Student co-generated analogies and their influence on the development of science understanding

Stephen Fogwill
Dip. Teach (Science), BSc., MEd

Faculty of Arts and Social Sciences
University of Technology Sydney

A thesis submitted in the fulfillment of the requirements for
the degree of
Doctor of Philosophy
2010
Certificate of authorship/originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signed: ____________________________ Date: _______________
Acknowledgements

Several people have provided support and encouragement in the preparation of this thesis. Acknowledgement needs to be made in three areas. The school in which the research was conducted; the support from the university; and the support of my family.

I thank the NSW Department of Education and Training for allowing the research to proceed and Ian Wing, the Principal of the school in which the research was conducted. I thank all of the teachers in my faculty for their moral support during the data collecting years. In particular, Daljit Bansal, who watched and coded an episode of the intervention and then provided feedback after trialling similar strategies with her own students. I sincerely thank the many students who were the participants in the intervention; especially those who gave their time to complete surveys, provide artefacts and participate in interviews. I also thank the parents of these students for allowing their participation. I thank very much, the family of Ali Abdi (deceased), who permitted the use of research materials despite a tragic accident. Ali was a most enthusiastic student who was not only an active participant in the research, he encouraged other students in his class to engage in the learning and in the research.

Dr. Peter Aubusson provided ongoing critical advice and acted as a critical friend, observer and editor, throughout the research and thesis preparation. I very much appreciate his encouragement, patience, company and coffee. A range of other support was provided by the UTS staff. For example the library staff provided support in helping to locate references; the Graduate School staff provided timely reminders about due dates; the Ethics committee were supportive throughout the research; and the UTS Conference Committee provided funding support for my attendance at two ASERA conferences at which audience members made a number of useful and supportive comments.

Finally, my most sincere thanks must go to my family and friends for their patience, support and encouragement over the duration of the thesis.
Publications and papers produced from this research

Publication

Conference Papers

Dedication

This thesis is dedicated to:

The students in my classes who engaged in the teaching experiment, and to those who went beyond, volunteering to participate more fully in the study. Without their support this research would not have been possible.

My three children; Catherine, David and Christopher, and to my wife Lynley, who have all provided much love, support and encouragement.
Table of Contents

Certificate of authorship/originality .. i
Acknowledgements ... ii
Publications and papers produced from this research .. iii
Dedication ... iv
List of Figures .. viii
List of Tables ... x
Abstract .. xi
Key Words .. xiv

Chapter 1 .. 1
 1.1 Introduction .. 1
 1.2 Background .. 2
 1.3 Nature and scope of the study ... 5
 1.4 An analogy for the photoelectric effect .. 6
 1.5 Purpose ... 11
 1.6 Significance ... 11
 1.7 Overview of the thesis .. 16

Chapter 2 .. 18
 2.1 Chapter Overview ... 18
 2.2 The nature of analogy ... 18
 2.3 Student’s developing analogies while learning science .. 31
 2.4 Analogies and constructivist learning theory ... 35
 2.5 The learning of difficult concepts in science .. 39
2.6 The call for research

