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Abstract 

Two families of peptide neurotoxins that target insect large-conductance calcium-activated 

potassium channels (BKCa) have been isolated from the venom of two unrelated spiders. 

The κ-TRTX-Ec2 toxins are a family of three homologous peptides isolated from the 

African tarantula, Eucratoscelus longiceps and κ-HXTX-Hv1c is the prototypic member of 

a family of insect-selective neurotoxins isolated from the venom of the Blue Mountains 

funnel-web spider, Hadronyche versuta. This thesis describes the characterisation of these 

insecticidal toxins using voltage-clamp and current-clamp analysis of cockroach dorsal 

unpaired neurons utilising the whole-cell patch-clamp technique. The ability of these 

toxins to modulate the gating and kinetics of both voltage- and neurotransmitter-gated ion 

channels were assessed. Insect bioassays were also utilised to validate the insecticidal 

activities of various toxins that target KV channel subtypes in house crickets.  

The κ-TRTX-Ec2 family of toxins were found to be high affinity blockers of the insect 

BKCa channel while failing to modify voltage-gated sodium (NaV) and calcium (CaV) 

channels. κ-TRTX-Ec2a, -Ec2b and -Ec2c block cockroach BKCa channels with IC50 

values of 3.7, 25.3 and 24.6 nM, respectively. Additionally, κ-TRTX-Ec2a was found to 

inhibit delayed-rectifier KV channel currents (IK(DR)), but only at significantly higher 

concentrations. κ-TRTX-Ec2 toxins induced voltage-independent channel block and are 

thus proposed to interact with the turret and/or loop region of the external vestibule of the 

insect BKCa channel.  

κ-HXTX-Hv1c has also been characterised to block the insect BKCa channel, while failing 

to modulate insect NaV and CaV channels. The unique insect-selective action of κ-HXTX-

Hv1c involves a rare vicinal disulphide ring (Cys13-Cys14) that has been determined to act 

as part of the bioactive surface (pharmacophore) interacting with the molecular recognition 

site on the insect BKCa channel. However, despite the high affinity and selectivity for the 

BKCa channel it was discovered that the BKCa channel is unlikely to be the lethal target of 

κ-HXTX-Hv1c. Acute toxicity tests of classical non-phylum selective BKCa blockers such 

as paxilline, charybdotoxin and iberiotoxin did not induce acute toxicity in insects. 

Furthermore, while κ-HXTX-Hv1c was found to prolong action potential repolarisation, 

increase spontaneous firing frequency and reduce spike afterhyperpolarisation, these 

results were markedly reduced in the presence of the BKCa channel blocker iberiotoxin. 
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Subsequent testing of cockroach KV channel currents revealed that κ-HXTX-Hv1c failed to 

modify sodium-activated or delayed-rectifier KV channel currents, but 1 M κ-HXTX-

Hv1c did produce a 29% block of ‘A-type’ fast-transient KV channel currents (IK(A)). This 

suggests that κ-HXTX-Hv1c additionally targets insect KV1- or KV4-like channel subtypes. 

The lethal insecticidal action of 4-AP in crickets further supports an action of κ-HXTX-

Hv1c to block IK(A). The results of co-application experiments revealed that κ-HXTX-Hv1c 

blocks the same channel as the non-phylum selective vertebrate KV4 channel toxin, κ-

sparatoxin-Hv1b. However, it was found that κ-sparatoxin-Hv1b, either alone or in 

combination with iberiotoxin, was not insecticidal and thus the KV4 and BKCa channels are 

unlikely to be the lethal targets of κ-HXTX-Hv1c. To determine if the lethal target was a 

neurotransmitter-gated ion channel, the effects of κ-HXTX-Hv1c were investigated on 

chloride-gated GABAA (GABA-Cl) and glutamate (Glu-Cl) channel currents and nAChR 

channel currents. It was revealed that 1 M κ-HXTX-Hv1c failed to modify GABAA 

channel currents while causing only a moderate 21% increase in Glu-Cl channel currents. 

Alternately, it was found that κ-HXTX-Hv1c caused a concentration-dependent (EC50 183 

nM) slowing of nicotinic acetylcholine receptor (nAChR) channel current decay and 

reversed channel desensitisation. In addition, κ-HXTX-Hv1c moderately increased nAChR 

sensitivity to nicotine. These findings are consistent with a positive allosteric modulation 

of insect nAChRs to slow receptor desensitisation. The nAChR is a validated insecticidal 

target for various agrochemical insecticides, including the allosteric modulator spinosyn A. 

Therefore it is believed that the lethal target of κ-HXTX-Hv1c is the insect nAChR, whose 

modulation would lead to an increase in neurotransmission consistent with the excitotoxic 

phenotype of the toxin. This action is possibly augmented by additional actions on BKCa 

and KV4 like channels to increase neuronal excitability. 
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