PROFESSIONAL WORK EXPERIENCES OF RECENT AUSTRALIAN INFORMATION TECHNOLOGY GRADUATES

Srivalli Vilapakkam Nagarajan

A thesis
presented to the University of Technology, Sydney
in partial fulfilment of the
requirement for the degree of
Doctor of Education

Faculty of Arts and Social Sciences
2011
CERTIFICATE OF AUTHORSHIP/ORIGINALLITY

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

__
Signature of Student
ACKNOWLEDGEMENTS

The first thanks must go to my two principal supervisors, Professor David Boud (Education) and Professor Jenny Edwards (Information Technology) whose expertise in their respective fields, timely guidance, direction and support throughout my doctoral candidature was critical to the successful outcome of this work. I am also very grateful for your never-ending encouragement and motivation on numerous occasions that assisted me to overcome many challenges that I faced during my study. I appreciate your patience with me over the past five years of my doctoral journey. Thank you Jenny and David for your generous contribution to improve the structure and the presentation of this thesis.

I am very thankful to the twenty four participants (IT graduates in practice) who so generously devoted their time and shared their work experiences through attendance at interviews or participation in online surveys. This study would not have been possible without your willingness to share your workplace and university experiences.

Thanks are due to my parents and my brother who have motivated me from my childhood to follow my passion and dream of becoming a qualified researcher and professional. Thank you for your constant love and support. I would like to say a special thank you to my father for giving me immeasurable love and affection, having confidence in my abilities and for helping me understand the true meaning of life. I miss you dad. My grandparents who showered their love and blessings on me during my childhood years and beyond also deserve my thanks.

I would like to thank the numerous researchers, academics and conference reviewers who have provided valuable feedback on my research papers and presentations.

Finally, I would like to thank UTS for providing me with the best facilities and a pleasant environment during my study.
ABSTRACT

There is an increasing expectation amongst students and employers in professional fields such as Information Technology (IT) that university studies will provide sufficient skills to enable graduates to find employment in the industry. However, little research, particularly in the IT field, has been carried out in following graduates into their professional practice. The professional work experiences of recent Australian IT graduates are the focus of this thesis. Professional work experiences are defined in this thesis as the parts of a graduate’s work that cover professional or non-technical skills such as communication, teamwork etc.

In the IT education literature, there are a number of studies on IT technical skills but few on the non-technical aspects of professional work and those studies focus on the employers’ viewpoints. IT graduates’ viewpoints on the challenges they face at work, the typical professional skills requirements of their practice and how they acquired or developed them, the elements of their university study that are relevant to their work professional skills requirements and how well their studies prepared them to meet the professional needs of their practice are investigated in this study. An understanding of what the professional work experiences of recent Information Technology graduates in professional practice tell us about their university studies is sought by this thesis. Then the role of universities, employers, professional associations and graduates themselves in the professional preparation of IT graduates are examined.

Some key ideas from grounded theory (theoretical sampling, constant comparison, theoretical saturation, open coding, axial coding and selective coding) are used for data collection and analysis. Interviews and qualitative online surveys are the research methods used to capture recent Australian IT graduates’ professional work experiences.

It is shown in this research that IT graduates face a number of challenges when they first enter employment. Major categories of professional skills that IT graduates believe they require for their work are communication, time management, teamwork, working with people, working across cultures, project management, business skills and personal attributes. The study found that graduates’ professional skills are developed in multiple ways including academic, social, personal, professional and other work experiences or a combination of these. IT graduates in the study believe the most useful components of their
university studies are work placements and “real life like” projects. The perceived lack of preparation of IT graduates to face new, unfamiliar, unknown or unknowable situations is highlighted by the study. The findings demonstrate the complexity involved in the development of professional skills, how and where they are developed and who (university or employers or graduates) assumes responsibility for their development. Other findings suggest that some professional skills can be developed only outside the university studies.

