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Abstract 
 

Economic evaluation of healthcare interventions (such as pharmaceuticals, medical 

devices and technologies) considers both the effect of the intervention on patients, and 

the costs borne by the government and often the individual themselves. This 

simultaneous consideration of costs and benefits is now standard practice in 

reimbursement decisions, both in Australia and elsewhere. This thesis focuses on the 

assessment of benefits, specifically how we place a value on the health changes 

patients experience as a result of a health care intervention.  

There is a well-established framework for how outcomes are valued in health care, but 

this framework is built on a number of contentious assumptions. For example, health 

is assumed to be the sole outcome of a healthcare system, and society is assumed to 

be inequality-neutral. This thesis identifies and explains these assumptions and then 

focuses on testing two of them in the empirical chapters. The overall aim of the thesis 

is to explore the extent to which the current framework reflects population 

preferences, and whether the framework can be adapted to be more reflective of 

population preferences. The empirical chapters in this thesis consider these issues, 

using a discrete choice experiment (DCE). For reasons presented in Chapters 3 and 4, 

this technique offers very attractive properties for answering these types of questions. 

The standard approach to valuing health outcomes uses the quality-adjusted life year, 

in which the value of a health profile is the product of quality of life and length of life. 

For this to be operationalised, we need to be able to describe health states in a way 

which captures all relevant dimensions of quality of life that are important to people, 

and then we need to assign values to health states. This thesis argues that the current 

methods for assigning values to health states are very onerous for survey respondents, 

and prone to significant bias. Standard valuation techniques require the respondent to 

identify preferences around quality of life through the acceptance of a risk of death, or 

the reduction of life expectancy to alleviate poor quality of life. However, these fail to 

control for issues such as risk-aversion or time preference. The first empirical analysis 

uses a DCE to value health states for the SF-6D, a health state valuation instrument 

that is based on the very widely used quality of life instrument the SF-36.  The use of 

a DCE aims to remove (or control for) these biases. This chapter represents a 
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methodological advance through the use of a DCE, and produces the first Australian 

algorithm for the SF-6D. 

The second empirical analysis considers the assumption that the value of health 

improvement is independent of who receives it. Therefore, it is conventional for an 

extra year in full health to be regarded as being of the same value to society 

independent of who receives it. The chapter results suggest that the average 

respondent prefers giving additional health to people with low life expectancies, 

carers, and non-smokers even if it reduces total health for society as a whole. The 

chapter concludes by identifying how these preferences might be integrated into 

economic evaluation. 

This thesis explores two areas in which the conventional approach to outcome 

valuation in economic evaluation are subject to concern. It demonstrates how these 

concerns might be overcome by augmenting the existing framework with relatively 

easily-collected stated preference data, and offers a template for other analyses 

exploring other parts of how health outcomes should be valued.   
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Chapter 1: The measurement of outcomes in economic 
evaluation of health interventions 

Chapter Summary 

In this chapter, the concept of economic evaluation in healthcare is introduced. Firstly, 

a justification for societal intervention in resource allocation in health is considered, 

and it is concluded that there are valid reasons for moving away from a laissez-faire 

approach. The ways in which economic evaluation differs in health from other areas 

where economics plays a role are then discussed. In particular, the move away from a 

utility-centric model is evaluated. The dominant extra-welfarist approach is 

introduced, in which health is decoupled from utility, and is considered to be the 

maximand. The usual metric used in  this extra-welfarist framework, the quality-

adjusted life year (QALY) is then discussed, both in terms of how it developed, and 

also areas in which it may diverge from many people’s concepts of the outcomes of a 

health intervention. Then, a number of alternatives to welfarism and extra-welfarism 

are introduced. The chapter concludes with a outline of the structure of the thesis. 

Economic evaluation in healthcare 

Decisions about health and healthcare are difficult. Individuals are constantly making 

decisions that have potential implications for their future experience of good or poor 

health. While personal activity is likely to be a significant determinant of health for 

most people, society plays a significant role in the health of its members also. As a 

society, we have an infinite number of ways in which we can spend money on health, 

but only a finite budget. Therefore, choices have to be made. Choosing between, for 

example, expanding a neonatal ward in a hospital and a public health intervention 

targeting obesity is likely to be emotive and to involve a variety of considerations. Do 

we pick the option which saves the most lives? How do we choose between an option 

which save lives, and one which improves quality of life? Do we value health of 

neonatal infants differently because of who they are? Is obesity a reason for 

prioritising the health of an individual differently? Does the cost of each intervention 

matter?  

In a resource constrained environment, these kinds of decisions need to be made. 

They may not be as stark as choosing between directly competing options, but 
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ultimately there must be a way of valuing a particular healthcare intervention so those 

interventions which are in some sense ‘value for money’ can be identified. It is 

advantageous to have the assumptions upon which this decision making process exists 

explicit and acceptable to society. It is this idea, of forming a justifiable framework 

where decisions can be made rationally, which underpins a formal process to evaluate 

possible use of health resources across most developed countries (for instance see 

examples in England and Wales (National Institute for Health and Clinical 

Excellence, 2008; National Institute for Health and Clinical Excellence, 2007), in 

Canada (Canadian Agency for Drugs and Technologies in Health, 2006), and in 

Australia (Department of Health and Ageing, 2007; Department of Health and 

Ageing, 2005)). While the approaches taken in different countries are tailored to 

reflect the unique circumstances in which healthcare decisions are made, these types 

of approaches will typically include considerations of safety, effectiveness, and cost-

effectiveness. 

A fundamental question which requires addressing is this: Why do societies have to 

intervene regarding healthcare resource allocation? As a society, there are many areas 

where we do not impose government control over allocation. It is standard in 

economics to assume that individuals have perfect information regarding the markets 

they enter, and, if there is no societal intervention, will make decisions that maximise 

their welfare. If everyone’s welfare is maximised, the welfare of society is maximised. 

Thus, if we as a society provide a resource to someone who would have received it 

under a free-market allocation of resources, their benefit from receiving it must be 

less than the cost of provision (and the opposite argument can be made for limiting 

access to a resource). If we are to place constraints on how the market for health 

resources works, we need to know what is different about health to make this 

government intervention appropriate. Might we argue that, in the health sector, 

individuals make decisions which do not maximise their own health? Maybe we could 

justify societal intervention by arguing against the proposition that individuals 

maximising welfare maximise societal welfare? These are difficult arguments to 

support and, to investigate them fully, it is necessary to outline what is meant by 

welfare analysis, and then to consider some of the reasons why health might be 

special.   
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In welfare analysis, social welfare is a function of the welfare of each of the 

individuals within the society (this will be discussed later in this chapter). In a 

perfectly competitive market, each individual chooses the option that maximises his 

or her own welfare, and this means that the welfare of society is maximised (under the 

assumption that social welfare and individual welfare are defined in the same 

dimension). However, the market for health may be subject to failure, in the sense that 

a laissez-faire approach does not lead to a maximisation of social welfare (which can 

be termed as a sub-optimal allocation of resources). If this is true, the role of 

government might be to attempt to counteract this failure, by putting in place policies 

which maximise societal welfare. The major role of economic evaluation in healthcare 

is to mimic or replace perfect market allocation of resources. The necessity of it 

increases with the degree to which the health sector moves away from the 

assumptions required for perfectly competitive markets, under which welfare is 

maximised. These assumptions are now discussed in the context of Arrow’s 

exposition of the healthcare system (1963). 

Arrow’s characterisation of the healthcare market 

Regarding whether the health sector meets the criteria for these perfectly competitive 

markets, Arrow argued persuasively that it does not, and discussed the characteristics 

of the healthcare system that move it away from that which would maximise social 

utility without intervention (Arrow, 1963). The first identified source of market failure 

was that the nature of demand for health care was irregular and unpredictable. This 

means that consumers of healthcare have little experience of demanding healthcare, 

and cannot plan for future health expense accurately. This leads to issues surrounding 

insurance against future health expenditure and consequences of this, including moral 

hazard, in which an individual behaves differently (i.e. less cautiously) if protected 

financially from the consequences of a risk. Arrow’s second source of market failure 

was that physicians have a role both as provider and inducer of demand for health 

care. This results from the asymmetric information between the physician and the 

consumer of healthcare. As the physician has greater knowledge of the area, and also 

because they act as gatekeeper to specialist care in some healthcare systems, the 

physician plays a key role in determining what healthcare their patient receives, and 

indeed may be the one to supply it. Either way, they are likely to have a financial 

incentive to act in a certain way. If we assume that (financial) self-interest on the part 
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of the physician plays any role at all, this can lead to an over-supply of services in 

which the marginal cost to society of additional provision of services exceeds the 

marginal benefit. Arrow’s third source of market failure was the significant 

uncertainties associated with the expected outcomes from a medical service. The 

beliefs of the patient with regard to the expected welfare benefit from a service are 

based on very limited evidence, while the evidence for the effectiveness of a service 

across the entire population often shows considerable differences in individual 

responses to the same service. He then discussed the relatively high barriers to entry 

including professional licensing and the cost and time commitment required to 

become professionally qualified. Thus, agents in the market, and those who might 

enter it, are unable to promptly respond to changes in demand. Finally, he suggested 

that pricing practices differ in terms of price discrimination by income and a tendency 

towards fee for service. Arrow concluded that, 

“(T)he failure of the market to insure against uncertainties has created 

many social institutions in which the usual assumptions of the market are 

to some extent contradicted. The medical profession is only one example, 

though in many respects an extreme one.”(p.967) 

Therefore, in a health setting, the free-market is prone to lead to a distribution of 

outcome or resources which is in some sense sub-optimal. The definition of what 

constitutes optimal is difficult. However we decide to define the term, the government 

may choose to intervene to ensure a better allocation. Since Arrow described the 

unusual characteristics of the health sector, the need for proxying markets for health 

interventions or technologies has remained potent. The methods for correcting for 

market failure have been debated at length, and contentious issues abound in the 

literature.  

A Welfarist underpinning of economic evaluation in healthcare 

To this point, the emphasis has been on explaining why economic evaluation is 

preferable to a laissez-faire approach to the allocation of healthcare resources. In this 

section, the standard approaches used for outcome measurement in economic 

evaluation are outlined, specifically welfarism (which is widely used across 

economics sub-disciplines) and the health-tailored extra-welfarism which departs 
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from some of the assumptions of standard economic analysis1. This will be 

subsequently contrasted with alternative non-welfarist approaches such as 

Communitarianism and Empirical Ethics.  

Welfare economics is the evaluation of competing states of the world, and specifies a 

utility framework to enable ranking of these competing states from best to worse 

(Brouwer, et al., 2008). Welfare economics can be divided into two significant time 

periods, termed classical and neo-classical. It is the latter of these that most informs 

modern economic evaluation techniques. Thus, I will introduce classical welfare 

economics, and then discuss in detail the divergence between it and neo-classical 

welfare economics.  

Classical welfare economics is characterised by Pigou, Edgeworth and Marshall, 

which draws heavily from the utilitarianism of John Stuart Mill. As Brouwer (2008) 

notes, classical welfare economics is based on welfarism, the cardinal measurement of 

utilities, and on the following additional characteristics, 

“(i) The utility principle (i.e. individuals rationally maximise their welfare 

by ordering options and choosing the preferred option). 

(ii) Individual sovereignty (i.e. individuals are themselves the best – some 

might say ‘the only’ – judge of what contributes most to their utility and 

how much that contribution is). 

(iii) Consequentialism (i.e. utility is derived only from the outcomes of 

behaviour and processes rather than the processes themselves or 

intentions that led to the outcomes).” (p.327) 

Neo-classical welfare economics departs from these assumptions by rejecting 

cardinality and therefore interpersonal comparability. Removing the former implies 

removing the latter because, if we cannot quantify a change in utility in two people 

under the same metric, we cannot then compare the sizes of utility change resulting 

from a change in resource allocation. Economists described as following the neo-

classical welfare economics tradition include Pareto, Hicks and Kaldor.  

                                                 
1 There is some inconsistency regarding the terms ‘Extra-welfarism’ and ‘Non-welfarism’. Extra-
welfarism as a term will be used to refer to that of Culyer and Williams, with the emphasis on the 
QALY as the preferred outcome measure. Frameworks such as communitarianism and empirical ethics 
will be termed ‘Non-welfarist’. 
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Pareto and Kaldor-Hicks criteria 

The removal of interpersonal comparability which is implied by moving from 

classical welfare economics to neo-classical welfare economics has important 

consequences. If we cannot compare outcomes accruing to different people, the 

obvious conclusion regarding the relative merits of different courses of action is that 

one is better than another only if it leads to a welfare improvement in at least one 

person, and a loss in welfare to no-one. This is because we have no way of balancing 

losses occurring to some groups and gains accruing to others. The ‘no-loser’ decision 

rule is called the Pareto criterion. Hurley (2000) echoes a range of authors by noting 

that strict enforcement of this comes at a high price: 

“Because nearly all policy changes make someone worse off, strict 

application of the Pareto criterion leads to policy paralysis” (p.61) 

In reality, such a strict implementation of the Pareto criterion is unlikely. Instead, a 

less restrictive criterion is employed in which a resource allocation is efficient if and 

only if the gainers from a move from the current allocation of resources can 

adequately compensate the losers and still gain overall (this is termed a potential 

Pareto improvement). This is known as the Kaldor-Hicks criterion, and can be 

explained diagrammatically, as shown in Figure 1. A crude Social Welfare Function is 

first defined, identifying points of equal total utility between two people A and B2, 

who comprise all members of a society.  

 

                                                 
2 A Social Welfare Function can be specified using non-utility measures. The Kaldor-Hicks criteria can 
apply if these non-utility measures are used instead; however as noted by Coast later in this chapter, it 
is problematic in situations where compensation is not possible. 
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Figure 1: The Kaldor-Hicks Criterion vs. Pareto Criterion 

 

Imagine that this society is at point f on the red Social Welfare Function (SWF). The 

SWF is assumed to reflect perfect substitutability between utility for Person A and 

Person B: an unrealistic assumption but unimportant for identifying the notions of 

Pareto and potential Pareto improvement. Relative to the red SWF, the blue SWF 

consists of some points with a higher sum utility between A and B; indeed, as the two 

SWFs are parallel, the blue SWF reflects a fixed increase in aggregate welfare relative 

to the red SWF.  Between the current red SWF and the better blue SWF, only those 

points in area y are Pareto improvements (as no-one is worse off, and at least one of 

the two people are better off). However, points in areas x and z are similarly 

improvements in terms of total utility. Thus, points in these areas meet the Kaldor-

Hicks criterion (in which the gainer could compensate the loser), but do not meet the 

stricter Pareto criterion. Importantly, the use of the Kaldor-Hicks criterion is 

analogous to the maximisation of the total of the primary outcome (in this instance, 

utility). This measurement of value of gains and losses generally requires a monetary 

metric and is couched in terms of willingness to pay (or to accept). For a good defence 

of the Kaldor-Hicks criterion, see Harberger (1971). 

There are three criticisms of the Kaldor-Hicks criterion that should be raised here. 

Firstly, it has been shown that it is possible for the Kaldor-Hicks criterion to be met 

Utility (Person A) 

Utility (Person B) 

x 

y 

z f 



 

8 
 

by a move from some allocation X to some other allocation Y, and also from Y to X 

(Scitovsky, 1941). Secondly, the value of a change in resources may depend on 

whether that change is a gain or a loss (Kahneman and Tversky, 1979). Thus, the 

focus on total endowment in Figure 1 may be unrepresentative. Thirdly, if utility is 

proxied by money (through willingness to pay for instance), the criterion becomes 

problematic if utility and money are not perfectly correlated. There are a number of 

reasons why different people might have different valuations of money such as having 

differing baseline monetary resources, or simply valuing the ability to purchase 

differently. Layard (1972) discusses whether this second issue, while likely to be 

correct, should be accounted for in public decision making. He identifies a sequential 

approach in which total output is maximised (through the Kaldor-Hicks criterion), and 

then redistributed to move toward a more equitable distribution. However, he notes 

that this sequential approach is theoretically unsound, 

“Can the size of the cake be maximised independently of who gets what? 

The answer would be yes, if transfers between people can be made without 

affecting their incentives to produce output. But unfortunately all 

practicable forms of transfer have some incentive effects: an obvious 

example is the ‘excess burden’ of the income tax.” (pp.57-58) 

The Utility Principle, Individual Sovereignty and Consequentialism 

I now move to the other characteristics of welfare economics which are parts of both 

the classical and neo-classical approach. The utility principle appears the least 

controversial at first glance. It seems difficult to consider a situation in which options 

are ranked in terms of utility, and the individual does not select the one that 

maximises that utility. However, there is scope for highlighting flaws in the principle 

relating to the use of the term ‘utility’. Dolan and Kahneman (2008) discuss the two 

leading interpretations of the term, 

“The word ‘utility’ has two distinct meanings: it can refer either to the 

hedonic experience of an outcome or to the preference or desire for that 

outcome. These have been labelled experienced utility and decision utility, 

respectively.” (p.215) 

Classical economics relied on experienced utility, see for example Bentham (1789). 

However, this idea was abandoned in the early twentieth century, with economists 
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becoming more reliant on decision utility (Fisher, 1918). Considering utility in terms 

of decision utility makes the utility principle tautological (and hence empty). This is 

because the decision is assumed to identify the option which has the highest utility. 

Considering it in terms of hedonic experience allows an individual to incorrectly order 

options (defined by decision utility or some other criterion), but leaves it difficult to 

judge as there is no straightforward way of measuring experienced utility. 

The second element of welfare economics which might be questioned is the concept 

of individual sovereignty. This is closely associated with the utility principle. If 

individuals do maximise some function, but this function is flawed in some sense, it is 

debatable whether the preferred allocation of resources should follow the 

maximisation preferences of these individuals. A good example might be a situation 

in which an individual makes a decision based on limited evidence, and would likely 

make a different decision if this information deficit was removed. Another example 

might be a situation in which the individual has the information but continues to make 

a wrong decision (however that might be defined), such as the attitude of children 

towards school attendance. If individual sovereignty is compromised, so is the use of 

willingness-to-pay in a normative context (Rice, 1992; Rice, 1998). Approaches 

which reject individual sovereignty are however open to accusation of paternalism. 

A third reason why welfare economics may need amendment is that consequentialism 

is a potentially contentious proposition. The view that the ends justifies the means 

may well be in conflict with the preferences of many people, in many different 

situations. The classical example of a refutation of consequentialism comes from Kant 

(1785 (translation 1959)), who argues that there are a set of categorical imperatives 

that are intrinsically valid. He defined morality as “Always act(ing) according to that 

maxim whose universality as a law you can at the same time will” (p.421). This issue 

is reflected in a health context in the growing literature base concerned with process 

utility (Birch and Donaldson, 2003; Tsuchiya, et al., 2005). 

Cost-Benefit Analysis 

Despite the difficulties associated with proxying markets, economic evaluation has 

become an important source of information for policy makers. The approach to 



 

10 
 

economic evaluation which has the longest history is cost-benefit analysis (CBA)3. 

Layard (1972) describes the basic notion of this, 

“If we have to decide whether to do A or not, the rule is: Do A if the 

benefits exceed those of the next best alternative course of action, and not 

otherwise.”(p.9) 

He redefines the benefits of the next best alternative course of action to A as the cost 

of A (as it is no longer done), to redefine the rule as, 

“Do A if its benefits exceed its costs, and not otherwise” (p.9) 

This reflects the Kaldor-Hicks criterion discussed previously. CBA is not widely used 

in healthcare economic evaluation. The major reason for this is the profound difficulty 

in valuing everything using a common metric. To state that benefits exceed costs or 

otherwise, we have to place a monetary value on health outcomes, something which 

have proven highly difficult.  Rather, the increasingly dominant approach in the area 

is cost-effectiveness analysis (CEA). This differs from cost-benefit analysis in that it 

does not attempt to value all outcomes in a common unit4. Both CBA and CEA 

involve the comparison of two or more interventions according to their relative costs 

and outcomes (Drummond, et al., 2004). Indeed, some authors have argued that they 

are almost equivalent (Bala, et al., 2002; Donaldson, 1998; Phelps and Mushlin, 

1991). Both CBA and CEA aim to assimilate evidence concerning cost, effectiveness 

and risk (insofar as it impacts on average effectiveness and cost), providing results 

designed to aid decision makers allocate resources appropriately.  

Extra-Welfarism 

To this point, I have identified the reasons why a laissez-faire approach to the 

healthcare sector may not be appropriate, and then looked at some reasons why a 

welfarist approach to evaluating health outcomes may be deficient. However, if we 

reject the laissez-faire approach and decide that a welfarist approach is inadequate, it 

is necessary to specify a framework within which health outcomes can be valued.  

                                                 
3 The methods used in this are in keeping with the Kaldor-Hicks criterion and welfarism more generally 
(these terms will be defined and investigated in the next section).  
4 It might be argued that, even though CEA does not require valuation of outcomes in monetary terms, 
interpretation of the incremental cost-effectiveness ratio requires exactly that. In other words, CEA 
might merely defer the valuation of health outcomes. 



 

11 
 

The most likely candidate, and the one which has gained most traction, is extra-

welfarism. Extra-welfarism is a widely-used alternative to welfarism in the evaluation 

of health interventions. Tsuchiya and Williams (2001) describe the relationship 

between welfarism and extra-welfarism in the following way: 

“It is said that there are two ‘competing views’ on economic evaluation in 

health care. One is often seen as the ‘theoretically correct’ approach, that 

is based more firmly within the theory of welfare economics, whilst the 

other by comparison as some practical but not well formulated collection 

of rules of thumb (p.22)”  

This comparison between the ‘theoretically correct’ welfarist approach and the 

‘practical but not well formulated’ extra-welfarist one is appropriate. Any lack of 

formulation and coherence in extra-welfarism is a consequence of its numerous roots, 

its reliance on ideas from outside of economics, and the short period of time in which 

the approach has been developed relative to welfarism. 

Respecifying the desideratum 

Extra-welfarism emerged as a counterpoint to the perceived weaknesses in the 

assumptions underpinning welfarism and welfare economics. As far back as 1963, 

Feldstein argued 

“… should not health care be allocated to maximise the level of health of 

the nation instead of the satisfaction which consumers derive as they use 

health services?” (Feldstein, 1963) 

Decoupling certain items from utility is not a concept unique to health. James Tobin 

(1970) argued for specific egalitarianism, which argues that societal inequality 

aversion will differ from domain to domain, 

“This is the view that certain specific scarce commodities should be 

distributed less unequally than the ability to pay for them. Candidates for 

such sentiments include basic necessities of life, health, and 

citizenship.”(p.263) 
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He then illustrates how the orthodox economic perspective differs, and foreshadows 

the issue of paternalism as a possible criticism of extra-welfarism that runs through 

this section,  

“While concerned laymen who observe people with shabby housing or too 

little to eat instinctively want to provide them with decent housing and 

adequate food, economists instinctively want to provide them with more 

cash income. Then they can buy the housing and food if they want to, and, 

if they choose not to, the presumption is that they have a better use for the 

money.”(pp.263-264) 

The decoupling of health and utility suggested by Feldstein and echoed in Tobin’s 

specific egalitarianism has fundamental implications for how a society makes 

decisions. It might be argued that the outcomes from a healthcare system should be in 

terms of health, and not be reliant on a monetary numeraire to value health outcomes. 

However, the less palatable consequence of this is that, under certain circumstances, it 

is permissible to ignore certain conventional (i.e. in terms of utility) potential Pareto 

improvements. If the person receiving the compensation would be willing to receive 

$X to accept not receiving a health gain (and someone is willing to pay $X to receive 

the health gain), the extra-welfarist position would be to argue that this is only a 

beneficial trade-off if the same Pareto-relativity applies in terms of health outcomes as 

well as money.  

The roots of Extra-Welfarism 

Coast (2009) identifies the various roots of extra-welfarism. These are the argument 

that basic goods should be allocated in a fair way (if the market cannot do so); the 

capabilities approach of Sen; government rejection of willingness to pay as the 

numeraire of benefit in allocating resources; the increasing role of decision makers in 

producing sources of values in public decision making; and the reality that many 

health economists were already analysing healthcare resource allocation decisions 

using health as the major outcome, albeit without a fully developed underlying 

principle for doing so. A good example of this last root is Williams’ seminal study of 

the cost-effectiveness of coronary artery bypass grafting which was important in 

placing economic concerns into national decision making processes (and provides a 

framework for doing so) (Williams, 1985). 
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Of these roots, the one that is not self-explanatory is Sen’s capabilities approach. Hall 

et al. (2006b) describe Sen’s movement away from welfare economics in terms of 

four key areas. Firstly, there is the decoupling of personal utility and individual 

choice; that is, that the individual can select an option which does not maximise his / 

her utility (which contradicts the utility principle discussed previously in the context 

of welfarism). Secondly, there is a criticism of utilitarianism, consisting of welfarism, 

sum-ranking and consequentialism. Thirdly, Sen (1992) introduces aspects of well-

being beyond utility, namely functioning and capabilities. Regarding functionings, he 

says that 

“Living may be seen as consisting of a set of inter-related ‘functionings’, 

consisting of beings and doings… The relevant functionings can vary from 

such elementary things as being adequately nourished, being in good 

health, avoiding escapable morbidity and premature mortality etc., to 

more complex achievements such as being happy, having self-respect, 

taking part in the life of the community and so on” (p.39) 

Capabilities differ in that they reflect what the person might be able to achieve; even 

though someone may not climb Everest, having the opportunity to do so reflects 

positively on their well-being. 

“In assessing our lives, we have reason to be interested not only in the 

kind of lives we manage to lead, but also in the freedom that we actually 

have to choose between different styles and ways of living. Indeed, the 

freedom to determine the nature of our lives is one of the valued aspects of 

living that we have reason to treasure.” (Sen, 2009)(p.227) 

 The fourth movement away from welfare economics, which is linked to the 

decoupling of individual utility and choice is that the individual preference for social 

states is affected by the individual’s view of a social good. Sen (1992) illustrates this 

with an example, 

“If a person aims at say, the independence of her country, or the 

prosperity of her community, or some such general goal, her agency 

achievement would involve evaluation of states of affairs in the light of 
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those objects, and not merely in the light of the extent to which those 

achievements would contribute to her own well-being.” (p.56)  

Extra-welfarism reflects some of Sen’s work, particularly the emphasis on 

characteristics of the individual. However, as will be described, the practical 

implementation of extra-welfarism reintroduces sum-ranking and consequentialism 

albeit with outcomes other than utility being maximised. Brouwer (2008) defines 

extra-welfarism in terms of four differences in its approach from that taken under a 

welfarist framework: 

“(i) it permits the use of outcomes other than utility; 

(ii) it permits the use of sources of valuations other than the affected 

individuals; 

(iii) it permits the weighting of outcomes (whether utility of other) 

according to principles that need not be preference-based; and 

(iv) it permits interpersonal comparisons of well-being in a variety of 

dimensions, thus enabling movement beyond Paretian economics” (p.330) 

Echoing Feldstein, the standard extra-welfarist approach places health itself as the 

central outcome (Culyer, 1991). Culyer argues that characteristics of people are 

important, including non-utility characteristics. If a characteristic of a person is that 

they have a need for healthcare (rather than a demand), the extra-welfarist framework 

would imply this supports providing an intervention for that person. The approach to 

outcome measurement that is most commonly taken in an extra-welfarist framework 

is to use life years or quality-adjusted life years (QALYs) gained. The strength of 

these outcome measures is that they are applicable across most areas of medicine. The 

assumptions underpinning this approach are discussed later in this chapter, and the 

methods for adjusting for quality are the central topic in Chapter 5. At this stage, it is 

important to note that, within the QALY model, outcomes are of value independent of 

who they accrue to, and also independent of the preferences of the individual 

receiving them. 

Weinstein and Manning (1997) attempt to explain why extra-welfarism has become a 

major trend in outcome measurement in economic evaluation: 
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“Extra-welfarists, and many decision-makers in the real world of health 

care, are more willing to accept an approach that considers outcomes 

equitably (as CEA (Cost-Effectiveness Analysis) using QALYs does), 

rather than to accept an approach in which choices are heavily influenced 

by ability to pay” (p.127) 

While the extra-welfarist framework gives an intuitive and conceptually 

straightforward solution for interpersonal comparison, it is unclear whether cost-

effectiveness analysis using QALYs can easily consider outcomes equitably. While 

willingness to pay has considerable drawbacks in terms of unequal distribution of 

health outcomes, equality of the value of outcomes across individuals does not 

necessarily coincide with the concept of equity. This is a major issue; if equity is 

defined other than in terms of equality of gain in outcome, a QALY approach does not 

address equity issues without additional analysis such as an equity weighting system 

in which the value of outcomes is not independent of the person receiving the 

outcome. The description of how such a system might work, and an attempt to 

operationalise this, will be a major concern in subsequent chapters. 

The focus now moves to how extra-welfarism has been implemented in practice, and 

the additional assumptions that have been made in this operationalisation. This is 

important as it teases out the additional assumptions and controversies that, while not 

necessarily intrinsic to an extra-welfarist framework, do exist in this dominant 

approach.   

The Quality-Adjusted Life Year – A history and critique 

The leading extra-welfarist approach to outcome measurement in the economic 

evaluation of healthcare is the quality-adjusted life year (QALY). One QALY is 

defined as one year of full health for one individual. Equally, a QALY can be 

generated through 6 months of full health for two individuals or two years of ‘half-

health’ for an individual5. More generally, the number of QALYs resulting from a 

health profile is simply the product of the number of people, the number of years and 

a measure of quality of life such that full health and death are anchored at 1 and 0 

                                                 
5 The issue of how to define health as (for example) ‘half-health’ is of course a major issue in the 
operationalisation of the QALY model. It has a very large literature base investigating the methods for 
doing so. Some existing conventions are discussed in Chapter 2, and an alternative approach attempting 
to remedy some of the existing deficiencies is presented in Chapter 5.  
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respectively. Using this approach, the impact of an intervention can be evaluated 

through a comparison of the number of QALYs produced with and without that 

intervention occurring. 

QALY maximisation is essentially an extra-welfarist approach as it places health as 

the central focus of healthcare. Additionally, it allows interpersonal comparison, and 

their valuation results from more than just the preferences of the individual receiving 

them. As the main outcome measure in cost-utility analysis (CUA), it is the preferred 

measure in the major Health Technology Assessment processes worldwide, for 

example in Australia and England and Wales (Department of Health and Ageing, 

2007; National Institute for Health and Clinical Excellence, 2007). Gold et al. (1996) 

identify that QALYs were developed in the late 1960s by researchers working across 

economics, operations research and psychology (Fanshel and Bush, 1970; Klarman, et 

al., 1968; Packer, 1968). Further commonly cited work in the development of 

QALYs, and the movement from the operations research literature to the that of 

healthcare evaluation include studies by Torrance et al. (1972) and Williams (1985). 

The intuitive appeal of the QALY is that it combines mortality and morbidity effects 

into one metric, allowing comparison between interventions in many areas of 

healthcare, both those which prevent death and those which reduce or remove the 

impact of chronic conditions. If we define health-related quality of life over time as 

Q(t), this can be plotted in Figure 2. 
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Figure 2: Alternative Health Profiles over Time 

 

Note that, in this case, health varies over time. This means that defining QALYs as 

the product of length of life, quality of life, and number of people experiencing the 

profile is not correct as quality of life differs over time. However, this simply means 

that the QALY produced under each program is simply the number of people 

experiencing the health profile multiplied by the area under the curve. 

If two competing health programs A and B are considered in terms of the average 

health-related quality of life experienced by individuals receiving them6, the value 

placed on them by the QALY model is simply 

 dttQTotalQALY . Equation 1 

Thus, the options A and B can be contrasted in outcome terms simply by comparing 

the difference between these areas. In Figure 2, Area X is common to both A and B. A 

receives Area Y, while B receives Area Z. Therefore, the incremental gain of A 

relative to B is (X+Y) - (X+Z) = Y-Z.  

Gold argues that the QALY was initially derived from the theoretical underpinnings 

of welfare economics and expected utility theory (Pliskin, et al., 1980). The aim of 

economic evaluation is to maximise an outcome given scarce financial resources. 

However, welfarism would define this outcome as utility while modern CUA focuses 
                                                 
6 This assumes there is no time preference. This is not a significant assumption as it can be relaxed by 
assuming the Q(t) term is adjusted using some discount rate. 
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on health as the outcome (which is an oddity given the CUA label). While health and 

utility will be strongly positively correlated, there remains significant justification for 

arguing that the modern use of the QALY in CUA has (for better or worse) moved 

away from its original foundations.  

Evaluating the QALY 

Loomes and McKenzie (1989) present three questions which require consideration 

when assessing the use of the QALY as the outcome resulting from healthcare 

interventions, 

“(1) Whether any of the existing methods for eliciting quality of life 

valuations are reliable and valid 

(2) Whether individual valuations can be scaled and somehow aggregated 

to give measures which enable legitimate interpersonal comparisons to be 

made 

(3) Whether indeed the values to be used in social decision making should 

be some aggregate of individuals’ valuations” (p.304) 

Regarding the first point, the quality of life valuation techniques in 1989 were 

rudimentary, and a considerable literature base has been developed in the area since 

then. However, each of the approaches for eliciting quality of life valuations has 

issues, and there is at yet no consensus on which approach can be best considered 

‘reliable and valid’. This will be discussed at length in the next chapter. The idea of 

interpersonal comparison in point (2) depends on the validity of the extra-welfarist 

approach (or alternatively a classical welfarism which is not advocated in the health 

literature). Point (3) echoes Arrow’s Impossibility Theorem, which argues that basing 

social choices on individual values is impossible, assuming non-dictatorship (Arrow, 

1950). A full discussion of this is not presented here: for a good discussion, see 

Deaton and Muellbauer (1980). The issue of whether we should, and whether we can 

use individual preferences in constructing social preferences is contentious, as 

summarised by Scanlon (1975), 

“The fact that someone would be willing to forego a decent diet in order to 

build a monument to his god does not mean that his claim on others for aid 
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in his project has the same strength as a claim for aid in obtaining enough 

to eat…” (pp.659-660)  

Loomes and McKenzie raise three very important considerations in how we value 

health outcomes for economic evaluation, and these ideas will be returned to 

throughout the thesis. However, I think it is important to identify two other areas in 

which the QALY model may be deficient, each of which will be discussed now. 

Firstly, it is arguable that there are circumstances in which maximising of health is not 

the major goal of the health sector. An example of this in a specific condition (cystic 

fibrosis) will be outlined. Secondly, a considerable literature has developed regarding 

the constraints the QALY model places on individual preferences. This will be 

discussed subsequently.  

Using the QALY – A problematic example 

It is worthwhile to consider whether this simple QALY model can truly capture our 

conception of gain resulting from an intervention in all circumstances. Radhakrishnan 

et al. (2008) considered the existing evidence regarding the cost-effectiveness of 

screening approaches for cystic fibrosis (CF). A brief consideration of the issues 

surrounding use of the QALY model in this case identifies some potentially important 

issues, some relevant to economic evaluation in a subset of health areas relating to 

reproductive health, but some relevant more generally. 

Briefly, cystic fibrosis (CF) is the most common life-shortening genetic disease, with 

an incidence of 1 in 2500 (Welsh, et al., 2001).  Average life expectancy is only in the 

mid to late 30s (Cystic Fibrosis Australia, 2009).  There is still no cure, the daily 

therapies are rigorous and there are many years of ill health before death. 

Screening for CF carrier status in parents is becoming increasingly common. If both 

parents are identified as carriers of a CF gene, any resultant infant has a 25% chance 

of having CF. Under the QALY approach, the benefits of screening would be limited 

to the health improvements elicited by screening. There are two serious concerns in 

this context. Judging the cost-effectiveness of any screening program in terms of 

health alone means that the true negative results are of no value. Issues such as 

reassurance (which a true negative would provide) have been identified as important 

outcomes for evaluating health services (Haas, 2005). Equally, the distress caused by 

a false positive result is ignored if health is the only outcome. The issue of outcomes 
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of value not being captured within the QALY model is one which is by no means 

limited to reproductive health. 

In terms of issues more specific to reproductive health, this disease area identifies 

questions which the QALY model finds difficult to answer. It is common that 

potential parents identified as both being CF carriers abstain from future reproduction. 

How does this fit into the QALY model? Do we assume that the QALYs that would 

have been accrued by the CF baby in its life are lost? Do we assume that the parents 

undertake IVF and have a ‘replacement baby’? These options are very unpalatable, 

and indicate that the use of the QALY model in this context leads to both uncertainty 

regarding the appropriate calculation, but also consequences that were not intended by 

those who initially developed the technique.   

Individual preference constraints in the construction of the QALY model 

Having noted some limits of the QALY model through the cystic fibrosis example, I 

now turn to the constraints the QALY model places on individual constraints. Viney 

and Savage (2006) outlined a simple model of individual health care decision making, 

upon which the QALY model can be constructed given certain additional constraints. 

Individual utility over a lifetime is assumed to be dependent on health h and 

consumption c of other non-health related goods over T periods of time, 

 TT chchUU ,,...,, 11 . Equation 2 

When considering two options, for example a treatment and no treatment, the 

individual is uncertain regarding the likely levels of health and consumption of other 

goods taking either option would entail. Therefore, the value of a profile of health P, 

is a function of health and consumption payoffs of all m possible outcomes, plus the 

various probabilities pi assigned to each 

 mmm pCHpCHP ;,,...,;, 111 , Equation 3 

and 

 iTiTiiii chchCH ,,...,,),( 11 . Equation 4 

The individual then selects the option which maximises the total utility associated 

with any option. This general framework encompasses the QALY model but the 

QALY model imposes a number of restrictions on individual preferences. Pliskin, 
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Shepard and Weinstein (1980) presented a set of constraints that the QALY model 

places on individual preferences, a set which was refined by Bleichrodt, Wakker and 

Johannesson (1997). Thus, I will introduce the former work, but note that the more 

relevant set of constraints comes from the latter. 

Pliskin, Shephard and Weinstein (1980) identified three conditions that have to be 

imposed on individual preferences over health gambles to ensure it can be described 

by the QALY model. These are utility independence, constant proportional trade-off 

and risk neutrality on life years. 

Utility independence is defined by Pliskin et al. (1980) in the following way, 

“Let Y and Z denote two attributes of the outcome of concern (e.g. Y = life 

years, Z = health status). Attribute Y is utility independent of attribute Z if 

preferences for lotteries over Y, with Z held at a fixed level z0, do not 

depend on the particular level z0. Attributes Y and Z are mutually utility 

independent if Y is utility independent of Z and Z is utility independent of 

Y.” (p.208) 

If health state A for 5 years is preferred to health state B for 5 years, utility 

independence asserts that A is preferred to B for any period of time. Is this plausible? 

Clearly, there is a very strong relationship between the two attributes Y and Z. Firstly, 

if we consider longevity, it is usual that y0 would be preferred to y1 if it is relatively 

longer. However, if the health state were so poor that it was considered worse than 

immediate death, the ordering of the preference would switch, and violate utility 

independence. If it were possible to categorise health states zn to be better or worse 

than death, then utility independence could be amended to reflect this special case. 

However, this is not necessarily a categorisation that can be made. This is because it is 

plausible than Z is not utility independent of Y (i.e. the reverse utility independence). 

Consider two similar health states z1 and z2. Both have considerable limitation in 

possible activity. The difference between them is that z1 is a health state that can be 

adapted to, while z2 is a health state which remains equally poor as Y increases. For 

short values of Y, it is plausible that z1 is the worse state, but that the relativity is 

reversed for longer Y. Having established that the relative utility of two health states 

can cross zero as Y increases, it is apparent that a health state can be preferred to 

death at some values of Y, but not at others. Therefore, the adaptation to redescribe Y 
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as being utility independent of Z is not possible. Bleichrodt and Johannesson (1997) 

tested utility independence and found it was not supported. 

Constant proportional trade-off is defined in the following way by Pliskin et al. 

(1980), 

“The constant proportional trade-off assumption of life years for health 

status is said to hold if the proportion of remaining life years that one is 

willing to give up for an improvement in health status from any given level 

q1 to any other level q2 does not depend on the absolute number of 

remaining life years involved.”(p.210)  

Thus, if I had five years to live, and was willing to sacrifice one of these years (i.e. 

20% of the remainder) to gain full health for those four years, constant proportional 

trade-off would necessitate that, if I had ten years to live, I would be willing to 

sacrifice two years (i.e 20%) to return to full health. Does this correspond with our 

preferences for different lengths of life? I would argue it is plausible other than at 

extreme levels of remaining life years. If I had one month to live, I am not sure that I 

would be willing to sacrifice 20% of that to gain full health. However, whether the 

average person would be willing to sacrifice more or less than 20% is uncertain. It is 

plausible that the average respondent would not be willing to sacrifice any of such a 

small endowment of life expectancy (or would be willing to sacrifice a much smaller 

percentage). However, it is plausible that a person in this situation would not be 

willing to endure any ill-health, so would be willing to sacrifice more than 20%. 

Regarding empirical evidence,  Bleichrodt and Johannesson (1997) tested for constant 

proportional trade-off and found more support for it than for utility independence.  

Bleichrodt, Wakker and Johannesson (1997) identify that fewer assumptions are 

required to impose the QALY model on preferences. They show that it requires only 

that risk neutrality for life years in every state be imposed and that the zero condition, 

in which a life expectancy of zero has a utility of zero (irrespective of quality of life) 

is asserted. Since the latter is surely correct, the validity of QALYs depends on the 

issue of risk neutrality. They begin by stating that a lottery be defined as 

[p1,(Q1,T1);…;pn,(Qn,Tn)] with the individual receiving an outcome (Qi,Ti) with 

probability pi. This satisfies the von Neumann-Morgenstern axioms (von Neumann 

and Morgenstern, 1947) and there is a utility function U such that the utility of the 
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gamble is equal to (p1U(Q1,T1) ; … ; pnU(Qn,Tn). In choosing between sets of 

lotteries, it is this composite value which determines choice. 

They then define risk neutrality as being 

“(when)…quality of life (is) held fixed, the individual is indifferent 

between a lottery over life years and the expected life duration of that 

lottery.”(p.109) 

This means that U(Q1,T1) is linear with respect to Q1 and T1. Since one can add a 

constant to a utility function without changing the utility function, the zero condition 

(which is widely acknowledged to be uncontroversial) can be imposed on the utility 

function by adding minus the constant to anchor everything to pass through zero. This 

leads to Theorem 1 in Bleichrodt et al. (1997), which asserts, 

“Under expected utility, the following two statements are equivalent for a 

preference relation on lotteries over chronic health states: 

(1)The QALY model holds: 

U(Q,T) = V(Q)T 

(2)The zero-condition holds and, for each health state, risk neutrality 
holds for life years. Q.E.D.”(p.110) 

The evidence regarding risk neutrality for life years suggests it is unrealistic (McNeil, 

et al., 1978; Stiggelbout, et al., 1994), an unsurprising result given the previously cited 

evidence regarding the assumptions required by Pliskin et al. (because, as noted by 

Bleichrodt, Wakker and Johannesson (1997), a test of mutual utility independence or 

constant proportional trade-off is implicitly a test of risk neutrality for life years). 

What then should we conclude about the impact of these issues on the appropriateness 

of the QALY-model? This is a difficult question; while the restrictions it places on 

preferences are suspect, and it is based on ethical premises which are not universally 

agreed upon, it may still represent the best approximation of the value of health gains, 

and it has been shown to be operationalisable. The exploration of non-linearity of 

utility with respect to time is considered at length in Chapters 5 and 6. If it is 

concluded that a non-linear utility function is a better representation of preferences 

than a linear one, the next question is whether we can plausibly include such a pattern 

in healthcare decision making. 
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Some additional criticisms of extra-welfarism 

Three additional criticisms of extra-welfarism can be made. Firstly, there are many 

issues surrounding the description of health and the methods for valuing a health state. 

The problems will be described in detail in the next chapter, with a potential solution 

presented in Chapter 3, and tested in Chapter 5. 

The second criticism of extra-welfarism which should be noted here is that of 

paternalism. Paternalism is a possible criticism of extra-welfarism as it removes 

judgment regarding the value of an outcome from the person receiving that outcome. 

This is unavoidable once the choice has been made to move the focus of analysis from 

utility to health.  

The third criticism of extra-welfarism refers to the decision making rules within an 

extra-welfarist framework (Coast, 2009). Coast argues that the rule of maximisation, 

which is acceptable in a welfarist framework, becomes untenable in an extra-welfarist 

framework. In a welfarist framework, efficiency and equity are separate, with utility 

maximisation between individuals ensuring efficiency and post-intervention 

redistribution aiming to meet equity concerns. However, in an extra-welfarist 

framework, health is the outcome; compensation cannot occur through redistribution. 

As Coast argues, 

“The production and distribution of health in the extra-welfarist paradigm 

is not theoretically separable – a greater total quantity of health cannot be 

produced and then reallocated around the public by dint of taxes and 

subsidies and so to redistribute health to satisfy requirements of fairness is 

not physically possible.”(p.789) 

There are two obvious responses to this argument, one of which is flawed, and the 

other reliant on a difficult assumption. The first response is to say that extra-welfarism 

need not take such a narrow view of outcome measurement. Rather, it can consist of 

health and any number of other things, meaning that compensation to achieve an 

equitable distribution of outcomes can take place in domains other than health. 

Indeed, Culyer (1991) argues that extra-welfarism supplements traditional welfarism, 

potentially including any number of additional aspects. However, as Coast notes, this 

argument is flawed as practical applications of extra-welfarism have all reduced down 

to measuring outcome through health and health alone (Coast, 2009), with the 
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possible exception of rule of rescue-type situations (McKie and Richardson, 2003). 

The second response is to argue that simple maximisation, which is a product of 

potential Pareto improvement in this area, can exist even if compensation cannot 

occur. In a society in which many decisions regarding health allocation are made, it is 

possible that simple maximisation of health in every decision might leave all members 

of society better off and thus not requiring compensation. This is clearly a brave 

assumption, and unlikely to be defensible in most circumstances.  

Beyond Welfarism and Extra-Welfarism 

To this point, I have defined the debate regarding outcome measurement in health-

based economic evaluation as one between welfarists and extra-welfarists. While 

these are the two most likely candidates for frameworks in which normative 

judgements can be reached, the debate would be deficient if it ignores alternative 

standpoints which use only some (or none) of the tenets of either. 

In this section, a number of criticisms and alternative approaches to the concept of 

economic evaluation will be considered. Other than extra-welfarism, no alternative 

framework to welfarism has gained traction in terms of actual societal decision 

making. However, the alternatives and arguments outlined below suggest a number of 

ways in which the current approaches are lacking, and may hint at future research 

directions. 

Communitarianism 

A leading example of an alternative approach to outcome measurement in health 

settings comes from Mooney (2009; 1998; 2005), who discusses the merits of 

communitarianism. He identifies four main strands of thought which contribute to this 

idea. Firstly, to identify the ideas on which decision making takes places in the health 

sector, it is the view of the community that matters rather than those of anointed 

experts. This appears to contrast with the paternalism which is a likely consequence of 

an extra-welfarist approach (Brouwer, et al., 2008); however, the avoidance of 

paternalism is an issue communitarianism has not unequivocally addressed, an issue 

which will be discussed below. The second strand of communitarianism is that 

community views are not necessarily the aggregation of individual preferences (a 

view upon which welfarism is based, and is followed to some degree within extra-

welfarism). Thirdly, the social good associated with health has to be established. 
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Finally, interpersonal comparability is not possible, particularly if health and / or 

health need are different constructs in different social groupings. 

Communitarianism shares with extra-welfarism the belief that the source of utility 

should not be limited to the consumption of goods and services. It also argues that the 

individual is making decisions in the context of the broader society and hence that the 

image of the individual being a rational self-interested being choosing freely between 

alternatives is incorrect. This leads to individuals selecting options which impact 

negatively on their own utility if the option brings about an adequately large societal 

benefit (Mooney and Russell, 2003). 

Mooney (2009) argues that the focus on the society providing the framework for 

decision making is much more than the consideration of externalities that can be 

easily built into either a welfarist or extra-welfarist framework. Rather, he argues that 

a constitution is required under which the ‘modus operandi, the culture, and the 

governance of the organisation (is described)’ (p.109)  

How this emphasis on the community per se rather than a group of individuals might 

impact on outcome measurement in economic evaluation is unclear. Mooney argues 

that “(t)he upkeep of the health of the population is a community obligation” (p.127), 

and that acceptance of this obligation is an important factor in the social determinant 

of health.  

One possible criticism of communitarianism is that it is unclear how it differs from 

moral relativism. Moral relativism argues that the moral correctness of something is 

always contingent on the society in which it takes place; therefore, there is no such 

thing as absolute right and wrong. This is a contentious view, and leads to unpalatable 

conclusions. 

Empirical Ethics 

Empirical ethics presents a different view to either communitarianism or extra-

welfarism regarding how social preferences should be discerned. It agrees with the 

idea that social welfare is not merely the sum of individual utilities; however, it 

considers that we can begin to capture social welfare through surveys coupled with 

the provision of appropriate information to help inform the decision. 
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Where the values derived from empirical ethics differ from those generated as 

population values is in the explicit and central consideration of ethics. Richardson and 

McKie argue that resources should be allocated in accordance with ethically justified 

population values (Richardson, 2002a; Richardson and McKie, 2005), something 

which Hall et al. (2006b) identify as a constrained maximisation problem. In many 

(probably most, arguably all) situations, this constraint will not be required. Imagine a 

Social Welfare Function considering life expectancy in two groups A and B such as 

the blue line given in Figure 3 that is generated through some society-wide survey. 

Figure 3: An Unconstrained Social Welfare Function 

 

At each point on the Social Welfare Function, social welfare is equal; therefore, the 

convexity of it shows the society is averse to inequality. This can be seen because, if 

the life expectancy of one group is relatively low, societal welfare can be kept equal 

by simultaneously removing a relatively large amount of life expectancy from the 

group with longer life expectancy and giving a relatively small amount of life 

expectancy to the group with the shorter life expectancy. 

Imagine now a potential production frontier in red. This gives the combination of life 

expectancies in the two groups that are possible. Finally, imagine an ethically justified 

Life Expectancy 
(Group A) 

LA 

LB 

Life Expectancy 
(Group B) 

Blue = Social Welfare Function 
Red = Potential Production Frontier 
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constraint that says that all individuals have the right to L years of life, marked for 

each group as LA and LB. Thus any position to the left of LB, or below LA is ethically 

unacceptable. In this case, the constraint plays no role, as the highest Social Welfare 

Function can be reached within the L-shaped area in the top right hand corner which 

reflects the ethically justified combinations of life expectancies in the two groups. 

Consider the same situation, but with a different potential production frontier. 

Figure 4: A Constrained Social Welfare Function 

 

In this case, the slope of the potential production frontier is much steeper. The 

maximum social welfare is found where individuals in Group A receive LA1 and 

individuals in Group B receive LB1. However, since LB1 < LB, this position is 

considered unethical. Therefore, the optimum point is where Group A receives LA2 

and Group B receives the minimum acceptable life expectancy LB. While this is 

optimal under Empirical Ethics, there is a clear loss associated with constraining life 

expectancy in this way (as the solution is on a lower Social Welfare Function). 

While theoretically clear, this constraint is difficult to operationalise. Firstly, there is 

the issue of how surveys can be used to elicit accurately a Social Welfare Function. 

This is considered in Chapter 6 on Equity Weights for Economic Evaluation. 
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However, at this point it is important to note that the formulation of the question can 

significantly impact on inferences made. The second and probably more pressing 

issue is that it is very difficult to identify a set of ethical constraints that are 

unquestioned. While many would agree with Richardson that “(e)thical analyses 

should be of pivotal importance in establishing the normative foundation of policy 

analysis” (Richardson, 2002b), the form of these analyses will differ and produce 

very different constraints. Clearly, they cannot rely on investigation of what people 

find acceptable or otherwise (or the result would never constrain the conventional 

social welfare maximising position). Therefore, an a priori approach is required but 

who should determine the basis of this analysis is unclear. If this is not determined, 

this uncertainty seems to make the approach untenable as a practical alternative. 

To this point, a number of ideas have been discussed. The role of economic evaluation 

as a proxy for a market where a market does not, can not, or should not exist has been 

described. Then, the framework within which outcome measures are based has been 

outlined, with the main conflict being between welfarists and extra-welfarists.  

Alternatives to welfarism were then presented. While both communitarianism and 

empirical ethics relax assumptions that many would feel to be unhelpful, they each 

have problems associated with implementation that may have contributed to their lack 

of traction. On the other hand extra-welfarism has become a central part of decision 

making in countries that undertake economic evaluation of new health technologies 

(Department of Health and Ageing, 2007; National Institute for Health and Clinical 

Excellence, 2007). Implementation is not necessarily reflective of the acceptability of 

the assumptions underpinning the extra-welfarist approach; it is likely to be as much 

related to the relatively easy applicability and transparency of the approach.  

Initial conclusions 

The lessons to take from this chapter concern the uncertainty that typifies outcome 

measurement in economic evaluation in health, even before we consider the 

instruments used to describe health or the valuation techniques used to place these on 

some index. Arrow’s work has been discussed, showing that a purely market driven 

solution is likely to lead to often unpalatable consequences. If we as a society decide 

to intervene and make decisions about how resources flow between groups and 

individuals, we face a variety of new and possibly equally intractable issues. We do 
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not know what domains should be considered when evaluating outcomes. If we are 

willing to make a decision on this, we do not know what we should objectively try to 

do once we have identified this appropriate domain. Finally, the dominant approach, 

namely extra-welfarism and the use of a QALY-type outcome, makes simplifying 

assumptions to allow societal decision making to be tractable. These assumptions are 

not particularly defensible, and may lead to disagreement between government actions 

and societal perspectives. Whether the approach towards maximisation in societal 

decision making should reflect that taken by a typical individual within it is uncertain, 

but the divergence between the two is important and the decision to overrule how 

individuals make decisions should at least be an explicit, and preferably justified.  

Thesis structure 

The investigation of these issues is structured as follows. Chapter 2 considers some 

major approaches to outcome measurement in the economic evaluation of health 

interventions. This will include the symbiotic relationship between quality of life 

instruments and preference elicitation approach, and will aim to answer Loomes and 

McKenzie’s (1989) concern that the methods for eliciting quality of life valuations be 

‘reliable and valid’. Chapter 3 will present the discrete choice experiment (DCE) as a 

tool for exploring complicated preference patterns. This includes methods for 

analysing the complementary dimensions, tools for deriving welfare measures from 

DCE results, and techniques for exploring response heterogeneity. Chapter 4 will 

introduce the notion of efficient DCE design, and describe the techniques which are 

employed in this thesis. Chapter 5 will present a discrete choice experiment using the 

methods outlined in Chapters 3 and 4 to answer some of the questions posed in 

Chapter 2. Thus, using a discrete choice experiment, utility weights for the SF-6D will 

be estimated. A secondary output from this chapter will be that it will investigate the 

constraints assumed by the QALY model regarding individual preferences. Chapter 6 

will investigate the assumption contained within the QALY model that the objective 

of healthcare decision making is to maximise the total health of the population. This 

will be done through equity weights for economic evaluation, using a similar 

methodology to that introduced in Chapters 3 and 4, and tested in Chapter 5. This 

potentially allows the relaxation of the assumption that a health gain has value 

independent of who it accrues to. Chapter 7 will summarise the findings of the 

previous chapters and attempt to identify the areas in which outcome measurement is 
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performing well and poorly, and potential opportunities for allowing a more 

representative and fit-for-purpose approach. 
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Chapter 2: Measuring health-related quality of life – 
standard and novel approaches 

Chapter summary 

In this chapter, the focus turns to how health states within the descriptive system are 

assigned a value, and then how health-related quality of life is described for the 

purposes of outcome measurement in health economic evaluation. The chapter begins 

by investigating the preference elicitation techniques used for valuing health states 

(e.g. Standard Gamble, Time Trade-Off), including a discussion of the strengths and 

weaknesses of each approach. The chapter then looks at the various generic multi-

attribute utility instruments (which will be termed as MAUIs) available to analysts. 

These instruments are potentially highly valuable because they aim to describe health 

in a generic way, allowing comparability across disease areas. The relative merits of 

each are considered, and conclusions are reached regarding whether it is possible to 

identify one or more as preferred. This exploration of MAUIs is intended to be 

instructive for the data collection and analysis that follows in Chapter 5. The 

imputation of values for those health states not directly valued is then addressed; this 

issue becomes increasingly important as the number of health states directly valued as 

a proportion of the total within an instrument falls. The purpose of describing methods 

for valuing health states, both directly and through imputation is to identify some 

limitations of the existing approaches, which might be addressed by other preference 

elicitation techniques such as discrete choice experiments. The methods for using 

these as an alternative to the current approaches are described in Chapters 3 and 4, 

and then tested in the subsequent empirical chapters. 

