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ABSTRACT 
 

Whilst the use of expansion joints is common practice in bridge construction, 

modular bridge expansion joints are designed to accommodate large longitudinal 

expansion and contraction movements of bridge superstructures.  In addition to 

supporting wheel loads, a properly designed modular joint will prevent rain water 

and road debris from entering into the underlying superstructure and substructure. 

Modular bridge expansion joints (MBEJs) are widely used throughout the world 

for the provision of controlled pavement continuity during seismic, thermal 

expansion, contraction and long-term creep and shrinkage movements of bridge 

superstructures and are considered to be the most modern design of waterproof 

bridge expansion joint currently available.  Modular bridge expansion joints are 

subjected to more load cycles than other superstructure elements, but the load 

types, magnitudes and fatigue-stress ranges that are applied to these joints are not 

well defined.  MBEJs are generally described as single or multiple support bar 

designs.  In the single support bar design, the support bar (beam parallel to the 

direction of traffic or notionally parallel in the case of the swivel joist variant) 

supports all the centre beams (beams transverse to the direction of traffic) using 

individual sliding yoke connections (for the swivel joist variant, the yoke 

connection is characterised as a one-sided stirrup and swivels rather than slides).  

In the multiple support bar design, multiple support bars individually support each 

centre beam using a welded connection. 

 

Environmental noise complaints from home owners near bridges with modular 

expansion joints led to an engineering investigation into the noise production 

mechanism.  It was generally known that an environmental noise nuisance 

occurred as motor vehicle wheels passed over the joint but the mechanism for the 

generation of the noise nuisance has only recently been described.  Observation 

suggested that the noise generation mechanism involved possibly both parts of the 

bridge structure and the joint itself as it was unlikely that there was sufficient 

acoustic power in the simple tyre impact to explain the persistence of the noise in 

the surrounding environment. 
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Engineering measurements were undertaken at two bridges and subsequent 

analysis led to the understanding that dominant frequency components in the 

sound pressure field inside the void below the joint were due to excitation of 

structural modes of the joint and/or acoustic modes of the void.  This initial 

acoustic investigation was subsequently overtaken by observations of fatigue 

induced cracking in centre beams and the welded support bar connection.  A 

literature search revealed little to describe the structural dynamics behaviour of 

MBEJs but showed that there was an accepted belief amongst academic 

researchers dating from around 1973 that the loading was dynamic.  In spite of 

this knowledge, some Codes-of-Practice and designers still use a static or quasi-

static design with little consideration of the dynamic behaviour, either in the 

analysis or the detailing.  In an almost universal approach to the design of modular 

bridge expansion joints, the various national bridge design codes do not envisage 

that the embedded joint may be lightly damped and could vibrate as a result of 

traffic excitation.  These codes only consider an amplification of the static load to 

cover sub-optimal installation impact, poor road approach and the dynamic 

component of load.  The codes do not consider the possibility of free vibration 

after the passage of a vehicle axle. 

 

Codes also ignore the possibilities of vibration transmission and response 

reinforcement through either following axles or loading of subsequent 

components by a single axle. What the codes normally consider is that any 

dynamic loading of the expansion joint is most likely to result from a sudden 

impact of the type produced by a moving vehicle ‘dropping’ onto the joint due to 

a difference in height between the expansion joint and the approach pavement. 

 

In climates where snow ploughs are required for winter maintenance, the 

expansion joint is always installed below the surrounding pavement to prevent 

possible damage from snow plough blades.  In some European states (viz. 

Germany), all bridge expansion joints are installed some 3-5mm below the 

surrounding pavement to allow for possible wear of the asphaltic concrete.  In 

other cases, height mismatches may occur due to sub-optimal installation. 
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However, in the case of dynamic design, there are some major exceptions with 

Standards Australia (2004) noting that for modular deck joints “…the dynamic 

load allowance shall be determined from specialist studies, taking account of the 

dynamic characteristics of the joint…”  It is understood that the work reported in 

Appendices B-E was instrumental in the Standards Australia committee decisions.  

Whilst this Code recognizes the dynamic behavior of MBEJs, there is no guidance 

given to the designer on the interpretation of the specialist study data.  AASHTO 

(2004), Austrian Guideline RVS 15.45 (1999) and German Specification TL/TP-

FÜ 92 (1992) are major advancements as infinite fatigue cycles are now specified 

and braking forces considered but there is an incomplete recognition of the 

possibility of reinforcement due to in-phase (or notionally in-phase) excitation or 

the coupled centre beam resonance phenomenon described in Chapter 3. 

 

This thesis investigates the mechanism for noise generation and propagation 

through the use of structural dynamics to explain both the noise generation and the 

significant occurrence of fatigue failures world-wide.  The successful fatigue 

proofing of an operational modular joint is reported together with the introduction 

of an elliptical loading model to more fully explain the observed fatigue failure 

modes in the multiple support bar design. 
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