2.7 Frameworks for using analogies in teaching science

2.8 Conclusion

Chapter 3

Methodology

3.1 Chapter overview

3.2 Background

3.3 Teaching experiments

3.4 Designing the activities

3.5 Site and context of the research

3.6 Data

3.7 Trustworthiness

3.8 Data Analysis

3.9 Reporting the study

3.10 Limitations

3.11 Ethics

3.12 Conclusion

3.13 Summary

Chapter 4

Data Analysis

4.1 Chapter Overview

4.2 Introduction

4.3 Pilot Study-The extraction of copper from copper carbonate

4.4 Reflection of light

4.5 Medical Imaging Techniques
4.6 A model for a solenoid valve ... 198
4.7 The photoelectric effect .. 217
4.8 Summary ... 243
Chapter 5 ... 245
How the co-generation of analogies influences students’ learning of science 245
5.1 Preamble ... 245
5.2 Findings ... 247
5.3 Implications .. 258
5.4 Refining our knowledge of analogy for science teaching and learning 259
5.5 Further research ... 263
5.6 Conclusion ... 265
REFERENCES .. 267
Appendix 1 Consent Form... 285
Appendix 2a Science Activity Questionnaire .. 286
Appendix 2b Science Activity Questionnaire (rev.) 288
Appendix 3 Interview Questions ... 290
Appendix 4 Codes ... 291
Appendix 5 Lesson coding sheet ... 292
Appendix 6 Student question sheet (reflection) .. 293
Appendix 7 Photoelectric effect explained .. 294
Appendix 8 DET ethics approval requirements .. 295
Key Terms .. 296
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1</td>
<td>Analogy - a continuum of classification</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Schematic showing the methodological position of this research</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>This research has a vast amount of data from multiple methods</td>
<td>82</td>
</tr>
<tr>
<td>Fig. 4.3.1</td>
<td>Student 1 Response – Extraction of copper</td>
<td>109</td>
</tr>
<tr>
<td>Fig. 4.3.2</td>
<td>Student 2 - Response – Extraction of copper</td>
<td>110</td>
</tr>
<tr>
<td>Fig. 4.3.3</td>
<td>Student 3 - Response – Extraction of copper</td>
<td>111</td>
</tr>
<tr>
<td>Fig. 4.3.4</td>
<td>Yr 11 students demonstrating calcium carbonate</td>
<td>113</td>
</tr>
<tr>
<td>Fig. 4.3.5</td>
<td>Survey data for the Pilot Study</td>
<td>116</td>
</tr>
<tr>
<td>Fig. 4.3.3</td>
<td>Thankyou card – Student artefact – SA-230904-S5</td>
<td>126</td>
</tr>
<tr>
<td>Fig. 4.4.1</td>
<td>Candle and its reflection in a mirror (Photo taken by author)</td>
<td>129</td>
</tr>
<tr>
<td>Fig. 4.4.2</td>
<td>Student sketch of the reflection from a candle as seen from an angle in a mirror located in a dark room (SA180506RP-11Ph)</td>
<td>130</td>
</tr>
<tr>
<td>Fig. 4.4.3</td>
<td>(V1-V12) Series of phone video captures-Reflection Role play</td>
<td>132-136</td>
</tr>
<tr>
<td>Fig. 4.4.4</td>
<td>Group One being observed by another teacher</td>
<td>139</td>
</tr>
<tr>
<td>Fig. 4.4.5</td>
<td>The student on the right is demonstrating that multiple flame images can be seen only from a side-on position</td>
<td>140</td>
</tr>
<tr>
<td>Fig. 4.4.6</td>
<td>Group Two (2007) Working on the idea that light bounces back and forth between a mirror and a layer of “artificial atmosphere” composed of carbon dioxide that surround the flame. (Student comment-V170307-11Ph-RP – Reflection)</td>
<td>141</td>
</tr>
<tr>
<td>Fig. 4.4.7</td>
<td>(a) Demonstrating the removal of a sheet of aluminium from the back of a mirror and (b) showing the thickness of the mirror’s glass</td>
<td>142</td>
</tr>
<tr>
<td>Fig. 4.4.8</td>
<td>(a)-(g) Student’s diagram to explain how information is sent through an optical fibre (SA180506-11Ph-RP – AE-H).</td>
<td>147-150</td>
</tr>
<tr>
<td>Fig. 4.5.1</td>
<td>Year 12 students (S1 & S2) developing a short role play about a gamma scan.</td>
<td>155</td>
</tr>
<tr>
<td>Fig. 4.5.2</td>
<td>Year 12 students (S1, S2 & S3) performing a short role play about a gamma scan.</td>
<td>157</td>
</tr>
<tr>
<td>Fig. 4.5.3</td>
<td>Yr 12 students (S4, S5 & S6) role playing the use of Tc99m in gamma scanning.</td>
<td>158</td>
</tr>
</tbody>
</table>
Fig. 4.5.5 Group One rehearsing a short role play to demonstrate how some ultrasound energy is reflected from a tissue boundary while the rest is transmitted into the tissue. 161

Fig. 4.5.6 Group Two students having fun whilst drafting a role play about the reflection of ultrasound 162

Fig. 4.5.7 (a) & (b) Doppler Ultrasound demonstrations 163

Fig. 4.5.8 Five students in a laboratory, actively discussing how to role play an aspect of MRI. 165

Fig. 4.5.9 Annotated images from a short role play about MRI (VT-200905-RP-Ph) 181-183

Fig. 4.6.1 Students mapping magnetic fields (V-170605-M-11Ph) 199

Fig. 4.6.2 Typical student response to “Draw a solenoid and describe what happens when it is turned on” SA-290606-M-11Ph-S5. 201

Fig. 4.6.3 Student proudly showing his initial sketch of a possible solenoid valve design to the camera. (V-290606-M-11Ph) 203

Fig. 4.6.4 Students collecting materials for their model solenoid valves (V-290606-M-11Ph) 205

Fig. 4.6.5 Group 05-S building a model solenoid (V-170605-M-11Ph) 206

Fig. 4.6.6 (a) Group 05-E testing an idea (b) Group 05-E’s more refined model (V-170605-M-11Ph) 206

Fig. 4.6.7 (a) Solenoid on-tap open (b) Solenoid off-tap closed (V-170605-M-11Ph) 207

Fig. 4.6.8 Group 05-K/N Solenoid model – diagram 208

Fig. 4.6.9 A model that used gravity (V-170605-M-11Ph) 208

Fig. 4.6.10 Two groups working on their model solenoid valves (2006) (V-290606-M11Ph) 209