Introduction 

The measurement of health-related quality of life for the construction of the QALY 

involves placing an individual with a particular combination of health-related 

characteristics on to a scale with full health valued at one, and death valued at zero. 

The reason for this constraint should be clear from Figure 2 in the introductory 

chapter. It allows for states to be worse than death, consequentially with a value less 

than zero, so the zero value is an anchor rather than a boundary. To undertake these 

valuations, both a generic multi-attribute utility instrument for describing health and a 

method for scoring specific health states within that instrument are required. 
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This chapter is divided into three sections. Section A discusses the merits of the 

various approaches to scoring individual health states. Section B outlines the merits 

and weaknesses of generic quality of life measurement relative to disease specific 

measurement, and outlines the major instruments that have been used to describe 

health. The reason for doing this is that Chapter 5 will attempt to value health states 

within one of these, and it is important to determine if one can be identified as 

preferable, or in some sense, more appropriate. Section C then considers how the 

values of states which are not directly valued are imputed; this is of particular 

importance in instruments with large numbers of possible health states. 

Section A: Methods for valuing health states 

The three most common approaches to scoring health states are the Standard Gamble, 

Visual Analogue Scale and the Time Trade-Off. For examples of each, see Brazier et 

al. (2002), Devlin et al. (2003) and Dolan (1997) respectively. Each will be outlined 

now, with a discussion of the relative merits of each. The Person Trade-Off has also 

been advocated in the area (Nord, et al., 1999), but has not been widely used to 

estimate utility weights for economic evaluation, and hence is not discussed here. A 

possible alternative to these (the discrete choice experiment) will be described in 

Chapters 3 and 4, and tested in Chapter 5. It is the Standard Gamble that is replaced in 

the empirical work presented in Chapter 5; therefore, I will start by describing this 

approach.  

Standard Gamble 

The Standard Gamble is based on von Neumann-Morgenstern Expected Utility (von 

Neumann and Morgenstern, 1944), under which the value of a health profile P under 

uncertainty to be 

 mmm pCHpCHP ;,,...,;, 111 , Equation 5 

where the value P is dependent on the mutually exhaustive set of probabilities p of 

attaining a level of health H and a level of other consumption C. In a conventional 

Standard Gamble, it is assumed the C terms are constant, leaving P to be determined 

simply by a set of health profiles over time and a corresponding set of probabilities. 

At its most generic, the Standard Gamble asks the respondent to choose between 
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a certain outcome 

a gamble with one outcome better, and one worse than the certain outcome 

(with probabilities that sum to 1), and the aim is to find the probability at 

which these two options are equivalent. 

A common approach in the Standard Gamble methodology is to ask respondents to 

choose between the certain prospect of an imperfect health state, and a gamble with a 

probability of receiving full health and a complementary probability of immediate 

death. Option A is therefore health state H1 for time T for certain, while option B is a 

gamble with probability p of full health for time T , and a probability (1-p) of 

immediate death. This is displayed graphically in Figure 5. 

Figure 5: The Standard Gamble 

  

Assuming that v(.) is the value of a health profile, by adjusting p until the respondent 

is indifferent between options A and B, the value of H1 can be found: 

 )(0)(. 1HvFHvp  Equation 6 

In this way, the value of full health is anchored at 1 (as the individual would not 

accept any risk of death in the gamble if the certain option was full health), and the 

value of death is anchored at 0 (as the individual would always take the gamble is the 

certain prospect was death).  

It is not necessarily true that the poor option in the gamble is death. In situations in 

which health state H1 is relatively mild, the value of p at which the respondent would 

be indifferent between the two alternatives would be very high. Indeed, it is likely that 

the majority of people would accept no risk of death to avoid H1. In these cases, it is 

common for the death option to be replaced with a poor health state. The advantage of 

this approach over using death in the Standard Gamble is that a wider range of p 

would be observed. However, to do this, it is necessary to be able to place a value on 



 

35 
 

the poor health state that has replaced death; this is sometimes done through a 

chaining approach in which a poor health is valued relative to immediate death, and 

then all other health states are valued relative to this poor health state. For an example 

of this, see Brazier (2002). 

There are a number of criticisms that can be applied to the Standard Gamble 

methodology, Firstly, it has been shown that individuals find extreme probabilities 

(less than 0.1 or greater than 0.9) difficult to use (Kahneman and Tversky, 1982). 

A second criticism of the way this approach has been applied in health is that it has 

assumed risk neutrality of the respondent. While the ordinality of scores for health 

states is likely to be correct under this method, the valuation of health states is 

increasingly overestimated relative to true valuation as the respondent’s risk aversion 

increases7. This pattern was identified by Torrance (1976) and has been demonstrated 

consistently.  In the extreme risk-averse case, the respondent would be unwilling to 

accept any risk of death to gain full health. Strictly speaking they would never reach a 

point of indifference as an increase in p below 1 would not entice them to switch their 

preference away from the certain prospect, while a p of 1 would not be a point of 

indifference as the certain prospect of the imperfect health state would be weakly 

dominated by the alternative.  

The relevance of individual attitudes to risk and uncertainty for societal decision 

making is a difficult issue, and one which was discussed by Arrow and Lind (1970), 

who stated that, 

“(I)n private capital markets, investors do not choose investments to 

maximise the present value of expected returns, but to maximise the 

present value of returns properly adjusted for risk. The issue is whether it 

is appropriate to discount public investments in the same way as private 

investments” (p.364) 

Arrow and Lind go on to outline some positions on this question. I will not expand on 

these here, other than to conclude that the question is contentious and those who argue 

that individual attitudes to things like risk and uncertainty should not be reflected in 

                                                 
7 See Figure 10 for evidence of a Standard Gamble-derived valuation system producing relatively high 
scores relative to one derived using a Time Trade-Off 
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societal decision making would consider the use of Standard Gamble methodology to 

be flawed. 

Time Trade-Off 

The Time Trade-Off approach uses a similar framework as that identified by Standard 

Gamble, only identifying strength of preference for a health state by adjusting 

duration rather than risk. It was first identified as a potentially useful tool for the 

valuation of health states by Torrance (1976).  Rather than assigning probabilities to 

different health profiles and asking the respondent to consider a gamble, the P term 

consists of one possible outcome (rather than m), and adjusts the level of H and 

critically also the time over which the individual experiences H.  

For a health state H1 preferable to immediate death, the trade-off is typically between 

10 years in this health state and x years in full health (at which quality of life is 

assumed to be one). The value of a health profile has been defined in the introductory 

chapter as 

 
dttQTotalQALY

. Equation 7 

The aim of the Time Trade-Off is to identify a position at which 

 xyearsFullhealthyearsH TotalQALYTotalQALY ,10,1 . Equation 8 

As the health states in the Time Trade-Off are constant over time, 

 
x

dtdtH
1

10

1
1 1 . Equation 9 

At the point of indifference, this implies that xH )(10 1 . As x defines that point, a 

value can be placed on H1. Graphically, this is illustrated in Figure 6. 
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Figure 6: The Time Trade-Off for states considered better than death 

 

For states considered worse than death, the approach would collapse as there would 

be no point of indifference between the two prospects. The task is typically changed 

to a choice between the certain prospect of immediate death and a combination of x 

years in H1, followed by (10-x) years in full health, followed by death. At the point of 

indifference, the value the individual places on the (10-x) years in full health exactly 

counterbalances the negative value placed on the x years in the poor health state. This 

is illustrated in Figure 7. 

Figure 7: The Time Trade-Off for states considered worse than death 
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Once this point of indifference has been found, it is necessary to estimate a utility 

weight based on this result. One approach is to define the utility weight as (-x / (10-

x)). The issue with this approach is that the lower bound is likely to fall at a very low 

value. If the respondent is indifferent when x=9.5, the weight would be -19. The 

impact of assuming such a weight for a health state is that it would have a significant 

(and probably disproportionate) impact on results of economic evaluations. One 

option is to take this value, and apply a linear transformation to it, such that the lowest 

value is set at -1 (Tilling, et al., 2010). The problem with this solution is two-fold. 

Firstly, it is sensitive to the maximum value of x (Norman, et al., 2009). Secondly, the 

-1 to 1 scale remains fundamentally arbitrary. Assigning a value to a health state 

better than death has a clear interpretation. For example, if a health state is valued at 

0.5, it means a respondent is willing to sacrifice half of their life expectancy to return 

to full health (or in the Standard Gamble context, to accept a 50% chance of death) A 

value of, for example, -0.5 has no comparable interpretation. Nevertheless, it is 

accepted that economic evaluation has to allow for states to be worse than death, and 

a solution has to be identified. One solution applied in an Australian study is to value 

the health state as (x/10)-1 (Viney, et al., 2011b). Again, this has the arbitrary 

constraint that the minimum possible score is negative one.  

Overall, the valuation of health states worse than dead is very difficult, and no 

adequate solution to the issue has yet become standard. A promising possibility is the 

use of the Lead Time TTO (LT-TTO), proposed by Robinson and Spencer (2006), and 

tested by Devlin et al. (2011). In this approach, each profile in a TTO is preceded by a 

‘lead time’ in full health. Then, the study aims to find the point at which a respondent 

is indifferent between 1) the lead time (say 10 years) in full health, followed by 10 

years in the health state being valued; and 2) x years in full health. If a health state is 

better than dead, x will lie between 10 and 20 years. If a health state is worse than 

dead, x will lie below 10 years. Of course, it is plausible that the respondent would 

trade off all of the lead time; in this case, the LT-TTO might have to adjust the times 

involved in the experiment, such as by extending the lead time, or changing the ratio 

of the lead time to the health state being valued. This is a promising alternative TTO 

approach, but is yet to be standard practice.  

Problems with the conventional Time Trade-off have been identified by a number of 

sources. The first issue is that the task is cognitively challenging, particularly in 
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situations where the health state is worse than immediate death. Uncertainty regarding 

comprehension of the task leads to predictable problems with health state valuations. 

The process by which the point of indifference is reached involves bouncing between 

increasingly less extreme values of x until the individual is indifferent. This move 

towards a position where x=5 continues until the respondent: 

is indifferent between x years of full health and 10 years in H1  

(if x is less than 5) prefers x years in full health to 10 years in H1 

(if x is greater than 5) prefers 10 years in H1 to x years in full health 

When faced with a choice in a Time Trade-Off, the respondent will have three 

options, two of which will cause the bouncing between extreme values to cease. If the 

respondent is uncertain about the task (or acting strategically to end the task 

promptly), the likelihood of reaching a point of indifference at which x is close to 5 is 

minimal (Norman, et al., 2010).  

Two other issues arise regarding the use of TTO. Firstly, time preference is a major 

concern in the interpretability of TTO-derived quality of life scores (Attema and 

Brouwer, 2010; Norman and Viney, 2008). The framework shown diagrammatically 

in Figure 7 assumes that there is no time preference; as time preference is introduced 

into individual preferences, the value of ten years in the state being valued decreases 

more than the value of the period in full health and consequently, the value assigned 

to the health state is artificially deflated. While Attema and Brouwer (2010) argued 

that it is possible to adjust TTO scores for time preference, this requires the analyst to 

specify a universal discount rate, which is arguably no more realistic than assuming 

individuals no not discount future health benefits. 

Finally, in the health state valuation literature, the period in H1 has typically been 

fixed at ten years. This has allowed comparability between responses, but the 

applicability of results generated using this value is dependent on the linearity of 

utility with respect to duration. Dolan (1996) explored the issue, and concluded that 

this assumption needs to be treated with caution. 

A criticism of the TTO relative to the Standard Gamble is that the latter is more 

grounded in the Expected Utility Theory of von Neumann and Morgenstern (1944). 

Therefore, Standard Gamble is often seen as the gold standard in the area (Gafni, 
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1994). However, it is notable that both SG and TTO impose the same conditions on 

the utility function in order to generate utility weights (risk neutrality, constant time 

preferences). 

Visual Analogue Scales 

Visual Analogue Scales (also known as category rating scales) are lines with defined 

endpoints where respondents can place items. They emerged from the psychophysics 

literature where “there was an interest in measuring people’s perceptions of various 

objective phenomena, such as heat and sound.”(p.84) (Brazier, et al., 2007). A simple 

example of a health Visual Analogue Scale is given in Figure 8. 

Figure 8: Health Visual Analogue Scale 

 

The approach to valuation in the Visual Analogue Scale is to ask the respondent to 

place a hypothetical health state on the scale, illustrating the quality of life in the 

health state relative to full health and death. Interval properties are assumed; 

therefore, an improvement from 0 to 20 is of the same magnitude as an improvement 

from 60 to 80. The idea of using these scales for the measurement of health benefit is 

long-standing (Patrick, et al., 1973); indeed, they have been investigated alongside a 

range of generic quality of life instruments (Brooks, et al., 2003; Feeny, et al., 2002; 

Sintonen, 1994).  In the example given in Figure 8, it would be necessary to consider 

that some health states are worse than being dead. Therefore, Brazier et al. (2007) 

suggest that, for economic evaluation, death be placed on this scale, and scores be 

rescaled such that death is valued at zero, and full health is valued at one  (p.84). 

The VAS has a significant advantage over TTO and SG of being simple to complete, 

requiring only one question per state rather than an iterative process. Ordinal 

preferences collected through a VAS process are likely to be valid also. The final 

advantage is that VAS scores are not impacted by risk attitudes or time preference, 

which are of concern in the SG and TTO respectively. 
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However, there are substantial problems associated with assuming a cardinal property 

of data collected using a VAS. The most pressing criticism is that VAS-derived scores 

are prone to end-of-scale bias or central tendency bias (Patrick and Erickson, 1993; 

Streiner and Norman, 1995). Finally, while Standard Gamble is based on von 

Neumann-Morgenstern preferences (von Neumann and Morgenstern, 1944), and 

involve a notion of sacrifice in valuing a health state, there is no easy description for 

what VAS-derived health scores actually mean. The QALY model is based on the 

sacrifice that people are willing to make when trading off health-related quality of life 

and length of life; this aspect of sacrifice is not in the VAS and represents a major 

limitation of the approach. 

Section A Conclusion 

The three dominant approaches to valuation of individual health states have been 

outlined, as have some issues regarding the reliability of the valuations derived from 

them. Visual Analogue Scales are the simplest of the three, but subject to considerable 

issues relating to the interpretability of responses. Time Trade-Off and Standard 

Gamble both have some attractive features. Both conform to Expected Utility Theory 

space, although make restrictive assumptions about time preference and risk attitude 

respectively. Since time preference and risk attitude are likely to differ both over 

respondents, and situations faced by one respondent, it is not possible to adjust for 

these factors. The patterns of responses for the Time Trade-Off suggested it was 

highly sensitive to the way the question was asked, and the schema the analyst uses to 

reach a point of indifference. This is likely to apply to the Standard Gamble also. An 

alternative approach to both will be considered in Chapter 5.  

Section B: Multi-Attribute Utility Instruments 

The methods described in Section A can in principle be applied to any health state. 

The focus of this chapter however is on a specific subset of the instruments used to 

describe health, namely generic multi-attribute utility instruments (MAUIs). These are 

the most commonly applied quality of life instruments in the economic evaluation of 

healthcare. Briefly, these instruments are defined by two characteristics: 

1. They describe health in a way which is not specific to particular health 

conditions; thus, they aim to allow comparison between changing health 

profiles in different disease areas. 
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2. They aim to identify the relative importance of different aspects of the health 

they describe. In other words, they allow the analyst to infer acceptable trade-

offs between both different aspects of ill-health, and between aspects of ill-

health and survival. 

I will begin this section by discussing the merits of MAUIs relative to other quality of 

life instruments. I will then discuss who should be responsible for valuing health 

states, before introducing Torrance’s framework within which MAUIs can be 

evaluated. Finally, I will look at the various MAUIs that can be used in the 

construction of the QALY. 

Categorising approaches to describing and valuing quality of life profiles 

The appropriate approach for describing and valuing health-related quality of life is 

dependent on the motives the analyst has for doing so. There are two major choices 

which will be explained and discussed here. The first choice for the analyst is whether 

to describe health using disease-specific vignettes or using a more generic approach. 

The distinction is that the former describes health in dimensions considered most 

relevant to a particular field of investigation (for example aspects of vision in the 

management of patients with macular degeneration), while the latter attempts to 

describe health in a way which is applicable across multiple disease areas (this 

distinction will become clearer in the investigation of generic MAUIs discussed later). 

Both approaches are clearly of value. Disease-specific measurement is most likely to 

be of use if the analyst wishes to test hypotheses regarding whether the quality of life 

of an individual is likely to change following an intervention (or whether it changes 

differently from the change experienced in some comparator group). If suitably 

constructed, it is more sensitive to changes in quality of life than a generic measure, 

because it emphasises aspects of quality of life that are most plausibly improved in the 

specific patient group undergoing a particular health intervention. If changes in 

quality of life in a patient group are more likely to be in terms of (for example) mental 

health, a disease-specific instrument can focus on these aspects to the exclusion of 

aspects of health-related quality of life that will not be impacted on by such an 

intervention.  

The use of disease-specific measures is therefore limited in situations where benefits 

between disease areas require comparison, for example in economic evaluation in 
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which a decision maker has to allocate scarce resources between competing programs. 

For a generic tool to be of most value, it must capture areas of potential health gain 

which may be applicable under all branches of medicine, health care more generally, 

and health in the broadest sense. This leads to an inevitable conflict between the 

burden placed on the individual survey respondent in terms of number and complexity 

of the questions they must face and the ability of the tool to capture changes in all 

possible facets of health, an important issue, and one which will be returned to later. 

Whose values? 

A second issue arises when deciding whose opinions are of interest when a value has 

to be placed on a health profile. Two leading contenders are to use either the general 

population or a patient group to value particular health states. In the context of 

economic evaluation, the reason for doing the former is that the values assigned to 

health states are used for societal decision making, rather than as a prediction for 

individual decision making. Thus, surveying a general population to value health 

profiles intends to identify the value society places on changing levels on health. The 

advantage of using a group experiencing poor health to derive values for health states 

similar to those they are themselves experiencing is that their valuations are more 

likely to reflect the true disutility associated with the poor health state (Nord, et al., 

1999). To some degree, the discussion of whose values should count reflects some of 

the issues raised in the introductory chapter concerning the move towards extra-

welfarism. Moving away from the utility of the individual receiving the healthcare is a 

key part of extra-welfarism and therefore it is unsurprising that the dominant approach 

in the economic evaluation literature reflects that. Dolan (2011) discussed the issue of 

hedonic adaptation in this context. He argues that a general population sample is 

likely to overstate the disutility associated with a health state, an issue which has been 

identified elsewhere (Loewenstein and Angner, 2003). This is because focusing on 

valuing a health state causes the dimensions presented in the state to be considered to 

the exclusion of other parts of an individual’s life. This phenomenon has been termed 

elsewhere as a focusing illusion (Schkade and Kahneman, 1998; Wilson and Gilbert, 

2003). A further explanation for divergence between patients’ and general population 

values for health states is that the general population might underestimate the 

possibility of adapting to manage a loss of health (McTaggart-Cowan, et al., 2011). 

As I will be investigating the valuation of health for use in economic evaluation, my 



 

44 
 

fieldwork in Chapter 5 will focus on a general population sample. However, this does 

not imply that the use of patient values is without merit.  

A framework for building and evaluating MAUIs 

Before describing the various MAUIs that might be used in construction of the 

QALY, it is necessary to look at the ways in which these health states are constructed 

(and how they can be evaluated). Torrance (1986) described a framework within 

which generic quality of life instruments (of which multi-attribute utility instruments 

are a sub-set) exist. He discusses both the depth and breadth of coverage as being 

dimensions in which the descriptive ability of a generic quality of life instrument can 

be assessed. By breadth of coverage, he means the range of domains (or dimensions) 

that health can manifest. These might include physical function, sensory function, 

pain, cognitive ability and so on. The term ‘depth of coverage’ refers to the detail in 

which each domain is described by the levels of the dimension. An example Torrance 

provides divides physical functioning into mobility, physical activity, self care and 

role performing, and, as an example of further sub-division, divides self-care into 

dressing, bathing, continence and eating. An individual health state is defined as any 

combination of levels of the various domains and sub-domains. 

It is tautological that, assuming extra domains are areas in which health manifests 

itself, these additional domains increase the descriptive ability of an instrument. It is 

comparable to adding parameters to an Ordinary Least Squares regression and 

comparing the unadjusted R2 value. Equally, finer sub-divisions of domains and sub-

domains do likewise. However, there are balancing forces that mean this extra 

descriptive ability is not cost-free. For example, placing a utility value on each of 

these possible states is an increasingly difficult task as either the breadth or the depth 

of the instrument increases. It is within this context that generic quality of life 

instruments have been developed. On the one hand, they aim to capture as many 

domains of health as possible, and in as much detail as is needed to identify any 

significant health effect stemming from an intervention. On the other, adding 

additional dimensions and / or levels causes a dramatic increase in the number of 

possible health states. Thus, the analyst is forced to consider increasingly 

sophisticated techniques to generate utility values for each of the possible individual 

health states, or to employ an increasingly large sample. A central theme of this 
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chapter is that the damaging impact of this increased reliance on imputation and 

assumption has to be balanced against the benefits of increased depth and breadth of 

the instrument.  

Structural independence 

Before describing and evaluating the multi-attribute utility instruments, it is 

worthwhile considering one possible characteristic of these instruments which is of 

value for an analyst. Hawthorne et al. (2001) provide a number of these characteristics 

that make a generic multi-attribute utility measure suitable for use in economic 

evaluation. One important focus is on the concept of structural independence. They 

describe a situation where this is met as one in which a single attribute should not be 

measured in more than one way (von Winterfeldt and Edwards, 1986). Feeny et al. 

(2002) take a less restrictive view of structural independence, defining it to be that 

“it is plausible and logically possible for a person at a particular level in 

one attribute to be at any level in each of the remaining attributes.” 

(p.114)  

Feeny’s view is less restrictive as it implies that some correlation is acceptable, but a 

necessary relationship between levels of different attributes is not (while von 

Winterfeldt and Edwards’ description rejects the acceptability of both). Whichever 

attitude is followed, this is an issue in each of the instruments described below as 

there is likely to be considerable correlation between dimensions of a particular 

individual. Indeed, some correlation is inevitable between dimensions of a generic 

multi-attribute utility instrument; exploring and minimising it is important, but the 

requirement of structural independence has to be balanced against the sensitivity of 

the instrument. 

Conversely, there may also be combinations of levels of dimensions that cannot 

plausibly co-exist for an individual. Hawthorne et al. (2001) argue that there is a 

natural tension between structural independence and sensitivity, presumably as extra 

depth in the descriptive instrument can lead to dimensions being highly correlated. 

This is a convincing argument as each additional dimension has less health space to 

describe and is therefore more likely to overlap with pre-existing dimensions. They 

argue the solution to this is to establish statistical independent through methods such 
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as factor analysis. This is described in more detail later in the context of Brazier’s 

construction of the SF-6D through factor analysis of the SF-36 (Brazier, et al., 2002). 

The chapter will now describe the key generic multi-attribute utility instruments, and 

discuss some of the strengths and weaknesses of each. 

EuroQoL - 5 Dimensions (EQ-5D) 

The EQ-5D was designed by the Euroqol group, a team of researchers covering 

Europe, North America, Africa, Australasia and Asia. In its most well-known 

iteration, it consists of five dimensions each with three possible levels (therefore 35 = 

243 individual health states). The English-language version of this iteration is 

reproduced in Table 1. 

Table 1: The EQ-5D 
Dimension Level 

  
Mobility 1 I have no problems in walking about 

 2 I have some problems in walking about 
 3 I am confined to bed 
   

Self Care 1 I have no problems with self-care 
 2 I have some problems washing and dressing myself 
 3 I am unable to wash and dress myself 
   

Usual Activities 1 I have no problems with performing my usual activities 
 2 I have some problems with performing my usual activities 
 3 I am unable to perform my usual activities 
   

Pain / Discomfort 1 I have no pain or discomfort 
 2 I have moderate pain or discomfort 
 3 I have extreme pain or discomfort 
   

Anxiety / 
Depression 

1 I am not anxious or depressed 

 2 I am moderately anxious or depressed 
 3 I am extremely anxious or depressed 

Before looking at criticisms of the EQ-5D, it is useful to consider the nature of the 

disutilities considered by the instrument. I would argue that there are two distinct 

types of disutility considered. In the Mobility, Self-Care and Usual Activities 

dimensions, the levels explicitly reflect the types of capabilities that Sen emphasises 

as important (1980; 1992). For the Pain / Discomfort and Anxiety / Depression 

dimensions, this is not true; rather the EQ-5D talks about health-related characteristics 
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of the individual. Clearly, the two types of disutility have some correlation in that 

someone with poor capability in a dimension is also likely to have poor health-related 

characteristics in that dimension also. Talking about health characteristics implies 

certain capabilities (e.g. If I imagine I have extreme pain or discomfort, I may infer 

the impact this has on my capabilities) and visa versa. However, this inference is not 

perfect, and the emphasis on either capabilities or health-related characteristics may 

impact on how the general population sample value health states with combinations of 

each. If the respondent tasked with valuing health states is more concerned with one 

type of disutility (capabilities or health descriptions), then the dimension which is 

explicitly couched in terms of that type of disutility may be a larger driver of an 

aggregate measure of quality of life. 

Regarding structural independence, there is clearly scope within the EQ-5D for 

dimensions to be correlated within an individual. Additionally, there are combinations 

of levels that seem highly implausible, for example Mobility Level 3 (“I am confined 

to bed”) is highly unlikely to co-occur with Self-Care Level 1 (“I have no problems 

with self-care). A useful investigation of structural independence in the context of the 

EQ-5D is to consider the distribution of individuals across the five levels. This has 

two important components. Firstly, in a general population sample, are any levels 

largely unused? This is important as the sensitivity of the instrument would be 

negatively affected if the number of levels used in practice is reduced; this is clearly a 

potentially damaging issue for the EQ-5D which has only three levels in each 

dimension. Admittedly, these instruments are designed to be used for people with a 

degree of ill-health (who would form a relatively small proportion of the general 

population). However, having few respondents at a particular level suggests an 

instrument may not be sensitive to changes in interventions aimed at relatively healthy 

people. Secondly, self-assessed health can be used to investigate correlations between 

dimensions, and hence structural independence. Currently unpublished data from an 

Australian National Health and Medical Research Council Project Grant (403303) 

undertaken at the Centre for Health Economics Research and Evaluation, University 

of Technology, Sydney gathered self-assessed health data from an Australia-

representative population (n=2,494). This population were members of an online 

panel with respondents stratified by age and gender to match Australian population 

distributions. Each respondent completed the EQ-5D (and the SF-6D, which will be 
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discussed later in this chapter) before undertaking a further task (some of which is 

discussed in Chapter 5 of this thesis). The simple breakdown of responses of the 2,494 

individuals by dimension is given in Table 2. 

Table 2: Self-Assessed Health (EQ-5D) (n=2,494) 
Number (%) of responses Level 1 Level 2 Level 3

Mobility (MO) 1,920 (77.0%) 572 (22.9%) 2 (0.1%)
Self-Care (SC) 2,377 (95.3%) 112 (4.5%) 5 (0.2%)

Usual Activities (UA) 1,956 (78.4%) 514 (20.6%) 24 (1.0%)
Pain / Discomfort (PD) 1,361 (54.6%) 1,037 (41.6%) 96 (3.9%)

Anxiety / Depression (AD) 1,563 (62.7%) 832 (33.4%) 99 (4.0%)

Level 3 is very rarely used for Mobility and Self-Care, and to a lesser extent Usual 

Activities. This may be partially driven by the sample being a population one (and 

hence having few sick people). Nevertheless, the skewness in these dimensions is 

striking. For Self-Care, the skewness of results is most apparent with over 95% of 

respondents saying they have no problem in that dimension. The second issue, that of 

correlation between dimensions, can be investigated by assuming the levels to be 

continuous and calculating correlation coefficients. The results for this are presented 

in Table 3. 

Table 3: Correlation coefficients between self-assessed EQ-5D dimensions 
 MO SC UA PD AD 

MO 1.000  
SC 0.387 1.000  
UA 0.622 0.432 1.000  
PD 0.550 0.324 0.543 1.000  
AD 0.219 0.184 0.311 0.306 1.000 

There is considerable correlation between attributes, particularly Mobility and either 

Usual Activities or Pain/Discomfort, Usual Activities and either Self-Care or 

Pain/Discomfort. In dimensions with higher correlation coefficients, the issue of 

structural independence becomes increasingly problematic. 

One potential strength of the EQ-5D is that it has been valued in a number of different 

countries, potentially allowing different jurisdictions to assess changes in quality of 

life using the societal attitudes to ill-health specific to their citizens. Table 4 is adapted 

from Szende et al. (2007) and demonstrates the countries with published algorithms 

for the EQ-5D.  
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Table 4: Existing EQ-5D Algorithms 
Country and Reference Sample 

Size
Valuation Method

Argentina (Augustovski, et al., 2009) 611 Time Trade-Off
Australia (Viney, et al., 2011b) 417 Time Trade-Off
Australia (Viney, et al., 2011a) 1,039 Discrete Choice 

Experiment
Belgium (Cleemput, 2003) 722 Visual Analogue Scale

Denmark (Wittrup-Jensen, et al., 2001) 1,686 Visual Analogue Scale
Denmark (Wittrup-Jensen, et al., 2001) 1,332 Time Trade-Off

Europe (Greiner, et al., 2003) 8,709 Visual Analogue Scale
Finland (Ohinmaa, et al., 1996) 1,634 Visual Analogue Scale

Germany (Claes, et al., 1999) 339 Visual Analogue Scale
Germany (Greiner, et al., 2005) 339 Time Trade-Off

Japan (Tsuchiya, et al., 2002) 621 Time Trade-Off
Netherlands (Lamers, et al., 2006b) 309 Time Trade-Off
New Zealand (Devlin, et al., 2003) 1,360 Visual Analogue Scale

Poland (Golicki, et al., 2010) 321 Time Trade-Off
Slovenia (Prevolnik Rupel and Rebolj, 2001) 733 Visual Analogue Scale

South Korea (Jo, et al., 2008) 500 Time Trade-Off
Spain (Badia, et al., 1997) 300 Visual Analogue Scale
Spain (Badia, et al., 2001) 1,000 Time Trade-Off
UK (MVH Group, 1995) 3,395 Visual Analogue Scale

UK (Dolan, 1997; MVH Group, 1995) 3,395 Time Trade-Off
USA (Shaw, et al., 2005) 4,048 Time Trade-Off

Zimbabwe (Jelsma, et al., 2003) 2,440 Time Trade-Off

However, this weight of evidence has certain limitations. While each algorithm 

provides values for the country in which the study was undertaken, it is unclear what 

other countries should do if they wish to use EQ-5D valuation algorithms. This is not 

a trivial problem in that countries with well-developed traditions in economic 

evaluation are absent from the list (such as Canada and, until recently, Australia). This 

represents a potential problem as the uncertainty allows considerable scope for 

strategic behaviour. Figure 9, which is a reproduction of a figure used by Norman et 

al, (2009) illustrates the issue.  
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Figure 9: Comparing UK results with other leading studies 

 

On the x-axis, the UK algorithm developed by Dolan (1997) has been used to rank the 

243 EQ-5D states. The UK curve (in black) is therefore smooth as the valuations (on 

the y-axis) fall monotonically as the states are ranked by their valuation from highest 

to lowest. The other three lines show the valuation placed on the 243 states in other 

studies in Spain, the USA and Japan (Badia, et al., 2001; Shaw, et al., 2005; Tsuchiya, 

et al., 2002). The values placed on EQ-5D health states under the UK and Spanish 

algorithms are consistently below those from the other two countries, and 

consequentially have a considerably greater spread between the better health states 

and the poorer ones. Therefore, when considering a typical health state prior and 

subsequent to some intervention, the incremental change will tend to be larger in the 

UK and Spanish algorithms. Thus, an intervention which improves quality of life will 

show a lower cost per QALY if these algorithms are used: When ranking healthcare 

interventions, using the UK or Spanish algorithm will relatively favour interventions 

improving quality of life rather than life expectancy. Furthermore, even in situations 

in which countries do not show considerable difference in willingness to trade 

quantity of life for improved quality of life (such as Spain and the UK), the choice of 

algorithm can still differ considerably, as seen by the oscillation of the Spain 

algorithm around the UK values. High oscillation identifies that the relative 

importance of the five dimensions differs between that country and the base country.  
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The criticism of the EQ-5D in terms of poor sensitivity to small changes in health-

related quality of life (HRQoL) is partially addressed by Janssen et al. (2008a; 

2008b), and by Herdman et al. (2011) who expand the instrument to have five levels 

in each dimension. This was done by inserting an additional level between level 1 and 

level 2, and another between level 2 and level 3 (these relate to slight problems and 

severe problems respectively). The results to date are promising, suggesting good face 

validity and improved discriminatory power relative to the standard EQ-5D. However, 

this is likely to represent a different choice in the trade-off continuum between 

description and ease of valuation, rather than a fundamental step forward. Also, while 

it represents an improvement in terms of the depth of the instrument, it does not 

address breadth in that dimensions of quality of life not adequately addressed by the 

standard EQ-5D remain neglected under the adapted approach. 

Short Form – 6 Dimensions (SF-6D) 

The SF-6D is an adaptation of the SF-36 specifically for use in economic evaluation 

(Brazier, et al., 2002). The SF-36 is also a generic quality of life instrument, but not a 

multi-attribute utility instrument as it does not quantify the trade-offs between levels. 

It contains eight dimensions (vitality, physical functioning, bodily pain, general health 

perceptions, physical role functioning, emotional role functioning, social role 

functioning and mental health) (Ware, et al., 1993). In the physical functioning 

dimension for example, there are ten items each with three levels corresponding to 

‘limited a lot’, ‘limited a little’ and ‘not limited at all’. These are coded as 1, 2 and 3, 

and summed to provide a score between 10 and 30. This is then rescaled on to a 0-100 

scale. However, these scores are not appropriate for use in economic evaluation. They 

neither consider the trade-offs between different dimensions (so each dimension is 

implicitly equally important) nor place health states on a zero-to-one scale required 

for the construction of a QALY (although the latter point could be remedied with a 

simple transformation). 

The SF-36 has been reduced in size using factor analysis, the consequence of which 

was the SF-12 (Ware, et al., 1995). This new tool identified which components of the 

SF-36 were most important in determining overall well-being, and produced a new 

instrument focusing on these. However, while this addresses the onerous nature of the 

SF-36, scores from the SF-12 are no better than those from the SF-36 in the context of 
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economic evaluation as they do not consider the relative importance of the levels of 

the chosen dimensions. Brazier and colleagues (2004; 2002) built on this work, 

excluding all general health questions and combining role limitation due to physical 

problems and role limitation due to emotional problems (but retaining the distinction 

in the labels attached to levels). These two studies produced the SF-6D, one derived 

from the SF-12 and one from the SF-36.     

The six dimensions of the resulting SF-6D instrument are physical functioning (PF), 

role limitation (RL), social functioning (SF), pain (PA), mental health (MH) and 

vitality (VI). For the SF-6D derived from the SF-36 (which is the one used in this 

thesis), the dimensions have between four and six levels. Consequentially, the 

complete factorial contains 62 x 53 x 4 = 18,000 health states. This SF-6D is 

reproduced below: 

Table 5: The SF-6D 
Dimension Level  

   
Physical 

Functioning 
1 Your health does not limit you in vigorous activities 

 2 Your health limits you a little in vigorous activities 
 3 Your health limits you a little in moderate activities 
 4 Your health limits you a lot in moderate activities 
 5 Your health limits you a little in bathing and dressing 
 6 Your health limits you a lot in bathing and dressing 
   

Role 
Limitation 

1 You have no problems with your work or other regular daily 
activities as a result of your physical health or any emotional 

problems 
 2 You are limited in the kind of work or other activities as a 

result of your physical health 
 3 You accomplish less than you would like as a result of 

emotional problems 
 4 You are limited in the kind of work or other activities as a 

result of your physical health and accomplish less than you 
would like as a result of emotional problems 

   
Social 

Functioning 
1 Your health limits your social activities none of the time 

 2 Your health limits your social activities a little of the time 
 3 Your health limits your social activities some of the time 
 4 Your health limits your social activities most of the time 
 5 Your health limits your social activities all of the time 
   

Pain 1 You have no pain 
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 2 You have pain but it does not interfere with your normal work 
(both outside the home and housework) 

 3 You have pain that interferes with your normal work (both 
outside the home and housework) a little bit 

 4 You have pain that interferes with your normal work (both 
outside the home and housework) moderately 

 5 You have pain that interferes with your normal work (both 
outside the home and housework) quite a bit 

 6 You have pain that interferes with your normal work (both 
outside the home and housework) extremely 

   
Mental 
Health 

1 You feel tense or downhearted and low none of the time 

 2 You feel tense or downhearted and low a little of the time 
 3 You feel tense or downhearted and low some of the time 
 4 You feel tense or downhearted and low most of the time 
 5 You feel tense or downhearted and low all of the time 
   

Vitality 1 You have a lot of energy all of the time 
 2 You have a lot of energy most of the time 
 3 You have a lot of energy some of the time 
 4 You have a lot of energy a little of the time 
 5 You have a lot of energy none of the time 

As a result of its construction, there are a number of noteworthy points that should be 

made regarding the instrument. In certain dimensions, the quantifier refers to the 

proportion of time with an impediment to full functioning (e.g. “You have a lot of 

energy none of the time”), while in others, the quantifier is the degree of impediment 

(e.g. “You have pain that interferes with your normal work (both outside the home 

and housework) extremely”). This is potentially important as a person may treat the 

two quantifiers differently. 

While the EQ-5D effectively imposes monotonicity (i.e. Level 2 in any dimension is 

worse than Level 1 in that dimension, and similarly for Level 3 relative to Level 2), 

this is not so strictly imposed in the SF-6D. A good example of this is in Levels 2, 3 

and 4 of Role Limitation. Level 2 specifies the problem to be physical, while the 

others specify emotional problems. This was done to allow a reduction in the number 

of dimensions (Brazier, et al., 2002), but has to be acknowledged when the health 

states are valued in the sense that the disutility associated with being at Level 2 

relative to being at Level 1 need not be smaller than that associated with being at 

Levels 3 or 4. 
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As with the EQ-5D, the SF-6D contains elements of both types of health disutility 

discussed previously, namely capabilities and health description. The first four 

dimensions covering physical functioning, role limitation, social functioning and pain 

are mostly based around capabilities, while mental health and vitality are not. The 

same criticism of inconsistency that was applied to the EQ-5D can be applied here. 

As with the EQ-5D, it is potentially instructive to consider the patterns of responses 

for self-assessed health within the SF-6D to explore structural independence. As 

before, the 2,494 respondents who described their own health were tabulated, and had 

the following distribution and correlations across levels: 

Table 6: SF-6D Self-Assessed Health (n=2,494) 
 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

PF 881 
(35.3%) 

909 
(36.45%) 

400 
(16.0%) 

255 
(10.2%) 

34 (1.4%) 15 (0.6%) 

RL 1,587 
(63.6%) 

608 
(24.4%) 

137 (5.5%) 162 (6.5%)   

SF 1,443 
(57.9%) 

565 
(22.7%) 

321 
(12.9%) 

125 (5.0%) 40 (1.6%)  

PA 971 
(38.9%) 

762 
(30.6%) 

395 
(15.8%) 

171 (6.9%) 128 (5.1%) 67 (2.7%) 

MH 727 
(29.2%) 

1,142 
(46.8%) 

447 
(17.9%) 

150 (6.0%) 28 (1.1%)  

VI 178 (7.1%) 1,062 
(42.6%) 

748 
(30.0%) 

426 
(17.1%) 

80 (3.2%)  

PF = Physical Functioning; RL = Role Limitation; SF = Social Functioning; PA = 

Pain; MH = Mental Health; VI = Vitality 

Table 7: Correlation Coefficients between self-assessed SF-6D dimensions 
 PF RL SF PA MH VI 

PF 1.000  
RL 0.572 1.000  
SF 0.673 0.675 1.000  
PA 0.663 0.595 0.679 1.000  
MH 0.375 0.526 0.510 0.422 1.000 
VI 0.582 0.500 0.548 0.519 0.512 1.000

PF = Physical Functioning; RL = Role Limitation; SF = Social Functioning; PA = 

Pain; MH = Mental Health; VI = Vitality 

As with the EQ-5D, there is a tendency towards the better levels, which is to be 

expected given the sample and the aim of the instrument to cover all possible health 
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states. The degree to which self-assessed health clusters at Level 1 is smaller in the 

SF-6D. However, the correlation coefficients are high, as in the EQ-5D. 

Bearing these issues in mind, what can we then say regarding the relative merits of the 

EQ-5D and the SF-6D? It is clear that the SF-6D has greater breadth and depth of the 

areas of health-related quality of life. However, as has been argued, the choosing of 

extra breadth and depth poses issues in the valuation of individual health states. 

However, it is noteworthy that the SF-6D allows for smaller decrements of ill-health 

making it less prone to artificial ceiling and floor effects. The comparison of EQ-5D 

and SF-6D self-assessed health can be made using the information described 

previously in Table 2 and Table 3. The methods for valuing the health states are 

described later; what is important is that the instruments allow different ranges of 

scores as a result both of their construction and the method used for valuation. Each 

respondent completed both instruments before undertaking a further task. The health 

profile of each individual was then valued using pre-existing UK algorithms (Brazier, 

et al., 2002; Dolan, 1997), and plotted in Figure 10. Note that, as there are certain 

combinations of EQ-5D and SF-6D profiles that are shared by multiple respondents, 

each point in the the scatter plot is proportional in size to the number of people at that 

point (for example, the large data point at (1,1) identifies that there is a large group 

which answered that they were in full health for both instruments). To allow 

comparison, an additional black line is added to show points at which valuations 

under the two instruments are equal. 
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Figure 10: Self-Assessed Health Using the EQ-5D and the SF-6D 

 

Before discussing these results, it is important to note that the divergence between the 

scores under the two instruments stems from both the construction of the instrument, 

and the method for valuing the health states combined within it. Konerding et al. 

(2009) investigated whether the former issue is significant, and concluded that the 

EQ-5D and SF-6D would “produce different valuations even if these valuations were 

determined according to the same principle” (p.1249). This point is echoed by 

Whitehurst and Bryan (2011), who argue that  

“the descriptive classification systems differ to such an extent that 

contemporaneous EQ-5D and SF-6D valuations attached to health states 

should not be expected to provide similar estimates, irrespective of the 

preference elicitation technique used in the respective valuation 

studies.”(p.537) 

There is clearly a high degree of agreement between the two instruments. Having 

stated there is some agreement between instruments, there are points of divergence 

which should be noted. Firstly, there is a large group of people for whom the EQ-5D 

does not identify ill-health (i.e. in Figure 10, those whose score under EQ5D_Dolan is 

1) but the SF-6D does identify ill-health (in that their SF-6D_Brazier score is less than 

one). This group is shown by the red oval in Figure 10. 
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The second point of divergence is that there are a large number of observations with 

considerably lower EQ-5D scores than SF-6D scores. This reflects the floor effect 

which has been widely noted in the valuation of SF-6D health states (Brazier, et al., 

2004). A floor effect can impact on the sensitivity of a MAUI to changes in quality of 

life for patients who are in very poor health, and inflate the cost per quality-adjusted 

life year (termed the incremental cost-effectiveness ratio, or ICER) for interventions 

in this type of patient group (Barton, et al., 2008; Stiggelbout, 2006). 

Using Ordinary Least Squares (OLS) on the data presented in Figure 10, regressing 

the Brazier SF-6D score (y) on the Dolan EQ-5D (x) score gives y= 0.445 + 0.407x, 

with an adjusted R2 of 0.577. However, the positive constant and coefficient on x 

being less than 1 indicate the relatively smaller spread of SF-6D scores, with 

predictable consequences for economic evaluation conclusions. These results are 

somewhat similar to those of a similar analysis by Khan and Richardson (2011) 

(whose OLS reports y = 0.310 + 0.601x), although they report a lower R2 of 0.308. 

This difference might result from the relatively small sample size employed (n=158), 

or that the Khan and Richardson sample is based on a particular migrant group 

(Bangaldeshi) who were on average younger than our sample, and likely to differ both 

culturally and linguistically. Brazier et al. (2004) explore the relationship between 

self-assessed health using the EQ-5D and SF-6D. Using the UK preference 

algorithms, Brazier et al. regress SF-6D scores on EQ-5D scores for a large group 

(N=2,436) of patients across a range of conditions. In the simplest model, with the 

EQ-5D score being the sole independent variable, the coefficient on it was 0.33; this 

means that a change in health utility is expected to be measured to be three times 

larger in the EQ-5D than in the SF-6D. A similar pattern has been identified by others, 

including in people aged 45 and older (Barton, et al., 2008), and in mental health 

patients (Lamers, et al., 2006a). Thus, economic evaluations using EQ-5D to measure 

improvements in quality of life will, relative to those using the SF-6D, have larger 

incremental gains in quality of life, higher QALY gains, and hence lower ICERs. This 

is of increasingly greater importance in evaluations where the driver of the ICER is 

quality of life (rather than mortality), and suggests that the application of a common 

threshold for cost-effectiveness is problematic. 

International valuation studies for the SF-6D have been conducted in a variety of 

countries, with publications based on populations from the United Kingdom (Brazier, 



 

58 
 

et al., 2002; Kharroubi, et al., 2007), Brazil (Gonçalves Campolina, et al., 2009), 

Japan (Brazier, et al., 2009), Portugal (Ferreira, et al., 2008) and China (Lam, et al., 

2008). These used the Standard Gamble to value health states, with the inherent issues 

discussed in Section A of this chapter. Chapter 5 of this thesis will consider a novel 

approach to valuing the SF-6D. 

Health Utilities Index (HUI) 

The Health Utilities Index (HUI) was developed at McMaster University, and here 

refers to both the HUI Mark 2 and HUI Mark 3 classification systems (Horsman, et 

al., 2003). HUI1 was developed to evaluate outcomes for pre-term infants and is not 

generalisable to the broader community (Boyle, et al., 1983). HUI Mark 2 has seven 

dimensions, covering sensation, mobility, emotion, cognition, self-care, pain and 

fertility. It is notable that, relative to the EQ-5D and SF-6D, the dimensions are 

‘within the skin’, meaning that the dimensions do not explicitly relate to how the 

respondent fits within society. Each dimension has between three and five levels and 

can describe 24,000 unique health states. HUI Mark 3 has eight dimensions (vision, 

hearing, speech, ambulation, dexterity, emotion, cognition and pain) with five or six 

levels in each. The stated advantage of HUI3 over HUI2 lies in its additional 

descriptive ability, “providing the potential for finer distinctions and enhanced 

responsiveness” (Feeny, et al., 2002),( p.114). This seemingly small increase in 

dimensions and levels allows the HUI Mark 3 to describe 972,000 unique health 

states. The dimensions and levels are reproduced in Appendix 1. As there are a larger 

number of dimensions in HUI than in the EQ-5D and SF-6D, it is likely that the issue 

of structural independence is relevant here. Correlation between dimensions is highly 

likely; thus, the possibility for double-counting of aspects of ill-health in two or more 

dimensions is high. However, data comparable to that presented for the EQ-5D and 

SF-6D are not available. 

An interesting aspect of HUI3 is that the worst level in the emotion dimension 

specifies a relativity to death, i.e. “(s)o unhappy that life is not worthwhile”. This 

relativity will become important in later parts of this chapter, as this description 

implies that any health state with this level ought to be valued as worse than 

immediate death, a condition they do not impose on the valuation of these health 

states. 
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While the instrument is likely to give good descriptive value, it might be argued that 

the extra descriptive ability is very rarely used. For example, the 1990 Ontario Health 

Survey asked 68,394 community-based respondents to complete HUI3; there were 

1,755 unique health states represented in the data, meaning that less than 0.2% of the 

HUI3 health states actually occurred in the sample (Feeny, et al., 1995).  

Assessment of Quality of Life (AQoL) 

The Assessment of Quality of Life (AQoL) represents a program of work, which 

contains a variety of generic quality of life instruments. The original Assessment of 

Quality of Life (AQoL) instrument comprises 15 items, each with four levels, and it is 

this one which is replicated in the thesis appendix. All iterations of the instrument are 

available online at www.aqol.com.au. The 15 items in the original AQoL instrument 

are subdivided into five scales (illness, independent living, social relationships, 

physical senses and psychological well-being) (Hawthorne, et al., 1999). It was 

developed using a sample consisting of both hospital patients (n=143) and community 

respondents (n=111). Utility scores were generated using a larger sample (n=437) of 

the Victorian population with the Time Trade-Off (which will be considered in 

section B). It has undergone considerable validation, and population norms have been 

generated to provide a useful baseline for cost-utility analysis (Hawthorne and 

Osborne, 2005). Due to length, the AQoL instrument is not reproduced here, but is 

presented in Appendix 2 (Hawthorne, et al., 1999). 

The AQoL team began with a definition of health, in which health is 

“a state of optimum physical, mental and social well-being and not merely 

the absence of disease or infirmity.” (Hawthorne, et al., 1999) (p.210) 

As part of a literature review, coupled with ongoing interviews of doctors iteratively 

feeding into the review, an item bank of potentially important components of health 

was developed. This item bank included both ‘within the skin’ issues and also ‘social 

experience’ issues. The AQoL team correctly argue that focusing on only one of these 

two groups is unlikely to capture the true health of the individual. A set of 138 general 

community members and one of 161 inpatients were asked to rate their current health 

state on each of the items in the item bank. Using a variety of instruments (including 

principle component analysis, exploratory factor analysis and structural equation 

modelling, an instrument was developed which the authors claim has some highly 
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attractive characteristics. These are that the dimensions are orthogonal, and each was 

uni-dimensional, and that there was high internal consistency.  

Hawthorne et al. (2001) has compared it directly with other common quality of life 

instruments. They conclude that 

“(i)t is concluded that at present no single MAU instrument can claim to 

be the ‘gold standard’, and that researchers should select an instrument 

sensitive to the health states they are investigating.” (p.358) 

However, the comparisons they make are generally favourable to the AQoL in the 

dimensions they investigate including coverage and psychometric properties. 

Regarding the most recent iteration of AQoL (the AQoL-8D), Richardson et al. 

(2011) identify that the AQoL has high test-retest consistency. While these 

conclusions are reasonable and reflect the significant efforts the AQoL team have 

made to ensure these characteristics hold in their instruments, the size of the 

instruments mean they contain a very large number of health states, cannot easily 

value more than a very small selection of them, and hence are constrained in their 

capability to investigate interactions and functional form. 

One argument for using one of the smaller instruments is that, when administering an 

instrument to a patient population, the smaller instruments place less burden on the 

respondent. This is certainly true; for example, Richardson et al. (2011) note that the 

AQoL-8D takes almost 6 times longer to complete than the EQ-5D. However, this 

argument is undermined as the total time to complete even the most arduous 

instrument is negligible in the context of the wealth of data collection run in a trial 

setting. Richardson et al. (2011) state that the average completion time for the AQoL-

8D is 5.5 minutes. I would argue that, in most settings, this is an acceptable burden if 

the investigator believes the quality of life scores from such an instrument are more 

reliable than those derived from a smaller instrument.  

One final issue to consider when comparing and choosing the most appropriate 

instrument is whether the more important consideration is that the research 

community adopts one instrument as dominant, and uses this exclusively. This 

argument would result from asserting that what matters is consistency between 

economic evaluations, and has some merit. It eliminates the problem of gaming which 
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results from different instruments having different ranges of quality of life scores, and 

different sensitivity to changing quality of life in different dimensions (Kaplan, et al., 

2011). Richardson et al. (2011) undertook a review of instrument use between 2005 

and 2010, concluding that the EQ-5D was used in 63.2% of studies which employed a 

MAUI (relative to 14.4% for either HUI2 or HUI3, 8.8% for the SF-6D, and 4.3% for 

the AQoL). The argument that the EQ-5D should be universally adopted is plausible; 

however, it could be counter-argued that universal wrongness is not a sensible course 

of action. 

Section B conclusion 

This section has identified the major competing generic quality of life instruments. 

They differ in their construction, the number of dimensions and levels they contain, 

and the research penetration they have each achieved. Some common themes have 

emerged. The tension between breadth and depth of the instrument on the one hand, 

and the difficulty of valuing all health states has been identified with the latter being 

the focus of Section B. Structural independence has been identified as a major issue. 

If instruments violate this, it has implications for how health states are valued to avoid 

the issue of double-counting aspects of ill-health. Ceiling and floor effects have been 

considered in a comparison of the EQ-5D and the SF-6D, and reflected the 

insensitivity of the EQ-5D to relatively mild levels of ill-health. 

Section C: Imputing values for other health states 

Section A has described the dominant approaches for valuing individual health states. 

In all studies which attempted to value all health states within an instrument, a less 

than exhaustive set of states were valued in these ways; therefore, methods to impute 

other health states were required. Clearly, the importance of these methods increase 

with the number of health states that require this indirect valuation. The issue might 

be circumnavigated for smaller instruments which might allow direct valuation of all 

health states, but this has not been common practice to date. A recent Australian 

survey has attempted to produce an algorithm based on valuation of all plausible 

health states (Viney, et al., 2011b). However, this is not yet the dominant approach, 

and the method for imputing values remains an important topic (and indeed, the study 

by Viney et al. continued to adopt some of the imputation techniques to smooth the 
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results from their sample to ensure the monotonicity within dimensions that is built 

into the EQ-5D is maintained in the valuation of the health states).  

Before critiquing the current approaches to imputing values for other health states, it 

is useful to identify that there is some developing research in the use of non-

parametric Bayesian techniques to value health states, particularly in the context of 

the SF-6D. While the original research in the imputation of SF-6D health states 

focused on additive regression techniques, recent developments have suggested a non-

parametric Bayesian approach might be more appropriate (Kharroubi, et al., 2005), 

and this approach was then employed using Brazier’s existing data (Brazier, et al., 

2002; Kharroubi, et al., 2007).  

Kharroubi et al’s (2007) approach claims a number of positive characteristics. These 

are the flexibility of the preference function, the previously mentioned monotonicity 

issue (which is less of a concern in the non-parametric approach), the value of perfect 

health being fixed at 1 without a considerable loss of predictive value and allowance 

for likely skewness (through the use of an exponential function). 

Bearing this approach in mind, the attention of the chapter returns to the set of 

parametric approaches that have been taken to date. This focus on parametric 

approaches does not imply them to be superior to non-parametric techniques; rather 

the approach to analysis outlined in Chapters 3 and 4 is parametric and it is important 

to illustrate the characteristics of the current approaches which contrast with that 

taken in Chapters 3 and 4 and then in the subsequent empirical chapters.  

Parametric approaches 

Before considering the specifics of the parametric approaches to modelling taken by 

existing studies in the field, it is necessary to point out that the pre-specified 

functional form of the utility function is constrained by the choice of which health 

states within an instrument are directly valued by respondents. This issue is now 

discussed in the context of the EQ-5D, although the same criticism can be made of the 

standard approach to valuing SF-6D health states (Brazier, et al., 2002). For the EQ-

5D, I have previously said that a recent study in Australia has considered all plausible 

health states (Viney, et al., 2011b); however, this is not generally the case.  
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Given that the EQ-5D has 243 individual possible states, it is unsurprising that no 

study has attempted to ask each respondent to directly value each of these states. 

Therefore, the pertinent question becomes how best to form a representative fraction 

of the entire space which allows a good estimation of the remainder of the EQ-5D 

states in whichever way that is defined. Prior to the Australian study of Viney et al. 

(2011b), two major approaches have been adopted to form this representative fraction. 

The original Dolan et al. approach (1997) valued 43 states, and each respondent 

directly valued a subset of these 43. An alternative approach (described here as the 

Tsuchiya approach) was developed which uses 17 states, all rated by each respondent 

(Tsuchiya, et al., 2002). The method by which these health states were selected is 

unclear. Dolan (1996) describes their approach, 

“In choosing the states both for use in the study itself and for each 

respondent, the most important consideration was that they should be 

widely spread over the valuation space so as to include as many 

combinations of levels across the five dimensions as possible.” (p.143) 

Tsuchiya argued that the 17 states directly valued in the Japanese valuation study 

were “the minimum set of health states needed to estimate the value set” (p.343). 

However, the minimum set of health states needed is dependent on the types of 

functional form that might be tested. If higher-order interactions are required, a much 

larger set would be required. 

