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ABSTRACT 
 

Blackbody radiators, or graphite tube furnaces, are commonly used in the calibration 

of pyrometers for temperature range up to 3 000 °C. These radiators are usually 

constructed from graphite cylindrical shaped cavities insulated by graphite felt or 

similar materials. The calibration uncertainties associated with one of these radiators, 

a 48 kW Thermogage furnace, are 1 °C at 1 000 °C and a wavelength of 650 nm 

rising to 2 °C at 2 000 °C. These uncertainties are mainly due to deviations of the 

blackbody emissivity from 100%. The emissivity has been calculated to be 99.2% at a 

temperature of 1 000 °C and a wavelength of 650 nm, increasing to 99.9% in some 

cases. 

 

To improve this Thermogage furnace’s temperature calibration uncertainty to the 

level required, the emissivity must be increased to 99.9% over the full temperature 

range. This can be achieved by improving the temperature uniformity of its cavity 

inner walls. Therefore, the aim of this work is to achieve this emissivity increase by 

optimising the temperature uniformity of the blackbody furnace graphite tube.  

 

A quasi 2-D numerical model has been developed to predict the temperature profile of 

the Thermogage furnace’s tube. This has been used to optimise the temperature 

uniformity based on input parameters such as the thermophysical properties of ATJ 

graphite and WDF graphite felt. These thermophysical properties have been 

thoroughly investigated and implemented into the quasi 2-D numerical model. 

 

The numerical predictions generated have been validated by comparing them to the 

measured temperature profile and radial heat fluxes of the graphite tube. Once an 

agreement has been achieved between the measured and the modelled results, the 

quasi 2-D numerical model has been used to generate numerical predictions of the 

temperature profile based on design methodologies that include changing the cross 

sectional area and the length of the graphite tube as well as using different insulating 

gases.  

 



With a  new tube design, a better temperature uniformity has been achieved and thus 

improvement in the cavity emissivity resulting into temperature uncertainty of better 

than 0.02 °C for operating temperatures from 1 000 to 1 600 °C and at a wavelength 

of 650 nm. 
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1 000, 1 500 and 2 200 °C, using nitrogen as the graphite felt 
purging gas. 

175 



 ix

Figure 7.7.   Numerical model predictions of the temperature profiles of the 
400 mm long ATJ graphite tube at operating temperatures of 
1000, 15000 and 2200 °C, using helium as the graphite felt 
purging gas. 
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Figure 7.8.   Schematic diagram of a 400 mm long ATJ graphite tube with an 
80 mm wide and 1.25 mm deep cut used as the NMIA 48kW 
Thermogage furnace’s heater element. 
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Figure 7.9.   Comparison of the 400 mm long ATJ tube measured and 
modelled temperature profiles at 1 000 and 1 500 °C with both 
nitrogen and helium used as the WDF graphite felt purging gas. 
Comparisons are also made with the temperature profiles of the 
tube’s original design. 
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Figure C.1. Plot of the calculated values of the radial thermal resistance 

Rradial of the NMIA 48kW Thermogage furnace’s insulation 
(felt, foils and silica tube) as a function of the absolute 
temperature T. The best fit curve is also plotted its equation is 
given. 
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Figure C.2. Plots of the graphite felt thermal conductivity with Cfr=10, 15 
and 35 for both cases of N2 and He used as the felt purging 
versus the absolute temperature T. 
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Figure C.3. Plots of total radial resistance Rradial versus the absolute 
temperature T with Cfr values of 10, 15 and 35 and using N2 and 
He as the graphite felt purging gases. 
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a Radius of an electrical wire 72 

A Area of the blackbody cavity hole 
Area of a disk 

11 
77 

AA4 Area of an A4 sized paper 194 

Aamb Area of the ATJ graphite tube’s opening to the ambient 77 

Ac Cross sectional area 98 

Acontact Fibre-to-fibre contact area 34 

Afelt Area of a piece of a WDF graphite felt 194 
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Ai Area at node i 87 