Fig. 4.6.11 (a) Students adjusting their model (b) The solenoid turned on 213

Fig. 4.6.12 Diagram for Students response (1) 215

Fig. 4.6.13 Diagram for Students response (2) 216

Fig. 4.7.1 Student’s mapping table for a photoelectric analogy SA-130606A-CF-12PH 231

Fig. 4.7.2 Diagrams from students’ answers to an examination question about the photoelectric effect. SA-092006-THSC-Q30(c). 238
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Mapping attributes and relations in an analogy for the photoelectric experiment</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Analogy Terms</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Studies about students generating analogies</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Comparison of models of teaching with analogies</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Record of episodes presented in Chapter 4</td>
<td>71</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Episodes conducted but not formally reported on in Chapter 4 of the Thesis</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>ANOVA: single factor comparison between two Year 11 Physics classes’ understanding of multiple image formation from a candle reflection displayed in written answers completed under test conditions 5/6 weeks after the intervention.</td>
<td>152</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Responses to questions asked during the Focus Phase of the Solenoid Modelling episode in 2006 (SA20060611Ph)</td>
<td>202</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Optional responses to the Questionnaire (SA- 080606-A-12Ph)</td>
<td>232</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Codes used to identify data collected during this research.</td>
<td>291</td>
</tr>
</tbody>
</table>
Abstract

Science educators often use analogies to help students develop understanding, but successful learning where students develop their own analogies has rarely been reported (Harrison, 2006). This research sought to investigate how the co-generation of analogies influenced students’ learning of science. It stemmed from the author’s scholarly interest in helping students understand the more difficult science concepts through analogical activities. The use of analogies as tools for learning encourages students to build on what they already know and understand. This research was underpinned by a constructivist epistemology.

A pilot study was conducted and this led to the development of four research questions:

a. How do students develop analogies?

b. How does the co-generation of analogies influence student engagement with science?

c. Do students develop deep understanding through the co-generation of analogies?

d. How does a teacher support students in the co-generation of analogies?

The literature that underpins the theoretical framework for this study is drawn from two main areas. The first relates to learning science through the construction of meaning (Freyberg & Osborne, 1985) and the second relates to the nature of analogy (Gentner, 1983) and its use in learning science (Harrison & Treagust, 2006).

A teaching experiment methodology (Brown, 1992; Confrey & Lachance, 2000) suited this study of learning through analogy in school science because it provides a sound framework for a teacher exploring and scrutinising a teaching approach with his own students during the course of regular timetabled lessons. A large amount and variety of data were collected during 24 episodes of the teaching experiment. The teaching experiment involved the application of a teaching intervention with senior high school, chemistry and/or physics students (16–18 years of age). The intervention required students to develop analogies with the purpose of showing and enhancing their understanding of science concepts. Throughout each application of intervention students were supported by each other and by the teacher.
The analogy based activities included role play, model building and writing. The discussions that occurred throughout these activities were integral to the analogy refining process. Hence, the resulting analogies were co-generated.

The following conjecture was qualitatively investigated using participatory enquiry.

When students develop their own analogies (supported by their teacher) in the process of learning science, they will be able to demonstrate deep understanding about the concepts being studied.

This conjecture was founded in the literature; supported by personal experience and a pilot study; and tested through several teaching episodes.

A large amount and variety of data were collected during the teaching experiment. These data have been used in providing “rich” (detailed) (Denzin & Lincoln, 2008, p. 16) and “thick” (based on multiple perspectives) (Lincoln & Guba, 1985, p. 316) descriptions of 13 episodes in which students developed their own analogies while learning science. Similar episodes have been grouped together and presented in five vignettes.

Findings from the vignettes have been used to formulate conclusions. Data from the episodes reveal that in general, students who participated in the intervention enjoyed becoming actively engaged in analogical learning.

In all applications of the intervention the majority of students were able, with support, to develop and use their own analogies to foster and display appropriate deep understandings about complex science concepts. By developing, using and sharing analogies, students made their conceptions and misconceptions ‘visible’. In the supportive classroom environment, the identification of and discussion about students’ alternative conceptions and misconceptions assisted students to develop appropriate scientific understandings. In general the understandings developed were persistent over long periods of time.

The data suggests that co-generating analogies enhances student engagement and leads to deep understanding of challenging science concepts. It is thus concluded that the co-
generation of analogies for science phenomena contributes positively to students’ learning in science.
Key Words

Alternative conception, analogy, base, co-construction, engagement, episode, FAR guide, intervention, mapping, metaphor, misconception, model, relation, representation, role play, scholarly teacher, target, teacher/researcher, teaching experiment, understanding, vignette.