Accordingly, it is argued in this thesis that the development of professional skills is a distributed responsibility and different players (professional faculties, employers, professional associations and graduates) have different contributions to make to the development of these skills. It is proposed that universities cannot be solely responsible for developing work ready IT graduates. It is suggested that universities take responsibility for preparing graduates to learn how to learn in uncertain situations, assisting with the graduates’ development of knowledge and awareness of work environments and helping in the graduates’ development of initial job expectations. It is argued that IT faculties need frameworks beyond graduate attributes in their degrees for the development and inclusion of specific professional skills for the IT profession; Employers should move away from thinking that adding topics to the IT curriculum would solve all their concerns about the lack of professional work skills in IT graduates and it is suggested that they take responsibility for training graduates when they commence work, facilitating workplace learning, increasing workplace socialisation and working with universities to provide work placement opportunities for students. It is urged that graduates to take personal responsibility for developing their professional skills both within and outside university studies. It is proposed that professional associations take responsibility for increasing IT students’ exposure to the IT industry through scholarships, research and job ready programs.

Given the results of this research and its recommendations, there is a need to raise the issue of the management of expectations of employers, universities and graduates of each other. It is clear that these may need to change before employer and academic concerns about skills of new IT graduates can be addressed.
2.4.1 IT Syllabi .. 22
2.4.2 IT skills and employment .. 25

2.5 Some issues in Information Technology education ... 26
2.5.1 Mismatch in expectations ... 26
2.5.2 Emerging work practices and the ability of educational institutions to meet the requirements of the industry .. 32

2.6 Employer perspectives of university graduates ... 35
2.6.1 Lack of professional skills .. 36
2.6.2 Some professional (non-technical) skills required .. 37

2.7 University perspectives of teaching and learning in IT ... 42

2.8 Industry relevant university curricula .. 43

2.9 Professional association perspectives ... 44
2.9.1 Lack of industry training/professional development of current staff 45
2.9.2 IT skills forecast and ACS initiatives .. 45

2.10 General graduate perspectives .. 48

2.11 IT specific graduate perspectives .. 53

2.12 Transition from education to workplace ... 54

2.13 Related research in other professional areas .. 55

2.14 The relevance of learning experiences .. 58

2.15 Summary of the focus of this research on professional skills and graduate perspectives 60

2.16 Research Questions .. 60

2.17 Conclusion ... 61

CHAPTER 3 RESEARCH DESIGN AND METHODOLOGY ... 63

3.0 Chapter overview ... 63

3.1 Research design considerations ... 63

3.2 Research methodology ... 63

3.3 Theory and its meaning in the context of this research ... 70

3.4 Research method ... 72
3.4.1 Introduction to grounded theory .. 73
3.4.2 Constant comparison technique ... 75
3.4.3 Theoretical comparisons .. 76
3.4.4 Theoretical sampling .. 77
3.4.5 Data collection methods .. 78
3.4.6 Thematic analysis ... 80
3.4.7 Summary of this study’s approach ... 81

3.5 Research procedures .. 85
3.5.1 Selection and exclusion criteria for participants ... 85
3.5.2 Recruitment procedures .. 86
3.5.3 Sampling techniques and size for this study .. 86
5.8.2 Meso level key findings .. 188

5.9 Implications of findings .. 188

5.10 Conclusion .. 192

CHAPTER 6 THE ROLE OF DIFFERENT PLAYERS IN THE DEVELOPMENT OF
PROFESSIONAL SKILLS OF IT GRADUATES .. 193

6.0 Chapter overview .. 193

6.1 Preparation of IT graduates for a supercomplex world .. 196

6.2 Universities cannot be solely responsible for developing work ready IT graduates 199

6.2.1 Foci of university studies .. 199

6.2.2 IT graduates have a personal responsibility to develop their professional skills both
within and outside University studies ... 200

6.2.3 What universities could be responsible for ... 201

6.3 IT faculties need frameworks beyond graduate attributes in their degrees for the
development and inclusion of specific professional skills for the IT profession 226