Aj Area at node j 87 
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32 
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40 
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E Energy 85 
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38 
76 
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Fia View/configuration factor: node i to the ambient 98 

Fji View/configuration factor: node j to node i 87 
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septum to the surface area of the Pt/Pt-Rh thermocouple 
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77 
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77 
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to node i 
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g Gravitation acceleration 
Gap between two electrical wires 
Gap between two surfaces 

31 
72 
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GF Effective thermal conductivity of graphite felt 82 

Gs Surface Conductance between Pt/Pt-Rh thermocouple 
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70 

Gs,cond Surface conductance due to conduction 71 

Gs,rad Surface conductance due to radiation 71 

gWJ Distance between the silica tube and the water jacket 126 

h Universal Planck constant 
Node width 

2 
135 

H Strong et al‘s geometrical factor 38 

i Node count 63 

I Electrical current 120 

IRMS Root mean square of the sinusoidal electrical current 97 

Iλ,b Spectral radiance or total intensity. 2 

j Node count 63 

k Boltzmann universal constant 
Thermal conductivity 
Coverage factor 

2 
39 
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k1 Thermal conductivity of air 29 

k2 Thermal conductivity of fibre 29 

kacross Thermal conductivity in the “across-the-grain” direction 61 

kATJ Thermal conductivity of ATJ graphite  62 

kaverage Average thermal conductivity 61 

keff Effective thermal conductivity 126 

kf Thermal conductivity of graphite felt 30 

kfc Thermal conductivity due to free convection 29 

kFelt Thermal conductivity of felt (constant) 82 

kfr Thermal conductivity due to radiative exchanges 
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30 

kgas Thermal conductivity of a gas 72 
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kISF Thermal conductivity of imperfectly stratified felt 33 
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 xiii
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ks Thermal conductivity of the graphite bulk material 33 

ksc Thermal conductivity due to solid conduction along the 
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30 

kSilica Thermal conductivity of silica 124 

kTC Thermal conductivity of the Pt/Pt-Rh thermocouple 
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70 

kwith Thermal conductivity in the “with-the-grain” direction 61 

L Height of a small cavity 
Length of the ATJ graphite tube 

31 
68 

lf Free mean path for molecule-fibre collision 31 

lfibre Length of fibre equal to one-half the distance between 
successive fire junctions 

34 

m Number of nodes 98 

Mi Radiant exitance measured by the pyrometer 87 

Mj Radiant exitance from rings inside the ATJ graphite tube 87 

Mp(T),i Radiant exitance due to surface temperature 87 

Mw Middle septum radiant exitance 87 

n Number of nodes 87 

nfibre Number of fibre-to-fibre contacts 34 

P Power per unit length 40 

Pconduction Heat transfer rate by conduction along the ATJ graphite 
tube 

97 

Pelectrical Heat transfer rate generated electrically 97 

Pr Prandtl number 126 

Pradial Heat transfer rate in the radial direction  97 

Pradiation Heat transfer rate by radiation to ambient 97 

pTC Perimeter of the Pt/Pt-Rh thermocouple wire 70 

qai Radiative heat flux between environment to node i 132 

qamb Heat flux (radiative) between the Pt/Pt-Rh thermocouple 
and the ambient 

77 

qas Radiative heat flux  between the environment and middle 
septum 

132 

qcond Heat flux by conduction 129 

qe Electrical power 120 

qe,cc. Electrical power generated internally by CC material 72 

qji Heat flux from node j to node i 132 



 xiv

qjs Radiative heat flux between node j and the middle 
septum 

132 

qL,cond Heat flux to the left of the node 119 

qR,cond Heat flux to the right of the node 119 

qrad Heat flux by radiation 119 

qrad,i Heat flux by radiation at node i 119 

qrad,s Heat flux by radiation at the middle septum 132 

qradial Heat flux in the radial direction 120 

qs Heat flux (radiative) between the Pt/Pt-Rh thermocouple 
and the ATJ graphite tube surface 

77 

qseptum Heat flux (radiative) between the Pt/Pt-Rh thermocouple 
and the ATJ graphite tube’s middle septum 

