

the other rods of the waveguide layer, offered the greatest control over the dispersion and,

especially, the field distribution. For a single crossed rod, the position of the rods im-

mediately above and below the waveguide were arranged to produce a large single-mode

bandwidth as well as a strongly localised single-lobed field pattern that Kawashima et al.

speculated would improve the coupling efficiency to the waveguide. One such arranged

cross-rod waveguide possessed slow-light modes, and so could, in principle, be used as

an optical delay line. The addition of a second crossed-rod increased the bandwidth of

the linear waveguide without increasing the modal volumes. By constructing the defects

from non-linear or light-emitting materials, such a waveguide should afford some control

over the dispersion, since donor-defects result in modes that tend to be strongly confined

to the waveguide.

This group also proposed that a combination of donor-defects and acceptor-defects

(removal of dielectric) might be used to create a linear waveguide for which light-matter

interactions and, therefore, non-linearities are suppressed [62]. The waveguide comprised

an acceptor defect (created by removing a single rod) and two crossed-rod defects that

were situated immediately above and below the acceptor defect. The compound defect

had an extremely large single-mode bandwidth, which could be made to span 90% of

the PBG by adjusting the positions of the nearby rods, and outperformed 2D PC slabs in

this regard. Moreover, the fields concentrated inside the acceptor defect, and had smaller

volumes than the fields that would be produced by the acceptor defect without the donor

defects. This meant that the group velocities of the waveguide modes were relatively

large, and so light travelling along the acceptor defect would have little time to interact

with the walls of the waveguide.

Another functional defect that is of practical significance is the planar defect [63],

where the rods of the waveguide layer are modified uniformly. Detailed numerical studies

of four classes of planar defects were performed by Chen et al. [64]. While donor defects

resulted in resonances associated with defect states, acceptor defects caused band-edge

states to shift into the PBG, resulting in band-edge resonances that were signified by the

presence of standing waves. Typically, high symmetry configurations resulted in higher
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Q factors of a resonances. The reflectances were, however, computed for a small stack

(9 layers) so as to avoid the lengthy computations that would be necessary in order to

locate very high Q resonances. Consequently, there were slight discrepancies between

the frequencies of some of the resonances and the frequencies of the corresponding defect

states.

Most defects, however, are undesirable artefacts of the fabrication process, and con-

stitute structural disorder. (Although, disorder is sometimes introduced intentionally,

namely in the study of Anderson localization of light [65].) For 3D PCs, the effect that

incoherent disorder has on the optical properties is particularly difficult to model. Fortu-

nately, the most significant fabrication flaws tend to be systematic, at least for epitaxial

processes. The most common extrinsic defects that such processes result in are layer

misalignment and rod dimensions varying across different layers. Of these, layer mis-

alignment has the greatest effect on the size and position of the PBG [66], yet numerical

models show that an alignment error as large as 20 − 30% can be tolerable [66–68]. If

the lateral disorder in the positions of individual rods is such that the gratings have su-

perstructure, as can happen for the woodpiles produced using the methods of Lin and

Fleming [33], then the size and position of the PBG of the disordered woodpile will be

the same as that of the ideal woodpile. In this case, the frequency bands of the former

woodpile can be obtained from the bands of the latter by applying a folding procedure

that preserves the extrema of the bands [69].

Due to the successes in developing woodpile fabrication methods, there has been a

surge of interest in woodpiles recently. The scope of the theoretical work on woodpiles is

no longer limited to defect structures and optical frequencies. Some examples are, briefly:

models for describing negative refraction in woodpile slabs [70], optimising the surface

for use as a substrate for antennas [57] and as an optical sensor [71], and the design of

woodpiles for operation at terahertz frequencies [72].

1.4 Methods for Modelling Woodpiles

The prevailing approaches for computing the frequency bands of the optical modes of

infinite woodpiles2 are the plane wave expansion (PWE) method [24, 59, 73] and, to a

lesser extent, the FDTD and transfer matrix methods [74–76]. Numerical approaches for

which the spatial domain is discretised, like the FDTD and PWE methods, are the most

2In this thesis, the terms ‘finite woodpile’ and ‘infinite woodpile’ refer to woodpiles that have a finite

and an infinite number of layers, respectively.
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important aids at the disposal of experimentalists because such methods impose mini-

mal restrictions on the geometry. This flexibility comes at the expense of efficiency; a

tradeoff that becomes apparent when modelling defects in woodpiles because these struc-

tures necessitate a 3D super-cell (the simulated defect is replicated periodically in three

dimensions), which must be large in order to minimise the coupling between the fields

of different super-cells. Whatever method is used, modelling woodpile defect structures

invariably requires supercomputing resources; however, the computational demands of

purely numerical methods can be prohibitive, and sometimes the only recourse is to sac-

rifice accuracy for speed.

Modelling finite woodpiles is usually performed using FDTD, and encompasses com-

puting the reflection and transmission spectra, the scattered fields, and, sometimes, the

time evolution of the fields in response to a source of excitation. For structures that rely

on the PBG in order to confine light to a defect within a woodpile, many layers are usu-

ally required if the field attenuation inside the woodpile is to be strong. For example, it is

expected that 25 layers are needed for lossless waveguiding through a 500μm long linear

defect within a woodpile [18], yet such large computational domains can be impracti-

cal to model using FDTD. The method is relatively inefficient at computing steady state

properties, such as reflectance, because the FDTD simulations must still be performed

in the time domain. This makes even one dimensional (planar) defects computationally

intractable unless the number of layers is reduced [64].

Semi-analytical approaches have been developed to make the problem of modelling

woodpiles more tractable. These methods rely on the observation that, for certain rod

shapes, the solutions can be constructed using basis functions that are tailored to the ge-

ometry, leading to solutions that converge rapidly. One such approach, by Gralak et al.,

is applicable when the rods of the woodpile have rectangular profiles [77], and extends

the method of exact eigenfunctions, which was originally developed for stacks of lamellar

gratings [78, 79]. Within each layer, Maxwell’s equations are reduced to two indepen-

dent scalar equations, allowing the fields to be expressed in terms of the eigenvalues and

eigenfunctions of simple self-adjoint operators. The fields for the entire stack, which may

have a finite or infinite number of layers (as specified by the boundary conditions), are

then determined by solving the resulting system of scalar equations.

Methods also exist for obtaining semi-analytical solutions when the rods are cylin-

drical. These include Dirichlet-to-Neumann (DtN) map and multipole methods. The

former approach entails constructing field operators for the first layer of the woodpdile,

and then updating the operators as they are ‘marched’ through the remaining layers of
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the structure [80]. The operators are expressed in terms of DtN maps, which map the

fields on the boundary of the unit-cell to their normal derivatives, and which depend only

on the structure of the grating. (The DtN maps need only be constructed once for each

unique layer.) For cylindrical scatterers, the DtN maps can be constructed using cylin-

drical waves and, therefore, do not require the unit-cell to be discretised. Dirichlet-to-

Neumann maps are somewhat analogous to the notion of the scalar wave impedance Z

of a homogeneous isotropic medium. This impedance relates the transverse component

E‖ of the electric field to the transverse component H‖ of the magnetic field according

to E‖ = ZH‖. The connection between Z and DtN maps becomes evident by observing

that, for harmonic waves propagating in a homogeneous isotropic medium, the ‘normal’

derivative of E‖ (i.e., the derivative in the direction of propagation) is simply a scalar

multiple of H‖. Thus, using the definition of impedance, one can derive a relationship

of the form dH‖/∂z = ΛH‖, where Λ can be regarded as a scalar DtN map for the ho-

mogeneous medium. The notion of impedance was generalised for PCs by Lawrence et

al. [81], whereby a matrix Z relating the magnetic field vector to the electric field vector

is constructed, and serves as a multi-channel impedance.

Multipole methods, which form the basis of our work, are another class of methods

for which the fields are expanded in terms of cylindrical harmonics. One advantage is

that the boundary conditions are satisfied exactly since the method does not require the

cylinder boundaries to be discretised. Unlike the DtN map method, the multipole expan-

sions account explicitly for the mutual scattering that occurs between the cylinders of a

grating [25, 26, 82]. This feature can be exploited to create defect cylinders within the

woodpile, either by adding substructure to the unit-cell of a grating (described in Chap-

ter 3), or by manipulating individual cylinders directly (described in Chapter 4). The

ability to model fabricated structures, however, is limited because of the constraints that

the method imposes on the shape of the rods (although the method is more compatible

with the geometry of inverse woodpiles, and can be used in conjunction with numeri-

cal methods to handle non-cylindrical scatterers, as has been done previously for conical

mountings of finite 2D arrays [83]). Nevertheless, the multipole method is well-suited for

studying some of the general properties of woodpiles. It is able to deal with linear waveg-

uides embedded inside large stacks, and, so far, is the only method capable of locating

woodpile waveguide modes without the need for a super-cell. Dispensing with the super-

cell results in large performance gains, making it possible to explore contiguous regions

of the parameter space (something that is lacking in literature). Also, material dispersion

and absorption can be accounted for easily; dispersion can be modelled by using a re-
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fractive index that is appropriate for the frequency, while absorption can be modelled by

using a complex-valued refractive index, with the imaginary part of the refractive index

used to control the lossiness of the material.

Another advantage that is unique to the multipole method is that, in instances where

the symmetry of the lattice is more significant than the shape of the rods, certain fun-

damental properties can be deduced readily from the field identities. For example, in

Chapter 5 the basic properties of the surface waves of woodpiles are derived from the

multipole expressions, and these considerations have bearing on the coupling efficiency

between external optics and waveguides or emitters embedded in the woodpile, and on

the efficiency of optical structures placed on the surface [53, 57].

Lastly, we remark that a ‘multipole type’ method was developed by Adams et al. [84]

to model the electromagnetic fields of a two-layer lamellar crossed-grating structure (such

a structure constitutes two consecutive layers of a woodpile whose rods have a rectangular

profile), whereby the fields immediately above and below each layer are expanded in

terms of diffracted plane waves. A Green’s function approach, similar to that used in the

multipole method (discussed in Sec. 3.2.1 of Chapter 3 of this thesis), is then used to

obtain the fields between the grooves of a given layer. In principle, the fields generated

by a woodpile composed of lamellar gratings can be computed in this fashion, although

this has approach has never been employed in the study of woodpiles
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Chapter 2

Theoretical Formulation

This chapter describes the basic concepts that underlie the methods presented in the chap-

ters to follow. We begin with a summary of the general properties of the optical modes

of photonic crystals (Sec. 2.1). (Detailed explanations of these properties can be found in

standard textbooks [3, 85].) The modes of woodpiles are most naturally formulated using

diffraction grating theory, the basic principles of which are described in Secs. 2.2 and 2.3.

There are several ways to solve the diffraction problem for a grating [25, 26, 86–88]. For

this step we have opted to use the multipole method [25, 26, 88] to compute generalised

reflection and transmission coefficients of the layer. This approach is outlined in Secs.

2.4 and 2.5. Lastly, the transfer matrix method for computing the modes of a woodpile is

described in Sec. 2.6.

2.1 Modes of Photonic Crystals

For simplicity, the discussion in this section is limited to photonic crystals (PCs) com-

prised of simply-connected homogeneous regions of isotropic dielectric material. The

material properties at any point r = (x, y, z) are specified by the refractive index n (r) =√
μ (r) ε (r), where, under the given assumptions, the magnetic permeability μ and elec-

tric permittivity ε are positive step functions. The electric (E) and magnetic (H) fields

obey Maxwell’s equations:

∇× H − ∂D
∂t

= J, (2.1)

∇× E +
∂B
∂t

= 0, (2.2)

∇ · B = 0, (2.3)
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∇ · D = ρ, (2.4)

where D and B are the electric and magnetic flux densities, respectively, and ρ and J are

the free charge and current densities. That is, ρ and J are produced by external sources

(charges), and so do not include bound currents and charges. In this thesis, we make

the standard assumptions that there are no external charges (ρ = 0 and J = 0) and the

field intensities are small enough so that the constitutive relations are given by the linear

relationships

D = εE (2.5)

and

B = μH. (2.6)

The electromagnetic fields inside a PC can be expanded in terms of harmonic modes,

whose functional forms are given by

E (r, t) = E (r) exp(−iωt) (2.7)

and

H (r, t) = H (r) exp(−iωt). (2.8)

Here, and throughout the rest of the thesis, we adopt the common practice of representing

the electromagnetic fields as complex numbers, thereby simplifying many of the math-

ematical manipulations. Note that the complex fields are not the same as the physical

fields, which can be obtained from the real part of the complex representations [Eqs. (2.7)

and (2.8)].

The periodicity of the PC imposes the following spatial dependence on the modes:

H (r) = eik·ruH (r, k) , (2.9)

and

E (r) = eik·ruE (r, k) , (2.10)

where uE (r, k) and uH (r, k) are envelope functions that have the same periodicity as the

crystal lattice, and the parameter k = (kx, ky, kz) is referred to as the Bloch vector. Equa-

tions (2.9) and (2.10) are Bloch’s theorem, which states that the PC modes are planewaves

modulated by periodic envelope functions uE (r, k) and uH (r, k) [3, 85], and such modes

are referred to as Bloch modes. A photonic bandgap (PBG) is then a frequency range for

which there are no propagating Bloch modes. A bandgap is complete if it spans all of k-
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space, irrespective of the polarisation of the modes. Inside the bandgap the Bloch modes

are evanescent, in that they decay exponentially inside the crystal. This implies that the

Bloch vector of any evanescent mode has at least one complex component. Figure 2.1

shows the frequency bands (referred to as the band structure) of the Bloch modes of a

woodpile, where k traverses the high-symmetry directions of the first Brillouin zone (first

BZ: the central primitive cell of the reciprocal lattice). A sizeable complete bandgap that

spans the high-symmetry directions of the BZ is clearly evident. Searching for a PBG

amounts to locating the local extrema in the frequency bands of the Bloch modes. These

extrema correspond to standing wave solutions inside the PC, and are usually the result

of an underlying symmetry. Thus, even though only the high-symmetry directions of the

BZ are considered in Fig. 2.1, the bandgap is complete.

.

Figure 2.1: Band structure of a woodpile whose rods form a face-centred tetragonal lat-

tice. The inset depicts the high-symmetry points of the first Brillouin zone. Figure taken

from Chen et al. [64].

These observations lead to a conceptually simple method for using PCs to confine

light. An evanescent mode decays at a rate proportional to exp(−αx) for some α > 0,

where the x axis corresponds to one of the periodic directions of the PC. In an idealised
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PC, i.e., one that is free from defects and that extends infinitely in all directions, the

evanescent modes are spatially unbounded, and so their magnitudes diverge as x becomes

increasingly negative. While it is physically impossible to realise modes that behave this

way, these modes are mathematically valid solutions of Maxwell’s equations [Eqs. (2.1)-

(2.4)] and are required in order to give a complete mathematical description of the fields.

Indeed, for each wavelength, a PC will have an infinite number of evanescent Bloch modes

but will only support a finite number of propagating modes. In any real PC the evanescent

modes are terminated at the edges of the PC, namely at the surface layer or defect. Inside

a bandgap, all fields that result when an edge is introduced must be evanescent in the bulk

region. Such a mode can still propagate along the surface or defect, however. The mode

is, in effect, confined to the edge, and is often referred to as a surface mode or defect

mode, accordingly.

Typically, defects are created by either changing the size or shape of some of the

scatterers. Examples of common defects are shown in Fig. 2.2. The boundary of a PC

also constitutes a defect, as in Fig. 2.2(a), and it is possible to excite surface modes

that propagate along such boundaries. An inherent limitation of 2D PC geometries is

that the light that is not travelling in the plane of periodicity must be guided via total

internal reflection. If this light is travelling at angles smaller than the critical angle for

internal reflection, then the light will be lost from the waveguide. In contrast, 3D PCs,

which are the concern of this thesis, can possess a bandgap for all possible directions

and polarisations. Thus, 3D PCs can be used to guide or trap light without restrictions

on the direction and polarisation. For this reason, 3D PC waveguides are thought to be

able to guide light with greater efficiency than 2D PC geometries because, in practice,

unavoidable structural imperfections, such as surface roughness, will cause some of the

light to be scattered in directions that lie below the critical angle.

Evidently, the parameters of the PC must be chosen so that the bandgap, or a per-

haps just a particular band, covers the range of frequencies and Bloch vectors of interest.

To this end, the parameter of greatest practical significance is the scale of the PC, since

scaling the dimensions of the crystal simply has the effect of scaling the band structure.

Similarly, scaling ε uniformly has a similar effect (at least for non-dispersive materials),

although this is of less utility because the refractive index is determined by the materials

available. (In principle, scaling μ will also change the frequency of the bands; however,

for most dielectrics of interest μ ≈ 1.) Increasing the contrast between the refractive

indices of neighbouring dielectric regions tends to increase the frequency between suc-

cessive bands, and is a relatively simple way of increasing the size of a bandgap. Alter-

24



2.1. MODES OF PCS CHAPTER 2. THEORY

planar defect

surface defect

(a)

point defect

linear defect

(b)

linear defect

(c)

Figure 2.2: Typical defects for (a) 1D, (b) 2D and (c) 3D photonic crystals.

natively, a bandgap can be enlarged by optimising the lattice spacings and sizes of the

scatterers, although the geometrical constraints on the mode (especially mode orthogo-

nality) mean that manipulating the geometry will alter the band structure in a way that

is less predictable than simply changing the material indices. Lattices that are ‘approx-

imately isotropic’, in that their Brillouin zone is roughly circular or spherical in shape

(this happens for face-centred cubic and diamond lattices, in particular) are more likely

to possess complete bandgaps than less symmetrical PCs. The reasoning is that for such

PCs, one direction through the structure is ‘roughly equivalent’ to any other direction, and

so if there is a bandgap for some value of k, then the bandgap is likely to remain open for

all other values of k. Clearly, there is considerable trial and error involved in choosing

suitable parameters for a PC, hence the need for efficient ways of computing the band

structure.
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Figure 2.3: The reflected (f+
q ) and transmitted (f−

q ) plane wave diffraction orders that

are generated when an incoming planewave δ−0 impinges on a diffraction grating. Above

(below) a certain cutoff order, the positive (negative) orders become evanescent in the z
direction, and so are only able to propagate in the xy plane.

2.2 Diffraction Gratings

Each layer of the woodpile is periodic in one-dimensionally and, thus, acts as a diffraction

grating. When illuminated by a monochromatic plane wave δ−0 , a diffraction grating

will generate a countably infinite number of reflected f+
q and transmitted plane waves

f−
q (or simply diffraction orders), each travelling in a different direction, as determined

by the period of the grating, and the wavelength λ and direction of δ−0 (see Fig. 2.3).

The rods of the layer are infinitely long, and the coordinate system is chosen so that

the rods are parallel to the x axis. The z axis is defined as the direction normal to the

plane of the grating, and the y axis specifies the direction of the grating, as shown in

Fig. 2.4. This convention is adopted throughout this thesis, except in a few instances

where the roles of x and y must be interchanged to unify the treatment of successive

woodpile layers. The incoming plane wave δ−0 can be represented by the wave vector

26



2.2. DIFFRACTION GRATINGS CHAPTER 2. THEORY

Figure 2.4: Configuration of the incident field with wave vector k. The polarisation angle

δ is defined as the angle between the vector ν = k× ẑ/(k sin θ) and the direction of the

electric field E, with δ = 0, π/2 corresponding to TE and TM polarisation, respectively.

k = (α0, β0,−γ0), wavelength λ and polarisation angle δ (defined in Fig. 2.4), and we

choose δ = 0 and δ = π/2 to be the principle polarisations, which will be referred to as

TE and TM polarisation, respectively. An arbitrarily polarised incident field can always

be expressed as a superposition of these two polarisations. It is often convenient to define

the components of k in terms of the propagation angles φ and ϕ (see Fig. 2.4), so that

α0 = knb sinϕ cosφ, β0 = knb sinϕ sinφ and γ0 = knb cosϕ, where nb =
√
μbεb is the

refractive index of the background, and k = 2π/λ is free-space wavenumber.

In this thesis, the longitudinal (x) components of the electric (E) and magnetic (H)

fields1 are determined using the multipole method. Having obtained Ex and Hx, the

remaining field components can be recovered using Maxwell’s equations [Eqs. (2.1)-

(2.4)]. The longitudinal components of the incoming field are simply[
δ−E,0

δ−H,0

]
eik·r, (2.11)

where r = (x, y, z), and δ−E,0 and δ−H,0 are amplitudes of the x components of the electric

and magnetic fields, respectively.

1Throughout this thesis, H denotes the normalised magnetic field obtained by multiplying the magnetic

field by the free-space impedance Z0 =
√
μ0/ε0.
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For a grating having a period of d, the y dependency of the qth diffraction is exp(iβqy),

where βq specifies the direction of the order and is given by the grating equation:

βq = β0 + 2πq/d. (2.12)

The x components of the qth diffraction order are then

f±
E,qe

iβqye±iχqzeiα0x (2.13)

where

χq =
√
(knb)2 − (β2

q + α2
0) (2.14)

and f±
E,q are the field amplitudes associated with the qth order. Here and elsewhere, the

superscript + (−) is used to denote an upward (downward) travelling wave (as in Fig.

2.3), and the z coordinate is relative to the plane of the grating. The exp(iα0x) term arises

from the fact that the fields propagating in the x direction do not diffract, since the layer

is homogeneous with respect to the x coordinate, thus the x dependence of the incoming

field δ− [see Eq. (2.11)] is preserved in the diffracted fields. For β2
q + α2

0 < (knb)
2,

χq is real, so in this case Eq. (2.13) describes a propagating planewave. However, for

β2
q + α2

0 > (knb)
2, χq is imaginary, and in this case the wave is evanescent in that it

decays exponentially in either the positive or negative z-direction. More specifically, for

each diffraction order q ≥ 0 there is a wavelength λ′
q known as the Rayleigh wavelength,

below which all orders m such that 0 ≤ m ≤ q are propagating. Note that the value of λ′
q

depends on the angle of incidence and on the period of the grating, and can be determined

from the grating equation [Eq. (2.12)] and Eq. (2.14) by setting χq = 0 and k = 2π/λq.

When λ = λ′
q, the qth order propagates in the direction parallel to the axis of the grating

(the order becomes evanescent). Furthermore, at this wavelength, all orders m ≥ q are

evanescent, as depicted in Fig. 2.3. Further increasing λ (so that λ > λ′
q) causes the orders

m ≥ q to become increasingly evanescent. Similarly, there is a Rayleigh wavelength λ′
q

for each order q < 0 such that for λ ≥ λ′
q all orders m ≤ q are evanescent.

It follows immediately from Eqs. (2.11) and (2.13) that the total fields (incoming and

diffracted) are [
Ex

Hx

]
=

[
δ−E,0

δ−H,0

]
eik·r +

∑
q∈Z

[
f+
E,q

f+
H,q

]
eiβqyeiχqzeiα0x (2.15)
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above the grating, and [
Ex

Hx

]
=
∑
q∈Z

[
f−
E,q

f−
H,q

]
eiβqye−iχqzeiα0x (2.16)

below the grating. If the rods of the grating were instead oriented parallel to the y-axis,

the grating equation would be

αp = α0 + 2πp/d, (2.17)

where p ∈ Z indexes the diffraction orders associated with the x direction. In this case

we would have derived for the longitudinal components (y) of the fields:[
Ey

Hy

]
=

[
δ−E,0

δ−H,0

]
eik·r +

∑
p∈Z

[
f+
E,p

f+
H,p

]
eiαpxeiχ

′
pzeiβ0y (2.18)

above the layer, and [
Ey

Hy

]
=
∑
p∈Z

[
f−
E,p

f−
H,p

]
eiαpxe−iχ′

pzeiβ0y (2.19)

below the layer, with χ′
p =

√
(knb)2 − (β2

0 + α2
p). That is, the roles of α0 and β0 are

merely swapped.

2.3 Diffraction by a Woodpile

The diffraction orders of the woodpile are determined by the diffraction orders of the

constituent gratings. As before, one only needs to consider the longitudinal components

of the fields. (Later, we will explain how to express the fields in terms of TE and TM

components, since the effects of polarisation are of practical significance.) To begin with,

we consider a grating that is illuminated from above by the field δ− given in Eq. (2.11),

so that the diffracted fields generated by the grating are simply given by Eqs. (2.15)

and (2.16). When an identical layer is then placed below the first layer, each of the

downwards diffraction orders produced by first layer [i.e., the individual terms in Eq.

(2.16)] will be diffracted upon reaching the second layer, thereby producing secondary

diffracted fields that are analogous to Eqs. (2.15) and (2.16), with the term involving δ−

instead representing the incoming order. Since the two layers are identical, the grating

equation, Eq. (2.12), is the same for both layers. Consequently, the diffracted orders
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above and below the two layer stack are the same as those that are produced by a single

layer, except that the amplitudes of the orders of the two structures will differ. The same

reasoning shows that the directions of the diffracted fields produced by a single layer are

the same as those produced by a 2D stack consisting of an arbitrary number of such layers.