6.3.1 Generic graduate attributes should not be an add-on to existing courses 232

6.3.2 Cultural awareness and ability to work with cultures is a skill needed in IT but is often
absent from graduate attributes ... 233

6.4 Employers should move from thinking that adding topics to the IT curriculum would
solve their concerns about the lack of professional work skills in IT graduates 234

6.4.1 Curriculum changes alone cannot address the work readiness of IT graduates 235

6.4.2 Development of some professional skills takes time and new IT graduates are learners
in workplaces ... 238

6.4.3 What employers could be responsible for ... 243

6.5 Certain IT work skills are difficult to develop except on real world sites 251

6.5.1 Work placement and experience opportunities offer opportunities for the development
of professional skills .. 252

6.5.2 The role of professional associations in the professional skills development of
IT graduates ... 257

6.6 Enhancing IT student learning and learning outcomes .. 264

6.7 Conclusion ... 266

CHAPTER 7 CONCLUSION ... 269

7.0 Chapter overview .. 269

7.1 Achievement of the research aims .. 270

7.1.1 Answer to the main research question .. 270

7.2 Contributions to Body of Knowledge .. 274

7.2.1 Contribution to IT education and higher education literature 274

7.2.2 Implications for Practice .. 275

7.3 Limitations of this research .. 276

7.4 Future Research Opportunities ... 277

7.4.1 Holistic view of IT skills (technical and professional skills) .. 277
7.4.2 Causal relationships between graduates’ academic experiences and success in their graduate work experiences ... 277
7.4.3 Assessment of ‘generic skills’ or ‘graduate attributes’ ... 278
7.4.4 Generalisability of the study results ... 279
7.4.5 Development of ideas for curriculum design ... 280

7.5 Conclusion ... 280

REFERENCES ... 283

PUBLICATIONS ARISING FROM THIS RESEARCH ... 297

APPENDICES .. 298

Appendix A Consent Form .. 299
Appendix B Information Letter ... 300
Appendix C Illustrative Interview Questions ... 301
Appendix D Survey Questions ... 302
Appendix E Major categories, low level 1 and low level 2 categories for Theme 1 Professional Skills IT graduates believe are required for their work ... 310
Appendix F Relationship mapping from selective coding process ... 314
Appendix G Examples of open code and axial code development 321
LIST OF TABLES

Table 2.1 Primary focus of discipline areas described in Computing Curricula 2005 ... 24
Table 2.2 Overview of Australia’s ICT industry .. 26
Table 2.3 Employer expectations .. 30
Table 2.4 Skills believed to be required or lacking in graduates .. 38
Table 2.5 Some International research following graduates after graduation ... 50
Table 2.6 Evers and Rush model of four bases of competence for skill development during transition from university to work .. 56
Table 2.7 Aspects of knowledge for work .. 57
Table 2.8 Qualitative research characteristics and their applicability for this study .. 66
Table 2.9 Comparison of possible methodological approaches .. 66
Table 2.10 Philosophical views taken by this research ... 69
Table 2.11 Comparison of the Glaserian, Strauss and Corbin and my study’s approach ... 82
Table 2.12 (a) Profile of participants: Education, Experience and Responsibilities .. 89
Table 2.13 (b) Profile of the interviewed participants: Gender and Organisation Characteristics 90
Table 2.14 ACS IT Occupational Classifications .. 90
Table 2.15 Overview of the major data analysis steps .. 95
Table 2.16 Trustworthiness of this research .. 97
Table 2.17 Detailed task list for each coding stage ... 103
Table 2.18 Sample open codes .. 104
Table 2.19 Sample codes to illustrate transformation from concepts to different levels of categories 105
Table 2.20 Major category and its associated low level categories ... 106
Table 2.21 Sample memo to describe the relationship between two categories .. 107
Table 2.22 Relationship between Themes and research questions .. 113
Table 2.23 Professional skill requirements IT graduates believe they need for their work .. 114
Table 2.24 Major categories and low level 1 categories for Theme 1- Professional Skills IT graduates believe are required for their work .. 115
Table 2.25 Meeting management skills IT graduates require for their work .. 129
Table 2.26 Project management skills IT graduates require for their work ... 141
Table 2.27 Factors that contributed to the development of graduates’ professional skills .. 161
Table 2.28 Most useful aspects of university courses ... 166
Table 2.29 Areas of challenges for IT graduates at workplaces and related professional skills 171
Table 2.30 Graduate responses to university preparation for the workforce ... 180
Table 2.31 Road map for Chapter 6 listing topics for main Sections and subsections .. 195
Table 2.32 Cross-disciplinary application of IT .. 221
Table 2.33 Dreyfus’ model of skills acquisition ... 239
Table 2.34 Link between speed and mode of cognition .. 240
Table 2.35 SFIA levels of autonomy and responsibility .. 260
Table 2.36 ACS Framework for ICT program design as described in ACS (2008) ... 263
Table 2.37 ALTC Learning and Teaching Academic Standards Project 2010 Threshold Learning Outcomes for Engineering and ICT disciplines .. 268
Table 7.1 (a) Answers to research sub questions 1, 2, 3 and 4 .. 271
Table 7.1 (b) Answer to research sub question 5 .. 272
LIST OF FIGURES

