An investigation into the recovery of ignitable liquid residues from entomological samples using solid-phase microextraction

LISA MINGARI

A thesis submitted for the

Degree of Doctor of Philosophy (Science)

University of Technology, Sydney

March, 2011

Somehow I can't believe that there are any heights that can't be scaled by a man who knows the secrets of making dreams come true. This special secret, it seems to me, can be summarized in four C s. They are curiosity, confidence, courage, and constancy, and the greatest of all is confidence. When you believe in a thing, believe in it all the way, implicitly and unquestionable.

Walt Disney

Certificate of Authorship and Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Lisa Mingari

25/03/2011

Signature of Candidate

Acknowledgements

It has taken a long time to get here, but I have finally finished this PhD. This project has presented so many challenges over the years, and I would definitely not have come this far, if it was not for an amazing network of friends and family who have helped me along the way.

To my supervisors, James and Brian, thank you for being there to answer my questions (I have had a lot over the years!), for providing me with invaluable advice and feedback, despite the fact that I now live in another state. I know this has not been an easy PhD to supervise, and I appreciate the time you have taken to help me identify flies, locate a field site, run data, make sense of results and much, much more.

To the professional officer extraordinaire, Jim Keegan, I am so privileged to have had your help with the GC-MS. I cannot begin to thank you for all the times you have looked over my shoulder and provided useful advice.

To the uni crowd and especially Mark, Kate, Christine, Laura and Ellen, you have all been a massive support (and distraction) over the years. Your friendship has meant a lot to me. A special thank you to Ellen and Kate for helping me count flies, (I know how much you loved that!). Laura thanks for chatting with me when I was home alone in a new state, and Ellen, thank you for motivating me to finally finish this thesis. I do not know what I would have done without your input.

To my wonderful friends in Victoria: Ben, Katie, Czajkowska, Runa and Alex. You guys have kept me sane, and have helped me juggle work and this PhD, so for that I truly thank you. A special thanks to Runa for giving me advice and listening to me whinge.

To my amazing family: Melina, Paran, Corey, Carla, Melanie, Madison, Gemma, Darcy, Phoebe, mum and dad, thank you for the constant support and love you have always given me. Mum, your phone calls have made all the difference. Dad, how can I start

to list all the things you have done to help me. If it was not for you, I could not have possibly done my fieldwork experiments. I know it was hard work, and not a particularly nice job. Thank you for helping me make the cages, put out and visit all the piglets at Holsworthy, thank you for letting me put rotting piglets in your car, thank you for letting me burn piglets in the backyard, but most of all, thank you for being such a great dad!

Last but certainly not least, to my husband Shaun. I think you will finally have your wife back now. Thank you for putting up with me, I know it has not been easy. I count myself blessed to have found someone as wonderful as you. I doubt there would be many people willing to spend their weekends driving for hours to go and pick up pig carcasses! You have no idea how much your support, and bringing out the Billy has helped me through this. I can only hope I can give back as much as you have given. I cannot wait to spend some quality, stress-free time together!

Table of Contents

Certificate	of Authorship and Originality	III
Acknowled	gements	iv
Table of Co	ontents	vi
List of Figur	res	xi
List of Table	es	xvi
Abbreviatio	ons	xix
Definitions		xxi
Abstract		xxvii
CHAPTER 1	: INTRODUCTION	2
1.1 Pre	amble	2
	ensic Entomology	
1.2.1	Medico-Legal Forensic Entomology	
1.2.2	Post-Mortem Interval (PMI)	
1.3 Inse	ects	
1.3.1	Calliphoridae (Blow Flies)	
1.3.2	Sarcophagidae (Flesh Flies)	
1.3.3	Muscidae (House Flies)	5
1.3.4	Necrophages	5
1.3.5	Waves of Insects	7
1.3.6	Stages of Decomposition	9
1.4 Ent	omotoxicology	11
1.5 Fire	e Investigation	14
1.5.1	Arson	14
1.5.2	Fire and Death	15
1.5.3	Fire Debris Analysis	16
1.5.4	Steam Distillation	18