If instead the rods of the top layer were oriented parallel to the y axis, then the bottom

layer would cause the pth downwards diffraction order of the top layer to diffract into the

following upwards and downwards orders:

f±
E,se

iβqye±iγszeiαpx, (2.20)

[cf. Eq. (2.20)], where

γs =
√

(knb)2 − (α2
p + β2

q ), (2.21)

and, for notational convenience, each pair (p, q) ∈ Z × Z is mapped to a unique integer

s, so that the subscript s denotes quantities associated with the (p, q)th diffraction order.

Note that the sth woodpile order is propagating if γ2
s is positive, and is evanescent if γ2

s

is negative. Evidently, the diffracted orders given by Eq. (2.20) propagate in different

directions from the orders of a 2D grating stack. Although the upwards orders f+
E,s of the

bottom layer diffract upon reaching the top layer, they diffract in the same directions as

the fields generated by the bottom layer [Eq. (2.20)]. More generally, the diffracted fields

produced by stack consisting of an arbitrary number both x and y aligned gratings will

propagate in the same directions as the orders in Eq. (2.20), irresepective of the ordering

of the layers, so long as any two layers of the same orientation have the same period.

Thus, s represents a single diffraction order of the woodpile. The fields above and below

an arbitrary layer of the 3D stack are[
Ex

Hx

]
=
∑
s∈Z

{[
δ−E,s

δ−H,s

]
e−iγsz +

[
f+
E,s

f+
H,s

]
eiγsz

}
eiαpxeiβqy (2.22)

and [
Ex

Hx

]
=
∑
s∈Z

{[
δ+E,s

δ+H,s

]
eiγsz +

[
f−
E,s

f−
H,s

]
e−iγsz

}
eiαpxeiβqy, (2.23)

respectively. Note that for the top layer, δ−E,s = 0 and δ−H,s = 0 for all orders s other than

the specular order (p = q = 0), while for the bottom layer δ+E,s = δ+H,s = 0 for all orders.

If the longitudinal component of the incoming field is zero (‘classical incidence’) and

the incoming fields are either TE or TM polarised, then the diffracted fields produced by
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2D stacks possess the same polarisation as the incoming fields. For arbitrary incidence

(‘conical incidence’), the polarisation states of the input and output fields will usually

differ. Nevertheless, it is often useful to express the fields in terms of TE and TM polarised

resolutes. The TE and TM directions determined by the sth diffracted order are

RE
s = (−βqx̂+ αpŷ) /

(
α2
p + β2

q

)1/2
(2.24)

and

RM
s = (αpx̂+ βqŷ) /

(
α2
p + β2

q

)1/2
(2.25)

respectively. Let Et and Ht denote the transverse components (i.e., the components par-

allel to the xy plane) of the electric and magnetic fields, respectively. Above the grating,

one may write for the transverse components:

Et = (μb/εb)
1/4

∑
s

ξ−1/2
s

[
E−

I,se
−iγsz + E+

D,se
iγsz

]
ei(αpx+βqy)RE

s

+ ξ1/2s

[
F−
I,se

−iγsz + F+
D,se

iγsz
]
ei(αpx+βqy)RM

s , (2.26)

and

ẑ × Ht = (εb/μb)
1/4

∑
s

ξ1/2s

[
E−

I,se
−iγsz − E+

D,se
iγsz

]
ei(αpx+βqy)RE

s

+ ξ−1/2
s

[
F−
I,se

−iγsz − F+
D,se

iγsz
]
ei(αpx+βqy)RM

s , (2.27)

where the subscript I is used to denote the incoming fields, the subscript D denotes the

diffracted fields, and ξs = γs/ (knb). (As before, s indexes the woodpile diffraction

orders, and the superscripts + and − are used to discriminate between upward and down-

wards fields.) The factors ξs and μb/εb have been included to normalise the energy of the

reflected and transmitted fields relative to the input field [i.e., δ−E,0 and δ−H,0 in Eq. (2.15)]

so that the reflectance and transmittance can be computed. Expressions analogous to Eq.

(2.26) and (2.27) also hold for the fields below the grating.

A change of coordinate systems must be applied to any field that is expressed in the

form given in Eqs. (2.26) and (2.27) before the multipole method can be used to determine

the field amplitudes of the longitudinal components [i.e., f±
E,s and f±

H,s in Eqs. (2.22) and

(2.23)]. For gratings whose rods are parallel to the x axis, the longitudinal components

can be obtained using Ex = Et · x̂ and Hx = −ẑ × (ẑ × Ht) · x̂. For example, one

finds that the longitudinal components of the diffracted fields are related to the TE and
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TM components of the diffracted fields according to (in matrix notation)

F+ = ZX+F+
D and F− = ZX−F−

D, (2.28)

with

F± =

[ [
f±
E,s

][
f±
H,s

] ] ,F±
D =

[ [
E±

D,s

][
F±
D,s

] ]
, (2.29)

X+ =

[
−ξβ ξα

−ξα −ξβ

]
,X− =

[
−ξβ ξα

ξα ξβ

]
, (2.30)

Z =

[
diag

[
(μb/εb)

1/4
]

0

0 diag
[
(εb/μb)

1/4
] ] , (2.31)

ξβ = diag[ξ−1/2
s βq/(α

2
p + β2

q )
1/2] (2.32)

and2

ξα = diag[ξ1/2s αp/(α
2
p + β2

q )
1/2]. (2.33)

Analogous expressions relationships exist between the longitudinal and the TE and TM

components of the incoming fields. Equations (2.28)-(2.32) are also applicable for grat-

ings whose rods are parallel to the y axis; however, in this case a rotated coordinate system

(x′, y′, z′) must be used. This is achieved by making the following substitutions:

x → x′, y → y′, and z → z′, (2.34)

αp → α′
p, βq → β′

q, and γs → γ′
s, (2.35)

with the correspondences x′ = y, y′ = −x, and z′ = z′. The propagation constants α′
p,

β′
q, and γ′

s for the rotated system are defined analogously to αp, βq and γs. It follows

immediately from Eqs. (2.12), (2.17) and (2.21) that

α′
p = βp, β′

q = −α−q and γ′
(p,q) = γ(−q,p). (2.36)

2.4 Basics of the Multipole Method

In this thesis, the amplitudes f±
E,s and f±

H,s of the diffracted orders above and below a

single layer [see Eqs. (2.22) and (2.23)] are determined using the multipole method. The

2Here and elsewhere, the notation diag[] denotes a diagonal matrix.
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basic approach is as follows (more detail is given in the next chapter). We suppose that

the rods are parallel to the x axis, and that, for the purposes of this Chapter, there is only

one cylinder per unit-cell. If the rods are parallel to the y axis, then one instead uses

the rotated coordinate system defined in Eqs. (2.34)-(2.36). Each incoming order can be

represented using the wave vector k = (αp, βq, γs). Since the layer is homogeneous in the

x direction, the fields will have an x dependency of exp(iαpx), and so one may project

the problem onto the yz plane, see Fig. 2.5. The longitudinal components of both the

incoming order and the resulting scattered fields satisfy the Helmholtz equation:

[∇2
⊥ + k2

⊥]V (ρ) = 0, (2.37)

for V = Ex and V = Hx, where ∇⊥ acts on the in-plane coordinates y and z [or ρ =

(ρ, θ) in cylindrical coordinates, see Fig. 2.5], and k⊥ = (βq, γs) is the projection of the

wave vector. Observe that k2
⊥ = (knb)

2 −α2
p and, thus, Eq. (2.37) does not depend on the

βq of the incoming order. This means that for each αp, one can simultaneously determine

the fields excited by all incoming orders {· · · , β−1, β0, β1, · · · }.

For cylindrical geometries, Eq. (2.37) reduces to Bessel’s equation and, consequently,

the fields at any point ρ exterior to the cylinder can be expanded in terms of cylindrical

harmonics [89]. That is,

V (ρ) =
∞∑

n=−∞

[
AV

n Jn (k⊥ρ) +BV
n Hn (k⊥ρ)

]
einθ, (2.38)

where there is an assumed x dependence of exp(iαpx). Here, Jn are Bessel functions,

which represent incoming waves, and Hn are Hankel functions of the first kind, which

represent outgoing waves emanating from the boundary of the cylinder. Equation (2.38) is

valid for points inside any annular region A (white region in Fig. 2.5) extending from the

cylinder boundary, so long as the region does not contain any other cylinders. Similarly,

the multipole expansion for points ρ inside the cylinder is

V (ρ) =
∞∑

n=−∞
CV

n Jn (k⊥ρ) e
inθ. (2.39)

If the cylinders of the layer are identical, then the multipole coefficients have the same

quasiperiodicity as the diffracted planewave fields. That is, the multipole coefficients for

the jth unit-cell along the layer are AV
n exp(iβ0jd), B

V
n exp(iβ0jd), and CV

n exp(iβ0jd).

To determine the multipole coefficients, one uses Green’s function methods to obtain
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y

z

θ

A

Figure 2.5: Local coordinate system for the multipole expansion given by Eq. (2.38).

the Wijngaard expansion, which is a second expression for local fields in Eq. (2.38)

whereby the incoming fields AV
n of the j = 0 unit-cell of the layer are expanded in

terms of the outgoing fields BV
mexp(iβ0jd) of all other cylinders j �= 0. In the next

chapter, it is shown how the Wijngaard expansion can be derived for a grating unit-cell that

contains multiple cylinders. By equating Eq. (2.38) with the Wijngaard expansion, one

can eliminate V to give an equation that relates AV
n to each BV

m. This equation can then be

solved for the outgoing fields BV
n by applying the boundary conditions, which state that

the tangential components (i.e., Eθ, Hθ, Ex and Hx) are continuous across the cylinder

boundaries. [This is a general condition imposed by Maxwell’s equations, see Eqs. (2.1)-

(2.4), and can be derived by applying the Gauss divergence theorem to a suitable volume

that crosses the boundary [90].] Having obtained BV
n , the amplitudes f±

E,s and f±
H,s of the

diffracted orders in Eqs. (2.15) and (2.16) can be determined in a manner similar to the

derivation of the Wijngaard expansion.

2.5 Reflection and Transmission Matrices

The multipole method allows one to establish the following linear relationships between

the diffracted fields and the incoming fields impinging on a layer:[
F−

D

F+
D

]
=

[
T a Rb

Ra T b

][
F−

I

F+
I

]
, (2.40)
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-
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(a)

(b)

Figure 2.6: (a) The incoming and diffracted fields, with phase origin at P , and the reflec-

tion and transmission matrices associated with the fields above and below the unit cell.

(b) The unit cell with phase origins P1 and P2 adjusted to give the grating a total thickness

of h.

where the diffracted fields F±
D and the incoming fields F±

I are expressed in terms of TE

and TM components. That is, F±
D are given by Eq. (2.29), and F±

I are given by

F±
I =

[ [
E±

I,s

][
F±
I,s

] ]
. (2.41)

The matrices R and T , which are determined using the multipole method, act as re-

flection and transmission matrices, respectively, with the subscript a (b) used to denote

matrices that act on the fields that are incident from above (below) the layer, see Fig.

2.6(a).

Recurrence relationships for the scattering matrices for a stack of (s + 1) non-

interpenetrating gratings are then found readily from Eq. (2.40) by expressing the fields

incident to the s and (s + 1)th layer in terms of R and T of the (s + 1)th layer and Rs
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and T s of the s layer stack beneath it (also see Sec. IIIB of [26]):

Rs+1
a = R̃a + T̃ bRs

a

(
I − R̃bRs

a

)−1

T̃ a, (2.42)

T s+1
a = T s

a

(
I − R̃bRs

a

)−1

T̃ a, (2.43)

Rs+1
b = Rs

b + T s
aR̃b

(
I −Rs

aR̃b

)−1

T s
b, (2.44)

T s+1
b = T̃ b

(
I −Rs

aR̃b

)−1

T s
b. (2.45)

Here, the change in phase that occurs for fields propagating between successive layers

has been incorporated into R̃a/b and T̃ a/b by applying a padding P symmetrically above

and below the layer. This gives the grating a thickness h that accounts for the distance

between adjacent layers [see Fig. 2.6(b)]. (All distances are expressed in units of d.) For

woodpiles, it is necessary to offset the layers, as shown in Fig. 2.8(a), in order for the

bandgap to be complete [29]. Hence, a lateral shift transform Q that effects either a shift

of δx in the x direction or a shift δy in the y direction (usually δx = δy = d/2) is applied

to the gratings of every second pair:[
R̃a T̃ b

T̃ a R̃b

]
=

[
QP 0

0 QP

][
Ra T b

T a Rb

][
PQ−1 0

0 PQ−1

]
, (2.46)

where P = diag
[

P P
]
, P = diag

[
eiγsh/2

]
, Q = diag

[
Q Q

]
and

Q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
diag

[
eiαpδx

]
, for an x shift ,

diag
[
eiβqδy

]
, for a y shift ,

I, for no shift ,

(2.47)

in which I denotes the identity matrix.

The requirement that the layers of the woodpile be non-interpenetrating follows from

the fact that if the rods of a layer were to overlap with the rods of an adjacent layer, as in

Fig. 2.7(a), then the annular region A in Fig. 2.5 would always intersect one of the cylin-

ders. Hence, the exterior multipole expansion [Eq. (2.38)] would not be valid anywhere.

The situation for 2D PCs is more complicated. To see this, consider the perforated 2D PC

(air-holes in a dielectric background) shown in Fig. 2.7(b), where the bottom boundary

I2 of the top row of holes lies below the top boundary I1 of the bottom row of holes.

In this case, the layers interpenetrate without the holes overlapping, and so a multipole
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field expansion is valid in the vicinity of each hole. The question arises as to whether,

at the boundaries I1 and I2, the interpentration invalidates a field expansion in terms of

planewave diffraction orders [namely Eqs. (2.22) and (2.23)]. Botten et al. [91] showed

numerically, using the methods in described in the previous sections, that while the non-

interpenetration condition is sufficient, it is not necessary. This question is closely related

to Lord Rayleigh’s conjecture (known as the Rayleigh hypothesis) that a field expansion

in terms of planewave orders is possible inside the grating [92, 93] – a matter that has

been subject to much debate since it was first suggested in 1897, and that is still con-

troversial. It has been shown that the Rayleigh hypothesis is correct for gratings having

shallow groove depths [94]. It is also known that a field expansion in terms of diffraction

orders is valid within its domain of convergence, which is determined by the refractive

index and radius of the cylinders [95]. While a number of studies have demonstrated that

in general the Rayleigh hypothesis is incorrect (see, e.g., ref. [96]), it has been suggested

quite recently by Tishchenko [97] that the reason the Rayleigh hypothesis produced the

wrong results in these studies was that the evaluation of the field expansion was prone

numerical instability. Indeed, Tishchenko found strong numerical evidence in favour of

the Rayleigh hypothesis for arbitrarily deep grooves.

I1
I2

(a)

(b)

Figure 2.7: (a) A four-layer woodpile whose layers are interpenetrating. (b) A perforated

2D PC comprising two rows of air-holes in a dielectric background. The layers of the 2D

PC interpenetrate in that the bottom boundary I2 of the top row of holes is below the top

boundary I1 of the second row. The holes do not overlap, however.

The matrices Rs
a, Rs

b, T s
a and T s

b for an s layer stack can be viewed as Fabry-Pérot
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reflection and transmision coefficients [98] for the top and bottom surfaces. Let

d =

[ [
E−

I,s

][
F−
I,s

] ]
(2.48)

represent the input planewave (expressed in TE and TM components), so that

E−
I,s = δs0 cos δ (2.49)

and

F−
I,s = δs0 sin δ (2.50)

where s = 0 specifies the specular channel (i.e., p = q = 0), δ is the polarisation angle,

and δij is the Kronecker delta:

δij =

⎧⎨⎩1, for i = j ,

0, otherwise.
(2.51)

The field reflected back by the top surface is, by construction, r = Rs
ad. Similarly, the

field t transmitted through to the bottom surface of the woodpile is t = T s
ad. The vectors

r and t have the same form as Eq. (2.48), namely

r =

[ [
E+

D,s

][
F+
D,s

] ]
, and t =

[ [
E−

D,s

][
F−
D,s

] ]
. (2.52)

The reflectance R and transmittance T are defined as

R =
∑
s

|E+
D,s|2 + |F+

D,s|2, T =
∑
s

|E−
D,s|2 + |F−

D,s|2, (2.53)

where the sum is taken over only the propagating diffraction orders [refer to the discussion

regarding Eq. (2.21)]. One test of the correctness of any implementation is that the energy

conservation relationships

TTE +RTE = 1, and TTM +RTM = 1 (2.54)

should hold for lossless materials (i.e., when the refractive indexes are real). For the

multipole method, Eqs. (2.54) obtain irrespective of the number of multipole orders that

are used [99]. By comparing the energy flux through the top and bottom surfaces of a
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layer or, more generally, a stack of layers, the following energy conservation relationshps

can be derived (see Appendix C 2 of [25]):

T H
a IrT a +RH

a IrRa = Ir − iIeRa + iRH
a Ie, (2.55)

T H
a IrRb +RH

a IrT b = −iIeT b + iT H
a Ie, (2.56)

RH
b IrT a + T H

b IrRa = −iIeT a + iT H
b Ie, (2.57)

RH
b IrRb + T H

b IrT b = Ir − iIeRb + iRH
b Ie, (2.58)

where3 Ir = diag[Ir, Ir], Ie = diag[Ie, Ie], and Ir and Ie are diagonal matrices that select

the propagating and evanescent diffraction orders, respectively. That is, [Ir]s = 1 if the

sth order is propagating, and [Ir]s = 0 otherwise, so that if I denotes the identity matrix,

then Ie = I− Ir.

2.6 Band Structure and the Transfer Matrix

To calculate the band structure of a woodpile, one must compute the Bloch modes, which

were introduced in Sec. 2.1. For the Bloch analysis, either a stacking unit comprising a

pair of orthogonal layers can be used, or a four-layer stacking unit comprising two such

pairs can be used. Since the layers of the woodpile must be interleaved in order for there

to be a complete bandgap, the lattice generated by the two-layer stacking unit will be

oblique, whereas the four-layer stacking unit results in an orthogonal lattice. For the two-

layer stacking unit, the phase origins of the fields incident to the pair must be offset, as in

Fig. 2.8(a), in order to effect an interleaving of the structure. This is achieved by applying

a lateral shear transform to the reflection matrices R(2)
a/b and transmission matrices T (2)

a/b of

the pair, which are computed from the recurrence relationships given by Eqs. (2.42). The

transformed scattering matrices for the pair are:[
R̃(2)

a T̃ (2)

b

T̃ (2)

a R̃(2)

b

]
=

[
Q 0

0 Q−1

][
R(2)

a T (2)
b

T (2)
a R(2)

b

][
Q−1 0

0 Q

]
, (2.59)

where Q = diag
[

Q Q
]
, with Q = diag

[
ei(αp+βq)d/4

]
. Note that the transform Q that

appears here is different from the Q appearing in Eq. (2.46). The above transform is not

required if a four-layer stacking unit is used.

3The superscript H denotes the conjugate transpose.
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For an arbitrary Bloch mode of the (infinite) woodpile, Bloch’s theorem [Eqs. (2.9)

and (2.10)] implies that the fields F1 =
[(
F−

1

)T (
F+

1

)T]T
impinging on the top surface

of a constituent grating pair4, and the fields F2 =
[(
F−

2

)T (
F+

2

)T]T
impinging on the

bottom surface satisfy

F2 = μF1, (2.60)

where μ = exp(−ik · a3), k = (kx, ky, kz) is the Bloch vector and a3 is the lattice

replication vector in the stacking direction [see Fig. 2.8(a)]. Bloch’s theorem can be recast

as an eigenvalue problem for the inter-layer transfer matrix T, which propagates the fields

across the pair (i.e., TF1 = F2), and which is readily deduced from the reflection and

transmission matrices of the stacking unit and from Eq. (2.40). Specifically,

TF1 = μF1, (2.61)

where

T =

[
T̃ (2)

a − R̃(2)

b (T̃ (2)

b )−1R̃(2)

a R̃(2)

b (T̃ (2)

a )−1

−(T̃ (2)

b )−1R̃(2)

a (T̃ (2)

b )−1

]
. (2.62)

In practice, one does not solve the above eigenproblem but instead computes the eigen-

values of a derived form of Eq. (2.61) that is more numerically robust (see, e.g., [100] or

Sec. III of [25]). From Eq. (2.61), we can conclude that modes for which |μ| �= 1 are

evanescent, while for propagating modes |μ| = 1.

The scattering matrices R̃(2)

a/b and T̃ (2)

a/b are functions of α0 and β0. For the Bloch

analysis, we may regard α0 and β0 as being the components of the Bloch vector that are

associated with the x and y directions, respectively, i.e., α0 ≡ kx and β0 ≡ ky, and the

diffraction orders s can be interpreted as being the Fourier components of the correspond-

ing Bloch mode. Thus, Eq. (2.61) can be used to determine the set of allowable kz’s for

each combination of kx, ky and wave number k. To compute the band structure, it suffices

to use Eq. (2.61) to recover the propagating modes for each distinct kt = (kx, ky) along

the boundary of the surface Brillouin zone [101] [Γ-X-M path shown in Fig. 2.8(b)].

Effectively, the band structure is projected onto the kx-ky plane. This procedure was used

to compute the band diagram in Sec. 3.3 of the next chapter.

4Here and elsewhere, the superscript T denotes the vector or matrix transpose.
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(b)
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2
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1
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Figure 2.8: (a) For the Bloch analysis, a pair of orthogonal rods constitutes a single point

of a body-centred tetragonal (BCT) lattice for which the primitive vectors are a1 = dx̂
(not shown), a2 = dŷ and a3 = (d/2) x̂+ (d/2) ŷ+2hẑ. Offsetting the phase origins P1

and P2 laterally, as indicated above, has the effect of interleaving the layers of an infinite

stack. (b) The boundaries of the first Brillouin zone (thin lines) and the high-symmetry

directions (thick lines) of a prolate BCT lattice, such as the lattice shown in part (a). The

Γ-X-M path corresponds to the surface Brillouin zone of the woodpile [101].
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Chapter 3

Multipole Super-cell Formulation

3.1 Introduction

In this chapter, the first of two methods that we have developed for modelling defects

inside woodpiles is described. Section 3.2 explains how the existing multipole theory for

woodpiles [26] can be generalised by allowing for a grating unit-cell that contains multiple

cylinders. These methods are used to compute the transmittance of a 28 layer woodpile

that contains a single defect layer (see Sec. 3.3), where parameters of the woodpile are

chosen so that the cladding region possesses a complete photonic band gap (PBG). Two

defect structures are considered: A coupled resonator optical waveguide (CROW) and a

linear waveguide. The CROW is created by perturbing every second cylinder in the de-

fect layer. A related structure was studied by Gralak et al. [77], although in that study

the two-period defect was present in every layer of the woodpile, whereas here the defect

is introduced expressly to create a functional layer, like the structure shown in Fig. 3.1.

The dispersion curves for the waveguide modes of the CROW are inferred from the trans-

mittance spectra by varying the angle of incidence. The second defect that is considered

is the more computationally demanding case of a linear waveguide formed by perturb-

ing the central cylinder of the unit cell, as in Fig. 3.1. In this case, the computational

demands make inferring the dispersion curves from the transmission resonances of the

linear waveguide impractical.

3.2 Theory

In this section, we outline how the theory in [25] can be generalised to allow for gratings

that contain more than one cylinder per unit cell, like the unit cell shown in Fig. 3.2(a).
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d

Figure 3.1: Schematic of a photonic woodpile. The rods within each layer are spaced

apart by an amount d. A linear waveguide can be created by altering the properties of a

single cylinder (green).

Our treatment is analogous to that of [25]; the key difference lies in the form of the asso-

ciated Green’s function. When there is only a single cylinder, the polar representation of

the Green’s function is expressed in terms of global lattice sums that represent the field

contribution due to the periodic replicates of the cylinder. For Nc > 1 cylinders per unit

cell, the polar representation also involves local lattice sums that derive from multiple

contributions from all other cylinders in the unit cell and their periodic replicates. A 2D

treatment of the Nc > 1 case was given in [88]. We remark that [88] differs from the 3D

treatment in that, for classical incidence, the electric and magnetic problems completely

decouple, and the grating reflection and transmission matrices, R and T , can be formu-

lated to act directly on the longitudinal components of the electric and magnetic fields

(i.e., the components parallel to the cylinders). For conical incidence, it is convenient

to express the fields as a superposition of TE and TM polarised components, as in [25],

and R and T must be formulated accordingly. In all other respects, the derivation of the

scattering matrices presented here parallels that of [88], with the exception that we do

not require the magnetic permeabilities (μ) of the cylinders and the background region

to be unity. This permits the study of magnetic materials and, interestingly, metamateri-

als [102, 103].