Lamers et al. (2006b) investigate these alternative approaches. Using data from Dolan 

et al. (1996), they assumed all respondents would value 11111 (full health) and in 

addition value 12,17,22,27,32,37 or 42 of the remaining 42 states. Samples of size 50, 

100, 200, 300, 400, 600 and 800 were assumed. The outcome for each of these 

combinations is the mean absolute error (MAE) between the predicted values from the 

subsequent algorithm and the values observed in the data set. MAE is a useful tool for 

estimating appropriateness as it shows the fit of the model to the data. However, other 

diagnostics might also be of value, for example out-of-sample or split-sample 

prediction (of directly valued states or otherwise). 

As expected, the MAE is negatively associated with both the sample size and the 

number of health states directly valued. Additionally, they contrast these data with the 

results of Dolan et al. (1995) which suggests that not only does the 17-state approach 
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used by Tsuchiya et al. (2002) lead to a lower MAE than that of Dolan et al. (1996) it 

may lead to a lower MAE than if each respondent valued 17 (or even 22) randomly 

assigned states from the 42 (although the difference does not appear to be statistically 

significant). The mean correlation for the predicted and actual values if 22 states from 

42 are randomly selected is 0.986 (SD = 0.006) whereas the figures for the 17 states 

used by Tsuchiya et al. was 0.989 (SD = 0.002) (Tsuchiya, et al., 2002).  

A related question concerns whether the 17 and 43 state approaches are optimal in 

terms of study design. To allow equal precision in each of the effect estimates, it is 

necessary to have equal frequency of appearance for each of the levels for each of the 

attributes. As there is a disproportionate number of the better health states, that is, 

states with attributes at level 1, in the 43 Dolan states (Dolan, et al., 1996) or the 17 

Tsuchiya states (Tsuchiya, et al., 2002), there is greater precision at that healthy end 

of the scale. The other, related, issue involves the estimation of interactions. Although 

only 10 degrees of freedom are required for the estimation of main effects (i.e. one for 

each non-zero level of each dimension, a further 40 are required to estimate 2 factor 

interactions and of course if certain level combinations do not appear together (and 

perhaps do not make sense together) then estimation of all two factor interactions 

becomes impossible. 

Additivity (e.g. EQ-5D and SF-6D) 

The first major issue to address is how best to specify a functional form for the 

imputation. It is necessary to define a utility function over which the observed choices 

are made, confirm this utility function performs relatively well in terms of reflecting 

observed valuations of health states, and then extend the utility function to estimate 

quality of life scores for all health states defined by the quality of life instrument. 

The original research in both the EQ-5D and the SF-6D focused on a predominantly 

additive utility function (Brazier, et al., 2002; Dolan, 1997); therefore the disutility of 

a dimension moving to a worse level is assumed to be constant irrespective of the 

levels of other dimensions.  

This might be related to the previously discussed idea of structural independence, in 

that the latter is likely to be a necessary but not sufficient condition for an additive 

utility function. If two dimensions are measuring the same disutility, then the impact 

of having both of them at a poor level is reasonably likely to be less than the sum of 
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the impact of either being at a poor level (thus a positive coefficient on the interaction 

term). However, structural independence does not ensure a purely additive utility 

function as conventional interaction terms can still apply. 

The Measurement and Valuation of Health (MVH) group at the University of York 

were the first to produce a full valuation set for the EQ-5D, published by Dolan 

(1997). In the preferred algorithm, Dolan’s consideration of interaction terms is 

limited to an N3 dummy term. This is a dummy variable equal to one if any of the five 

EQ-5D attributes is at the worst level. Thus, the score Y an individual gives to a health 

state is defined as: 

 
322222 11109876

54321

NAPUSM
ADPDUASCMOY

 Equation 10 

Where MO, SC, UA, PD and AD are equal to 1 if the dimension is at level 2, and 

equal to 2 if the dimension is at level 3, and M2, S2, U2, P2, A2 are equal to 1 if the 

dimension is at level 3. This can easily be re-specified to provide more intuitive 

coefficients by dummy coding MO, SC, UA, PD and AD to be equal if 1 if the 

dimension is at level 2, and M2, S2, U2, P2, and A2 equal to 1 if the dimension is at 

level 3.  

The interpretation of the N3 term is difficult. If a dimension (for example, mobility) 

moves to level 3 from level 1 (through an active person becoming confined to bed), 

the decrement to utility is 11612 . If another dimension is already at level 3, 

the decrement to utility of becoming bed-ridden is 612 . Thus, any second or 

subsequent dimension to move to level 3 has a smaller decrement in utility than the 

first (as 11  is positive in every existing algorithm). 

While Australian data suggest that the main area for interaction effects is between 

dimensions at level 3 (Viney, et al., 2011b), Dolan’s approach is somewhat blunt in 

that it constrains the interaction term to be constant across any pair of level 3 

dimensions. However, as discussed previously, the data they generated were limited 

in terms of the types of pairwise interactions they were able to estimate. 

It should be noted that Dolan considered a variety of alternative specifications 

involving interactions. These interactions were the N3 term previously described, the 

products of each main effect to allow investigation of first-order interactions, and 
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dummies for when 1,2,3 or 4 of the dimensions were at level 1, or when 1,2,3,4 or 5 

of the dimensions were at level 3. None of these significantly model fit other than the 

N3 term, however it can be argued this is a consequence of the states directly valued 

(Viney, et al., 2011b). One issue with the interactions Dolan considered was that the 

dummies designed to capture first-order interactions were unusual. Because of his 

coding described above, the first-order interaction was between any pair of MO, SC, 

UA, PD and AD (meaning ten possible interactions). However, this imposes that the 

interaction effect when (for example) SC = 2 and UA = 1 (i.e. at levels 3 and 2 

respectively) is the same as that when SC = 1 and UA = 2 (in which the order is 

swapped). This is by no means an obvious conclusion, and impedes the consideration 

of interactions. 

For the SF-6D, the original approach taken by Brazier et al. (2002) used a similar 

additive approach. His preferred algorithm is modelled on the mean scores of the 249 

health states directly valued by respondents (so an observation is the mean score for a 

particular directly-valued state rather than one valuation made by a respondent). It has 

a dummy for each level other than the best in each dimension, plus a MOST dummy 

variable which is equal to 1 if and only if a dimension is at the worst level (which is 

analogous to Dolan’s N3 dummy term). 

Unlike Dolan’s EQ-5D algorithm, Brazier et al. do not allow a freely estimated 

constant in their preferred model. Thus, the regression forces full health to be valued 

at 1 in the regression, rather than imposing it subsequently (as was done by Dolan). 

This is an important distinction is milder health states. Contrasting Brazier’s preferred 

algorithm with the most similar model with a freely estimated constant (model 8 in 

their paper), the constant is 0.788. The LEAST dummy variable (which works in the 

same way as MOST, but with dimensions at the best level) is also ‘turned on’ and 

valued at 0.048, so the baseline from which disutility of health states is 0.788 + 0.048 

= 0.836. This is important because moving from the mildest health state to full health 

in the unconstrained model 8 improves quality of life by 0.148, while the comparable 

figure for the constrained model is 0.011. 

Multiplicativity (e.g. Health Utilities Index (HUI)) 

Both HUI and AQoL employ multiplicative methods for extrapolating values to health 

states within their instruments which are not directly valued by respondents. The 
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approaches are similar, hence the methods for one (HUI) are outlined now; for details 

on the methods employed to value the original AQoL instrument, see Hawthorne et al. 

(Hawthorne, et al., 2000). The HUI scoring system is based on a multiplicative 

approach (Feeny, et al., 2002), and is derived using the Standard Gamble. In this 

approach, the utility u of health state x is estimated by 
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1,11  Equation 11 

where 
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j
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1

....,11  Equation 12 

in which uj(xj) is the single attribute utility function for attribute j, and k and kj are 

model parameters. The uj(xj) term places each level of each dimension on a scale with 

the worst level at zero and the best level at one. The kj term is the relative importance 

of each dimension (and hence the importance of the single attribute utility function 

scores for that dimension in valuing a multi-attribute health state). The k captures the 

interaction in preferences among attributes. If k is positive, attributes are preference 

complements. Conversely, if it is negative, attributes are preference substitutes. This 

approach is described by Keeney and Raiffa (1993). 

Before presenting the results, it is important to note that the wording of HUI3 

produces an oddity in the valuation algorithm. In the Emotion dimension, Level 5 

states that the respondent is “so unhappy that life is not worthwhile”. It is arguable 

therefore that the valuation of any health state with this level should be less than zero; 

however, this is not applied in the valuation study.   

The single attribute utility function scores are not presented here; however, they can 

easily be inferred from the information below. Table 8 provides the coefficients 

associated with the multi-attribute utility function. 
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Table 8: HUI3 Multi-Attribute Utility Function  
Level Hearing Speech Ambulation Dexterity Emotion Cognition Pain

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.98 0.94 0.93 0.95 0.95 0.92 0.96
3 0.89 0.89 0.86 0.88 0.85 0.95 0.90
4 0.84 0.81 0.73 0.76 0.64 0.83 0.77
5 0.75 0.68 0.65 0.65 0.46 0.60 0.55
6 0.61  0.58 0.56  0.42 

Source: Feeny 2002 (2002) 

where u = 1.371 (product of coefficients on levels) – 0.371. The method for 

estimating the health score attached to a particular state therefore assumes that the 

negative impact of a poor level of a particular dimension depends on the levels of 

other dimensions. The multiplicative approach suggests the impact of worsening 

health is highest when other dimensions are at relatively better levels.  Thus, the 

maximum value is 1, and the minimum is -0.351. As an example of the impact of 

interactions, a movement from level 1 hearing to level 6 hearing can be considered. If 

the other six dimensions are at level 1, the impact on quality of life due to this reduced 

hearing is to reduce quality of life by 0.53 (from 1.00 to 0.47). If the other six non-

hearing dimensions are at level 4, the impact is 0.10 (from -0.12 to -0.22). If 

everything other than hearing is at the worst level, and then hearing falls from level 1 

to level 6, the impact is smaller than in the previous cases, with quality of life falling 

by 0.01 (from -0.34 to -0.35). This structure imposes a quite specific restriction on 

utility functions. While the existence of interactions of this sort are plausible, the 

multiplicative structure imposes the notion that the impact of a deteriorating 

dimension depends on the total disutility of all other aspects of quality of life, rather 

than on individual aspects of that pre-existing disutility. 

Algorithms have also been generated for HUI2 in the United Kingdom (McCabe, et 

al., 2005), and for HUI3 in France (Le Galés, et al., 2002). The results of these two 

studies differed relative to the Canadian algorithms. The French results were similar, 

the UK ones were not.  

Chapter conclusion 

In this chapter, I have considered three areas. The first section considered how health 

states are valued. The methods used for valuing specific health states were discussed. 

This included discussion of Time Trade-Off, Standard Gamble and Visual Analogue 
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Scales. The former two were preferred to the third as they are based on a notion of 

sacrifice. However, problems with each were identified relating to cognitive challenge 

of answering questions, and the effect of respondent characteristics beyond health 

preferences, such as attitude to risk and time preference, that impact on the valuation 

of health states.  

The second section in this chapter considered how health is described in generic 

quality of life instruments. The concepts of breadth and depth were introduced, both 

of which add to the sensitivity of the instrument. However, this extra sensitivity 

comes at the cost of increased difficulty in valuing all health states within the 

instrument accurately. This trade-off means that the choice of quality of life 

instrument is context-specific, depending on the expected health changes in the 

population under consideration. 

The third section looked at the methods employed for imputing scores for non-directly 

valued health states. This is of particular concern for those instruments in which a 

relatively small proportion of health states were directly valued by respondents. The 

imputation methods to date are generally sound; however, they are often restricted by 

the selection of directly valued health states. The choice of health states has a direct 

impact on the parameters (and interactions between parameters) that can be 

investigated, and this is something lacking from the majority of the existing literature 

in the area.  

An alternative approach which will be introduced in the next chapter is the use of 

ordinal data in the form of the discrete choice experiment. This technique will be 

tested for the SF-6D in Chapter 5. The issues concerning specification of functional 

form are similar to those presented here. As with the additive and multiplicative 

structure described here, it will prove important to choose a preferred functional form 

prior to designing the fieldwork. While the issue is common to the task presented in 

this chapter, and the next, the advantage in this area of the DCE is that the techniques 

used to produce an appropriate design of the experiment are probably further 

advanced and more widely considered.
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Chapter 3: Discrete Choice Experiments: Principles and 
Application for Health Gain 

Chapter summary 

This chapter introduces the concept of the discrete choice experiment (DCE), and 

discusses the strengths and ongoing controversies associated with this approach. It is a 

stated preference (SP) approach, the increasing use of which reflects the difficulty in 

collecting revealed preference (RP) data in most health contexts. The technique 

provides an alternative to other SP approaches such as the Time Trade-Off, Standard 

Gamble and Visual Analogue Scale, offering attractive solutions to some of the 

problems identified in Chapter 2. Chapters 5 and 6 will use the DCE to explore some 

of the issues raised in Chapters 2 and 1 respectively. In the Standard Gamble, Time 

Trade-Off and Visual Analogue Scales, the respondent is asked to quantify their 

strength of preference regarding each health state being valued. In DCEs, the survey 

response is to simply identify which of a set of options is preferred (thus, it is ranking-

based). In this chapter, existing ranking-based approaches in the health valuation field 

are critiqued. It is argued that they are flawed as the weights they produce do not 

capture the trade-offs between time (and / or probability) and the other components of 

the choice experiment (for example the quality of life terms required for the QALY 

model). If we are interested in these trade-offs, it follows that an appropriate 

numeraire (e.g. time, probability) must be part of the choice set faced by the survey 

respondent. Following this, I will discuss the existing gold-standard methods for 

analysing choice experiment data. This includes the consideration of respondent 

heterogeneity (both on observed and unobserved characteristics), and some thoughts 

about how this heterogeneity might be considered within health policy decisions. 

Following this, I discuss a method for adapting the DCE approach to account for the 

valuation of health gain due to the complementarity of time and other variables such 

as quality of life.  

The existing methods for estimating welfare measures from choice experiments are 

then discussed. The two leading contenders for this, compensating variation and 

marginal rates of substitution, are outlined, along with the types of situations in which 

each might be more appropriate. An approach close to that used when estimating 
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marginal rates of substitution is then proposed for use in Chapters 5 and 6, which is 

defined by the ratio of marginal utilities. 

Introduction 
In the preceding two chapters, I have introduced the concept and necessity of 

economic evaluation in healthcare, and investigated how quality of life is most usually 

described and valued for the purpose of constructing an outcome measure combining 

both mortality and morbidity. I have attempted to illustrate some of the constraints 

and assumptions that are made concerning how society ought to value different types 

of health gain. The surveying of individuals within a society can help make this 

process more representative of societal preferences, and hence relax some of these 

assumptions. One area in which this surveying can play a role is in this description 

and valuation of health. Another area in which it can be useful is in testing whether 

the assumption of inequality neutrality, which is implicit in the common approaches 

to economic evaluation of healthcare, holds. These are the two areas addressed by the 

empirical chapters in this thesis. In this chapter, I will describe the method used in this 

thesis for investigating both of these issues. This is the discrete choice experiment 

(DCE), a type of stated preference experiment with several attractive characteristics. 

However, I will argue that care has to be taken in applications of this methodology in 

this setting, as DCEs have to be adapted to reflect the unusual co-dependence of 

quality of life and life expectancy.  

Stated and revealed preference data 

For economists, data for the modelling of behaviour are generally derived from real 

choices; the choices observed in these data are likely to be good predictors of future 

behaviour, and are less likely to be subject to possible problems such as interview 

bias. In the health sector, areas exist where such data cannot be collected. For 

example, we cannot readily use revealed preference data to investigate how much 

people would be willing to pay for a health resource if we are in a healthcare system 

in which people are never faced with a non-zero price. Economists are interested not 

only in areas where revealed preference data are plausible, but also in goods and 

services which either are not traded, or have not yet been traded. Therefore, revealed 

preference data are of use only in certain domains of health, none of which are 

addressed in this thesis.  
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The concept of stated preference as a tool to elicit social values has a long history, 

dating back at least as far as Thurstone’s attempt to identify the relative importance 

weight of a selection of contemporary crimes (Thurstone, 1927a). Discrete choice 

experiments are an attribute-based approach to collecting stated preference data. It is 

based on the Lancastrian approach, in which the preference associated with a choice is 

a function of various attributes of the option, and of nothing else (Lancaster, 1966). 

When faced with a choice between multiple options, it is assumed that the respondent 

will select the option which maximises their utility (this was discussed previously in 

the context of welfarism and will be formalised in this chapter).  

The principle behind the methods discussed in this chapter begins by stating that a set 

of factors x can explain a choice Y within a stated preference framework, 

 ),()|1( xFxYP , Equation 13 

and, since the only values Y can take are 0 (not chosen) and 1 (chosen), it follows that 

 ),(1)|0( xFxYP . Equation 14 

The coefficients  reflect the impact of changing levels of x on probability of choice. 

The question is how to specify F; an obvious starting point is to assume a linear 

probability model, 

  '),( xxF . Equation 15 

However, as noted in Greene (2003), this does not assure the analyst that model 

predictions are sensible as probabilities (i.e. they can fall outside of a 0-1 range). The 

commonly applied solution is to adopt a continuous probability distribution, such as 

the standard normal or logistic distribution. Under a normal distribution, a probit 

model is derived in which 
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If a logistic distribution is assumed, a logit model is derived in which the 

corresponding probability distribution is 
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 Equation 17 

where (.) is the logistic cumulative distribution function. 
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Rather than modelling probability, it is standard for discrete dependent-variable 

models to be considered in terms of index function models. Thus, what is observed is 

the choice of the respondent, and we assume this to be driven by some latent utility 

function where the option which is most likely to be picked by the respondent is that 

with the highest utility. The reason why the option with the highest utility has the 

highest probability of being picked, rather than the certainty of being picked as it 

maximises utility is that the latent utility function includes an error term  with mean 

0 and a variance of either  2/3 in the logit case or 1 in the probit case. Thus, 

individual choice behaviour is assumed to be intrinsically probabilistic (Marschak, 

1960; McFadden, 1974). 

The utility of an alternative i in a choice set Cn to an individual n is given by 

 ininin XVU ),( . Equation 18 

The V(Xin, ) term is the explainable (or systematic) component of utility which is 

determined by characteristics of the choice or the individual n. However, there is also 

an error term which differs over alternatives and individuals and makes prediction of 

choice uncertain. It is assumed that the individual will choose the option if the utility 

associated with that option is higher than any alternative option. If we assumed there 

are J items in Cn, the choice is defined as 

 nijjininin CijUUiffUfy max__1 . Equation 19 

Alternative i is chosen if and only if 

 njnjninin CijVV , Equation 20 

which can be rearranged to yield 

 ninjnjnin CijVV . Equation 21 

The role of Random Utility Theory 

Neither the systematic nor the error components in the utility function are directly 

observed. Therefore, analysis is reliant on observing choices and inferring the terms 

from that. Random Utility Theory (RUT) is the dominant approach to doing this. In 

RUT, it is assumed that the difference in utility between two options (in this case i and 
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j) is proportional to the frequency that one is chosen over the other (McFadden, 1974; 

Thurstone, 1927b).  

For this to hold, it is necessary to assume that the variance of the random error term is 

constant across choices and individuals. This is because, if an individual has a weak 

preference for i over j, but answers very consistently (i.e. has a low variability on the 

random error term), assuming a higher variability for that person makes i appear 

strongly preferred to j.  Assuming that variance is known is described by Greene as an 

‘innocent normalisation’ (p.669)(2003); this is generally true but has to be considered 

when discrete choice experiment data are analysed (which will be discussed later in 

the context of the Scale Multinomial Logit model).    

Before looking at these issues, two areas of importance regarding the use of discrete 

choice experiments to value health gains need to be outlined, and will impact on how 

I decide to specify the latent utility function in the subsequent empirical chapters. 

These issues are the inclusion of an appropriate numeraire in the discrete choice 

experiment, and the inclusion of variables in the analysis not as main effect terms, but 

interacted with the numeraire. These two issues will now be addressed. 

A suitable numeraire 

In the QALY model, the value of a chronic health profile (i.e. one with constant 

quality of life until death) was described in Figure 2. Assuming we are considering the 

health profile of one individual, the value of a health profile is simply the product of 

length of life and quality of life. A more general framework which explains both the 

Time Trade-Off and the Standard Gamble would be to state that, under Expected 

Utility Theory, the value of an uncertain health profile is the product of length of life, 

quality of life and probability of receiving that profile: 

 obabilityQualitycyExpecLifeValue Pr**tan_  Equation 22 

The value of a gamble involving multiple possible health states is then simply the sum 

of the values of the possible health states (which are automatically weighted by the 

likelihood of being received). 

Under both the TTO and Standard Gamble approaches described in Chapter 2, this 

function is used, and assumes that people are risk-neutral and have a linear utility 

function with respect to time (although each technique only explicitly considers one 



 

75 
 

of these two constraints). In the Time Trade-Off, a value for quality of life for a 

particular health state was determined by keeping probability constant (at 1), and 

finding a point at which the individual is indifferent between ten years in the health 

state being valued, and some shorter period in full health. Similarly, in the Standard 

Gamble, a value for quality of life for a particular health state was determined by 

keeping life expectancy constant (although this is not always explicit), and then 

finding a point at which the individual is indifferent between a 100% likelihood of the 

health state being valued, and a less than 100% chance of full health (and a 

complementary probability of death). The important point to make is that both the 

Standard Gamble and Time Trade-Off include a concept of sacrifice; both involve 

trading (be it risk or time) for a better quality of life. 

In the existing literature attempting to use RUT to estimate utility weights, this issue 

of a suitable numeraire has been ignored. The recent examples of studies which have 

attempted to use ordinal data and Random Utility Theory to produce QALY weights 

have assumed that it is possible to extrapolate from a simple ranking of health states 

and death to a set of weights (McCabe, et al., 2006; Salomon, 2003). Stolk et al. 

(2010) have similarly produced utility weights for a multi-attribute utility instrument 

(the EQ-5D, which was discussed in Chapter 2), but using a DCE rather than 

conventional rank data, but again ask respondents to trade between profiles consisting 

of health profiles independent of duration. Flynn et al. (2008) argue that the methods 

employed by these studies have been erroneous for the following reason.  

In the approach taken in these three studies, neither length of life nor probability is a 

factor in the choice; thus the rankings in McCabe et al., or Salomon, and the DCE of 

Stolk et al. do not include a numeraire required for the QALY model. Within these 

pre-existing studies, it is not possible to impose this multiplicative structure between 

quality of life and life expectancy (and probability) on the scores for particular health 

states. While the results from these studies seem plausible, a value on a health state of 

0.5 (i.e. halfway between full health and death), does not necessarily imply that a 

person is willing to sacrifice half of their existing life to move from this health state to 

full health, or to accept a 50% risk of death to return to full health. Thus, it is essential 

that a suitable numeraire be included in the choice experiment; in this thesis, time is 

assumed to be this suitable numeraire. However, it is plausible that risk might be used 
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as an alternative, in a DCE analogous to the Standard Gamble technique introduced in 

Chapter 2. 

Choice experiments and health gain 

A common approach to specifying the systematic component of the utility function in 

the analysis of choice data is to include a main effect for each level of each attribute 

(with one level in each attribute omitted to avoid over-identification). This approach 

to the utility function can be extended to consider interactions between levels of 

attributes. In the case of health gain, considering quantity of life separately from 

characteristics of those extra years (such as quality of life), and including simple 

interactions between them is unlikely to be adequate in capturing this inter-

relatedness. The reason for this is because it is necessary to impose the zero-condition 

discussed in the introductory chapter in the context of QALY construction. 

Specifically, the utility of a health profile with zero life expectancy is zero 

irrespective of the quality of life in that (non-) period (Bleichrodt, et al., 1997). 

If we assume that the utility function for all models is linear with respect to time 

(denoted by the TIME variable), and the characteristics of that time enters not as a 

main effect, but as an interaction with the TIME variable. This is denoted as Utility 

Function 1, which will be used for Models A, B and C in Chapter 5 (and Model A in 

Chapter 6). Thus, the utility of alternative j in scenario s for individual i is 

 isjisjisjisjisj TIMEXTIMEU '

. Equation 23 

The marginal utility of time in this approach, which will be used later, is therefore 
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TIME

U

.
 Equation 24 

A major advantage of this approach is that, if TIME is set at zero, the systematic 

component of the utility function is zero. Thus, the choice between two profiles with 

TIME set to zero is random irrespective of the levels of the other parameters. In terms 

of the constraints the QALY model places on individual preferences, it is noteworthy 

that Equation (23) features both conditions specified by Bleichrodt, Wakker and 

Johannesson (1997) as being jointly sufficient for the QALY model discussed in the 

introductory chapter. Utility is linear with respect to time (which is imposed by risk 

neutrality), and the utility function passes through the origin by construction. Thus, 
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this is the QALY model. As discussed in Chapter 1, the zero-condition is 

uncontentious. As noted in Chapter 2, the appropriateness of imposing linearity of 

utility with respect to time is considerably more uncertain; is ten years in full health 

associated with double the utility of five years in the same state? As the more 

contentious of the two requirements for the QALY model, the linearity of utility with 

respect to time will be relaxed (with that relaxation being tested) in both empirical 

chapters, as described below.  

Utility Function 2, which is used for Model D in Chapter 5, (and Model B in 6) 

builds on Utility Function 1 by relaxing the restriction of linearity of utility with 

respect to time. Thus, Utility Function 2 is: 

 isjisjisjisjisjisjisjisj TIMEXTIMEXTIMETIMEU 2''2 Equation 
25 

The corresponding marginal utility of time is therefore 

 isjisjisjisj
isj

isj TIMEXTIMEX
TIME

U '' 22 , Equation 26 

which can be simplified to 

 )(2 ''
isjisjisj

isj

isj XTIMEX
TIME

U

.
 Equation 27 

Thus, the linearity of utility with respect to time is relaxed, as reflected in the 
2
isjTIME  term inEquation (25). However, the inter-relatedness of duration and the 

other terms remains. Additionally, it relaxes the assumption that the disutility 

associated with the '
isjX  terms is independent of time (the 2'

isjisjTIMEX  term). Using a 

QALY example, if a high level of pain is worse than a high level of anxiety over 5 

years, the same relativity is necessarily true over any other number of years within the 

QALY model. This is imposed, rather than reflective of any data, and should be 

tested. With regard to the marginal utility of time, an important point to note is that it 

depends on the level of TIME; this has implications for the estimation of welfare 

measures, which will be undertaken in the two empirical chapters. Specifically, as 

Equations (25-27) include a TIME term, it means that the analysis does not impose the 

constraint that marginal utility of time is constant across values of TIME. 
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Up to this point, the chapter has introduced discrete choice experiments as a viable 

method for collecting and analysing stated preference data. The next step is to address 

a number of additional issues which shape the structure of the empirical chapters to 

follow. These are the methods for dealing with lexicographic preferences (which 

violate random utility theory (RUT)), and the importance of respondent heterogeneity. 

A further issue, that of the appropriate design strategies to ensure mathematically 

efficient data collection and unbiased results, will be described in depth in Chapter 4. 

Lexicographic preferences surrounding death 

Flynn (2010) claims that it is problematic to consider death within a random utility 

theory framework. His argument is that there is a proportion of respondents who will 

never acknowledge a health state to be less preferred than immediate death. Of this 

group, some may just not see a health state they believe to be worse than immediate 

death. Others however, might believe that it is 

“not for humans to decide that death is preferable to a living state, no 

matter how bad it is.” (p.3)  

If this is the case, Flynn argues that these people violate RUT, under which there is 

always a non-zero probability of an individual picking an option in a choice set (and 

these people will never select death). This violation means they must be excluded 

from the dataset. Is this a valid critique? It is certainly true that there may be people 

with these preferences, and importantly and more troublesome from an analysis 

perspective, that it is difficult to identify whether someone who never selects death is 

in this group or not. One possible counter-argument is that this type of lexicographic 

preference is likely to still exist when people respond to a choice set in which there is 

no death option. In the context of the EQ-5D discussed in the previous chapter, it is 

possible that someone might never pick an option which involves being confined to 

bed (which is the worst level in the Mobility dimension). It is uncertain if Flynn’s 

position extends to excluding these people from further analysis; however, it is 

logically difficult to assert this is a different type of lexicographic preference, only 

that it may be less likely than a refusal to prefer death over some non-death profile. 

Nevertheless, the analysis undertaken in the empirical chapters of this thesis are not 

reliant on preferences relative to an immediate death option (although the empirical 
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work presented in Chapter 5 was built to allow analysis using rankings between health 

profiles and death). 

Modelling respondent heterogeneity 

The next stage of this chapter is to consider approaches to the modelling of 

heterogeneity. This may seem tangential to the estimation of QALY weights as 

QALY weights are population average weights. However, there are two reasons why 

heterogeneity modelling remains potentially interesting in this instance. Firstly, as 

noted by Hensher et al. (1999), and by Swait and Louviere (1993), aggregation of 

estimates from discrete choice tasks can take place only after variance heterogeneity 

is accounted for. This does not occur in the base case analysis proposed below (or in a 

conditional logit or a mixed logit, also described below). The second reason is that it 

is of some interest to know the degree of harmony with which society holds the mean 

view. If there is significant disagreement about the value of health gain, and the 

elements of health gain that are of most importance, the use of a ‘one size fits all’ 

model may be considered less appropriate. 

The modelling of heterogeneity is divided into two components. Firstly, it is possible 

to identify heterogeneous results based on observable characteristics of respondents. 

Conversely, it might be that modelling of response heterogeneity not based on 

observable characteristics may be valuable. The first is discussed now, and the latter is 

described at length subsequently. 

Observable characteristics and heterogeneous responses 

Conventional valuation of generic health states for use in economic evaluation is 

focused on the mean respondent. This is reflected in the valuation of health states 

within the MAUIs discussed in the previous chapter. This is appropriate within the 

convention that the value attributed to a health state is a societal one. However, it is 

useful to investigate whether respondents completing this type of survey differ in their 

responses based on observable characteristics. This is useful for two reasons. Firstly, 

it will identify the importance of using a balanced (i.e. population-representative) 

panel; if respondents do not differ in predictable ways, it is relatively less important 

that a balanced panel is used. The second reason is that it is intrinsically interesting to 

explore the degree to which people agree with the mean respondent. 
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Considering each demographic characteristic in turn, the sample can be split into 

mutually exclusive and exhaustive groups; for example, those above and below 

median income, males / females etc. The utility function of alternative j for individual 

i with or without demographic characteristic c in scenario s is  

 isjiciisjicsj XU )('

. Equation 28 

The i term is an individual-specific error term and will be discussed more later in the 

context of the base case random-effects probit model. With regard to the sub-group 

analysis, each c was run separately, and this was then compared with a pooled model, 

and the importance of the c terms were investigated using Information Criteria, and by 

testing for poolability using a likelihood-ratio test. The results are presented 

graphically by rescaling the results from each sub-group such that the coefficient on 

duration is set to 1 (thus placing the results from the subgroups on a common scale). 

If, once the adjusted values are generated for two mutually exhaustive sub-groups, 

there is a difference between the two for a particular level of a particular dimension, it 

means that the amount of life expectancy that an individual is willing to sacrifice to 

move to full health in that dimension differs.     

Modelling heterogeneity on unobservable characteristics 

Having outlined the general method adopted for considering the modelling of 

heterogeneity based on observable characteristics, the chapter now turns to modelling 

of unobserved heterogeneity. The approach taken is adapted from that used by Fiebig 

et al. (2010). Basically, the analysis approach described here and employed in 

Chapters 5 and 6 uses a random-effects model for the base case, and then consider a 

range of modelling approaches which incrementally build on each other towards the 

very flexible generalised multinomial logit model. The description of the approaches 

begins with the most constrained approach taken, then relaxes assumptions one at a 

time. Each of the more constrained models are nested in one of the subsequent 

models. The labelling of the heterogeneity exploration models reflects the number of 

parameters estimated under each model (A being the least and F being the most). The 

base case random-effects model is inserted into this as the second most constrained 

approach. 
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Note that the general approach in both empirical chapters is to pair the utility function 

specified in Equations 23 and 25 (i.e. with and without the imposition of linearity of 

utility with respect to time) with each of the 7 models specified below i.e. the random-

effects probit, the conditional logit, the scale multinomial logit, the mixed logit (with 

and without correlation) and the generalised multinomial logit (with and without 

correlation). Each of these will now be described, in order of the number of degrees of 

freedom starting from the most constrained. 

Conditional logit modelling (heterogeneity exploration model 1) 

I have previously noted that, when there are only two choices for the respondent, 

binary choice models can be employed. The reason for using these approaches in 

place of standard Ordinary-Least Squares (or similar) linear probabilities models is 

that, while the latter are possible, they are somewhat limited in that they cannot 

guarantee predicted probabilities in the appropriate range, and in that the error term is 

heteroskedastic, depending on the  values (Greene, 2003). The methods described 

below improve on this linear probability modelling by ensuring that the probability of 

an event (in this case an option being chosen) lies between 0 and 1, and also that the 

partial effect of an explanatory variable can differ based on other explanatory 

variables (Wooldridge, 2003). The latter is important because changing the level of a 

dimension within an option in a choice set is likely to have a very different impact on 

the probability of selecting that option if the base probability is 0.5 or 0.95. The 

binary choice models are based (as are more advanced specifications such as mixed 

logit, and generalised multinomial logit which will described later) on the random 

utility model described by McFadden (1981). The latent utility function for individual 

i of alternative j in scenario s is defined in the following way: 

 isjiisjisj XU '

, Equation 29 

where i  is a vector of co-efficients and isjX  is a vector of explanatory variables. If 

we assume the error term to be identically and independently distributed (iid) as 

extreme value, we generate the standard general multinomial logit (MNL) 

specification in which the probability that the individual chooses alternative j in 

scenario s is defined as 
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As there are only two choices in the binary choice model, we can define k as the 

alternative which is not j and then simplify this to 
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 Equation 31 

The conditional logit has a number of constraints which may be unrealistic. When 

predicting responses, it forces the data to conform to Independence of Irrelevant 

Alternatives (IIA). This implies proportional substitution patterns (i.e. if an option 

drops out of a choice set, the respondents who initially selected that option are 

reallocated to the other options proportionally to the probability of these options being 

selected in the initial choice set). For the binary choices considered in this thesis, this 

does not pose a problem. 

Base case analysis - Random-effects (RE) modelling 

The conditional logit outlined above assumes all observations are independent; hence, 

there it has no capability for reflecting the panel nature of data. Responses from a 

common individual are likely to have a degree of commonality. To assume 

independence of each response is to exaggerate the degree of agreement in the 

sample. In the random-effects (RE) probit, the error term is a composite term, 

consisting of a standard error term isj distributed iid standard normal, and a person-

specific error term i (distributed iid normal with mean 0 and variance 2
v )8. Thus, 

Equations (23) and (25) are amended by stating the utility of alternative j in scenario s 

for individual i is 

 isjiisjisj TIMEXTIMEU '

, Equation 32 

and the less constrained utility function allowing for non-linearity over time becomes 

 isjiisjisjisj TIMEXTIMEXTIMETIMEU 2''2 Equation 
33 

                                                 
8 The move between logit and probit functions is defined by the characterisation of the random error 
term. In a logit function, it is distributed following a standard logistic distribution. In a probit model, it 
is assumed to be standard normal. The justification for moving to a probit model for the random-effects 
approach is that random-effects logit models are rarely used in practice 
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Thus, as the person-specific error term applies across all choices made by an 

individual, these choices will not be independent. The correlation between choices 

made by an individual, which is a check of whether there are person-specific effects, 

is estimated as 

 )1/( 22
vv . Equation 34 

In the empirical chapters to follow, analysis will follow two directions. The base case 

analysis will be undertaken using the random-effects probit (the xtprobit command in 

STATA)9. It accounts for the panel nature of the data produced by the discrete choice 

experiment methodology, but does so in a fairly parsimonious way. The reason for 

using probit rather than logit is simply reflective of the more common usage of it in 

the economics literature; in all empirical chapters, the base case model will also be 

run using xtlogit to investigate whether the results are sensitive to this switch (and 

thus able to be compared with the various heterogeneity exploration models which use 

a logit specification).  

Heterogeneity exploration model 2 - Scale Multinomial Logit modelling 

In the conditional logit, the error term has a variance that has been normalised to one 

in order to achieve identification (Fiebig, et al., 2010). This is often termed as a 

perfect confounding of the estimates of the mean and variance of the latent utility 

scale (Ben-Akiva and Lerman, 1985; Swait and Louviere, 1993). If a respondent is 

relatively consistent in her choices, her individual error term is relatively small. Since 

the variance of the error term is normalised, the individual-level coefficients for the 

respondent will tend to be universally higher because of this consistency. To introduce 

(and control) this scale term, the utility function for individual i of option j in choice 

set s is therefore 

                                                 
9 Under the clogit, mixlogit, and gmnl commands that form the strands of the heterogeneity exploration 
component of the empirical chapters, it is possible to group by both the choice set and the respondent 
(both of which are necessary, except in the conditional logit where all responses are independent). 
However, in the random effects models, the STATA command does not allow identification of both 
cluster variables. The use of xtset provides one, but the command offers neither the id option nor the 
group option. Therefore, the data was coded as differences, where one line represents one choice set, 
and each column represents the difference between the value of the parameter under option A minus 
the value of the parameter under option B. Thus, xtset was used to identify the respondent. The choice 
was either coded as 1 (if A was the preferred option) or -1 (if B was preferred). The impact of this is 
small, except that the log likelihoods between the random-effect models and the rest are not 
comparable, which therefore also applies to the Information Criteria. 
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 /'
isjiisjisj XU . Equation 35 

This utility function can be rewritten as 

 isjiisjisj XU '

. Equation 36 

Model B is the scaled multinomial logit model (using Fiebig et al’s (2010) label, the 

S-MNL). Thus, relative to the conditional logit in Model 1, one additional parameter 

is estimated. Note that i is not estimated for each respondent; this would lead to a 

huge number of additional coefficients. Rather, a distribution is estimated. As scale 

has to be constrained to be positive, the distribution is conventionally assumed to be 

log-normal 

 ,~ln Ni . Equation 37 

STATA code, developed by Gu et al. (2011) and used in this thesis, normalises to 

be one, so the output reports the value of . The S-MNL is a highly parsimonious 

method for characterising heterogeneity relative to other methods outlined below as it 

only introduces one extra parameter. A recent paper has considered the use of latent 

class analysis of preferences regarding health (Flynn, et al., 2010); this was not 

considered in this analysis. While Flynn argued that a latent class approach has the 

advantage of not requiring parameterisation of heterogeneity, Hole (2008) identified 

that the conclusions from a latent class approach and a mixed logit give similar 

results, both representing significant improvements relative to a standard logit. 

Indeed, Keane and Wasi (2009) demonstrate using a range of datasets that latent class 

analysis is consistently outperformed by other approaches, including the S-MNL (and 

the G-MNL which is discussed below as Models 4 and 6). 

However, while the S-MNL may offer substantial improvement on the conditional 

logit or random-effects probits or logits, scale heterogeneity is not the only possible 

source of heterogeneity. Preference heterogeneity, in which different attributes are of 

relatively greater or lesser importance to different respondents (independent of scale), 

may be an additional area in which the conditional logit is overly restrained. 

Heterogeneity exploration models 3 and 5 - Mixed logit analysis 

In the previous section, the importance of accounting for scale heterogeneity was 

outlined, and it was noted that other sources of heterogeneity exist and should be 
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considered. A model which does this is required, the most obvious of which is the 

mixed logit, which has become increasingly common in health economics (Hall, et al., 

2006a; Hole, 2007a; Hole, 2008). This approach allows for possible heterogeneity 

among individuals by setting 

 kikkiki Z , Equation 38 

where Zi and k are a vector of observed characteristics of a respondent i and a vector 

of parameters respectively, and kik represents unobserved heterogeneity in the 

preference weights. Concern with modelling heterogeneity in preferences between 

respondents is longstanding (see for example Hausman and Wise (1978)), but 

solutions remained theoretical until the recent increase in computing processing 

capabilities. The ki terms are usually assumed to follow standard normal distributions 

(although log-normal distributions can be imposed in situations where a positive 

coefficient is required), which are independent both of each other and of the error 

term in the utility function. This specification allows for the panel nature of the data 

as ki differs over individuals, but not over the repeated choices made by each 

individual. 

One issue with the use of mixed logit is that it generates heteroskedastic error terms. 

The random utility model described previously becomes   

 iiisjiisjisjU ,'x . Equation 39 

As discussed previously, the i term varies over individuals. Rather than allowing one 

parameter for each individual, it is assumed to be composed of a mean coefficient  

and a variability term i which is distributed normally with zero mean and a non-zero 

standard deviation (Hildreth and Houck, 1968). The heteroskedastic error term results 

because the model is estimated based on the  term (the mean) rather than the i term. 

In notation, 

 )( ''
ijiijijijU xx . Equation 40 

Thus, the error term is different based on the value of the '
ijx . 

A further issue with mixed logit models is that the vector of consumer utility weights 

for a particular level of an attribute is usually assumed to have a multivariate normal 
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distribution with mean zero and a vector of standard deviations  (Fiebig, et al., 

2010). It should be noted that this is not necessarily the case: McFadden and Train 

highlighted that  

“…any discrete choice model derived from random utility maximisation 

has choice probabilities that can be approximated as closely as one 

pleases by a (Mixed Logit)” (McFadden and Train, 2000) (p.447) 

However, alternate distributions are rarely used (for example, the STATA command 

allows only a log-normal distribution as an alternative). Regarding the use of a 

multivariate normal distribution, it has been argued by Louviere (2008) that this 

distribution is not  realistic, and that much of the differences in attributes between 

individuals are a result of a scale effect. As Flynn (2010) states, there is a perfect 

confounding of estimates of the mean and variance on the underlying latent scale. 

Conventionally, this variance scale is set to one to enable identification (thus not 

requiring explicit modelling of scale). The consequence of this is that a high 

coefficient on an attribute for an individual may represent the individual favouring 

that attribute, or being particularly certain in their preferences, or some combination 

of the two. Therefore, the distribution of a coefficient around a mean reflects both true 

heterogeneity in preferences, and also heterogeneity in certainty. 

In the empirical chapters in this thesis, estimation by maximum simulated likelihood 

was undertaken in STATA, with all coefficients potentially varying across 

individuals. Choice probabilities are estimated in the following way: 
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 Equation 41 

STATA takes D draws from the multivariate normal, and averages logit expressions 

over these draws to simulate choice probabilities. The mixed logit regressions are 

presented as Models 3 and 5. All mixed logit models were estimated using 500 Halton 

draws (as were those in the G-MNL, which is described below).  

It is highly plausible that, in some situations, coefficients are likely to be correlated 

within an individual. Using a marketing example, individuals who prefer a pizza with 

ham may be more likely than average to favour a pizza with salami. In situations in 

which coefficients are likely to be correlated within an individual, the simple mixed 
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logit, in which all draws are independent, can be extended by relaxing the assumption 

of independent coefficients. Thus, while it is most conventional to assume that the i  

vector of coefficients is multivariate normal (0, ), and that  is diagonal, this need not 

be so. Relaxing this assumption can be done in most statistical packages, such as by 

using the corr option in STATA. Thus, model 5 (and 6 discussed below) include this 

relaxation, exploring whether the relaxation adds predictive strength to the results of 

models 3 and 4 which make the limiting assumption. More details of this technique 

are given below in the outline of model 6 in the G-MNL. 

Heterogeneity exploration models 4 and 6 - Generalised Multinomial Logit 
modelling 

Recent literature has suggested that allowing for preference heterogeneity in the 

mixed logit without simultaneously allowing for scale heterogeneity impacts on the 

interpretability of the results (Fiebig, et al., 2010; Hensher, et al., 1999; Louviere, et 

al., 2008; Louviere, et al., 2002; Louviere, et al., 1999). The issue with considering 

the heterogeneity identified in mixed logit as preference heterogeneity is that, across 

individuals, all attribute weights can be scaled up and down in parallel due to the 

randomness or otherwise of their responses. This scale effect can be controlled for in a 

scale heterogeneity multinomial logit model. However, a step beyond this is to nest 

both preference heterogeneity and scale heterogeneity into one model, described by 

Fiebig et al. (2010) as a generalised multinomial logit model (G-MNL). 

In this, the utility of choosing alternative j to an individual i in scenario s is given by 

 ijsijsiiiiijs xU 1 , Equation 42 

where  is a parameter representing how the variance of residual taste heterogeneity 

varies with scale and i is the scale parameter associated with individual i. As  

approaches 1, the scale term applies only to the : conversely, as it approaches zero, 

the scale term is applied increasingly to the individual variability from the : at the 

extreme, it applies equally to the parameter coefficient  and the variance term i .  

Fiebig et al. (2010) define these two extreme cases as G-MNL-I and G-MNL-II 

respectively. Thus, G-MNL-I is 

 ijsijsiiijs xU , Equation 43 
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while G-MNL-II (termed by Greene and Hensher (2011) as the scaled mixed logit 

model) is 

 ijsijsiiijs xU )( . Equation 44 

The code of Gu et al. (2011)  employed in this thesis to estimate the G-MNL allows  

to be freely estimated; that is, it can take any value (Keane and Wasi, 2009). This 

moves away from the assumption in Fiebig et al. (2010) that estimates it in a 0-1 

range. Keane and Wasi argue this is appropriate for two reasons. Firstly, constraining 

it in this way ignores the case in which the scale term applies more to i  than to . 

Secondly, the method used by Fiebig et al. estimated *, rather than , where  = 

exp( *)/(1+exp( *)); this caused problems as * often tended to ±  (which would 

suggest that  was close to 0 or 1). However, the interpretability of an unconstrained  

is not always clear. As Keane and Wasi (2009) note, if  takes a negative value, it 

means that the scale term applies more to i  than to  (which is plausible). This can 

be seen in Equation (42) as the term in the round brackets exceeds one, which is then 

multiplied by ii . However, if  takes a value greater than one, the term in the round 

brackets becomes negative, meaning a negative scale effect applies to i ; what this 

means is unclear and should be considered with suspicion. In the empirical chapters, 

the G-MNL is estimated using an unconstrained . If the result suggests >1, then the 

model will be re-run constraining it to be 1 or less.    

Interestingly, Fiebig et al. (2010) identify that, in the choice sets surrounding health 

questions specifically, the move from MNL to G-MNL leads to a relatively greater 

improvement in log-likelihood than in other, non-health, data sets. Indeed, the 

percentage improvement in log-likelihood was approximately twice as large in the 

health-based data sets as in the others. Flynn (2010) claims this pattern is not 

surprising: 

“Variation in choice consistency is much lower when people are deciding 

which TV to buy than when they are choosing health insurance plan or 

treatment” (p.7) 

Other recent evidence has acknowledged the role of scale heterogeneity (Greene and 

Hensher, 2011). However, Greene and Hensher argue that, while accounting for scale 

heterogeneity might improve model fit, the importance of allowing for it in logit 
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models is of a much smaller magnitude that accounting for preference heterogeneity, 

and does not impact on estimates of (for example) elasticities or willingness to pay. 

The relative importance of accounting for the two sources of heterogeneity will be 

looked at empirically in our data sets. 

Heterogeneity models 4 and 6 extended heterogeneity models 3 and 5 respectively, 

but replacing the mixed logit framework with this G-MNL one (the coding of models 

allows the number of parameters to increase from model 1 through to model 6). Gu et 

al. (2011) note that model convergence and time to convergence are highly sensitive 

to the starting value assumed by the analyst. In the empirical chapters that follow, a 

variety of approaches are taken, with the reported result noting the starting values 

employed. There are a variety of sensible starting values for the G-MNL. Using 

coefficients from the corresponding mixed logit model (correlated or not) is one 

possibility. As the mixed logit does not estimate either * or , the starting value of 

these can be assumed (usually with  = 1 and  = 0.5). In both empirical chapters in 

this thesis, the results for the G-MNL will specify which starting values achieved 

convergence. 

It is important to note that all models estimated to this point are nested within the G-

MNL. The models could therefore all be considered as G-MNL models with specific 

constraints placed on parts of the utility function. This point was made by Fiebig et al. 

(2010); how the modelling approaches incrementally build on each other is presented 

in Figure 11. 
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Figure 11: Nesting Regression Models Within the G-MNL 
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Two brief computational issues 

With models employing simulated maximum likelihood, it is necessary to specify two 

major technical inputs to allow software to find the appropriate coefficients, these 

being the number of Halton draws and the method of optimization. The Halton draws 

used in the G-MNL estimation procedure were generated using the Mata function 

halton() (Drukker and Gates, 2006). Regarding the number of Halton draws, STATA 

defaults to 50. While this represents a low number of draws, and therefore convenient 

in terms of time to convergence, it has been argued that this may lead to serious 

convergence issues (Gu, et al., 2011). Train (2003) outlined the concept of Halton 

draws and discussed their use in preference to random draws. He cited Bhat (2001), 

who showed that 100 Halton draws for a mixed logit performed better (in terms of 

precision of estimates) than 1,000 random draws. However, whether these fewer 

Halton draws can be somehow defined to be precise enough is moot. The modelling in 

this thesis uses 500 Halton draws unless otherwise stated. With regard to optimization 

strategy, the default Newton-Raphson approach was taken, which is described in 

Chapter 8 in Train (2003). While estimation under Newton-Raphson is slow, my 

experience is that it is more likely to eventually reach convergence in simulated 

models.   

Model evaluation 

The major approach to model evaluation was the use of Akaike and Bayesian 

information criteria (AIC and BIC) (Akaike, 1974; Schwarz, 1978). These consider 

both the model fit and also the parsimony of the model (by accounting for the number 

of parameters in the model). AIC is estimated using the log likelihood and the number 

of parameters estimated: 

 likelihoodkAIC log22 , Equation 45 

where k is the number of coefficients estimated. The BIC has a relatively greater 

emphasis on parsimony; therefore, disagreement concerning preferred specification 

(defined by minimising the coefficient) is possible between the two. BIC is estimated 

in the following way: 

 likelihoodnkBIC log*2ln , Equation 46 
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where n is the number of observations. There is however an issue with the use of BIC 

in panel data with multiple observations per respondent. It is unclear whether n should 

represent the number of clusters (in this case the number of respondents) or the 

number of observations (which, in a data set with only complete responders, is equal 

to the number of choice sets multiplied by the number of respondents). It depends on 

the degree to which observations within a respondent are independent: the more this 

statement is true, the more appropriate it is to use the number of observations rather 

than the number of respondents. In this case, it is unclear which approach is 

appropriate. Certainly, there will be considerable agreement between responses from 

one individual; however, to assume this agreement is perfect is very strong. Therefore, 

both BIC estimates are calculated, and any disagreement in ranking of models 

between them are discussed further. 

Fiebig et al. (2010) investigate the relative merits of AIC and BIC for the models 

estimated here. They generate twenty simulated datasets for each of the S-MNL, the 

Mixed logit (correlated errors) and the G-MNL (correlated errors) for two contexts 

(pap smear tests and holidays). They then run multinomial logit, S-MNL, Mixed Logit 

and G-MNL on the simulated data and identify the probability of each Information 

Criteria identifying the correct underlying utility function. When the true utility model 

is S-MNL, all Information Criteria have perfect prediction (in that the preferable 

model in information criteria terms was the S-MNL). When the true utility function 

corresponded with the Mixed Logit, the AIC identified it correctly in approximately 

half of the simulations; otherwise, it suggested the G-MNL was preferred. The BIC 

performed less well. In no simulation did it identify correlated errors, although it did 

tend to prefer the mixed logit with uncorrelated errors to the G-MNL with 

uncorrelated errors. If the true model was G-MNL, the AIC performed well 

identifying it as such every time, but preferring the more parsimonious uncorrelated 

error specification in eleven of the twenty simulations in the Pap Smear context. 

Arguably, this suggests the AIC is a better method of identifying the underlying utility 

function. 

Deriving welfare measures from discrete choice experiments 

Up to this point, the chapter has discussed issues in the conception (as opposed to the 

design), analysis and evaluation of discrete choice data. One issue which has not been 
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discussed is the appropriate grouping of profiles in surveys. This is the major focus of 

Chapter 4. Before doing this, it is necessary to discuss how results from a choice 

experiment can best be made policy relevant. The issue is that identifying whether A 

is preferred to B (where A and B can be products, or levels of a dimension in the 

choice experiment) is valuable, but it is necessary to know how much better A is than 

B, and to put it in a metric which can be used in policy. It has been widely 

acknowledged in utility theory and in the psychology literature that comparisons of 

coefficients between experiments to identify relative importance is fundamentally 

flawed (Keeney and Raiffa, 1993; Lancsar, et al., 2007).  

Lancsar et al. (2007) present some options for evaluating the relative importance of 

attributes in stated preference experiments. Of most relevance to this work are (i) 

Hicksian welfare measures such as compensating or equivalent variation (CV / EV); 

and (ii). marginal rates of substitution (MRS) 

The Hicksian Compensating Variation 

Using the Hicksian compensating variation (CV) to explore the relative importance of 

attributes within a choice experiment was first discussed by Small and Rosen (1981), 

and then introduced to the Health Economics literature by Lancsar and Savage (2004). 

The CV, when considering the willingness to pay for some policy change, is estimated 

as 

 
J

j

V
J

j

V jj eeCV
11

10

lnln1 , Equation 47 

where  is the marginal utility of income, and are the values of the IUF for each 

choice option j before and after the policy change, and J is the number of options in 

the choice set. The CV is illustrated diagrammatically in Figure 12. 
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Figure 12: The Compensating Variation (CV) 

 

 

In a hypothetical market, there are two goods, x1 and x2. The initial budget constraint 

(the blue line marked p0) demonstrates the relative price of the two goods. The red 

indifference curves reflect combinations of the two goods that have equal utility for 

the consumer. Imagine that the relative price of the two goods changes from p0 to p1. 

Thus, x1 becomes relatively and absolutely less expensive, and the consumer can 

move to the higher indifference curve. The CV is defined as the income change 

required to compensate the consumer for the price change (Varian, 1984) and uses the 

new prices as the base (thus differentiating it from the EV which uses the original 

prices). In this case, the CV is negative as the consumer is on a higher indifference 

curve following the price change. 

The foundation of the CV technique (and the equivalent variation) lies in the work of 

Hicks (1939), and was adapted for the discrete situation by Small and Rosen (1981). 

The compatibility of the CV technique with RUT has been widely discussed, and in 

the health economics context by Lancsar and Savage (2004).  

 The advantage of this approach is that it accounts for the probability that each 

alternative will be chosen by a typical respondent. Consider a choice set with eight 

options A-I, with some initial ranking of the options with A most likely to be selected, 

down to I being least likely. If a policy improves I but not to the extent that I is 
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x2 

CV 

p0 p1 
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significantly more likely to be picked, the willingness of the typical respondent to pay 

for this improvement in I is likely to be effectively zero. 

Marginal rates of substitution 

Using marginal rates of substitution as a method for deriving a welfare measure for 

the utility associated with a changing attribute is easy to apply and an intuitive 

method. There are a large number of applications of the approach in the health 

economics literature (Gyrd-Hansen and Sogaard, 2001; McIntosh and Ryan, 2002; 

Scott, 2001). The MRS is calculated by partially differentiating an indirect utility 

function V with respect to one attribute x1, and then with respect to another attribute 

x2, then calculating a ratio, i.e., 

 

2

1
, 21
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V

MRS xx . Equation 48 

Thus, the numerator is the marginal utility of X1, and the denominator is the marginal 

utility of X2. Using the ratio puts the marginal utility of X1 in the units of X2. If X2 is a 

price, the MRS represents a marginal willingness to pay for a change in X1. In a main 

effects model, this term is usually interpreted as a ratio of coefficients (although 

Lancsar et al. (2007) have shown that Equation (48) is a more general expression 

which continues to be applicable under different specifications of the utility function).  

There has been considerable discussion in the literature regarding the relative 

appropriateness of CV and MRS (Ryan, 2004; Santos Silva, 2004). Ryan provides an 

interesting distinction illustrating the types of situations in which the two approaches 

are preferred. She distinguishes between ‘state-of-the-world models’ and ‘multiple 

alternative models’. In the former, there is “only one alternative on offer at any one 

time, and individuals take up the service / drug with certainty.” (p.909). If this is true, 

she argues that CV reduces to MRS as 
J

j

V je
1

0

ln reduces to 0
jV . Importantly, Ryan 

then argues that ‘state-of-the-world models’ are more likely in health than in, for 

example, transport or environmental issues as choices are often limited. The caveat to 

this point is that non-demanders are important to model. In the CV, if the options 

before and after the policy change are both unattractive, and the potential patient is 

able to opt out of treatment (which is normally the case), the CV becomes 
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which moves further from the CV stated in Equation (47) as the and  terms 

become increasingly large and negative (as the opt-out option becomes increasing 

likely to be selected even if the active options improve). 