1.5	.5 Solvent Extraction	19
1.5	.6 Headspace Analysis	19
1.6	Chromatographic Analysis	21
1.6	.1 Characterisation of Petroleum Distillates	25
1.7	Aim and Scope of Thesis	27
1.8	Outline of Thesis	28
СНАРТЕ	R 2: METHOD DEVELOPMENT	31
2.1	Overview	31
2.2	Ignitable Liquids	31
2.3	Chemical Analysis	32
2.3	.1 Initial GC-MS Method	34
2.3	.2 Initial Oven Temperature	40
2.3	.3 Temperature Programs	43
2.3	.4 Flow Rates and Pressure	48
2.3	.5 Mass Range	52
2.4	Sample Preparation Technique	52
2.4	.1 Fibre Coating	59
2.4	.2 Inlet Liner	59
2.4	.3 Fibre Blanks	61
2.4	.4 Metal Cans	62
2.4	.5 Headspace Conditions	64
2.5	Conclusion	67
CHAPTE	R 3: SMALL-SCALE EXPERIMENTS	69
3.1	Overview	69
3.2	Introduction	69
3.3	Experimental Design	77
3.3	.1 Study Site	77
3.3	.2 Food Source	77
3.3	.3 Insect Samples	7 9
3.3	.4 Ignitable Liquids	80

3.3.5	Sample Size	82
3.3.6	Larval Sampling Conditions	83
3.4 Ma	terial and Methods	85
3.4.1	Experimental Design	85
3.4.2	Sample Preparation	86
3.4.3	Sample Analysis	86
3.4.4	Data Analysis	87
3.5 Res	sults and Discussion	91
3.5.1	Study Site	91
3.5.2	Food Source	93
3.5.3	Insect Samples	94
3.5.4	Chemical Analysis	95
3.5.5	Data Analysis	101
3.6 Cor	nclusion	104
CHAPTER 4	: FURTHER METHOD DEVELOPMENT	106
4.1 Ove	erview	106
4.2 Che	emical Analysis	106
4.2.1	Acquisition Mode	106
4.2.2	Injection Mode	109
4.2.3	Detector Sensitivity	111
4.3 San	nple Preparation Technique	113
4.3.1	Storage	113
4.3.2	Sampling Containers	115
4.4 Me	thod Validation	121
4.4.1	Specificity	122
4.4.2	Precision	124
4.4.3	Robustness	126
4.4.4	Limit of Detection	130
4.5 Cor	nclusion	131
	: FIELDWORK EXPERIMENTS	127

5.1 Overview	134
5.2 Introduction	134
5.3 Experimental Design	138
5.3.1 Study Site	138
5.3.2 Food Source	140
5.3.3 Insect Samples	148
5.3.4 Ignitable Liquids	149
5.4 Material and Methods	149
5.4.1 Study Site	149
5.4.2 Experimental Design	150
5.4.3 Sample Preparation	159
5.4.4 Sample Analysis	160
5.4.5 Data Analysis	160
5.5 Results and Discussion	166
5.5.1 Study Site	166
5.5.2 Observations	173
5.5.3 Insect Samples	181
5.5.4 Chemical Analysis	184
5.5.5 Data Analysis	193
5.6 Conclusion	198
CHAPTER 6: CONCLUSIONS AND FURTHER WORK	201
6.1 Summary of Findings	201
6.1.1 Small-Scale Experiment	202
6.1.2 Fieldwork Experiments	202
6.2 Collection and Storage Protocol	203
6.3 Further Work	204
REFERENCES	208
Appendix A: Macro used for GC-MS Analysis	224
Appendix B: Macro used for Small-Scale Experiments	226
Appendix C: Macro used for Fieldwork Experiments	229