77 

qsi Heat flux between the middle septum and node i 132 

qst Internally stored energy 120 

Conv,WJq  Heat flux per unit length due to convection 126 

Rad,WJq  Heat flux per unit length due to radiation 126 

Total,WJq  Total heat flux per unit length 126 

r Radius of a graphite fibre. 31 

r1, r2 Radii of graphite felt 124 

R1, R2 View factor variables 77 

*
cRa  Modified Rayleigh number 126 

LRa  Rayleigh number per unit length 31 

Ramb Thermal resistance due to radiative exchanges between 
the Pt/Pt-Rh thermocouple and the ambient 

77 
 

RATJ Thermal resistance of an ATJ graphite node 120 

Rcc Carbon composite thermal resistance 129 

RCond Thermal resistance due to conduction 123 

Re Electrical resistance of a node 64 

Relec Leakage electrical resistance 72 

RFelt Thermal resistance of graphite felt 123 

RFelt/Foils Thermal resistance between graphite felt and foils 123 

RFoils Thermal resistance of graphite foils 122 

RFoils/Silica Thermal resistance between graphite foils and silica 122 

RRad Thermal resistance due to radiation  123 



 xv

Rradial Thermal resistance of graphite felt in the radial direction 120 

Rs Thermal resistance due to radiation exchanges between 
the Pt/Pt-Rh thermocouple wire and the surface of the 
ATJ graphite tube 

77 

Rs,cond Thermal resistance due to surface to surface conduction 72 

Rs,rad Thermal resistance due to surface to surface radiation 93 

Rseptum Thermal resistance due to radiative exchanges between 
the Pt/Pt-Rh thermocouple and the middle septum 