Using a ratio of marginal utilities 

This can be adapted to the framework established in Equations (23) and (25). The 

need for adaptation from the conventional MRS approach is that, in the empirical 

Chapters 5 and 6, I am interested in the value of a health profile relative to some other 

health profile (e.g. the value of quality of life in a particular health state relative to full 

health). This differs from MRS in that it is a comparison of two entire health states, 

rather than a comparison of two coefficients within one regression. Therefore, what is 

needed is the ratio of marginal utilities (RMU) associated with the two profiles. The 

reason for this can be illustrated diagrammatically, as in Figure 13. 

Figure 13: Ratio of Marginal Utilities 

 

  

In Figure 13, the approach underpinning the valuation of health profiles is presented 

using a standard QALY model. In this case, 10 years in full health by definition 

provides 10 QALYs. If some other health state A provides 10 QALYs over a 15 year 

period (and hence the overall profiles of health are valued equally), the QALY model 
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values that health state at 10/15 = 0.667. This calculation is simply the ratio of the 

slopes of the two lines, and is the approach taken here.  

This is derived from Equation (23) for the case in which utility is assumed to be linear 

with respect to time, and from Equation (25) if that assumption is relaxed by 

introducing quadratic terms.  If it is assumed that the simpler utility function in 

Equation (23) is used, the RMU between two alternatives health profiles j and j* can 

therefore be estimated as 

 '
*

'

*,
isj

isj
jj X

X
RMU . Equation 50 

If the less constrained approach is taken, as exemplified by Equation (25), the RMU 

between the same two alternatives j and j* can be estimated as 
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XTIMEX
RMU . Equation 51 

This second estimate of RMU is clearly more difficult to estimate as it is now 

dependent on the value of TIME; while this may better represent the trade-offs that 

people make, a question that is raised in the following empirical chapters is whether 

accounting for different RMU is worthwhile when welfare measures are constructed. 

In the empirical chapters that follow, I will use the RMU to estimate welfare 

measures; however, where a ‘multiple alternative model’ is plausible, I will also 

analyse the data using a CV approach and compare the results.  

Chapter summary 

This chapter has presented the methods used in the empirical chapters that follow it. 

Specifically, the discrete choice experiment has been described, beginning with the 

principle of probabilistic choices. The subsequent key issues raised were the choices 

surrounding the design of the choice experiment, the methods for allowing for and 

investigating response heterogeneity, and the appropriate specification of the utility 

function to allow for the unusual complementary relationship between time and other 

characteristics which are meaningless (and without value) in the absence of time. 

Finally, the methods for deriving welfare measures were discussed. Using a ratio of 
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marginal effects was proposed, an approach which will be pursued in Chapters 5 and 

6. 
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Chapter 4: Some Principles for Designing Discrete Choice 
Experiments 

Chapter summary 

Chapter 3 introduced the DCE as a potentially highly attractive tool to explore 

preferences in health. However, the description did not consider how to construct a 

discrete choice survey. This issue is of paramount importance as a failure to design 

the experiment to allow investigation of the parameters of interest renders the method 

of analysis irrelevant. In this chapter, the methods for designing statistically optimal 

DCEs are outlined, alongside some ongoing controversies in the area. The 

multifaceted nature of choices in the health field make designing small experiments 

difficult without considerable constraints on the effects that can be separately 

identified; thus, it is important to maximise the information the analyst derives from 

each question, and from each survey respondent, particularly in contexts in which the 

population of interest is limited in size. The concepts of contrasts and of arrays are 

introduced and discussed, particularly how the choices made in constructing arrays 

impact on what effects can be investigated. Different strategies for designing and 

evaluating choice experiments are then described. In particular, the chapter looks at 

the use of shifted designs and Kuhfeld’s SAS algorithms, as they are the two methods 

employed in the empirical chapters of this thesis. 

DCE design principles 

This thesis presents two major pieces of empirical work in Chapters 5 and 6. Both are 

DCEs, and each uses a different approach to the design of the experiment. Chapter 5 

uses SAS algorithms described by Zwerina, Huber and Kuhfeld (2010), while Chapter 

6 uses a generator-type approach as suggested by Bunch, Louviere and Anderson 

(1996), and extensively developed in Street and Burgess (2007). After a brief 

introduction to design theory and some preliminary discussion, the two approaches 

will be outlined. 

Introduction to design theory 

Chapter 3 discussed the appropriate tools for analysing DCE data in the context of an 

experiment with fundamental complementarity of attributes, and the necessity of 

including a suitable numeraire when designing the experiment. It then discussed the 
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appropriate tools for estimating welfare measures from the results of a choice 

experiment. This chapter deals with a particular interpretation of design in DCEs, 

specifically the methods for selecting the pairs of profiles that will be shown to the 

respondents in the studies described in the empirical chapters. 

In choice experiments, and also in regression analysis more generally, we are 

interested in investigating the impact of an explanatory variable (often called 

treatments) on some response variable in a set of experimental units. There are 

considerable advantages to being able to control the allocation of the explanatory 

variable between the units. In a comparative experiment (of which DCEs are an 

example), the experimenter chooses which treatments are administered to which 

experimental units. This compares with the more general observational studies in 

which 

“the objective is to elucidate cause and effect relationships… (where) it is 

not feasible to… assign subjects at random to different procedures (or 

treatments)”.  (Cochran and Chambers, 1965)  

The need to account for differences in characteristics of experimental units prior to 

receiving the treatment is a perennial problem which comparative experiments seek to 

circumvent, as they are used in situations where the experimenter has control over the 

administration of treatments to units. 

In a discrete choice experiment, exploring the impact of changing individual attributes 

one at a time on the choices of the respondent is an inefficient way of exploring 

preferences, and indeed may miss interactions altogether. As a result of considering 

the study of crop yields in agriculture, Sir Ronald Fisher introduced the idea of 

factorial designs which allow the simultaneous investigation of multiple factors 

(Fisher, 1935; Fisher, 1925). If we have k variables we are interested in (which will be 

called attributes), and each attribute has lq possible values (called levels), the full 

factorial in which every possible combination is investigated requires k
ql  separate 

tests, a number which can easily prove unmanageable. More generally, the number of 

possible combinations L can be defined as k

q qlL
1

where there are k dimensions 

and the qth dimension has lq levels. The principles of designed experiments address 

how to select a subset of this full factorial such that a set of effects can be estimated in 
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such a way that it optimises some pre-specified criterion, perhaps minimising 

variance. Burgess, Street and Wasi (In Press) summarise the problem, 

“Which alternatives should we show together in choice sets, and which 

choice sets should we include in a discrete choice experiment?”  

The optimal DCE in a given setting is a function both of some simple universal 

principles of design (e.g. there is no sensible information derived from making a 

respondent choose between identical options) and the kinds of issues the analyst 

wishes to investigate. 

What are we trying to do when we design a choice experiment? Louviere et al. (2000) 

state four objectives, 

1. Identification: The form of the utility function can be estimated from the 
experiment; 

2. Precision: The parameters can be estimated as precisely as possible; 

3. Cognitive complexity: The experiment should not be so difficult for the 
respondent that responses are adversely affected; and 

4. Market realism: The choices should reflect as closely as possible the choices 
that people actually make. 

Viney et al. (2005) argue that the focus has been on the first two of these, at the 

expense of the latter two. A recurring theme is that statistical efficiency, associated 

with the first two of these objectives, is often in conflict with the final two (which 

impacts on what can be termed respondent efficiency).  

It should be noted that the fourth objective is of particular difficulty in a health 

setting. As noted in the introductory chapter of this thesis, the health sector involves 

significant government intervention and proxying of a market. Thus, the choice sets 

faced by an individual are often unavoidably unrealistic. One obvious instance of this 

is if the options include items such as cost; something which is needed if the analyst 

wishes to estimate willingness to pay for a service, but not something which 

healthcare consumers face in many of their real-world decisions.  

The issue of respondent efficiency is necessarily context-specific. For example, in the 

context of the multi-attribute utility instruments described in Chapter 2, a DCE which 

investigates these kinds of issues ought to consider which combinations of quality of 

life are so implausible that the respondent would be likely to find difficulty answering 
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the question. Therefore, I will return to it in the empirical chapters which follow. The 

concept of statistical efficiency is more universal, so I will turn to this now. This 

includes both methods for constructing DCEs, and for evaluating how well the 

resultant designs achieve a set of pre-specified positive characteristics. 

Contrasts and fractional factorial designs 

An important concept requiring introduction at this point is that of contrasts. I will 

first demonstrate the principle of contrasts in a non-DCE setting. Consider a situation 

in which there are 3 attributes (called A, B and C) that might have some impact on a 

dependent variable (Y). Using an agricultural example, A, B and C might be use of 

pesticide, provision of water and exposure to sunlight respectively, and Y might be the 

crop yield from a plot of land. Initially, it might be assumed that each of A, B and C 

has only two levels (each labelled as 0 and 1, relating to appropriate low and high 

levels for example). Thus, there are eight possible treatments, which will be labelled 

lexicographically as 000, 001, 010, 011, 100, 101, 110 and 111 where the first figure 

in each treatment refers to the level of A, the second to the level of B, and the third to 

the level of C. Initially, the focus is on the situation in which all level combinations 

appear; this will be called a full factorial. 

In an experiment, it is necessary to identify the effect of each parameter in the model 

independently (called the main effect of the parameter). If we look first at the main 

effect of A on Y (using the agricultural example, the impact of pesticide on yield), it is 

plausible that the effect depends on the levels of B and C (i.e. there are interactions). 

We can identify the simple effect of A and Y, defined as the impact of A for each of 

the possible combinations of B and C. 

Thus, the simple effect of A if B and C are both set at 0 is 

 000100 yy . Equation 52 

 

The main effect of A is then estimated as the mean of the simple effects over the four 

possible combinations of B and C, i.e. 

 4/))()()()(( 011111010110001101000100 yyyyyyyy . Equation 
53 

Street and Burgess (2007) have reported this result for 2k designs: 
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where k is the number of binary dimensions, and xq is the value taken by the qth 

dimension (either 0 or 1). Assuming there are no interaction effects, each of the four 

terms in the numerator of Equation (53) have a common expected value, so averaging 

over them has the effect of reducing random variability. It is this assumption of a 

common expected value that is being tested when we begin looking for interaction 

effects. 

A contrast is a linear combination of the responses with coefficients that sum to 0. 

Thus, it would be sensible to define a contrast to estimate the main effect of A (and for 

B and C, which are constructed similarly) in the following way: 

Table 9: Contrasts for main effects in a 23 experiment 
000 001 010 011 100 101 110 111 
-1 -1 -1 -1 1 1 1 1 A 
-1 -1 1 1 -1 -1 1 1 B 
-1 1 -1 1 -1 1 -1 1 C 

In Table 9, a 1 in a cell means that the attribute of interest (A, B or C) has a value of 1 

in the respective column. Correspondingly, a -1 means that the attribute has a value of 

0 and would be subtracted when estimating the effect. Thus, A is 1 for 100, 101, 110 

and 111, but -1 for 000, 001, 010 and 011. 

For sets of contrasts, it is important that they are orthogonal to one another. This 

property ensures that the effects of these two levels can be estimated separately. Two 

contrasts are independent or orthogonal if the sum of the product of corresponding 

coefficients is 0, i.e. that , where the product in the numerator is the 

product of the figures for each of the treatments in Table 9 and the denominator is the 

number of observations for each treatment (Dey, 1985; Plackett, 1946). In Table 9, it 

is apparent that this condition is met (consider the inner product of each of the three 

pairs of rows). 

The agricultural example used to this point is highly constrained in that binary 

attributes are not always appropriate, and interactions may also be of interest. I will 

return to the situation of attributes with more than two levels at a later point, and will 
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now focus on situations in which interactions are of interest. In the example I have 

just been discussing, it may be plausible that the effect of A on Y would depend on the 

levels of other attributes (in this case, B and C). In the agricultural example, this is 

highly plausible; for example, it might be that pesticides only impact on crop yield if 

the crop receives enough water. This would mean that we would expect certain of the 

simple effects to differ from the main effect through more than random response 

variability. In the case of A interacting with B, the interaction would be simple effect 

of A when B  is at level 1 minus the simple effect of A when B is at level 0. If there is 

no interaction (and B does not impact on the effect of A), this difference will be 

expected to equal 0: 

 2/))()(()()(( 001101000100011111010110 yyyyyyyy .Equation 
55 

Table 9 can be expanded into Table 10 to give the contrasts that apply to both the 

three two-factor interactions AB, AC and BC, and the one three-factor interaction ABC 

Table 10: Contrasts for main effects and interactions in a 23 experiment 
000 001 010 011 100 101 110 111 

-1 -1 -1 -1 1 1 1 1 A 
-1 -1 1 1 -1 -1 1 1 B 
-1 1 -1 1 -1 1 -1 1 C 
1 1 -1 -1 -1 -1 1 1 AB 
1 -1 1 -1 -1 1 -1 1 AC 
1 -1 -1 1 1 -1 -1 1 BC 

-1 1 1 -1 1 -1 -1 1 ABC 

Thus, the contrast on A is the sum of all of the combinations of A, B and C in which A 

is 1 minus the sum of all of the combinations of A, B and C in which A is 0. This can 

be seen in the second row of Table 10. 

The contrasts for the interaction terms can be derived from first principles as above. 

This is shown in Equation (55), as the positive terms are reflected by 1s in Table 10, 

while the negative terms are reflected by 0s. Alternatively, the contrast for 

interactions can be derived by multiplying terms in the contrasts for the constituent 

parts of the corresponding interaction (in this case, two or three of the contrasts A, B 

or C). As before, these contrasts can be shown to be orthogonal to one another, and to 

the mean vector. 
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If the experiment requires additional levels within attributes, constructing contrasts 

requires additional thought as orthogonality is less easily maintained. Initially, it is 

more convenient to consider this with only two attributes, so I will remove C. So, 

now, suppose that A and B each have three levels (this time labelled 0, 1 and 2). It 

might appear logical to present contrasts in the following way: 

Table 11: (Non-orthogonal) contrasts for main effects in a 33 experiment 
00 01 02 10 11 12 20 21 22 

-1/2 -1/2 -1/2 1 1 1 -1/2 -1/2 -1/2 A1
-1/2 -1/2 -1/2 -1/2 -1/2 -1/2 1 1 1 A2
-1/2 1 -1/2 -1/2 1 -1/2 -1/2 1 -1/2 B1
-1/2 -1/2 1 -1/2 -1/2 1 -1/2 -1/2 1 B2 

Note that there are an infinite number of ways of expressing the same contrast matrix 

by multiplying each term by a constant. It is conventional to fix a term at 1; however 

the conclusions drawn are independent of which term is fixed.  

Under this approach, the contrasts would represent the move from the base level to 

each of the other two levels in both dimensions. The sum of the weights across each 

proposed contrast is 0. Additionally, the previously stated constraint for orthogonal 

contrasts that  holds for some pairs of contrasts (those between either of the 

A terms and either of the B terms). However, the pairs of contrasts A1 and A2, and B1 

and B2 are clearly not orthogonal, and hence are not independently estimable under 

this approach. The conventional approach to dealing with this is to separate each term 

into a linear and quadratic term (for three-level attributes; more generally, for n-level 

attributes, n-1 terms are required repenting the linear, quadratic, quartic etc). The 

contrasts in this situation, extended to consider interactions in the same way as in the 

binary attribute case, are presented in Table 12, which is based on Table 2.2 of Street 

and Burgess (2007). 
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Table 12: A, B, and AB contrasts for main effects and interactions in a 33 
experiment 

00 01 02 10 11 12 20 21 22 Tmt. 
combination 

1 1 1 1 1 1 1 1 1 Mean 
-1 -1 -1 0 0 0 1 1 1 A Linear =AL  
1 1 1 -2 -2 -2 1 1 1 A Quadratic = 

AQ 
-1 0 1 -1 0 1 -1 0 1 B Linear = BL
1 -2 1 1 -2 1 1 -2 1 B Quadratic = 

BQ 
1 0 -1 0 0 0 -1 0 1 AL x BL 

-1 2 -1 0 0 0 1 -2 1 AL x BQ 
-1 0 1 2 0 -2 -1 0 1 AQ x BL 
1 -2 1 -2 4 -2 1 -2 1 AQ x BQ 

This approach remedies the issue of non-orthogonality as, for each pair of contrasts, 

 . 

A full factorial can become unmanageable in terms of respondent burden, and the 

time and money required to collect data. An approach to deal with this problem is to 

apply a fractional design in which a subset of the full factorial is selected so that it is 

possible to estimate pre-specified parameters of interest. The downside of using a 

fractional factorial is that certain effects cannot be separately estimated. However, 

Montgomery (2005) (in an Ordinary Least Squares context) describes an example full 

factorial, and the types of effects that are estimable,  

“(A) complete replicate of (a) 26 design requires 64 runs. In this design, 

only 6 of the 63 degrees of freedom correspond to main effects, and only 

15 degrees of freedom correspond to two-factor interactions. The 

remaining 42 degrees of freedom are associated with three-factor and 

higher interactions” (p.282) 

There are many settings in which interactions involving many factors are difficult to 

interpret. Hence it is not necessary to think about estimating them when designing an 

experiment. Thus a smaller design can be used to investigate the effects which are 

interpretable. I will outline this idea in the context of design more generally (i.e. 

without combination of options into choice sets), before summarising how the 

approach can be extended to a DCE setting. A further preliminary point to make is 



 

107 
 

that I will focus on regular fractions; for a discussion on irregular fractions, see 

Addelman (1961), or Chapter 2 of Street and Burgess (2007). 

The concept of regular fractions will first be described in the simpler two-level 

situation, and then extended to higher numbers of levels in each dimension. Street and 

Burgess (2007) define a regular fraction of a 2k factorial as 

“a fraction in which the treatment combinations can be described by the 

solution to a set of binary equations… The binary equations are called the 

defining equations or the defining contrasts of the fractional factorial 

design. A regular 2k-p fraction is defined by p independent binary 

equations…”(p.27). 

Thus, in a 2k setting, each binary equation will halve the size of the fraction. The 

largest fraction is obviously one with only a single binary equation, which will have 

half the runs of the full factorial. If k = 5 (for example), a common approach to 

produce a 25-1 design is to take the full 24 design (i.e. each of the 16 combinations of 

four binary variables) and define the fifth variable as the product of the existing four 

(where each of the four binary variables takes either the value -1 or 1). This approach 

is used to produce column E in Table 13. 

Table 13: A 25-1 fractional factorial design 
A B C D E 
-1 -1 -1 -1 1 
-1 -1 -1 1 -1 
-1 -1 1 -1 -1 
-1 -1 1 1 1 
-1 1 -1 -1 -1 
-1 1 -1 1 1 
-1 1 1 -1 1 
-1 1 1 1 -1 
1 -1 -1 -1 -1 
1 -1 -1 1 1 
1 -1 1 -1 1 
1 -1 1 1 -1 
1 1 -1 -1 1 
1 1 -1 1 -1 
1 1 1 -1 -1 
1 1 1 1 1 
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Note that the generation of the figures in column E can be described additively rather 

than multiplicatively. In this case, the -1s become 0s, and then, under addition modulo 

2 (so 1+1=0), E=-(A+B+C+D).   

Box, Hunter and Hunter (1978) note this solution to generating fractional factorials, 

and ask whether this solution limits the analyst in investigating effects. The answer is 

yes, in that the reduction in the number of runs implies certain interactions are 

confounded. For example, ABC = DE (a fact which can be confirmed in Table 13 by 

multiplying the terms and comparing), This can also be described as these effects 

being aliased. If a different approach were used for constructing a fractional factorial, 

then different pairs of effects would be confounded. The question the analyst has to 

ask when designing experiments is which set of pairs of effects are more important 

(and must not be confounded), and whether the loss of separate estimability of these 

terms is a significant enough loss to the experiment to justify use of the full factorial 

(if there are enough experimental units to allow this approach).  

The choice of binary equations is important as they determine which effects can be 

estimated independently within the fraction. If we have k = 5, and require a design in 

8 runs (so, 23 or 25-2
 runs), the following equations might be plausible binary 

equations. 

x1 + x2 + x3 + x4 = 0 

x1 + x3 + x5 = 0 

By summing these, we also know that x2 + x4 + x5 = 0. Thus, two binary equations 

produce three constraints (although only two of the constraints are independent as 

summing any two produces the third). Note that the array produced when these 

equations are set to 0 is known as the principal fraction. If there are two equations, as 

in the example here, that means there are 22 possible fractions which are mutually 

exclusive and exhaustive, reflecting that each fraction represents 1/22 of the full 

factorial. The values in the fraction defined by this pair of equations are (0,0,0,0,0), 

(0,0,1,1,1), (0,1,0,1,0), (0,1,1,0,1), (1,0,0,1,1), (1,0,1,0,0), (1,1,0,0,1) and (1,1,1,1,0). 

The four fractions under these binary equations are represented in Table Table 14. 
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 Table 14: Non-overlapping regular designs 
x1 + x2 + x3 + x4 =0 x1 + x2 + x3 + x4 =0 x1 + x2 + x3 + x4 =1 x1 + x2 + x3 + x4 =1 

x1 + x3 + x5 =0 x1 + x3 + x5 =1 x1 + x3 + x5 =0 x1 + x3 + x5 =1 
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 
0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 
0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 
0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 
1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 0 
1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 
1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 
1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 

The question is then what information can we derive from each set of 8 runs in the 

fractional factorial. This can be demonstrated by identifying the effects that are 

aliased. For the case where the two binary equations are set to 0 (i.e. the left-hand 

column), the aliasing structure can be illustrated in the following way. We know that  

x1 + x2 + x3 + x4  =   x1 + x3 + x5  =  x2 + x4 + x5   =  0.  

Therefore, as we are working in modulo 2, it follows that we can identify the effects 

that are confounded with main effects, i.e., 

 x1  =  x2 + x3 + x4   =  x3 + x5  = x1 + x2 + x4 + x5   

x2  =  x1 + x3 + x4   =  x4 + x5  = x1 + x2 + x3 + x5   

x3  =  x1 + x3 + x4   =  x1 + x5  = x2 + x3 + x4 + x5   

x4 =  x1 + x2 + x3   =  x1 + x3 + x4 + x5 =  x2 + x5   

x5 =  x1 + x2 + x3 + x4 + x5 =  x1 + x3   = x2 + x4  

These relationships follow because, within each of the three constraints, each set of n 

terms must be equal to the remaining (t-n) terms in that constraint where t is the total 

number of terms in the constraint. Thus, it is clear that these sets of effects cannot be 

separately estimated under this fraction. The main effect of A is confounded with CE, 

with BCD and ABDE. It is noteworthy that, of the 10 two-factor interactions, only six 

are confounded with a main effect. The ones that are not confounded with a main 

effect are AB, AD, BC and CD. If the analyst has a particular a priori reason for 

believing that certain interactions are important, then it may be possible to choose the 

defining equations so that these effects are not confounded with main effects. 
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However, in this case, these two factor interactions will be confounded with higher-

order interactions i.e., 

x1 + x2  = x3 + x4  = x2 + x3+ x5 = x1 + x4+ x5 

x1 + x4  = x2 + x3  = x3 + x4+ x5 = x1 + x2+ x5 

The degree to which the choice of fraction impacts on the ability to separately 

estimate effects is usually defined in terms of resolution. If no main effect is 

confounded with another main effect, then the design at least resolution 3 (often 

called strength 2, where strength is always resolution minus one). A design which has 

resolution 3 is sometimes called an orthogonal main effects plan (OMEP). If a design 

is resolution 3, it means that at least one main effect is confounded with a two-factor 

interaction term. Similarly, a design of resolution 4 does not have any main effect 

confounded with either another main effect or a two-factor interaction, but there is at 

least one main effect which is confounded with at least one three-factor interaction.  

Therefore, each of the ¼ fractions described in Table 14 are resolution 3 as at least 

one (indeed all five) main effects are confounded with at least one two-factor 

interaction.  

Box, Hunter and Hunter (1978) note that the resolution of an array can be calculated 

directly from the defining relation, 

“(A) design of resolution R is one in which no p-factor effect is 

confounded with any other effect containing less than R – p factors… In 

general, the resolution of a two-level fractional design is the length of the 

shortest word in the defining relation.” (p.385) 

Webb (1968) provides an alternative specification for resolution which is 

generalisable to both regular and irregular fractions, 

“A fractional design is of resolution (2R+1) if it permits the estimation of 

all effects up to R-factor interactions, when all effects involving (R+1) 

factors and higher-order effects are assumed to be negligible.”  

Street and Burgess (2007) provide tables (2.9 and 2.10) identifying the smallest 

known 2-level designs of at least resolution 3 and at least 5  (p.32). 
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The use of generators or equations can be extended to an lk situation when l>2. As 

with the binary case, the impact of additional ternary equations (i.e. where l=3) is to 

cut the full factorial into 3 (with two equations partitioning the complete factorial into 

9 fractions, three independent equations partitioning the complete factorial into 27 

etc). The contrasts often reflect the linear, quadratic etc terms as discussed previously, 

although other subdivisions are possible and may be more appropriate. As with the 

binary case, Street and Burgess (2007)  report the smallest known regular 3-level 

designs with resolution of at least 3 (Table 2.16) and of at least 5 (Table 2.17). Good 

discussions of this can be found in all major reference books in the area (Box, et al., 

1978; Montgomery, 2005; Street and Burgess, 2007).  

In practice, there are existing libraries of orthogonal arrays available online which the 

practitioner can adapt to their own purposes. Good examples of these are the libraries 

maintained by Sloane (http://www.research.att.com/~njas/oadir/index.html) and 

Kuhfeld (http://support.sas.com/techsup/technote/ts723_Designs.txt). The Kuhfeld 

library is limited to designs of resolution 3, so are not suited to situations in which 

interactions are to be investigated. Street and Burgess (2007) provide some strategies 

for adapting existing arrays to a different setting (e.g. with more dimensions, more 

levels), such as collapsing of levels, expansive or contractive replacement, adding 

factors or juxtaposing two orthogonal arrays  (pp.46-51). 

Using the runs of an orthogonal array to define one option in a choice set is a standard 

approach (and one which will be followed in Chapter 6 of this thesis). How to 

generate second and subsequent options in each choice set is the focus of the section 

later in this chapter looking at shift generators. However, before looking at this, I will 

discuss strategies for comparing different designed experiments. 

The likelihood function and maximum likelihood estimators 

Previously, it was noted that, in the context of the multinomial logit (MNL), the 

probability of individual i selecting option j in choice set s was assumed to be 

 )exp(
)exp(

'

'

iish

iisj
isj X

X
P

.
 Equation 56 
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For simplicity, , where Vi is the systematic component of the utility function.  

I will now describe the likelihood function and the principle of maximum likelihood 

estimation (MLE) which is a key step in comparing designs. The concepts will be 

described within a Bradley-Terry model in which all choice sets are pairs (Bradley 

and Terry, 1952); however, it should be clear that the principles are generalisable to 

experiments containing larger choice sets. 

As Bradley-Terry models specify choice sets to consist of two options, Equation (56) 

can be simplified to 

 
,
 Equation 57 

where j is the option in choice set s which is not i. It is then necessary to identify 

which pairs of options Ti and Tj are contained within the experiment, which is defined 

as   

when the pair (Ti, Tj) is in the choice experiment 

when the pair (Ti, Tj) is not in the choice experiment. 

Additionally, to construct the likelihood function, it is helpful to define the choices of 

subject  as   

when Ti is preferred to Tj 

when Ti is not preferred to  Tj. 

The next step is to define fij  ( ij , ) as the probability density function for individual 

 in choice set (Ti, Tj) where =( 1, 2, 3, …, t). If there are s respondents and the 

sum of the choices over the  respondents ijij , the likelihood function is 

given by �

 . Equation 58 

As Street and Burgess (2007) note, this can be simplified further by allowing 

j iji be the total number of times that Ti  is chosen, i.e. 

0
1

ij

0
1

ijn
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 . Equation 59 

It is convenient to take logs to produce the log-likelihood, 

 . Equation 60 

To estimate the values of each of the i terms, the first derivative of the likelihood 

function (or equivalently, of the log-likelihood) is set at 0, and solved iteratively. The 

i terms are then normalised so that . The i terms which meet this 

restriction are termed the maximum likelihood estimators. Street and Burgess (2007) 

provide a simple worked example of MLE  (pp.62-65). In practice, this process is 

rarely performed manually; all leading statistical packages (including STATA which 

is the main software used in this thesis) do this automatically. Greene (2003) notes 

some of the attractive properties of maximum likelihood estimators  (p.473). These 

four properties are that the estimator is consistent, has asymptotic normality, has 

asymptotic efficiency, and invariance.  

Up to this point, I have discussed the appropriate construction of orthogonal arrays, 

and the methods for estimating parameters through maximum likelihood estimation. 

With these building blocks in place, the focus of this section turns to the key issue of 

how to compare DCEs, which in this thesis pair items from orthogonal arrays with 

alternative profiles to create a set of choice sets. 

Deriving the information ( ) matrix 

The information matrix (termed the  matrix from this point) is a matrix of 

expectations of products of partial derivatives of the log-likelihood function. In the 

context of pairs (which as noted previously is necessary for the Bradley-Terry model), 

a design will have snij observations from the pair of options (Ti, Tj), and sN 

(= ) observations in total. The proportion of observations from any choice set 

is therefore nij / N, and will be denoted by . The elements of the information matrix 

are 
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 �

  Equation 61 

where 

when the pair (Ti, Tj) is in the choice experiment 

when the pair (Ti, Tj) is not in the choice experiment. 

The entries in the  matrix are therefore 

  Equation 62 

  Equation 63 

As these entries include elements of , it is usual to assume for the purposes of the  

matrix that all of the terms are equal (and in fact are all one because of the 

normalising procedure described previously). However, it is also possible to adopt 

prior information about these values. A simple example of a  matrix assuming all of 

the terms are equal is now presented. 

Imagine a situation in which the choice of health insurance is being explored (denoted 

from this point as Example 1). The cost of the insurance has only two levels (high 

and low, coded as 0 and 1 respectively) and the level of coverage only has two levels 

(extensive and minimal, coded as 0 and 1 respectively). Thus, there are only four 

possible programs on offer (00, 01, 10, 11) where the first number reflects the cost of 

the insurance, and the second the level of coverage). Imagine a very simple choice 

experiment with only two questions, each with two options. These two questions are 

(00,11) and (01, 10). For this choice experiment, the  matrix can be estimated, with 

each of the entries representing the number of occurrences of the pairs of profiles in 

the choice experiment (El Helbawy and Bradley, 1978). It is a 4 x 4 matrix with the 

rows and columns representing each of the four hypothetical insurance programs. For 

the off-diagonal positions, a 0 represents that this pair of profiles does not occur in the 

choice experiment. The  matrix for Example 1 is 

0
/1 N

ij
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100111
011010
011001
100100

11100100

8/1
.
 

This is obviously a very simple example, and it is useful to note that Equations (61-3) 

can be generalised for situations with more than two options per choice set. In this 

case, 

if Ti, Tj,…,Tk is in the choice experiment 

otherwise 

and the entries in the  matrix become 

 
 

Equation 64 

 
 

Equation 65 

This is best explained using an example. Imagine a choice experiment investigating 

choices surrounding the use of a new vaccine (denoted from this point as Example 2). 

A DCE is constructed with two attributes, with the following levels: 

1. Effectiveness of vaccine (90%, 95%, 100%, coded as 0,1,2 respectively) 

2. Cost of vaccine ($20, $100, $200, coded as 0,1,2 respectively) 

Thus, there are 9 hypothetical vaccines which might be selected, namely 00, 01, 02, 

10, 11, 12, 20, 21 and 22 (where the first number reflects the effectiveness of the 

vaccine, and the second the cost). Imagine a choice experiment with only two 

questions (choice sets) in it, both presented as triples (i.e. the respondent has only 

three hypothetical vaccines to select from in each of the two questions). These two 

questions are (00, 12, 21) and (01, 10, 22). As the  terms in Equation (64) and (65) 

are assumed to be 1, a -1 indicates that the pair does occur in the experiment. The 

diagonal components are selected such that the sum of any row or column is equal to 

0. The entire matrix is then divided by m2N where m is the number of options in each 

choice set (here 3), and N is the number of choice sets (here 2). Thus, the  matrix 

(with row and column labels added for convenience) in this case is: 

0
/1

...

N
kij



 

116 
 

20000101022
02010000121
00000000020
01020000112
00000000011
10000201010

00000000002
10000102001

01010000200
222120121110020100

18/1

.

 

Note that the experiment is potentially limited in the information it can provide the 

analyst as three of the profiles do not appear in any of the choice sets (and hence have 

rows and columns of 0). If we are interested in main effects only, the lack of 

particular profiles is unproblematic; what matters most is level occurrence rather than 

profile occurrence. However, as the analyst moves towards estimation of interaction 

terms, the rows and columns of 0s in the  matrix become problematic. The  matrix 

identifies which pairs of profiles occur in the choice experiment. However, it is 

difficult to determine relatively better designs based on the  matrix as it stands. 

Usually one number summaries of the information matrix are used to compare designs 

and this idea is developed now. 

B and C-matrices 

The next step in evaluating designs is to generate the B matrix. The B matrix identifies 

contrasts that can be explored within the given design (for example main effects only, 

main effects and a subset of two-factor interactions, or main effects and all two-factor 

interactions). In constructing the B matrix, it is necessary to identify the effects that 

are of interest to the analyst (unlike the  matrix). To be explicit, the  matrix is 

identical whether the experiment focuses on main effects only or on those plus some 

interaction terms. However, the B and C-matrices are not and reflect the 

characteristics of the selected choice sets relative to some pre-specified some of 

effects of interest. 

If we begin considering a situation in which only main effects are of interest, the B 

matrix represents the orthogonal contrasts for each of the main effects of each of the 

attributes. Thus, there are lq-1 contrasts for each dimension of the experiment, where 
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lq is the number of levels. Each row of the B matrix represents one of these contrasts. 

The columns of the B-matrix represent the possible combinations of levels within the 

experiment. For Example 1, the B matrix is  

2/12/12/12/1
2/12/12/12/1

B  

In Example 2 introduced above, there will be four rows in the B matrix, representing 

the linear and quadratic contrasts for the two attributes. This is 

23
1

3
2

23
1

23
1

3
2

23
1

6
10

6
1

6
10

6
1

23
1

23
1

3
2

3
2

23
1

23
1

6
1

6
100

6
1

6
1

B  

In an ordinary least squares setting, a good estimation procedure for a parameter is 

often defined as one which produces a minimum variance unbiased estimator. As 

choice experiments are interested in more than one effect, evaluation analagous to this 

requires the variance-covariance matrix C-1 constructed as C=B B’(El Helbawy and 

Bradley, 1978). One attractive characteristic of C-1 is that it should be block diagonal 

for the effects from different attributes. In a 2k situation, effects can be independently 

identified only if all off-diagonal positions are zero. If attributes have more than 2 

levels, correlations are permissible between (for example) the linear and quadratic 

terms of an attribute, but not between either of these and any other terms investigated 

in the matrix. However, it should be noted that this block diagonal property does not 

always co-occur with the design with the best efficiency (a concept which is discussed 

below). 

The C-matrix for Example 1 is this, 

,
4/10

04/1
C  

with the corresponding C-1 matrix being the inverse, which is 
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.
40
041C  

As the off-diagonal positions in this case are 0s, the design produces uncorrelated 

main effects. 

The C-matrix for Example 2 is given below: 

9/1018/10
09/1018/1

18/109/10
018/109/1

C

,

 

with the corresponding C-1 matrix being 

12060
01206
60120
06012

1C

.

 

The C-1 matrix shows this selection of choice sets does not have uncorrelated main 

effects. After outlining methods to estimate the statistical efficiency of designs, I will 

move on to consider how choice sets can be selected in a more systematic way to 

ensure that the analyst can independently estimate the effects considered most 

important. 

D-efficiency 

The C-matrix can be used to evaluate the statistical efficiency of the design of the 

experiment. D-efficiency, which is the central concept of efficiency considered in this 

thesis, is defined as 

 
p

optimalC
C

/1

)det(
)det(

,
 Equation 66 

where p is the number of parameters to be estimated, and C is the information matrix 

for these p parameters (Street and Burgess, 2007). A significant strength of this 

approach is that, in the context of main effects (and some limited extensions into 

estimation of interaction terms) the optimal design need not be known to estimate the 
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D-efficiency (Louviere, et al., 2003). The reason for this is that Burgess and Street 

(2007) have provided an upper bound for the determinant of the C matrix for 

estimating main effects for any choice set size, with any number of attributes and 

levels: 
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 Equation 67 

where 
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 Equation 68 

and positive integers x and y satisfy the equation m = lqx + y for 0  y < lq. Street and 

Burgess (2005) define Sq to be “the maximum number of differences in the levels of 

attribute q in each choice set” (p.463)  

An upper boundary has only been established for main effects, and when all attributes 

are binary for the estimation of main effects and two-factor interactions. In the last of 

these, Street and Burgess (2007) identify the determinant of the optimal design to be: 
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Equation 69 

Publicly available software can be used to calculate the statistical efficiency for 

specific designs (http://maths.science.uts.edu.au/maths/wiki/SPExptSoftware). The 

statistical efficiency for Examples 1 and 2 can be calculated using this software as 

100% and 86.6% respectively. 

Alternatives to D-efficiency 

It should be noted that there is considerable discussion regarding how best to 

summarise the C-matrix into a single measure of efficiency for comparison of designs. 

Street and Burgess (2007) define some of the leading candidates, 
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“The D-, A-, and E-optimality measures are appropriate to our situation 

and we now define these… 

…A design is D-optimal if it minimizes the generalized variance of the 

parameter estimates, that is, det(C-1) is as small as possible for the D-

optimal designs. 

A design is A-optimal if it minimizes the average variance of the parameter 

estimates, that is, tr(C-1) is as small as possible for the A-optimal designs. 

A design is E-optimal if it minimizes the variance of the least well-

estimated parameter, that is, the largest eigenvalue of C-1 is as small as 

possible for the E-optimal designs”  (p.84) 

Note that this definition of D-optimality has reversed the maximisation, in that 

optimality is defined in terms of minimising the determinant of the inverse; this is of 

course the same criterion expressed differently. The strength of D-optimality lies in 

its ability to maximise the predictive value of the design. This differs from A-

optimality which minimises the average of the variances of the parameter estimators. 

The choice of optimisation strategy therefore depends on what the analyst considers 

most important. In the contexts which will be introduced in the empirical chapters 

that follow, both predictive value and precise estimators are important. Arguably, the 

choice between D- and A-optimality is not of great importance. Firstly, Chapter 4 in 

Street and Burgess (2007) note that, for experiments with binary levels, A- and D-

efficiency are the same. Using simulation data, Kessels et al. consider both the 

expected mean square errors of the parameter estimates and of the predicted 

probabilities (Kessels, et al., 2006). Under both criteria, designs generated under both 

optimisation strategies have similar results. For this thesis, the default option was to 

adopt D-optimality as the primary goal of design, although the parameter estimates 

have to be considered in the context of a slight reduction in precision. 

One issue with the use of A-efficiency is that it is dependent on the scale of the 

parameters. The variance of the parameter estimate is related to the size of the 

coefficient, which in turn depends on the scale. However, this is not a fatal flaw as 

comparison between alternative designs is still valid using A-efficiency. 
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Design strategies 

In this design section, I have so far introduced methods for evaluating designs. The 

next step is to discuss the design strategies that have been widely employed in 

published DCEs. I will focus on four approaches which I will label the Huber and 

Zwerina (H&Z) approach (1996), the LMA approach (Louviere, et al., 2000), the use of 

SAS search algorithms (Kuhfeld, 2010), and the generator-developed approach, 

extensively investigated by Street and Burgess (2007). 

Huber and Zwerina (1996) identify four properties that characterize efficient choice 

designs. These are level balance, orthogonality, minimal overlap and utility balance. 

Level balance is satisfied when the levels in a dimension occur with equal frequency. 

Orthogonality is satisfied when each pair of levels of attributes occurs with equal 

frequency on the same profile.  

Minimal overlap says that there should be as few instances as possible of attributes 

being at the same level within a particular choice set. This appears plausible; at the 

extreme, a situation with universal overlap in which two identical options are 

presented in a choice set, provides no information. However, the concept of minimal 

overlap becomes more complicated when higher-order effects (interactions) are of 

interest. In these circumstances, varying one dimension while holding others fixed is 

necessary despite violating minimal overlap for one attribute. This idea will be 

explained further in the example which follows in the description of generator-

developed designs. 

Utility balance asserts that the systematic component of the utility function should 

value two options within a choice set as equally as possible. Unlike the other three 

criteria, this makes assumptions about the importance of each level of each 

dimension. Under an assumption of zero coefficients, it is clear that utility balance is 

true. Huber and Zwerina (1996) argue that if there is a reasonable expectation of non-

zero coefficients, selecting a design with utility balance can reduce the number of 

respondents needed to achieve a specific error level around the parameter by 10-50%.  

Kanninen (2002) argues that equal likelihood of selecting options in a choice set is not 

necessarily optimal; rather it depends on the number of attributes in the experiment. 

The most unequal optimal utility balance occurs with two attributes. In this case, the 

optimal probabilities (in terms of maximising the determinant of the Fisher 
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Information Matrix) are 0.82 / 0.18 (i.e. an 82% chance of selecting Option A). 

Clearly, this means that non-zero priors have to be assumed (as choices under zero 

priors are based on identical systematic utility across options within a choice set). 

Importantly, Street and Burgess (2007) (p.88-90)  give an example that shows that 

satisfying the four criteria of Huber and Zwerina (1996) does not ensure that main 

effects can be estimated.  

LMA designs are derived from an orthogonal main effects plan (OMEP), and are 

discussed at length by Louviere et al. (2000). The term LMA means there are L levels 

for each of A attributes for each of the M options. In an OMEP, each pair of levels of 

particular dimensions appears with equal frequency allowing independent estimation 

of the main effects (Dey, 1985). An issue with LMA designs is that they require a large 

OMEP since each run is used to define the first and all subsequent options in a choice 

set. In the simple example presented previously, two dimensions each with three 

levels were developed into two choice sets with three options. Using LMA it would be 

necessary to find an OMEP with at least six three-level dimensions. A 36 x 6 OMEP 

exists; if the six level dimension is dropped, an LMA design for this situation remains 

and is given below. 
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Table 15: Example LMA Design 
Choice Set 

Number 
Option A Option B Option C 

1 00 00 00 
2 00 11 22 
3 01 02 21 
4 01 20 12 
5 02 12 10 
6 02 21 01 
7 10 02 12 
8 10 20 21 
9 11 11 11 
10 11 22 00 
11 12 01 20 
12 12 10 02 
13 20 12 01 
14 20 21 10 
15 21 01 02 
16 21 10 20 
17 22 00 11 
18 22 22 22 

Note that this particular LMA design has a number of troubling characteristics. Some 

choice sets present the same option in all three options (numbers 1, 9 and 18). Some 

choice sets are identical (2, 10 and 17). This would suggest that this approach 

requires the use of a carefully selected OMEP, or the use of a labelled experiment 

(which effectively introduces an additional attribute).  

LMA designs are often appropriate for use with labelled experiments and overcome 

this repetition of profiles without needing to find a different OMEP or manipulating 

an existing one. In a labelled design, the option lettering (i.e. the A, B, C terms 

above) refer instead to a specific product such as bus, car, train in a transport 

example, or Woolworths, Coles, IGA in a supermarket example. 

The idea of shifted designs central to Street and Burgess (S&B) designs was 

introduced by Bunch et al. (1996). In this, a set of initial options is chosen for each of 

the choice sets in the experiment, and the subsequent option or options are defined by 

modular arithmetic to “shift each combination of initial attribute levels by adding a 

constant that depends on the number of levels”. Thus, subsequent options in each 

choice are defined by these constant shifts, and the set of constant shifts required for 

all attributes is called a generator.  
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Generally, the initial options in each choice set are obtained from an orthogonal main 

effects plan (OMEP). Imagine a simple choice experiment with three dimensions, 

each with only two levels coded as 0 and 1. This may represent the choice of health 

insurance policy, where the three attributes relate to price, coverage for dental care 

and for obstetrics respectively. OMEPs with 4 runs exist for this 23 design, one being 

(0, 0, 0), (0, 1, 1), (1, 0, 1) and (1, 1, 0). 

To generate the second (or subsequent) option in each choice experiment, the 

generator is selected to allow for investigation of main effects. If we want to know 

the importance of changing levels within a dimension, it is valuable to have choice 

sets in which the dimension occurs both at level zero and at level one. Therefore, an 

obvious choice for the generator is (1, 1, 1). Thus, the choice experiment would have 

four choice sets, as given below. 

Table 16: Example Main-Effects Only Choice Experiment 
Option A Option B 
(0, 0, 0) (1, 1, 1) 
(0, 1, 1) (1, 0, 0) 
(1, 0, 1) (0, 1, 0) 
(1, 1, 0) (0, 0, 1) 

  The  matrix and the C matrix for the estimation of main effects for the simple 

design in Table 16 are provided below: 

10000001111
01000010110
00100100101
00011000100
00011000011
00100100010
01000010001
10000001000

111110101100011010001000

16/1  

8
100

0
8
10

00
8
1

C  
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Given that the example was based on estimation of main-effects alone, the two 

matrices show the design approach was successful. In the  matrix, the data show 

each combination of dimensions and levels is represented in the choice experiment. 

As noted previously, the importance of missing combinations is dependent on the 

effects of interest. In the C matrix, the off-diagonal positions are all zero; therefore all 

effects can be estimated independently. The statistical efficiency of the design is 

100%. 

A limitation of the approach taken by Bunch et al. (1996) was that it focused on 

estimation of main effects only. However, Street and Burgess (2007) extended the 

idea of using generators by showing that choosing generators with certain structural 

properties can allow for estimation of specific interaction terms. The choice of these 

shift generators is determined by the interaction effects the analyst wishes to 

investigate. 

To allow estimation of interactions, the choice of generators becomes more difficult. 

Suppose we use the design presented in Table 16 to investigate two-factor 

interactions in addition to main effects. In this case, the C matrix becomes 

000000
000000
000000

000
8
100

0000
8
10

00000
8
1

C

.

 

Thus, the interaction terms cannot be estimated, and the statistical efficiency of the 

design for this context is 0%. To allow the experiment to estimate all terms, a 

different approach to selecting both the starting design and generators is required. 

Using an OMEP as a starting design when interactions are of interest is inappropriate; 

rather, a starting design of resolution 5, equivalently strength 4 is required. Regarding 

the selection of generators, for an interaction between two attributes to be estimable, 

the generators must have different levels in the two positions (for the binary case, this 

means a 0 and a 1 in the two positions). While the generators have to be selected to 

allow estimation of all relevant effects, additional generators will increase the size of 
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the experiment, and hence the required number of respondents (or number of 

responses per respondent). Street and Burgess (2007) provide Lemma 4.2.4. which 

identifies that, for a design with only binary attributes, 

“If 2m  k < 2m+1, then there is an estimable set with m+1 generators” 

(p.129)  

Thus, in this simple experiment in which k = 3, we know that two generators is 

adequate to explore all main effects and two-factor interactions. In selecting the 

specific generators, Street and Burgess (2007) state that, 

“For the estimation of main effects and two-factor interactions in the 

complete factorial, generators of weight (k+1)/2 have been shown to be 

optimal for odd k. For even k, generators of weight k/2 and k/2 + 1 have 

been shown to be optimal.” (p.129)  

This result is intuitive, and stems from Theorem 4.1.3 (Street and Burgess, 2007). As 

previously stated, for an interaction term between two attributes to be estimable, the 

generator must have a zero and a one in the corresponding positions. Therefore, the 

number of interactions that can be investigated using a generator consisting of zeros 

and ones is g0 (k – g0) where g0 is the number of positions in the generator that are 

equal to zero. This is maximised when g0 = k/2; therefore a weight of approximately 

k/2 is optimal for estimating interaction terms. However, as seen in the previous 

example, the information provided for the estimation of main effects increases with 

the number of ones in the generator.  

Returning to the starting design, as noted previously, Sloane provides a library of 

orthogonal arrays including many with strength three or greater 

(http://www2.research.att.com/~njas/oadir/). In the health insurance example 

introduced previously, the most appropriate array has four two-level attributes, and 

has eight rows (i.e. half of the full factorial). However, since the example does not 

require the final two-level attribute, this is dropped leaving the 23 full factorial (i.e. 

000, 001, 010, 011, 100, 101, 110, 111). 

A potential set of generators to estimate interactions might be (101, 110). The reason 

why this is a potentially good set of generators to be estimated can be shown by 
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considering which generators provide information on which main effect and 

interaction terms. 

Table 17: Selecting generators to estimate main effects and interactions 
Generator A B C AB AC BC 

101       
110       

We see that each effect of interest has information stemming from choice sets derived 

by at least one of the generators. The choice of generators is partially based on the 

effects which are most of interest; for example, the main effect on A is well explored, 

while those of B and C are less so. Because of duplication (and subsequent removal) 

of choice sets, this design contains only 8 choice sets. The  and C-matrices for main 

effects and two factor-interactions are presented below. 

20000110111
02001001110
00201001101
00020110100
01102000011
10010200010
10010020001

01100002000
111110101100011010001000

32/1  

8
100000

0
16
10000

00
16
1000

000
16
100

0000
16
10

00000
8
1

C  

The matrices suggest this is an appropriate design for this example. The off-diagonal 

positions are all zero. The efficiency of the design is 94.49%. Note that Table 4.12 in 

Street and Burgess identifies that 100% efficiency can be attained using (011, 101, 

110) as generators.  
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SAS Algorithms 

An alternative strategy to designing experiments which will be used in the next 

chapter (the SF-6D DCE) is the use of the SAS search algorithms (Kuhfeld, 2010). 

The basic approach taken by these algorithms is to generate an OMEP and then, using 

a user-specified number of treatment combinations, searches for choice sets using a 

search algorithm. A section of Kuhfeld’s online book, authored by Zwerina, Huber 

and Kuhfeld (2010), details this approach. The approach begins with a list of 

potential alternatives, of which a random selection is chosen. The approach then finds 

the best exchange for the first alternative in this random selection of choice sets (in 

terms of the exchange which maximises D-efficiency). This is repeated for the next 

alternative, and so on until the algorithm has sequentially found the best exchanges 

for all alternatives. This entire process is then repeated until no substantial 

improvement in D-efficiency is possible. This process can be repeated multiple times 

with different starting designs to avoid poor local optima. This process is summarised 

in Figure 14, which is a reproduction of Figure 1 of Zwerina et al. (2010). 
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Figure 14: Flowchart of algorithm for constructing efficient choice designs 

 

Street, Burgess and Louviere (2005) and Street and Burgess (Chapter 8) (2007) have 

investigated the appropriateness of the choice sets this method can provide. They 

conclude that the design generated using this approach has good efficiency; however, 

it does not ensure uncorrelated estimates of the effects of interest. 

Some other areas of interest 

While generator-developed designs (which are used in this thesis) are only 

guaranteed to be optimal in terms of D-efficiency when the coefficients are zero, an 

issue remains about how best to make assumptions regarding coefficients which 

would potentially allow a better design to be constructed. One option is to update the 

prior values sequentially, by adjusting the design as data are generated (Kanninen, 

2002). There are a range of other studies that have investigated the benefits of 
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designing experiments based on non-zero priors (Arora and Huber, 2001; Ferrini and 

Scarpa, 2007). As the work undertaken in this thesis will generally focus on welfare 

measures, an important result is that of Carlsson and Martinsson (2003), who argue 

that these welfare measures are not significantly affected by using incorrect priors 

within a D-efficient design. Nevertheless, this is beyond the scope of this thesis and I 

will focus on the efficiency of designs based on zero priors.  

One additional similar issue is that some recent studies have investigated design of 

experiments aimed at investigating not just mean response, but also respondent 

heterogeneity. Drawing on Bayesian principles, a number of studies have attempted 

to design choice experiments for the mixed logit approach (Regier, et al., 2009; 

Sándor and Wedel, 2005; Yu, et al., 2009), all of which identify that considering the 

heterogeneity of responses when designing choice experiments improves the 

efficiency of the design.  

One final question that I would like to note is the issue of how many alternatives 

should be presented in each choice set. In efficiency terms, Burgess and Street (2006) 

identified that choice sets with two alternatives are unlikely to maximise the 

determinant of the C-matrix. However, as the authors note, 

“(P)ractitioners will need to decide how to trade off gains in statistical 

efficiency with potential losses in respondent efficiency.”(p.515) 

This is an important point and relates back to the cognitive burden of the task 

discussed previously. In a revealed preference setting, there is a broad literature 

concerning the difficulties posed by increasing choice (Boatwright and Nunes, 2001; 

Iyengar and Lepper, 2000). Arguably, the appropriate comparison between choice sets 

of different sizes would be to assume the sample size in an experiment to be inversely 

proportional to the size of each choice set, and then to determine if the smaller sample 

associated with the more statistically efficient design outperforms the larger sample 

answering the less statistically efficient design in terms of precision and bias in the 

point estimates. This is beyond the scope of the work presented here, and the choice 

experiments presented in the following empirical chapters consider only pairs. 

However, this does not imply that these are superior to larger choice sets. 
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Chapter summary 

Regarding design of experiments, I concluded that the use of shift generators or SAS 

algorithms was appropriate, particularly given the difficulties in extending other 

leading design strategies (LMA, Huber and Zwerina) to deal with interaction terms. For 

the investigation of heterogeneity, it was concluded that it was valuable to extend 

beyond a simple random-effects probit or logit, but the methods for using these 

heterogeneity results in health policy was uncertain. A specification of the utility 

function was proposed which allows for the inter-related nature of the dimensions of 

the choice experiments that now follow in the empirical chapters of this thesis.
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Chapter 5: Using a Discrete Choice Experiment to Value 
Health Profiles in the SF-6D 

Chapter summary 

This chapter presents an empirical study designed to elicit weights for the SF-6D 

using a DCE. The data were collected as part of a larger project (NHMRC Project 

Grant 403303). The methods of data collection, and rationale for various decisions 

made in that process, are outlined to provide background to the analysis section. The 

approach to data analysis was developed and performed as part of this thesis. 

This chapter first briefly reintroduces Random Utility Theory (RUT) as the foundation 

of discrete choice experiments, and describes some existing studies which have 

attempted to use a DCE approach to value generic multi-attribute utility instruments. 

Then, it describes the data that are used in this chapter, including the specific 

employment of design strategies, the approach to sampling, the base case random-

effect probit results, and the resulting QALY weights for the SF-6D. These are 

contrasted with existing weights for the SF-6D from the United Kingdom. An 

additional comparison is made between these Australian DCE-derived SF-6D weights 

with a set of Australian DCE-derived EQ-5D weights, with the intent to explore 

whether using a common valuation approach reduces the divergence between EQ-5D 

and SF-5D weights introduced and discussed in Chapter 2. Following this, the chapter 

uses the SF-6D DCE data to explore whether people differ in their responses based on 

observable characteristics. For instance, is the valuation of a specific health state 

dependent on the gender of the respondent? Finally, following the approach described 

in detail in Chapter 3, using newly developed STATA code (Gu, et al., 2011), I 

consider different approaches to modelling heterogeneity ranging from a simple 

conditional logit through to the generalised multinomial logit, which accounts for both 

scale and preference heterogeneity (Fiebig, et al., 2010). 

Introduction – Using ordinal data to value health states 

As discussed in Chapter 3, the use of discrete choice experiments relies on the concept 

of random utility. In this, the utility of an alternative i in a choice set Cn to an 

individual n is given by 

 ininin XVU in ),( . Equation 70 
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Thus, Uin consists of a systematic component Vin() and an error term in. If there are J 

items in Cn, the choice is defined by 

 nijjininin CijUUifUfy max__1 , Equation 71 

 otherwise_0 . 

Therefore, alternative i is chosen if and only if 

 njnjninin CijVV . Equation 72 

The terms in these equations are not observed; the only observed term is the 

preference between the two composite terms. Therefore, analysis is reliant on 

inferring the terms from that relative preference (which is observed). The model is 

therefore probabilistic as the error term is unbounded and therefore able to reverse any 

preference implied by the systematic component of the utility function  (Marschak, 

1960; McFadden, 1981). The methods used in these experiments are consistent with 

Random Utility Theory (RUT) in economics and psychology (which was discussed in 

the introductory chapter) and with a Lancastrian approach to consumer theory 

(Lancaster, 1966; Thurstone, 1927a) in which the utility of a good consists of the 

utility associated with its various characteristics. These two issues, RUT and a 

Lancastrian approach to consumer theory, are distinct but both contribute to the DCE 

field in terms of how we describe individual utility functions, and how these are then 

used to predict choices. 