Section 3.2.1 describes the procedure for obtaining multipole expressions for the fields

produced by an up-down symmetric grating. The derivation of the single layer reflection

and transmission matrices R and T , which were introduced in Sec. 2.5, is given in Sec.

3.2.2.
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θ

ρ ρ
ρ

ρ'
'

θ'

Figure 3.2: An up-down symmetric super-cell consisting of multiple cylinders that are

aligned parallel to the x axis and whose centers lie along the y-axis. The surfaces U+

and U− must be chosen so that the cylinders are completely contained inside the interior

region A.

3.2.1 Multipole Fields for a Grating

For this section, it is assumed that the cylinders of the layer are parallel to the x axis, and

the y axis defines the grating direction, so that z is the direction normal to the grating. As

was discussed in Sec. 2.4, the Helmholtz equation

[∇2
⊥ + k2

⊥]V (ρ) = 0, (3.1)

is solved for each incoming planewave order, where V = Ex or V = Hx, k = (αp, βq, γs)

is the wave vector of the incoming wave, k⊥ = (βq, γs) is the projection of the wave vector

onto the yz plane, and k⊥ =
√
(knb)2 − α2

p is the wave number of the projection. For an

arbitrary cylinder l of the super-cell, the local fields are given by an equation analogous

to Eq. 2.38:

Vl (ρl) =
∞∑

n=−∞

[
Al,V

n Jn (k⊥ρl) +Bl,V
n Hn (k⊥ρl)

]
einθl (3.2)

where there is an assumed x dependency of exp(iαpx), and where ρl = (ρl, θl) is the

position vector of ρ relative to the cylinder centre cl (as shown in Fig. 3.2), and Al,V
n and

Bl,V
n are, respectively, the incoming and outgoing multipole coefficients for cylinder l.
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By defining the Green’s function G implicitly by

[∇2
⊥ + k2

⊥]G (ρ) =
∞∑

n=−∞
δ (ρ− nDŷ) exp(iβ0nD), (3.3)

the fields at any point ρ in region exterior to the cylinders and bounded by U+ and U−

(i.e., the region A of the super-cell, as in Fig. 3.2) can be expressed as

V (ρ) =

∫
A

[
V (ρ′)∇2

ρ′G (ρ− ρ′)−G (ρ− ρ′)∇2
ρ′V (ρ′)

]
dρ′ (3.4)

=

∮
∂C

[
V (ρ′)

∂

∂n′G (ρ− ρ′)−G (ρ− ρ′)
∂

∂n′V (ρ′)
]
dρ′, (3.5)

where ∂C = U+
⋃

U−⋃Nc

j=1 Cj , with Cj denoting the boundary of cylinder j. Note that

the phase-factors exp (iβ0nD) in Eq. (3.3) account for the field quasi-periodicity in the

direction of the grating, where D is the grating period (i.e., the length of the super-cell,

as shown in Fig. 3.2). As a result of these phase factors, the left and right boundaries of

the super-cell do not need to be considered in the line integral in Eq. (3.5). Equation (3.5)

follows from Eq. (3.4) by applying Green’s theorem to the super-cell.

The line integral in Eq. (3.5) can be evaluated in the local coordinate system of cylin-

der l by substituting Eq. (3.2) into Eq. (3.5), and using the appropriate representations

of G (see also [88]). The following polar representation of G should be used for source

points ρ′ = (ρ′, θ′) on the boundary Cl:

G(ρ− ρ′) = − i

4

∞∑
m=−∞

Hm(k⊥ρ)Jm(k⊥ρ′)exp(imθ)exp(−imθ′)

+
∞∑

n=−∞
Jn(k⊥ρ)exp(inθ)

∞∑
s=−∞

Sn−sJs(k⊥ρ′)exp(−isθ′), (3.6)

where

Sm =
∑
n�=0

Hm (k⊥ |cn|) eiβ0nDexp[im arg(cn)] (3.7)

are the global lattice sums, and cn = nDx̂. The global lattice sums are conditionally con-

vergent, and sophisticated techniques must be used to evaluate Sm stably and efficiently

(see, e.g., [104]). For source points ρ′
j = (ρ′j, θ

′
j) on the boundary Cj (j �= l) (refer to Fig.
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3.2), the following polar representation of G should instead be used:

G(ρ− ρ′) = G(ρl − ρ′
j − cj + cl) = − i

4

∞∑
m=−∞

Jm(k⊥ρl)exp(imθl)

×
∞∑

s=−∞
Slj
m−sJs(k⊥ρ

′
j)exp(−isθ′j), (3.8)

where

Slj
m =

∞∑
n=−∞

Hm

(
k⊥

∣∣cljn ∣∣) eiβ0nDexp
[
im arg(cljn )

]
, (3.9)

are the local lattice sums [88], with cljn = cj − cl + cn. The evaluation of the line integral

over the boundaries U+ and U− of the super-cell requires the Cartesian form of G, which

is given by

G(y, z) =
1

2iD

∞∑
q=−∞

1

γs
ei(βqy+γs|z|). (3.10)

Upon evaluating the line integral in Eq. (3.5), one obtains the Wijngaard expansion,

which is a second local representation of the exterior fields in the vicinity of cylinder l:

Vl (ρl) =
∞∑

n=−∞
Bl,V

n Hn (k⊥ρl) einθl +
∞∑

n=−∞
Jn (k⊥ρl) einθl×[

Nc∑
j=1

∞∑
m=−∞

Bj,V
m Slj

n−m +
∞∑

s=−∞

(
J l,−
ns δ

−
V,s + J l,+

ns δ
+
V,s

)]
, (3.11)

where δ±V,s are the longitudinal components of the incoming fields [see Eqs. (2.22) and

(2.23)], and

J l,±
ns = (±1)nexp [±in arg(γs + iβq)] exp(iβqcl) (3.12)

change the basis of the incident field from plane waves to multipoles. (The expression

for J l,±
ns is derived by comparing the incoming plane waves with the generating function

for the Bessel functions, see, e.g., [88].) Here, p is fixed, and so the summation over

s in Eq. (3.11) is merely a summation over q only. As before, there is an assumed x

dependence of exp(iαpx). Note that the diffraction in the grating direction is incorporated

into the Cartesian form Green’s [Eq. (3.10)], in that the summation is over all of the βq’s.

Consequently, the Wijngaard expansion accounts for diffraction in the grating direction.

Evidently, the initial restriction that βq be fixed was redundant.

The only difference between the two field representations, Eqs. (3.2) and (3.11), is
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that the sources of the incoming fields in Eq. (3.11) are made explicit. Specifically, the

terms involving global lattice sums represent the fields sourced by the periodic replicates

of cylinder l, the terms involving local lattice sums represent the fields sourced by the

cylinders j �= l and their periodic replicates, and the term involving δ±V,s is the multipole

representation of the incoming diffraction orders. By equating the two representations

of the local fields, one can express the incoming multipole coefficients in terms of the

outgoing coefficients so that, using matrix notation,

A = SB +J −D− +J +D+. (3.13)

Equation (3.13) is known as the Rayleigh identity, in which A and B are, respectively,

the coefficients of the incoming and outgoing multipole fields impinging on the boundary

of cylinder l, SB represents the scattered fields sourced by each cylinder, and J −D−

(J +D+) is the multipole representation of the incoming field above (below) the layer.

That is,

A =

[ [
Al,E

][
Al,H

] ] , B =

[ [
Bl,E

][
Bl,H

] ] , (3.14)

Al,E/H =
[
A

l,E/H
n

]
, Bl,E/H =

[
B

l,E/H
n

]
, S = diag [S,S], S =

[
Slj

]
, Slj =[

Slj
n−m

]
, J ± = diag

[ [
Jl,±] [

Jl,±] ], Jl,± = [J l,±
ns ], D± =

[(D±,E)T (D±,H)T ]T , and D±,E/H = [δ±E/H ,s], where s = (p, q) with p fixed.

The fields for points inside cylinder l can also be expressed in terms of cylindrical

harmonics; if nl is the refractive index of cylinder l, then the interior fields are:

Vl (ρl) =
∞∑

n=−∞
C l,V

n Jn (k⊥,lρl) e
inθl , (3.15)

where the x dependence is exp(iαpx), and where k⊥,l =
√

(knl)2 − α2
p is the wave num-

ber of the interior fields. Equations (3.2) and (3.15), along with the boundary condition,

which states that the tangential components (Eθ, Hθ, Ex and Hx) be continuous across

the cylinder boundary, lead to

A = −MB, (3.16)

in which the matrix M encapsulates the material properties of cylinder l. Expressions

for M can be found in Appendix 3.A. In general, M is not diagonal, hence Eq. (3.16)

causes the electric and magnetic problems to become coupled. Solving (3.13) and (3.16)
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for the outgoing multipole coefficients B gives

B = −(M+ S)−1JD, (3.17)

with J =
[
J − J +

]
and D =

[
(D−)T (D+)T

]T
. Equation (3.17) can be used

to construct the reflection and transmission matrices for the layer.

3.2.2 Scattering Matrices for a Grating

The diffracted fields f±
E,s and f±

H,s in Eqs. (2.22) and (2.23) can be recovered by again

evaluating Eq. (3.5), this time taking ρ to lie above and below the boundaries U+ and

U− in turn, and using the Cartesian representation of the Green’s function [Eq. (3.10)].

Consequently, the diffracted fields will be expressed in terms of the outgoing multipole

coefficients B [Eq. (3.17)]. The longitudinal components of diffracted fields are found to

be [88]

F = D +
2

D
GKB, (3.18)

where

F± =

[ [
f+
E,s

][
f+
H,s

] ] , (3.19)

and K reverts to the plane wave basis from the multipole basis, and is defined analogously

to J :

K =
[
(K−)T (K+)T

]T
, (3.20)

K± =

[
K1,± · · · KNc,± 0 · · · 0

0 · · · 0 K1,± · · · KNc,±

]
,

Kl,± = [K l,±
sn ] and K l,±

sn = (±1)nexp [∓in arg(γs + iβq)]×exp(−iβqcl). Equation (3.18)

includes a pre-factor G that serves to normalise the reflected and transmitted energy:

G =

[
G 0

0 G

]
, (3.21)

G = diag [1/γs], and s = (p, q) with p fixed. (Refer to the discussions regarding Eqs.

(2.24) and (2.25), see also Eqs. (31) and (47) of [26].)

In view of Eqs. (3.17) and (3.18), the longitudinal components of the diffracted
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planewaves generated by the incoming field D are

F = D − 2

D
GKLJD, (3.22)

where L = (M+S)−1 is the multipole scattering operator. This result can be restated in

terms of TE and TM polarised components be making use of Eq. (2.28) and the analogous

expression for the incoming fields. One finds that[
F−

D

F+
D

]
=

[
I − 2

D
X̂−1Z−1GKLJZX̂

] [ F−
I

F+
I

]
, (3.23)

where the TE and TM polarised fields, F±
D and F±

I , are given by Eqs. (2.29) and (2.41),

respectively, Z = diag
[

Z, Z
]

and X̂ = diag
[

X−, X+
]
. Note that, unlike Eqs.

(2.28), (2.29) and (2.41), p is fixed in Eq. (3.23).

The single-layer scattering matrices can be inferred by identifying the coefficient ma-

trix in Eq. (3.23) with that in Eq. (2.40). When the grating is up-down symmetric, the size

of the multipole scattering operator can be halved using a folding procedure, thereby re-

ducing the cost of evaluating the matrix inversion in the expression for L. We proceed by

rewriting Eq. (3.23) in terms of quantities that are symmetric and antisymmetric (denoted

using the superscripts s and a) with respect to the z coordinate:[
F−

D

F+
D

]
=

[
F−

I

F+
I

]
− knb

k⊥
2D

T −1XZ−1

×
[

KsLJ s KsLJ a

KaLJ s KaLJ a

]
ZXT

[
F−

I

F+
I

]
(3.24)

[cf. Eq. (52) of [25]] where X = diag
[

X−, X−
]
,

T =

[
I I
I −I

]
, (3.25)

and I is the identity matrix. It can be shown that KsLJ a and KaLJ s vanish for up-down

symmetric gratings. Furthermore, for KsLJ s and KaLJ a the rows that correspond to

the negative multipole orders are redundant, and this allows one to truncate Ka/s, J a/s

and L by retaining only the rows and columns corresponding to the multipole orders

n,m ≥ 0. Using a tilde to denote such a truncated matrix, the scattering matrices for an
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up-down symmetric grating are then

Ra,p = Rb,p = − knb

2k2
⊥D

X−Z−1
(
K̃s

εsL̃sJ̃ s − K̃a
εaL̃aJ̃ a

)
ZX−, (3.26)

and

T a,p = T b,p = I − knb

2k2
⊥D

X−Z−1
(
K̃s

εsL̃sJ̃ s
+ K̃a

εaL̃aJ̃ a
)

ZX−, (3.27)

where the subscript p has been used to emphasise the fact that the reflection and trans-

mission matrices so defined act on fields that have an x dependence of exp(iαpx). The

definitions of the terms on the right-hand sides of Eqs. (3.26) and (3.27) are provided in

Appendix 3.B.

The natural way to construct the reflection matrix Ra that acts on all of the compo-

nents of the downward incoming fields is by using the implied ordering

Ra = diag [Ra,p ] (3.28)

Note that this imposes a global ordering on the fields in Eq. (2.40). The remaining

scattering matrices are then Rb = diag [Rb,p ], T a = diag [T a,p ], and T b = diag [T b,p ].

A complication arises because the scattering matrices for gratings whose rods are parallel

to the y-axis are computed in a rotated rotated coordinate system [refer to Eqs. (2.34)-

(2.36)]. In particular, γ′
(p,q) = γ(−q,p), which means that the woodpile order s = (p, q)

for the rotated coordinate system corresponds to the order s = (−q, p) in the unrotated

system. Consequently, the entries of the scattering matrices for the rotated system must

be permuted so that they are consistent with global the channel order given by Eq. (3.28).

3.3 Woodpile Waveguides

We now use the techniques described in the preceding sections to compute the reflectances

and transmittances of two woodpile waveguides, which are each embedded within finite

woodpiles. In both cases, the waveguide is created by changing the size of selected cylin-

ders of the 15th layer of a 28 layer woodpile, where the bottom layer is taken to be the

first layer. The radii and refractive index of the cylinders are r = 0.15d and nl = 2.68

(chalcogenide glass), respectively, where d is the pitch of the constituent gratings (as in

Fig. 3.1). The background refractive index is air (nb = 1) and, thus, the thicknesses of

the layers comprising the bulk must be chosen so that adjacent layers are touching. To
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Figure 3.3: Plot of the number of propagating Bloch modes for each (normalized) fre-

quency d/λ as the in-plane Bloch vector kt = (kx, ky) traverses the boundary of the

surface Brillouin zone shown in Fig. 2.8(b). White indicates the absence of propagating

states. The structural parameters of the woodpile are given in Sec. 3.3.

achieve this, a layer thickness of h = 0.3002d is used. The band structure of the homo-

geneous infinite woodpile was computed using the method outlined in Section 2.6, and is

shown in Fig. 3.3. It can be seen that a complete PBG spans the normalised frequencies

0.50 � d/λ � 0.53, which correspond to the normalised wavelengths 1.9 ≤ λ/d ≤ 2.0.

The woodpile waveguides considered in this thesis rely on the fact that the 28-layer

woodpile cladding strongly attenuates light for wavelengths that fall within the bandgap.

Ideally, the field attenuation should be strong for all directions, in order to minimise the

scattering losses due to extrinsic factors such as surface roughness. To investigate the

field attenuation inside the cladding, we have computed the transmission spectra of an 8-,

14- and 28-layer woodpile, for TE and TM polarised incidence, see Fig. 3.4. The spectra

are computed for the irreducible Brillouin zone (BZ) of the waveguide. Since the rods of

the waveguide layer are taken to be oriented parallel to the x axis, the irreducible BZ of

the waveguide spans the Bloch vectors 0 ≤ kx ≤ π/d with ky = 0, or, equivalently, it

spans the Γ−X path along the horizontal axis of Fig. 3.3. The value of kx is changed by

letting the α0 component of the wave vector k = (α0, β0,−γ0) of the incident planewave

vary over the values 0 < α0 < π/d, with β0 = 0. [The value of γ0 changes implicitly

according to Eq. (2.21).] This corresponds to an incident field that changes from normal

incidence to glancing incidence as α0 increases. Note that for these value of α0 and β0, a

TE polarised incident field is one for which Ex = Ez = Hy = 0, while for a TM polarised
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incident field, Ey = Hx = Hz = 0. In the context of transmission, we will simply refer

to α0 and β0 as kx and ky, respectively. (When the structure has infinitely many layers, α0

and β0 are precisely kx and ky, as noted in Sec. 2.6.)

As the number of layers increases, it can be seen in Fig. 3.4 that the transmittace [as

computed using Eq. (2.53)] decreases for both TE and TM incidence. When there are 14

layers, the transmittance over the bandgap wavelengths is low for most of the BZ, while

for 28 layers, the transmittance vanishes entirely for these wavelengths, irrespective of

kx. In the next two sections, the waveguiding modes of the 28-layer CROW and linear

waveguide are located by looking for transmission resonances inside the PBG. These

resonances occur when the incident field excites a defect mode.

3.3.1 A Coupled Resonator Optical Waveguide

Of the two waveguide geometries considered in this chapter, the CROW is the more com-

putationally tractable one because the size of the super-cell is small. For this structure,

the super-cell comprises two cylinders separated by a distance d equal to the pitch of the

gratings, and the length of the super-cell is D = 2d. The waveguide is created by de-

creasing the radius rw of the second cylinder of the super-cell of the defect layer, thereby

resulting in a periodic defect that repeats every two cylinders, as illustrated schematically

in Fig. 3.5. The CROW can guide light along either the longitudinal (x) direction, or in

the transverse (y) direction via resonant coupling.

The top panels in Figs. 3.6(a)-(c) show the positions of the transmission peaks for TM

incidence for rw = 0, rw = 0.5r and rw = 0.8r. In each case, one or more strong trans-

mission peaks sweep through frequencies corresponding to the PBG of the host woodpile.

These resonances can be attributed to the waveguide layer, as they are not present in the

transmission spectrum of the regular 28 layer woodpile (see Fig. 3.4). No such peaks

were found for TE incidence, however. In general, the fields inside the defect rod will

have a lower spatial frequency than the fields in the neighbouring air region. Thus, as

the radius of the defect rod increases, the resonance shifts to longer wavelengths. The

bottom panels of Figs. 3.6(a)-(c), show the corresponding quality factors Q = ω/Δω of

the transmission resonances, where ω = k/c is the resonant frequency, and Δω is the

linewidth (full width at half maximum of the peak). As with any PC defect mode, the Q

factors tend to be higher for wavelengths near the middle of the PBG [3]. In each of Figs.

3.6(a) and 3.6(b), one of the resonances seemingly gets cutoff as it approaches the middle

of the bandgap. In reality, the linewidth of the peak becomes too fine for the peak to be

easily resolved.
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Figure 3.4: Rows 1-3 show, respectively, the transmittance % for an 8-, 14-, and 28-layer

woodpile. Left column: TE incidence. Right column: TM incidence. The complete of the

corresponding infinite woodpile spans the wavelengths 1.9 � λ � 2.0.
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Figure 3.5: Geometry of the coupled resonator optical waveguide. The waveguide is

created by reducing the size of every second rod of the defect layer uniformly (green

rods).

The fields at one of the resonances are shown in Fig. 3.7, and are localised to the

waveguide layer, indicative of a defect mode. Note that the fields in Fig. 3.7 are plotted

on a compressed colour scale to show a greater dynamic range of the lower-intensity

field components. Also, throughout this thesis all fields, such as those shown in Fig.

3.7, are plotted in arbitrary units because the energy is defined relative to energy of the

incident planewave. Moreover, as is the convention in the study of photonic crystals,

the dimensions of the woodpile are defined relative to the period d. The field plots in

this thesis are therefore inherently unitless – the energy of the mode, in absolute terms,

depends on power of the incident field.

Cusps occur at the contact points of the rods, as illustrated in Fig. 3.8, causing the

Ez component of the fields at these points to exhibit singular behaviour, especially near

the defect layer, i.e., where the field is concentrated. (The existence of singularities at

cusps was reported by, e.g., Meixner [105] in 1972.) The magnetic permeability of the

rods is the same as that of the background region, and so the magnetic field must be

continuous and, therefore, regular at the cusps. Similarly, the continuity of the tangential

components Ex and Ey across the boundaries ensures that these components are regular

at the cusps. Recall that for ky = 0, a TM polarised incident field is one for which Hy �= 0

and, by implication, Ey = Hx = Hz = 0 (also see Fig. 2.4). The singular nature of

the Ez component means that the diffracted fields will therefore always have a ‘TM-like’
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character in that Ey, Hx and Hz are small relative to Ez, and this appears to be why the

transmission resonances of the CROW (Fig. 3.6) only occur for a TM-polarised incident

field.

3.3.2 A Linear Waveguide

Ideally, a linear waveguide would be modelled by perturbing a single cylinder in the de-

fect layer. In this chapter we have approximated such a structure by using a super-cell of

length D = 11d comprising 11 cylinders spaced equally along the axis of the grating, and

then decreasing the radius rw of the central cylinder of the waveguide layer. Essentially,

the structure being modelled is the same as the CROW depicted in Fig. 3.5, except that

the defect repeats every 11 cylinders. This approach relies on the PBG to prevent signif-

icant coupling between the fields of any two super-cells. In the next chapter we use an

alternative formulation to investigate the validity of this assumption. In particular, it will

be shown that a super-cell of 10 cylinders adequately isolates the linear waveguide from

its periodic replicates.

For the linear waveguide, the length of the super-cell and the fineness of the spectral

features make the super-cell approach particularly demanding, and computing the trans-

mittance for the entire Brillouin zone (BZ) proved to be impractical. Instead, the trans-

mittance was computed for three values of kx near the edge of the BZ. Figure 3.9 shows

the transmittance for kx = 0.86(π/d), kx = 0.92(π/d) and kx ≈ π/d, with the defect

radius rw = 0.5r fixed. As was for the CROW, the linear defect causes prominent reso-

nances to appear inside the PBG, while no such resonances are present for TE incidence

(for the reasons discussed in Sec. 3.3.1). As kx increases, the resonance shifts to shorter

wavelengths, and the Q factor gradually increases from 13, 000 to 23, 000. Near the edge

of the BZ (kx ≈ π/d), the resonance becomes a doublet because there are a pair of defect

modes that become degenerate precisely at kx = 1. The existence of such a degenerate

pair can be attributed to the fact the waveguide has glide reflection symmetry [106], i.e.,

the waveguide is invariant under the transformation

z → −z, x → x+ d/2. (3.29)

To try and improve the Q-factors, we changed the radius of the defect, while keeping

kx ≈ π/d fixed. The transmittances for TM incidence for rw = 0.0, rw = 0.5r, and

rw = 0.8r are shown in Fig. 3.10. Increasing the radius causes the resonance to shift
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Figure 3.6: Location of transmission maxima (top panels) for TM incidence and the cor-

responding Q-factors (bottom panels) for the CROW using defect sizes of (a) rw = 0,

(b) rw = 0.5r and (c) rw = 0.8r as kx varies. Inside the bandgap, the transmittance is

negligible except near the resonances. As rw increases, the resonances move to longer

wavelengths. Fields at the point indicated (arrow) in part (b) are shown in Fig. 3.7.
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Figure 3.7: Componentwise field intensity in the vicinity of the waveguide layer of the

CROW (only one period in the horizontal direction is shown): (a) |Ex|2, (b) |Ey|2, (c)

|Ez|2, (d) |Hx|2, (e) |Hy|2 and (f) |Hz|2. The view looks down the rods of the waveguide

layer. The radius of the defect rods (smaller circles) is rw = 0.5r, and the parameters

of the incident TM-polarised field are kxd/π = 0.59, ky = 0 and λ/d = 1.958, which

correspond to the point indicated in Fig.3.6(b).
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Figure 3.8: The magnitude of the Ez component of the fields increases in the vicinity of

the contact points of the rods. The Ez component becomes singular precisely at the cusp,

while all other field components are continuous at this point.
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Figure 3.9: Transmittance and Q-factors for a linear waveguide for TM incidence with

rw = 0.5r and ky = 0 fixed and kxd/π = 0.86 (red/dotted), 0.92 (blue/dashed) and 1.0
(green/solid). The resonance shifts to shorter wavelengths as kx increases.
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Figure 3.10: Transmittance and Q-factors for a linear waveguide for TM incidence with

kxd/π ∼ 1 and ky = 0 fixed. The defect size is rw = 0.0 (red/dotted), i.e., cylinder

completely removed, rw = 0.5r (blue/dashed), rw = 0.8r (green/thin) and rw = r, i.e.,
no defect (black/thick). The resonances shift to longer wavelengths as rw increases.

to longer wavelengths (as was for the CROW), and also causes the Q-factors to increase

rapidly. The increase in the Q-factors is understandable because the resonance is moving

closer to the middle of the bandgap, where the field attenuation inside the cladding is

strongest. The resonances in Fig. 3.10 are always doublets because there are two nearly-

degenerate modes when Bloch vector is close the BZ edge. When rw = 0.8r, the Q-factor

is ∼ 200, 000, which might be sufficiently high for low-loss waveguiding over useful

distances. However, quantifying the propagation efficiency requires greater resolution in

the kx domain than can be achieved with the super-cell approach.