77 
 

RSilica Thermal resistance of silica 122 

RTC Thermal resistance of the Pt/Pt-Rh thermocouple  93 

RWJ Thermal resistance of the water jacket 122 

t Time  39 

tfelt Thickness of WDF graphite felt 194 

T Absolute temperature 2 

Tamb Absolute ambient temperature  77 

Tave Average absolute temperature of ATJ graphite 98 

Tend Absolute temperature of the graphite tube ends 68 

To Temperature of the outside of the ATJ graphite tube 203 

TPt/Pt-Rh Absolute temperature of the Pt/Pt-Rh thermocouple 
wires 

99 

Ts Absolute temperature of the graphite tube surface 68 

Tseptum Absolute temperature of the ATJ graphite tube’s middle 
septum 

77 
 

TSilica Absolute temperature of the silica 126 

TTC Absolute temperature of the thermocouple 69 

Twater Absolute temperature of water coolant 99 

TWJ Absolute temperature of the water jacket 126 

ucal Thermocouple calibration standard uncertainty 80 

uI Sinusoidal current standard uncertainty 110 

ATJku  ATJ graphite thermal conductivity uncertainty 111 

iMu  Radiant exitance standard uncertainty 89 

jMu  Rings radiant exitance standard uncertainty 89 

wMu  Middle septum radiant exitance standard uncertainty 89 

iTPMu
),(

 Total radiant exitance standard uncertainty 89 



 xvi

uout Output heat transfer rate standard uncertainty 112 

conductionPu  Conduction heat transfer rate standard uncertainty 111 

electricalPu  Electrically generated heat flux standard uncertainty 110 

upos Thermocouple positioning standard uncertainty 81 

radialPu  Radial heat transfer rate standard uncertainty 112 

us,rad Radiative contact resistance standard uncertainty 81 

uT Temperature measurement standard uncertainty 81 

uV Sinusoidal voltage standard uncertainty 110 

waterVu  Water flowrate standard uncertainty 112 

xTu   Temperature gradient standard uncertainty 111 

waterTu  Water coolant temperature change standard uncertainty 112 

ATJ
u  ATJ graphite emissivity standard uncertainty 89 

Vo Constant voltage used in optical calibration 84 

Vcc Voltage across the CC material 130 

Vfelt Volume of a piece of WDF graphite felt 194 

Vin Voltage measured across the ATJ graphite tube 97 

Vm Optical detector voltage signal 84 

Vout Voltage measured at across the copper electrodes 97 

VRMS Root mean square of the sinusoidal voltage 97 

Vwater Flowrate of water (Brass water jacket) 99 

w Width of a 360° cut 166 

wA4 Weight of an A4 sized paper 194 

wcut Weight of a cut piece of an A4 sized paper 194 

wfelt Weight of a WDF graphite felt 194 

x Axial coordinate 
Distance between two disks 

63 
78 

xia Distance between ring (i) and the opening at the end of 
the AJT graphite tube 

197 

xsa Distance between the middle septum and the opening at 
the end of the AJT graphite tube 

197 

X View factor variable 78 

XF View factor variable 133 



 xvii

Xi View factor variable 88 

Xia View factor variable 197 

Xr View factor variable 88 

Xs View factor variable 88 

Xsa View factor variable 197 

   

Greek Symbols  

 Ratio of graphite fibre radius to contact spot radius 35 

g Thermal diffusivity of air 31 

f Experimentally determined opacity factor ( 21 f ) 38 

N Stability requirement constant 139 

 Scattering function 38 

g Volumetric thermal expansion coefficient of air 31 

 Difference 6 

 Emissivity of a surface 5 

1 Emissivity of surface 1 123 

2 Emissivity of surface 2 123 

amb Emissivity of the ambient 76 

ATJ Emissivity of ATJ graphite 87 

BB Emissivity of a blackbody cavity 11 

eff Effective emissivity of the 48kW Thermogage 
furnace’s cavity 

178 

g Emissivity of graphite 72 

Pt Emissivity of platinum 72 

s,eff Effective emissivity between two surfaces 123 

Silica Emissivity of the silica tube 127 

r,eff Effective emissivity between two surfaces 72 

surf Emissivity of the material constituting a blackbody 
cavity 

11 

WJ Emissivity of the water jacket 127 

θ Phase angle 97 

 Electrical resistivity 94 

λ Wavelength 2 



 xviii

μTC Defined constant by Carslaw & Jaeger (1959) 69 

g Kinematic viscosity of air 31 

v1 Volume fraction of air 29 

v2 Volume fraction of fibre 29 

cond Distance offset – solution to the transmission line 
matrix 

96 

π Pi 3 

ρATJ Density of ATJ grade graphite 64 

ρfelt Density of WDF graphite felt 194 

C
water 15

  Density of water at 15 °C 99 

σ Stefan-Boltzmann constant 38 

σa Absorption coefficient 38 

σe Extinction coefficient 38 

σs Diffusion coefficient 38 

 Graphite fibre tortuosity 35 

 Attenuation 98 

f  Frequency of graphite fibre crossing from one layer 
to another 

35 

ς Schuhmeister first constant 29 

ψ Schuhmeister second constant 29 

ATJ Electrical resistivity of ATJ graphite 58 

   

Subscripts   

amb Ambient  

ATJ ATJ grade graphite  

BB Ideal blackbody surface  

PSF Perfectly stratified felt  

rad Radiation  

radial Radial direction  

Real Real blackbody surface  

WJ Water Jacket  

   

Abbreviations  

1-D 1-dimensional  



 xix

2-D 2-dimensional  

3-D Three-dimensional  

AC Alternating current  

AGA Graphite material grade  

AGOT Graphite material grade  

AGSR Graphite material grade  

AGSX Graphite material grade  

Ar Argon gas  

ATJ Graphite material grade  

ATL Graphite material grade  

CC Carbon-composite  

EXCEL Microsoft EXCEL program  

He Helium gas  

IKE Institut für Kernenergetik, Universität Stuttgart  

MTSP Medium temperature standard pyrometer  

N2 Nitrogen gas  

NMIA National Measurement Institute, Australia  

NMIJ National Measurement Institute of Japan  

USA United States of America  

VNIIOFI All-Russian Research Institute for Optical and 
Physical Measurements 

 

WDF Graphite felt grade  
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