Applications of DCEs to value health profiles 

Applications in health have been relatively recent, with papers dating from 1990 

(Propper, 1990). In the past ten years there has been a rapid growth in the use of this 

approach in health economics, and there are now many studies using DCEs in a range 

of applications (de Bekker-Grob, et al., 2012). One strength of DCEs is that, because 

they are based on the random utility model, they provide a robust theoretical and 

statistical framework to test the form of the utility function. In particular, the discrete 

choice experiment approach provides greater flexibility in terms of estimation of 

flexible functional forms, taking account of interaction effects. Under a DCE 

approach, the analyst can ensure that interaction effects can be explicitly allowed for 

in the design, although this can have implications for the sample size required by the 

analyst. 
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 An important emerging area of application of DCEs in health economics is in the 

estimation of preferences for health outcomes, and particularly, investigation of the 

trade-off between quality of life and extra life expectancy, and the nature of the utility 

function defined over quality of life, survival and other outcomes (Viney, et al., 

2002). However, there are relatively few examples in which DCEs have been used to 

measure the trade-off between quality and quantity of life, or between different 

dimensions of quality of life. Some examples occur in disease-specific contexts (Gan, 

et al., 2004; Osman, et al., 2001; Sculpher, et al., 2004). However, few of these 

studies provide measures of the trade-off between quality of life and survival, a 

requirement for the construction of the QALY. Hakim and Pathak (1999) use a 

discrete choice experiment to investigate preferences for EQ-5D health states, but 

their experiment does not include a time or cost attribute which could be used as a 

numeraire, thus their results provide information about strength of preference and 

interaction for EQ-5D dimensions, but not a cardinal measure of preference that could 

be used to generate a QALY weight (Flynn, et al., 2008). McCabe et al. (2006), and 

Salomon et al. (2003) do likewise, using data collected as part of the original EQ-5D 

and SF-6D valuation studies (Brazier, et al., 2002; Dolan, 1997), although they also 

do not include a numeraire. These data were collected without consideration of the 

design of experiments, which can impact on the accuracy and precision of estimated 

effects (Street and Burgess, 2007).  

A Dutch study, already discussed in Chapter 3, attempted to derive utility weights for 

the EQ-5D using a discrete choice experiment (Stolk, et al., 2010). While the use of 

DCEs is a step forward on the use of conventional ranking data, the paper by Stolk et 

al. is weakened as it does not include life expectancy in the design of the experiment. 

In Chapter 3, it was argued that this is an important omission as QALY weights are 

driven by the willingness of respondents to sacrifice length of life for quality of life, 

something which is not investigated in an experiment in which only the latter of these 

is included.  

A recent Canadian study (currently available as a working paper only) derived utility 

weights for the EQ-5D using an approach very similar to that outlined in Chapter 3 

(Bansback, et al., 2012). This introduced the specification of the utility function which 

imposes the zero-condition on the data, and included time as a numeraire. The work 

presented in this chapter builds on the work of Bansback et al. in a number of ways: 
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1. It uses a regression technique that better accounts for the panel nature of the 

data 

2. It explores approaches to modelling response heteorogeneity, including their 

impact on mean responses 

3. It uses a SAS-generated experimental design to ensure unbiased estimates of 

parameters of interest 

4. It produces results applicable to Australian cost-utility analysis 

This chapter attempts to remedy some of the limitations that have been identified in 

the existing literature base. Specifically, an experiment was conducted in which 

duration was included as variable, different approaches to the modelling of 

heterogeneity were investigated, and the experiment was designed to ensure both 

unbiased and precise point estimates for coefficients. This was done in the context of 

the SF-6D, rather than using the EQ-5D as does much of the existing literature. This 

does not necessarily reflect the relative merit of the two instruments as I have 

previously argued that the better descriptive ability of the SF-6D is counterbalanced 

by the greater difficulty in estimating utility weights for each of the possible states.  

The SF-6D 

The SF-6D has been described in depth in Chapter 2. To summarise, it is a multi-

attribute utility instrument which can be derived from the SF-36 (Ware and 

Sherbourne, 1992) or the SF-12 (Ware, et al., 1996) for use in economic evaluations. 

Rather than the 36 items contained within the original instrument, the SF-6D has only 

six, making administration considerably less onerous. The SF-6D is reproduced in 

Table 5. 

Table 18: The SF-6D 
Dimension Level 
Physical 

Functioning 
1 Your health does not limit you in vigorous activities 

 2 Your health limits you a little in vigorous activities 
 3 Your health limits you a little in moderate activities 
 4 Your health limits you a lot in moderate activities 
 5 Your health limits you a little in bathing and dressing 
 6 Your health limits you a lot in bathing and dressing 
   

Role 
Limitation 

1 You have no problems with your work or other regular daily 
activities as a result of your physical health or any emotional 

problems 
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 2 You are limited in the kind of work or other activities as a 
result of your physical health 

 3 You accomplish less than you would like as a result of 
emotional problems 

 4 You are limited in the kind of work or other activities as a 
result of your physical health and accomplish less than you 

would like as a result of emotional problems 
   

Social 
Functioning 

1 Your health limits your social activities none of the time 

 2 Your health limits your social activities a little of the time 
 3 Your health limits your social activities some of the time 
 4 Your health limits your social activities most of the time 
 5 Your health limits your social activities all of the time 
   

Pain 1 You have no pain 
 2 You have pain but it does not interfere with your normal work 

(both outside the home and housework) 
 3 You have pain that interferes with your normal work (both 

outside the home and housework) a little bit 
 4 You have pain that interferes with your normal work (both 

outside the home and housework) moderately 
 5 You have pain that interferes with your normal work (both 

outside the home and housework) quite a bit 
 6 You have pain that interferes with your normal work (both 

outside the home and housework) extremely 
   

Mental 
Health 

1 You feel tense or downhearted and low none of the time 

 2 You feel tense or downhearted and low a little of the time 
 3 You feel tense or downhearted and low some of the time 
 4 You feel tense or downhearted and low most of the time 
 5 You feel tense or downhearted and low all of the time 
   

Vitality 1 You have a lot of energy all of the time 
 2 You have a lot of energy most of the time 
 3 You have a lot of energy some of the time 
 4 You have a lot of energy a little of the time 
 5 You have a lot of energy none of the time 

For the requirements of economic evaluation and the construction of the QALY, the 

18,000 possible health states must be placed on a scale with full health equal to one, 

and health states equivalent to immediate death placed at zero. For the SF-6D, this has 

been done using the Standard Gamble in a variety of countries to reflect local attitudes 

to aspects of ill health (Brazier, et al., 2002; Brazier, et al., 2009; Gonçalves 

Campolina, et al., 2009).  
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The method used by these studies to value these 18,000 health states has been 

discussed and critiqued in Chapter 2. Briefly, a selection of 249 of the health states 

was valued using a Standard Gamble instrument, with the remaining 17,751 being 

valued using regression techniques. Issues with the use of Standard Gamble, with the 

selection of the 249 health states, and with the techniques used to value the remaining 

states have been raised each of which can either artificially bias scores or limit the 

types of utility functions that can be identified. 

The discrete choice experiment methods described in Chapters 3 and 4 are clearly of 

potential application here. An appropriate design for the experiment can be chosen to 

allow for a wide range of possible utility functions. Providing ordinal data (rather than 

a series of responses to a cognitively challenging task such as the Standard Gamble) is 

likely to allow relatively easy completion of the survey. Designing the experiment to 

allow estimation of all coefficients of interest precisely and without bias is likely to be 

of considerable value also. The following sections describe the slight amendment to 

the SF-6D for the purpose of this work, the construction of the choice experiment, the 

data collection process and the approach taken to analysis.  

The vitality dimension 

Before describing the project that collected the data that are analysed in this chapter, it 

is important to note a slight difference between the conventional SF-6D and the 

modified SF-6D used in this analysis. Under the modified SF-6D, the wording within 

the Vitality dimension of the SF-6D was amended to make it easier to understand for 

survey respondents.  The original wording results from the layout of the SF-36, and 

does not represent how the idea would naturally be expressed. The original and 

replacement wording are shown in Table 19. 
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Table 19: The Vitality Dimension 
Level Original Wording Replacement Wording 

1 You have a lot of energy all of the 
time 

You always have a lot of energy 

2 You have a lot of energy most of 
the time 

You usually have a lot of energy 

3 You have a lot of energy some of 
the time 

You sometimes have a lot of energy 

4 You have a lot of energy a little of 
the time 

You rarely have a lot of energy 

5 You have a lot of energy none of 
the time 

You never have a lot of energy 

The impact of this change was not tested; however it was likely to be small. 

Implausibility of health states 

Implausibility of health states is important as respondents may have difficulty 

responding to health states that combine levels of dimensions that seem unlikely. The 

decision to restrict the experiment to a subset of health states from the instrument is a 

difficult decision as, while there is a good reason for not presenting implausible health 

states, this has implications for the statistical efficiency of the design of the 

experiment. The states defined as implausible in this thesis combined Role 

Limitations Level 1 (i.e. “You have no problems with your work or other regular daily 

activities as a result of your physical health or any emotional problems”) with Pain 

Level 6 (i.e. “You have pain that interferes with your normal work (both outside the 

home and housework) extremely”). There were a number of other pairs which 

represented unlikely combinations of states. However, these were not excluded 

because of this balance between presenting only the most plausible comparisons and 

the statistical efficiency of any experiment.   

Design and presentation of experiment 

Using this conservatively constrained set of plausible states, a Discrete Choice 

Experiment was designed, allowing estimation of all main effects and both linear and 

quadratic interactions between each attribute and life expectancy. Note that, as the 

main effect of a dimension at a particular level is estimated using the interaction of 

life expectancy and that level (rather than the main effect), this limits the analysis to 

main effects. To estimate two-factor interactions between levels of the SF-6D, the 
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experiment would have to be designed to capture three-factor interactions involving 

life expectancy.  

To represent a range of life expectancies broad enough to capture non-linearity of 

preference with regard to time, but not to be unrealistic for older respondents, a range 

of life expectancies was specified between 1 and 20 years (with the levels in the 

experiment being 1, 2, 4, 8, 12, 16 and 20 years). The range was selected to be similar 

to the range considered in a TTO, and to be realistic for most respondents. The choice 

sets were designed with two health profiles for the respondent to select between, but 

presented as triples in which the two combinations of health states and life expectancy 

were placed alongside immediate death. The task for the respondent was to identify 

which of the three options was considered the best, and which the worst, thus 

providing a complete ranking within each choice set. An example choice set is given 

in Figure 15.  

Figure 15: An Example Choice Set 

 

As noted in Chapter 3, the Immediate Death option was included with the intention of 

using it to anchor health states on to the 0-1 scale required for economic evaluation. 

However, for reasons described in Chapter 3, this analysis approach was not taken 



 

140 
 

and, rather, the relative rank of the two non-death states was used to run the 

regression, and an alternative approach to anchoring was established which did not 

require the ranking of health states relative to Immediate Death. 

The full factorial for the 6 dimensions of the SF-6D and the 7 life expectancies 

contained 62 x 4 x 53 x 7 = 126,000 health profiles (or 120,750 once the implausible 

combinations were excluded). Therefore, a design based on an orthogonal fractional 

factorial was developed. The final design consisted of 180 choice sets. This was 

generated using the SAS algorithms presented in Kuhfeld (2010), and described in 

detail by Zwerina et al. (2010). These were discussed in Chapter 4, and kindly 

generated by Dr. Leonie Burgess. This design is given in Appendix 3. Relative to the 

best identified design using all SF-6D states (i.e. that which maximises the 

determinant of the C-matrix), the design was 99.44% efficient (Street and Burgess, 

2007), the small reduction from 100% efficiency reflecting the conservative approach 

to exclusion of states. There is evidence that up to 16 choice sets is both acceptable to 

respondents and does not significantly affect responses (Coast, et al., 2006; Hall, et 

al., 2006a). Therefore, the 180 choice sets were divided into 12 blocks of 15 choice 

sets, to which the respondents were randomly assigned (but controlled to ensure equal 

numbers of total respondents per block). 

Data and sample recruitment 

An online panel of respondents was used for the survey. Respondents were recruited 

through a large Australia-wide panel provider (Pure Profile Pty). These respondents 

were each paid a small sum (approximately $15) to complete the survey. To allow 

comparability with the Australian population, the panel consists of respondents in line 

with Australian norms for age and gender. Each respondent used a web link to access 

the survey, so were able to self-complete at their convenience. To aid the respondent, 

a thorough description of the task was provided at the beginning of the survey and a 

help button was available throughout the task. This provided information on how to 

respond. Each respondent was familiarised with the SF-6D by being asked to describe 

their own health using the tool (the results from this form part of the data used in the 

comparison of instruments presented in Chapter 2). Respondents then completed the 

task for the 15 choice sets. Following this, they answered a series of personal 

questions regarding gross household income, ethnicity, country of birth, number of 
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dependents, level of education, age and gender (screen shots of the experiments are 

provided in Appendix 4). Finally, they were asked how difficult the task was, 

selecting one of five levels of difficulty ranging from very difficult to very easy. They 

were also given the opportunity to provide a free-text response outlining their 

impression of the survey.  

Analysis  

The purpose of data analysis was two-fold. The first output is a set of utility weights 

for the SF-6D which can be used in economic evaluation. The second component of 

the chapter is an exploration of the heterogeneity of responses. In general, the former 

set of results is produced using population means; extreme preference patterns are 

only important in so far as they impact on the mean more than less extreme patterns. 

However, both issues are important. If population weights are constructed using 

population means, the study of heterogeneity gives an indication of how appropriate 

the weights are for modelling individual preferences, and also for identifying the 

degree to which society is in agreement about the importance of different aspects of 

health. 

The first step in the analysis was that, as a data investigation tool, marginal 

frequencies were estimated. Thus, the probability of picking a health profile given that 

a particular dimension was at a particular level was identified. The marginal 

frequency results are likely to be strongly associated with the econometric modelling 

results; thus, they are a valuable corroborative tool. 

The intention had been to anchor the QALY weights using death (which was an 

option in each of the choice sets). With three options in the choice set, asking the 

respondent for best and worst profiles produces a complete ranking, which can be 

exploded out to produce three pairwise preferences. This explosion was proposed by 

Chapman and Staelin (1982) as a means of gaining additional information. However, 

the use of the death state as an anchor was ultimately rejected on the grounds that 

death is considered very differently to health states, and respondents may not consider 

it within a random utility theory framework. Specifically, as discussed in Chapter 3, 

respondents may have an a priori belief that death cannot be worse than any health 

state and therefore will never pick it (Flynn, et al., 2008). The framework of the 

choice experiment did not allow this lexicographic preference to be identified; it was 
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not possible to identify those respondents who would never prefer death to a health 

state distinct from those who simply did not see a state that was worse than death. 

Therefore, an alternative analysis method was adopted in which only the pairwise 

preference between the two non-death options was considered. The utility of death 

was simply the utility when time was set at zero (thus, the systematic component of 

the utility function is zero). 

With one exception relating to the number of parameters considered to be random 

(which is discussed below in the section titled Limitations in Specifying Random 

Parameters), the analysis followed the strands described in Chapter 3. Thus, in 

STATA, the base case model employed random-effects probit (and random-effects 

logit as a check for consistency of conclusions between logit and probit models). 

Then, twelve models were estimated to investigate response heterogeneity. The base 

case model A plus the heterogeneity investigation models A1-A6 used a QALY-type 

model in which the utility of alternative j in scenario s for individual i was 

 isjiisjisjisjisj LIFEXLIFEU '

. Equation 73 

Thus, the sole main effect was on the life expectancy (LIFE), and the other 

characteristics enter the utility function as interactions with the LIFE attribute. As 

noted in Chapter 3, this is an important amendment to a simple additive utility 

function as it imposes the zero-condition in which all options where health gain was 

zero were equally likely to be selected within a choice set irrespective of the 

characteristics of the hypothetical person ‘receiving’ it. Additionally, as LIFE only 

enters as a linear term, it assumes linearity of utility with respect to time. 

Within this framework, four models were estimated. Initially, Model A '
isjX  included 

only the 25 main effects, these being the movement from level 1 to any other level in 

each of the 6 dimensions of the SF-6D. 

The SF-6D is not strictly monotonic in the way that other instruments such as the EQ-

5D are. That is, there are some dimensions within which health is not necessarily 

worse at higher levels. For example, it is unclear if Role Limitation level 2 (“You are 

limited in the kind of work or other activities as a result of your physical health”) is 

preferable to Role Limitation level 3 (“You accomplish less than you would like as a 

result of emotional problems”). While there are instances of uncertain monotonicity in 
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the SF-6D, there are clearly some pairs of levels within dimensions which are 

intended to be monotonic. Therefore, if this monotonicity was violated, the violating 

pairs would be combined, and the model re-estimated as Model B. As an alternative 

to these two models, an additional MOST variable was added, which is a dummy 

equal to one if and only if the health profile has a dimension at the worst level. The 

reason for running this model is to provide a set of results comparable to those 

reported by Brazier et al. (2002). The results from this are presented as Model C. 

A series of different parameterisations, particularly in reference to the error term were 

considered. The models A1-A6, described in detail in Chapter 3, were paired with the 

simplest main effects model, giving these six models: 

A1: The Conditional Logit 

A2: The Scale Multinomial Logit 

A3: The Mixed Logit (Uncorrelated Coefficients) 

A4: The Generalised Multinomial Logit (Uncorrelated Coefficients) 

A5: The Mixed Logit (Correlated Coefficients) 

A6: The Generalised Multinomial Logit (Correlated Coefficients) 

The reason for ordering the models in this way was that the number of parameters 

increased monotonically from A1 to A6. The reason why these are only run using 

Model A is that the purpose of modelling heterogeneity in this context is to identify if 

it improves model fit, which can be done using any of Models A-C. Model A was 

selected as it was the simplest main effects model so was most likely to achieve 

convergence.  It would be possible to run comparable Models B1-B6 or C1-C6, but 

achieving convergence is difficult and there is no reason for thinking that patterns of 

heterogeneity would differ across what are similar models. 

Non-linearity in the utility function (models D and D1-D6) 

In Models A, B, C, and A1-A6, this thesis considers a utility function which is linear 

with respect to gain in life expectancy (and when coupled with the zero condition, 

this forms the QALY model). This is a strong assumption, and requires testing. 

Utility Function D extends on Utility Function A by relaxing the assumption of 

linearity of utility with respect to time. Thus, Model D is estimated as 
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 isjisjisjisjisjisjisjisj LIFEXLIFEXLIFELIFEU 2''2

.Equation 

74 

Thus, the linearity of utility with respect to time is relaxed, as reflected in the 
2
isjLIFE  term in Equation (74). In addition, it relaxes the assumption that the change 

in total utility associated with it being received by a different group of hypothetical 

respondents is independent of the total gain (the 2'
isjisj LIFEX  term).  

Models D and D1-D6 are therefore replications of models A and A1-A6 respectively, 

but adopting this more relaxed non-linear utility function. A summary of the various 

models being run is provided in Table 20. 

Table 20: Models Run in Chapter 5 
  Utility Function 1 Utility 

Function 2 
 RE Probit / 

Logit 
A B C D 

Heterogeneity 
modelling 

Conditional 
logit 

A1   D1 

Scale MNL A2   D2 
Mixed logit A3   D3 
G-MNL A4   D4 
Mixed logit 
(correlated) 

A5   D5 

G-MNL 
(correlated) 

A6   D6 

Note that models with this allowance for non-linearity require a large number of 

additional parameters, and that the number of additional parameters increases 

substantially as the analysis moves away from the more restrictive models. As 

described in Chapter 3, model evaluation will primarily be undertaken using the 

Akaike and  Bayesian information criteria (AIC and BIC) (Akaike, 1974; Schwarz, 

1978). These consider both the model fit and also the parsimony of the model (by 

accounting for the number of parameters in the model). The BIC focuses relatively 

more on parsimony; therefore, disagreement concerning preferred specification 

(defined by minimising the coefficient) is possible between the two. As noted in 

Chapter 3, there is an issue with the use of BIC in panel data with multiple 

observations per person. The question is whether the n term refers to the number of 

choice sets or the number of respondents. Therefore, both BIC estimates are 
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calculated, and any disagreement in ranking of models between them are discussed 

further. 

Limitations in specifying random parameters 

Since the analyses were conducted in STATA, a technical limitation of the software in 

this context needs to be noted. For models with random parameters, STATA limits the 

user to 20 of these. Under Utility Function A (Equation (73)), there are 26 possible 

random parameters (5 for physical functioning and pain, 4 for social functioning, 

mental health and vitality, and 3 for role limitation, plus 1 for duration). Initial testing 

of the importance of making each of these random (by looking at the statistical 

significance of the standard deviation term) suggested that the coefficients on poorer 

levels of health were better described as being drawn from a distribution. Therefore, 

the initial approach was that, for models A3-A6, the random parameters were 

assumed to be duration and the poorest level within each SF-6D dimension. 

Therefore, there were 7 random parameters (duration, physical functioning and pain 

level 6, social functioning, mental health and vitality level 5, and role limitation level 

4). For models D3-D6, the same 7 parameters were assumed to be random, and the 

quadratic term on duration was added (making 8 random parameters). Some testing of 

including extra parameters as random was undertaken; in general, the likelihood and 

speed of achieving convergence reduced considerably. 

Rescaling scores for economic evaluation 

For the purpose of economic evaluation, it was necessary that the scores attributed to 

each of the generic quality of life states be on a scale with death at 0 and full health at 

1. The initial intention in the empirical chapters was to use the relative preference for 

the health state and an Immediate Death health state to do this. However, for reasons 

outlined in Chapter 3, this was inappropriate and hence, an alternative was required. 

An approach to rescaling has been suggested recently in a condition-specific context 

(Ratcliffe, et al., 2009). However, this technique was reliant on attaching a value on 

the worst possible health state within the instrument, which was derived elsewhere. 

As described in Chapter 3, it was possible to rescale the mean score for each of the 

18,000 health states described by the SF-6D. For all states, the utility weight that was 

attached to them was therefore 
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 '_ XWeightUtility . Equation 75 

As noted in Chapter 3, this is equivalent to the ratio of the marginal utility of extra 

time in the impaired health state, divided by the marginal utility of extra time in full 

health. 

In situations in which the utility associated with time was assumed to be linear, this 

produces a QALY weight for each health state independent of the time variable LIFE, 

with full health anchored at 1. The explanation for this anchoring is that level one in 

each dimension of the SF-6D was omitted so the 'X  term is equal to zero, 

meaning Equation (75) collapses to . Note that Equation (75) allows the 

possibility of negative QALY weights if 'X exceeds the coefficient on life 

expectancy. For situations in which life expectancy was estimated as a non-linear 

function, QALY weights have to be estimated for a particular time point, and would 

be estimated as 

 )(2
)(2

'

'

XTIME
XTIMEX

. Equation 76 

 In the analysis presented in this chapter, this was not done; however, the QALY 

weights using this non-linear utility function can be estimated using the results 

presented in Table 23. 

To estimate confidence intervals around the QALY weights, the wtp command in 

STATA was employed with the default delta method (Hole, 2007b), involving a first-

order Taylor expansion around the mean value of the variables, and then calculation 

of the variance of the resulting expression. The delta method has been shown to 

perform well, and to provide similar results to other competing approaches such as the 

Fieller or the Krinsky Robb methods (Hole, 2007b). 

 

Additional sub-group analysis 

Conventional valuation of generic health states for use in economic evaluation is 

focused on the mean respondent. This is appropriate within the convention that the 

value attributed to a health state is a societal one. However, it is useful to investigate 
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whether responses differ based on observable characteristics of the respondent. This is 

useful for two reasons. Firstly, it will identify the importance of using a balanced 

panel; if respondents do not differ in predictable ways, it is relatively less important 

that a balanced panel is used. The second reason is that it is intrinsically interesting to 

explore the degree to which people agree with the mean respondent. 

The approach to doing this is to apply the RE probit (Model A) to sub-groups of the 

respondent space, making the assumption that the utility function is linear with respect 

to time. The reason I selected this random-effects probit rather than the more relaxed 

specifications is three-fold. Firstly, I want to investigate a variety of ways of dividing 

the respondents into groups and computational time becomes an issue if G-MNL or 

mixed logit models are employed. Secondly, and more importantly, the purpose of the 

sub-group analysis is not to investigate heterogeneity within a group of people with 

the same characteristics, but between groups of people with different characteristics. 

Finally, specifications beyond the RE probit estimate an increasingly large number of 

coefficients. Thus identifying patterns of statistically significant coefficients is 

difficult as chance would cause a number to be statistically significant (i.e. each 

unimportant coefficient has a probability equal to the chosen level of significance of 

being significant).  

As stated previously, a range of demographic information was collected from 

respondents. Those that I selected for sub-group analyses were gender, age (i.e. above 

and below median age in the sample), education, studying status, gross household 

income, marital status, number of children, self-described health (within a 5-level 

Likert scale), whether the individual has a chronic condition, and whether they are 

currently employed. Where possible, the sample was split into approximately half, 

defined by each of these characteristics in turn. The utility function of alternative j for 

individual i with or without demographic characteristic c in scenario s is  

 isjiciisjicsj XU )('

, Equation 77 

where i is a person-specific error term ensuring that choices made by an individual 

are correlated, and c is a slope dummy testing for differences in attitudes towards 

health gain based on the characteristic c.  
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Each possible c was run separately. This was then compared with a pooled model, and 

the importance of the c terms were investigated using Information Criteria as in the 

main model evaluation section. Additionally, likelihood ratio tests were run. The 

results are presented graphically by rescaling the results from each sub-group such 

that the coefficient on duration is set to 1 (thus scale is corrected for). If, once the 

adjusted values are generated for two mutually exhaustive sub-groups, there is 

difference between the two for a particular level of a particular dimension, it means 

that the amount of life expectancy that an individual is willing to sacrifice to move to 

full health in that dimension differs.    

Results 

1,634 people entered the survey and were eligible to participate. Of these, 110 were 

removed because they exceeded the quota of respondents. Thus, they opened the link 

to the survey, but were immediately excluded. Of the remaining 1,524, 17 stated they 

were unwilling to participate, and 369 exited during the description of the task or 

before answering the first choice set. One hundred and twenty one respondents 

answered some of the choice tasks. Of the remaining 1,017 who responded to all 

choice sets, 13 failed to provide complete demographic information; this group was 

included in the analysis set. The 121 individuals completing some but not all of the 

choice sets were excluded from the analysis set. The reason for this decision was that 

the decision to drop out is likely to indicate the data from these individuals would 

show greater variability, and their responses were not required to ensure a large 

enough sample. The counter-argument is that the flexible approach to modelling scale 

used in this work would capture this, but at the time the trade-off was not considered 

valuable. The characteristics of the sample and its comparability to the general 

Australian population are outlined in Table 21. 
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Table 21: Representativeness of SF-6D DCE Sample 
Characteristic Value / Range Sample Population2 

Gender Female 58.55% 56.09% 
Age (years) 16-29 17.90% 21.33% 

 30-44 19.00% 23.98% 
 45-59 33.40% 22.40% 
 60-74 28.20% 14.00% 
 75+ 1.50% 18.29% 

Highest level of 
education 

Primary 7.52% 40.51% 

 Secondary 36.40% 20.00% 
 Trade certificate 34.92% 22.24% 
 Bachelor’s degree or 

above
21.17% 17.26% 

Gross 
household 

income1 

<$20,000 15.88% 15.77% 

 $20,000 - $40,000 27.37% 23.02% 
 $40,001 - $60,000 21.51% 17.64% 
 $60,001 - $80,000 14.98% 13.87% 
 $80,001 - $100,000 8.22% 11.03% 
 $100,001 + 12.05% 18.67% 

1 15 individuals chose to not disclose income 

2 All data sourced from ABS (Australian Bureau of Statistics, 2006a; Australian Bureau of Statistics, 

2002; Australian Bureau of Statistics, 2005; Australian Bureau of Statistics, 2007) 

Thus, the respondents are over-representative of the middle age brackets, and are 

better educated than the general population. The importance of this will be 

investigated in the section concerned with sub-group analysis. The self-assessed 

health (as described by the SF-6D) of the individuals completing the survey is 

outlined in Table 22. 
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Table 22: Sample SF-6D Health (n=1,017) 
Characteristic Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Physical 
Functioning 

27.04% 37.07% 19.57% 13.57% 1.67% 1.08%

Role 
Limitation 

54.38% 29.11% 7.57% 8.95%  

Social 
Functioning 

50.74% 23.99% 17.11% 6.19% 1.97% 

Pain  29.20% 32.06% 18.09% 8.95% 7.77% 3.93%
Mental 
Health 

21.14% 46.80% 22.81% 7.96% 1.28% 

Vitality 4.03% 37.76% 33.92% 20.55% 3.74% 

Marginal frequencies 

The marginal frequencies for each level are shown in Figure 16. 

 
Figure 16: SF-6D Dimension / Level Marginal Frequencies 

0
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† The levels in this figure refer to the levels of the SF-6D, with the exception of Life (Expectancy), for 
which the levels in the figure are 20 years, 16 years, 12 years, 8 years, 4 years, 2 years and 1 year, 
labelled as Level 1-7 respectively. 
* The starred levels are those that are not strictly monotonic (and hence not have a monotonic 
relationship displayed in the marginal frequencies) 

Most dimensions show the expected monotonic relationship as the dimension moves 

to increasingly poorer health.  The slight breakdown of this pattern in some 

dimensions (Physical Functioning, Role Limitation and Life Expectancy) can 

potentially be explained by arguing that these dimensions are not strictly monotonic in 
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their construction. This issue was discussed in Chapter 2. The dimensions in which 

the gradient is steepest (Pain, Mental Health, Vitality) are those that most impacted on 

the decision to prefer either option in the DCE; this pattern is therefore expected to be 

reflected in the econometric models.  

Across all choice sets, the death option was selected as the best of the three in 2.7% of 

the choice sets, and as the worst in 57.4%. As noted previously in this chapter, the 

preference for health states relative to immediate death is not used in estimating 

models; nevertheless, it is noteworthy that in 42.6% of choice sets, the respondent was 

willing to state that death was preferable to at least one of the choice sets, a result 

which suggests the floor effect seen in the UK algorithm of Brazier is not reflective of 

population attitudes to the poorest levels of health in the SF-6D. 

The results from Models A-D are presented in Table 23.
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Before looking at the patterns in these results, I want to confirm that the choice of a 

probit specification over a logit does not impact on inferences from these results. The 

logit results for Models A and D are presented in Appendix 5, and summarised 

graphically in Figure 17 and Figure 18.  

Figure 17: RE probit and logit coefficients (Model A) 

 

Figure 18: RE probit and logit coefficients (Model D) 
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Under either the linear or non-linear utility function, the logit coefficients are all 

absolutely larger than those in the probit. Due to the highly correlated coefficients 

under the two models, the inferences using either a logit or a probit are likely to be 

very similar. Therefore, for the base case results, I consider only the RE probit results.  

Model B combines levels 5 and 6 for Pain. This combination does not cause any new 

non-monotonic orderings, and because the unadjusted coefficients were close, has 

very little impact on log likelihood (it does improve BIC as fewer coefficients are 

estimated; however, it would not be appropriate to combine other pairs of consecutive 

levels to further improve BIC, as there is no good a priori reason for the ordering 

reflected in the unadjusted results to be over-ruled). It is these adjusted regression 

results (with levels 5 and 6 of pain combined but no others) that are used in the 

estimation of QALY weights for the SF-6D. 

Introducing the MOST term in Model C has a small impact on log-likelihood and 

Information Criteria. The coefficient is negative suggesting that the first dimension to 

move to the worst level has an extra disutility than subsequent dimensions. This result 

is reflected in other algorithms (Dolan, 1997; Viney, et al., 2011b). 

Model D leads to a significant improvement in model fit. The quadratic term on 

duration is highly statistically significant. In addition, the coefficients on the other 

quadratic terms (i.e. those interacted with levels of SF-6D dimensions) are frequently 

statistically significant and mostly positive. The decision regarding which model is 

preferred is difficult. The models which impose a linear utility function with respect 

to time produce more straightforward QALY weights, in that they are independent of 

time. However, the models which relax this assumption perform better under the 

Information Criteria, and have 11 statistically significant coefficients.  

Base case utility weights for the SF-6D 

In Chapter 3, the methods for converting regression results into utility weights were 

discussed. If the linear utility function is assumed, and the RE-probit results are 

utilised, the weights (and 95% confidence intervals) to generate the scores for each of 

the SF-6D health states are presented in Table 24. 
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Table 24: Base case QALY algorithm 
 Model B Model C 

Level QALY decrement (95% CI) QALY decrement (95% CI) 
PF2 0.0474 (0.0194-0.0754) 0.0464 (0.0186-0.0741) 
PF3 0.0776 (0.0509-0.1043) 0.0744 (0.0479-0.1009) 
PF4 0.1390 (0.1139-0.1642) 0.1389 (0.1141-0.1638) 
PF5 0.1428 (0.1166-0.1690) 0.1374 (0.1111-0.1638) 
PF6 0.2961 (0.2686-0.3236) 0.2774 (0.2470-0.3077) 
RL2 0.0896 (0.0657-0.1136) 0.0847 (0.0581-0.1114) 
RL3 0.0658 (0.0430-0.0886) 0.0639 (0.0403-0.0874) 
RL4 0.1142 (0.0905-0.1379) 0.1011 (0.0731-0.1291) 
SF2 0.0271 (-0.0007-0.0550) 0.0204 (-0.0077-0.0486) 
SF3 0.0337 (0.0094-0.0580) 0.0331 (0.0084-0.0577) 
SF4 0.1131 (0.0906-0.1356) 0.1089 (0.0864-0.1313) 
SF5 0.1280 (0.1040-0.1521) 0.1112 (0.0844-0.1380) 
PA2 0.0807 (0.0525-0.1089) 0.0811 (0.0531-0.1091) 
PA3 0.1742 (0.1482-0.2001) 0.1727 (0.1470-0.1984) 
PA4 0.2038 (0.1757-0.2318) 0.1992 (0.1712-0.2272) 
PA5 0.2814 (0.2580-0.3049) 0.2847 (0.2569-0.3126) 
PA6 0.2814 (0.2580-0.3049) 0.2568 (0.2262-0.2874) 
MH2 0.0616 (0.0375-0.0857) 0.0566 (0.0325-0.0806) 
MH3 0.0780 (0.0537-0.1022) 0.0708 (0.0463-0.0953) 
MH4 0.1881 (0.1634-0.2129) 0.1812 (0.1564-0.2061) 
MH5 0.2731 (0.2489-0.2972) 0.2552 (0.2279-0.2825) 
VI2 0.0110 (-0.0133-0.0352) 0.0117 (-0.0122-0.0357) 
VI3 0.0476 (0.0206-0.0746) 0.0553 (0.0279-0.0827) 
VI4 0.2117 (0.1887-0.2347) 0.2181 (0.1950-0.2412) 
VI5 0.2521 (0.2284-0.2759) 0.2377 (0.2118-0.2636) 

MOST  0.0373 (0.0083-0.0663)

To value a health state, the relevant weights are subtracted from 1. As an example, to 

value health state 321234 under Model B, the value is 1 – (0.0776 + 0.0896 + 0.0807 

+ 0.0780 + 0.2117) = 0.4624. The scores for the 18,000 health states within the SF-6D 

instrument under the corrected RE probit result are presented in Figure 19.  
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Figure 19: Distribution of SF-6D health states (corrected utility function 1, 
random-effects probit) 
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It is clear from this histogram that the distribution of weights under the Australian 

DCE algorithm is very different to that in the original UK weights. Most notably, the 

Australian algorithm allows weights below zero, while the UK algorithm has a floor 

effect at 0.3. A more thorough comparison of utility weights under the two algorithms 

is provided in the discussion section of this chapter. 

The next step in the chapter is to consider whether these results differ predictably 

based on observed respondent characteristics. 

Sub-group analysis 

Gender 

The results dividing the sample by gender suggest there is little difference in 

responses. Note that the coefficients are normalised such that the coefficient for 

duration is set to be 1 (but not shown in the figure), thus coefficients are comparable 

across samples. If these adjusted coefficients are generally higher for a sub-group, this 

suggests that group places less emphasis on the dimension which has been 

normalised. The full tabulated results are provided in Appendix 6. 
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Figure 20: Sub-Group Analysis Results (Gender of respondent) 

 

The model comparison information for the gender sub-group analysis is presented in 

Table 25. Note that the constrained specification is that which pools male and female 

responses, while the unconstrained specification allows them to differ.   

Table 25: Information Criteria (Gender Sub-Group Analysis) 
  

Model 
Observatio
ns 

Log 
likelihood 

Degrees of 
freedom AIC BIC 

Male and 
female pooled 15090 -8879 28 17814 18027
Unconstrained 15090 -8859 54 17827 18238

Both the AIC and BIC suggest that allowing coefficients to differ based on the gender 

of the respondent is not necessary. However, the likelihood ratio test, which tests 

whether it is appropriate to nest the restricted model (i.e. in which no allowance is 

made for the gender of the respondent) within the more unrestricted model suggests it 

may not be appropriate to pool the results between the genders (lr chi2(26)=39.5; 

p=0.0437). One reason for accepting poolability between genders is that it is difficult 

to determine a clear pattern of differences between male and female respondents. Of 

the 6 dimensions, only Role Limitation has one of the genders (female) considering 

each level more serious than males do.  
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Age 

The median age of respondents was 51.5 years. Replicating the sub-group analysis 

allowing coefficients to differ for those older and younger than this median are 

presented in Appendix 7. 

Figure 21: Sub-Group Analysis Results (Age of Respondent) 

 

As described previously, these samples can be directly compared because the 

coefficient on duration has been normalised to be one (analogous to a willingness to 

pay calculation). In this instance, there is a possible pattern in that the respondents 

below median age place relatively greater emphasis on physical functioning, pain and 

vitality, while those above median age place relatively greater emphasis on mental 

health and perhaps also role limitation.  

From a survey design perspective, it is interesting to note that the constant is notably 

more positive in the younger cohort. Thus, it is this group which is systematically 

more likely to select choice set A. As I randomised which option was in position 1 

and position 2, this will not systematically bias the regression results; however, it 

remains unexplained, The information criteria for the age sub-group analysis are 

presented in Table 26. 

Table 26: Information Criteria (Age Sub-Group Analysis) 
 
Model Observations Log Degrees AIC BIC 
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likelihood of 
freedom

Constrained 15150 -8913 28 17882 18096 
Unconstrained 15150 -8894 54 17896 18308 

As with the gender division, the AIC suggests the consideration of age of respondent 

in the analysis does little regarding model fit. Equally, the BIC suggests the 

constrained model is the more appropriate. As with the case of gender, the likelihood 

ratio test suggests that it is questionable whether the groups can be pooled (lr 

chi2(26)=38.51; p=0.0542).  Relative to the gender case, it is easier to discern patterns 

within dimensions when the sample is sub-divided by age. In three of the six 

dimensions, older people value all levels either better than younger people do 

(Vitality, Pain), or worse than younger people do (Mental Health). 

Chronic Conditions 

Of those who provided information regarding chronic conditions (as the respondent 

was allowed to refuse to answer) 39.3% of the sample defined themselves as having a 

chronic condition. Thus, the RE probit was re-run allowing coefficients to differ based 

on this variable. The results were again normalised and graphed in Figure 22. 

Figure 22: Sub-Group Analysis Results (Chronic Conditions) 
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Respondents with chronic conditions appear to place relatively greater emphasis on 

mental health, and relatively less emphasis on physical functioning and social 

functioning. Whether an individual has a chronic condition is likely to be correlated 

with their age. While possible to run sub-group analysis accounting for both issues, 

the increasingly small populations in each sub-group and the proliferation of 

coefficients make this analysis unhelpful. For example, running these together would 

require four coefficients to be estimated for level of each dimension (e.g. for Physical 

Functioning 2, the analysis would require the following terms to be estimated: 1) 

Duration x  PF2; 2) Duration x PF2 x Chronic Only; 3) Duration x PF2 x Old Only; 

and 4) Duration x PF2 x (Chronic and Old).). As respondent characteristics are not 

independent, the number of observations driving each of these coefficients would 

differ, and be small for some). 

The Information Criteria for these results are presented in Table 27. 

Table 27: Information Criteria (Chronic Conditions Sub-Group Analysis) 
 

Model 
Observation
s 

Log 
likelihood 

Degrees of 
freedom AIC BIC 

Constrained 15060 -8864 28 17783 17997
Unconstrained 15060 -8841 54 17791 18202

As before, both Information Criteria suggest adopting the constrained model (and 

hence accepting the pooling of data from those with and without a chronic condition. 

Unlike the previous two analyses, the LR test unequivocally rejects poolability 

between people with and without a chronic condition (lr chi2(26)=46.44; p=0.0081). 

In this case, people with a chronic condition value all levels better than people without 

a chronic condition do (Physical and Social Functioning). 

Heterogeneity modelling 

Utility Function A 

The results for the various approaches to modelling heterogeneity are now presented. 

The results for Utility Function A under each of the approaches are presented in Table 

28. 
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The conditional logit results (Model A1) suggest that utility increases in life 

expectancy, and reduces as the health state moves away from full health. The 

monotonicity implicit in some of the SF-6D dimensions is violated in two instances: 

Social Functioning Level 3 is valued as being a smaller decrement to utility than 

Social Functioning Level 2; and similarly Pain Level 6 is considered less of a 

decrement than Level 5. While the absolute size of the coefficient on Role Limitation 

Level 3 is smaller than that on Level 2, I have previously argued that the values over 

these levels need not be monotonic, and therefore this result is not a violation of 

expected orderings. 

Physical Functioning level 2 loses statistical significance under the S-MNL, and 

Social Functioning level 2 gains significance at the 1% level. All other conclusions 

regarding statistical significance remain the same as those presented in Model A1. 

However, the impact of allowing for scale on model fit is noteworthy. The log-

likelihood improves by 205 points. As discussed in Chapter 3, the inclusion of a scale 

parameter alone is a highly parsimonious addition to the simple conditional logit 

model. This is reflected in the improved Information Criteria figures under Model A2 

than under A1. 

The mixed logit results (A3) suggest there is considerable heterogeneity between 

respondents. Six of the seven random coefficients are statistically significant at the 

1% level. The mean responses show a similar monotonic pattern to that identified in 

the conditional logit and S-MNL results. While there are six additional parameters 

relative to the S-MNL (and seven relative to the conditional logit), the AIC and BIC 

suggest that this extra estimation improves model fit. As previously argued, the value 

each respondent places on particular coefficients is likely to be highly correlated with 

values placed on other coefficients. Model A5 (which replicates Model A3 but allows 

correlation) suggests this might be the case: the AIC in Model A5 is superior, but the 

BIC (using either interpretation of the total n) shows the opposite pattern. It is likely 

therefore, that if the poorer levels of health are those most likely to demonstrate 

correlation, that allowing additional correlations is not justified given the equivocal 

findings for allowing correlations in this limited set. 

The uncorrelated G-MNL model (A4) results suggest that considering both scale and 

preference heterogeneity in one model leads to an improvement in model fit relative 
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to considering only one, or neither. In both the correlated and independent coefficient 

cases, the signs of the coefficients are generally as expected, and the monotonic nature 

of the SF-6D is broadly reflected. The AIC and BIC are favourable, reflecting both 

the good model fit and the relative parsimony of the approach (in that, relative to the 

mixed logit presented as Model A3, there are only two additional parameters). 

Relative to Model A5, Model A4 performs very well, both with a better log-likelihood 

and fewer estimated coefficients. The  term is very close to zero, suggesting that the 

scale term applies almost equally to the parameter coefficient  and the variance 

term i  (this is termed by Fiebig (2010) as G-MNL-II). Indeed, in Model A4, the  

term is negative, suggesting that the scale term applies more to the variance terms 

than to the parameter coefficients. 

Model A6 performs well relative to A5, suggesting that the consideration of scale 

leads to a considerable improvement in model fit. However, relative to Model A4, the 

Bayesian information criteria suggests that the additional model fit allowed by 

introducing correlated coefficients, does not justify the additional 20 degrees of 

freedom required (a pattern contradicted by the AIC). This equivocal pattern in terms 

of Information Criteria occurs despite there being a number of statistically significant 

terms in the correlation matrix for Model A6 presented in Table 30.  

The variance-covariance matrices for Models A5 and A6 are presented in Table 29 

and Table 30. 
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Table 29: Variance-Covariance Matrices for Model A5 
 Duration PF6 RL4 SF5 PA6 MH5 VI5 

Duration 0.191 
(0.011) 

*** 

      

PF6 -0.032 
(0.008) 

*** 

0.074 
(0.009) 

*** 

     

RL4 -0.011 
(0.006) 

* 

0.039 
(0.008) 

*** 

0.049 
(0.008) 

*** 

    

SF5 0.003 
(0.007) 

-0.002 
(0.01) 

-0.016 
(0.009) 

* 

-0.035 
(0.009) 

*** 

   

PA6 -0.032 
(0.008) 

*** 

0.01 
(0.011) 

-0.002 
(0.014) 

-0.041 
(0.015) 

*** 

0.066 
(0.012) 

*** 

  

MH5 -0.027 
(0.007) 

*** 

0.014 
(0.011) 

0.045 
(0.011) 

*** 

-0.045 
(0.014) 

*** 

-0.043 
(0.015) 

*** 

0.037 
(0.016) 

** 

 

VI5 -0.011 
(0.007) 

0.013 
(0.01) 

-0.023 
(0.01) 

** 

0.029 
(0.014) 

** 

0(0.012) 0.062 
(0.01) 
*** 

0.016 
(0.022)

Statistical significance noted at the 1% level (***), the 5% level (**) and the 10% level (*)  
Standard errors noted in parentheses 
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Table 30: Variance-Covariance Matrices for Model A6 
 Duration PF6 RL4 SF5 PA6 MH5 VI5 

Duration 0.606 
(0.078) 

*** 

      

PF6 -0.057 
(0.017) 

*** 

0.261 
(0.038) 

*** 

     

RL4 0.012 
(0.014) 

0.108 
(0.017) 

*** 

0.137 
(0.019) 

*** 

    

SF5 0.000 
(0.015) 

-0.099 
(0.017) 

*** 

0.000 
(0.013) 

0.068 
(0.017) 

*** 

   

PA6 -0.021 
(0.014) 

0.006 
(0.016) 

0.011 
(0.015) 

0.132 
(0.026) 

*** 

0.198 
(0.030) 

*** 

  

MH5 0.002 
(0.012) 

0.055 
(0.012) 

*** 

0.135 
(0.019) 

*** 

0.152 
(0.023) 

*** 

-0.151 
(0.025) 

*** 

-0.003 
(0.011) 

 

VI5 0.006 
(0.009) 

0.011 
(0.010) 

-0.113 
(0.020) 

*** 

-0.111 
(0.018) 

*** 

-0.098 
(0.021) 

*** 

-0.118 
(0.018) 

*** 

0.201 
(0.027)

*** 
Statistical significance noted at the 1% level (***), the 5% level (**) and the 10% level (*)  
Standard errors noted in parentheses 

Utility function D 

The corresponding results for Models D1-D6 (which differ from A1-A6 in that they 

allow for non-linearity of the utility function over time) are presented in Table 31. 
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In model D1, the pattern of coefficients relating to the non-linearity of the utility function is 

interesting. The quadratic term on duration is negative and statistically significant suggesting 

the utility associated additional years of life independent of quality is diminishing. 

Additionally, the coefficients on the interactions between duration and the levels of the SF-

6D are generally positive and statistically significant. The interpretation of these is that, for 

longer durations, quality of life becomes relatively less important. 

Model D2 identifies that, as with Model A2 relative to A1, introducing a scale parameter has 

a significant benefit in terms of model fit. The one additional parameter improves the log-

likelihood by over 200; this compares with the mixed logit in model D3 which improves the 

log-likelihood by 230 points relative to the conditional logit but with an additional 7 degrees 

of freedom. In this non-linear setting, the support for the mixed logit relative to the S-MNL 

is equivocal; AIC improves, but BIC does not.  

Combining scale and taste heterogeneity in a model without correlation (i.e. model D4) 

appears to improve on either D2 or D3 as determined by the Information Criteria. The 

inclusion of scale in a model with taste heterogeneity already considered (i.e. moving from 

A3 to A4) has a large impact on log-likelihood, reiterating the importance of allowing for 

scale in this context. It should also be noted that the value for  is low suggesting that the 

scale term applies almost equally to the parameter coefficient  and the variance term i  

(Fiebig’s (2010)  G-MNL-II). Introducing correlations to Model D3 (i.e. with Model D5) 

improves log-likelihood by 33, but with an additional 21 degrees of freedom. The AIC 

suggests the additional model fit is worthwhile, but the BIC contradicts this. Model D6 is 

superior to D5, but, as has been observed already, the value of allowing a small set of 

correlated coefficients is uncertain (in that the BIC is better under the more restricted D4 

than D6, while the AIC suggests D6 is superior). 

To summarise, as with Models A1-A6, the introduction of scale and preference heterogeneity 

appears to generally improve the model fit. However, the benefit of allowing correlated 

coefficients beyond these is uncertain, given that Model B3 and B4 appear to outperform 

Models B5 and B6 respectively under the Bayesian Information Criteria.   

Relative to utility function A, utility function D does best in the more restricted models such 

as 1. In B1, the extra explanatory capability of the regression justifies the additional 

parameters in AIC and BIC terms. This pattern is repeated across models 2-6, but the 
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absolute difference in Information Criteria decreases as the model becomes increasingly less 

constrained. 

The variance-covariance matrices for Models B5 and B6 are provided in Table 32 and Table 

33. 

Table 32: Variance-Covariance Matrix for Model B5 
 Duratio

n 
PF6 RL4 SF5 PA6 MH5 VI5 

Duration 0.166 
(0.010) 

*** 

      

PF6 -0.026 
(0.007) 

*** 

0.062 
(0.009) 

*** 

     

RL4 -0.012 
(0.005) 

** 

0.033 
(0.008) 

*** 

-0.019 
(0.007) 

*** 

    

SF5 0.006 
(0.006) 

-0.012 
(0.009) 

-0.005 
(0.008) 

-0.011 
(0.009) 

   

PA6 -0.018 
(0.008) 

** 

0.014 
(0.011) 

0.037 
(0.011) 

*** 

-0.040 
(0.012) 

*** 

0.027 
(0.015) 

* 

  

MH5 -0.011 
(0.006) 

* 

0.013 
(0.012) 

-0.066 
(0.008) 

*** 

-0.033 
(0.019) 

* 

0.004 
(0.013) 

0.028 
(0.023) 

 

VI5 -0.002 
(0.007) 

0.022 
(0.008) 

*** 

0.004 
(0.010) 

-0.004 
(0.013) 

-0.019 
(0.012) 

0.028 
(0.012) 

** 

-0.045 
(0.01) 
*** 

Statistical significance noted at the 1% level (***), the 5% level (**) and the 10% level (*)  

Standard errors noted in parentheses 
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Table 33: Variance-Covariance Matrix for Model B6 
 Duration PF6 RL4 SF5 PA6 MH5 VI5 

Duration 0.434 
(0.061) 

*** 

      

PF6 -0.047 
(0.013) 

*** 

0.227 
(0.033) 

*** 

     

RL4 0.016 
(0.008) 

** 

0.064 
(0.011) 

*** 

-0.012 
(0.009) 

** 

    

SF5 0.024 
(0.011) 

** 

-0.02 
(0.01) 

** 

0.082 
(0.015) 

*** 

-0.078 
(0.014) 

*** 

   

PA6 0.016 
(0.013) 

** 

0.008 
(0.013) 

** 

0.029 
(0.015) 

** 

0.019 
(0.015) 

** 

0.137 
(0.023) 

*** 

  

MH5 0.072 
(0.014) 

*** 

0.013 
(0.013) 

** 

0.013 
(0.01) 

** 

0.022 
(0.01) 

** 

-0.107 
(0.017) 

*** 

-0.151 
(0.022)

*** 

 

VI5 -0.017 
(0.012) 

** 

0.097 
(0.016) 

*** 

0.077 
(0.015) 

*** 

0.156 
(0.024) 

*** 

-0.093 
(0.016) 

*** 

0.039 
(0.013)

*** 

0.039 
(0.012)

*** 
Statistical significance noted at the 1% level (***), the 5% level (**) and the 10% level (*)  

Standard errors noted in parentheses 

Overall model comparisons 

The summary of AIC and BIC under each of the twelve regressions are presented in Table 

34. 

Table 34: Model Comparison 
Model AIC BIC (n=individuals) BIC 

(n=observations) 
A1 17938 18066 18136 
A2 17530 17530 17755 
A3 17415 17574 17598 
A4 16984 17069 17193 
A5 17337 17598 17787 
A6 16849 17120 17315 
B1 17383 17635 17816 
B2 16970 17228 17412 
B3 16936 17223 17427 
B4 16530 16826 17037 
B5 16912 17301 17578 
B6 16484 16883 17167 

The AIC figures are displayed graphically in Figure 23. 
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Figure 23: Comparison of Akaike Information Criteria (AIC) 

 

The BIC figures where n=observations or individuals are displayed graphically in Figure 24 

and Figure 25. 

Figure 24: Comparison of Bayesian Information Criteria (BIC) (n=observations) 
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Figure 25: Comparison of Bayesian Information Criteria (BIC) (n=individuals) 

 

There are four broad conclusions in these data. Firstly, in all models, the non-linear Utility 

Function D outperforms Utility Function A (which imposes the QALY model on the data). 

However, as the approach to modelling heterogeneity becomes more sophisticated, the gap 

between the BIC under Utility Functions A and D becomes smaller. This conclusion relates 

simply to the model fit; the problems associated with a more complicated QALY algorithm 

have to be addressed before these weights could be used in economic evaluation. 

Secondly, applying some consideration of the panel nature of the data is beneficial in model 

fit terms, as noted by the consistent improvement in BIC under models 2 and 3 (and indeed, 

4-6) relative to Model 1.  

Thirdly, the models which add consideration of a scale effect (2, 4 and 6) have large gains in 

BIC relative to the model without that consideration (1, 3 and 5 respectively). This is 

because they both increase model fit, and add a relatively small number of additional degrees 

of freedom (  in 2, 4 and 6, and  in 4 and 6 only). 

Fourthly and finally, the allowance of some correlation between coefficients is of 

questionable value. Permitting correlations between a subset of the worst levels of each 

dimension of the SF-6D (i.e. moving from Model 3 to 5, or from 4 to 6) has a deleterious 

effect on BIC. This pattern is opposite to that seen in the AIC, but given the difficulty in 
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selecting and modelling these coefficients, it is likely that the uncorrelated case is adequate 

in this circumstance. 

Deriving utility weights under models A1-A6 

At the start of the section, two distinct tasks were outlined. These were the derivation of 

population weights for generic quality of life states and the modelling of respondent 

heterogeneity. In identifying a preferred model, there is a tension between the two. In terms 

of fitting the model to the data, a more relaxed approach is recommended. Allowing a non-

linear utility function with respect to time is justified, as is adjusting for both scale and 

preference heterogeneity. However, a non-linear utility function means QALY weights for 

generic quality of life instruments are dependent on the period of time under consideration 

(which is atypical and introduces complexity into economic evaluation), and the inclusion of 

heterogeneity has little impact on the population mean response. This relates to the 

conclusion of Greene and Hensher (2011), who conclude that, while accounting for scale 

impacts on model fit, it has little impact on estimates of welfare measures, for example 

willingness to pay. The QALY weights generated by all models are given in Table 35. 
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Table 35: DCE-derived QALY Weights for the SF-6D (Main Effects Only)  
Model A1 A2 A3 A4 A5 A6 

PF2 -0.042 0.011 -0.035 -0.019 -0.034 -0.015
PF3 -0.078 -0.068 -0.071 -0.058 -0.058 -0.056
PF4 -0.135 -0.117 -0.128 -0.116 -0.126 -0.118
PF5 -0.141 -0.116 -0.137 -0.120 -0.134 -0.119
PF6 -0.288 -0.241 -0.276 -0.243 -0.285 -0.250
RL2 -0.096 -0.089 -0.086 -0.065 -0.076 -0.081
RL3 -0.069 -0.059 -0.055 -0.035 -0.044 -0.037
RL4 -0.126 -0.133 -0.113 -0.101 -0.114 -0.110
SF2 -0.036 -0.076 -0.029 -0.038 -0.024 -0.036
SF3 -0.039 -0.063 -0.042 -0.053 -0.042 -0.048
SF4 -0.117 -0.123 -0.110 -0.101 -0.104 -0.097
SF5 -0.129 -0.148 -0.135 -0.125 -0.126 -0.138
PA2 -0.078 -0.064 -0.091 -0.059 -0.092 -0.084
PA3 -0.168 -0.163 -0.157 -0.125 -0.152 -0.156
PA4 -0.198 -0.189 -0.185 -0.138 -0.182 -0.172
PA5 -0.288 -0.301 -0.276 -0.235 -0.275 -0.274
PA6 -0.270 -0.265 -0.272 -0.252 -0.287 -0.288

MH2 -0.063 -0.051 -0.049 -0.062 -0.044 -0.066
MH3 -0.069 -0.030 -0.038 -0.035 -0.036 -0.022
MH4 -0.180 -0.165 -0.177 -0.173 -0.182 -0.193
MH5 -0.267 -0.242 -0.249 -0.229 -0.261 -0.253

VI2 -0.009 -0.004 -0.009 -0.010 -0.014 -0.008
VI3 -0.045 -0.040 -0.044 -0.042 -0.050 -0.049
VI4 -0.213 -0.201 -0.179 -0.152 -0.182 -0.172
VI5 -0.252 -0.229 -0.230 -0.197 -0.232 -0.230

As with the random-effect probit results, there are a number of coefficients on levels which 

appear to demonstrate a non-monotonic ordering. As the purpose of this analysis was more 

to consider the agreement between mean results under different approaches to modelling 

heterogeneity, no pooling was undertaken on these results.  