Figure 1.1 Research domain and area of analysis ... 9
Figure 1.2 The V model of the structure of this thesis .. 12
Figure 2.1 Scope of Information Technology .. 17
Figure 2.2 Key stakeholders for IT education ... 19
Figure 2.3 Model of Expectations of employers, universities and graduates of each other ... 27
Figure 2.4 Gaps in Expectations and Gaps in Skills ... 28
Figure 2.5 The many and varied elements of Professional Practice 33
Figure 2.6 Dahlgren et al.’s (2008) model for understanding professional learning 57
Figure 3.1 Evolution of grounded theory .. 74
Figure 3.2 The grounded theory ‘data dance’ ... 76
Figure 3.3 The grounded theory analytic process ... 78
Figure 3.4 Theoretical sampling process flowchart ... 84
Figure 3.5 Research Design (Methodological Map) .. 84
Figure 3.6 Interview Design ... 92
Figure 3.7 Coding process used for data analysis in this study ... 103
Figure 3.8 Relationship between themes in the axial coding stage 108
Figure 3.9 Using a diagram to develop the core category .. 110
Figure 4.1 Relationship diagram for Professional Skills ... 157
Figure 5.1 Relationships between sources of professional skills and professional skills 164
Figure 5.2 Multiple relationships between the most useful aspects of university studies and the major professional skills identified in this study .. 170
Figure 5.3 Application of data analysis coding techniques ... 182
Figure 5.4 Relationship between themes in axial coding stage .. 183
Figure 5.5 Relationship between themes and core category or primary concern for all IT graduates ... 185
Figure 5.6 Strategies for being prepared for work challenges ... 189
Figure 5.7 Implications of study findings ... 191
Figure 5.8 Shared responsibilities for the development of professional skills of IT graduates ... 192
Figure 6.1 Conceptual model of graduate attributes showing career management and self-management skills ... 215
Figure 6.2 The USEM account of employability ... 215
Figure 6.3 Forces that impact curriculum change .. 236
Figure 6.4 Dubin’s model of technical updating ... 246
Figure 6.5 SFIA Framework ... 263
LIST OF ACRONYMS/ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTC</td>
<td>Australian Learning and Teaching Council</td>
</tr>
<tr>
<td>ABET</td>
<td>Accreditation Board for Engineering and Technology (USA)</td>
</tr>
<tr>
<td>ACDICT</td>
<td>Australian Council of Deans for Information and Communication Technology</td>
</tr>
<tr>
<td>ACM</td>
<td>Association of Computing Machinery</td>
</tr>
<tr>
<td>ACS</td>
<td>Australian Computer Society</td>
</tr>
<tr>
<td>ACS CPEP</td>
<td>Australian Computer Society Computer Profession Education Program</td>
</tr>
<tr>
<td>ACS F</td>
<td>Australian Computer Society Foundation</td>
</tr>
<tr>
<td>AIIA</td>
<td>Australian Information Industry Association</td>
</tr>
<tr>
<td>AQF</td>
<td>Australian Qualifications Framework</td>
</tr>
<tr>
<td>AUTC</td>
<td>Australian Universities Teaching Committee</td>
</tr>
<tr>
<td>CBOK</td>
<td>Core Body of Knowledge</td>
</tr>
<tr>
<td>CC1991</td>
<td>Computing Curricula 1991</td>
</tr>
<tr>
<td>CC2001</td>
<td>Computing Curricula 2001</td>
</tr>
<tr>
<td>DEEWR</td>
<td>Department of Education, Employment and Workplace Relations</td>
</tr>
<tr>
<td>DETYA</td>
<td>Department of Training and Youth Affairs</td>
</tr>
<tr>
<td>HECS</td>
<td>Higher Education Contributory Scheme</td>
</tr>
<tr>
<td>GSA</td>
<td>Graduate Skills Assessment</td>
</tr>
<tr>
<td>GPS</td>
<td>Graduate Pathways Survey</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communications Technology</td>
</tr>
<tr>
<td>ICT-Ed</td>
<td>ICT Education</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IEEE-CS</td>
<td>Computer Society of the Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>IS</td>
<td>Information Systems</td>
</tr>
<tr>
<td>MIS</td>
<td>Management Information Systems</td>
</tr>
<tr>
<td>NBN</td>
<td>National Broadband Network</td>
</tr>
<tr>
<td>SFIA</td>
<td>Skills Framework for Information Age</td>
</tr>
<tr>
<td>SIGITE</td>
<td>Special Interest Group for Information Technology Education</td>
</tr>
<tr>
<td>SME</td>
<td>Small to Medium Enterprises</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strengths Weakness Opportunities and Threats</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
</tr>
</tbody>
</table>
Some terms commonly used in this thesis are defined in this Section.