Appendix D: Publications......232

List of Figures

FIGURE 1.1:	The life cycle of a blow fly: the multiple stages from egg to adult6
FIGURE 1.2:	Extracted ion chromatograms for kerosene indicating the classes of
compounds s	separated from the total ion chromatogram24
FIGURE 1.3:	Total ion chromatograms for petrol (top) indicating the C ₃ alkyl benzene
group, and fo	or kerosene (bottom), indicating the equidistant <i>n</i> -alkane peaks26
FIGURE 2.1:	Chromatogram obtained for a 10 μL petrol standard using Method 135
FIGURE 2.2:	Chromatograms obtained for petrol standards using the temperature
programs fro	m Methods 2 to 538
FIGURE 2.3:	Chromatograms obtained for kerosene standards using the temperature
programs fro	m Methods 2 to 540
FIGURE 2.4:	Chromatograms obtained for a 1 μL kerosene standard using Method 5
with initial G	C oven temperatures of (from top to bottom) 30 °C, 35 °C, 40 °C, 50 °C
and 60 °C	42
FIGURE 2.5:	Chromatograms obtained for a petrol standard using the GC-MS
Methods 6 to	0 1046
FIGURE 2.6:	Chromatograms obtained for a kerosene standard using the GC-MS
Methods 6 to	0 1048
FIGURE 2.7:	Chromatograms obtained for petrol standards using Method 5 and a
variety of flo	w rates and pressures50
FIGURE 2.8:	Chromatograms obtained for kerosene standards using Method 5 and a
variety of flo	w rates and pressures52
FIGURE 2.9:	The SPME fibre used throughout these experiments with the important
components	required for manual applications labelled56
FIGURE 2.40.	The SPME fibre and fibre holder in the GC-MS inlet57

FIGURE 2.11: Chromatograms obtained from petrol standards run using a splitless
liner (top) and a SPME liner (bottom)60
FIGURE 2.12: Chromatograms obtained from the fibre that was run following a 3
minute desorption in the injection port of GC61
FIGURE 2.13: Chromatograms obtained from kerosene standards run without
adhesive tape on the metal can (top) and with adhesive tape on the metal can
(bottom)63
FIGURE 3.1: Example of a fresh petrol profile (top) and an example of an evaporated
petrol profile (bottom)71
FIGURE 3.2: Food source (lamp neck chops) used throughout the small-scale
experiments (with adipose tissue that prolonged burning highlighted)78
FIGURE 3.3: 500 mL plastic containers within a 5 L container, containing the meat
used in the small-scale experiments79
FIGURE 3.4: The Australian sheep blow fly, Lucilia cuprina80
FIGURE 3.5: Chromatogram obtained from fly larvae feeding on meat that was burnt
with (5 mL) of kerosene (top) and (10 mL) of kerosene (bottom)82
FIGURE 3.6: Chromatogram obtained from fly larvae that were homogenised (top)
prior to analysis and fly larvae that were unaltered (bottom) prior to analysis84
FIGURE 3.7: Scores plot generated from manual integration and data computed using
a Visual Basic macro90
FIGURE 3.8: Maximum daily temperatures recorded for the four datasets over the
duration of the laboratory controlled small-scale experiments92
FIGURE 3.9: Minimum daily temperatures recorded for the four datasets over the
duration of the laboratory controlled small-scale experiments92
FIGURE 3.10: Mean daily temperatures recorded for the four datasets over the
duration of the laboratory controlled small-scale experiments93
FIGURE 3.11: The appearance of the food source post-burn using an ignitable liquid
with the areas that experienced the greatest damage highlighted94

FIGURE 3.12:	Scores plot generated for the small-scale experiments	101
FIGURE 4.1:	The chromatograms obtained using the full scan mode (top) and the	
selective ion	monitoring acquisition mode (bottom).	108
FIGURE 4.2:	The chromatograms obtained using the split, splitless and pulsed	
splitless injec	tion modes	111
FIGURE 4.3:	The chromatograms obtained from applying the tune multiplier voltage	ge
and increasin	ng this voltage by 200 and 400 V	113
FIGURE 4.4:	Chromatograms obtained from petrol standards that were stored at	
room temper	rature, in the fridge and in the freezer for five days and then analysed	
using SPME-0	GC-MS	115
FIGURE 4.5:	The 1L, 500 mL, 250 mL and 100 mL metal cans and 20 mL SPME glass	;
vial that were	e selected for headspace sampling	117
FIGURE 4.6:	Chromatograms obtained for petrol standards using a variety of	
headspace sa	ampling containers	119
FIGURE 4.7:	Chromatograms obtained for kerosene standards using a variety of	
headspace sa	ampling containers	121
FIGURE 4.8:	The chromatogram obtained for a highly saturated sample of diesel us	sing
	C-MS method presented in the small-scale experiments	_
FIGURE 4.9:	The chromatogram obtained for a highly saturated sample of mineral	
	sing the SPME-GC-MS method presented in the small-scale experiment	S
		123
FIGURE 4.10:	Chromatogram obtained from a larva (single maggot) that had been	
	burnt meat	124
FIGURF 4.11:	The chromatograms obtained from standards of petrol (top) and	
	ettom) that were extracted under less than optimum conditions	127
	The chromatograms obtained from standards of petrol (top) and	
	ottom) extracted using a different fibre coating (stable flex) to the one t	hat
·	ed thus far (PDMS-DVB).	