The fields for the Q = 13, 600 resonance in Fig. 3.10 are shown in Fig. 3.11. Again,

the Ez component was found to exhibit singular behaviour near the contact points of the

rods near the defect, thereby giving the fields a TM-like character. Interestingly, the cen-

tral lobe of the longitudinal component of the electric field (Ex) resembles a typical LP01

waveguiding mode of a PC fibre. The distribution of the electric field intensity of a rep-

resenative LP01 mode of a hollow-core PC fibre is shown in Fig. 3.12 for comparison

(images taken from [107]). (The compressed colour scale used in 3.11(a) exaggerates the

intensity of the side lobes of the woodpile mode.) This similarity suggests that the light

inside the woodpile waveguide is indeed propagating along the defect rod. The lower sym-

metry of the woodpile waveguide mode is due to the fact that, for the cross-section shown

Fig. 3.11 (x = 0.25d), the woodpile waveguide only has two-fold rotational symmetry,
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whereas the PC fibre mode has six-fold rotational symmetry in the plane transverse to the

axis of the fibre. In addition, the normalised volumes of the two modes are comparable –

they are both about five periods in diameter.

3.4 Discussion

In this chapter, a super-cell method for modelling woodpile defect structures was pre-

sented, and the existence of defect modes in a CROW and a linear waveguide embedded

in a woodpile cladding was inferred from the corresponding transmission spectra. It was

also found that the waveguides discriminate strongly between the polarisation states of

the excitation field. Changing the size of the defect rod proved to be an effective way

of controlling the Q-factors of both of the waveguides that we considered here. Further-

more, the linear waveguide supports waveguide modes that might be suitable for low-loss

waveguiding over useful distances. We found that the woodpile required ∼28 layers in

order for it to exhibit strong, omnidirectional field attenuation for the frequencies inside

the bandgap. This observation is similar to that made by Imada et al. [18], who esti-

mated for a GaAs woodpile (n ≈ 3.38) that about 25 layers are needed to achieve lossless

waveguiding over a length of 500 μm. However, locating the transmission resonances for

these stack sizes is particularly difficult because the Q-factors increase exponentially with

increasing stack size [18].

The results for the linear waveguide were obtained using a super-cell of length D =

11. This imposes a lower bound of pmax ≈ 11 on the number of plane wave orders to

be retained, since the number of propagating orders is approximately equal to D. The

results that were presented were for pmax = 15, which was the upper bound imposed

by the amount of computational memory and power that was available when the study

was performed. Table 3.1 shows how the normalized frequency d/λ of the transmission

resonance for rw = 0.5r, with kx = 0.86π/d (as shown by the dotted/red curve in Fig.

3.9) varies as pmax is increased from 12 to 15, and suggests that the frequency estimate is

converged to about two decimal places. Considerations on the size of the super-cell will be

deferred until the next chapter, wherein an approach for computing the waveguide modes

directly is described. That approach complements the methods explained in this chapter,

and will be used to demonstrate that a super-cell of 11 cylinders adequately isolates the

defect from the fields of neighbouring cells.

The principal difficulty with the super-cell approach is that the computational demands

grow quickly with increasing size of the super-cell. While the plane wave and multipole
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Figure 3.11: Componentwise field intensity in the vicinity of the linear waveguide: (a)

|Ex|2, (c) |Ey|2, (e) |Ez|2, (b) |Hx|2, (d) |Hy|2 and (f) |Hz|2. The view looks down the

defect rod (smaller circle), which has a radius of rw = 0.5r. The parameters of the

incident field are kxπ/d ∼ 1, ky = 0 and λ/d = 1.936, which correspond to the Q =
13, 600 resonance indicated in Fig. 3.10.
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.

Figure 3.12: (a) Micrograph of a hollow-core photonic crystal fibre and (b) the electric

field intensity of the LP01 mode of the fibre. Images taken from [107].

Table 3.1: Frequency estimates of the resonance of the linear waveguide as the planewave
truncation parameter pmax is increased. The frequencies were determined using a super-
cell containing Nc = 11 cylinders, with kx = 0.86π/d and rw = 0.5r fixed.

pmax d/λ
12 0.512104

13 0.512033

14 0.511968

15 0.511876
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field expansions are expressed in terms of infinite series [see Eqs. (2.26) and (2.27) and

Eq. (3.2)], these series must be truncated in any implementation. The natural way to do

this is to discard the higher-order terms, so that if s = (p, q) is an arbitrary woodpile

diffraction order, then one imposes the condition −pmax ≤ p, q ≤ pmax, for some choice

of pmax. Similarly, only the multipole orders −nmax ≤ n ≤ nmax are retained, for some

nmax. (Consequently, the matrices appearing in the above discourse are all finite.) The

justification for this choice is that the higher orders correspond to higher frequency com-

ponents of the respective Fourier expansions and are, thus, less significant. It follows that

the degree of convergence of the numerical fields will improve as pmax and nmax are in-

creased. Of these parameters, nmax is of much less significance since the overall running

time of the super-cell approach scales only as O((nmax)
3), and, moreover, nmax is small

because the solution converges rapidly in the multipole basis. In contrast, the method

scales as O((pmax)
6), and this is problematic because the solution converges relatively

slowly in the planewave basis (pmax > nmax). This is particularly evident for woodpiles

because adjacent layers of the stack are touching, resulting in strong evanescent coupling

between the layers. In 2D PCs, the scatterers are spaced relatively far apart, and so pmax

is comparable to the number of propagating orders, which carry most of the energy of the

optical field. For a woodpile, pmax must be large enough so as to include not only the

propagating orders but also a considerable number of the evanescent orders.

3.A Expressions for the Boundary Condition Matrix

The matrix M encapsulating the boundary conditions [see Eq. (3.16)] is a 2 by 2 block

matrix and we use superscripts E and H to label the blocks so that

M =

[
MEE MEH

MHE MHH

]
. (3.30)

Each block is diagonal with Nc partitions, where Nc is the number of cylinders in the

grating unit cell. We use integers l to index the cylinders, and n to index the elements

of the partition. In addition, the label ‘II’ denotes quantities that depend on the material

properties of cylinder l while ‘I’ denotes quantities that depend on the properties of the

background region. If the radius of cylinder l is al, then the entries on the diagonal of
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each block are

MEE
l,n =

η2 (I) η3 (I)Hn (k⊥Irl) Jn (k⊥Irl)

Δ

×
{
[η1 (I)− η1 (II)]

2

η2 (I) η3 (I)
− J2H3

}
, (3.31)

MHH
l,n =

η2 (I) η3 (I)Hn (k⊥Irl) Jn (k⊥Irl)

Δ

×
{
[η1 (I)− η1 (II)]

2

η2 (I) η3 (I)
− J3H2

}
, (3.32)

MEH
l,n =

[η1 (I)− η1 (II)] η2 (I) η3 (I)

Δ
× 2kμI

πk2
⊥Irl

, (3.33)

MHE
l,n = − (εI/μI)MEH

l,n , (3.34)

with k2
⊥i = k2εiμi − α2

p, η1 (j) = −αpn/
[
(k⊥j)

2 rl
]
, η2 (j) = −ikμj/k⊥j , η3 (j) =

ikεj/k⊥j ,

Δ = Jn (k⊥Irl)
2 η2 (I) η3 (I)

×
{
[η1 (I)− η1 (II)]

2

η2 (I) η3 (I)
− J2J3

}
, (3.35)

Jj =
J ′
n (k⊥Irl)

Jn (k⊥Irl)
− ηj (II) J

′
n (k⊥IIrl)

ηj (I) Jn (k⊥IIrl)

and

Hj =
H ′

n (k⊥Irl)

Hn (k⊥Irl)
− ηj (II) J

′
n (k⊥IIrl)

ηj (II) Jn (k⊥IIrl)
.

3.B Elaboration of the Rayleigh Identity and Scattering
Matrix Expressions

The symmetrised versions of the multipole transformation matrices [see Eq. (3.24)] are

J s/a = diag
[
J − ±J + J − ∓J +

]
(3.36)

and

Ks/a = diag
[
K− ±K+ K− ∓K+

]
. (3.37)
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As was discussed in Section 3.2.2, the above matrices appear as folded quantities in the

final expressions for the scattering matrices [Eqs. (3.26) and (3.27)]. Specifically,

L̃s/a
=

⎡⎣ M̃
EE

+ S̃
s/a

εs/a M̃
EH

M̃
HE

M̃
HH

+ S̃
a/s

εa/s

⎤⎦−1

, (3.38)

S̃
s/a

=

[
S̃
lj,s/a

]
, S̃

lj,s/a
=

[
Slj
n−m ± (−1)mSlj

n+m

]
, εs = diag

[
diag

[
ε, I

]]
, εa =

diag
[
diag

[
I, ε

]]
, ε = diag [εm],

εm =

⎧⎨⎩1/2, for m = 0 ,

1, for m > 0

and MEE/HH are the blocks of M. See also Appendix B of [25].
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Chapter 4

The Fictitious Source Superposition
Method

4.1 Introduction

In this chapter we describe how the fictitious source superposition (FSS) method can be

applied to the problem of modelling a cylindrical defect contained in a woodpile cladding

(such a structure is illustrated schematically in Fig. 3.1). While the super-cell method

described in the previous chapter proved to be an efficient way of modelling the coupled

resonator optical waveguide, generating the dispersion curves for the linear waveguide

remained difficult because of the narrow linewidth of the spectral features. Further, the

method required a moderately large super-cell in the grating direction, and this partly off-

set the benefits of expressing the electromagnetic field identities in a natural basis for the

problem. Indeed, as was mentioned in Sec. 1.4, the pre-existing methods for modelling

rod defects in woodpiles all necessitate a super-cell [24, 37], whereby periodic boundary

conditions are imposed at an arbitrary distance from the defect. The super-cell is used

to artificially reduce the modelled domain to a size that can be computed within a rea-

sonable time. Regardless of which method is used, increasing the size of the super-cell,

thereby making the structure more similar to the physical structure being modeled, leads

to rapidly increasing demands on computing time and memory.

In earlier work, 2D FSS methods, which do not rely on a super-cell, were used to com-

pute modes that were highly extended, such as happens when near cutoff [27,108]. Here,

those techniques are generalised in order to avoid the computational overhead associated

with a super-cell. The FSS method entails placing sources inside each cylinder of the

waveguide layer, and then taking an appropriate superposition of fields to mimic a finite
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number of defects in an infinite array of cylinders. This can be done efficiently because

the multipole formulation lets one manipulate the outgoing fields directly; however, the

FSS method forgoes the ability to deal with a finite number of layers. In the context of

woodpiles, this is a new method capable of producing accurate results when the fields of

the defect mode extend great distances into the 3D structure. The substantial performance

gains realised by the FSS method mean that it is possible to obtain well-resolved disper-

sion curves for the linear waveguide, and also allow us to optimise the geometry for use

as a slow-light waveguide. This regime occurs when the group velocity, vg
def
= ∇kω(k),

is small along the waveguiding direction, i.e., when vx = ∂ω/∂kx � c, where x is the di-

rection parallel to the linear waveguide, ω is the angular frequency, k is the Bloch vector,

and c is the speed of light in a vacuum.

In Section 4.2 it is shown how the FSS formulation of [27, 108], originally developed

for 2D grating arrays, can be generalised to model linear defects in 3D woodpiles; the

principal difference being that there is now a set of grating diffraction orders associated

with the x direction in addition to the usual ones associated with the y direction (see [109]

for a list of references to early work on the use of fictitious sources in the study of 2D

systems of diffracting rods). For this chapter, the nomenclature introduced in Chapter 3

is slightly modified to accommodate the extensions to the theory (where appropriate, the

correspondences with the equations of Chapter 3 are noted). The measures that were taken

to validate our code are outlined in Section 4.3, along with implementation notes. Results

are presented for a chalcogenide woodpile waveguide, where the radius and refractive

index of the defect rod were allowed to vary in turn, see Section 4.4.

4.2 Theory

4.2.1 Overview

The theory in this section is organised as follows. In Section 4.2.2, multipole expressions

for the fields produced by a single grating are given, where a fictitious source is now

placed inside each cylinder of the grating. Using the fictitious sources to manipulate

the outgoing fields of each cylinder independently from those of the other cylinders in

the grating is impractical if not impossible. Instead, the array of sources is chosen so

that it quasi-periodic. Hence, all of the multipole expressions for the fields produced

by the grating remain the same as those in the previous chapter, except possibly for the

appearance of an additional term representing the contribution of the fictitious sources to
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the fields. In particular, it will become apparent that the presence of fictitious sources

does not affect the expressions for the grating reflection and transmission matrices R and

T .

Section 4.2.3 describes how the expressions derived in Sec. 4.2.2 can be used to sim-

ulate a linear waveguide. This entails expressing the fictitious source coefficients as the

solutions of a homogeneous system of equations. Integrating the fields with respect to the

quasi-periodic phase causes all but one fictitious source vanish. (The idea of integrating

over the Brillouin zone in order to compute the defect modes of PCs is also employed in

the resolvent approach [110].) The remaining source can then be used to mimic a cylinder

that has a different radius and refractive index from the host cylinder. The field integration

step amounts to taking an average of the multipole field coefficients and, consequently, the

homogeneous system for the superposed problem is related trivially to the original homo-

geneous systems. The FSS method can also be used mimic compound defects comprising

multiple defect rods; however, such structures are not discussed in this thesis (see [108]

for the derivation of the FSS method for compound defects in 2D grating arrays).

4.2.2 FSS Grating Field Identities

We begin by considering a single grating whose rods are parallel to the x axis, with the

y axis corresponding to the direction of the grating. Unlike the super-cell approach, the

refractive indices and radii of the cylinders of the grating must uniform. In order to

discriminate between different unit-cells, an integer j is used to index the cylinders in

order of increasing horizontal displacement, with j = 0 denoting the central cylinder of

the layer, see Fig. 4.1. The multipole expansion for the longitudinal components Ex and

Hx of the fields at a point ρ = (ρ, θ) exterior to cylinder j is then

V (ρ) =
∞∑

n=−∞

[
Aj,V

n Jn (ke⊥ρ) +Bj,V
n Hn (ke⊥ρ)

]
einθ (4.1)

with V = Ex and V = Hx in turn, where ke⊥ =
√
(knb)2 − α2

p is the transverse

wavenumber of the exterior fields [cf. Eq. (2.38)], and where there is an assumed x

dependence of exp(iαpx). Note that the periodicty of the grating means that the mul-

tipole coefficients Aj,V
n and Bj,V

n must be quasiperiodic, i.e., Aj,V
n = A0,V

n exp(iβ0jd)

and Bj,V
n = B0,V

n exp(iβ0jd). Equation (4.1) holds whether or not fictitious sources are
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present. When there are no fictitious sources, the fields inside cylinder j are simply

V (ρ) =
∞∑

n=−∞
Cj,V

n Jn (ki⊥ρ) einθ, (4.2)

where ki⊥ =
√
(knc)2 − α2

p is the transverse wavenumber of the interior fields, and

Cj,V
n = C0,V

n exp(iβ0jd).

z

j=0 j=1 j=2

d

kz

y

kx ky

Figure 4.1: Successive unit-cells of a grating whose cylinders are parallel to the x-axis,

with j indexing the cylinders in order of increasing displacement along the y-axis.

Before describing the modifications to the multipole theory, we recap the main steps

of the derivation of the scattering matrices R and T . For the moment we assume that

j = 0. As in Chapter 3, the Rayleigh identity relates the incoming fields (A0,V
n ) to the

outgoing fields (B0,V
n ) according to

A = SB +J −ZX−F−
I +J +ZX+F+

I . (4.3)

[cf. Eq. (3.13)], where J ±ZX± converts the incoming planewave orders F±
I into mul-

tipoles. The definitions of the terms in Eq. (4.3) that appear in calligraphic font can be

found in Sec. 3.2.1. In this chapter, all planewave fields are expressed in terms of TE and

TM components, hence the incoming plane waves must first be expressed in Cartesian

coordinates. This is achieved by the terms ZX± [refer to the discussion near Eq. (2.28)].

By requiring that the tangential components Eθ, Hθ, Ex and Hx be continuous across the
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cylinder boundaries, a second equation relating A to B is obtained:

A = −MB, (4.4)

[cf. Eq. (3.16)] where M completely encapsulates the material properties of the cylin-

ders, i.e., the refractive index and radius. Expressions for M are given in Appendix 3.A.

Equations (4.3) and (4.4) allow B to be expressed purely in terms of the incoming fields:

B = −LJ −ZX−F−
I −LJ +ZX+F+

I , (4.5)

where L = (M+ S)−1 is the multipole scattering operator.

The diffracted planewave fields F±
D produced by the grating are then expressed in

terms of the incoming planewave orders and the outgoing multipole fields:

F−
D = F−

I + (2/d)G(ZX−)−1K−B (4.6)

and

F+
D = F+

I + (2/d)G(ZX+)−1K+B, (4.7)

[cf. Eq. (3.18)] where (ZX±)−1K± converts the multipole fields back into planewaves,

and G is the normalisation factor. Substituting the multipole fields of Eq. (4.5) into

the two equations above yields following the relationships between the incoming and

diffracted fields incident on the grating:

F−
D = T a,pF−

I +Rb,pF+
I (4.8)

and

F+
D = Ra,pF−

I + T b,pF+
I , (4.9)

where Rp and T p are the usual reflection and transmission matrices associated with the

fields incoming from above (subscript a) and below (subscript b) the grating [cf. Eqs.

(3.26) and (3.27)]. The subscript p is used here to emphasise the fact that the expressions

apply to the pth diffraction order associated with the x direction.

When fictitious sources are placed inside each cylinder, the fields inside cylinder j are

instead

V (ρ) =
∞∑

n=−∞

[
Cj,V

n Jn (ki⊥ρ) +Qj,V
n Hn (ki⊥ρ)

]
einθ, (4.10)

[cf. Eq. (4.2)], where Qj,V
n are the fictitious source coefficients, and represent a line
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source that coincides with the axis of the cylinder. Further, the sources are chosen so that

they are quasi-periodic, i.e., Qj,V
n = Q0,V

n exp(iβ0jd). This ensures that the exterior fields

retain their quasi-periodicity, and, hence, the presence of the fictitious sources does not

affect the form of the Rayleigh identity [Eq. (4.3)]. Equation (4.4) and, thus, Eq. (4.5)

gain an additional term involving the fictitious sources

Q =

[ [
Q0,E

n

][
Q0,H

n

] ] (4.11)

so that instead

A = −(MB +NQ) (4.12)

and

B = Y−F−
I +Y+F+

I +Y fsQ, (4.13)

where, for convenience, we define

Y fs = −LN (4.14)

and

Y± = −LJ ±ZX±. (4.15)

Expressions for N are given in Appendix 4.A. Equations (4.6) and (4.7) remain valid,

with B now given by Eq. (4.13). Thus, Eqs. (4.8) and (4.9) can be generalised to

F−
D = T a,pF−

I +Rb,pF+
I +Q−

p Q (4.16)

and

F+
D = Ra,pF−

I + T b,pF+
I +Q+

p Q, (4.17)

with

Q±
p = −(2/d)(ZX±)−1K±LN (4.18)

for the channel p.

In order to (uniformly) change the material parameters of the cylinders of the grating

when there are no fictitious sources, we need only change the boundary condition matrix

M appearing in Eq. (4.4). Hence, if M̂ is the matrix for the new parameters of the

cylinders, Eq. (4.4) becomes

A = −M̂B. (4.19)
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Evidently, if we instead wish to use the fictitious sources to mimic these new parameters,

then Q must be chosen in a way so as to satisfy both Eq. (4.12) and Eq. (4.19). This leads

to the first of two main relationships between the outgoing fields, i.e., B, and the sources

Q:

B = HQ, (4.20)

where

H = (M̂−M)−1NQ. (4.21)

The cylinders can be removed altogether by either choosing the radius so that it is van-

ishingly small, or by choosing the refractive index of the cylinders to be the same as

the background refractive index nb. Removing a cylinder in this manner is equivalent to

setting H = 0 so that, in this case, Eq. (4.20) simply becomes

B = 0. (4.22)

Coupling of the fields between adjacent layers of the woodpile occurs via F±
I and F±

D,

i.e., via Eqs. (4.8) and (4.9), for cladding layers, and Eqs. (4.16) and (4.17), for layers

containing fictitious sources (see Fig. 4.2). Further, mixing occurs between different

channels, so that the incoming fields F±
I result from scattered fields produced by all other

layers, where these scattered fields are radiating in all channels, rather than just in channel

p (this is because channel p for x-aligned gratings is physically different from channel p

for y-aligned gratings). The field equations for different values of p are thus coupled and

must be solved simultaneously. All of the expressions derived so far can be generalised

systematically to take this channel mixing into account.

Starting with Eqs. (4.8) and (4.9), it is apparent that analogous relationships must also

hold between the total diffracted and incoming fields (i.e., when p is no longer fixed). For

example, if we define

Ra = diag [Ra,p ], (4.23)

with Rb, T a and T b similarly defined, then the Eqs. (4.8) and (4.9) generalise to

F−
D = T aF−

I +RbF+
I (4.24)

and

F+
D = RaF−

I + T bF+
I . (4.25)

(Once R and T have been constructed, Rp and T p can be discarded.) For the global
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Figure 4.2: The incoming and diffracted fields (F±

I and F±
D), as well as the reflection

and transmission matrices (Ra, Rb, T a, T b) associated with the waveguide layer. Each

cylinder of the layer contains a fictitious source (Qj,V
n ). The phases of F±

I and F±
D must

be adjusted in order to give the waveguide layer an artificial thickness h equal to the

distance between adjacent layers. The phase-adjusted fields are given by F±
I and F±

D .

The scattering matrices for the top (bottom) surfaces of the waveguide are R̃a and T̃ a

(R̃b and T̃ b). The semi-infinite cladding regions below and above the waveguide layer

are characterised by the R∞ and R′
∞ reflection matrices.
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channel ordering implied by Eq. (4.23), Eqs. (4.16), (4.17), (4.13) and (4.20) generalise

to

F−
D = T aF−

I +RbF+
I +Q−Q, (4.26)

F+
D = RaF−

I + T bF+
I +Q+Q, (4.27)

B = Y−F−
I +Y+F+

I +Y fsQ, (4.28)

and

B = HQ. (4.29)

Equations (4.26)-(4.29) appear to be identical to Eqs. (4.16), (4.17), (4.13) and (4.20),

however p is no longer fixed, so that

Q = [Qp] , (4.30)

B = [Bp] , (4.31)

where the vector Qp is given by Eq. (4.11), and Bp is defined analogously to Qp. The

matrices H and Y fs are simply

H = diag [Hp] and Y fs = diag
[
Y fs

p

]
, (4.32)

with Hp and Y fs
p given by Eqs. (4.21) and (4.14), respectively. Similarly, for layers whose

rods are parallel to the x axis, the matrices Q± and Y± are constructed as:

Q± = diag
[
Q±

p

]
, and Y± = diag

[
Y±

p

]
, (4.33)

with Q±
p and Y±

p given by Eqs. (4.18) and (4.15), respectively.

For layers whose rods are parallel to the y-axis, Eqs. (4.24)-(4.29) are constructed

using a rotated coordinate system [refer to the discussion regarding Eq. (3.28)] in which

the woodpile order s = (p, q) corresponds to the order s = (−q, p) in the unrotated

system. Since the matrices Q± convert multipole fields to plane wave orders, the rows of

Q± (for y-aligned gratings) must be permuted so that the row order is consistent with the

global order implied by Eq. (4.23). Similarly, the matrices Y±
p convert plane waves into

multipoles, and so the columns of Y±
p must be permuted accordingly.

Equations (4.26)-(4.29) are the main results of this section, and they generalise the

corresponding FSS expressions for 2D grating stacks reported in Section 2.D of [27].

These relationships, along with Eqs. (4.24) and (4.25) allow one to find the incoming
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fields (now the modes of an infinite structure) in Eq. (4.28) in terms of Q, establishing a

second linear relationship, B = ZQ, between B and Q, and thus determining Q.