There is considerable agreement between the QALY weights associated with the estimated 

models. If the 18,000 SF-6D health states are valued using each algorithm, the correlation 

coefficients and Spearman rank coefficients are given in Table 36 and Table 37. 
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Table 36: Correlation Coefficients for the 18,000 Health State Valuations 
 A1 A2 A3 A4 A5 A6 

A1 1.000      
A2 0.990 1.000     
A3 0.996 0.988 1.000    
A4 0.987 0.987 0.995 1.000   
A5 0.992 0.984 0.998 0.996 1.000  
A6 0.986 0.987 0.995 0.997 0.995 1.000 

 
Table 37: Spearman Rank Coefficients for the 18,000 Health State Valuations 

 A1 A2 A3 A4 A5 A6 

A1 1.000      

A2 0.989 1.000     

A3 0.995 0.988 1.000    

A4 0.986 0.985 0.994 1.000   

A5 0.991 0.983 0.998 0.996 1.000  

A6 0.984 0.986 0.994 0.997 0.995 1.000 

As shown in Table 36 and Table 37, the utility weights associated with each of the six 

models are almost perfectly correlated. While the more advanced specifications accounting 

for heterogeneity lead to a considerable improvement in terms of model fit, employing them 

does not affect inferences regarding the scores placed on individual health states. Thus, while 

it is interesting to note the heterogeneous results provided by respondents, the impact of 

doing so on the mean respondent is minimal. 

Chapter discussion 

In this chapter, it has been shown that the construction of QALY weights using a DCE with 

efficient designed experiment properties is feasible and produces results which both predict 

choices well and avoid some of the criticisms which can apply to other preference elicitation 

tasks such as the Time Trade Off and Standard Gamble. It would be valuable to use this 

approach in a larger sample, and with a design which allows for unbiased estimation of 

higher-order interaction terms (most likely three-factor interactions including duration). 

One issue which needs addressing is whether the weights generated comply with the 

constraints required to be defined as QALY weights. Bleichrodt et al. identified that QALYs 

require only one contentious condition, that being risk neutrality (Bleichrodt, et al., 1997). 

They showed that risk neutrality implies both the zero condition and constant proportional 
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trade-offs which have generally been considered part of the characterisation of the QALY 

model (Pliskin, et al., 1980). Constant proportional trade-offs were not shown in the logistic 

regression as the quadratic term on duration was significant and negative suggesting 

diminishing importance of extra life expectancy. However, the approach taken here i.e. 

relaxing the assumption of constant proportional trade-offs, increases the predictive value of 

the model. In addition, it is not likely that somehow imposing the constraints on these 

weights would affect the trade-off between dimensions of the SF-6D. 

One potential limitation of the approach adopted in this study is the possibility that an online 

panel is not representative of the Australian population, which may limit the applicability of 

the weights to the Australian population overall. An online panel was used because it is a 

very cost-effective means of collecting these data, and these approaches are increasingly 

used in valuation studies (Wittenberg and Prosser, 2011) . While the panel respondents can 

be selected to enhance the representativeness on observable characteristics, there is still the 

potential concern that these respondents differ from the general population in some 

unadjusted or unobservable dimension. However, we would argue that this criticism applies 

to some degree to all approaches to survey administration that might be used. The second 

criticism is that it has been argued that the mode of administration can significantly affect the 

quality of data collected (Bowling, 2005). Potentially, the nature of online respondents make 

this approach particularly susceptible to poor data quality in that they are not being observed 

while responding and it is not possible to identify how carefully they are considering the 

choices. However, it is likely that the weight of this more general criticism depends on the 

nature of the task. In a DCE, answering on criteria above and beyond the levels and 

dimensions presented (at extreme this might be answering randomly, or answering all A’s for 

example) does not bias the results assuming that some basic design properties have been 

considered. Thus, it is important to limit any unconsidered responses, but the impact of these 

in a DCE is to reduce the effective sample size rather than systematically bias the 

conclusions drawn. This contrasts with the TTO in which unconsidered responses do 

systematically bias conclusions, an example of which has been described elsewhere 

(Norman, et al., 2010). 

Finally, it should be noted that the weights derived here differ in some respects from those in 

the original Brazier valuation study (2002), and also in the non-parametric approach of 

Kharroubi (2007). In the DCE approach presented here, 12% of health states described by 

the SF-6D were valued below zero (meaning they are considered to be worse than death). 
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This contrasts with the floor effect observed by Brazier et al. (2002) in which no health 

states are valued as being worse than death, and indeed the minimum value is approximately 

0.3. 

A scatter plot contrasting the utility weights placed on the 18,000 SF-6D states under 

Brazier’s UK algorithm and the Australian DCE algorithm developed in this work is 

presented in Figure 26, with a black line of equality drawn to allow comparison. 

Figure 26: Comparison of Health State Valuation under Different Algorithms 

 

There is clearly a degree of agreement between the two algorithms (and hence in the 

valuations placed on individual states). However, it is also apparent that scores under 

Brazier’s algorithm are above those assigned using the DCE methods described here, a trend 

which is increasingly strong for poorer health states.  

The importance of any divergence is likely to lie in the use of such weights in economic 

evaluation. The range of weights constructed using this DCE is higher than those generated 

by Brazier’s Standard Gamble, giving a broader scope for a healthcare intervention to 

improve quality of life, and an increased gain in a generic outcome metric such as a QALY. 

This means that, on average, using DCE weights gives larger gains for any given 

improvement in quality of life as described by the SF-6D, with implications for the cost per 

QALY. As there is not yet a definitive approach to quality of life measurement and 

valuation. In England and Wales, the National Institute for Health and Clinical Excellence 
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(NICE) has proposed a reference case, based on the EQ-5D instrument and the algorithm 

developed by Dolan (1997). The motivation behind selecting a single instrument and a single 

algorithm is to allow comparability across interventions. Clearly, as raised in Chapter 2, 

there are issues relating to the sensitivity of instruments to particular types of change in 

quality of life (Hawthorne, et al., 2001). In terms of selection of instrument, there may be 

issues with comparability. In terms of choice of algorithm, it is plausible that recommending 

a common algorithm be used will promote comparability. However, the question remains 

whether any algorithm can be determined to be the most appropriate of those available. 

There are a variety of possible approaches to take, each with particular strengths and 

weaknesses. In terms of implications for reimbursement decisions, my recommendation 

would be that cost-effectiveness conclusions be tested under the range of available 

algorithms; the kind of study presented here adds to the suite of potential valuation sets 

which might be included in this robustness testing.  

The final question posed in this chapter is “To what extent the use of a common method for 

eliciting preferences (such as a DCE) increases convergence in self-assessed health scores 

between different generic multi-attribute utility instruments?”. To state the issue differently, 

it has been shown in Chapter 2 that self-assessed health is valued very differently between 

the EQ-5D (with preferences measured using the TTO) and the SF-6D (with preferences 

measured using the Standard Gamble). If the method of valuation is standardised using a 

third technique (the DCE), what divergence, which would best be explained by differences in 

the instrument itself, remains? Whitehurst and Bryan (2011) argue that differences in 

weights associated with self-assessed health between the EQ-5D and SF-6D are unlikely to 

be removed even if a common preference elicitation technique is applied. This echoes the 

argument made by Konerding et al. (2009), who claim that the EQ-5D and SF-6D would 

“produce different valuations even if these valuations were determined according to the 

same principle” (p.1249). While I agree that differences will inevitably remain due to the 

selection of dimensions within each instrument and the wording of specific levels, it is 

highly plausible that removing one of the differences between the valuation techniques for 

the two instruments would bring the scores assigned to a particular person under the two 

instruments closer together. The self-assessed health described in Chapter 2 is therefore 

combined with the SF-6D algorithm described here, and the EQ-5D algorithm described by 

Viney et al. (2011a). 
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Figure 2 in Chapter 2 contrasted the utility weights assigned to individuals using the SF-6D 

algorithm of Brazier (2002), and the EQ-5D algorithm of Dolan (1997). This is reproduced 

here as Figure 27. 

Figure 27: Comparison of utility weights associated with general population sample 
using pre-existing SF-6D and EQ-5D algorithms 

 

 The conclusion to be made from these data was that the weight assigned to the health of an 

individual was strongly determined by the choice of MAUI (with the selection of valuation 

technique associated with each). The results of this analysis are now repeated for the two 

DCE-derived sets of weights, and are presented in Figure 28. 
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Figure 28: Comparison of utility weights associated with general population sample 
using Australian DCE-derived algorithms  

 

In those patients reporting no problems in the EQ-5D, but some problems in the SF-6D, the 

difference in utility weight is smaller using the DCE weights. This can be seen as the clusters 

of individuals at the highest point of the y-axis are generally closer to the (1,1) point in 

Figure 28 than in Figure 27.  

The tendency for the EQ-5D to have a broader range of values that was observed in Chapter 

2 (in which the TTO was used to derive valuations for health states) has largely been 

eliminated by adopting a common valuation technique. A summary of the agreement 

between EQ-5D and SF-6D utility weights using either the original UK algorithms or the 

Australian DCE-derived ones are presented in Table 38. 
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Table 38: Agreement between instruments under existing and novel methods 
 Existing methods Australian DCE methods 

SF-6D score = 0.4450+0.4066(EQ5D) -0.1049+0.9650(EQ5D) 
R2 0.5767 0.6682 

Adjusted R2 0.5765 0.6680 
Spearman coefficient 0.7413 0.7929 

Correlation coefficient 0.7594 0.8174 
Mean difference (SF-6D – 

EQ-5D) 
-0.0311 (SD: 0.1618) -0.1339 

Mean absolute difference 0.1193 (SD: 0.1136) 0.1534 (SD: 0.1342) 
Mean squared difference 0.0271 (SD: 0.0588) 0.0415 (SD: 0.0663) 

Under the DCE methods presented here, the simple OLS regression presented in Table 38 

suggests the value placed on self-assessed health under the EQ-5D and the SF-6D has an 

almost 1-to-1 relationship (in that the constant is small and the coefficient on the EQ-5D 

weight is close to 1). This evidence in favour of the novel DCE methodology is supported by 

improved R2 values and Spearman and correlation coefficients. However, the evidence 

regarding mean differences (raw, absolute or squared) is less favourable for the DCE 

methods. This reflects the trend in Figure 28 for the EQ-5D weight to generally lie above 

that of the SF-6D.
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Chapter 6: Equity Weights for Use in Economic Evaluation 

Chapter summary 
In this chapter, I present an investigation of an area in which conventional valuation of 

changing health outcomes may differ from true societal preferences. This relates to the 

different values placed on health outcomes depending on to whom they accrue, an area 

which, while it does play a role in decision making currently, is distinct from the health 

maximisation framework implied in conventional economic evaluation. The chapter begins 

by considering the role that equity currently plays in decision making. The concept of equity 

weights will then be introduced, and given a theoretical framework. Then, a discrete choice 

experiment will be run investigating the kinds of trade-offs that people are willing to make 

between health improvements in different groups. This will investigate different approaches 

to modelling heterogeneity of responses, and contrast them in terms of model fit and 

parsimony.  

Introduction to equity in economic evaluations of health care interventions 

In Chapter 1, the conventional concept of economic evaluation in healthcare was discussed. 

It was identified that the most conventional aim was to maximise the total health of the 

population, rather than to the maximisation of utility which is the aim of economic 

evaluation in a welfarist framework. Under either a welfarist or an extra-welfarist 

framework, any equity considerations were placed alongside (but distinct from) economic 

considerations. This basis of economic evaluation does not recognise that there may be 

considerable differences in the value society places on health gains dependent on to whom 

they accrue. It should be noted that, as the outcome is in terms of health alone, there is no 

scope for traditional Paretian compensation of losers by gainers (Coast, 2009). 

Sassi et al. (2001). argue not just that the consideration of equity as part of economic 

evaluation is limited, but that making normative judgements as part of economic evaluation 

of healthcare posed “significant, if not insurmountable, theoretical and practical 

problems”(p.7). 

If this is the case, one obvious solution is to present cost-effectiveness evidence alongside 

other pertinent information (relating to safety, budgetary implications, distributional impact 

etc), and allow decision makers to informally balance these against each another. This is the 

approach which is adopted in decision making processes worldwide. However, this is 
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arguably somewhat unsatisfactory as the method for balancing between these areas is 

unclear. 

 A number of competing concepts of equity in healthcare have been considered. Sen (1980; 

1992) argues that normative theories of social distribution more generally are all based on 

some concept of egalitarianism. If equity in healthcare is based on egalitarianism, the 

question is then in which domain egalitarianism should be measured. There are a number of 

competing forms of egalitarianism that have been suggested, including equality of outcome 

(be it life expectancy, quality-adjusted life expectancy or some other measure), equality of 

gain in outcome, equality of access, equality of resource or equality of opportunity. It is 

clear that equality in one of these dimensions does not imply equality in another. Therefore, 

it follows that an advocate of one form of egalitarianism in health and health care must be 

willing to accept inequalities in a different dimension. Hausman and McPherson (1996) 

summarise this point, 

“What makes moral theories so different is that the things different moral 

theorists seek to equalize are not perfectly correlated with one another. 

Equalizing one thing conflicts with equalizing another” (p.135) 

Thus, from any egalitarian viewpoint, there are inequalities considered equitable, or at least 

acceptable. This point reflects Dworkin’s work (1977) that asserted that conflict between 

political theories can best be understood as conflicting interpretations of equal respect. 

In this chapter, the emphasis will be on equity as equality of health outcome. As discussed in 

the introductory chapter, this focus on equality of outcome is somewhat contentious as it 

ignores issues such as access and capabilities which are the crux of certain approaches to 

considering healthcare decision making (see for example Sen (1980) or Mooney (1991)). 

Additionally, it largely ignores the value of information provision, and consequently issues 

such as reassurance. Nevertheless, to explore equity issues in a quantitative manner requires 

a view of what equity consists of to be stated. 

Equity and altruism 

Before looking at existing approaches to quantifying the efficiency-equity trade-off, it is 

necessary to define exactly what is meant by equity in this chapter. Wagstaff and van 

Doorslaer (2000) make the helpful distinction between equity and altruism, arguing that the 

two concepts are often (erroneously) used interchangeably. Altruism is a matter of 
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preference; a person is altruistic if they are willing to forego some of their resources to 

improve the outcome for another person. While altruism (or caring) is seemingly very 

different from conventional concerns in economic evaluation, Culyer (1989) makes the point 

that it fits neatly within the language of efficiency. 

In contrast, equity exists outside of preferences, and reflects what a person ought to have by 

right. Correctly, Wagstaff and van Doorslaer identify this is difficult to do within a standard 

survey as self-interest impacts on how people respond. They suggest that a Rawlsian ‘veil of 

ignorance’ approach might help (Rawls, 1999). In this, the respondent is placed in a position 

of not knowing which position they will inhabit in a society, and then asked about 

appropriateness of the distribution of resources within this society. To identify this as a 

helpful approach in certain circumstances is correct; when looking at a distribution of some 

outcome across a population of anonymous individuals, this approach is tractable and 

helpful. However, as will become clear in the description of asymmetric preferences below, 

there are instances where such an approach is not possible. 

Social Welfare Functions and equity 

Economic evaluation of health technologies and interventions has been conventionally based 

on the assumption that a gain is of equal value irrespective of to whom it accrues. This is a 

standard assumption within either the Life Year or Quality-Adjusted Life Year (QALY) 

model. Among the sequelae of the utilitarianism approach implicit in both of these models, 

two important points need to be made with regard to its implication for a social welfare 

function (SWF)10. Firstly, it assumes that the SWF between the health of two groups of 

equal size is linear with a slope of -1. That is, a unit of outcome for one individual is a 

perfect substitute for a unit of outcome for another individual. This means that, from the 

perspective of the economist, the distribution of outcomes is unimportant. A typical SWF 

under a utilitarian approach is given in Figure 29 as the blue line. 

                                                 
10 The use of the term Social Welfare Function does not preclude the importance of other issues beyond the life 
expectancy of the two groups in the aggregation of social welfare. It is assumed that it does represent the SWF 
and that all other considerations are held constant. 
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Figure 29: Symmetrical Utilitarian and non-Utilitarian Social Welfare Functions  

 

Under the blue SWF, points f and g are of equal value as they have the same total health, 

even though g implies considerable inequality of life expectancy. If linearity is considered 

inappropriate (meaning distribution matters), a class of SWF such as those given in red are 

one possible alternative. Introducing concavity into the utility function imposes a degree of 

inequality-aversion reflected by the severity of the curvature. An aversion to inequality in 

life expectancy would lead to the relative value of a year of life for person A being 

dependent on the life expectancy of both person A and person B. The implication of the 

class of SWF typified by X and Y is clear. While SWF X meets the blue life expectancy-

maximising SWF at the point of equality, any move away from equality along the SWF 

would move to a higher life expectancy maximising SWF (or conversely, any movement 

along the blue SWF from the point of equality meets a SWF worse than X). Therefore, under 

X and Y, society is willing to sacrifice total life expectancy to ensure a more even 

distribution. Under Y, to move from an unequal point (marked g) to the line of inequality, 

society is willing to sacrifice f. Thus, increased curvature of the SWF represents an increased 

aversion to inequality (as increased curvature of the SWF passing through g increases the 

size of f).  In the extreme, an L-shaped SWF describes an extremely inequality averse 

society in which the life expectancy of A and B are perfect complements11. 

                                                 
11 A more inequality-averse SWF is possible in which additional health to a group with initially better health 
might be viewed as a bad (rather than an irrelevance as would be the case under an L-shaped SWF). 
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Criticisms of SWF linearity 

Criticism of the QALY (or life-expectancy) maximising model (as typified by the blue line) 

has come in a number of forms. With regard to the assumption of linearity, authors have 

argued that there are a number of reasons why linearity is either ethically indefensible, 

unrepresentative of actual societal preferences, or both. Regarding how representative a 

linear SWF is of public preferences, Dolan et al. (2005) reviewed the literature base 

regarding linearity in both quantity and quality of life and identified a clear and persuasive 

consensus that both decline in marginal value as they increase. However, evidence that 

society does not respond in a particular way (i.e. maximising total life expectancy or 

QALYs) does not immediately necessitate a different approach to societal decision making. 

Firstly, if society is to apply the preferences revealed by the majority, it is arguable that 

these preferences must be morally defensible (Richardson, 2002a). As Olsen et al. (2003) 

note, this is in keeping with Broome’s idea of using laundered preferences (1991). Broome 

argues that the view of the society must be morally defensible from some a priori position if 

it is to become policy. However, this view might be countered by arguing that the 

acceptance of a view as morally defensible is difficult to disentangle from the general 

support for it. Thus, the view of the majority will rarely be laundered out, particularly in a 

situation where the decision maker is elected by society (and therefore ought, or is likely, to 

act to a large degree as an agent of their constituents). Additionally, if there is to be a system 

of laundering applied to average population preferences, the question remains regarding who 

does this. A sole arbiter of moral acceptability is precariously close to dictatorship which is 

not a clearly superior solution to accepting the view of the majority of the population 

however distasteful. 

Tsuchiya (2000) provides a number of justifications for discriminating in the context of a 

symmetrical Social Welfare Function. Of these, the two most convincing are Daniels’ 

Prudential Lifetime Account (1988) and Williams’ Extended Fair Innings Argument (1997). 

Daniels argues that the question of resource allocation between the old and the young should 

be reframed as an allocation of resources over the lifetime of an individual. As Tsuchiya 

notes (while outlining Daniels’ view), 

“The purpose of health care is to secure a fair equality of opportunity for everybody, 

and this implies that resources ought to be allocated so that each can achieve a 

‘normal lifespan’… prudential deliberators will choose to give priority to as many 

people as possible in order to allow them to reach the normal lifespan”(pp.60-61) 
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Williams (1997) frames his argument, which leads to similar conclusions, in terms of 

fairness rather than prudence, and stems from the basic notion that “Death at 25 is viewed 

very differently from death at 85” (p.119). Williams considers the possibility of applying a 

weight of greater (less) than 1 to an individual if their expected lifetime QALY at present 

age is below (above) a fair innings. There is good evidence for the Fair Innings argument 

playing a central role in the preferences of individuals for healthcare decision making, ahead 

of other concepts of equity such as proportional shortfall or severity of illness (Stolk, et al., 

2005). The fair innings is in turn defined as the point of the SWF where lifetime expected 

QALYs are the same for all individuals. This definition of fairness for the fair innings is 

problematic if expected lifetime QALYs are a function not only of personal characteristics 

which are not chosen, but also of those which the individual makes an active decision to 

adopt, such as the decision to participate in dangerous activities, or not to take adequate 

stewardship of their own body. Of course, this objection is dependent on being able to 

identify those characteristics that are the choice of the individual, and those which are not. 

A second reason why a move away from the simple SWF implicit in the blue line in Figure 

29 is the practicality of explicitly including a non-linear SWF in decision making. While it 

may better represent societal preferences, the difficulties around estimating it may produce 

considerable uncertainty in its appropriateness. This is the major concern of this chapter and 

will be covered in depth later. 

Symmetry of the SWF 

The second assumption embedded within the standard economic evaluation approach is that 

the SWF, linear or otherwise is symmetrical around a fourty-five degree line from the origin. 

Therefore, the only consideration in discriminating between groups is any difference in 

outcome (or expected outcome). Even if we allow a non-linear SWF, most of the previous 

attempts to quantify the efficiency-equity trade-off have focused on symmetrical preferences 

(Bleichrodt, et al., 2004; Williams, 1997). However, as noted previously, stated preference 

surveys have shown some tentative patterns of responses identifying that society is willing 

to weight outcomes based on characteristics beyond life expectancy (Olsen, et al., 2003). If a 

system of weights which represents this asymmetric preference set can be developed, it may 

(depending on the asymmetry of preferences) represent a significant improvement relative to 

either the QALY maximising or the non-linear symmetrical model. This argument is 

illustrated in Figure 30. 
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Figure 30: Relaxing the symmetrical assumption in non-linear SWF’s 

 

Figure 30 has the same life expectancy maximising SWF in blue and symmetrical (but non-

linear) SWF in red that was used in Figure 29. Figure 30 contrasts this with a SWF in which 

one group or individual is valued more highly than another (in green). Olsen et al. (2003) 

identify some groups which may be relatively favoured in a representative SWF, including 

people with children, the employed and the poor. Under the blue SWF, points g and h are 

identical as the sum of the life expectancy is the same. As identified in Figure 29, the 

symmetrical non-linear SWF is willing to sacrifice some aggregate life expectancy to gain 

more equality. For the society represented by the red SWF, points g and h are equally valued 

as the gap f (as shown in Figure 29) is constant. However, this finding does not hold if we 

allow non-symmetrical SWF’s (in green). The life expectancy of group B is for some reason, 

valued more highly than that of group A. Point h is now on a lower SWF than point g, 

meaning that the inequality at point h is more unpalatable than that at point g. This can be 

expressed by considering the amount that society would be willing to sacrifice to remove all 

inequality (gap f in the symmetrical preferences example). When the less valued group are 

disadvantaged in terms of life expectancy (point g), the gap between the intersection of the 

green SWF and the blue life expectancy maximising SWF is smaller than in the symmetrical 
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case. Equally, if the lower life expectancy is in the more favoured group (point h), the 

willingness to sacrifice total life expectancy to achieve equality is larger.12 

The aim of this chapter is therefore: 

To evaluate the existing literature regarding the preferences of the general population 

to discriminate between groups and individuals 

To consider the viability of generating equity weights while relaxing the assumptions 

of linear and symmetrical SWFs. This includes questions of how best to survey the 

general population, and how to analyse their responses 

To consider modelling approaches, particularly relating to observable and 

unobservable heterogeneity 

To discuss whether the revealed preferences can be justified ethically (in Broome’s 

terms, whether they reflect laundered preferences or not) 

To judge whether this approach can be integrated into economic evaluation of health 

interventions and approaches, and how such an integration might be done 

Identifying relevant literature 

A literature search was undertaken using Medline and Embase through the Ovid interface. 

The search was undertaken in May 2009. The purpose of the literature search was two-fold. 

The first aim was to identify papers that investigate the principle of trading off between 

different individual characteristics when making healthcare policy decisions. These 

characteristics are those which would not be considered under the QALY-type approach (so 

do not for example include issues such as an individual’s capacity to benefit from an 

intervention, or any characteristic which may influence the cost that accrues as a result of the 

provision of the intervention). The second aim of the search were studies which discussed a 

specific trade-off, for example one which considered the relative worth of an additional year 

of life for a smoker and a non-smoker. 

                                                 
12 It should be noted that there is a case in which inequality is neither actively viewed negatively nor irrelevant, 
but as a positive. The SWF in this case would be convex. However, this would only occur if society was 
inequality loving in general, or that they valued a group so lowly that increasing outcomes to that group was 
actually viewed as a negative. However, neither of these is likely (and are also likely to be laundered out if 
Broome’s approach is taken). 
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The construction of the search strategy posed significant obstacles. The first step was to use 

the key words from a small set of known relevant papers. This led to a very high false 

positive rate. The final strategy is given in Table 50. This initial search yielded 26 papers 

with abstracts which appeared potentially relevant. These papers were ordered and 

evaluated. As a number of papers which were expected to be included were not, ISI Web of 

Knowledge (www.isiknowledge.com) was used to identify all papers either cited by, or 

citing the initial 26 identified papers. These supplementary searches yielded 14 and 27 extra 

papers of potential interest. Additionally, one other important paper was identified 

subsequently, and was included (Lancsar, et al., 2011). The limit of the search to Medline 

and Embase is a limitation. However, augmenting these search results with the studies that 

have either cited, or been cited by, the identified studies should be able to identify all 

relevant studies. 

Existing attempts to estimate a SWF using stated preference data 

The scale of the evidence on constructing a SWF using stated preference data in healthcare 

decision making is limited. Three notable exceptions are studies by Dolan and Tsuchiya 

(2009), Bleichrodt et al. (2005) and a recent study by Lancsar et al. (2011). There are a 

number of papers which attempt to quantify some aspect of the trade-offs between people 

that an average respondent is willing to make. These studies provide some evidence which 

might help to inform the investigation described in this chapter; however, they are somewhat 

problematic in that their investigation of single issues may mean they cannot identify the 

value of health gains to people with a certain characteristic independent of all others. Dolan 

et al. (2005) produce an excellent review of these studies, and conclude that  

“The results from a systematic review of the literature suggest that QALY 

maximisation is descriptively flawed. Rather than being linear in quality and length of 

life, it would seem that social value diminishes in marginal increments of both. And 

rather than being neutral to the characteristics of people other than their propensity to 

generate QALYs, the social value of a health improvement seems to be higher if the 

person has worse lifetime health prospects and higher if that person has dependents. 

In addition, there is a desire to reduce inequalities in health. However, there are some 

uncertainties surrounding the results, particularly in relation to what might be 

affecting the responses, and there is the need for more studies of the general public 

that attempt to highlight the relative importance of various key factors.” (p.197) 
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These results are important in shaping the direction taken in this chapter. The non-linearity 

in quantity and quality of life is something which will be investigated, as will the 

characteristics of the individual receiving the health gain. The drivers of the results which 

Dolan et al. (2005) identify as uncertain are difficult to identify. If people (for example) 

favour health gains which accrue to men rather than women, is this because they 

intrinsically value the health of males more highly, or that they are making some assumption 

about other characteristics of males (such as shorter life expectancy) which are the actual 

drivers of the preference? Using the DCE methodology introduced in Chapters 3 and 4, and 

tested in Chapter 5, is clearly of potential value. If the DCE is appropriately designed, it 

identifies the impact of characteristics independently of all others, a characteristic of 

considerable value in a situation in which important characteristics are unlikely to be 

independent of one another. 

Before showing how this might be done, I will focus on the three papers which attempt to 

estimate the SWF, rather than just one specific trade-off. As noted previously, the three 

leading examples of this are studies by Dolan and Tsuchiya (2009), Bleichrodt et al. (2005)  

and Lancsar et al. (2011). 

 In their study, Dolan and Tsuchiya consider a SWF with constant elasticity of substitution 

(CES): 

 0,1,0,:
1

rrUUUUW ba
rr

b
r

a , Equation 78 

where W is social welfare derived from health, and Ua and Ub are the levels of health of two 

groups a and b. The parameter r represents the degree of aversion to inequality (or the 

convexity of the SWF). If r = -1, society is indifferent to inequality. As r increases, society 

becomes increasingly averse to inequality and the SWF becomes convex. The parameters  

and  show the relative importance of the two groups in contributing to societal welfare. A 

set of symmetrical SWFs that conform to these characteristics are given in Figure 31 

(assuming  = ), and also in Figure 32 which relaxes the assumption that  = .  
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Figure 31: A set of symmetrical SWFs with constant elasticity of substitution assuming 
anonymity (i.e.  = ) 
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Figure 32: A set of SWFs with constant elasticity of substitution allowing differing 
interpersonal weights 
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As Dolan and Tsuchiya argue, estimating the value for r can be done if two points can be 

identified on a common SWF, and the value of  is known. If these two points are defined as 

[XA,XB] and [YA,YB], the marginal rate of substitution (MRS) at the midpoint of the two is 
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Equation 79 

We also know that (assuming that the two points are close) 
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By taking logs of these and solving for r, Dolan and Tsuchiya showed that 
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 Equation 81 

At the point on the SWF where UA=UB, the MRS is independent of the value of r (as r only 

impacts on the aggregate social welfare if there is an inequality between UA and UB). The 

approach Dolan and Tsuchiya took to estimating the value of  (the parameter which defines 

the SWF as symmetrical or otherwise) is to consider the impact of small changes away from 

the line of equality. Under one state, one group (called A) receives a health gain of p. Under 

another state, the other group (called B) receives a health gain of q. In both states, the health 

of the other group remains constant. If p=q at the point of indifference between the two 

states, it can be inferred that = . However, if p>q, it can be concluded that the health of 

group B is relatively more important in defining social welfare (and visa versa). The 

gradient of the tangent at the initial point of equality is approximately –q/p, and the gradient 

of the indifference curve will be 
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Combining the gradients allows an estimate of  
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 Equation 83 

The equity weight, defined as the marginal rate of substitution between A and B is then 
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 Equation 84 

This approach has considerable strengths: The estimation of relative importance of 

individuals can be estimated, as can the degree of inequality. However, there are two 

substantial limitations to their approach. Firstly, it is assumed that the median respondent is 

representative of the whole. This fails to account for strength of preferences. Secondly, it 

necessitates an assumption regarding functional form. While constant elasticity of 

substitution generates a range of plausible Social Welfare Functions, there is no convincing 

reason why this assumption should hold. There are a variety of reasons why a kinked SWF 
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might be plausible, for example at points where an individual reaches the often-assumed 

“Fair Innings” of seventy years (Williams, 1997). 

Bleichrodt, Doctor and Stolk (2005) generate a SWF using the rank-dependent quality-

adjusted life-year model. They consider a population of size n, and value the QALY profile 

of that population by 

 
n

i
ii qU

1
 Equation 85 

where i  is a utility weight placed on individual i, and U(qi) is the value society places on 

the quality-adjusted life-years received by individual i. The utility weight depends solely on 

the individual’s rank in terms of expected QALYs in the population. For an inequality 

averse decision maker, higher utility weights are placed on those whose rank is lower. The 

use of U(qi) rather than qi allows for the utility function U over QALYs to be non-linear. 

The approach Bleichrodt et al. (2005) adopt is two-fold. Firstly, they elicit the utility 

function with respect to QALYs. The purpose of this is to identify the diminishing marginal 

utility of QALYs independent of distributional impacts. Putting respondents in the position 

of decision maker, they asked respondents a series of questions to identify a point of 

indifference between two societal distributions of QALYs. Formally, they defined four 

QALY values x1, x0, R and r such that x1 > x0 > R > r. They then asked the respondent to 

choose between a proportion of the total population p receiving x1 with the remainder (1-p) 

receiving r, and an equal proportion p receiving x0 with the remainder receiving R. If x1-x0 = 

R-r, we would assume that the respondent would select the option in which p receives x0, 

and (1-p) receives R as the curvature of the utility function of QALYs would assume 

diminishing marginal returns. As x1 increases, it becomes increasingly likely that the 

respondent’s preference would switch. At the point of indifference, the task restarts with x1 

in place of x0 and x2 in place of x1. Using the relative values of all xi terms, the slope of the 

utility function with respect to QALYs can be found. 

The recent analysis by Lancsar et al. (2011) most closely matches the approach specified in 

Chapter 3, in that it uses a DCE, allowing simultaneous consideration of multiple areas of 

potential importance. The areas investigated by this study were the age of onset of disease, 

the expected age at death, the severity of the condition and the QALY gain associated with 

treatment. It is noteworthy that all of the dimensions of this DCE were specific to the disease 

or the treatment. Thus, while it does allow for non-symmetric preferences, it is somewhat 
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limited in that it does not consider non-health characteristics of the individual potentially 

receiving treatment. Whether this latter group of considerations should be included in any 

efficiency-equity trade-off is a judgement; however, the findings of Dolan et al. (2005) cited 

previously suggests that people do feel comfortable discriminating on those attributes. 

Lancsar et al. (2011) conclude that one should not generally weight QALYs, suggesting that 

the conventional QALY model is fairly reflective of preferences. This is a correct 

interpretation of their data, but might reflect some specific characteristics of their 

experiment, most notably the choice of dimensions and levels in their experiment, and their 

choice of method for deriving welfare measures. The first of these issues will be left until 

the discussion of this chapter as it is more interesting to compare the selection of attributes 

and levels at a point where results from my DCE can be contrasted with those of Lancsar et 

al. (2011). The issue of deriving welfare measures from DCE data was discussed in Chapter 

3, and will be briefly outlined below. 

To identify the willingness of survey respondents to trade off health between different 

groups, Lancsar et al. (2011) adopt the Hicksian compensating variation (CV). This is 

defined as  
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 Equation 86 

where 0
jV  and 1

jV are the value of the representative indirect utility function for each choice 

option j before and after the change of interest; J is the number of options in the choice set; 

and  represents the marginal utility of the chosen numeraire, often income but in this case 

the marginal utility of a QALY. The change of interest in this situation is the move from the 

base case respondent to a different respondent. The CV was described diagrammatically in 

Chapter 3 (Figure 12). 

The equity weight (termed distributional weight by Lancsar et al.) is then estimated as 

  
baseQALY

CVWeight 1 , Equation 87 

where QALYbase is the number of QALYs gained in a pre-specified reference case and CV is 

the number of QALYs required to equalise expected utility between profiles 0
jV  and 1

jV . A 
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positive CV leads to a weight less than 1 (i.e. that health gain for this group is valued less 

than health gain for the reference group). 

Identifying dimensions for the DCE 

Olsen et al. (2003) identify a range of characteristics of an individual which may affect how 

society values health gains accruing to them. A systematic review of the literature identified 

characteristics in three broad areas which may be of relevance. These areas, and the 

characteristics identified as potentially relevant, are outlined in Table 39. The listed 

characteristics are certainly not mutually exclusive, nor are they exhaustive. They 

summarize the terms that have been applied in the identified studies, and represent a pool 

from which possible individual-level characteristics of interest might be derived. 

Table 39: Potentially relevant personal characteristics identified by Olsen et al. 
A person’s relation to 

others 
A person’s relation to 

(the cause of) the illness 
A person’s self 

Marital status Contributed to illness Gender 

Have children Have taken care of their 
own health 

Sexuality 

Caring for elderly relative Self-inflicted Race 
Breadwinner Smoker (vs non-smoker)  
Unemployed Unhealthy diet  

Unskilled (vs director) Poor diet vs inherited 
disease 

 

Lorry driver (vs teacher) High alcohol consumption  
Important to the 

community 
Illegal drug use  

Employed Rarely exercise  
Rich   

Lower socio-economic 
status 

  

Deprived   
Criminal record   

Olsen et al. (2011) deliberately excluded age (or life expectancy or quality-adjusted life 

expectancy) from their review as they argued “we consider age to be related to a point in 

each person’s life-time as distinct from characteristics which separate one individual from 

another”. This distinction is less obvious than Olsen et al. (2011) make it seem, as a number 

of the characteristics they have included are also strongly associated with age. This group 

would include being a breadwinner, having dependent children or being important to the 

community. 
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Mooney et al. (1995) investigated the relative importance of groups of people in a welfare 

function (but that of health care professionals and decision makers rather than the general 

population). In a sample of 283, they identified that this population had preferences in 

favour of allocating health gain to the young, those with poor health or low socioeconomic 

status (SES), for health gains that occur more immediately, and for splitting a fixed health 

gain between a larger set of recipients. This analysis is valuable insofar as it considers a 

range of potentially important factors influencing a social welfare function. However, it also 

highlights a significant flaw which can affect studies attempting to consider preferences 

which are asymmetric around the 45 degree line in the social welfare function. It is unclear 

whether the preferences for particular groups are preferences for that group per se, or 

whether the respondent is making assumptions regarding the other characteristics of the 

group. For example, is the respondent assuming that people with poor health are of a lower 

SES? If so, identifying that the group prefers allocating health gain to people with poor 

health may not be because the respondents are interested in poor health, but rather that they 

are interested in SES. While it is implausible that the respondents had preferences as rigid as 

this (in terms of having no interest in poor health independent of SES), it highlights that a 

study aiming to quantify the relative importance of various individual-level characteristics 

needs to be able to identify the effect of one dimension independent of all others. 

Including gender 

Tsuchiya and Williams (2005) discuss the “fair innings” argument between genders, both 

whether an inequality exists in favour of women and whether such as inequality can be 

considered as inequitable. They put forward a series of reasons why gender inequality may 

not be a convincing candidate for being labelled inequitable, and conclude these to be 

flawed. Of the reasons they dismiss, they are least certain about dismissing the notion that 

relatively short life expectancy in males reflects the choice by the average male to make 

more risky decisions. They note the argument of Le Grand (1991), who argues that an 

inequality caused by the deliberate choice of an informed individual will be much less 

inequitable than other inequalities. However, this argument is founded on the concepts of 

what constitutes deliberate choices and informed individuals. This clear distinction between 

individual responsibility and fortune was outlined by Dworkin (1981a; 1981b), who makes 

the distinction between an individual’s preferences and his resources. The difficulty in 

applying this concept in practice lies in the significant grey area between the two. One 

counter-argument to asserting that the gender inequality does not represent an inequity 
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suggested by Tsuchiya and Williams is to argue that the willingness to accept risk of men is 

an evolutionary necessity and therefore it is not reasonable to judge the inequality as 

equitable. In my view, neither extreme view is satisfactory. While risk-taking activity is 

associated with the interaction between society and gender, individual responsibility cannot 

be consumed by biological imperatives.  

The conclusion that Tsuchiya and Williams (2005) reach that positive discrimination in 

favour of men is warranted is based on the idea that men do have a lower life expectancy 

than women. While this appears to be true in most populations, the purpose of including 

gender in an experiment would be to ascertain if one gender is favoured independent of any 

difference in life expectancy (quality-adjusted or otherwise). While a priori such a 

conclusion would not be expected, the evidence on this has actually identified some weak 

trends in favour of both sexes (Charny, et al., 1989; Dolan, et al., 1999; Mooney, et al., 

1995). As argued previously, the strength of analysing this issue in the context of a DCE is 

that it allows identification of the effect of gender independent of other factors which are 

explicitly stated. Thus, any assumption that, for example, women live longer so should 

receive a lower priority, would be captured by a population’s adversity to inequality of life 

expectancy rather than in an aversion to women. The other potential reason for gender to be 

informative is that, while it is unlikely the average individual would allocate healthcare 

resources on the basis of gender, sub-group analysis may identify heterogeneity in this 

dimension. 

Age weighting 

The issue of considering age as a factor in weighting healthcare-derived outcomes has been 

addressed by a number of studies (Bognar, 2008; Johannesson and Johansson, 1997; Nord, 

et al., 1996; Rodriguez and Pinto, 2000). As noted by Rodriguez and Pinto (2000), 

discrimination by age can be driven by either efficiency or equity. The efficiency-based 

argument claims that greater weight should be given to those of working age as they 

contribute more to social welfare (Murray and Lopez, 1994). In adults, conclusions derived 

from this principle largely agree with those derived from the type of equity based argument 

asserted by Williams (1997). The area in which they diverge is the treatment of children, as 

they are currently socially unproductive (although will go on to become so), whilst being the 

furthest from receiving a Fair Innings. What is important for this work is that there are 

arguments in favour of age discrimination, and evidence that society is willing to do so. 
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Therefore, including age in the choice experiment seems an important addition despite its 

exclusion from Olsen’s (2003) list of relevant personal characteristics. 

One important issue which is raised by Rodriguez and Pinto (2000) is the possibility that age 

weights between individuals are not constant as the size of the gain changes. For example, 

while society may be indifferent between 10 years for a 20-year old and 5 years for a 60-

year old (implying a weight for the 60-year old of 0.5 relative to the younger person), it does 

not necessarily follow that society would be indifferent between 40 years for the 20-year old 

and 20 years for the 60-year old. Indeed, the Fair Innings gives us a good explanation why 

the age weight might differ depending on the scale of the gain. If reaching the Fair Innings is 

of intrinsic value, years added beyond the Fair Innings may be of lower societal value than 

those accrued in order for an individual to receive it. Rodriguez and Pinto (2000) provide 

evidence regarding this variability of age weight. For small gains in life expectancy, the 

weight placed on 40 year-olds is comparable to that placed on 20 year-olds. However, when 

considering a gain of 40 years, it is valued considerably lower in the 40 year-olds (73% of 

the value given to the same gain in 20 year-olds). The pattern is more pronounced when 

considering the weight placed on 60 year-olds. The first year is valued at 70% of the value 

of an additional year for a 20 year-old, but this decreases to 63% for a health gain of 10 

years, and 55% for 20 years. One caveat which should be added to this study was that the 

population they used was small (n=61) and consisted of undergraduate students (many of 

whom would be close to 20 years old). While Rodriguez and Pinto (2000) do not claim that 

it is representative of the entire population, others have ignored this issue when considering 

the impact of introducing age weights (Eisenberg and Freed, 2007).  

Life expectancy, current age or both? 

One consideration for the design of the choice experiment is how to frame the group’s 

current endowment of health, and their expectation of future health with and without the 

intervention. Possible dimensions in the experiment include life expectancy, quality-adjusted 

life expectancy, current age or some combination of two or more of these. This is important 

for both data analysis (and the type of conclusions that can be drawn from the results) and 

also for the size of the experiment (and hence the sample size) required to estimate the 

effects that might a priori be considered interesting and important. 

If equity is a concern, expected lifetime is clearly important for age-weighting. Williams 

(1997) goes one step further by arguing that expected lifetime should be adjusted to account 
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for morbidity, therefore using quality-adjusted life expectancy. However, the weights 

generated by Murray and Lopez (1994), and also by Rodriguez and Pinto (2000) are based 

on current age rather than (quality-adjusted) life expectancy. It is arguable that both should 

be considered in an experiment. If a rationing decision has to be made between a twenty-

year old and a sixty-year old, both expected to live to seventy, it is not clear on equity 

grounds which should be preferred. However, including both age and life expectancy poses 

significant issues in terms of generating impossible combinations of the two as life 

expectancy must exceed current age. The approach Williams uses is to present the survey 

respondent with two groups in society with particular quality-adjusted life expectancies (and 

no current age). 

Selecting dimensions and levels for the DCE 

In this chapter, the personal characteristics that have been suggested and investigated as 

determinants of societal preferences for healthcare decision making have been outlined. 

Evidence of willingness to discriminate in these dimensions is present in most cases, 

although the methods quantifying these trade-offs have been questioned. In particular, with 

one exception, studies have not been built to consider the impact of a characteristic 

independent of all others (Schwappach, 2003). In designing a choice experiment to 

investigate the issue, a number of concerns have to be balanced. While, it is important that 

the most significant of these personal characteristics are captured and assessed, it is also 

necessary to limit the number of characteristics (and levels of each characteristic) so the 

experiment is of a manageable size, and given a finite sample size, that the choice sets are 

adequately populated to quantify the impact of each characteristic with confidence. 

The major source of dimensions with supporting evidence was the review by Olsen et al. 

(2003) which suggested a number of possible dimensions that might be important dividing 

into those relating to a person’s relation to others, those relating to their illness, and those 

relating to their self. From these, a smaller set were selected with the aim of including some 

from each of these three categories. The selected dimensions were gender, smoking status, 

income (or socio-economic status), whether the individual maintained a healthy lifestyle, 

carer status and total life expectancy. These are not an exhaustive set of characteristics over 

which people might discriminate, only that these are a convenient and obvious set which can 

help to identify the degree to which people agree or disagree with the standard health-

maximising approach. Therefore, the results presented here should not be interpreted as 
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claiming that there are no other characteristics which might impact on preferences, only that, 

over a set of obvious candidates, respondents either do or do not correspond to the 

assumptions of the QALY model.  

From the findings of the literature review, and the issues relating to minimising respondent 

burden, the following dimensions given in Table 40 were selected for the choice experiment. 

Table 40: Dimensions and levels for the choice experiment 
Dimension Levels Detail and coding 

Gender 2 Male=0, Female=1 
Income 2 Below average=0, Above average=1 

Smoking 2 No=0, Yes=1 
Healthy lifestyle 2 No=0, Yes=1 

Carer status (dependents) 2 No=0, Yes=1 
Group life expectancy (years) 4 30=0,45=1,60=2,75=3 
Gain in life expectancy (years) 4 1=0,3=1,6=2,10=3 

Four levels were selected for both the initial life expectancy and the gain in life expectancy. 

The choice of four was based on the relative ease of design and efficiency of experiments 

with dimensions all having a common root (i.e. that all dimensions are powers of the same 

prime, in this case 2). The choice of initial life expectancy and gain in life expectancy 

involved a balance between plausibility of health gain for particular groups, and capturing a 

broad spectrum of ages and outcomes. Mæstad and Frithjof Norheim (2009) presented an 

argument why small gains in life expectancy should be used to estimate the age weight at a 

point. When comparing the relative importance of life at two ages x and y, stated preference 

experiments offering life extensions beyond those ages rely on the valuation of health in the 

years x+ x and y+ y. Therefore, ten years was selected as the maximum potential gain 

despite there being a range of interventions that might conceivably increase life expectancy, 

particularly among the young, by a much longer period. 

An example choice set is given in Figure 33. 



 

 206

Figure 33: An Example Choice Set 

 

Designing the choice experiment 

For the experiment, a design containing 5 2-level attributes and 2 4-level attributes was 

required. A starting design of 2^5 of strength four in 16 rows (i.e. half of the full factorial is 

available). This is reproduced in Table 41. 

Table 41: A starting design of 2^5 in 16 rows (strength 4) 
0,0,0,0,0 0,0,0,1,1 0,0,1,0,1 0,0,1,1,0 
0,1,0,0,1 0,1,0,1,0 0,1,1,0,0 0,1,1,1,1 
1,0,0,0,1 1,0,0,1,0 1,0,1,0,0 1,0,1,1,1 
1,1,0,0,0 1,1,0,1,1 1,1,1,0,1 1,1,1,1,0 

If a design is strength four, it means that, within any four dimensions, each possible 

combination of levels occurs with equal frequency. A design of strength four allows for 

estimation of both main effects and all two-factor interactions (Street and Burgess, 2007).  

Each of these rows was then paired with each possible combination of the two four-level 

attributes (group life expectancy and treatment gain), giving a design with 256 rows.  

The next stage was to identify a set of generators which allowed estimation of all main 

effects and interactions. For a generator to estimate the main effect of a dimension being a 
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particular level, the primary condition must be that it must be non-zero. In addition, a 

generator for an attribute should not contain a non-trivial divisor of the number of levels 

within that attribute (e.g. an eight-level attribute should not have two or four as the 

generator). The reason for this is because it would not provide a complete ranking. For 

example, if an eight-level attribute is coded 0-7, and a generator of 2 is applied to each of the 

levels, it would be possible to discern the relative value placed on levels 0,2,4 and 6, and to 

the relative value placed on levels 1,3,5 and 7, but no comparison between these sets of 

levels would be completed. For our four-level attributes, this means that the generators 

should consist solely of 0s and 1s (it might also be useful to allow 3s in the generators, but 

this was not done in this design). 

To identify a suitable set of generators, the approach advocated by Street and Burgess 

(2007) was taken. As stated in Chapter 3, a suitable set of generators is such that 

For each attribute, there is at least one generator with a 1 in the corresponding 
position, and 

For any two attributes there is at least one generator in which the corresponding 
positions have a 0 and a 1. (p.129) 

Using Street and Burgess’s example 4.2.8 (for which there are eight dimensions rather than 

the seven required here), the following generators were considered: 

1,1,1,1,0,0,0,0 

1,1,0,0,1,1,0,0 

1,0,1,0,1,0,1,0 

0,1,0,1,0,1,0,1 

The property that makes these generators appropriate is that a 1 occurs at least once in each 

column and, for each pair of columns, there is a row with both a 1 and a 0 in at least one of 

the generators. As these have eight columns and there are seven attributes in the experiment, 

the final column can be removed. Within the seven columns in the first three generators, all 

main effects and two-factor interactions are estimated: therefore, the final generator can also 

be removed, leaving the following generators: 

1,1,1,1,0,0,0 

1,1,0,0,1,1,0 
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1,0,1,0,1,0,1 

When applied to the 256 rows of the orthogonal array, these generators produce a design 

with 640 choice sets: these are provided in Appendix 9. Note that the 640 choice sets is a 

reduction on the 256 x 3 = 768 that might be expected given the number of rows and 

generators. This is because there is duplication of pairs, which can be removed.  

The -, B-, and C- matrices are very large, and hence not reproduced here. The Street-

Burgess software (http://maths.science.uts.edu.au/maths/wiki/SPExptSoftware) reported that 

no effects were correlated. 

Sample recruitment 

This was subject to a pilot (N=241, reported in Norman and Gallego (2008)), which 

concluded that respondents generally found the task straightforward and comprehensible. 

The main data collection occurred in May 2010. An online panel of respondents was used 

for the survey recruited by Pure Profile Pty. These respondents were each paid a small sum 

(approximately $15) to complete the survey. To allow comparability with the Australian 

population, respondents were selected according to age and gender. Each respondent used a 

web link to access the survey, so were able to self-complete at their convenience. To aid the 

respondent, a thorough description of the task was provided at the beginning of the survey 

and a help button was available throughout the task. This provided information on how to 

respond. They then completed the task for the 16 choice sets. Following this, they answered 

a series of personal questions including gross household income, ethnicity, country of birth, 

number of dependents, level of education, age and gender. Finally, they were asked how 

difficult the task was, selecting one of five levels of difficulty ranging from very difficult to 

very easy. They were also given the opportunity to provide a free-text response outlining 

their impression of the survey.  

Screenshots of each of the pages within the experiment are provided in Appendix 10. 

Analysis 

With some exceptions, the analysis followed the strands described in Chapter 3. Thus, 

fourteen models were attempted. Models A and A1-A6 imposed a QALY-type model in 

which the utility of alternative j in scenario s for individual i is 

 isjiisjisj GAINXGAINU '

. Equation 88 
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This, the sole main effect was on the health gain, and the other characteristics enter the 

utility function as interactions with the health gain attribute. As noted in Chapter 3, this was 

an important amendment to a model using main effects on all levels of interest as it imposes 

the zero-condition in which all options where health gain was zero were valued equally 

irrespective of the characteristics of the hypothetical person ‘receiving’ it. 

The models A1-A6 which were paired with this utility function, with their underlying 

strengths and weaknesses are described in detail in Chapter 3, and were: 

A1: The Conditional Logit 

A2: The Scale Multinomial Logit 

A3: The Mixed Logit (Uncorrelated Coefficients) 

A4: The Generalised Multinomial Logit (Uncorrelated Coefficients) 

A5: The Mixed Logit (Correlated Coefficients) 

A6: The Generalised Multinomial Logit (Correlated Coefficients) 

Relaxation of the utility function (models B, B1-B6) 

In models A1-A6, I have considered a utility function which is linear with respect to gain in 

life expectancy (and when coupled with the zero condition, this forms the QALY model). 

This is a strong assumption, and requires testing. Utility Function B builds on Utility 

Function A by relaxing the assumption of linearity of utility with respect to time. Thus, 

Utility Function B is: 

 isjiisjisjisj GAINXGAINXGAINGAINU 2''2 Equation 89 

Thus, the linearity of utility with respect to time is relaxed, as reflected in the 2GAIN  term 

in Equation (89). In addition, it relaxes the assumption that the change in total utility 

associated with it being received by a different group of hypothetical respondents is 

independent of the total gain (the 2' GAINX isj  term)  

Models B1-B6 are therefore replications of models A1-A6 respectively, but adopting this 

more relaxed utility function. Note that model B requires a large number of additional 

parameters, and that the number of additional parameters increases substantially as I move 

away from the more restrictive models. As described in Chapter 3, model evaluation will 

primarily be undertaken using the Akaike and  Bayesian information criteria (AIC and BIC) 
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(Akaike, 1974; Schwarz, 1978). These consider both the model fit and also the parsimony of 

the model (by accounting for the number of parameters in the model). 

Models B and B1-B6 are therefore replications of models A and A1-A6 respectively, but 

adopting this more relaxed non-linear utility function. A summary of the various models run 

is provided in Table 42. 

Table 42: Models Run in Chapter 6 
  Utility Function 1 Utility Function 2 
 RE Probit / Logit A B 

Heterogeneity 
modelling 

Conditional logit A1 B1 
Scale MNL A2 B2 
Mixed logit A3 B3 
G-MNL A4 B4 
Mixed logit (correlated) A5 B5 
G-MNL (correlated) A6 B6 

 

Self-interest and empathy – sub-group analysis 

One additional question which can be answered is the degree to which people value health 

outcomes that accrue to people with characteristics similar to themselves. The demographic 

data collection allows the respondent to be described under each of the binary variables in 

the experiment (smoking, healthy lifestyle, carer status, income and gender). While it is not 

possible to identify an individual’s life expectancy, this will be somewhat related to current 

age. Thus, once a preferred model was identified, the analysis was replicated with sets of 

respondents defined by each of these categories. The null hypothesis was that the (for 

example) gender of the respondent does not impact on the valuation the respondent places 

on health gains that accrue between genders. However, it is plausible that this null is 

incorrect; therefore a full sub-group analysis was undertaken. This was done using the base 

case RE probit approach. This type of analysis has previously been undertaken in the context 

of the mixed logit (with the impact of observables on mean coefficients assessed) (Harris 

and Keane, 1999). The reason for using the base case approach rather than the more flexible 

mixed logit or G-MNL was that the extra parameters needed to undertake this sub-group 

study meant that convergence in all models would be difficult to achieve, and take 

substantial time. In addition, interpreting differences in coefficients beyond those in the base 

case becomes increasingly difficult as constraints are relaxed.  
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The approach taken to sub-group analysis was to re-estimate the base case, but with an 

additional coefficient for each dimension reflecting the interaction between gain in life 

expectancy, each characteristic of the hypothetical individual, and a particular demographic 

characteristic. Thus, the utility function of alternative j for individual i with or without 

demographic characteristic c in scenario s is  

 isjciisjicsj XU )('

. Equation 90 

Each possible c (smoking status, healthy lifestyle, gender, above average income, carer 

status, and above average age) were run separately, giving five regressions. Gender, healthy 

lifestyle, above average income and carer status were binary (yes or no); therefore, these 

regressions had one extra term for each coefficient in the regression relating to the ‘Yes’ 

option for each. Smoking had three options in the demographic data collection stage (never 

regularly smoked, former smoker and current smoker). Therefore, two extra terms were 

generated for each coefficient with never smoked the omitted level. To explore whether 

allowing for different responses based on each characteristic of the respondent, a likelihood 

ratio test was used for each in turn. In principle, it would be possible to explore response 

patterns across multiple dimensions of the respondent simultaneously. For example, it would 

be possible to investigate if male smokers differ from other groups (i.e. male non-smokers, 

female smokers, female non-smokers). However, the sample size collected in the experiment 

means that the number of observations driving each coefficient in this larger regression 

would be increasingly small making reliable inferences difficult.  