FIGURE 4.13: The chromatograms obtained for petrol (top) and kerosene (bottom)
that were stored uncovered in a fume hood for three hours129
FIGURE 5.1: Southern (top) and eastern (bottom) aspect of the fieldwork site 140
FIGURE 5.2: Piglet loosely wrapped in two strips of fabric (30 x 20 cm) to mimic
clothing142
FIGURE 5.3: Milk crate covered in wire mesh that was used to protect piglets from
scavengers
FIGURE 5.4: 10 L plastic containers used to house piglets fitted with insect screen
(top) and fabric (bottom)147
FIGURE 5.5: Layout of fieldwork site indicating location of individual sites together
with characteristic identifiers152
FIGURE 5.6: Piglets indicating the degree of burning displayed for each sample set
158
FIGURE 5.7: Scores plots constructed for the fieldwork data using 3-point, 11-point,
17-point and 25-point integration widths165
FIGURE 5.8: Scree plot that provides a measure of the variability of each of the
principal component transformations166
FIGURE 5.9: Minimum daily temperatures recorded for the 24 sites during
Experiment 1
FIGURE 5.10: Minimum daily temperatures recorded for the 24 sites during
Experiment 2
FIGURE 5.11: Maximum daily temperatures recorded for the 24 sites during
Experiment 1
FIGURE 5.12: Maximum daily temperatures recorded for the 24 sites during
Experiment 2
FIGURE 5.13: Mean daily temperatures recorded for the 24 sites during Experiment 1
172

FIGURE 5.14:	Mean daily temperatures recorded for the 24 sites during Experiment 2
	172
FIGURE 5.15:	Piglet from Experiment 2 that was severely affected by ants removing
dipteran eggs,	larvae and feeding directly on the surface of the piglet175
FIGURE 5.16:	Piglet derived from the unburnt sample set in Experiment 2 that was
reduced to bo	nes at the fastest rate (five days) of all the piglets in the fieldwork
experiments	180
FIGURE 5.17:	Piglet with fungal growth on the surface of its body181
FIGURE 5.18:	Chromatograms obtained on Day 5 of Experiment 1 from larval samples
reared on the	petrol, kerosene, burnt and unburnt sample sets, respectively186
FIGURE 5.19:	Scores plots constructed for Experiments 1 and 2 with the volatile
organic compo	ounds removed (top) and with the volatile organic compounds present
(bottom), cons	structed using an 11-point integration width194

List of Tables

TABLE 1.1:	Main groups of fauna associated with decomposing remains and the
characterist	ics of these remains for each of the eight waves of carrion-feeding insects
	8
TABLE 1.2:	The distinctive characteristics of the different stages of decomposition10
TABLE 1.3:	Characteristic ions for specific groups of compounds22
TABLE 1.4:	Compounds characteristic to particular classes of petroleum distillates27
TABLE 2.1:	The target compounds and corresponding retention times (min) for petrol
and keroser	e that were used throughout Chapters 2 and 3 for identification purposes
	33
TABLE 2.2:	The temperature programs that were tested on petrol and kerosene
standards to	determine which provided the best chromatographic resolution in the
shortest tim	e36
TABLE 2.3:	The temperature programs that were tested on standard petrol and
kerosene sa	mples to determine which provided the best chromatographic resolution
in the short	est time44
TABLE 2.4:	Target compounds detected for petrol standards run using a variety of
headspace t	emperatures (°C) and exposure times (min) where (Y) indicates the target
compound v	was present and (N) indicates the target compound was absent65
TABLE 2.5:	Target compounds detected for kerosene standards run using a variety of
headspace t	emperatures (°C) and exposure times (min) where (Y) indicates the target
compound v	was present and (N) indicates the target compound was absent66
TABLE 3.1:	GC-MS instrument parameters used throughout the small-scale
evneriment	87