4.2.3 Formulation for a Linear Waveguide

The simplest defect that can be modelled using the FSS method is one where the proper-

ties of just a single cylinder of the woodpile are changed (as in Fig. 3.1). Fictitious sources

are first placed in each cylinder of the waveguide layer, using the procedure just described.

Thus, initially, the defect is one-dimensional in that the sources modify the entire row of

cylinders uniformly to create a defect that is localised only in the z direction. While this

means that the woodpile is no longer periodic in this direction, the periodicity in the x

and y directions is preserved. Hence, a field expansion in terms of woodpile diffraction

orders is still valid, and α0 and β0 can be regarded as the kx and ky as components of

the Bloch vector (see Fig. 4.1). Similarly, the diffraction orders s can be thought of as

the Fourier components of the corresponding Bloch mode. The fields of the woodpile are

then integrated over one dimension of the Brillouin zone, thereby removing the fictitious

sources from all but one of the rods.

Let k = 2π/λ be the free-space wave number, and let kx and ky be fixed. The in-

coming fields must first be expressed in terms the fictitious sources Q of Eq. (4.30). A

symmetrical padding must first be applied to the waveguide layer, giving the layer an ar-

tificial thickness of h equal to the distance between adjacent layers. The phase origin of

the fields incident above (below) the grating must, thus, be shifted upwards (downwards)

by an amount h/2. This is achieved by using the phase adjusted fields

F±
I = P−1F±

I and F±
D = PF±

D (4.34)

in Eqs. (4.26) and (4.27), with P as defined in Eq. (2.46). These phase-adjusted fields

satisfy relationships analogous to Eqs. (4.26) and (4.27). Specifically, it follows immedi-

ately from Eqs. (4.26), (4.27) and (4.34) that

F−
D = T̃ aF

−
I + R̃bF

+
I +PQ−Q, (4.35)

and

F+
D = R̃aF

−
I + T̃ bF

+
I +PQ+Q, (4.36)

where R̃a/b = PRa/bP and T̃ a/b = PT a/bP are the corresponding reflection and

transmission matrices. The phase origins of the fields F±
I/D and F±

I/D are depicted in Fig.
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(4.2), along with the scattering matrices associated with each surface of the waveguide

layer. Note that for up-down symmetric layers, Ra = Rb and R̃a = R̃b (and similarly

for the transmission matrices).

The reflection from the cladding is characterised by the R∞ reflection matrx, which

is found from a Bloch mode analysis of the bulk woodpile. The derivation of R∞ is

performed in Secs. 5.2 and 5.3 of the next chapter [specifically, see Eq. (5.9)]. In order

for there to be a complete bandgap, consecutive pairs of gratings must be interleaved (the

stacking unit comprises four layers rather than two). Consequently, the reflection matrix

R∞ for the cladding below the waveguide layer is different from the reflection matrix

R′
∞ for the cladding above the layer. The fields reflected back by the cladding are simply

F+
I = R∞F−

D and F−
I = R′

∞F+
D . (4.37)

Equations (4.35)-(4.37) are then solved for the incoming fields, which are found to be

F±
I = D±Q, (4.38)

where

D± = (I − G∓T̃ G±)−1(G∓T̃ G±Q± + G∓Q∓), (4.39)

G− = (I − R∞R̃)−1R∞, G+ = (I − R′
∞R̃)−1R′

∞, and where we have made use of

the fact that for up-down symmetric gratings R̃a = R̃b
def
= R̃ and T̃ a = T̃ b

def
= T̃ .

Equations (4.28), (4.34) and (4.38) allow B to be expressed in the form

B = ZQ, (4.40)

with

Z = (Y−PD− +Y+PD+ +Y fs)Q. (4.41)

Equations (4.29) and (4.40) completely determine the fictitious source coefficients, which

are the solutions of

(Z −H)Q = 0. (4.42)

Suppose that the cylinders of the waveguide layer are aligned parallel to the x-axis,

hence kx and ky are the components of the Bloch vector that are associated with the direc-

tion parallel to the cylinders of the layer and with the grating direction, respectively, as in

Fig. 4.1 (i.e., kx ≡ α0 and ky ≡ β0). When an average of the fields of the entire woodpile

is taken with respect to ky, where ky lies in the first Brillouin zone, the FSS multipole

76



4.2. THEORY CHAPTER 4. FSS METHOD

field expansions for the waveguide layer [Eqs. (4.1) and (4.10)] remain valid (as ke⊥ and

ki⊥ do not depend on β0), except with the averaged coefficients 〈Aj,V
n 〉, 〈Bj,V

n 〉, 〈Cj,V
n 〉

and 〈Qj,V
n 〉 used in place of Aj,V

n , Bj,V
n , Cj,V

n and Qj,V
n , where the averaging operator 〈·〉

is defined as

〈·〉 = d

2π

∫ π
d

−π
d

· dβ0.

The fictitious source coefficients Q0,V
n for the j = 0 cylinder are chosen to be constant

with respect to ky. This constraint, along with the quasi-periodicity requirement Qj,V
n =

Q0,V
n exp(iβ0jd), ensures that all fictitious sources in cylinders j �= 0 disappear as a result

of the averaging procedure, while the source in cylinder j = 0 is unaffected, since

〈Qj,V
n 〉 = Q0,V

n 〈eiβ0jd〉

= Q0,V
n

d

2π

∫ π
d

−π
d

eiβ0jddβ0 (4.43)

=

⎧⎨⎩Q0,V
n , for j = 0 ,

0, for j �= 0 .
(4.44)

It follows that

〈Q〉 = Q,

see Eq. (4.30). Consequently, Q can be used to control the outgoing fields 〈B0,V
n 〉 (or,

equivalently, 〈B〉) emanating from the j = 0 cylinder. Applying the averaging operator

to Eq. (4.29) yields

〈B〉 = 〈HQ〉 = HQ,

where the second equality relies on the fact that the boundary conditions do not depend

on β0, and so H = 〈H〉. Similarly, applying the averaging operator to Eq. (4.40) yields

〈B〉 = 〈ZQ〉 = 〈Z〉Q.

Hence, the choices of Q that produce the outgoing fields 〈B〉 of the defect being mim-

icked are given by the solutions of

〈Z(k, kx)−H(k, kx)〉Q = 0, (4.45)

cf. Eq. (4.42). Evidently, searching for the defect modes of the linear waveguide amounts

to determining the values of k and kx for which Eq. (4.45) has non-trivial solutions.
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In principle, the solutions can be found by locating the zeroes of the determinant of

〈Z −H〉; however, we have found that a more numerically stable method is to locate

the vanishing singular values of this matrix.

4.3 Implementation and Verification

In this section we discuss the practicalities of the FSS method. In addition, we compare

our super-cell formulation against our FSS code, and investigate the rate of convergence

of the FSS method. The most important aspect of any FSS implementation is the discreti-

sation of the integral in Eq. (4.45). For simplicity, we used the trapezoidal rule to carry

out the integration. However, as an artefact of using the trapezoidal rule, fictitious sources

±Q are left in every N unit-cells, where N is the number sub-intervals used for the nu-

merical integration. Thus, a super-cell spanning N cylinders is imposed onto the defect

layer. (This artefact can be avoided by using a different integration rule, e.g., Gaussian

quadrature.) Consequently, N must be large enough to ensure that the amount of coupling

between the fields of adjacent super-cells is negligible. In practice, this is of little impor-

tance because the integration step is relatively fast even for large values of N . When N is

even, the sign of Q is positive, resulting in a defect that is repeated every N cylinders. In

other words, a coupled resonator optical waveguide is modelled (CROW). This behaviour

provides a means for testing the correctness of our implementation because this type of

structure can be modelled directly, albeit much less efficiently, using the super-cell formu-

lation presented in Chapter 3. Using Eqs. (4.24), (4.25) and (4.37), it is straightforward

to demonstrate that the outgoing fields F±
D emanating from the waveguide layer satisfy

(I − E∓E±)F±
D = 0 (4.46)

with

E− = (I − R̃aR′
∞)−1T̃ bR∞,

E+ = (I − R̃bR∞)−1T̃ aR′
∞,

and where R̃a/b and T̃ a/b, which are computed using the super-cell method, are now the

scattering matrices for a grating whose every N th
s cylinder has been perturbed. To find

the modes of this CROW, one searches for values of k and kx for which Eq. (4.46) has

non-trivial solutions (ky = 0 in this case).

Figure 4.3 compares the solutions found using the super-cell method with those found
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using our FSS implementation, which uses the trapezoidal rule. The size of the super-

cell is Ns = 4, and the number of integration intervals is N = 4. (The computational

cost in evaluating R∞ for larger values of Ns is prohibitive.) The parameters of the

cladding are the same as those used in Chapter 3. There is good agreement between

the two methods because, when N = 4, the structure modelled using the FSS method

is identical to a CROW that has a period of four cylinders. Figure 4.3 also shows the

solutions that were found when N = 10 and N = 40 integration intervals are used. Using

N = 10 intervals effectively models a grating super-cell containing 10 cylinders, yet there

is still good agreement with the values obtained for N = 40 intervals. From this it can

be concluded that the field confinement in the grating direction is strong enough for a

super-cell containing 10 cylinders to accurately approximate a linear waveguide. (Recall

that a super-cell comprising 11 cylinders was used in the previous chapter.)

The running time of the FSS method is determined by the cost of computing 〈Z−H〉
in Eq. (4.45), and this cost, in turn, is determined largely by the cost of constructing

R∞ and R′
∞ for each integration point. The overall running time of the FSS method is

therefore linearly proportional to the number of mesh points. This cost can be halved by

making use of the fact that the top cladding is identical to the bottom cladding up to a shift

of d/2 (or more generally by an amount δ) in either the x or y direction, and a reflection

about the plane of the waveguide. This observation leads to the following relationship

between R∞ and R′
∞:

R′
∞ = QR∞Q−1, (4.47)

with Q as in Eq. (2.46) (which is not to be confused with the Q that represents the ficti-

tious sources). The similarity transform simply displaces the rods of the upper cladding

by a distance δ = d/2 in the direction parallel to the defect rod.

Many of the matrices appearing in the preceding theory are sparse (e.g., the bound-

ary condition matrices used to construct H) and so the matrix algebra routines that are

used can be optimised to take advantage of this. Moreover, the matrix H, which encap-

sulates the parameters of the defect, is easily computed, and once 〈Z〉 has been computed

〈Z − H〉Q = 0 can be solved for very little additional cost. Effectively, changing the

parameters of defect incurs almost no computational penalty, making the woodpile FSS

method the only practical method for investigating large regions of the parameter space

of the defect.

The dispersion curves for the linear waveguide are presented in the next section. These

were computed with the FSS method, where the integration step was carried out using

the trapezoidal rule with N = 40 integration intervals, and where the diffraction orders
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Figure 4.3: Dispersion curves for the linear waveguide that were computed using the FSS

method with N = 4, 10 and 40 integration intervals. The radius of the defect rod is

0.5r, where r is the radius of the cladding rods. (Parameters of the cladding are given

in Sec. 4.4.) The frequency at the point A (kx = 2.075/d) is listed in Table 4.1 for

different multipole and plane wave truncation values, and for different values of N . Mode

frequencies computed using Eq. (4.46) with a super-cell containing Ns = 4 cylinders are

shown for comparison with the N = 4 curve for the FSS method. If the trapezoidal rule

is used to carry out the integration (as it is here), then the FSS method is equivalent to the

super-cell method when Ns = N .
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and multipole orders were truncated to pmax = 5 and nmax = 5, respectively. That is,

−pmax ≤ p, q ≤ pmax and −nmax ≤ n ≤ nmax, with n as defined in Eq. (4.1). (These

parameters were discussed in more detail at the end of Chapter 3.) Table 4.1 shows how

the frequency of the mode at point A (kx = 2.075/d) in Fig. 4.3 varies for different

choices of pmax, nmax and N . For pmax = 5, nmax = 5, and N = 40, the error is less

than 1% of the width of the complete bandgap, which spans the normalised frequencies

0.4990 ≤ d/λ ≤ 0.5245. (The structural parameters of the woodpile are given in the

next section.) It can be seen for pmax = 5 and nmax = 5 that the frequency estimate of

the mode converges rapidly with respect the the number of integration intervals N . This

is consistent with the results for the N = 10 and N = 40 curves shown in Fig. 4.3.

Obtaining more accurate frequency estimates for higher values of pmax and nmax would

require using a different nmax for each plane wave order −pmax ≤ p ≤ pmax, and is

therefore impractical. We found that an upper limit of pmax ≈ 6 must be imposed in order

to obtain well resolved dispersion curves in a reasonable amount of time.

It has been observed for 2D FSS implementations that the results produced by Gaus-

sian quadrature and the trapezoidal numerical integration are the same, except possibly

for a difference in the rate at which the two methods converge [27]. A general feature of

Gaussian quadrature is that, for certain functions, highly accurrate estimates of the integral

can be obtained using very few sample points. This is to be compared with the trapezoidal

rule, which typically requires a relatively large number of integration points. Neverthe-

less, we found the trapezoidal rule to be efficient and not limiting in this respect. The

reason for its surprisingly good performance might be due to the fact that the error term

of the trapezoidal rule tends to be much smaller when the integrand is a smooth peridioc

function [111], such as the integrand in Eq. (4.45). Another advantage of the trapezoidal

rule is that the rate of convegence can be improved by choosing the number of integration

points to be N = 2nm, for some integers n and m, and then applying Romberg’s method

to the estimates of 〈Z(k, kx)−H(k, kx)〉 for N = m, 2m, 4m, ..., 2nm. Such a numerical

optimisation would not be possible if Gaussian integration were instead used.

4.4 Results

For the following, the radius and refractive index of each cylinder of the cladding are

r = 0.15d and nc = 2.68 (chalcogenide glass), and the background refractive index is

nb = 1. The inter-layer spacing is h = 0.3002d, so that the cylinders in adjacent layers

are almost touching, and each pair of consecutive layers is offset laterally by a distance
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Table 4.1: Convergence of the (normalised) frequencies d/λ near point A of Fig. 4.3,
with kx = 2.075/d fixed.

d/λ pmax nmax N
0.516643 3 9 80

0.516275 4 9 80

0.516158 5 5 10

0.516160 5 5 20

0.516160 5 5 40

0.516160 5 5 80

0.516160 5 5 160

0.516122 5 7 40

0.516120 5 9 40

0.516115 5 9 80

0.516059 6 7 80

0.516035 7 7 80

d/2 in both the x and y directions with respect to pairs immediately above and below it.

The cladding has a complete bandgap that spans the normalised frequencies 0.4990 ≤
d/λ ≤ 0.5245, and that lies just above the light line knb = kx, with 0 ≤ kx ≤ π/d. Thus,

the confinement of any mode propagating along the waveguide is due to the bandgap. In

all cases, the Brillouin zone (BZ) integration was carried out using the trapezoidal rule

with N = 40 integration intervals.

Figure 4.4 shows how the dispersion curves for the linear waveguide change as the ra-

dius rd of the defect rod is decreased relative to the radius of the cladding rods. For each

value of rd there is a pair of defect modes inside the complete bandgap that become degen-

erate precisely at the edge of the BZ (kxd/π = 1.0). This degeneracy has been observed

before in woodpile waveguides structures [18, 19, 60–62], and can be attributed to the

fact that the waveguide considered here is invariant under the transformation (z → −z),

(x → x + d/2) [106] (‘glide-reflection’ symmetry). The behaviour of the modes for any

given rd is quite different from that of typical waveguiding modes of planar PC waveg-

uides in that one of the two modes displays quartic dispersion. In particular, for rd = 0.5r

there is a region near the edge of the Brillouin zone [from kx ≈ 0.85(π/d) to kx = π/d

– about 15% of the BZ] over which the frequency of the higher branch is almost con-

stant, d/λ ≈ 0.5090, and quite close to the middle of the bandgap. This region meets

the slow-light criterion vx/c � 1, where vx is the group velocity in the direction of the

waveguide. For this region, the speed at which light propagates through the waveguide
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is reduced drastically, and non-linear optical processes, such as third harmonic genera-

tion [14], are enhanced because the light has more time to interact with the waveguide

(especially since chalcogenide glass exhibits a strong non-linear response [40]). (The

group velocity vg
def
= ∇kω(k) of a wave propagating through a lossless weakly dispersive

homogeneous medium corresponds to the energy transport velocity. This notion of group

velocity is also applicable to the propagating Bloch modes of a photonic crystal, and it is

therefore possible to define the group index ng of a Bloch mode as ng = c/vg. The notion

of phase velocity, however, is not easily extended to waves in photonic crystals because

the complex spatial variation of the fields makes it difficult to define the wavefronts sen-

sibly [3].) However, it can be seen that the group velocity dispersion (GVD) ∂(1/vx)/∂ω

diverges when kx � 0.85 and, consequently, it would be difficult to utilise the waveguide

for these values of kx since a pulse travelling through the waveguide would be strongly

dispersed. For rd = 0.5r, the modes near kx ≈ 0.85(π/d) are better suited for slow-light

purposes, since the GVD is finite there and vx is relatively small. By instead choosing

the defect size to be rd = 0.404r the waveguide can be engineered so that it has both

low GVD and low vx over the region 0.85(π/d) � kx ≤ π/d because the dispersion is

approximately linear for these values of kx.

As was for the CROW and linear waveguide examined in the last chapter, decreasing

rd, thereby removing some dielectric, has the effect of increasing the frequency of the

defect modes. Further, the frequency of the quartic mode decreases more rapidly than

that of the quadratic mode as rd increases. Thus, since the frequencies of these two modes

must always be the same at the edge of the BZ, the dispersion curve of the quartic mode

can be made to cross that of the quadratic mode simply by making rd sufficiently large

(specifically, by choosing rd/r � 0.6). We found that defect modes appeared as soon

rd �= r, and that for shallow defects (rd/r � 0.95) the corresponding dispersion curves

are flat and very close to the low-frequency edge of the bandgap (not shown). Note that

for such small perturbations the defect modes necessarily become highly extended and,

thus, it is extremely difficult, if not impossible, to use a super-cell approach to model a

shallow defect, whereas the FSS method is well-suited for the task. (Shallow defects are

best modelled using perturbation theory [112]; however, to our knowledge such methods

haven’t been applied to photonic woodpiles.)

The electric and magnetic energy densities for the point B (kxd/π = 1.0, d/λ ≈
0.5091, rd = 0.5r) of Fig. 4.4 are shown in Fig. 4.5 for the planes x/d = 0.0 and

x/d = 0.25, where x is the direction parallel to the defect rod. For both the lateral and

stacking directions, there is strong localisation of the electric and magnetic fields. Point B
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Figure 4.4: Dispersion curves for the linear waveguide for different values of rd, which

specifies the radius of the defect rod. The radius of the defect is specified relative to the

radius r of the cladding rods. The dispersion curves are only shown for the frequencies

that lie inside the complete bandgap of the cladding (0.4990 ≤ d/λ ≤ 0.5245).
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lies inside the broad flat region of the frequency band for rd = 0.5, and so corresponds to

a slow-light mode. To further investigate this phenomenon, we have computed the energy

flux Sx in the waveguiding direction, where S = Re(E × H∗)/2 is the Poynting vector.

Figures 4.6(a) and 4.6(b) show the flux at x/d = 0.0 and x/d = 0.25, respectively, for the

point B. Much of the energy flow in the forward direction (blue) concentrates in the unit-

cell containing the defect, whereas most of the energy flow in the backward direction (red)

concentrates in an annular region that surrounds the central red lobe. We have verified that

this power distribution does not change greatly as x changes (not shown), although the

magnitude of Sx oscillates fairly uniformly over the woodpile as x increases. Moreover,

Sx assumes positive values as often as it does negative ones, thus the net flux is small,

leading to a low group velocity vx along the waveguide.

Figures 4.5(c) and 4.5(d) show plots of Sx for the point C [d/λ = 0.5105, kx =

0.8(π/d)] of Fig. 4.4. This point lies on the same dispersion curve as point B; however,

unlike point B, point C does not lie inside the slow-light region, and it can be seen that

Sx is largely negative when x/d = 0.25, resulting in a relatively large vx. This time the

flux in the backward direction is concentrated in a large central lobe, that is surrounded by

smaller side lobes of energy flowing in the forward direction. Both points B and C lie on

the quartic dispersion curve for rd = 0.5r. In Fig. 4.5, we have also included plots of Sx

for a point that lies on the quadratic dispersion curve for rd = 0.5r [specifally, for point

D (d/λ = 0.5102, kx = 0.8π/d) of Fig. 4.4]. The energy flux occurs primarily inside the

waveguide layer, where there is considerable power in the side lobes, in addition to the

central lobe.

Of the three modes (points A, B, and C), the slow-light mode (point B) has the smallest

modal volume. The small volume and low group-velocity mean that this mode would

elicit a stronger non-linear response from the chalcogenide defect than the other modes

would. The fields of all three modes possess mirror symmetry about the z-axis. However,

unlike modes A and C, mode B is very nearly four-fold rotationally symmetric about the

defect rod when x = 0.25d. An inspection of the Bloch modes might yield insights into

the origins of the increased symmetry of mode B. While the FSS method does not permit

such an anlaysis, alternative approaches, such as the Bloch mode methods developed by

Brownless et al. [113], might be used to explain the connection between the rotational

symmetry of mode B and the low group-velocity. Such a study is a substantial task and is

beyond the scope of this thesis.

We have also modelled a waveguide that was created by decreasing only the refractive

index nd of a single rod, while leaving the radius of the rod unchanged. The dispersion
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Figure 4.5: Plots of the energy density ε‖E‖2 of the electric field [(a) and (b)], and of

the energy density μ‖H‖2 of the magnetic field [(c) and (d)] at point B (kx = π/d,

d/λ ≈ 0.5091) in Fig. 4.4. The permittiviy is specified by ε(y, z), and the permeability

μ(y, z) is unity. The view looks down the defect rod, the radius of which is rd = 0.5r.

Plots (a) and (c) are for the plane x/d = 0.0, and plots (b) and (d) are for the plane

x/d = 0.25.
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Figure 4.6: Plot of Re(Sx) for the points B [parts (a) and (b)], C [parts (c) and (d)], and

D [parts (e) and (f)] of Fig. 4.4, where Sx is the x component of the Poynting vector. The

view looks down the defect rod, the radius of which is rd = 0.5r. The plots (a), (c) and

(e) are for the plane x/d = 0.0, where x is the direction parallel to the defect rod, and the

plots (b), (d) and (f) are for the plane x/d = 0.25.
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curves for this structure are shown in Fig. 4.7. Decreasing nd, so that nb < nd < nc, has

an effect similar to reducing the radius of the defect, with lower nd resulting in a higher

frequency (both types of defects are ‘acceptor-type’ defects, in that they are created by

reducing the amount of dielectric [62]). Once again, there is a fairly large region of

the BZ over which one of the frequency bands flattens. In particular, the breadth of the

slow-light region is maximised for nd/nc ≈ 0.575. For reasonably small perturbations

(0.90 � nd/nc < 1.0) the defect modes have frequencies very close to the low-frequency

edge of the bandgap, as was the case when rd ≈ r. The degeneracy of the defect modes

at the edge of the BZ (kx = π/d) is again evident because the defect preserves the glide-

reflection symmetry of the waveguide.

nd�nc�0.517

nd�nc�0.575

nd�nc�0.660
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0.520
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kx�Π�d�

d�
Λ

Figure 4.7: Dispersion curves for the linear waveguide for different values of nd, which

specifies the refractive index of the defect rod. The refractive index of the cladding rods

is nc = 2.68 (chalcogenide glass).
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4.5 Discussion

We have generalised the FSS method so that we can model localised linear defects in

woodpiles in a highly efficient manner. Our results suggest that creating a defect by de-

creasing the average refractive index of a single unit-cell, even by as little as 1%, always

results in defect states. Further, the symmetry of the woodpile structure results in waveg-

uiding modes that are always degenerate at the edge of the Brillouin zone. The method

overcomes the performance limitations of the super-cell approach developed in Chapter

3, allowing the parameters of the defect rod to be changed in a continuous manner. It was

found that choosing the radius of the defect to be half that of the cladding rods resulted

in a waveguide having a low group-velocity (evidenced by flat dispersion) over ∼ 15% of

Brillouin zone. In this region, light entering the waveguide is slowed-down dramatically,

leading to a host of compelling applications [114]. Fabricating slow-light waveguides

based on planar PC geometries is challenging because scattering losses due to structural

imperfections appear to scale inversely with group velocity [115, 116]. This is under-

standable because the light has more time to interact with the walls of the PC. For these

geometries, most scattering losses are due to backscattering and out-of-plane scattering,

where in-plane scattering can be mitigated by increasing the number of layers of the pe-

riodic pattern. If a woodpile geometry were used instead, then the complete bandgap of

the woodpile cladding could be used to eliminate out-of-plane scattering, making this a

compelling geometry for slow-light waveguides. So long as there are a sufficient num-

ber of layers, most of the losses in such a woodpile waveguide ought to be the result of

backscattering, although this is an open question.