The demographic questions asked in the survey allowed the option for the respondent to 

decline to disclose. This has some implication for this analysis if types of respondents were 

more likely to decline response. The number of decliners is noted in the respective results. 

Generating equity weights from regression results 

The previous chapter discussed the appropriate techniques for generating utility weights for 

generic quality of life instruments, and a similar technique can be applied in this context, 

albeit with some notable differences as a result of different approaches required to anchor 

values and a different omitted level in the regression. 

In the context of utility weights for economic evaluation, I wanted to anchor weights such 

that health states considered to be as bad as death were assigned a value of zero, while states 

equivalent to full health were assigned a value of one. Importantly, the experiment had to be 
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designed in such a way that health states valued in the range between zero and one had the 

important trade-off principle that was discussed in the introductory chapter of this thesis, and 

elsewhere (Flynn, 2010). Notably, an average individual experiencing a health state with a 

value of (for example) 0.5 would be willing to trade-off half of their remaining life 

expectancy to be returned to full health. To make this possible, Flynn argued that life 

expectancy was a necessary inclusion in the choice experiment. 

In the context of equity weights, anchoring is somewhat different. It seems sensible that a 

health gain accruing to an average individual should have an equity weight of one. This 

would mean that a health intervention applied to the entire population would produce the 

same result whether we apply equity weights or not. As I have previously stated that equity 

in this chapter is focused on equality of outcome, this is correct. Equity weights would then 

be unbounded with an equity weight of greater than one applied to a group who the choice 

experiment data suggest should receive additional emphasis, a weight of between zero and 

one for gains in groups which the data suggests are valuable but less so than average, and a 

weight of less than zero for gains in groups that the data suggests should be valued 

negatively. 

Equation (88) gave the more restrictive utility function specification described previously. 

This is replicated below: 

 isjisjisj GAINXGAINU '

 Equation 91 

To reiterate this, the systematic utility to individual i of option j in choice set s of a health 

gain to a particular hypothetical group is modelled as consisting of a main effect on the gain 

to the group plus interactions between the gain and the characteristics of the hypothetical 

group receiving the health gain (gender, smoking status etc).  Dropping the subscript for 

simplicity, this can be differentiated with respect to GAIN: 

 'X
dGAIN

dU
 Equation 92 

Up to this point, the analysis is identical to that seen in Chapter 5. However, the anchoring 

required in this context is different. In this chapter, the equity weight for a hypothetical 

group with particular characteristics, X’, is estimated by dividing through by the value for the 

population mean, i.e.  
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 X
X '

 
Equation 93 

For this analysis, it is of course necessary to define what is meant by an average member of 

society. For the purposes of demonstrating the method, a simple mean member of society 

was assumed. As society divides approximately in half in terms of gender, the mean 

respondent was assumed to fall halfway between the two. Therefore, the  term applicable 

was a midpoint between the male coefficient (0 as it was omitted from the regression) and 

the female coefficient. For convenience, this reference group was selected to be the 

‘average’ group in society, under the assumptions that 50% of people in society are female, 

that 50% have above average income, that 50% have a healthy lifestyle, that 20% are 

smokers, that 40.8% are carers, and that the average person has a total life expectancy of 

75). The carer figure is a composite term including the 2.6 million Australians estimated by 

the Australian Bureau of Statistics to provide assistance to those who needed help because of 

disability or old age, the 2.363 million couple families with children (so 4.726 million 

parents) and the 1.944 million single parents (both parenting statistics are taken from the 

2006 census (Australian Bureau of Statistics, 2006b)), divided by the estimated total 

population as of 12th October 2011 of 22.731 million (Australian Bureau of Statistics, 2011). 

Note that this mean respondent was simply the respondent with the mean characteristic in 

each dimension (i.e. that characteristics are independent of one another). This is a 

simplification and may lead to a mean equity weight other than one; however, in the absence 

of appropriate data to allow the independence assumption, this is a necessary step. 

Therefore, for the mean respondent, = , and Equation (93) equals 1. This approach uses 

the respondent utility of extra health for the mean hypothetical individual or group as the 

numeraire. As Equation (93) divides one function of coefficients by another, the issue of 

scale is accounted for and the result shows the trade-off between health gains accruing to 

different hypothetical individuals. While slightly less elegant than the solution used in the 

utility weights chapter, it is fundamentally the same approach. To explore the degree of 

certainty in the results, confidence intervals for each of the equity weights were bootstrapped 

using 50 replications. 

As in Chapter 5, this method can be easily adapted to generate weights under the more 

relaxed utility function allowing utility to be non-linear in time. Thus, the more relaxed 

utility function is 
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 isjiisjisjisj GAINXGAINXGAINGAINU 2''2 Equation 94 

This can then be differentiated as in Equation (92), and equity weights generated as in 

Equation (93), with the corresponding ratio being 

 
)(2
)(2

'

''

XGAINX
XGAINX

. Equation 95 

Results 

Seven hundred and forty nine people entered the survey and were eligible to participate. 

Thirty-two of these were excluded as the sample had reached its maximum quota (i.e. a pre-

specified quote was determined based on our budget, and 32 potential respondents clicked 

on the link after that number had been reached). Of the remaining 717, 616 answered at least 

one choice set (i.e. they did not withdraw before the task began) Of these, 553 completed all 

choice sets within the survey, giving a completion rate of 89.8% relative to those that started 

the task (and were therefore randomised to a block), and 77.1% relative to the population 

who entered the task and were willing to participate. Of these 553, one respondent 

completed the choice task (and formed part of the analysis set) but did not complete the 

demographic section at all. The characteristics of the sample of 552, and its comparability to 

the general Australian population are outlined in Table 21. 
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Table 43: Representativeness of DCE Sample 
Characteristic Value / Range Sample Population1 

Gender Female 56.16% 56.09% 
Age (years) 16-29 26.63% 21.33% 

 30-44 34.96% 23.98% 
 45-59 23.01% 22.40% 
 60-74 11.05% 14.00% 
 75+ 0.54% 18.29% 

Highest level of 
education 

Primary 3.26% 40.51% 

 Secondary 30.43% 20.00% 
 Trade certificate 30.43% 22.24% 
 Bachelor’s degree or above 35.87% 17.26% 

Gross household 
income1 

<$20,000 7.84% 15.77% 

 $20,000 - $40,000 15.88% 23.02% 
 $40,001 - $60,000 20.59% 17.64% 
 $60,001 - $80,000 17.84% 13.87% 
 $80,001 - $100,000 15.29% 11.03% 
 $100,001 + 22.55% 18.67% 

1 All data sourced from ABS (Australian Bureau of Statistics, 2006a; Australian Bureau of Statistics, 2002; 

Australian Bureau of Statistics, 2005; Australian Bureau of Statistics, 2007) 

The representativeness of the sample differs by characteristic. The gender breakdown is 

close to the population. Those over 75 years old are under-represented, which is a problem 

for generalisability. People in the sample are relatively over-educated and have a higher 

income than average. 

Marginal frequencies 

The marginal frequencies for each level are shown in Figure 34. 
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Figure 34: Marginal Frequencies 

 

The marginal frequencies suggest that gain in life expectancy, smoking status and carer 

status are the factors that most influence the decision to choose an option. There is an 

average preference in favour of females, individuals with a low income, with a healthy 

lifestyle, or with a current life expectancy in the middle range of 45-60 years. A priori, it 

might be expected that the marginal frequency on a current life expectancy of 30 years 

might be higher; this will be explored in the context of heterogeneity. 

Considering choice sets in which the gain differed between groups, the proportion in which 

the option producing the fewer years of additional life expectancy was selected was 32.3%. 

Thus, gain is important, but not the sole determinant of choice in the experiment. Similarly, 

of the 553 complete respondents, 106 never selected an option involving the fewer number 

of additional years of life. This means that the remaining 447 were willing to trade aggregate 

life years in order to focus health gain towards specific members of society.  

One notable result is that the likelihood of selecting a program with a gain of 3 years appears 

to be higher than that of selecting a program with a gain of 6 years. However, this result is 

an artefact of the design approach. In the choice of generators, the values that applied to the 

Gain dimension were either zero or one. The absence of a two was justified as using a factor 

of the total number of levels in a dimension as a generator leads to non-complete rankings. 
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What this meant in the choice sets was that an option with ‘6 years’ in one of the 

hypothetical programs was only paired with a program with 3, 6 or 10 years (i.e. it is paired 

with 6 years if the generator is 0, and 3 or 10 years if the generator is 1). Similarly, for 

options with a gain of 3 years, the other option could take the value of 1 year, 3 years or 6 

years. This explains why 3 years was actually selected more frequently. In situations in 

which 3 years and 6 years were the two gains visible for the two options in the choice set, 

the option with a 3 year gain was only selected in 35.7% of these choice sets. Running an 

additional conditional logit (not presented) with gain dummy coded and the only variable 

included confirmed this pattern. 

Random-Effect probit results 

The RE probit results, both under the assumption of linearity (Utility Function A) and under 

the more relaxed model (Utility Function B), are presented in Table 44. 

Table 44: RE Probit Results 
Mean (standard error) Utility Function A Utility Function B 

Constant -0.0350 (0.0139)** -0.0351 (0.0140)**
Gain (years) 0.1092 (0.0068)*** 0.2089 (0.0282)***

Gain x female 0.0035 (0.0024) -0.0043 (0.0095)
Gain x high income -0.0079 (0.0028)*** -0.0252 (0.0103)**

Gain x smoker -0.0739 (0.0033)*** -0.1851 (0.0136)***
Gain x healthy life 0.0154 (0.0046)*** 0.0487 (0.0163)***

Gain x carer 0.0317 (0.0027)*** 0.1041 (0.0108)***
Gain x LE45 0.0140 (0.0054)** 0.0240 (0.0198)
Gain x LE60 0.0097 (0.0062) 0.0347 (0.0223)
Gain x LE75 -0.0094 (0.0055)* -0.0211 (0.0199)
Gain2 (years) -0.0096 (0.0027)***

Gain2 x female 0.0009 (0.0011)
Gain2 x high income 0.0020 (0.0011)*

Gain2 x smoker 0.0139 (0.0016)***
Gain2 x healthy life -0.0037 (0.0017)**

Gain2 x carer -0.0088 (0.0013)***
Gain2 x LE45 -0.0011 (0.0021)
Gain2 x LE60  -0.0027 (0.0023)
Gain2 x LE75  0.0013 (0.0021)

Lnsig2u -13.2502 (10.0324) -13.5833 (11.083)
Sigma u 0.0013 (0.0067) 0.0011 (0.0062)

Log likelihood -5570 -5496 
Levels of statistical significance: *=10%; **=5%; ***=1% 

 

The corresponding analysis using the xtlogit command is presented in Table 45. 
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Table 45: RE Logit Results 
Mean (SE) Utility Function A Utility Function B 
Constant -0.0566 (0.0227)** -0.0573 (0.0229)**

Gain (years) 0.1842 (0.0117)*** 0.3409 (0.0467)***
Gain x female 0.0062 (0.0040) -0.0062 (0.0155)

Gain x high income -0.0130 (0.0046)*** -0.0414 (0.0168)**
Gain x smoker -0.1233 (0.0057)*** -0.3012 (0.0224)***

Gain x healthy life 0.0264 (0.0079)*** 0.0819 (0.0272)***
Gain x carer 0.0520 (0.0045)*** 0.1692 (0.0176)***
Gain x LE45 0.0227 (0.0089)** 0.0411 (0.0323)
Gain x LE60 0.0154 (0.0102) 0.0589 (0.0365)
Gain x LE75 -0.0159 (0.0090)* -0.0343 (0.0325)
Gain2 (years) -0.0152 (0.0045)***

Gain2 x female 0.0014 (0.0018)
Gain2 x high income 0.0033 (0.0018)*

Gain2 x smoker 0.0224 (0.0027)***
Gain2 x healthy life -0.0062 (0.0028)**

Gain2 x carer -0.0143 (0.0021)***
Gain2 x LE45 -0.0021 (0.0034)
Gain2 x LE60  -0.0048 (0.0038)
Gain2 x LE75  0.0021 (0.0035)

Lnsig2u -13.3337 (13.7591) -13.2098 (16.7375)
Sigma u 0.0013 (0.0088) 0.0014 (0.0113)

Log likelihood -5567 -5496 
Levels of statistical significance: *=10%; **=5%; ***=1% 

While the RE probit and RE logit have quite different coefficients, this is predominantly a 

scale effect, which can be seen by scatter plotting the coefficients. This is done using Utility 

Function A in Figure 35, and using Utility Function B in Figure 36. 
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Figure 35: Comparison of Coefficients under Utility Function A 

 

Figure 36: Comparison of Coefficients under Utility Function B 

 

Responses constrained under utility function 1 were willing to discriminate in favour of 

programmes with a greater health gain, and to recipients who had a lower income, were non-

smokers, were carers, or had life expectancies of 45 (relative to those with the base life 

expectancy of 30 years). The pattern over life expectancy is difficult to explain; the middle 
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life expectancies appear to be favoured but the cause of this is uncertain. Under utility 

function 2, similar patterns occur, other than that the discrimination pattern over life 

expectancy drops out. The quadratic terms are statistically significant at the 5% level for the 

main effect on GAIN (suggesting diminishing marginal utility of time), and on smoking 

(positive), healthy lifestyles and carer status (both negative). Thus, the discrimination against 

smokers exhibited throughout is relatively larger for smaller values of GAIN, which the 

discrimination in favour of those with healthy lifestyles or with dependents was relatively 

larger for smaller values of GAIN.   

The equity weights produced using these results will be presented following the investigation 

of heterogeneity. 

Heterogeneity based on observed respondent characteristics 

Gender 

The RE probit was repeated investigating the impact of the gender of the survey respondent. 

The RE probit result in Table 44 was treated as the restricted model (in that it assumes the 

coefficients for male and female respondents are identical). An unrestricted model was run in 

which each variable in the RE probit was interacted with a dummy variable equal to 1 if the 

respondent was female. The likelihood ratio test demonstrated that it was inappropriate to 

nest the restricted model within the unrestricted one (p=0.0000); therefore, gender of the 

survey respondent influenced the responses they provided. 

As proposed in Chapter 3, the coefficents can be compared graphically by rescaling them 

such that the coefficient on a numeraire was 1. In this case, all coefficients were divided by 

the coefficient on GAIN. The results for the gender subgroup analysis are provided in Figure 

37, with the regressions for each gender of respondent provided in Appendix 11. 
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Figure 37: RE Probit sub-group analysis (gender)  

 

The direction of each of the coefficients is common between genders for each of the 

dimensions of the experiment with the exception of gender. The average respondent 

relatively favours health gains accruing in the hypothetical groups with their gender; this is 

somewhat surprising as the experiment is clearly based on hypothetical groups. It is 

noteworthy that both coefficients (GAIN_female based on male respondents and 

GAIN_female based on female respondents) are statistically significantly different from zero. 

Smoking Status 

Using the same approach for the smoking status of the respondent, the appropriateness of 

nesting a restricted model (in which smoking status of the respondent is assumed to be 

unimportant) within an unrestricted one was tested. As with the case of the gender of the 

respondent, the LR test rejects the assumption of nesting (lr chi2(9)=141.21; p=0.0000). The 

graphical comparison of responses by smoking status considers three sub-groups, namely 

smokers, former smokers and people who have never been smokers. These results are 

illustrated in Figure 38. 
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Figure 38: RE Probit sub-group analysis (smoking) 

 

As with the gender case, the respondents tended to display quite different preferences in the 

dimension over which the sample was split (in this case, smoking). On average, smokers did 

not strongly favour either smokers or non-smokers. However, the other two groups strongly 

discriminate against smokers. Thus, this is further supporting evidence that people, when 

faced with a hypothetical resource allocation decision, tend to prefer allocating resources to 

(hypothetical) people with similar characteristics to themselves. 

The constant term appears absolutely large, particularly in those who are currently smokers. 

The negative coefficient means that option A was selected in preference to Option B more 

than 50%; in this case, the smokers selected A in 52.7% of their choice sets (compared with 

51.8% in ex-smokers and 50.8% in those who have never been smokers).  

The graphical comparison of responses by smoking status considers three sub-groups, 

namely smokers, former smokers and people who have never been smokers. These results 

are illustrated in Figure 39. 

Carer Status 

Using the same approach for the carer status of the respondent, the appropriateness of 

nesting a restricted model (in which the carer status of the respondent is assumed to be 

unimportant) within an unrestricted one was tested. As with the previous two instances, the 

LR test rejects the assumption of nesting (lr chi2(9)=43.17; p=0.0000). 
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Figure 39: RE Probit sub-group analysis (carer status) 

 

As with the previous two sub-group analyses, the log file with the two regressions is 

presented in Appendix 13. 

Again, this suggests that there is a relationship between an individual having a particular 

attribute and valuing that attribute more highly than other respondents do. As before, there is 

evidence that carers are likely to value more highly health gains accruing to carers. However, 

both groups relatively favour gains accruing to carers, reflecting the strong mean response in 

favour of health gains accruing to carers displayed in Table 44. Thus, the conclusion from 

these three examples is not that people absolutely discriminate in favour of people like 

themselves (as was the case in the gender example), but that seeing a characteristic in a 

hypothetical respondent makes the respondent more likely to favour them.  

Modelling heterogeneity 

The next step is to consider the various approaches to data modelling described in Chapter 3. 

This is first in the context of Utility Function A, in which linearity of utility with respect to 

time is imposed, and then in Utility Function B in which it is not. 

Utility function A 

Having considered response heterogeneity based on observable characteristics, the next 

component of the chapter will consider the approaches to modelling heterogeneity more 
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generally, ranging from the conditional logit to the G-MNL. As in Chapter 5, the results are 

presented first under Utility Function A (Table 46), then under Utility Function B. 
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The relationships between characteristics of the hypothetical groups and the coefficients in 

Model A1 are as expected given the patterns identified in Figure 34, and the results obtained 

through the base case random-effect probit and logit models. Thus, in Model A1, the mean 

respondent is willing to discriminate in favour of people with low incomes, non-smokers, 

people with a healthy lifestyle and carers. Once again, the pattern on life expectancy is less 

clear. Relative to people with a life expectancy of 30, the mean respondent appears to value 

the health of people with a life expectancy of 45 more highly.  

Modelling scale in Model A2 leads to a significant improvement in explanatory power; as 

noted previously, the one additional parameter appears to be a valuable addition (in terms of 

Information Criteria). Interestingly, the pattern regarding life expectancy is closer to the a 

priori assumption (that those with lower life expectancies would be relatively favoured). 

Moving from Model A1 to Model A3 (i.e. the mixed logit without correlations) also appears 

sensible, particularly as all standard deviations are statistically significant at the 1% level. 

Combining Models A2 and A3 in Model A4 (estimating a G-MNL without correlation) 

outperforms all three less flexible models, with AIC and BIC improving again. The  term is 

low suggesting that G-MNL-II (which was described in Chapter 3) is the more appropriate 

specification in this case. This is a similar finding to that in Chapter 5. However, it should be 

noted that the change in log likelihood from A3 to A4 is smaller than that between A1 and 

A2, even though the former move involves the estimation of both  and , rather than simply 

. It might be concluded that the explanatory benefit of adding a parameter is inversely 

related to the flexibility of the base case model, simply because there is less variability to 

explain. 

The benefit of allowing for correlations in Models A5 and A6 is uncertain based on 

Information Criteria. The impact on log-likelihood (182 points in the mixed logit and 163 in 

the G-MNL) appears worthwhile using either the AIC or BIC (if the latter is based on the 

number of survey respondents). However, if the n term is based on the number of 

observations (which is the default in the STATA command), the benefit of allowing 

correlations is marginal (in that it leads to a slight improvement in the mixed logit case, but a 

slight deterioration in the G-MNL).  

Utility function B 

The corresponding results under the non-linear utility function are presented in Table 47. 
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As Gu et al. (2011) note, the convergence of the G-MNL is highly dependent on the 

specification of starting values. Models B1-B4 did not require specification of starting 

values to elicit convergence. However, Models B5 and B6 either did not converge, or 

converged poorly (in the sense that they were outperformed in log-likelihood terms by their 

corresponding Utility Function 1 models, which are nested within them). Initially, B5 was 

estimated without specifying starting values, which led to a poorer log likelihood than 

Model A5 (-4851), despite A5 being nested in B5. Therefore, the coefficients from A5 were 

used as starting values for a re-estimation of Model B5, with the coefficients on the 

additional higher-order coefficients starting at 0. For model B6, the coefficients on 

everything other than  and  from model B5 were used, although they were multiplied by 4 

to approximate the increase in coefficient size noted between Models A5 and A6. The 

starting values for  and  were initially taken from model A6, and allowed to be freely 

estimated. However, this failed to converge. Therefore, a modified approach was taken in 

which the value of  was taken from Model A6 (0.081) and fixed at that point. The 

remaining coefficients were then estimated with this additional constraint imposed. Again, 

this failed to converge. The approach which did converge was to set  to be fixed at 0. This 

imposes G-MNL-II on the data.  

Allowing for non-linearity of utility with respect to GAIN appears to improve model fit as 

the coefficient on the quadratic term is statistically significant (and negative, which is a 

conventional finding suggesting diminishing utility of extra time). The pattern of 

coefficients in the interaction terms in Model B1 has four statistically significant coefficients 

out of eight, two of them at the 1% level. The impact of relaxing the utility function to allow 

the interactions between the quadratic term and the characteristics of the hypothetical 

population are difficult to interpret. The coefficient on Gain2 x Smoker is positive and 

statistically significant, suggesting the discrimination against smokers in the main effect 

term is larger for relatively short gains: the opposite is true for the term on carer status (i.e. 

people discriminate more in favour of carers when gains are short). 

Relative to Model A1, Model B1 appears to perform well. However, comparing it with 

Model A3, which has the same number of degrees of freedom (18), it performs poorly 

suggesting that, in this instance, allowing for preference heterogeneity is a more productive 

way of explaining responses than allowing for non-linearity. 
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As under Utility Function 1, allowing for scale performs well (B2), as does allowing for 

preference heterogeneity (B3), and for both (B4), as the Information Criteria reduce 

montonically from B1 to B4. However, it is instructive to look at the point improvement 

from allowing non-linearity in the approaches B1-B4. In B1, the log likelihood improves by 

71 points. This reduces to 61 in B2, 27 in B3, and 16 in B4. In terms of AIC, Utility Function 

2 is preferred to Utility Function 1 across 1-4. However, in terms of the BIC where n is 

defined as the number of individuals, A3 and B3 are considered equally good. However, if n 

is assumed to be the number of observations, A3 is actually preferred to B3. This raises the 

question about whether it is worthwhile to allow for both a non-linear utility function over 

time and for response heterogeneity. 

Allowing for correlations in Models B5 and B6 appears unwarranted based on Information 

Criteria. While the correlation matrices for these two models contain a proportion of 

statistically significant terms, the impact on log-likelihood does not appear to produce a large 

enough improvement to justify the proliferation of estimated parameters. Additionally, it is 

apparent that Models B5 and B6 are outperformed by Models A5 and A6 respectively. It 

should be noted that Model A6 is not strictly nested within Model B6 as the latter failed to 

converge with a freely estimated . However, I would argue that constraining  at the value 

derived from Model A6 is unlikely to represent a large constraint on the analysis. 

Model comparison 

The summary of AIC and BIC, and the ranking under each of the twelve are presented in 

Table 34. 

Table 48: Model Comparison 
Model AIC BIC (n=individuals) BIC (n=observations) 

A1 11158 11197 11222 
A2 10952 10995 11030 
A3 10052 10130 10192 
A4 9916 10002 10072 
A5 9760 9993 10180 
A6 9662 9904 10097 
B1 11034 11174 11112 
B2 10848 10930 10996 
B3 10016 10133 10226 
B4 9897 10021 10122 
B5 9735 10008 10226 
B6 9606 9882 10104 
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The pattern on Information Criteria is different to that demonstrated in the previous chapter. 

The three criteria are graphed across models and utility functions in Figure 40, Figure 41 and 

Figure 42. 

Figure 40: AIC figures for the 12 Models 

 

 

Under the AIC, both utility functions suggest that the less constrained models perform better. 

That is, the AIC reduces monotonically as the number of degrees of freedom increases. As 

with the SF-6D DCE results in Chapter 5, the impact on AIC of modelling scale is large, 

reflecting both the improved model fit and parsimony of the approach. The main difference 

between the results in Chapter 5 and here concern the merits of constraining utility to be 

linear with respect to time. In Chapter 5, the non-linear model outperformed the linear one. 

However the pattern is less clear here. Under Models A1-A2, the non-linear model performs 

better. However, in all other models, the impact of allowing a non-linear utility function is 

very small. 

The corresponding figures for the BIC, where n is the number of individuals (rather than the 

number of observations) is presented in Figure 41. 
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Figure 41: BIC figures for the 12 Models (n=individuals) 

 

If the BIC is employed, the pattern is similar. The move to Utility Function B (reflecting 

non-linearity of utility) is justified under 1 and 2, but 3-6 suggest it to be of marginal use. 

The model fit results from the alternative BIC measure (where n reflects the number of 

observations) is described in Figure 42. 
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Figure 42: BIC figures for the 12 Models (n=observations) 

 

If the n term is used to determine BIC is taken to be the number of observations, the patterns 

observed in the alternative BIC become more pronounced. In this case, monotonicity breaks 

down in both Utility Function A and B, with the uncorrelated G-MNL emerging as the best 

model in Utility Function A. The merits of moving to a non-linear utility function are even 

more marginal under this BIC. While B1 and B2 outperforms A1 and A2 respectively, 3-6 

all favour using the more restricted approach. 

Generating equity weights 

To this point, I have identified that people are willing to apply differential valuation to 

outputs accruing to different people. The next stage is to convert these results into something 

which aims to be useful in health policy decisions. The equity weights derived under the 

methods proposed in Chapter 3, and using the CV approach suggested by Lancsar and 

Savage (2004) are presented in Table 49. Confidence intervals are generated for each of the 

equity weights using a bootstrapping approach with 50 replications. To allow comparison 

with the CV-derived weights, those CV- derived weights that fall outside the confidence 

interval are highlighted in bold. 
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As expected, the equity weights follow the patterns demonstrated by the RE probit results in 

Table 44. Thus, the equity weights show that health gains accruing to carers, non-smokers, 

and people with a healthy lifestyle are relatively favoured. The distribution of equity weights 

across the 128 hypothetical groups is presented in Figure 43. 

Figure 43: Distribution of Equity Weights 
 

0
.2

.4
.6

.8
D

en
si

ty

0 .5 1 1.5 2
Equity Weight

  

These can, in principle, be used in QALY calculations in much the same way as utility 

weights are used to define the health-related quality of life. Thus, the QALY gains and losses 

applying to particular groups in society can be weighted up or down (through multiplication 

of the QALYs and the relevant equity weight) dependent on the characteristics considered in 

the experiment.   

Conclusions and implications 

The use of a discrete choice experiment to elicit preferences regarding the allocation of 

health gains has been shown to be valid, and to be able to produce results which might be 

adapted for use in economic evaluation. The work identifies that, for the mean respondent, 

there is a preference for improving health outcomes in those not likely to receive Williams’ 

Fair Innings (1997), in carers, non-smokers, those who lead a healthy life, and those with a 
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low income. These patterns were consistent across utility function specification, and 

approach towards the modelling of heterogeneity. 

This conclusion contrasts with that of Lancsar et al. (2011) who argue that weighting 

QALYs is generally not appropriate, and would be unlikely to significantly impact on the 

scale of the gain accruing from a healthcare intervention. The weights presented in this study 

suggest this conclusion does not hold in our data. Thus, when Lancsar et al. (2011) argue that 

“(T)he size of the gain dominated the characteristics of the recipients of those 

gains, suggesting a desire to maximise health and a reluctance to trade off health 

gain for other characteristics as the health gain increased… The important point 

is that these results comply with the no-weighting position currently adopted by 

HTA agencies and governments around the world” (p.475), 

the divergence between this finding and my results requires exploration. There are four 

possible explanations for this divergence. Firstly, it might be that our respondents held 

different views to those studied by Lancsar et al. (2011). However, this is unlikely to be a 

strong driver of the difference as Australia and the UK are generally considered to be similar 

culturally. Secondly, the way the question was posed may drive the result. Inadvertent 

emphasis of certain aspects of the choice may cause results in different experiments to differ. 

Thirdly, the two studies consider quite different dimensions and, in dimensions that are 

common to both experiments (such as life expectancy), the levels were different. Lancsar et 

al. (2011) investigated quality of life of hypothetical healthcare recipients and age of onset, 

which were not explored in the work described in this thesis). Rather, the work in this thesis 

included a series of characteristics which might impact on the dessert of the individual to 

receive health gain (smoking, carer status, healthy lifestyle). It might be argued that the 

dimensions selected by Lancsar et al. (2011) are ones over which preferences are not strong 

(and likely to over-ride the conventional maximisation of QALYs). The fourth explanation 

for the divergence between studies is that the method for converting regression results into 

QALY weights differs, specifically in that we have employed a marginal willingness to pay 

approach (MWTP), while Lancsar et al. (2011) have adopted the compensating variation 

(CV). A debate regarding the merits of the two approaches has taken place (Lancsar and 

Savage, 2004; Ryan, 2004; Santos Silva, 2004); however, both techniques are in current use, 

so no consensus has yet emerged regarding their relative merits. To investigate the sensitivity 

of the result to the choice between MWTP and CV, the CV weights are presented in 
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Appendix 1 alongside the base case results. The values under the CV are closer to 1 than 

under the MWTP, suggesting that this explanation may contribute to the divergence between 

the two studies.  

One interesting caveat to the results presented in this thesis is that there was a tendency for 

people to relatively favour health gains that impact on people with similar health profiles to 

themselves; a result which is somewhat surprising given the task was clearly hypothetical. 

An important distinction to make in this area is that some of the characteristics over which 

this pattern is demonstrated are the consequence of a choice of the hypothetical respondents; 

for example, someone who makes the decision not to be a smoker may feel that someone 

who has made the same decision may be more deserving of health gain. However, this 

pattern of discrimination also applies to gender, something not determined by a choice.  

The choice of both the RE probit and the simpler utility function 1 as the base case result 

requires discussion. The more relaxed consideration of heterogeneity typified by the G-MNL 

and the mixed logit was shown to improve model fit considerably. Similarly, the relaxation 

of the linearity of the utility function with respect to time does likewise. With regard to the 

use of the G-MNL or the mixed logit, is should be noted that the impact of doing so on the 

mean respondent (which is the primary focus of this kind of analysis) is limited (Greene and 

Hensher, 2011). While we might be interested in segmenting the population into types of 

respondents, the use of these kinds of results in public policy making is unclear at best. With 

regard to the use of utility function 1, a judgement is required whether the extra predictable 

ability of using the more flexible utility function 2 is worth the implication that weights on 

QALYs are dependent on the value of the GAIN attribute. In this thesis, it was decided that 

the more relaxed utility function was not appropriate; however, the result that people do not 

display linearity in this regard is potentially important in certain settings.  

 One issue which needs to be addressed is the fundamental objection to weighting outcomes 

in economic evaluation of health technologies. The response to this is to argue that we 

implicitly weight outcomes anyway, only that these weights are constrained to be equal to 

one for all groups. The objection is then whether it is ethically defensible to weight outcomes 

differently for different groups. The results presented here have to overcome two obstacles 

before they can be reasonably used in practice. First, it has to be shown that respondents 

accept the resource allocation decisions they follow from the equity weights generated here. 
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If we accept the respondents are comfortable with the weightings generated, the second 

obstacle to overcome is the ethical defensibility of the stated preferences. Against what 

standard should the ethical defensibility of societal preferences be judged? In the 

introductory chapter, I discussed Empirical Ethics, a non-welfarist approach in which 

surveys are used to value health, but ethical concerns are used to constrain those revealed 

preferences. In that discussion, I argued that identifying a societal preference which would be 

considered unethical is highly unlikely as the methods for determining ethics are uncertain 

and require a degree of consensus. Since society is unlikely to agree on ethical constraints 

which counter their own stated preferences, I argued that the constraint was likely to be 

empty. This applies in this context. 

Even if the results presented here are accepted as valid representations of societal 

preferences, and it is appropriate that preferences of equity be included in the decision 

making process, it remains uncertain whether a formal quantifiable approach to the inclusion 

of equity is the best approach. It might be argued that the consideration of equity is 

necessarily flexible to different settings, which involve finer distinctions than those made in 

the work presented in this chapter. Flexibility with regard to the consideration of equity 

issues should be allowed, but the weights derived here should be considered as a guide for 

decision makers. Thus, decision makers should be aware that society has these patterns of 

views regarding equity, but that they be allowed to integrate them at their discretion. 

However, the decisions of these policy makers should be disseminated where possible to 

allow society to judge whether their decisions are acceptable, and their consideration of 

equity concerns was justified and well-considered. 
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Table 50: Equity-Efficiency trade-off search strategy 
# Searches Hits 
1 Welfaris$ and (Extra-welfaris$ or Extrawelfaris$).mp 15 
2 Fair Innings.mp 45 
3 Egalitarian$.mp 901 
4 Social Welfare Function.mp 35 
5 Rule of rescue.mp 41 
6 Efficiency-Equity trade-off.mp 0 
7 (age adj weight).ab,ti 6349 
8 Equity.sh,ab,ti 7698 
9 Or/1-7 7380 
10 8 and 9 65 
11 Remove duplicates from 10 43 
12 Limit 11 to english language 34 
13 From 12 keep … 26 

mp=ti,ot,ab,nm,hw,sh,tn,dm,mf
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Chapter 7: Conclusions and Implications 
 

This thesis has investigated how health outcomes are measured and valued for use in 

economic evaluation. Economic evaluation has become standard practice in reimbursement 

decisions across the developed world, so the techniques we use, and the assumptions we 

make in doing so, play a major role in how scarce resources are allocated. The thesis has 

illustrated some potential flaws in how orthodox economic evaluation is undertaken, and 

presented a series of case studies in which areas of weakness are addressed. Importantly, 

when the current orthodox approach to valuing health outcomes for economic evaluation has 

been shown to be a simplification or distortion of how society wishes resources to be 

allocated, the thesis has provided results which can be directly applied to these estimates. 

The state of economic evaluation of healthcare 

In Chapter 1, I investigated the meaning of, and need for, economic evaluation in healthcare, 

and how it differs from standard welfare economics orthodoxy. The reason for doing this was 

to identify the framework within which the valuation of health outcomes typically occurs. 

The healthcare sector is characterised by endemic market failure (Arrow, 1963), and the 

dominant position of government as purchaser in most industrialised nations necessitates a 

framework within which the multitude of possible resource uses can be ranked. Regarding the 

two major competing theories of valuing health outcomes (welfarism and extra-welfarism) 

Tsuchiya and Williams argued that, 

“(i)t is said that there are two ‘competing views’ on economic evaluation in 

health care. One is often seen as the ‘theoretically correct’ approach, that is 

based more firmly within the theory of welfare economics, whilst the other by 

comparison as some practical but not well formulated collection of rules of thumb 

(p.22)” (Tsuchiya and Williams, 2001) 

The ways in which this collection of rules of thumb (termed extra-welfarist approaches) 

differs from welfarism and welfare economics more generally were discussed. The focus on 

health (implicit in the extra-welfarism of Culyer) rather than utility has implications in 

situations in which potential Pareto improvements occur either in terms of health or utility but 

not in the other. Extra-welfarism, Communitarianism and Empirical Ethics were outlined as 
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alternative sets of rules of thumb; only the first of these has been operationalised and the 

approach to do so for the other two remains unclear. 

The quality-adjusted life year (QALY) was then presented as the dominant extra-welfarist 

numeraire for measuring (and valuing) health changes. The reason for doing so was to 

illustrate the orthodox approach to valuation of health outcomes, to which the results of my 

thesis could be applied. 

The description and valuation of health 

Chapter 2 looked at how health is described and valued for use in economic evaluation. This 

was important as, while Chapter 1 identified that the value of a health profile was an 

aggregation of life and quality of length, it did not discuss how quality of life was actually 

measured. The standard approaches to valuing health states were then described, first 

covering the method for scoring individual states. Mainstream valuation techniques using 

general population stated-preference tasks were outlined. For each of the Time Trade-Off, the 

Standard Gamble and Visual Analogue Scales, some serious theoretical concerns were raised. 

While the first two of these are based on the concept of trade-offs, other issues (time 

preference, attitude to risk, respondent burden) impinge on the reliability of the valuations 

these tools provide for individual health states. These issues are the motivating factor behind 

the use of the discrete choice experiment in Chapters 5 and 6 of the thesis. 

The major health-related quality of life instruments were described and appraised 

independent of the methods for valuing their constituent health states. The focus was on the 

tension between descriptive ability and size of the instrument, with each instrument selecting 

a point of this continuum. While criticism of the relatively small instruments such as the EQ-

5D was identified (Hawthorne, et al., 2001), the cost of moving away from it lies in one or 

both of increasingly correlated dimensions and difficulty in valuing all states within the 

algorithm. Thus, I concluded that there was no gold standard among the existing suite of 

instruments, nor will such a gold standard be reached because of this tension. This is 

unfortunate as it leaves the results from economic evaluations dependent on the instrument 

used, and thus prone to gaming. 

Finally, the techniques required to impute values for other health states not directly valued by 

respondents were discussed. The need for this imputation increases as the instrument 

increases in size. Some serious issues with the conventional approaches were identified. 

Assuming additivity or multiplicativity are both strong assumptions. Both are used by 
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different teams undertaking this type of research, and the importance of making this kind of 

constraint on preferences is rarely adequately tested. The chapter concluded by arguing that 

there might be scope for non-parametric techniques to be used (Kharroubi, et al., 2007; 

Kharroubi, et al., 2010). 

Discrete choice experiments 

Chapters 3 and 4 presented the discrete choice experiment as a possible method for exploring 

some of the questions raised in the previous two chapters. The foundation of discrete choice 

experiments in Random Utility Theory was introduced (McFadden, 1974; Thurstone, 1927a). 

The unusual nature of the trade-off between quality of life and life expectancy required for 

QALY weights was discussed in the context of Flynn’s critique of existing attempts to use 

ordinal data to explore the issue (Flynn, 2010; McCabe, et al., 2006; Salomon, 2003). While 

interactions can be considered in a simple additive model, the data had to be constrained to 

meet the zero-condition in which quality of life is only of value in the context of a non-zero 

life expectancy, and utility tends to zero as life expectancy tends to zero (Bleichrodt, et al., 

1997). Thus, an unusual utility function was specified in which time enters as a main effect 

and all other characteristics enter only interacted with time, which would be used in 

subsequent discrete choice experiments.  

Flynn (2010) argued that the non-inclusion of time in the ordinal data collection makes it 

impossible to generate QALY weights with cardinal properties. Including time alongside 

other characteristics has recently been advocated (Bansback, et al., 2012); however, it is not 

yet the dominant approach (Hakim and Pathak, 1999; Stolk, et al., 2010), despite being 

essential for the construction of QALYs. 

Chapter 3 then discussed the appropriate tools for investigating response heterogeneity. Using 

a recent study by Fiebig et al. (2010), a series of increasingly relaxed logit models were 

described for use in subsequent chapters. Thus, a general structure for imposing increasingly 

relaxed approaches to preferences was outlined, culminating in the generalised multinomial 

logit model (Fiebig, et al., 2010), which nests each of the preceding models. While Swait and 

Louviere (1993) argue that accounting for heterogeneity (both scale and preference) is 

important even if we are only interested in the mean response, the chapter suggested that the 

mean response may not differ substantially under increasingly sophisticated approaches to 

modelling heterogeneity, thus limiting their usefulness in generation of population-level 
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QALY weight algorithms. This issue was left open, to be addressed using the data in chapters 

4 and 5. 

Chapter 3 then considered the tools for estimating welfare changes based on the results of a 

DCE. The leading contenders were identified as the marginal rate of substitution and the 

compensating variation, and the chapter concluded that both had merit under certain 

circumstances, a result similar to that of Lancsar et al. (2007).  

Before addressing the empirical components of this thesis, the issue of designing the 

experiment was then discussed. The principles underpinning regular fractional factorial 

designs were described, particularly the necessity for the analyst to pre-specify which effects 

were of greatest interest. Techniques for constructing discrete choice experiments were 

addressed particularly the approaches of Huber and Zwerina (1996), the LMA, and Street and 

Burgess (Street, et al., 2005; Street and Burgess, 2007). The chapter addressed the tools for 

evaluating pre-existing designs, particularly the construction of -, B- and C-matrices, and 

the choice of maximisation strategies underpinning the leading approaches to experiment 

efficiency measurement. 

DCE 1 – Valuing the SF-6D health states 

Chapter 4 used the discrete choice experiment developed in Chapter 3 to provide an 

alternative valuation approach to states within the SF-6D, described in Chapter 2. The use of 

design principles maximised the information provided by a fixed sample size. The modelling 

of heterogeneity allowed the explanation of patterns of responses. The Generalised 

Multinomial Logit model was preferred under both the Akaike and Bayesian Information 

Criteria (Akaike, 1974; Schwarz, 1978), although the importance of using more advanced 

techniques for modelling heterogeneity when the main interest lies in the mean response was 

questioned.   

The results from the DCE reflected the generally monotonic nature of the SF-6D instrument, 

with one minor exception. Therefore, levels designed to reflect increasingly poorer levels of 

health were valued increasingly poorly. This was true under a range of specifications of the 

utility function. QALY weights were derived for the 18,000 SF-6D states, which are useable 

in economic evaluation. 

The chapter considered whether response patterns differed according to observable 

demographic characteristics of respondents. For example, do men and women value health in 
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the same way? The results were generally equivocal; while the p-values from the likelihood 

ratio tests suggested that pooling across gender, chronic conditions or age cannot be accepted, 

differences in the coefficients in the different groups often did not display clear patterns.  

DCE 2 – Equity weights for economic evaluation 

Chapter 5 used the DCE approach to evaluate an assumption built into the QALY model 

described in Chapter 1, namely the assumption that the Social Welfare Function over health 

is linear (meaning it is inequality-neutral) and symmetrical around the line of equality 

(meaning it ignores individual characteristics of the person receiving health gain). The 

evidence to date suggests the QALY model is a very simplified version of true preferences, 

“Rather than being linear in quality and length of life, it would seem that social value 

diminishes in marginal increments of both. And rather than being neutral to the 

characteristics of people other than their propensity to generate QALYs, the social 

value of a health improvement seems to be higher if the person has worse lifetime 

health prospects and higher if that person has dependents. In addition, there is a desire 

to reduce inequalities in health.” (Dolan, et al., 2005) ( p.197) 

In some regards, the discussion of what equity consists of matches the discussion in Chapter 

1 regarding what the best outcome regarding what the primary outcome of healthcare should 

be. Thus, it is inevitable that the equity of a situation depends on what dimension an 

individual believes should be equalised. While this is contentious, a decision had to be made 

for analysis, and I decided to focus on health outcome as the outcome of interest for the 

chapter.  

A DCE was designed, piloted and run using a representative online panel of Australian 

residents, and the methods described in Chapter 3 were applied to the data. The respondent 

was faced with two hypothetical health programs, benefitting different groups by different 

amounts. Thus, the linearity of utility with respect to health gain could be tested, as could the 

impact of the characteristics of the hypothetical patients. In addition, a sub-group analysis 

was undertaken identifying which survey respondent characteristics impacted on which 

valuations. For example, do smokers systematically differ from non-smokers in terms of how 

they value health gains accruing to smokers?  

The results from the DCE suggested that the average respondent was willing to trade-off 

some of the total (sum) health of the population to bring about a more equal distribution of 
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health. In addition, the characteristics of the person receiving the health gain seemed to 

matter. There was support for the concept of the Fair Innings (Williams, 1997), in that health 

gains accruing to respondents expected to live 75 years at baseline were valued relatively 

low. In addition, the average respondent was willing to discriminate in favour of carers and 

non-smokers. The sub-group analysis suggested that respondents tended to discriminate in 

favour of (hypothetical) people with similar characteristics to the respondent. This was true 

when the sub-group analysis was undertaken by smoking status, gender and carer status.  

The chapter concluded by discussing whether it is possible and worthwhile to formally 

incorporate these kinds of preferences into economic evaluation. To do so, I think that three 

things need to be true: 

1. Societal preferences ought to be some aggregation of individual preferences 

2. The results from my DCE truly represent preferences, and that the experiment 

captures all important characteristics 

3. That a formal integration of equity concerns into economic evaluation is preferable to 

the current, more informal approach, in which cost-effectiveness and equity concerns 

are presented in parallel and the decision maker balances the two 

My view is that there is enough uncertainty in each of these points to entail that the formal 

integration of equity weights into economic evaluation should not be undertaken. Point 2 is 

clearly a source of uncertainty that could be minimised or removed through further research; 

it remains moot whether points 1 and 3 reflect a convincing argument for the exclusion of this 

type of equity weight by themselves. However, I believe that they do not as standard 

economic evaluation, assuming an equity weight of 1 applying to all individuals, is similarly 

problematic (albeit more easily ignored).  

Summary of importance 

The analyses conducted in this thesis provide a number of important results and advances 

which can be of use in both methodological and applied discussions in the field. The use of 

the DCE to augment the framework of economic evaluation has been demonstrated in two 

different settings. A set of weights for the SF-6D has been constructed which can be used in 

economic evaluation immediately, and have the considerable strength of moving away from 

the Standard Gamble which, while well-ground in utility theory, imposes strong assumptions 

about the structure of individuals’ utility functions. A quantitative analysis of public views 
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with regards to equity was undertaken. This is an important advance over much of the 

existing literature, as it considers a range of often correlated factors and manages to draw out 

the impact of each on the value we place on health gain. The consideration of response 

heterogeneity offers an advance in the field too. It appears likely that the mean response 

under the various ways of considering heterogeneity remains stable; however, there are 

important conclusions reached about how people disagree, and what people are thinking 

when they answer this type of question. The tendency for people to prioritise programs that 

benefit people like themselves illustrates the need for a sensible approach to sampling the 

general population when considering contentious topics, and questions whether we should 

take public responses to stated preference surveys at face value.  

Some future directions 

One clear conclusion from this thesis is that, while the current approach to measuring and 

aggregating health outcomes for economic evaluation represents a reasonable approximation 

in many circumstances, there are other settings in which health and ill-health are not 

adequately captured (such as the cystic fibrosis example presented in the introductory 

chapter). Some of these which are outlined below represent future directions for this research.  

The first is the occurrence of very short periods of ill-health (or poor quality of life). Under 

the QALY model, the disutility of a period of time with poor quality of life (e.g. through 

pain) is proportional to the length of the period. However, this may not be the case. An 

example might be the use of dental anaesthesia; the period of time in poor health (i.e. extreme 

pain) is so short that the QALY loss would be negligible, and hence the societal willingness 

to pay would be very low. However, quite rightly, we as a society do fund these types of 

interventions. The question is whether we should put the QALY model to one side when 

considering these types of issues (which themselves are difficult to define) or whether the 

QALY model should adjust to reflect these issues. This is a question clearly amenable to the 

DCE approach used in this thesis. Brief periods of ill-health could be nested in longer periods 

of relatively better health, and the value placed on eliminating this short quality of life shock 

could be explored. 

A similar issue is that of end of life care. Under the QALY model, the capacity to benefit for 

individuals in a palliative care setting is low. In this case, is this spending rational? Should we 

be willing to sacrifice average health to provide expensive interventions to individuals in this 

setting? It is clearly an unpleasant issue, but one in which some would argue that the QALY 
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model is inadequate. Becker and colleagues (2007) have argued that end-of-life care is 

undervalued within a conventional QALY-type approach. While, there is likely to be general 

agreement that decisions should respect patients’ choices around end of life care, in economic 

evaluation, it is assumed that the trade-offs are the same as for any other person (both 

between aspects of quality of life, and between quality of life and life expectancy); thus the 

specific circumstances surrounding end of life decision making are not considered. The 

willingness (or otherwise) of people to undergo difficult and painful interventions to 

potentially extend their lives by a short (but valuable) period of time is an important topic, 

that has not been specifically addressed in the literature to date. Again, this is a question to 

which this type of analysis might be adapted. 

The use of DCEs to value health states is becoming more common place (Bansback, et al., 

2012; Viney, et al., 2011a). However, the pool of multi-attribute utility instruments that these 

techniques can potentially be applied to is increasing over time. A good example is the 5-

level EQ-5D (Herdman, et al., 2011; Janssen, et al., 2008b). In response to the relative 

insensitivity of the existing 3-level EQ-5D, the Euroqol group has developed a five level 

version. While the addition of levels to each dimension is likely to necessitate a larger design 

for the experiment (if a comparable set of effects are to be estimated), the techniques 

developed here are clearly relevant to the developing valuation work in this new subfield. 
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Appendix 1: HUI Mark 3 
Dimension Level  

Vision 1 Able to see well enough to read ordinary newsprint and 
recognize a friend on the other side of the street, without 
glasses or contact lenses. 

 2 Able to see well enough to read ordinary newsprint and 
recognize a friend on the other side of the street, but 
with glasses. 

 3 Able to read ordinary newsprint with or without glasses 
but unable to recognize a friend on the other side of the 
street, even with glasses. 

 4 Able to recognize a friend on the other side of the street 
with or without glasses but unable to read ordinary 
newsprint, even with glasses. 

 5 Unable to read ordinary newsprint and unable to 
recognize a friend on the other side of the street, even 
with glasses. 

 6 Unable to see at all. 
Hearing 1 Able to hear what is said in a group conversation with at 

least three other people, without a hearing aid. 
 2 Able to hear what is said in a conversation with one 

other person in a quiet room without a hearing aid, but 
requires a hearing aid to hear what is said in a group 
conversation with at least three other people. 

 3 Able to hear what is said in a conversation with one 
other person in a quiet room with a hearing aid, and able 
to hear what is said in a group conversation with at least 
three other people, with a hearing aid. 

 4 Able to hear what is said in a conversation with one 
other person in a quiet room, without a hearing aid, but 
unable to hear what is said in a group conversation with 
at least three other people even with a hearing aid.  

 5 Able to hear what is said in a conversation with one 
other person in a quiet room with a hearing aid, but 
unable to hear what is said in a group conversation with 
at least three other people even with a hearing aid. 

 6 Unable to hear at all. 
Speech 1 Able to be understood completely when speaking with 

strangers or friends. 
 2 Able to be understood partially when speaking with 

strangers but able to be understood completely when 
speaking with people who know me well. 

 3 Able to be understood partially when speaking with 
strangers or people who know me well. 

 4 Unable to be understood when speaking with strangers 
but able to be understood partially by people who know 
me well. 
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 5 Unable to be understood when speaking to other people 
(or unable to speak at all). 

Ambulation 1 Able to walk around the neighbourhood without 
difficulty, and without walking equipment. 

 2 Able to walk around the neighbourhood with difficulty; 
but does not require walking equipment or the help of 
another person. 

 3 Able to walk around the neighbourhood with walking 
equipment, but without the help of another person. 

 4 Able to walk only short distances with walking 
equipment, and requires a wheelchair to get around the 
neighbourhood. 

 5 Unable to walk alone, even with walking equipment. 
Able to walk short distances with the help of another 
person, and requires a wheelchair to get around the 
neighbourhood. 

 6 Cannot walk at all. 
Dexterity 1 Full use of two hands and ten fingers. 

 2 Limitations in the use of hands or fingers, but does not 
require special tools or help of another person. 

 3 Limitations in the use of hands or fingers, is independent 
with use of special tools (does not require the help of 
another person). 

 4 Limitations in the use of hands or fingers, requires the 
help of another person for some tasks (not independent 
even with use of special tools). 

 5 Limitations in use of hands or fingers, requires the help 
of another person for most tasks (not independent even 
with use of special tools). 

 6 Limitations in use of hands or fingers, requires the help 
of another person for all tasks (not independent even 
with use of special tools). 

Emotion 1 Happy and interested in life. 
 2 Somewhat happy. 
 3 Somewhat unhappy. 
 4 Very unhappy. 
 5 So unhappy that life is not worthwhile. 

Cognition 1 Able to remember most things, think clearly and solve 
day to day problems. 

 2 Able to remember most things, but have a little difficulty 
when trying to think and solve day to day problems. 

 3 Somewhat forgetful, but able to think clearly and solve 
day to day problems. 

 4 Somewhat forgetful, and have a little difficulty when 
trying to think or solve day to day problems. 

 5 Very forgetful, and have great difficulty when trying to 
think or solve day to day problems. 

 6 Unable to remember anything at all, and unable to think 
or solve day to day problems. 
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Pain 1 Free of pain and discomfort. 
 2 Mild to moderate pain that prevents no activities. 
 3 Moderate pain that prevents a few activities. 
 4 Moderate to severe pain that prevents some activities. 
 5 Severe pain that prevents most activities. 
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Appendix 2: The Assessment of Quality of Life instrument 
Illness  
1. Concerning my use of prescribed medicines: 
A I do not or rarely use any medicines at all 
B I use one or two medicinal drugs regularly 
C I need to use three or four medicinal drugs regularly 
D I use five or more medicinal drugs regularly 
2. To what extent do I rely on medicines or a medical aid? (NOT glasses or a hearing aid.) 
(For example: walking frame, wheelchair, prosthesis etc.) 
A I do not use any medicines and/or medical aids 
B I occasionally use medicines and/or medical aids 
C I regularly use medicines and/or medical aids 
D I have to constantly take medicines or use a medical aid 
3. Do I need regular medical treatment from a doctor or other health professional? 
A I do not need regular medical treatment 
B Although I have some regular medical treatment, I am not dependent on 

this 
C I am dependent on having regular medical treatment 
D My life is dependent upon regular medical treatment 
Independent 
living 

 

4. Do I need any help looking after myself? 
A I need no help at all 
B Occasionally I need some help with personal care tasks 
C I need help with the more difficult personal care tasks 
D I need daily help with most or all personal care tasks 
5. When doing household tasks: (For example, preparing food, gardening, using the video 
recorder, radio, telephone or washing the car) 
A I need no help at all 
B Occasionally I need some help with household tasks 
C I need help with the more difficult household tasks 
D I need daily help with most or all household tasks 
6. Thinking about how easily I can get around my home and community: 
A I get around my home and community by myself without any difficulty 
B I find it difficult to get around my home and community by myself 
C I cannot get around the community by myself, but I can get around my 

home with some difficulty 
D I cannot get around either the community or my home by myself 
Social 
relationships 

 

7. Because of my health, my relationships (For example: with my friends, partner or 
parents) generally: 
A Are very close and warm 
B Are sometimes close and warm 
C Are seldom close and warm 
D I have no close and warm relationships 
8. Thinking about my relationship with other people: 
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A I have plenty of friends, and am never lonely 
B Although I have friends, I am occasionally lonely 
C I have some friends, but am often lonely for company 
D I am socially isolated and feel lonely 
9. Thinking about my health and my relationship with my family: 
A My role in the family is unaffected by my health 
B There are some parts of my family role I cannot carry out 
C There are many parts of my family role I cannot carry out 
D I cannot carry out any part of my family role 
Physical 
senses 

 

10. Thinking about my vision, including when using my glasses or contact lenses if 
needed: 
A I see normally. 
B I have some difficulty focusing on things, or I do not see them sharply. 

For example: small print, a newspaper, or seeing objects in the distance 
C I have a lot of difficulty seeing things. My vision is blurred. For 

example: I can see just enough to get by with. 
D I only see general shapes, or am blind. For example: I need a guide to 

move around. 
11. Thinking about my hearing, including using my hearing 
aid if needed: 
A I hear normally 
B I have some difficulty hearing or I do not hear clearly. For example: I 

ask people to speak up, or turn up the TV or radio volume 
C I have difficulty hearing things clearly. For example: Often I do not 

understand what said. I usually do not take part in conversations because 
I cannot hear what is said 

D I hear very little indeed. For example: I cannot fully understand loud 
voices speaking directly to me 

12. When I communicate with others: (For example: by 
talking, listening, writing or signing) 
A I have no trouble speaking to them or understanding what they are 

saying 
B I have some difficulty being understood by people who do not know me. 