TABLE 3.2:	Summary of the results obtained for all replicates for the duration of the	
small-scale	experiments. Samples are indicated as positive for petrol (P) or kerosene	
(K) or negat	ive for an ignitable liquid (N)10	0
TABLE 4.1:	The mass-to-charge ratios used for the selective ion monitoring	
acquisition	mode representing the major ions produced from the target compounds	
selected	10	9
TABLE 4.2:	Ratios of 1,2,4-trimethylbenzene:1,2,3-trimethylbenzene found for a	
petrol stand	dard computed through multiple direct injections using an autosampler	
(Column 1)	and the SPME-GC-MS method (Columns 2 and 3)12	5
TABLE 4.3:	The signal-to-noise ratios obtained for 1-methyl-2-ethylbenzene (petrol)	
and decane	(kerosene) in diluted samples of the ignitable liquids of interest13	0
TABLE 5.1:	Description of the Crow-Glassman scale	5
TABLE 5.2:	Co-ordinate and sample set information for each of the 24 fieldwork sites	5
		1
TABLE 5.3:	The distance between individual sites where the shortest distances have	
been highlig	ghted15	3
TABLE 5.4:	Weights of piglets used throughout fieldwork experiments	5
TABLE 5.5:	GC-MS instrument parameters used throughout the fieldwork	
experiment	s	0
TABLE 5.6:	The target compounds and corresponding retention times (min) for petro	١١
and keroser	ne that were used throughout the fieldwork experiments for identification	
purposes	16	2
TABLE 5.7:	The approximate percentage of tissue removed by insect activity when	
the majority	y of insects present entered the pupation stage throughout the fieldwork	
experiment	s17	7
TABLE 5.8:	A list of the insects that were reared on, and subsequently emerged from	ì
the niglets t	hat were exposed to the elements at the fieldwork site 18	2

TABLE 5.9: Summary of the chromatographic results obtained for all the
entomological samples collected throughout Experiment 1. Samples are denoted as
positive for petrol (P), kerosene (K), negative for an ignitable liquid (N), or (-) where a
sample was not collected187
TABLE 5.10: Summary of the chromatographic results obtained for all the
entomological samples collected throughout Experiment 2. Samples are denoted as
positive for petrol (P), kerosene (K), negative for an ignitable liquid (N), or (-) where a
sample was not collected188

Abbreviations

Standard Abbreviations

ACS Activated Charcoal Strip

ASTM American Society for Testing and Materials

e.g. Latin: exempli gratia, "for example"

EIC Extracted Ion Chromatogram

et al. Latin: et alia, "and others"

GC Gas Chromatograph

GC-MS Gas Chromatograph-Mass Spectrometer

i.e. Latin: id est, "that is"

MS Mass Spectrometer

N.B. Latin: nota bene, "note well"

NFPA National Fire Protection Authority

NSW New South Wales

RT Retention Time

SIM Selected Ion Monitoring

TIC Total Ion Chromatogram

UTS University of Technology, Sydney

LPD Light Petroleum Distillate

m/z mass-to-charge ratio

MPD Middle Petroleum Distillate

Unit and Quantity Abbreviations and Symbols

°C degrees Celsius
g gram
hr hour
L litre
m metre

atomic mass unit

km kilometre
min minute
mL millilitre

amu

s second

eV electron volts

Prefix Abbreviations and Symbols

α alpha

β beta

 μ micro (10⁻⁶)

m milli (10⁻³)

c centi (10⁻²)

k kilo (10³)

% percentage

[®] registered trademark

There are words and phrases used in this thesis that have specific meanings in relation

to this work. These have been described in the text; however, some of these

definitions have been clarified below.

Absorption: The process in which a fluid permeates or is dissolved by a liquid or solid.

Accelerant: A substance, often an ignitable liquid, used to initiate a fire or increase the

rate of growth or spread of fire.

Adsorption: Is the adhesion of atoms, ions, biomolecules or molecules of gas, liquid,

or dissolved solids to a surface.