Axial coding: Crosscutting (series of interlinking) or relating concepts to each other. (Corbin and Strauss, 2008)

Categories: High-level concepts under which analysts group lower level concepts according to shared properties (Corbin and Strauss, 2008). In this research, a major category is comprised of one or more low level 1 categories. A Low level 1 category is comprised of one or more low level 2 categories.

Coding: Deriving and developing concepts from data (Corbin and Strauss, 2008)

Concepts: Words that stand for groups or classes of objects, events and actions that share some major common property(ies) though the property(ies) can vary dimensionally (Corbin and Strauss, 2008)

Constant comparison: The analytic process of comparing different pieces of data for similarities and differences (Corbin and Strauss, 2008)

Core category: A representation of the main theme of the research. It is the concept all other concepts will be related to. (Corbin and Strauss, 2008)

Data analysis: The examination of a substance (or system) and its components in order to determine their properties and functions, then the use of the acquired knowledge to make inferences about the whole. (Corbin and Strauss, 2008)

Deductive analysis: An analytic approach that uses a framework created and decided before the investigation (Reid, 2006)
Diagrams: Visual devices that depict relationships between analytic concepts (Corbin and Strauss, 2008)

Dimensions: Variations within properties that give specificity and range to concepts (Corbin and Strauss, 2008)

Employability Skills: Skills required not only to gain employment but also to progress within an enterprise so as to achieve one’s potential and contribute successfully to enterprise strategic directions (Business Council of Australia (BCA) and Australian Chamber of Commerce and Industry (ACCI), 2002)

Forcing: Act of forcing pre-existing or pre conceived ideas on the data by looking for evidence to support established ideas (Glaser and Strauss, 1967).