Another possibility that we have explored is to place fictitious sources in two succes-

sive layers, and then use a double integral during the superposition step, i.e., integrate

with respect to both the kx and ky directions, thereby leaving a single defect rod in each

of the two layers. In principle, the resulting cross-shaped defect would act as an optical

resonator. However, the FSS method does not appear to be applicable in this case because

the multipole basis functions [Jn and Hn in Eqs. (4.1) and (4.10)] depend on α0, and so

after integrating Eqs. (4.1) and (4.10) with respect to α0 there would be no clear choice

of basis functions. It is possible, though, to mimic multiple defects if the defect rods are

parallel; by generalising the techniques reported in [108], a finite set of parallel defects

can be distributed arbitrarily throughout the woodpile.
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4.A Expressions for FSS Boundary Condition Matrix

The matrix N encapsulating the boundary conditions for the fictitious sources [see Eq.

(4.12)] is a 2 by 2 block matrix, where superscripts E and H are used to label the blocks

so that

N =

[
NEE NEH

NHE NHH

]
. (4.48)

Furthermore, each block is diagonal so we may use n to index the elements of a given

block. The label ‘I’ denotes quantities that depend on the properties of the background

region, while ‘II’ denotes quantities that depend on the material properties of the cylinder.

Let r be the radius of the cylinder, and let εj and μj be the permittivity and permeability,

respectively, of region j (i.e., j = I or j = II). If k⊥j is the transverse wavenumber inside

region j, so that k2
⊥j = k2εjμj − α2

p, then the diagonal entries of the blocks are

NEE
n = η3 (II) J2H/Δ, (4.49)

NHH
n = η2 (II) J3H/Δ, (4.50)

NEH
n = η2 (II) [η1 (I)− η1 (II)]H/Δ, (4.51)

and

NHE
n = η3 (II) [η1 (I)− η1 (II)]H/Δ, (4.52)

where η1 (j) = −αpn/
[
(k⊥j)

2 r
]
, η2 (j) = −ikμj/k⊥j , η3 (j) = ikεj/k⊥j ,

Δ = Jn (k⊥Ir)
2 {[η1 (I)− η1 (II)]

2 − J2J3
}
,

Jj = ηj (I)

{
J ′
n (k⊥Ir)

Jn (k⊥Ir)
− ηj (II) J

′
n (k⊥IIr)

ηj (I) Jn (k⊥IIr)

}
and

H = Jn (k⊥Ir)Hn (k⊥IIr)

×
{
H ′

n (k⊥IIr)

Hn (k⊥IIr)
− J ′

n (k⊥IIr)

Jn (k⊥IIr)

}
.
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Chapter 5

Woodpile Surface Modes

5.1 Introduction

The literature relating to the electromagnetic properties of infinitely extended woodpiles

is quite extensive compared to that on the properties of the waves that can be trapped on

the surfaces of woodpiles [53, 57, 71]. These surface modes are important for coupling

to the woodpile from external sources, as well as for the radiation dynamics of sources,

such as quantum dots, placed within the woodpile. In addition, it has been shown that the

control of surface modes can be used to create resonant cavities that have high Q factors,

and it is thought that such cavities could be relevant in the control of surface-plasmon

polaritons [53].

The theory of surface states for periodic media was first considered for electrons in

atomic lattices by Tamm in the 1930s [117], and later by Heine [118]. Perhaps the most

important example of optical surface waves are surface plasmons, which propagate along

metal-dielectric interfaces [119], and which can occupy particularly small volumes. Wood

anomalies [120], whereby a grating diffracts light parallel to the grating axis, and the

propagation of light along periodically-perforated thin sheets [121] are early examples

of optical waves that are confined to a region that is thin with respect to the period of

the patterning. The existence of electromagnetic waves that propagate along an interface

between a dielectric photonic crystal (PC) and a homogeneous dielectric region (usually

air) was first proposed by Meade et al. [122], and has been confirmed experimentally for

both 2D [123] and 3D PCs [53]

To our knowledge, there are three other theoretical studies of surface modes in wood-

pile structures. The first treatment, by Ishizaki and Noda [53], was a numerical study per-

formed to confirm experimental findings, in which the dispersion relation of the surface
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modes were computed, and the propagation of surface modes was able to be suppressed

by incorporating a 2D PC into the top layer of an 8-layer woodpile. This enabled the

design of a high-Q resonant cavity (Q ≈ 9000) on the surface of a woodpile. Ederra et

al. [57] carried out a numerical study on the effect that the rod size of the top layer, as well

as the addition of a quartz film, had on the dispersion relationships of the surface modes,

with the aim of improving the directivity of antennas that use woodpile substrates. This

study also investigated effects relating to the number of layers of a finite stack; however,

the effects of stack size were minimal because the penetration depths of the surface modes

were small relative to the thickness of the woodpiles, whose sizes ranged from 16-24 lay-

ers. Very recently, Su et al. [71] examined the effect that position and orientation of the

surface, as well as index contrast, had on the optical sensing capabilities of woodpiles.

None of those studies considered surface modes that propagate simultaneously along the

top and bottom surfaces of the woodpile (‘double-interface’ modes).

In this chapter, transfer matrix and scattering matrix methods are used to perform

a comprehensive analysis of the surface modes of both semi-infinite woodpiles (i.e., that

have only one surface, see Sec. 5.2) and woodpiles that consist of a finite number of layers

(see Sec. 5.4). In the latter case, the existence of double-interface modes is demonstrated

mathematically, and it is shown numerically that the strength of the coupling between the

fields at the top surface and those at the bottom surface depends greatly on the direction of

propagation. Interactions between such coupled modes are also observed. In particular,

the dispersion curve of a double-interface mode can be intertwined with that of another

double-interface mode. This phenomenon has also been observed in coupled photonic

PC waveguides in hexagonal lattices [113]. We remark that in [57], the high-symmetry

directions of the woodpile are not considered, while in [53] and [71], the band structure

calculations are limited to semi-infinite woodpiles. The results in this chapter indicate that

parameters such as stack-size, parity of the number of layers, and direction of propagation

play an important role in the properties of the surface modes, and could be exploited to

offer more precise control over the surface states of woodpiles.

In addition, the plane wave scattering matrix formulation [26, 88, 124] is used to ob-

tain a basic description of the surface modes of ‘compound’ woodpiles, which are PC-

air-PC arrangements in which the PC regions are woodpiles that may be either finite or

semi-infinite. Specifically, we describe the conditions under which the surface modes are

capable of propagating along two or more interfaces simultaneously (see Sec. 5.5).

Unlike earlier studies on the surface modes of woodpiles [53, 57, 71], the results pre-

sented here were obtained for circular rods, rather than rectangular ones, since our meth-
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ods are most easily applied to circular geometries. However, the shape of the rods is not

significant in this study because we only consider effects that are related to symmetry of

the lattice.

5.2 Surface modes of semi-infinite woodpiles

We begin by deriving a simple analytical description of the modes that propagate along

the surface of a truncated woodpile that extends infinitely in the half-space z < 0, and

whose top layer lies in the plane z = 0. As before, d specifies the grating period. The

woodpile can be regarded as a stack of pairs of orthogonal gratings, so that, for a woodpile

whose layers are spaced apart by a distance h, and whose rods are aligned parallel to

either the x- or y-axis, the primitive lattice vector in the stacking direction is given by

a3 = δxx̂+δyŷ+2hẑ, with δx and δy specifying the relative lateral displacement between

successive pairs of gratings of the woodpile (all distances are expressed in units of d).

The fields impinging on the lower boundary of the lth layer can be expanded in terms

of upward F+
l and downward F−

l plane wave orders [which obey relationships analo-

gous to Eq. (2.40)], as illustrated in Fig. 5.1. The surface modes of the semi-infinite

structure, however, are best determined using Bloch mode field expansions. For a finite

stack comprising n grating pairs, the plane wave fields immediately below the jth pair

can be re-expressed in the Bloch mode basis as [26, 124](
F−

2j

F+
2j

)
= FΛjc− + F′(Λ′)−(n−j)c+, (5.1)

cf. Eq. (44) of [26], where c± are vectors denoting the amplitudes of the Bloch compo-

nents, and where F is the matrix whose columns are the downward Bloch modes (i.e., that

travel into the PC) of the infinite woodpile. Similarly, the columns of F′ are the upward

Bloch modes. The matrices F and F′ effect a change of basis from Bloch modes to plane

waves, and, hence, F and F′ are block matrices of the form

F =

(
F−
F+

)
and F′ =

(
F′

−
F′

+

)
. (5.2)

Following the nomenclature of [26] [see, in particular, Eqs. (40)-(43)], the columns of F

and F′ are the eigenvectors of the transfer matrix T, which relates fields at the top surface

of the unit-cell to those at the bottom surface of the unit-cell, as discussed in Sec. 2.6. That
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Figure 5.1: The phase origins (dotted horizontal lines) of the plane wave fields F± and

Bloch modes c± of a woodpile that comprises 2n pairs. The woodpile extends infinitely

in the x and y directions.

is, the fields immediately below the jth pair (F±
2j) are related to the fields immediately

below (j + 1)th pair (F±
2j+2) according to

T

(
F−

2j

F+
2j

)
=

(
F−

2j+2

F+
2j+2

)
= μ̃

(
F−

2j

F+
2j

)
, (5.3)

for some Bloch factor (eigenvalue) μ̃. The matrices Λ and Λ′ in Eq. (5.1) are, therefore,

diagonal matrices whose diagonal entries are simply the corresponding Bloch factors of

the columns of F and F′, respectively, so that Λ = diag [μ] and Λ′ = diag [μ′], in which

μ = exp(−ik · a3) and μ′ = exp(−ik′ · a3). Here, k = (kx, ky, kz) and k′ = (kx, ky, k
′
z)

denote the Bloch vectors of the corresponding Bloch modes, with kx, ky known in ad-

vance. Furthermore, for propagating Bloch modes |μ| = 1 and |μ′| = 1, while for evanes-

cent modes |μ| < 1 and |μ′| > 1.

In the limit as n → ∞, the second term in Eq. (5.1) vanishes because, when there is
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no bottom surface, upwards traveling Bloch modes can not be generated (i.e., c+ = 0).

Thus, the fields impinging on the surface (F±
0 ) satisfy(

0

F+
0

)
=

(
F−
F+

)
c−, (5.4)

where we have made use of the fact that there is no incoming field incident to the top layer,

i.e., F−
0 = 0. The dispersion curves of the surface modes can, therefore, be obtained by

determining the wavelengths λ for which

(F−)c− = 0 (5.5)

has non-trivial solutions for a given choice of kt = (kx, ky) (the in-plane Bloch vector),

keeping in mind that, for surface modes, one only needs to consider wavelengths that lie

below the light-line [122].

Figures 5.2(a) and 5.2(b) depict the surface of a semi-infinite woodpile, and the cor-

responding first Brillouin zone, respectively. The dispersion curves of the surface modes

[computed using Eq. (5.5)] for a semi-infinite woodpile are shown in Fig. 5.2(c) for

the values of kt that lie along the high-symmetry directions of the Brillouin zone of the

surface. Figure 5.2 also shows the band diagram (patterned region) of the corresponding

infinite woodpile projected onto the surface Brillouin zone. The refractive indices of the

background region and cylinders are nb = 1 and nc = 2.68 (chalcogenide glass), re-

spectively, and the radius of each cylinder is r = 0.15d, with δx = δy = d/2, and with

h = 0.3002d chosen so that the rods of one layer are almost touching those of the adjacent

layers (these values are used throughout this thesis). Note that the Γ−X1 direction is not

equivalent to the Γ − X2 direction and, consequently, the surface modes in the M − X1

direction differ from those in the M − X2 direction. Above the light-line (solid shaded

region), the frequencies of the modes are not quantised; hence, the surface modes appear

to become cutoff as they cross the light-line. Similarly, the surface modes also appear to

terminate abruptly as they leave the bandgap, although in reality the patterned region rep-

resents a continuum of solutions. Figure 5.3 shows the intensity of each field component

of a representative surface mode [kt = (0.54, 1)× π/d, d/λ = 0.522].
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Figure 5.2: (a) Schematic of a semi-infinite woodpile (viewed from above), and (b) the

high-symmetry directions of the first Brillouin zone of the semi-infinite woodpile. (c)

Band diagram for an infinite woodpile. The patterned area indicates the normalized fre-

quencies d/λ for which there are one or more propagating Bloch modes, while the solid

shaded region (blue) denotes frequencies that lie above the light-line. The red (thick)

curves denote the dispersion relationships of the surface modes of the corresponding semi-

infinite woodpile. The fields for the mode at the point A are shown in Fig 5.3.

5.3 A heuristic for locating surface modes

Before discussing finite structures, we describe a simple heuristic that can be used to

locate the surface modes of an arbitrary grating stack consisting of m layers, where m

can be either even or odd. Later this heuristic will be used to relate the surface modes

of finite and compound woodpiles to those of the corresponding semi-infinite woodpile.

The plane wave scattering matrices relating the outgoing plane wave fields F+
0 and F−

m

sourced on the surfaces of an m layer grating stack to the incoming fields F−
0 and F+

m

incident to the top and bottom layers are computed using the stacking recurrences [see

Eq. (2.42)]:

F+
0 = Ra

mF−
0 + T b

mF+
m (5.6)
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Figure 5.3: The intensities of the electric (E) and magnetic (H) field components for the

mode at point A of Fig. 3(c) (d/λ = 0.522, kx = 0.54×π/d, ky = π/d). The dotted lines

indicate the positions of cylinders that run parallel to the y-axis, and that do not intersect

the plane of the plot.

and

F−
m = Rb

mF+
m + T a

mF−
0 , (5.7)

where Ra
m and Rb

m are the reflection matrices for the top and bottom surfaces, respec-

tively, and T a
m and T b

m are the corresponding transmission matrices. (Recall that F±
l de-

note the planewave fields impinging on the bottom boundary of the lth grating of the stack,

with l = 0 and l = m specifying the top and bottom surfaces, respectively. See Fig. 5.1)

The condition for a surface mode is that there is no incoming field, i.e., F−
0 = F+

m = 0.

From Eqs. (5.6) and (5.7), we conclude that surface modes exist precisely when either

of Ra
m or T b

m has a pole that coincides with a pole of either Rb
m or T a

m. In fact, it can

be shown that the poles of all of the these matrices coincide (see Appendix 5.A) and,

thus, one only needs to consider the poles of Ra
m. We reason that if Ra

m has a pole, then

(Ra
m)

−1
is singular, i.e.,

(Ra
m)

−1F = 0, (5.8)
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for some vector F . We will proceed formally, but before doing so we will demonstrate

that Eq. (5.8) is consistent with Eq. (5.5).

A corollary of Eq. (5.8) is that the surface modes of a finite stack resemble the surface

modes of the semi-infinite stack when m is large (assuming that there is periodicity in the

stacking direction), since Ra
m → R∞ as m → ∞, where R∞ is the reflection matrix of

a semi-infinite grating stack. Further, in the limit as m → ∞, Eq. (5.8) is equivalent to

Eq. (5.5) because

R∞ = F+(F−)−1, (5.9)

which follows readily from Eq. (5.1) by setting l = 0 and c+ = 0 (see also [26] and

[124]), and so

(R∞)−1F = F−(F+)
−1F = 0. (5.10)

Since F+ is invertible, it follows that surface modes exist for semi-infinite woodpiles

when F− has non-trivial null vectors, as before. Note that if instead the stack extended

indefinitely in the upwards direction, then we would have derived

(R′
∞)−1F = 0, (5.11)

where

R′
∞ = F′

−(F
′
+)

−1 (5.12)

is the reflection matrix of a semi-infinite stack that extends upwards, i.e., Rb
m → R′

∞ as

m → −∞.

5.4 Surface modes of finite woodpiles

Next, we derive equations that determine the surface modes of a woodpile that consists

of a finite number of layers. Unsurprisingly, the behaviour of the surface modes depends

greatly on the alignment of the rods of the top layer relative to the rods of the bottom layer,

i.e., the behaviour depends on whether the number of layers m is even or odd. In each

case, a general equation that governs the modes is derived, and this equation is then used

to illustrate numerically the main features of the modes. It is then shown that the general

equation leads to a factorisable form that better explains the behaviour of the modes.
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5.4.1 Even number of layers

First, suppose that the number of layers m = 2n is even. In this case, the number of unit-

cells, n, in the stacking direction is an integer, which means that the plane wave fields

immediately below the jth layer of a stack of n grating pairs are still given by Eq. (5.1),

with j = 0 and j = n specifying the top and bottom surfaces of the woodpile, respectively

(see Fig. 5.1). Equation (5.1) can be solved for the Bloch mode field expansions c− and

c+ by using the fact that F−
0 = F+

m = 0 for surface modes. One finds that

c− = Ra(Λ′)−nc+ and c+ = RbΛnc−, (5.13)

where

Ra = −(F−)−1F′
− and Rb = −(F′

+)
−1F+ (5.14)

serve as internal reflection coefficients for the top and bottom surfaces, respectively, and

act directly on the Bloch modes. Solving Eqs. (5.13) for c− gives

[
I −Ra(Λ′)−nRbΛn

]
c− def

= Bc− (5.15)

= 0,

which has non-trivial solutions precisely when there are one or more surface modes.

Figures 5.4(a)-5.4(c) show the dispersion curves [computed using Eq. (5.15)] of the

modes of an m = 8, m = 6 and an m = 4 layer woodpile (blue thin curves), respectively.

For comparison, the dispersion curves for the surface modes of the semi-infinite woodpile

are also shown in Fig. 5.4 (red thick curves), and are the same as those in Fig. 5.2(c).

Three types of surface modes are evident for the finite structure: those that propagate

along the top surface (solid curves), those propagating along the bottom surface (dotted

curves), and double-interface modes (solid curves along the Γ−M direction, which cor-

responds to kx = ky). One can anticipate that for every mode propagating on the top

surface with a certain frequency d/λ and Bloch vector (kx, ky), there must be a corre-

sponding mode on the bottom surface that propagates with the same frequency, but whose

Bloch vector is instead (ky, kx). Note that the rods of the top layers (l = 0) of both the

semi-infinite and finite woodpiles were chosen to lie parallel to the y-axis, which is why

there is a one-to-one correspondence between the red curves and the solid blue curves

(not including the Γ −M direction). For m ≥ 6, the deviation between these two sets of

curves is small, indicating that the fields inside the woodpile decay quickly in the stacking

direction. Observe that, in addition to surface modes, there are solutions that lie in-band
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(i.e., modes whose frequencies lie outside of the directional bandgap). They arise because

in deriving Eq. (5.15) we did not rely on the existence of a bandgap. These modes always

lie below the light-line and, thus, they are woodpile PC slab modes, which, as a result of

total internal reflection, can only propagate within the woodpile region.

Along the Γ−M direction, the presence of the second surface causes the red curve to

‘split’ into a pair of double-interface modes (blue curves), one of which can be classified

as even, and the other of which is odd. This splitting always occurs for this direction when

the number of layers m is even (so long as δx = δy = d/2), and is clearly discernible for

the 4- and 6-layer woodpiles, while for the 8-layer woodpile, the splitting is only appre-

ciable when the modes are in-band. As m increases, the strength of the coupling between

the top and bottom surface decreases (owing to the photonic bandgap) and, hence, the

strength of the splitting decreases, where the splitting strength is defined as the amount

the frequencies of the even and odd modes differ from that of the corresponding mode of

the semi-infinite woodpile. Thus, for any double interface mode, we can conclude from

Fig. 5.4(a) that when m ≥ 8, the fields propagating along the top surface will be, in effect,

decoupled from those propagating along the bottom surface. In general, the field of the

even (odd) mode is not necessarily symmetric (antisymmetric), since the relationship be-

tween the fields on the top surface and those on the bottom surface depends on kt. Figure

5.5 shows the plots of the real and imaginary parts of Ez for the even mode (λ/d = 0.535)

and for the odd mode (λ/d = 0.548) at kt = (0.81, 0.81) × (π/d) for the 6-layer stack.

Note that for this value kt, Ez of the even mode is antisymmetric, while Ez of the odd

mode is symmetric.

Equation (5.15) was previously derived in [125] for 2D PCs (see, in particular, Eq. (6)

of [125]), although the approach used in that study instead relied on impedance matrices.

In the case of 2D square and triangular lattices, the internal reflection matrices and Bloch

factors satisfy Ra = Rb and (Λ′)−1 = sΛ for some phase factor s, and so Eq. (5.15)

can always be factorised, while for woodpiles such relationships do not hold in general. It

will be shown that the existence of such a factorisation implies that the mode propagates

on both the top and bottom surfaces simultaneously (a ‘double-interface’ mode), i.e.,

the average magnitude of the fields along one surface will be comparable to the average

magnitude along the opposing surface, with the fields decaying exponentially on either

side of each surface. The reason why a factorisation of Eq. (5.15) is always possible

for 2D PCs is that the top and bottom surfaces are equivalent (assuming that the 2D PC

is terminated symmetrically) and so, in this case, every surface mode must be a double-

interface mode. However, for finite woodpiles, Eq. (5.15) usually cannot be factorised
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Figure 5.4: Dispersion curves (blue thin curves) for the surface modes an (a) m = 8, (b)

m = 6 and (c) an m = 4 layer woodpile. The surface modes of the corresponding semi-

infinite woodpile are shown for comparison (red thick curves). The solid (dotted) curves

correspond to single-interface modes that propagate along the top (bottom) surface. The

blue curves along the Γ −M direction are double-interface modes, i.e., solutions of Eqs.

(5.18) (‘Even’) and (5.20) (‘Odd’). The strength of the splitting between the even and the

odd double-interface mode of the 8-layer woodpile is not appreciable.
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(a) (b)
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Figure 5.5: Plots of the z-component of the electric field of the even and odd double-

interface modes of a 6-layer woodpile. The even and odd modes correspond to the points

in Fig. 5.4(b) that are labelled ‘Even’ and ‘Odd’, respectively (kx = ky = 0.81π/d). (a)

Re(Ez) and (b) Im(Ez) of the even mode (λ/d = 0.535). (c) Re(Ez) and (d) Im(Ez) of

the odd mode (λ/d = 0.548). For this value of kt = (kx, ky), Ez of the even mode has an

odd field pattern, whereas Ez of the odd mode has an even pattern.

when m is even because, in this case, the top and bottom surfaces are physically distinct

from one another in that the rods of the top layer are orthogonal to those of the bottom

layer. Usually, then, a given surface mode will propagate predominantly along either the

top or bottom surface of the woodpile, and the fields at the opposing surface will be much

weaker.

However, when kx = ky (i.e., along the Γ − M direction of the Brillouin zone), the

surface mode travels along an azimuth that makes a 45◦ angle with the rods of both the

top and bottom surfaces, and so in this case the two surfaces are, in essence, equivalent.

A surface mode propagating along this direction must, therefore, propagate along both

surfaces simultaneously. Accordingly, the multipole field expansions for the scattering

matrices [see Eqs. (3.26) and (3.27)] can be used to prove that, for the Γ −M direction,
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the symmetry relationships

Ra = Rb and (Λ′)−1 = sΛ (5.16)

hold for woodpiles when δx = δy = d/2, with s = exp(−ikxd)exp(−ikyd). The proofs

of these relationships are given in Appendix 5.B. Equation (5.15) then becomes, after

factorising,

(I + sn/2RaΛn)(I − sn/2RaΛn)c− = 0, (5.17)

which implies that either

(I − sn/2RaΛn)c− = 0, (5.18)

with

c− = sn/2c+, (5.19)

or

(I + sn/2RaΛn)c− = 0, (5.20)

with

c− = −sn/2c+. (5.21)

For convenience, we refer to the modes that satisfy Eqs. (5.19) and (5.21) as even

modes and odd modes, respectively, despite the appearance of the phase factor sn/2, which

depends on both kx and the number of grating pairs. Such a partitioning of the double-

interface modes is only possible because of the high structural symmetry along the Γ−M

direction. Our choice of which solution is even and which is odd is somewhat arbitrary,

since the phase factor sn/2 depends on both kx and the number of grating pairs. However,

when sn/2 = 1 (e.g., at the M point of the Brillouin zone, that is, at kx = ky = π/d), Eqs.

(5.19) and (5.21) reduce to c− = ±c+, which are the usual notions of even and odd parity

in that the fields of the even mode are in phase at the top and bottom surfaces, while the

fields of the odd mode are out of phase by an amount π at the top and bottom surfaces.