Ambient temperature: The fluctuating levels of heat in air.

Ant: An insect in the family Formicidae (order- Hymenoptera) which preys on carrion

feeding arthropods.

Ante-mortem: Prior to death.

Arson: The act of deliberately and maliciously setting a fire to destroy property or to

take a life.

Arthropod: Any of a large group of segmented invertebrate animals, such as insects

and spiders, with jointed legs and sometimes a hard, external skeleton.

Blow fly: A higher fly in the family Calliphoridae, also known as bottle flies.

Calliphoridae: The insect order commonly known as blow flies.

xxi

Carrion: Decaying animal flesh.

Chromatography: Is the collective term for a set of laboratory techniques for the separation of mixtures. It involves passing a mixture dissolved in a mobile phase through a stationary phase, which separates the analyte to be measured from other molecules in the mixture based on differential partitioning between the mobile and

stationary phases.

Coleoptera: The insect order commonly known as beetles.

Combustible liquid: Is a liquid that vaporises and forms flammable mixtures with air when in an open container or when heated. An important characteristic of a flammable liquid is its flashpoint. Flashpoint is the minimum temperature at which the vapour concentration near the surface of the liquid is high enough to form an ignitable

mixture. Any liquid with a flashpoint between 38°C to 93°C is considered combustible.

Decomposition: Post-mortem degenerative rotting of the corpse.

Desorption: The phenomenon whereby a substance is released from or through a surface. This process is the opposite of sorption (either adsorption or absorption).

Diptera: The insect order commonly known as true flies.

Egg: The characteristic reproductive unit of an adult female. Most carrion insects deposit eggs, but a few deposit first-instar larvae.

Entomology: The study of insects.

Entomotoxicology: The study of foreign substances in insects.

Flammable liquid: Any liquid with a flashpoint less than 38°C is considered to be a

flammable liquid. (See combustible liquid).

Gas chromatography: The separation of organic liquids or gases into discrete

compounds seen as peaks on a chromatogram (which indicates the relative amount of

each specific component). Separation is done in a column that is enclosed in an oven

held at a specific temperature or programmed to change temperature at a

reproducible rate. The column separates the compounds according to their affinity for

the material inside the column (stationary phase) and their boiling point.

Headspace: The gas phase in a container above the sample.

Ignitable liquid: Any liquid that is capable of promoting the spread of a fire, including

a flammable liquid, combustible liquid, or any other material that can be liquefied and

burned.

Incendiary fire: A fire demonstrated to be deliberately lit when referring to statistical

data.

Instar: Larval growth stages.

Larva: Soft-bodied, sexually immature, feeding stage of an insect life cycle; otherwise

known as a maggot for flies; plural is 'larvae'.

Larviposition: Eggs hatch within the adult female and are born as an active larva.

Maggot: See larva.

Maggot-mass: The collective, closely packed mass of higher fly larvae occurring in

decomposing carrion.

xxiii

Mass chromatograph: A representation of mass spectrometry data as a

chromatogram, where the x-axis represents time and the y-axis represents signal

intensity.

Mass spectrometry: A method of chemical analysis that vaporises then ionises, the

substance to be analysed, and then accelerates the ions through a magnetic field to

separate the ions by molecular weight. Mass spectrometry can result in the exact

identification of an unknown compound, and is a very powerful analytical technique,

especially when combined with chromatography.

Metamorphosis: Change in insects from larva to adult form.

Mobile phase: The part of the chromatographic system which carries the solutes

through the stationary phase. The mobile phases are either liquids or gases.

Moult: Shedding of the skin of one life phase.

Mouth hooks: The paired maxillary oral structures of a maggot.

Muscidae: The insect order commonly known as house flies.

Necrophagous: Carrion-feeding insects; feeding on dead bodies.

Omnivorous: A tendency to eat anything and everything.

Oviposition: Egg-laying.

Post-mortem: After death.

Post-mortem interval (PMI): Time elapsed since death.

xxiv

Prepuparium: Inactive post-feeding larval stage in which the body is contracted.

Pupa: That immature stage between the larva and adult in insects having complete metamorphosis. This is a stage of major transformation. Among higher flies the pupa is inside the puparium.