Generic skills: Non-technical skills such as communication skills, time management skills, teamwork skills, etc.. Also referred to as soft skills or non-technical skills, graduate attributes.

Grounded theory: A specific methodology developed by Glaser and Strauss (1967) for the purpose of building theory from data. (Corbin and Strauss, 2008)

Grounded theory (as defined by Glaser) “*Grounded theory* data analysis is the “generation of emergent conceptualisations into integrated patterns, which are denoted by categories and their properties woven together by the constant comparison process which is designed to generate concepts from all the data” (Glaser, 2002 p. 1)

Grounded theory (as defined by Strauss and Corbin) ".......inductively derived from the study of the phenomenon it represents. That is, it is discovered, developed and provisionally verified through systematic data collection and analysis of data pertaining to that phenomenon. Therefore, data collection, analysis and theory stand in reciprocal relationship with each other." (Strauss and Corbin, 1990)

Inductive analysis: An analytic approach where theory is generated from observations (Reid, 2006)
Memos: Written records of analysis (Corbin and Strauss, 2008)

Open coding: The breaking apart of data and then the delineation of concepts to stand for (or represent) blocks of raw data (Corbin and Strauss, 2008)

Phenomena: Ideas that emerge from data that answer the question “What is going on here?” (Corbin and Strauss, 2008)

Professional skills: Professional skills refer to skills such as communication, teamwork, etc., i.e. non-technical skills.

Professional work experiences: Professional work experiences are non-technical work experiences that include all parts of graduates’ work that does not involve specific Information Technology activities. Experiences directly linked with Information Technology work activities may include tasks such as programming, database administration, computer security, systems analysis and design, etc. A non-technical experience includes tasks such as communicating ideas and information, working with others and in teams, etc.

Properties: Characteristics that define and describe concepts (Corbin and Strauss, 2008)

Sandwich courses: Sandwich degree courses offer six months or a year of work placement (with an employer in the relevant field of study).

Saturation: Saturation occurs when no new data are emerging from analysis. It also denotes the development of categories in terms of their properties and dimensions, including variation, and, if theory building, the delineating of relationships between concepts. (Corbin and Strauss, 2008)

Selective coding: The process of establishing links between the core category and other categories, integrating categories along the dimensional level to form a theory and validating the statements of relationship among concepts (Strauss and Corbin, 1998)
Theme: The common meaning or an idea that runs through most of the data or a minority idea that captures a particular emotion or factual idea.

Theoretical coding: The process of conceptualising how categories and properties may relate to each other as hypotheses to be integrated into a theory (Glaser, 1978)

Theoretical sampling: Data collection based on concepts that appear to be relevant to the evolving story line or sampling based on the basis of concepts derived from data (Corbin and Strauss, 2008)

Theoretical saturation: The point in analysis when all categories are well developed in terms of properties, dimensions and variations. Further data gathering and analysis adds little new to the conceptualisation, though variations can always be discovered. (Corbin and Strauss, 2008)

Theoretical sensitivity: The ability to pick up on subtle nuances and cues in the data that infer or point to something (Corbin and Strauss, 2008)

Work integrated learning: According to Patrick et al. (2009), work integrated learning includes a “range of approaches and strategies that integrate theory with the practice of work within a purposefully designed curriculum”. The ACDICT and ACS industry forum (2010) states that the main purpose of work integrated learning is to include professional experience, employability and job ready skills for all ICT students using a combination of external models (industry-based work experiences such as placements and internships) and internal models (university-based experiences such as project work, case studies and simulated or virtual opportunities).

Work ready skills: Work ready skills include communication, ethics and professionalism, global and local perspectives, information literacy and management, initiative, enterprise and creativity, planning and organising, problem solving and critical thinking, research, self-management and life-long learning, teamwork and leadership and technology literacy (Litchfield and Nettleton, 2008)