An alternative formulation for the surface modes of a woodpile (m even) can be de-

rived by solving Eq. (5.1) for the outgoing fields F+
0 and F−

m at the surfaces. One finds

that

(Ra
m)

−1F+
0 = 0, (5.22)
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and

(T a
m)

−1F−
m = 0, (5.23)

where the reflection and transmission matrices, Ra
m and T a

m [see Eqs. (5.6) and (5.7)]

are given by

Ra
m = F′

+

[−Rb + (Λ′)−nRbΛn
]
B−1(F−)−1 (5.24)

and

T a
m = F−

[
I−RaRb

]
ΛnB−1(F−)−1, (5.25)

with B as in Eq. (5.15). Equations (5.24) and (5.25), which follow immediately from

Eqs. (47) and (48) of [26], are the forms that the Airy formulae [98] assume in PC

slabs. The post-factor (F−)−1 converts downward plane wave fields into the Bloch basis,

and the pre-factors F′
+ and F− convert the result back into upward and downward plane

wave fields, respectively. Equation (5.22) is simply the heuristic described earlier [see

Eq. (5.8)]. In addition, it can be seen that the poles of Ra
m and T a

m coincide with the

zeroes of B [cf. Eq. (5.15)], and, since Ra
m and T a

m can be inverted analytically, either

of Eqs. (5.22) and (5.23) is a sufficient condition for the existence of a surface mode.

Similarly, by making the substitution j → −(n − j′) in Eq. (5.1), so that j′ = 0 and

j′ = n correspond, respectively, to the bottom and top surfaces, it can be shown that the

surface modes also coincide with the poles of Rb
m and T b

m. We have verified numerically

that the zeroes of Eq. (5.22) are the same as the zeroes of Eqs. (5.18) and (5.20), and are

also the same as those of Eq. (5.15).

We conclude that, for kx = ky, the modes of a finite stack that comprises m = 2n

layers appear as pairs of even and odd double-interface modes that can be regarded as

a ‘splitting’ of a single mode of the corresponding semi-infinite stack into two distinct

modes, with the strength of the splitting increasing as the number of layers decreases.

5.4.2 Odd number of layers

When m is odd, the top surface of the woodpile is truncated halfway through a stacking

unit, making it difficult to express the fields as Bloch mode expansions. In this case, we

instead formulate the problem entirely in the plane wave basis, and regard the woodpile

as two stacks, each consisting of n layers, separated by a single layer, as illustrated in Fig.

5.6. Further, for this section we impose the constraint δx = δy = d/2, which results in

a highly symmetrical woodpile that is invariant under the glide-reflection transformation
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Figure 5.6: The phase origins (dotted horizontal lines) of the plane wave fields incident

to the top surface (F±
0 ), bottom surface (F±

3 ), and the middle layer (F±
1 and F±

2 ) of a

2n+ 1 layer woodpile.

(y → y + d/2), (z → −z), where the middle layer is taken to lie along z = 0, and which

ensures the existence of double-interface modes.

We denote the plane wave fields above and below the middle layer by F±
1 and F±

2 ,

respectively, and denote the fields at the surfaces by F±
0 (top) and F±

3 (bottom). The

outgoing fields incident to the middle layer satisfy relationships analogous to Eqs. (5.6)

and (5.7), specifically:

F+
1 = RF−

1 + T F+
2 (5.26)

and

F−
2 = RF+

2 + T F−
1 , (5.27)

in which R and T are plane wave scattering matrices for the middle layer (only a single

reflection and transmission matrix is required because the layer is up-down symmetric).

Similarly, the incoming fields incident to the middle layer satisfy:

F−
1 = Rb

nF+
1 + T a

nF−
0 (5.28)

and

F+
2 = R′a

nF−
2 + T ′b

nF+
3 . (5.29)
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Here, Rb
n (T a

n) is the reflection (transmission) matrix for the bottom (top) surface of the

n-layer stack above the middle layer, and R′a
n (T ′b

n ) is the reflection (transmission) matrix

for the top (bottom) surface of the stack below the middle layer. Since the entire structure

possesses glide-reflection symmetry (discussed below), the scattering matrices of the two

‘half-stacks’ are related via a similarity transform:

R′a
n = QyRb

nQy and T ′b
n = QyT a

nQy, (5.30)

where the similarity transform shifts the cylinders by an amount d/2 along the positive y-

axis, and where Qy is a diagonal matrix such that Q−1
y = Qy [see Appendix 5.C]. Putting

F−
0 = F+

3 = 0, and then solving Eqs. (5.26)-(5.30) for the outgoing fields F+
1 and F−

2

gives

F+
1 = D12F−

2 (5.31)

and

F−
2 = D21F+

1 , (5.32)

with

D12 = (I−RRb
n)

−1T QyRb
nQy (5.33)

and

D21 = (I−RQyRb
nQy)

−1T Rb
n. (5.34)

Equations (5.31)-(5.34) determine F+
1 and F−

2 .

The dispersion curves for the surface modes of a 9-, 7- and 5-layer woodpile are

shown in Figs. 5.7(a)-5.7(c), respectively (blue/dark curves), along with the dispersion

curves for the surface modes of the corresponding semi-infinite stack (red/thick curves).

Unlike the m even case, every blue curve in Fig. 5.7 corresponds to a double-interface

mode, since the top and bottom surfaces are essentially equivalent. The rods of both

surfaces of the finite woodpile were taken to lie parallel to the y-axis, i.e., parallel to the

rods of the surface of the semi-infinite woodpile, thus, from the results of the Sec. 5.4.1,

we can expect that the presence of a second surface will cause each red curve in Fig. 5.7

to ‘split’ into two new modes (blue curves), one of which will be quasi-even, and the other

of which will be quasi-odd. This is evident in the X2 − M direction (kx = π/d) for the

9- and 5-layer woodpiles [Figs. 5.7(a) and 5.7(c)]. However, along the M− X1 direction

(i.e., when ky = π/d), the quasi-even and quasi-odd modes correspond to degenerate

symmetric and antisymmetric modes. This is because the symmetric and antisymmetric

modes of any photonic crystal that is invariant under the glide-reflection transformation
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(y → y+ d/2), (z → −z), such as the 9- and 5-layer woodpiles considered here, become

degenerate when ky = π/d [106]. Similarly, if the ‘glide-direction’ is parallel to the

x-axis, as happens for the 7-layer woodpile, then the modes instead become degenerate

when kx = π/d (i.e., along the X2 −M direction), as can be seen in Fig. 5.7(b).

These degenerate modes are very similar in frequency to the corresponding modes of

the semi-infinite woodpile. This is quite remarkable because the blue curves correspond

to double-interface modes, while the red curves are single-interface modes. The similarity

in frequency occurs because, for the degenerate modes, the coupling between the fields at

the top surface and the fields at the bottom surface is particularly weak (the reasons for this

are discussed in more detail in Section 5.4.3). Conversely, when there is no degeneracy,

the difference between the blue curves and the red curves is sizeable because, in this case,

the interaction between the mode on the top surface and the mode on the bottom surface

is much stronger than for the degenerate double-interface modes. The splitting in the

Γ − M direction only becomes appreciable when m ≤ 7, and is markedly weaker than

the splitting in the other directions (not including the degenerate modes), suggesting that

the strength of the field confinement in the z-direction is stronger for modes for which

kx = ky.

In general, the non-degenerate quasi-even and quasi-odd modes exhibit a stronger

deviation from the red curves than do the single-interface modes of the m-even woodpiles

because the mode on the top surface can couple to the mode on the bottom surface. When

m is odd, the strength of the splitting in the Γ − M direction is weaker than when m

is even, as can be seen in the dispersion curves for the 5- and 6-layer woodpiles [Figs.

5.7(c) and 5.4(b)]. Thus, the coupling strength between the field at the top surface and

the field at the bottom surface depends not only on the number of layers, but also on the

orientation of the rods of the top surface relative to those of the bottom surface. As was

for the m-even case, modes that lie below the light-line but that do not lie inside a bandgap

correspond to woodpile PC slab modes.

Figure 5.8 shows the plots of the real and imaginary parts of Ez for the quasi-even

mode (λ/d = 0.512) and for the quasi-odd mode (λ/d = 0.519) at kt = (1.0, 0.608) ×
(π/d) for the 9-layer stack. Along the x/d = 0.0 plane, the fields of the quasi-even mode

have ‘TE-like’ polarisation (i.e., the dominant field components are the Hx, Ey and Ez

components), and, while the Ey component has a symmetric field distribution, the Hx and

Ez components have antisymmetric field distributions. Conversely, along the x/d = 0.5

plane, i.e., halfway through the unit-cell, the quasi-even mode instead has ‘TM-like’ po-

larisation (i.e., the dominant field components are the Ex, Hy and Hz components), with
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Figure 5.7: The dispersion curves (blue/dark) for the surface modes of an (a) m = 9, (b)

m = 7 and (c) an m = 5 layer woodpile. The surface modes of the semi-infinite woodpile

are also shown (red/thick). All surface modes of the finite woodpile are double-interface

modes. The fields at the points labelled E (quasi-even) and O (quasi-odd) on the curves

for the 9-layer woodpile are shown in Fig. 5.8.
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the Ex and Hz components having symmetric patterns, and the Hy component having

an antisymmetric pattern. As x/d increases, the fields of the quasi-even mode alternate

smoothly between TE-like and TM-like polarisation (not shown). The polarisation pat-

tern of the quasi-odd mode is the same as that of the quasi-even mode, except that each

component of the quasi-odd mode is opposite in parity to the corresponding component

of the quasi-even mode.

It can be anticipated from the results of the previous section that the mode splitting

observed in Fig. 5.7 implies that Eqs. (5.31) and (5.32) can be expressed as a factorisation.

By making use of the fact that

R = QyRQy and T = QyT Qy, (5.35)

(the middle layer is invariant under translations in the y-direction), one can express Equa-

tion (5.31) in the form

F+
1 = QyD21QyF−

2 , (5.36)

which, along with Eq. (5.32), allows F+
1 to be expressed as the solutions of

(I+QyD21)(I−QyD21)F+
1 = 0. (5.37)

Equation (5.37) admits two types of solutions, namely the solutions of

(I− σQyD21)F+
1 = 0, (5.38)

with either σ = 1, which we refer to as the ‘quasi-even’ solution, or σ = −1 (‘quasi-odd’).

It follows that F+
1 = σQyF−

2 , with the fields at the surfaces given by F+
0 = T b

nF+
1

and F−
3 = T ′a

nF−
2 , where T b

n is the transmission matrix for the bottom surface of the

sub-stack comprising the first n-layers, and T ′a
n is the transmission matrix for the top

surface of the sub-stack comprising the last n-layers. Since T ′a
n = QyT b

nQy, we have

the following relationship between the fields on either surface:

F+
0 = σQyF−

3 . (5.39)

The action of Qy on a field can be understood by expressing Qy in the form Qy = s−1
y Qy,

with Qy = (syQy) and sy = exp(ikyδy). The operator Qy simply shifts the phases of the

fields by an amount δy in the y-direction, thus, Eq. (5.39) states that the surface modes

concentrate equally at the top and bottom surfaces. Unlike the factorisation for the m
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(a) (b)

(c) (d)

Figure 5.8: Plots of the z-component of the electric field of the quasi-even and quasi-

odd double-interface mode of a 9-layer woodpile. (a) Re(Ez) and (b) Im(Ez) of the

quasi-even mode (λ/d = 0.512). (c) Re(Ez) and (d) Im(Ez) of the quasi-odd mode

(λ/d = 0.519). The quasi-even and quasi-odd mode correspond to point E and point O of

Fig. 8(a), respectively (kx = π/d, ky = 0.608π/d).
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even case, the factorisation given by Eq. (5.37) is possible at any point of the Brillouin

zone when m is odd (so long as δx = δy = d/2). In short, under these conditions, the

surface modes are always double-interface modes because the top and bottom surfaces

are equivalent up to a shift by d/2 in the y-direction.

We have verified numerically that Eq. (5.38) is equivalent to finding the poles of

Ra
2n+1 [see Eq. (5.8)], where Ra

2n+1 is the reflection matrix that is associated with the

top surface of the woodpile. A practical limitation of Eq. (5.38) is that, as a result of the

matrix product T Rb
n in the definition of D21, spurious numerical solutions appear when

either of T or Rb
n has a pole. We have found that this behaviour can be avoided by instead

determining the poles of the matrix Ra
2n+1 [this matrix can be computed iteratively using

Eqs. (2.42)].

5.4.3 Interactions between double-interface modes

We have found that when the parities of two double-interface modes are the same, the

dispersion curves of the two modes do not cross one another. Instead, an anti-crossing ap-

pears where a crossing point would be expected. However, almost all of the anti-crossings

lie outside of the bandgap, since there are far more waveguiding modes (not shown in Figs.

5.4 and 5.7) than there are surface modes. These anti-crossings are analogous to those that

occur between the lower- and higher-order modes of, e.g., PC waveguides [126], and of

coupled PC waveguides [113], and they arise because the parity of each of the two modes

is such that the two modes are able to couple to one another [126]. In instances where

the strength of a splitting is sufficiently weak, the dispersion curve of the even mode will

be intertwined with that of the corresponding odd mode. An example of this behaviour is

shown in Fig. 5.9. The thick red curve corresponds to the (single-interface) surface mode

of the semi-infinite woodpile. When the semi-infinite stack is truncated to give an 8-layer

woodpile, the red curve ‘splits’ into two modes (thin blue curves), one even and the other

odd, both of which begin to oscillate about the red curve as the Bloch-vector moves from

the M point to the Γ point of the Brillouin zone (i.e., as kx = ky decreases). Further, the

crossing points of the blue curves coincide with the red curve. This behaviour is charac-

teristic of the modes of hexagonal coupled photonic crystal waveguides (CPCWs) [113].

That CPCW modes and double-interface modes behave similarly is not surprising since,

in both cases, the fields are confined to narrow parallel channels. In the case of CPCWs,

the channels are embedded inside a PC, and the fields decay on either side of each channel

as a result of the photonic bandgap of the PC. For the double-interface modes considered

in this chapter, the fields are bound to the surfaces because both the PC and free-space
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regions lack propagating states.
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Figure 5.9: The ‘braiding’ between the dispersion curves of the even and the odd double-

interface mode of the 8-layer woodpile (thin blue curves). The surface mode of the cor-

responding semi-infinite woodpile is also shown (thick red curves). The in-plane Bloch

vector moves along the Γ −M direction, i.e., 0 < kx ≤ π/d with ky = kx. The fields at

the point labelled A on the curve for the semi-infinite structure are shown in Fig. 5.10.

The intuitive explanation for the intertwining of the modes of CPCWs is that, for

certain values of kx, the coupling between the modes of the two waveguides is particularly

weak because the position of the second waveguide coincides with a nodal line of the

mode of the first waveguide [113]. When this happens, the frequencies of the even and

odd mode of the CPCW become degenerate, and are near that of the corresponding mode

of the constituent waveguides. This can be seen in Fig. 5.10, which shows plots of the

components of the electric field for the semi-infinite structure for the crossing point A

[d/λ = 0.544 and kt = (0.819, 0.819) × π/d] in Fig. 5.9. In the plots for both the Ex

and Ey components, there is a pronounced node that runs parallel to the 9th layer. This

explains why the two double-interface modes of the 8-layer structure become degenerate

for this value of kx; each of the surfaces coincides with a nodal line of the corresponding

mode of the semi-infinite woodpile, and, thus, the fields at the top surface do not couple

strongly to the fields at the bottom surface. It has been proven that these nodal lines appear

in hexagonal CPCWs because the two dominant evanescent Bloch modes of the PC that

surrounds the waveguide do not decay monotonically, and so they will beat with one

another [113]. Our results suggest that this phenomenon persists when each waveguide is
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replaced with a surface.
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Figure 5.10: The components of the electric field for a semi-infinite woodpile. The fields

are for the point labeled A (d/λ = 0.544, kx = ky = 0.819π/d) on the red curve of

Fig. 5.9. For both the Ex and Ey components, a nodal line coincides with the 9th layer

(green arrows). Truncating the woodpile along the 9th layer, thereby creating an 8-layer

woodpile, would cause both top and bottom surfaces to lie along such a node. Hence, for

this value of kx, the fields at the top surface are weakly coupled to those at the bottom

surface of the 8-layer structure.

5.5 Many-interface modes of compound woodpiles

In this section we consider the surface modes of composite structures consisting of two

woodpiles that are separated by a distance Δ along the stacking (z) direction (see Fig.

5.11). Specifically, we are interested in the surface modes that travel along multiple sur-

faces at once. The approach used here is similar to that used in earlier work on 2D coupled

PC waveguides [113,127], except that here we are only concerned with modes that lie be-

low the light-line. The general formulation for the surface modes is described in Section

5.5.1. A factorised form is then used to explain the behaviour of the ‘many-interface’

modes of both infinite (Sec. 5.5.2) and finite (Sec. 5.5.3) compound woodpiles.
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5.5.1 General Formulation

The problem is most easily formulated using plane wave field expansions. The plane

wave fields incident to the interior surfaces satisfy relationships analogous to Eqs. (5.26)

and (5.27), i.e.,

F− = RnPF+ and F+ = R′
nPF−, (5.40)

where F± are the outgoing fields sourced on the interior surfaces, and Rn and R′
n are the

reflection matrices for the top and the bottom interior surface, respectively (see Fig. 5.11).

Note that unlike Eqs. (5.26) and (5.27), Eq. (5.40) does not contain a term describing the

transmission through the PC regions as there are no external sources impinging on the

exterior surfaces (F−
a = F+

b = 0). The block-diagonal matrix

P =

[
P 0

0 P

]
, (5.41)

in which P = diag[iγsΔ] simply shifts the phase origin of the fields by a distance Δ

along the z-direction, with γs specifying the propagation constant in this direction for

each woodpile diffraction order [see Eq. (2.21)]. The interior fields F− are then the

solutions of

(I−RnPR′
nP)F− = 0. (5.42)

5.5.2 Infinite number of layers

Initially, suppose that the top and bottom half-stacks extend infinitely in the positive and

negative z-directions, respectively, and that the structure is symmetric about the plane

z = 0 (as in Fig. 5.11), i.e., Rn = R′
n = R∞, where R∞ is given by Eq. (5.9). The

dispersion curves of the surface modes of this structure are shown by the dark blue curves

in Fig. 5.12, where the separation distance is Δ = 4h (the parameters of each of the PC

regions are as before). For comparison, the dispersion curves for the surface modes of

one of the semi-infinite half-stacks (thick red curves) are also shown in Fig. 5.12, and are

the same as those in Fig. 5.2(c). The general behaviour of the modes can be understood

by looking at the asymptotic behaviour of P . Rearranging Eq. (5.40) gives

R−1
n F− = PF+. (5.43)
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Figure 5.11: The phase origins (dotted horizontal lines) of the plane wave fields incident

to the exterior (F±
a/b) and interior (F±) surfaces of a compound woodpile comprising two

n-layer woodpiles that are separated by a distance Δ. A reflection matrix is associated

with each of the interior surfaces (Rn and R′
n). Field propagation between the interior

surfaces is described by the matrix P .
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Figure 5.12: Dispersion curves (thin blue curves) for the surface-modes of a compound

woodpile (i.e., a PC-air-PC configuration) that has mirror symmetry about the z = 0
plane. The PC regions are semi-infinite, so that there are no exterior surfaces. Thus,

every mode is a double-interface mode. The surface modes of one of the semi-infinite PC

regions are also shown (thick red curves). The second PC causes the modes of the first

PC to ‘split’ into two modes, one of which is even, the other of which is odd.

Equation (5.43) is the same form as the heuristic described earlier for locating the sur-

face modes of individual woodpiles [see Eq. (5.8)], except for the appearance of the term

PF+, which acts as a perturbation term. For example, below the light-line, all of the

propagation constants γs are imaginary (the fields decay exponentially in the region sep-

arating the two woodpiles), thus P → 0 as Δ → ∞, and so the right-hand side of Eq.

(5.43) vanishes. In this limit, the amount of overlap between the exponential tail of the

field on one surface and the tail of the field at the opposing surface is negligible, and so

the surface modes of the aggregate structure become indistinguishable from those of the

constituent half-stacks. Similarly, for modes below the light-line, P → 0 as either d/λ

or kt moves further away from the light-line, because |Im(γs)| increases in this case.

Furthermore, below the light-line, each blue curve in Fig. 5.12 corresponds to a

double-interface mode. In the previous section, it was shown that the existence of double-

interface modes (or, more generally, many-interface modes) depends on the presence of

certain symmetries. Since there is mirror symmetry about the plane z = 0, Rn = R′
n,
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and, consequently, Eq. (5.42) factorises, implying that

(I− σRnP)F− = 0, (5.44)

where σ = ±1, and, thus,

F− = σF+, (5.45)

with σ = 1 corresponding to the even solution, and σ = −1 corresponding to the odd

solution.

Note that Eq. (5.42) can also be factorised when the top half-stack is identical to the

bottom half-stack, up to a translation along the z-axis, and up to a shift of d/2 along

either of the x- and y-axes (when n is even, the constraint kx = ky must also be imposed).

Under these conditions, the matrix Rn obeys a similarity transform that is analogous to

Eq. (5.30), and that guarantees a factorisable form of Eq. (5.42) (also see Appendix

5.C). However, for argument’s sake, we limit our discussion to compound woodpiles that

have mirror symmetry about the z = 0 plane. It follows immediately from Eq. (5.45)

that in the limit as n → ∞, the surface modes are always double-interface modes that

propagate along both of the interior surfaces. As was for the single-interface modes of the

semi-infinite woodpile, the surface modes appear to become cutoff when they leave the

bandgap (this happens because the frequencies of the propagating modes of the cladding

regions form a continuum). There are also modes in Fig. 5.12 that lie above the light-line

while remaining inside the bandgap of the PC. These modes are waveguide modes; the

fields propagate inside the space separating the two woodpiles, but decay exponentially

inside the semi-infinite PC regions. In this case, the fields are not confined to the surfaces.

In short, the introduction of the second woodpile causes each mode of the first wood-

pile to ‘split’ into an even mode and an odd mode (unless they are cut off by the light-line

or by the edge of the bandgap), and that, in the case of surface modes, the strength of

this splitting increases, i.e., the coupling between the two surfaces becomes stronger, as

Δ decreases, and also as d/λ and kt move closer to the light-line.

5.5.3 Finite number of layers

When the number of layers, n, of each of the constituent half-stacks is finite, the outgoing

fields F+
a and F−

b emanating from the exterior surfaces are related according to

F+
a = T nPF+ = σT nPF− = σF−

b , (5.46)
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where T n is the transmission matrix for the interior surfaces. It follows immediately

from Eq. (5.45) and (5.46) that the surface modes are always either double-interface or

quadruple-interface modes. In the former case, the modes propagate either along both of

the interior surfaces or along both of the exterior surfaces, while in the latter case, the

modes travel along all four surfaces simultaneously.

The dispersion curves for the surface modes of a compound woodpile in a 4 + 4 layer

configuration, with Δ = 2h (i.e., two four layer woodpiles separated by a distance of

2h) are plotted (red solid curves) in Fig. 5.13. The black dotted curves are the modes

of the constituent 4-layer woodpile, and are the same as those in Fig. 5.4(c). The rods

of the interior surfaces of the compound structure were chosen to lie parallel to the rods

of the top surface of the 4-layer woodpile. Thus, the single-interface modes that prop-

agate along the top surface of the original woodpile (thick dotted curves, excluding the

curves for the Γ−M direction) split into a pair of double-interface modes that propagate

along the two interior surfaces (solid red curves). Similarly, the single-interface modes

that propagate along the bottom surface of the 4-layer woodpile (thin dotted curves) split

into a pair of double-interface modes that propagate along the two exterior surfaces (thin

solid curves). Recall that along the Γ − M direction the 4-layer stack supports a pair

of double-interface modes. The presence of the second (mirror-image) woodpile causes

each of these modes to ‘split’ into two quadruple-interface modes (red solid curves). The

quadruple-interface modes can be viewed as secondary splittings because each of the orig-

inal double-interface modes is itself a (primary) splitting; hence, the quadruple-interface

modes appear as groups of four modes. From the results of Sections 5.4.1 and 5.4.2, we

can conclude that if the constituent woodpiles each have an odd number of layers, then

every surface mode of the aggregate structure will be the result of a secondary splitting

(i.e., a quadruple-interface mode). Unlike the primary splittings, the secondary splittings

will not necessarily be degenerate, since, unlike each of the two sub-stacks, the com-

pound woodpile does not possess glide-reflection symmetry. If, instead, each of the two

sub-stacks consists of an even number of layers, then only the modes whose Bloch vector

lies along the Γ−M direction will be the result of secondary splittings.