Pupariation: The immobilisation of the post-feeding maggot with the shrinking, hardening and darkening of its outer skin.

Puparium: A globular, barrel-shaped container formed from the retained, hardened skin of the third larval instar and inside which the pupa is formed.

Pupation: To change form into a pupa in the process of transforming from the larval stage to the adult.

Putrefaction: The foul smelling, anaerobic decomposition of moist or wet organic matter by micro-organisms.

Pyrolysis: A process where thermal energy (heat) breaks chemical bonds in polymeric materials. The resulting fragments are often volatile. Pyrolysis provides the fuel for matrices that do not undergo unassisted combustion. Wood burns because it pyrolyses into gas phase volatiles.

Pyrolysis products: The products formed as a result of the pyrolysis process.

Sarcophagidae: The insect order commonly known as fly flies.

Sheep strike: The condition produced by the development of blow fly maggots on living sheep.

Solid-phase microextraction (SPME): A sample preparation technique that involves the use of a fibre coated with an extracting phase, that can be a liquid (polymer) or a solid (sorbent), which extracts different kinds of analytes (both volatile and non-volatile) from different kinds of media that can be in liquid or gas phase.

Species: A group of potentially interbreeding individuals that will produce reproductively viable offspring.

Stationary phase: In chromatography, the stationary phase is the non-mobile phase that is contained in the chromatographic bed.

Succession: Groups of species successively occupying a given habitat as the conditions of that habitat change.

Suspicious fire: A fire, demonstrated to be possibly deliberately lit, where no other cause is evident when referring to statistical data.

Volatility: The ease with which a substance passes from being a solid or liquid to being a vapour.

Wasp: Any winged insect in the order Hymenoptera, generally possessing a sting. These may be scavengers, predators or parasites of organisms at carrion.

Weathering: The evaporation of the more volatile compounds of an ignitable liquid resulting in a greater concentration of the less volatile compounds. This may be due to environmental conditions or due to exposure to extreme heat of a fire.

Abstract

The analysis of fire debris can indicate the presence of an ignitable liquid, but the volatility of these substances means that the likelihood of detecting them diminishes over time. It is proposed in this thesis that when a scene contains burnt human remains, entomological samples can be analysed for the detection of ignitable liquids, as an alternative to fire debris. It is hypothesised that a larva's ability to invade areas protected from the external environment, such as the natural body openings of cadavers, and accumulate substances present in the tissue in which they are feeding, will extend the period in which ignitable liquids can be detected.

In small-scale experiments conducted under controlled laboratory conditions, petrol and kerosene were detected in larvae of the blow fly *Lucilia cuprina*, (Wiedemann) (Diptera: Calliphoridae) that had been fed on meat burnt using these ignitable liquids. Four sample sets of meat, each with six replicates (24 meat samples in total) were prepared. The first and second sets were burnt using petrol and kerosene, respectively. The final two sets were control groups. Six larvae were collected daily from each of the 24 meat samples for a period of five days. Once the adults had emerged, six adults and six puparia were also collected from each meat sample. All of the entomological samples collected were analysed using solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS). It was found that larvae of the blow fly *Lucilia cuprina* can be used in a small-scale setting to detect both petrol and kerosene from burnt substrates for at least five days. Positive results for the ignitable liquids of interest were also obtained for a limited number of adult flies and puparia.

Given these findings, further research was conducted using a more realistic experiment (conducted in duplicate) that mirrored a casework scenario more closely. Sample sets identical to those in the small-scale experiments were prepared using 24 piglets, each approximately 1.39 kg in weight, instead of the meat samples. These piglets were placed a minimum of 51 m apart at the Holsworthy Military Area in New

South Wales, Australia, for three days. After this time, the piglets were transferred to a controlled laboratory. It was found during these fieldwork experiments that petrol and kerosene could be successfully detected in larvae for as long as eight days, and in the adult and puparia samples for at least one month. These findings confirm the significant advantage of using entomological samples as an alternative to fire debris, in that they extend the period available for sampling volatile ignitable liquids by at least one month. In particular, puparia can withstand changing climatic conditions, and unlike the larvae and adults, are immobile and hence could be found close to human remains even after considerable time has elapsed.