As can be seen in Fig. 5.13, the strength of the splitting for the surface modes that

propagate along the interior surfaces is stronger than that for the modes propagating along

the exterior surfaces. If the field is concentrated on the exterior surfaces, then the fields

F± on the inside surfaces are ‘small’, and so the perturbation term PF+ on the right-

hand side of Eq. (5.43) is also small. Conversely, if the field is concentrated on the interior

surfaces, then the perturbation term is relatively large. This is understandable because, on
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Figure 5.13: Modes of the 4 + 4 layer compound woodpile (red curves), with Δ = 2h,

and the modes of the constituent 4-layer woodpile (blue curves). Along the Γ − M di-

rection, the modes of the 4-layer woodpile are double-interface modes, and the modes

of the compound woodpile are quadruple-interface modes. For the other directions, the

modes of the 4-layer structure are single-interface modes that propagate along either the

top surface (thick curves) or the bottom surface (thin curves), while the modes of the

compound woodpile are double-interface modes that propagate along the interior surfaces

(thick curves) or along the exterior surfaces (thin curves).
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average, the outer surfaces are further away from all of the other surfaces than the inner

surfaces are. Thus, modes bound to the outer surfaces more closely resemble the modes

of the 4-layer woodpile than the modes bound to the inner surfaces do. This effect is

enhanced by the fact that, for the structural parameters that we have used, the fields inside

the cavity decay more slowly than the fields inside the PC regions.

Unlike the surface modes of the infinite compound woodpile (see Fig. 5.12), the sur-

face modes of the truncated compound woodpile do not cross the light-line, i.e., they do

not become ideal waveguide modes. This is because, above the light-line, some of the

light that leaks through the PC regions of the truncated structure will couple to radia-

tion modes of the free-space regions. Any such waveguide mode would thus be lossy,

and so would have a complex frequency. Another conspicuous difference between the

surface modes of the finite and infinite structures is that the surface modes of the trun-

cated compound woodpile do not become cutoff as they cross the edge of the bandgap,

since the propagating modes of the cladding region are discrete when n is finite. We

have also observed anti-crossings between the even and odd quadruple-interface modes,

see Fig. 5.14. These anti-crossings are analogous to those that occur between the double-

interface modes of regular woodpiles (see Sec. 5.4.3), and result from the symmetry of the

compound woodpile. Plots of Re(Ez) and Im(Ez) for a representative even quadruple-

interface mode, and for the corresponding odd mode are shown in Fig. 5.15.

5.6 Discussion

The control of electromagnetic waves on the surfaces of photonic woodpiles is important

for a number of applications. For example, woodpiles can be used as a substrate to reduce

optical losses because these structures can possess complete bandgaps; it has already been

shown that, in the absence of surface modes, the properties of cavities on the surface of

woodpiles differ from those of 2D PC cavities [53]. The results presented in this chapter

indicate that the behaviour of the double-interface modes of finite woodpiles is more com-

plicated than that of the double-interface modes of finite 2D PCs; the number of layers m,

the parity of m, and direction all play important roles. We showed that coupling between

the top and bottom surfaces can still occur when the number of layers is even, although in

this case the coupled mode can only propagate along the high-symmetry directions of the

surface. This property might be exploited to create, e.g., novel planar emitters that can

act as either single- or double-sided emitters, depending on the orientation of the surfaces

in relation to an external source. When m is odd, all surface modes are double-interface
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Figure 5.14: The two even (thin blue curves) and the two odd (thick red curves) quadruple-

interface modes of an 8 + 8 layer compound woodpile (Δ = 0.2d) that result when the

two double-interface modes of the 8-layer half-stack (dotted black curves) each ‘split’

into two modes. At the point labelled A, an anti-crossing occurs between the two even

quadruple-interface modes. Similarly, at the point labelled B, an anti-crossing occurs

between the two odd quadruple-interface modes. The Bloch vector lies along the Γ −M
direction (kx = ky).
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Figure 5.15: Plots of the z-component of the electric field of the even and odd quadruple-

interface modes of an 8 + 8 layer compound woodpile (kx = ky = 0.752π/d), with

Δ = 8h. (a) Re(Ez) and (b) Im(Ez) of the even mode (λ/d = 0.524). (c) Re(Ez) and

(d) Im(Ez) of the odd mode (λ/d = 0.517). The fields concentrate more strongly at the

interior surfaces than at the exterior surfaces.
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modes, and so if one is trying to excite single-interface modes only, then an even num-

ber of layers should be used, and care should be taken in order to avoid the excitation of

modes in the Γ−M direction.

In general, increasing the number of layers decreases the coupling strength between

the top and bottom surfaces. However, if m is odd, then there are specific directions of

the Brillouin zone for which the even and odd double-interface modes become degenerate

and, hence, for these directions the coupling strength is largely insensitive to changes in

m. The degeneracy in the double-interface modes at the edge of the Brillouin zone is

also evident in finite 2D PCs [125], although in the case of finite 2D PCs the edge of the

Brillouin zone represents just a single Bloch vector.

Lastly, double-interface modes of PCs are similar to the modes of hexagonal coupled

PC waveguides in some respects. Most notably, the dispersion curve of an even mode can

be intertwined with that of the corresponding odd mode, and this commonality is likely

to be due to the similar way in which the dominant evanescent Bloch modes of each of

these structures interact with the boundary of the surface or waveguide.

5.A Simultaneous Poles of the Reflection and Transmis-
sion Matrices

The heuristic given by Eq. (5.8) relies on the fact that the poles of the matrices Ra
m,

T a
m, Rb

m and T b
m that appear in Eqs. (5.6) and (5.7) all coincide. This property follows

immediately from the Bloch mode expressions for R and T when m is even, as discussed

in Section 5.4.1 [see Eqs. (5.22) and (5.23)]. If m is odd, or, more generally, if the layers

are not stacked in a periodic sequence, then the plane wave scattering matrices for the

woodpile must instead be computed by using the recurrence relationships given by Eqs.

2.42 (repeated here for convenience):

Ra
m = Ra + T bRa

m−1

(
I−RbRa

m−1

)−1 T a, (5.47)

T a
m = T a

m−1

(
I−RbRa

m−1

)−1 T a, (5.48)

Rb
m = Rb

m−1 + T a
m−1Rb

(
I−Ra

m−1Rb
)−1 T b

m−1, (5.49)

T b
m = T b

(
I−Ra

m−1Rb
)−1 T b

m−1, (5.50)
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where Ra, T a, Rb and T b are the scattering matrices for the top layer. The poles of the

reflection and transmission matrices on the right-hand sides of Eqs. (5.47)-(5.50) only

coincide with those of Ra
m, T a

m, Rb
m and T b

m at a finite number of points within the first

Brillouin zone, hence, we can reasonably assume that the scattering matrices for the top

layer and for the (m− 1)-layer sub-stack do not have poles. Thus, the only way for Ra
m

and T a
m to have a pole is if

(
I−RbRa

m−1

)
is singular. Similarly, Rb

m and T b
m have

poles precisely when
(
I−Ra

m−1Rb
)

is singular. However,

(
I−Ra

m−1Rb
)
= Ra

m−1

(
I−RbRa

m−1

)
(Ra

m−1)
−1,

which implies that the poles of the scattering matrices of the m-layer stack coincide.

When T a,b and T a,b
m−1 have poles, the poles of Eqs. (5.48) and (5.50) correspond to

spurious surface mode solutions; however, we have found that in practice, Eqs. (5.47)

and (5.49) do not result in such spurious solutions, and so are better suited for locating

the woodpile surface modes.

5.B Proof of Symmetry Relationships [Eqs. (5.16)] for
the kx = ky case.

Equations (5.16) stem from the fact that, when kx = ky,

Ry = ARxA and T y = AT xA, (5.51)

where Rx (Ry) and T x (T y) are the reflection and transmission matrices for a grating

whose rods lie parallel to the x-axis (y-axis). The planewave fields appearing on the

left-hand side of Eq. (5.1) can be partitioned into TE and TM polarised components, i.e.,

F±
l =

[
F±

l,TE

F±
l,TM

]
, (5.52)

in which F±
l,TE and F±

l,TM are the vectors that consist of the TE and TM field coefficients,

respectively. In principle these vectors are infinite; however, in practice they must be

truncated so that they become vectors of length M = N2, for some finite integers M

and N . Consequently, R, T and A are 2M × 2M matrices. In particular, A is a 2 × 2

124



5.B. SYMMETRY RELATIONSHIPS CHAPTER 5. SURFACE MODES

block-diagonal matrix:

A =

[
A 0

0 −A

]
, (5.53)

where A is an N ×N block matrix such that

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1,1 . . . . . . . . . M1,N

...
...

...
...

...
...

MN,1 . . . . . . . . . MN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.54)

in which Mp,q = [δiqδjp], with 1 ≤ i ≤ N indexing the rows and 1 ≤ j ≤ N indexing

the columns of Mp,q, and where δij = 1 if i = j, and δij = 0 otherwise. Note that

A is a permutation matrix (it has exactly one ‘1’ in every column and in every row)

and, thus A−1 = AT, where the superscript T denotes the matrix transpose. Since A is

symmetrical, it follows that A = A−1.

The reflection and transmission matrices in Eq. (5.51) are formulated so that they act

on the fields at z = ±h/2, with z = 0 specifying the plane of the grating, and so they give

the grating an artificial thickness equal to h. Equations (5.51) can be derived from the

multipole expressions for R and T [see Eqs. (3.26) and (3.27)]. The scattering matrices

for the woodpile stacking unit, which consists of two gratings that are orthogonal to one

another, satisfy

Rb = ARaA and T b = AT aA, (5.55)

where Ra and T a are the scattering matrices that act on the fields that are incident from

above the stacking unit, and Rb and T b act on fields that are incident from below. The

relationships (5.55) follow immediately from Eqs. (5.51) and the stacking recurrences

[Eqs. (5.47)-(5.50)]. In order to effect an interleaving of the grating pairs of the woodpile,

a shear transform must be applied to Ra, Rb, T a and T b, which then become[
T ′

a R′
b

R′
a T ′

b

]
=

[
Q−1T aQ−1 Q−1RbQ
QRaQ−1 QT bQ

]

=

[
Q−1T aQ−1 Q−1ARaAQ
QRaQ−1 QAT aAQ

]
, (5.56)

where the second equality follows from Eq. (5.55). The shear transform operator, Q, is a
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block-diagonal matrix of the form

Q =

[
Q 0

0 Q

]
, (5.57)

with

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

Q−1 0 0

0 Q0 0

0 0 Q1

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.58)

such that {Qp} are diagonal matrices. The qth entry along the diagonal of the block

Qp is given by Qp,q = exp(−iαpδx/2)exp(−iβqδy/2), where αp and βp are the grating

diffraction orders [see Eqs. (2.12) and (2.17)].

We now use the methods described in Sec. II of [124] to show that the downward

Bloch vectors F and the downward Bloch factors Λ are related trivially to the upward

Bloch vectors F′ and upward Bloch factors Λ′ [see Eq. (5.1)]. By definition,[
F−

2

F+
1

]
=

[
T ′

a R′
b

R′
a T ′

b

][
F−

1

F+
2

]
, (5.59)

in which F±
1 are the upward (+) and downward (-) planewave fields incident from above

the grating pair, and F±
2 are the planewave fields incident from below. Suppose that[

F−
1

F+
1

]

is a downwards traveling Bloch mode (expressed in the planewave basis), whose corre-

sponding Bloch factor is μ, with μ as described in Sec. 5.2. Bloch’s theorem implies

that [
F−

2

F+
2

]
= μ

[
F−

1

F+
1

]
, (5.60)

which can be combined with Eq. (5.59) to give

W(μ)F = 0, (5.61)
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with

W(μ) =

[
T ′

a − μI R′
b

R′
a T ′

b − μ−1I

]
and F =

[
F−

1

F+
2

]
.

Thus, the eigenvalues μ (i.e., Bloch factors) correspond to the solutions of detW(μ) = 0.

Substituting Eq. (5.56) into the expression for W(μ) gives

W(μ) =

[
Q−1T aQ−1 − μI Q−1ARaAQ

QRaQ−1 QAT aAQ− μ−1I

]
= BW̃(μ)B, (5.62)

with

B =

[
I 0

0 Q2

]
and

W̃(μ) =

[
Q−1T aQ−1 − μI Q−1ARaAQ−1

Q−1RaQ−1 Q−1AT aAQ−1 − μ−1Q−4

]

=

[
Q−1T aQ−1 − μI Q−1ARaAQ−1

Q−1RaQ−1 Q−1AT aAQ−1 − s−1μ−1I

]
.

In the second equality, we have used the fact that Q−4 = s−1I when δx = δy = d/2, with

s = exp(−ikxd)exp(−ikyd). It follows that

W(s−1μ−1) = BCW̃(μ)CB, (5.63)

where

C =

[
0 A

A 0

]
. (5.64)

Note that equation (5.63) relies on the fact that A commutes with Q and Q−1. Equations

(5.61) and (5.62) imply that detW̃(μ) = 0, and, hence detW(s−1μ−1) = 0. That is, if

μ is an eigenvalue, then s−1μ−1 is also an eigenvalue (we have also verified this numeri-

cally). Since μ was chosen to be a ‘downward’ eigenvalue, s−1μ−1 must be an ‘upward’

eigenvalue, and so the entries of Λ′ can always be arranged so that (Λ′)−1 = sΛ, which

is the desired result.

Since s−1μ−1 is an eigenvalue, Bloch’s theorem implies that there exists an (upward)
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Bloch vector [
F ′−

1

F ′+
1

]
such that [

F ′−
2

F ′+
2

]
= s−1μ−1

[
F ′−

1

F ′+
1

]
, (5.65)

where F ′±
1 and F ′±

2 are defined analogously to F±
1 and F±

2 , respectively. Further, F ′±
1

and F ′±
2 satisfy an eigenvalue problem similar to Eq. (5.61), namely

W(s−1μ−1)F ′ = 0, (5.66)

with

F ′ =

[
F ′−

1

F ′+
2

]
. (5.67)

Equation (5.61) and (5.62) imply that

W̃(μ)BF = 0, (5.68)

and so if one chooses

F ′ = aμB
−1CBF , (5.69)

for an arbitrary scalar aμ, then

W(s−1μ−1)F ′ = 0. (5.70)

Hence, this choice of F ′ gives the components of the (upward) Bloch vector that corre-

sponds to s−1μ−1, where it is assumed that there is no degeneracy in the Bloch factors.

We can conclude that[
F ′−

1

F ′+
2

]
= aμ

[
Q2AF+

2

Q−2AF−
1

]
= aμ

[
s1/2Q2AF+

2

s−1/2Q2AF−
1

]
, (5.71)

where the matrix Q is defined identically to Q [see Eq. (5.57)], except with Qp,q =

exp(iπp/2)exp(iπq/2) used in place of Qp,q, and where we have made use of the fact

that Q2 = s1/2Q2 and Q−2 = Q2. Equations (5.65) and (5.71) determine the relationship
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between the upward and downward Bloch vectors:[
F ′−

1

F ′+
1

]
= aμs

1/2μC

[
Q2F−

1

Q2F+
1

]
= C

[
Q2F−

1

Q2F+
1

]
, (5.72)

where the second equality in Eq. (5.72) follows by choosing aμ = s−1/2μ−1. The par-

titions of F′ (the matrix of upward Bloch vectors) are thus related to the partitions of F

(the matrix of downward Bloch vectors), according to[
F′−

F′+

]
=

[
AQ2F+

AQ2F−

]
, (5.73)

where the order of the columns of F± (F′±) is determined by the order of the entries of Λ

(Λ′). It follows immediately that

Ra = Rb (5.74)

[see Eqs. (5.14)], which is the desired result, and which we have verified numerically.

Equation (5.74) relies on our choice of the constants {aμ}; however, in a numerical im-

plementation, bμ
def
= aμs

1/2μ is unknown initially. The specular channel, i.e., the channel

(p, q) = (0, 0), is a fixed point of the permutation A, see Eq. (5.54). Therefore bμ can

be determined using bμ = rf ′−
1 /f+

1 , where f ′−
1 and f+

1 are the specular components of

F ′−
1 and F+

1 , respectively, and with r = 1 if the components are TE polarised, or with

r = −1 if the components are TM polarised. It is thus possible to locate the surface

modes without ever having to evaluate A. A further corollary of Eq. (5.73) is that when

kx = ky, the reflection matrix R′
∞ for the semi-infinite woodpile that results when the

finite woodpile in Fig. 5.1 is extended indefinitely upwards is related to R∞ [see Eq.

(5.9)] by a similarity transform:

R′
∞

def
= F′−(F′+)−1 = AQ2R∞Q2A.

5.C Definitions for the similarity transform in Eq. (5.30).

To effect a shift by an amount of δy along the positive y-direction, the following similarity

transform is applied to the scattering matrices:

R′ = QyRQ−1
y and T ′ = QyT Q−1

y , (5.75)
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where the shift operator Qy is a block-diagonal matrix of the form

Qy =

[
QTE

y 0

0 QTM
y

]
, (5.76)

with

QTE
y = QTM

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

Q−1 0 0

0 Q0 0

0 0 Q1

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.77)

Here,

Qs = exp(−iβqδy/2) = exp(−iβ0δy/2)(−1)q (5.78)

is the phase shift that is appropriate for the diffraction order s = (p, q). The ordering of

the elements of F±
l,TE and F±

l,TM must be chosen so that it is consistent with the order of

the elements along the diagonal of QTE
y and QTM

y . Equation (5.30) follows immediately

from Eqs. (5.75)-(5.78) by defining Qy as

Qy = exp(iβ0δy/2)Qy, (5.79)

and then making use of the fact that Qy = Q−1
y .
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Conclusion

In this thesis, two new semi-analytical methods for modelling woodpile waveguides were

presented. The first method generalises the multipole framework for woodpiles so that

defects can be incorporated by way of a super-cell. The super-cell method was used

to compute the transmittance of a coupled-resonator optical waveguide (CROW) and a

linear waveguide, where each waveguide was embedded inside a woodpile. It was found

that, changing the radius of the defect rod was an effective way of increasing the Q-

factors of the waveguides, especially the linear waveguide, which had a Q-factor of up to

200, 000. For the CROW, the large stack size did not present a computational challenge for

the super-cell method, and the dispersion curves of the defect modes could be obtained.

The new method compares favourably with the finite difference time domain method, for

which modelling even relatively simple defects is time consuming when the stack size is

large [64]. Using the super-cell to compute the dispersion curves of the linear waveguide

was difficult because the large size of the super-cell meant that many plane wave orders

were required to accurately model the fields. In addition, the high Q-factors of the linear

waveguide meant that many realisations were needed in order to resolve the resonances.

To complement the super-cell approach, a two-dimensional fictitious source super-

position method was generalised so that woodpile waveguide modes could be computed

more efficiently. This method relies on using artificial sources to mimic a defect, and the

efficiency was such that an exhaustive study of the parameter space could be performed.

For certain values of the defect radius and refractive index, the waveguide modes exhib-

ited slow-light behaviour over a large region of the Brillouin zone (∼ 15% of the BZ

in one instance). Since slow-light waveguides are particularly susceptible to scattering

losses [115], an interesting line of inquiry to pursue would be to compare the efficiency

of a slow-light woodpile waveguide with that of a 2D PC slow-light geometry.

Scattering matrix and transfer matrix methods were used to obtain new results for the

surface modes of woodpiles. When the number of layers is even, direction can be used

to discriminate between single- and double-interface modes. When the number of layers
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is odd, the coupling strength between the top and bottom surfaces depends strongly on

the direction of propagation — for certain directions, decoupling can occur even when

there are as few as five layers. This decoupling can either occur for contiguous regions

of the Brillouin zone, or just for specific points. In the latter case, the dispersion curves

of the double-interface modes are intertwined. This phenomenon also occurs in coupled

photonic crystal waveguides [113], and can be explained intuitively by considering how

the fields decay in the PC region.

Although the techniques that have been presented here are not as flexible as numerical

tools such as FDTD, it was found that the multipole-based scattering matrix approach

was accurate and relatively efficient, and, in the case of the surface mode study, the Bloch

mode method provided more physical insight than would a purely numerical method.

Future Work

The methods presented in this thesis have a number of potential applications. For exam-

ple, a natural extension of the surface mode study is to characterise the behaviour of a

waveguide that is situated on the surface of a woodpile. Although the waveguide would

rely on total internal reflection, the woodpile substrate could be used to control the dis-

persion and reduce optical losses. This idea has been applied successfully to woodpile

surface cavities [17], where the woodpile substrate was shown to be less susceptible to

optical losses than 2D PC geometries. In another study, the woodpile parameters were

optimsed for use as a substrate in antenna designs [57]. The advantage of the linear

waveguide proposed here is that it would be easier to couple into than a waveguide that

is completely enclosed by a woodpile cladding. In principle, such a waveguide can be

modelled using the FSS method simply by setting F−
I = 0 in Eq. (4.37).

Recently, there has been much interest in materials whose permittivity and permeabil-

ity are both negative. Such metamaterials [102, 103] possess optical properties that are

not found in conventional materials like dielectrics. These unique properties can be ex-

ploited to create, for example, super-lenses capable of imaging light below the diffraction

limit [128], and can also be used to create optical cloaks, whereby the metameterial ren-

ders the cloakee invisible to certain wavelengths [129]. The possibility of using photonic

woodpiles as three-dimensional metameterials is an open question. Such a material would

potentially allow light to be manipulated with greater control than a two-dimensional

metamaterial would, and could be modelled using the methods presented in this thesis.

A related area is the study of three-dimensional composite materials that consist of
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both dielectric and metamaterial regions. While there is a considerable amount of research

into the properties of uniform metamaterials [128–130], the rich physics of composites

materials are only starting to be explored [131, 132]. It has already been shown that the

optical properties of these composites are radically different from those of the constituent

components. However, accurately predicting the optical properties of these new compos-

ites is difficult because these materials are strongly dispersive and absorptive. For the

methods that we have developed, dispersive materials can be modelled by using a refrac-

tive index that is appropriate for the frequency, while absorption can be modelled simply

by using a complex refractive index. Hence, our methods are well-suited for studying the

properties of composite materials, specifically those that are three dimensional.

Our methods can also be generalised readily to handle coated cylinders. An exterior

coating can be modelled by placing smaller cylinders inside the existing ones and then

imposing an additional boundary condition of the form given in Eq. (3.16). Alternatively,

simply changing the background refractive index results in an inverse woodpile that has

an interior coating. Coatings are employed in optical sensing, where, e.g., an optical

fibre is coated with a material that increases the sensitivity of the evanescent tails of

the fibre modes to the presence of analytes, which are absorbed by the coating [133]. A

coated woodpile (or simply the surface) might be more sensitive than a coated fibre sensor

because of the larger surface area per unit volume of the woodpile. Dielectric woodpiles

with metallic coatings might function as plasmonic 3D optical cloaking materials [134],

whereby the parameters of the coated woodpile are chosen so that non-resonant scattering

from a dielectric object of interest is suppressed when the object is placed inside the

woodpile cloak. Moreover, for certain frequencies, this scattering-cancellation causes the

visibility of both the cloak and dielectric object to be reduced profoundly.

One of the advantages of the woodpile geometry is that the complete bandgap can

lead to strong suppression of the emission rates of fluorescent sources embedded within

the stack [17, 51, 52]. The radiation dynamics of woodpiles containing such sources are

determined by the optical local density of states (LDOS), which, in turn, can be computed

using the appropriate Green’s function. This Green’s function represents an idealised

point or line source similar to the fictitious sources described in Chapter 4, and can be

obtained efficiently by using the techniques outlined in Chapter 2. Once the LDOS is

known, radiation lifetimes and coupling strength between an internal source and the PC

(for example), as well as the effect that the PC parameters have on these properties, can

be determined [135].

Another possibility is the study Anderson localisation in 3D PCs. Few theoretical
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studies have been performed in the area of three-dimensional Anderson localisation [136],

since the computational barrier usually proves to be insurmountable. The super-cell

method presented in this thesis might make such a study feasible, so long as the num-

ber of layers is only moderate, and the layer spacing is such that the amount of evanescent

coupling is small.

It has been proposed that donor-type woodpile waveguides, whereby a linear waveg-

uide is introduced by adding dielectric, might result in enhanced optical non-linearities

inside woodpile waveguides [62]. However, our results for linear waveguides suggest that

controlling non-linearities might be more complicated than this because the fields in the

vicinity of the waveguide exhibit singular behaviour at points where the radius of curva-

ture vanishes (this situation does not arise in conventional 2D PC waveguides). Near such

points, non-linear behaviour would be enhanced due to the large field gradient. These

points occur along the entire length of the waveguide, and so their influence on the non-

linearity could be substantial, although this has not yet been addressed in the literature.

One last possibility is to model weak defects in woodpiles by applying perturbation

methods to the Bloch modes [112]. Weak defects result in defect modes that are highly

extended, since the mode lies close to the edge of the bandgap, and are therefore difficult

to model using super-cell methds. Though the dispersion of these defect modes can be

computed using the ficitious source superposition method presented in Chapter 4, pertur-

bation theory gives more physical insight into the behaviour of the modes, such as the

behaviour near mode cutoff [112].
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