I have no trouble understanding what others are saying to me 
C I am only understood by people who know me well. I have great trouble 

understanding what others are saying to me 
D I cannot adequately communicate with others 
Psychological 
well-being 

 

13. If I think about how I sleep: 
A I am able to sleep without difficulty most of the time 
B My sleep is interrupted some of the time, but I am usually able to go 

back to sleep without difficulty 
C My sleep is interrupted most nights, but I am usually able to go back to 

sleep without difficulty 
D I sleep in short bursts only. I am awake most of the night 
14. Thinking about how I generally feel: 
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A I do not feel anxious, worried or depressed 
B I am slightly anxious, worried or depressed 
C I feel moderately anxious, worried or depressed 
D I am extremely anxious, worried or depressed 
15. How much pain or discomfort do I experience? 
A None at all 
B I have moderate pain 
C I suffer from severe pain 
D I suffer unbearable pain 
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Appendix 3: Final SF-6D DCE Design 
 
PF RL SF PA MH VI DUR PF RL SF PA MH VI DUR 

3 1 3 3 1 3 3 1 2 2 2 4 2 3 
5 2 3 0 3 3 3 1 1 3 4 2 2 2 
0 0 1 0 1 3 3 5 1 2 1 2 4 3 
2 0 3 2 4 4 2 3 0 1 1 3 2 2 
2 2 0 2 3 1 1 1 3 0 0 4 2 1 
4 3 1 0 4 4 4 1 1 3 4 2 2 2 
3 2 1 3 2 4 0 2 3 4 0 4 0 0 
2 2 3 5 4 1 0 2 1 4 2 0 2 6 
0 0 2 0 2 2 2 5 1 0 0 0 3 1 
3 3 2 1 1 3 2 4 0 1 3 0 1 3 
1 0 4 1 2 3 0 0 3 2 0 4 1 0 
1 3 2 1 0 4 1 1 0 0 1 2 1 5 
3 1 3 3 1 3 3 2 0 4 4 0 1 3 
5 2 3 0 3 3 3 4 0 0 4 4 0 4 
2 1 3 5 4 1 0 3 2 3 4 3 0 2 
5 3 3 5 0 3 4 5 3 0 0 2 1 6 
2 0 1 1 0 1 1 5 0 1 1 0 0 5 
5 2 0 4 2 1 5 4 3 0 3 0 0 5 
5 2 0 5 1 0 2 4 3 4 2 2 3 2 
3 2 3 4 3 0 2 3 2 0 1 4 4 6 
0 2 2 1 3 1 1 3 3 4 4 1 1 2 
4 0 2 0 1 0 1 5 3 4 1 2 2 0 
5 3 3 3 1 4 1 4 0 2 0 1 0 1 
3 0 4 1 2 0 3 1 2 2 2 4 2 3 
3 2 4 4 1 4 4 0 2 3 3 0 2 4 
1 1 4 5 2 1 3 2 2 0 5 1 4 3 
3 1 3 5 0 3 6 3 3 1 3 3 1 6 
1 3 2 3 4 3 4 4 1 0 3 2 3 3 
0 2 3 3 0 2 4 3 0 0 0 1 0 4 
1 0 0 1 2 1 5 0 1 2 4 1 4 5 
0 3 1 3 3 3 6 4 3 2 4 1 1 2 
1 3 0 2 0 4 6 5 2 1 4 1 2 6 
4 2 1 3 1 2 0 3 0 0 2 4 1 0 
1 1 4 5 2 1 3 0 0 1 0 1 3 3 
2 3 0 1 2 2 6 1 0 2 0 0 0 6 
3 0 1 0 0 2 3 0 2 2 3 4 4 3 
0 1 3 0 4 1 3 4 1 0 3 2 3 3 
1 0 1 2 4 0 4 4 1 4 1 2 1 4 
0 3 4 2 1 4 5 0 1 3 0 4 1 3 
0 1 0 2 0 0 1 2 2 1 4 1 3 1 
0 2 1 1 0 0 3 5 1 1 5 4 4 1 
1 3 3 5 3 4 5 4 0 4 3 4 3 5 
5 2 4 2 1 4 0 2 2 1 0 0 3 2 
0 0 3 4 3 2 1 0 3 4 0 0 2 2 
5 2 4 3 3 2 5 4 3 1 5 3 0 3 
4 3 3 2 1 1 3 5 1 2 1 2 4 3 
5 3 3 5 0 3 4 2 1 4 3 1 1 4 
4 1 4 2 3 0 4 2 2 0 5 1 4 3 
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4 1 3 1 0 3 1 0 2 1 1 0 0 3 
2 1 1 1 2 3 2 3 2 4 4 0 1 3 
1 3 1 2 3 1 2 4 3 1 0 4 4 4 
0 0 4 4 4 3 1 1 2 4 3 0 2 1 
4 1 1 1 4 2 5 3 0 1 0 0 2 3 
0 1 2 5 2 3 0 1 1 2 2 4 0 5 
0 1 2 5 2 3 0 0 0 0 3 3 2 6 
1 2 3 0 2 4 6 4 0 2 3 1 4 0 
3 1 1 2 4 4 1 4 3 2 4 1 1 2 
2 0 3 2 1 3 6 5 2 4 1 4 0 6 
1 1 1 3 4 3 2 0 2 2 1 3 1 1 
5 0 2 2 3 1 1 5 0 4 0 1 3 4 
1 0 4 2 0 4 4 1 1 4 1 3 0 3 
3 1 1 2 4 4 1 3 3 0 5 2 3 1 
4 2 3 5 4 2 5 1 0 1 2 3 3 5 
5 0 4 0 4 1 6 1 2 1 5 1 0 6 
3 0 2 2 0 2 3 1 2 4 5 0 4 4 
5 3 0 1 4 3 3 5 3 3 2 2 0 3 
4 3 3 2 1 1 3 1 3 3 1 1 1 4 
4 1 3 2 2 2 6 5 0 0 3 0 0 2 
3 3 3 3 2 0 5 5 2 1 2 0 1 5 
2 3 2 5 2 2 5 3 1 1 0 3 4 0 
2 0 2 4 2 3 6 3 3 1 3 3 1 6 
2 1 2 1 3 3 4 3 0 0 1 4 4 2 
0 0 3 4 3 2 1 3 2 4 3 2 0 1 
2 1 1 1 2 3 2 1 3 2 1 0 4 1 
5 2 4 3 3 2 5 2 0 4 4 0 1 3 
0 2 0 0 3 2 3 4 1 4 2 3 0 4 
5 3 2 4 4 2 1 3 3 0 5 2 3 1 
5 1 2 5 1 0 2 1 2 2 5 3 1 4 
1 3 3 1 1 1 4 4 1 1 1 4 2 5 
1 3 1 4 4 3 0 3 2 2 1 3 2 0 
5 3 0 1 4 3 3 0 2 1 5 0 1 4 
0 0 3 1 4 1 0 3 1 3 2 1 2 0 
0 3 4 1 0 4 2 1 2 3 0 1 0 2 
0 3 3 1 1 1 5 4 3 0 3 0 0 5 
0 0 1 3 3 4 5 2 0 3 3 0 2 5 
5 0 2 2 3 1 1 2 3 2 3 3 4 4 
0 0 3 3 4 0 4 4 2 2 4 0 3 4 
0 1 2 5 2 2 2 3 3 3 2 0 2 4 
4 0 2 3 1 4 0 0 3 4 2 1 3 6 
2 1 1 5 0 4 0 4 2 3 4 0 3 0 
3 1 4 0 3 3 5 4 2 3 5 4 2 5 
2 2 1 0 0 3 2 5 1 4 3 4 2 2 
2 3 0 1 4 2 4 0 0 3 3 4 0 4 
1 3 2 3 4 3 4 2 0 2 1 1 2 3 
4 3 4 5 3 2 0 2 3 4 0 4 0 0 
3 0 2 3 1 2 1 5 1 0 0 0 3 1 
1 2 3 0 2 4 6 5 1 0 4 3 3 0 
3 2 4 4 1 4 4 4 1 4 1 2 1 4 
2 2 2 2 4 3 3 1 3 0 3 2 4 3 
1 1 3 4 3 0 0 4 2 1 3 1 2 0 
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1 0 4 1 2 3 0 1 1 3 4 3 0 0 
2 0 0 4 1 0 0 3 3 4 5 0 3 5 
1 1 1 3 4 3 2 4 2 2 2 2 1 2 
2 0 0 4 1 0 0 3 3 2 1 1 3 2 
1 1 0 5 1 2 1 2 2 4 4 4 1 5 
0 0 4 4 4 3 1 2 2 4 4 4 1 5 
2 0 3 2 4 4 2 0 1 1 3 2 1 2 
2 3 2 3 3 0 6 3 0 2 4 2 4 5 
1 2 3 0 1 0 2 1 3 0 0 4 2 1 
1 0 1 2 3 3 5 5 0 1 1 0 0 5 
5 1 2 5 1 0 2 1 2 4 3 0 2 1 
0 1 0 0 1 4 4 3 2 0 2 3 3 4 
0 2 1 5 3 4 5 5 3 3 3 1 4 1 
2 2 4 5 1 0 1 4 3 1 4 2 0 1 
2 3 2 5 2 2 5 5 2 1 2 0 1 5 
5 1 0 4 3 3 0 4 1 2 4 0 4 6 
5 1 1 5 4 4 1 3 2 4 3 2 0 1 
2 2 0 2 3 1 1 0 3 2 2 0 0 0 
3 1 1 0 3 4 0 1 0 3 4 3 4 5 
3 3 4 5 0 3 5 1 1 4 4 3 4 3 
0 1 0 4 3 0 2 5 3 3 5 0 3 2 
0 2 0 0 3 2 3 2 3 3 4 3 0 3 
3 3 3 2 0 2 4 4 0 0 2 3 4 2 
0 2 1 5 4 3 6 1 2 0 3 0 1 0 
5 0 4 0 4 1 6 4 1 3 2 2 2 6 
0 3 4 2 1 3 6 2 3 0 1 2 2 6 
4 2 3 1 3 4 1 2 3 1 0 2 0 1 
3 3 3 5 4 1 1 5 2 2 0 3 2 4 
4 1 4 0 3 1 1 1 0 3 3 2 3 1 
4 2 3 1 3 4 1 3 3 3 5 4 1 1 
0 0 3 4 2 2 4 1 3 0 2 0 4 6 
5 0 1 2 2 4 4 0 3 4 2 1 4 5 
3 0 2 4 2 4 5 1 2 0 3 0 1 0 
0 3 2 2 0 0 0 5 2 4 2 1 4 0 
5 2 4 1 4 0 6 2 1 0 5 2 1 4 
5 1 2 3 1 1 5 0 3 0 4 0 4 5 
0 2 1 5 0 1 4 3 2 1 1 2 0 4 
5 0 4 0 1 3 4 1 1 0 5 1 2 1 
0 0 3 4 2 2 4 3 1 0 5 4 1 6 
4 3 4 5 3 2 0 5 1 3 1 0 4 0 
5 0 3 3 3 1 6 3 2 0 1 4 4 6 
5 1 2 3 1 1 5 2 0 1 1 0 1 1 
0 1 4 1 1 0 6 2 3 2 3 3 0 6 
3 1 0 5 4 1 6 4 2 2 0 2 4 6 
4 1 4 0 3 1 1 0 1 0 2 0 0 1 
3 1 3 5 0 3 6 5 3 4 1 2 2 0 
3 1 2 4 0 1 6 5 0 0 3 0 0 2 
0 2 4 2 2 0 1 0 3 4 0 0 2 2 
2 2 3 0 2 4 5 2 1 1 2 1 2 5 
5 3 2 5 3 0 0 1 0 4 0 2 2 0 
1 3 1 2 3 1 2 2 1 2 1 3 3 4 
1 1 2 2 4 0 5 2 1 0 5 2 1 4 
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3 0 2 2 0 2 3 3 2 4 4 0 1 3 
3 1 2 0 4 0 5 5 2 0 4 2 1 5 
0 3 4 1 0 4 2 4 2 0 5 4 2 2 
5 1 1 4 2 2 4 4 2 2 4 0 3 4 
1 3 1 4 1 2 6 0 1 0 0 1 4 4 
5 3 2 4 4 2 1 4 0 4 0 3 4 6 
0 0 3 1 4 1 0 1 0 4 0 2 2 0 
2 2 3 0 2 4 5 5 3 1 4 4 4 3 
4 3 0 0 3 3 5 2 0 2 1 1 2 3 
3 2 1 3 2 4 0 4 0 1 0 1 1 0 
2 1 1 5 0 4 0 0 2 0 2 2 3 0 
5 3 3 5 0 3 2 4 0 0 4 4 0 4 
4 0 0 2 3 4 2 4 3 1 4 2 0 1 
0 1 1 3 2 1 2 1 2 2 0 0 1 2 
0 3 1 3 3 3 6 2 1 4 2 0 2 6 
3 2 0 2 3 3 4 2 1 4 3 1 1 4 
3 1 3 2 1 2 0 4 2 3 4 0 3 0 
4 3 4 2 2 3 2 1 2 2 0 0 1 2 
2 1 0 3 0 0 0 1 3 1 4 4 3 0 
1 1 4 1 3 0 3 5 3 1 4 4 4 3 
1 2 0 1 1 3 5 0 2 4 2 2 0 1 
0 1 4 1 1 0 6 2 1 3 0 0 2 5 
1 1 4 4 3 4 3 3 2 1 1 2 0 4 
4 2 2 0 2 4 6 4 2 3 1 4 0 6 
4 2 2 2 2 1 2 2 3 3 0 3 4 2 
4 1 0 5 1 2 3 2 2 2 2 4 3 3 
2 3 1 0 2 0 1 4 3 0 0 3 3 5 
0 1 0 4 3 0 2 2 2 4 3 4 4 2 
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Appendix 4: SF-6D DCE Screen Shots 
 
Page 1 – Welcome 

 
 
Page 2 - Introduction 

 
 
Page 3 – Willingness to participate 
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Page 4 – Describing own health (SF6D) 
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Page 5 - Describing own health (EQ-5D) 
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Page 6 - Example 
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Pages 7-22 – The Choice Experiment 

 
 
Page 23 – Thanks and methods 
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Page 24 – Basic Information (I) 

 
 
Page 25 - Basic Information (II) 
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Page 26 – Basic Information (III) 

 
 
Page 27 – Basic Information (IV) 
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Page 28 – Basic Information (V) 

 
 
Page 29 – Basic Information (VI) 
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Page 30 – Basic Information (VII) 

 
 
Page 31 – Improving the survey and other feedback 
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Appendix 5: RE Probit and RE Logit Results under a Non-Linear Utility Function 

 RE Probit  RE Logit  
 Coefficient 

(Standard error) 
p-value Coefficient 

(Standard error) 
p-value 

duration 0.4674 (0.0189) 0.000 0.8153 (0.0335) 0.000 
dur_pf2 -0.0250 (0.0114) 0.028 -0.0449 (0.0194) 0.020 
dur_pf3 -0.0214 (0.0101) 0.034 -0.0458 (0.0173) 0.008 
dur_pf4 -0.0784 (0.0112) 0.000 -0.1407 (0.0194) 0.000 
dur_pf5 -0.0634 (0.0115) 0.000 -0.1170 (0.0198) 0.000 
dur_pf6 -0.1332 (0.0121) 0.000 -0.2399 (0.0210) 0.000 
dur_rl2 -0.0412 (0.0102) 0.000 -0.0665 (0.0173) 0.000 
dur_rl3 -0.0102 (0.0093) 0.275 -0.0071 (0.0160) 0.659 
dur_rl4 -0.0250 (0.0095) 0.008 -0.0447 (0.0161) 0.006 
dur_sf2 -0.0684 (0.0116) 0.000 -0.1209 (0.0201) 0.000 
dur_sf3 -0.0350 (0.0106) 0.001 -0.0715 (0.0179) 0.000 
dur_sf4 -0.0925 (0.0108) 0.000 -0.1579 (0.0183) 0.000 
dur_sf5 -0.0849 (0.0106) 0.000 -0.1475 (0.0181) 0.000 
dur_pa2 -0.0747 (0.0121) 0.000 -0.1097 (0.0207) 0.000 
dur_pa3 -0.1023 (0.0107) 0.000 -0.1617 (0.0181) 0.000 
dur_pa4 -0.0686 (0.0116) 0.000 -0.1169 (0.0197) 0.000 
dur_pa5 -0.1349 (0.0109) 0.000 -0.2359 (0.0188) 0.000 
dur_pa6 -0.1920 (0.0132) 0.000 -0.3206 (0.0226) 0.000 
dur_mh2 -0.0338 (0.0101) 0.001 -0.0625 (0.0173) 0.000 
dur_mh3 -0.0237 (0.0103) 0.021 -0.0449 (0.0174) 0.010 
dur_mh4 -0.1071 (0.0113) 0.000 -0.1900 (0.0193) 0.000 
dur_mh5 -0.1412 (0.0099) 0.000 -0.2479 (0.0170) 0.000 
dur_vi2 -0.0501 (0.0120) 0.000 -0.0911 (0.0204) 0.000 
dur_vi3 -0.0741 (0.0104) 0.000 -0.1290 (0.0176) 0.000 
dur_vi4 -0.0987 (0.0108) 0.000 -0.1701 (0.0184) 0.000 
dur_vi5 -0.1659 (0.0106) 0.000 -0.2882 (0.0182) 0.000 
constant -0.0057 (0.0110) 0.607 -0.0086 (0.0184) 0.640 
Duration2 -0.0197 (0.0012) 0.000 -0.0346 (0.0021) 0.000 
dur2_pf2 0.0021 (0.0007) 0.005 0.0038 (0.0013) 0.002 
dur2_pf3 0.0008 (0.0006) 0.217 0.0020 (0.0011) 0.068 
dur2_pf4 0.0031 (0.0007) 0.000 0.0057 (0.0012) 0.000 
dur2_pf5 0.003 (0.0008) 0.000 0.0058 (0.0013) 0.000 
dur2_pf6 0.0061 (0.0008) 0.000 0.0111 (0.0014) 0.000 
dur2_rl2 0.0020 (0.0007) 0.003 0.0034 (0.0011) 0.003 
dur2_rl3 -0.0003 (0.0006) 0.619 -0.0011 (0.0010) 0.288 
dur2_rl4 0.0010 (0.0006) 0.105 0.0017 (0.0010) 0.097 
dur2_sf2 0.0043 (0.0007) 0.000 0.0075 (0.0013) 0.000 
dur2_sf3 0.0024 (0.0007) 0.001 0.0045 (0.0012) 0.000 
dur2_sf4 0.0047 (0.0007) 0.000 0.0080 (0.0012) 0.000 
dur2_sf5 0.0042 (0.0007) 0.000 0.0074 (0.0012) 0.000 
dur2_pa2 0.0042 (0.0008) 0.000 0.0063 (0.0013) 0.000 
dur2_pa3 0.0052 (0.0007) 0.000 0.0081 (0.0012) 0.000 
dur2_pa4 0.0025 (0.0008) 0.001 0.0044 (0.0013) 0.001 
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dur2_pa5 0.0058 (0.0007) 0.000 0.0102 (0.0012) 0.000 
dur2_pa6 0.0094 (0.0008) 0.000 0.0156 (0.0014) 0.000 
dur2_mh2 0.0016 (0.0006) 0.013 0.0031 (0.0011) 0.005 
dur2_mh3 0.0010 (0.0006) 0.113 0.0022 (0.0011) 0.045 
dur2_mh4 0.0049 (0.0007) 0.000 0.0088 (0.0012) 0.000 
dur2_mh5 0.0063 (0.0006) 0.000 0.0113 (0.0011) 0.000 
dur2_vi2 0.0031 (0.0008) 0.000 0.0055 (0.0013) 0.000 
dur2_vi3 0.0042 (0.0007) 0.000 0.0072 (0.0012) 0.000 
dur2_vi4 0.0042 (0.0007) 0.000 0.0073 (0.0012) 0.000 
dur2_vi5 0.0084 (0.0007) 0.000 0.0147 (0.0011) 0.000 

/lnsig2u 
-12.4832 
(8.4301) -12.2185 (8.8422)  

sigma_u 0.0019 (0.0082) 0.0022 (0.0098)  
 0.0000 (0.0000) 0.0000 (0.0000)  

Log 
likelihood -8667 

-8639
 

AIC 17385 17387  
BIC 17789 17799  
* Coefficients in bold are statistically significant at the 1% level 
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Appendix 6: SF-6D DCE Subgroup Analysis (Gender) 
 

Coefficient
Standard
Error z P>z [95% Conf. Interval]

duration 0.193372 0.006103 31.69 0 0.181411 0.205334
dur_pf2 0.01062 0.003388 3.13 0.002 0.01726 0.00398
dur_pf3 0.01738 0.003355 5.18 0 0.02396 0.01081
dur_pf4 0.0305 0.003279 9.3 0 0.03692 0.02407
dur_pf5 0.02933 0.003433 8.55 0 0.03606 0.02261
dur_pf6 0.05858 0.00343 17.08 0 0.0653 0.05185
dur_rl2 0.01865 0.002981 6.26 0 0.0245 0.01281
dur_rl3 0.01463 0.002755 5.31 0 0.02003 0.00923
dur_rl4 0.02199 0.002888 7.61 0 0.02765 0.01633
dur_sf2 0.00405 0.003246 1.25 0.212 0.01041 0.00231
dur_sf3 0.00348 0.003042 1.14 0.253 0.00944 0.002482
dur_sf4 0.02162 0.002948 7.33 0 0.02739 0.01584
dur_sf5 0.02168 0.003139 6.91 0 0.02783 0.01553
dur_pa2 0.01476 0.003446 4.28 0 0.02152 0.00801
dur_pa3 0.03508 0.003208 10.93 0 0.04137 0.02879
dur_pa4 0.04066 0.003433 11.84 0 0.04739 0.03393
dur_pa5 0.05496 0.003292 16.7 0 0.06141 0.04851
dur_pa6 0.05292 0.003564 14.85 0 0.05991 0.04593
dur_mh2 0.01462 0.002954 4.95 0 0.02041 0.00883
dur_mh3 0.01377 0.002978 4.62 0 0.0196 0.00793
dur_mh4 0.03813 0.003037 12.56 0 0.04409 0.03218
dur_mh5 0.04981 0.002915 17.09 0 0.05553 0.0441
dur_vi2 0.000966 0.002959 0.33 0.744 0.00483 0.006766
dur_vi3 0.01028 0.003192 3.22 0.001 0.01654 0.00403
dur_vi4 0.03784 0.003086 12.26 0 0.04389 0.03179
dur_vi5 0.04713 0.003258 14.46 0 0.05351 0.04074
duration_f~e 0.008393 0.009507 0.88 0.377 0.01024 0.027026
dur_pf2_fem 0.00669 0.006218 1.08 0.282 0.01888 0.005495
dur_pf3_fem 0.0089 0.006399 1.39 0.164 0.02144 0.003638
dur_pf4_fem 0.01307 0.006047 2.16 0.031 0.02492 0.00122
dur_pf5_fem 0.00855 0.00612 1.4 0.162 0.02054 0.003445
dur_pf6_fem 0.00921 0.006234 1.48 0.14 0.02143 0.003009
dur_rl2_fem 0.00343 0.005318 0.64 0.519 0.01385 0.006997
dur_rl3_fem 0.00501 0.00507 0.99 0.323 0.01495 0.004927
dur_rl4_fem 0.000422 0.005136 0.08 0.935 0.00964 0.010487
dur_sf2_fem 0.000998 0.00532 0.19 0.851 0.00943 0.011426
dur_sf3_fem 0.010134 0.005734 1.77 0.077 0.0011 0.021372
dur_sf4_fem 0.00026 0.005596 0.05 0.963 0.01123 0.010706
dur_sf5_fem 0.008569 0.005349 1.6 0.109 0.00192 0.019053
dur_pa2_fem 0.00267 0.006136 0.44 0.663 0.00936 0.014697
dur_pa3_fem 0.00506 0.005959 0.85 0.396 0.01674 0.006621
dur_pa4_fem 0.00426 0.006133 0.69 0.487 0.01628 0.007761
dur_pa5_fem 0.0006 0.006184 0.1 0.923 0.01152 0.012719
dur_pa6_fem 0.00225 0.006632 0.34 0.735 0.01525 0.010749
dur_mh2_fem 0.01096 0.005803 1.89 0.059 0.02233 0.000417
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dur_mh3_fem 0.002236 0.005699 0.39 0.695 0.00893 0.013406
dur_mh4_fem 0.00747 0.005576 1.34 0.18 0.0184 0.00346
dur_mh5_fem 0.008475 0.005336 1.59 0.112 0.00198 0.018934
dur_vi2_fem 0.009103 0.005897 1.54 0.123 0.00246 0.020661
dur_vi3_fem 0.00546 0.005788 0.94 0.345 0.0168 0.005883
dur_vi4_fem 0.008548 0.005694 1.5 0.133 0.00261 0.019708
dur_vi5_fem 0.001624 0.005618 0.29 0.773 0.00939 0.012636
constant 0.001809 0.014226 0.13 0.899 0.02607 0.029692
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Appendix 7: SF-6D DCE Subgroup Analysis (Age) 
 
choice Coefficient Standard 

Error 
z P>z [95% 

Conf. 
Interval] 

duration 0.194223 0.005949 32.65 0 0.182562 0.205884
dur_pf2 0.0132 0.003296 4.01 0 0.01966 0.00674
dur_pf3 0.01986 0.003208 6.19 0 0.02615 0.01357
dur_pf4 0.02876 0.003166 9.08 0 0.03497 0.02256
dur_pf5 0.03274 0.003332 9.83 0 0.03927 0.02621
dur_pf6 0.0596 0.003318 17.96 0 0.06611 0.0531
dur_rl2 0.01976 0.002883 6.85 0 0.02541 0.01411
dur_rl3 0.01412 0.00267 5.29 0 0.01935 0.00889
dur_rl4 0.02306 0.002809 8.21 0 0.02857 0.01756
dur_sf2 0.0047 0.003169 1.48 0.138 0.01092 0.001506
dur_sf3 0.00311 0.002966 1.05 0.294 0.00893 0.002703
dur_sf4 0.01991 0.002829 7.04 0 0.02545 0.01436
dur_sf5 0.02319 0.003051 7.6 0 0.02917 0.01721
dur_pa2 0.01813 0.003335 5.44 0 0.02467 0.01159
dur_pa3 0.03461 0.00309 11.2 0 0.04066 0.02855
dur_pa4 0.04184 0.003383 12.37 0 0.04847 0.03521
dur_pa5 0.05899 0.003207 18.39 0 0.06528 0.05271
dur_pa6 0.05402 0.00347 15.57 0 0.06082 0.04722
dur_mh2 0.00938 0.002826 3.32 0.001 0.01492 0.00384
dur_mh3 0.01238 0.002846 4.35 0 0.01795 0.0068
dur_mh4 0.03463 0.002921 11.85 0 0.04035 0.0289
dur_mh5 0.04817 0.002806 17.17 0 0.05367 0.04268
dur_vi2 0.00237 0.002851 0.83 0.405 0.00796 0.003215
dur_vi3 0.00878 0.003104 2.83 0.005 0.01487 0.0027
dur_vi4 0.04117 0.003008 13.69 0 0.04706 0.03527
dur_vi5 0.04883 0.00317 15.41 0 0.05504 0.04262
duration_old 0.013855 0.010005 1.38 0.166 0.00576 0.033465
dur_pf2_old 0.01726 0.00646 2.67 0.008 0.02992 0.0046
dur_pf3_old 0.02091 0.006701 3.12 0.002 0.03405 0.00778
dur_pf4_old 0.00883 0.00634 1.39 0.164 0.02126 0.003597
dur_pf5_old 0.02273 0.006352 3.58 0 0.03518 0.01028
dur_pf6_old 0.01264 0.006507 1.94 0.052 0.0254 0.000111
dur_rl2_old 0.0089 0.005562 1.6 0.11 0.0198 0.002004
dur_rl3_old 0.0041 0.005324 0.77 0.441 0.01454 0.00633
dur_rl4_old 0.00203 0.005411 0.38 0.707 0.01264 0.008571
dur_sf2_old 0.00125 0.005682 0.22 0.826 0.01239 0.009886
dur_sf3_old 0.010691 0.006035 1.77 0.076 0.00114 0.022519
dur_sf4_old 0.004378 0.005826 0.75 0.452 0.00704 0.015796
dur_sf5_old 0.001904 0.005604 0.34 0.734 0.00908 0.012888
dur_pa2_old 0.01154 0.006409 1.8 0.072 0.0241 0.001023
dur_pa3_old 0.00657 0.00626 1.05 0.294 0.01884 0.005699
dur_pa4_old 0.01219 0.006313 1.93 0.053 0.02457 0.000179
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dur_pa5_old 0.01527 0.006427 2.38 0.018 0.02787 0.00267
dur_pa6_old 0.00608 0.006905 0.88 0.378 0.01962 0.00745
dur_mh2_old 0.009577 0.006041 1.59 0.113 0.00226 0.021418
dur_mh3_old 0.009355 0.005988 1.56 0.118 0.00238 0.021091
dur_mh4_old 0.005624 0.005849 0.96 0.336 0.00584 0.017088
dur_mh5_old 0.016298 0.005641 2.89 0.004 0.005242 0.027353
dur_vi2_old 0.00191 0.006126 0.31 0.756 0.01391 0.010102
dur_vi3_old 0.000624 0.006001 0.1 0.917 0.01114 0.012385
dur_vi4_old 0.00161 0.005894 0.27 0.785 0.01316 0.00994
dur_vi5_old 0.00494 0.005877 0.84 0.4 0.01646 0.006574
Constant 0.02681 0.013477 1.99 0.047 0.000395 0.053225
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Appendix 8: SF-6D DCE Subgroup Analysis (Chronic Conditions) 
 
 Coefficient Std. Err. z P>z [95% 

Conf. 
Interval] 

duration 0.195847 0.005838 33.54 0 0.184404 0.20729
dur_pf2 0.01217 0.003181 3.82 0 0.0184 0.00593
dur_pf3 0.01769 0.003127 5.66 0 0.02382 0.01156
dur_pf4 0.03089 0.003085 10.01 0 0.03693 0.02484
dur_pf5 0.03221 0.003216 10.02 0 0.03851 0.02591
dur_pf6 0.06097 0.003231 18.87 0 0.0673 0.05464
dur_rl2 0.01944 0.002816 6.9 0 0.02496 0.01392
dur_rl3 0.01403 0.002592 5.41 0 0.01911 0.00895
dur_rl4 0.02441 0.002712 9 0 0.02973 0.0191
dur_sf2 0.00578 0.003061 1.89 0.059 0.01178 0.000219
dur_sf3 0.00463 0.002832 1.64 0.102 0.01018 0.000918
dur_sf4 0.02136 0.002729 7.83 0 0.02671 0.01601
dur_sf5 0.02461 0.002964 8.3 0 0.03042 0.0188
dur_pa2 0.0141 0.003226 4.37 0 0.02043 0.00778
dur_pa3 0.03318 0.002993 11.08 0 0.03904 0.02731
dur_pa4 0.04047 0.003222 12.56 0 0.04679 0.03416
dur_pa5 0.0574 0.003095 18.54 0 0.06347 0.05133
dur_pa6 0.05265 0.003343 15.75 0 0.0592 0.0461
dur_mh2 0.01293 0.002764 4.68 0 0.01835 0.00751
dur_mh3 0.01366 0.002754 4.96 0 0.01906 0.00827
dur_mh4 0.03527 0.002876 12.27 0 0.04091 0.02964
dur_mh5 0.05145 0.002757 18.66 0 0.05686 0.04605
dur_vi2 0.00107 0.002721 0.39 0.695 0.0064 0.004266
dur_vi3 0.0091 0.003001 3.03 0.002 0.01498 0.00321
dur_vi4 0.04262 0.002914 14.63 0 0.04833 0.03691
dur_vi5 0.0487 0.003093 15.74 0 0.05477 0.04264
duration_c~c 0.028925 0.010834 2.67 0.008 0.007692 0.050158
dur_pf2_ch~c 0.01868 0.007145 2.61 0.009 0.03268 0.00468
dur_pf3_ch~c 0.01384 0.00719 1.92 0.054 0.02793 0.000257
dur_pf4_ch~c 0.0205 0.006766 3.03 0.002 0.03376 0.00723
dur_pf5_ch~c 0.02794 0.006993 4 0 0.04164 0.01423
dur_pf6_ch~c 0.02337 0.00713 3.28 0.001 0.03735 0.0094
dur_rl2_ch~c 0.00953 0.006069 1.57 0.116 0.02142 0.002368
dur_rl3_ch~c 0.00425 0.0057 0.75 0.456 0.01542 0.006921
dur_rl4_ch~c 0.0104 0.005807 1.79 0.073 0.02178 0.00098
dur_sf2_ch~c 0.00623 0.00608 1.02 0.305 0.01815 0.005685
dur_sf3_ch~c 0.009465 0.006372 1.49 0.137 0.00302 0.021954
dur_sf4_ch~c 0.000741 0.006274 0.12 0.906 0.01156 0.013038
dur_sf5_ch~c 0.00304 0.006116 0.5 0.619 0.01502 0.008949
dur_pa2_ch~c 0.003688 0.006993 0.53 0.598 0.01002 0.017393
dur_pa3_ch~c 0.0017 0.006947 0.25 0.806 0.01532 0.011912
dur_pa4_ch~c 0.00844 0.007018 1.2 0.229 0.02219 0.005321
dur_pa5_ch~c 0.01179 0.006938 1.7 0.089 0.02539 0.001808
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dur_pa6_ch~c 0.00459 0.007556 0.61 0.543 0.0194 0.010218
dur_mh2_ch~c 0.00909 0.006476 1.4 0.16 0.02179 0.003602
dur_mh3_ch~c 0.002356 0.006475 0.36 0.716 0.01034 0.015047
dur_mh4_ch~c 0.001556 0.006291 0.25 0.805 0.01077 0.013887
dur_mh5_ch~c 0.00454 0.006112 0.74 0.458 0.00744 0.016519
dur_vi2_ch~c 0.001425 0.006566 0.22 0.828 0.01144 0.014294
dur_vi3_ch~c 0.00294 0.006628 0.44 0.658 0.01593 0.010054
dur_vi4_ch~c 0.01287 0.006457 1.99 0.046 0.02552 0.00022
dur_vi5_ch~c 0.00732 0.006448 1.13 0.257 0.01995 0.005322
Constant 0.025302 0.01293 1.96 0.05 4.1E 05 0.050644
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Appendix 9: Equity Weights Experiment 
 
The first seven figures in each 14-digit row refer to the characteristics of the first group of 
potential respondents, the second seven figures refer to those of the second group of potential 
respondents. 
 
10001010100011,                   00011031101013,                   01110021011132,                   00100201000123,                    
00011001011001,                   00001001010003,                   00110201100020,                   11011230010123,                    
01011201111023,                   01101001010030,                   10101130000012,                   00110321001133,                    
11110320011102,                   11100110010101,                   00011211110121,                   11110300101131,                    
10101300110020,                   00110311001132,                   11100130100112,                   01000321000122,                    
11110020011112,                   00001111100001,                   10110200001123,                   10100100000111,                    
00010131101103,                   00011021110102,                   11100130010103,                   10001310100001,                    
11111200011010,                   11101110001111,                   01101211010011,                   01101331010023,                    
01111231101020,                   11010110001101,                   11010310001121,                   00000221010123,                    
01001021110003,                   01001131000023,                   10001010111101,                   11111000011030,                    
10101100000013,                   00010101101100,                   00101101110020,                   00111001001003,                    
01100221100123,                   10001030010000,                   00100001110130,                   01011031001033,                    
10011210101011,                   01100211001021,                   01011131111012,                   00110001111110,                    
00000301100100,                   10001020111102,                   00111101001013,                   00100211000120,                    
00110131001110,                   11000320000102,                   10100330000130,                   10111210001022,                    
01010111010011,                   10101200110010,                   11000120110113,                   01001111011111,                    
00001021010001,                   10101230110013,                   10000330010132,                   11100210100120,                    
10001210111121,                   01001321000002,                   01000021000132,                   00101301101130,                    
11011320111033,                   01100001010110,                   01111221011032,                   00110111001112,                    
01010121010012,                   00000301111030,                   00011131110113,                   10101010000000,                    
10110020111132,                   10001300100000,                   11000110000121,                   00100211110111,                    
01001031011103,                   01010201001130,                   11010110111110,                   01010011001111,                    
01100101100111,                   11110310011101,                   00010011011100,                   01010301010030,                    
10010000011101,                   00000221111022,                   11011100010110,                   00000311111031,                    
01001031110000,                   01000021110101,                   00010001011103,                   10101320000031,                    
01100231010133,                   00001201100010,                   01111331101030,                   11001030000033,                    
10111200001021,                   11010010001131,                   01111111011021,                   01011321111031,                    
10110300001133,                   00100011110131,                   00110201111130,                   11101120001112,                    
11001310000021,                   00011311011032,                   10001020010003,                   01111011101002,                    
00110001100000,                   11111130011003,                   10001130111113,                   01101311100030,                    
01100031010113,                   11101020100003,                   00001311100021,                   00000201100130,                    
11011130001023,                   10111300111000,                   00000321111032,                   01011001111003,                    
00010131011112,                   00100011000100,                   00010201011123,                   11000300000100,                    
11111010101000,                   11101220001122,                   01010311001101,                   01111331000133,                    
00110031100003,                   00011301011031,                   11101130010023,                   10001320010033,                    
01000131000103,                   00101311110001,                   11000210011021,                   00100031110133,                    
00011001110100,                   11000130110110,                   10100330110103,                   11110130101110,                    
00111321111022,                   10101220110012,                   11000030110100,                   01000311110130,                    
10110010111131,                   00101131101113,                   01101101010000,                   11000310011031,                    
01111231011033,                   10111310111001,                   10110300111120,                   11010030001133,                    
10011030101033,                   10111020100102,                   01100331100130,                   11100320010122,                    
10011130101003,                   11011010111002,                   11111020101001,                   10010220110022,                    
10100030101003,                   00000131111013,                   00110221111132,                   01110301101133,                    
10111220001023,                   11110120000012,                   01010211001131,                   10001230111123,                    
11110010101102,                   01111001000100,                   10110310111121,                   00010111011110,                    
01001131011113,                   00100321110122,                   10001000100010,                   00111331111023,                    
01000111110110,                   00011211011022,                   01100031100100,                   01010301111131,                    
11011300001000,                   00100111000110,                   01001101000020,                   11101130100010,                    
11101200001120,                   11010210111120,                   11100330100132,                   10111220111032,                    
11111230011013,                   00101021110012,                   01001311000001,                   01010321001102,                    
11011010010101,                   01010101010010,                   01010201010020,                   10110230111113,                    
01100111100112,                   01110111101110,                   00000011010102,                   10110000111130,                    
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01111011011011,                   11101330100030,                   01110011101100,                   11001210110020,                    
01011011111000,                   11000310000101,                   01011111111010,                   01110101011100,                    
01100021100103,                   00101331000030,                   10011220011021,                   11011200111021,                    
00111221001021,                   01110031101102,                   01011231001013,                   11110030011113,                    
00100021000101,                   00011231110123,                   00101021000003,                   01111311101032,                    
11000300011030,                   11110200011130,                   00101201101120,                   01001031000013,                    
11101200100021,                   01100321010102,                   11101110100012,                   10000030100133,                    
01000031000133,                   00110311111101,                   11000020110103,                   11101120010022,                    
11100220100121,                   11000220000132,                   01010211111122,                   11101320010002,                    
10001320111132,                   01010311111132,                   11110130011123,                   11010330111132,                    
00000031100113,                   11111130101012,                   11101000100001,                   11000120011012,                    
10010100011111,                   00101321101132,                   01111121000112,                   10111210111031,                    
01110301011120,                   00110011111111,                   01111311000131,                   00001321010031,                    
10001300111130,                   10010310101101,                   10010100110010,                   00011321011033,                    
01100221010132,                   01010221111123,                   11100320100131,                   10110120111102,                    
00101111000012,                   00011201011021,                   01011321001022,                   01001001110001,                    
01100211100122,                   10100230101023,                   11001020000032,                   00000231100133,                    
00010021011101,                   10101110110001,                   11011310010131,                   11000200000130,                    
10000300100120,                   10110100001113,                   10000020010101,                   10110120001111,                    
01000131110112,                   00000031010100,                   00000021010103,                   01111101000110,                    
11110200000020,                   10010020101112,                   10100310110101,                   11000000110101,                    
01101201100023,                   01010201111121,                   00110121001113,                   11011120001022,                    
10000000010103,                   11011310001001,                   10111300001031,                   01011211111020,                    
10001130010010,                   01100301100131,                   00001231100013,                   10100200000121,                    
01010321111133,                   00111001111030,                   11110010000001,                   01111201000120,                    
01001321011132,                   11011220010122,                   00111331001032,                   01010301001100,                    
01101301100033,                   00000101111010,                   00011221101032,                   00101231110033,                    
10111100111020,                   11000010110102,                   11010300001120,                   01010021111103,                    
10010330011130,                   01010001010000,                   10010100101120,                   11101320001132,                    
11100200100123,                   11000000000110,                   01010131111110,                   01001121000022,                    
11101330001133,                   00000131100123,                   00111211001020,                   11100120100111,                    
00001131100003,                   00011321101002,                   00101211000022,                   10111010100101,                    
01011021001032,                   01100301010100,                   10011100101000,                   00101001000001,                    
01000301000120,                   01011311001021,                   10000210010120,                   00101331110003,                    
00000001100110,                   10111020111012,                   00110021001103,                   00110121111122,                    
10100300000131,                   01111031011013,                   00100101110100,                   01100331010103,                    
10111230111033,                   11100110100110,                   10100110000112,                   10001230100033,                    
11011020001012,                   10011230011022,                   11000200110121,                   10101200000023,                    
10101120000011,                   11111200101023,                   01001201011120,                   10100320110102,                    
11100020100101,                   00101131000010,                   00110021111112,                   11100220010112,                    
00000101010111,                   00001131010012,                   01100001001000,                   00000231111023,                    
10110100111100,                   10010310110031,                   00000121100122,                   10101300000033,                    
10000000100130,                   01010221001132,                   01010131010013,                   01100321001032,                    
10010010011102,                   00011111101021,                   11001020110001,                   01101121100011,                    
01100021010112,                   10000100100100,                   11011320001002,                   00110321111102,                    
00101211101121,                   10011300011033,                   00000021111002,                   01010321010032,                    
01001231011123,                   11011110111012,                   11111030011033,                   10111300100130,                    
10010110101121,                   10100130110123,                   00000331111033,                   01111221000122,                    
01011121111011,                   10011010011000,                   00100311000130,                   00101221000023,                    
00010331101123,                   11101220100023,                   01110111011101,                   10100220110132,                    
11101010010011,                   00101121000013,                   01001221000032,                   10000310010130,                    
01011231111022,                   10010230110023,                   11011310111032,                   01100001100101,                    
00110131100013,                   10001030111103,                   00100321000131,                   00011021011003,                    
00000111100121,                   01111331011003,                   11010200001110,                   01101331100032,                    
00111231001022,                   00110211111131,                   10010230101133,                   11110320101133,                    
00011311110131,                   10111100100110,                   11101010001101,                   01100121001012,                    
01001011000011,                   11011120010112,                   00001331100023,                   00100231000122,                    
10001100100020,                   11101030010013,                   00010101011113,                   00110231100023,                    
01000201110123,                   01001231000033,                   00000221100132,                   10110110001110,                    
01000331110132,                   00000001111000,                   01011221111021,                   11000320011032,                    
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10111220100122,                   11101210100022,                   11010220111121,                   11010030111102,                    
01110131101112,                   11000210110122,                   10010030101113,                   10010020110002,                    
01100201001020,                   10000200010123,                   11010230001113,                   11010230111122,                    
00011031110103,                   10100220000123,                   11111110101010,                   00100121000111,                    
00011101110110,                   10111310100131,                   10111120111022,                   00111131001012,                    
11010130111112,                   11111210011011,                   00011031011000,                   10010110110011,                    
10111020001003,                   10011200011023,                   10111330111003,                   00000211111021,                    
01111121011022,                   01101131010003,                   00111121001011,                   00100301110120,                    
11010000111103,                   01011221001012,                   00010211101111,                   01000211000111,                    
11101300001130,                   01001211000031,                   01101111010001,                   01000231000113,                    
00101331101133,                   00101211110031,                   01100331001033,                   01011111001001,                    
10011330101023,                   10011310011030,                   00010201101110,                   11010000001130,                    
11000100011010,                   11011230111020,                   10111310001032,                   00001221100012,                    
11011200001030,                   10100020101002,                   10100210000122,                   10011020011001,                    
00000311100101,                   11001120000002,                   11010010111100,                   01101111100010,                    
00111321001031,                   10101210110011,                   11110210011131,                   00001201010023,                    
10111320001033,                   11010310111130,                   11100000010130,                   01001221110023,                    
10011230101013,                   11110030000003,                   00110331100033,                   00111211111011,                    
11111000101003,                   01010331010033,                   01101221010012,                   00101321110002,                    
00010121011111,                   11001200110023,                   01001021000012,                   11000330000103,                    
10100010101001,                   11100300010120,                   01100321100133,                   00011221011023,                    
01001211011121,                   11011000010100,                   11011130111010,                   11110330011103,                    
00011121101022,                   11010120111111,                   11110020101103,                   10111130111023,                    
11101020010012,                   01011301111033,                   10001210100031,                   11001200000010,                    
10000110010110,                   11000220110123,                   11011020010102,                   01000121000102,                    
01000221000112,                   00000011100111,                   01000001110103,                   11110100011120,                    
11100310100130,                   00110031001100,                   00101131110023,                   01110231101122,                    
00100311110121,                   11000110011011,                   11100100100113,                   00000301010131,                    
10100100110120,                   11110010011111,                   10001110111111,                   10011220101012,                    
11011300111031,                   01100301001030,                   00110011100001,                   01010221010022,                    
10111330001030,                   00011021101012,                   10100200110130,                   10100020110112,                    
01011001001030,                   00000211010122,                   00001121100002,                   00110201001121,                    
10111330100133,                   01010101001120,                   01110001101103,                   00000111111011,                    
01100311100132,                   10110200111110,                   01110131011103,                   00011231101033,                    
01100311010101,                   11000310110132,                   00111201001023,                   00000201010121,                    
01011301001020,                   01100031001003,                   10001120010013,                   10101330000032,                    
01101311010021,                   10111000100100,                   10110130001112,                   10101310110021,                    
00001031010002,                   01110221101121,                   00001101010013,                   01110211011111,                    
10010130110013,                   10010010110001,                   10010000101110,                   10100310101031,                    
01111131101010,                   01001121011112,                   10100320000133,                   11011110010111,                    
00111221111012,                   11001130110012,                   11111300101033,                   11011330001003,                    
10000320010131,                   00101031101103,                   11000220011022,                   00100331110123,                    
10011120101002,                   00100221000121,                   11111330011023,                   11011210001031,                    
11011010001011,                   01100131100110,                   11111120101011,                   00011011011002,                    
01010211010021,                   11110000011110,                   00101111110021,                   01001111000021,                    
00100301000133,                   01001331110030,                   01000321110131,                   00001011010000,                    
00100201110110,                   11000020011002,                   11010100001100,                   11011220001032,                    
00110101001111,                   10010020011103,                   00111311001030,                   11100100010100 
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Appendix 10: Equity Weights for Economic Evaluation DCE 
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Page 3: Introduction to Task 
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Page 20: Response Approach 
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Appendix 11: Equity Weights gender subgroup analysis 

. xtprobit  choice gain_linear gain_female  gain_highy gain_smoker gain_healthylife 
gain_iscarer gain_le45 gain_le60 gain_le75 if xfemale==1 

Random-effects probit regression                Number of obs      =      4960 
Group variable: rid                             Number of groups   =       310 

Random effects u_i ~ Gaussian                   Obs per group: min =        16 
                                                               avg =      16.0 
                                                               max =        16 

                                                Wald chi2(9)       =    644.28 
Log likelihood  = -3050.8707                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------
 gain_linear |   .1111325   .0094197    11.80   0.000     .0926702    .1295948 
 gain_female |   .0239103   .0032582     7.34   0.000     .0175244    .0302962 
  gain_highy |  -.0130041   .0037676    -3.45   0.001    -.0203884   -.0056199 
 gain_smoker |  -.0785796   .0045065   -17.44   0.000    -.0874123    -.069747 
gain_healt~e |   .0168215   .0061817     2.72   0.007     .0047056    .0289374 
gain_iscarer |   .0338543   .0036594     9.25   0.000      .026682    .0410267 
   gain_le45 |   .0148267   .0074287     2.00   0.046     .0002668    .0293866 
   gain_le60 |   .0134473    .008386     1.60   0.109    -.0029889    .0298836 
   gain_le75 |  -.0073072    .007515    -0.97   0.331    -.0220363     .007422 
       _cons |  -.0418168   .0187353    -2.23   0.026    -.0785372   -.0050963 
-------------+----------------------------------------------------------------
    /lnsig2u |  -12.80738   10.46768                     -33.32366    7.708892 
-------------+----------------------------------------------------------------
     sigma_u |   .0016554   .0086643                      5.81e-08    47.20246 
         rho |   2.74e-06   .0000287                      3.37e-15    .9995514 
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =  7.3e-04 Prob >= chibar2 = 0.489 

. xtprobit  choice gain_linear gain_female  gain_highy gain_smoker gain_healthylife 
gain_iscarer gain_le45 gain_le60 gain_le75 if xfemale==0 

Random-effects probit regression                Number of obs      =      3888 
Group variable: rid                             Number of groups   =       243 

Random effects u_i ~ Gaussian                   Obs per group: min =        16 
                                                               avg =      16.0 
                                                               max =        16 

                                                Wald chi2(9)       =    395.32 
Log likelihood  = -2469.0481                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------
 gain_linear |   .1113947   .0100268    11.11   0.000     .0917425     .131047 
 gain_female |   -.022065   .0036625    -6.02   0.000    -.0292433   -.0148866 
  gain_highy |  -.0025508    .004237    -0.60   0.547    -.0108553    .0057536 
 gain_smoker |  -.0706042   .0050771   -13.91   0.000    -.0805551   -.0606533 
gain_healt~e |   .0133035   .0070414     1.89   0.059    -.0004973    .0271043 
gain_iscarer |   .0288022   .0040804     7.06   0.000     .0208048    .0367996 
   gain_le45 |   .0164388    .007991     2.06   0.040     .0007768    .0321008 
   gain_le60 |   .0046851   .0092158     0.51   0.611    -.0133775    .0227476 
   gain_le75 |  -.0130698   .0081605    -1.60   0.109    -.0290642    .0029246 
       _cons |  -.0267959   .0208508    -1.29   0.199    -.0676627    .0140708 
-------------+----------------------------------------------------------------
    /lnsig2u |  -12.39348   17.55597                     -46.80255    22.01559 
-------------+----------------------------------------------------------------
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     sigma_u |   .0020361   .0178725                      6.87e-11    60342.57 
         rho |   4.15e-06   .0000728                      4.72e-21           1 
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =  2.0e-04 Prob >= chibar2 = 0.494 

*** Equity Weights gender subgroup analysis *** 

. xtprobit  choice gain_linear gain_female  gain_highy gain_smoker gain_healthylife 
gain_iscarer gain_le45 gain_le60 gain_le75 if xfemale==1 

Random-effects probit regression                Number of obs      =      4960 
Group variable: rid                             Number of groups   =       310 

Random effects u_i ~ Gaussian                   Obs per group: min =        16 
                                                               avg =      16.0 
                                                               max =        16 

                                                Wald chi2(9)       =    644.28 
Log likelihood  = -3050.8707                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------
 gain_linear |   .1111325   .0094197    11.80   0.000     .0926702    .1295948 
 gain_female |   .0239103   .0032582     7.34   0.000     .0175244    .0302962 
  gain_highy |  -.0130041   .0037676    -3.45   0.001    -.0203884   -.0056199 
 gain_smoker |  -.0785796   .0045065   -17.44   0.000    -.0874123    -.069747 
gain_healt~e |   .0168215   .0061817     2.72   0.007     .0047056    .0289374 
gain_iscarer |   .0338543   .0036594     9.25   0.000      .026682    .0410267 
   gain_le45 |   .0148267   .0074287     2.00   0.046     .0002668    .0293866 
   gain_le60 |   .0134473    .008386     1.60   0.109    -.0029889    .0298836 
   gain_le75 |  -.0073072    .007515    -0.97   0.331    -.0220363     .007422 
       _cons |  -.0418168   .0187353    -2.23   0.026    -.0785372   -.0050963 
-------------+----------------------------------------------------------------
    /lnsig2u |  -12.80738   10.46768                     -33.32366    7.708892 
-------------+----------------------------------------------------------------
     sigma_u |   .0016554   .0086643                      5.81e-08    47.20246 
         rho |   2.74e-06   .0000287                      3.37e-15    .9995514 
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =  7.3e-04 Prob >= chibar2 = 0.489 

. xtprobit  choice gain_linear gain_female  gain_highy gain_smoker gain_healthylife 
gain_iscarer gain_le45 gain_le60 gain_le75 if xfemale==0 

Random-effects probit regression                Number of obs      =      3888 
Group variable: rid                             Number of groups   =       243 

Random effects u_i ~ Gaussian                   Obs per group: min =        16 
                                                               avg =      16.0 
                                                               max =        16 

                                                Wald chi2(9)       =    395.32 
Log likelihood  = -2469.0481                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------
 gain_linear |   .1113947   .0100268    11.11   0.000     .0917425     .131047 
 gain_female |   -.022065   .0036625    -6.02   0.000    -.0292433   -.0148866 
  gain_highy |  -.0025508    .004237    -0.60   0.547    -.0108553    .0057536 
 gain_smoker |  -.0706042   .0050771   -13.91   0.000    -.0805551   -.0606533 
gain_healt~e |   .0133035   .0070414     1.89   0.059    -.0004973    .0271043 
gain_iscarer |   .0288022   .0040804     7.06   0.000     .0208048    .0367996 
   gain_le45 |   .0164388    .007991     2.06   0.040     .0007768    .0321008 
   gain_le60 |   .0046851   .0092158     0.51   0.611    -.0133775    .0227476 
   gain_le75 |  -.0130698   .0081605    -1.60   0.109    -.0290642    .0029246 
       _cons |  -.0267959   .0208508    -1.29   0.199    -.0676627    .0140708 
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-------------+----------------------------------------------------------------
    /lnsig2u |  -12.39348   17.55597                     -46.80255    22.01559 
-------------+----------------------------------------------------------------
     sigma_u |   .0020361   .0178725                      6.87e-11    60342.57 
         rho |   4.15e-06   .0000728                      4.72e-21           1 
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =  2.0e-04 Prob >= chibar2 = 0.494 
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Appendix 12: Equity Weights smoker subgroup analysis 

. xtprobit choice gain_linear gain_female  gain_highy gain_smoker gain_healthylife 
gain_iscarer gain_le45 gain_le60 gain_le75 if  xsmoke==1 

Random-effects probit regression                Number of obs      =      1648 
Group variable: rid                             Number of groups   =       103 

Random effects u_i ~ Gaussian                   Obs per group: min =        16 
                                                               avg =      16.0 
                                                               max =        16 

                                                Wald chi2(9)       =    100.83 
Log likelihood  = -1086.1773                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------
 gain_linear |   .0533637   .0147216     3.62   0.000     .0245098    .0822175 
 gain_female |  -.0048422   .0053825    -0.90   0.368    -.0153918    .0057074 
  gain_highy |    -.01023   .0062774    -1.63   0.103    -.0225334    .0020734 
 gain_smoker |  -.0011038   .0071969    -0.15   0.878    -.0152095    .0130019 
gain_healt~e |    .031724   .0099927     3.17   0.001     .0121386    .0513093 
gain_iscarer |   .0248583   .0060857     4.08   0.000     .0129305    .0367861 
   gain_le45 |   .0162594   .0124474     1.31   0.191    -.0081371    .0406559 
   gain_le60 |   .0218542   .0139462     1.57   0.117    -.0054799    .0491883 
   gain_le75 |    .005134   .0122681     0.42   0.676     -.018911     .029179 
       _cons |  -.0784653   .0315832    -2.48   0.013    -.1403673   -.0165633 
-------------+----------------------------------------------------------------
    /lnsig2u |  -15.69052   18.36266                     -51.68067    20.29963 
-------------+----------------------------------------------------------------
     sigma_u |   .0003916   .0035954                      5.99e-12    25586.38 
         rho |   1.53e-07   2.82e-06                      3.59e-23           1 
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =     0.00 Prob >= chibar2 = 1.000 

. xtprobit choice gain_linear gain_female  gain_highy gain_smoker gain_healthylife 
gain_iscarer gain_le45 gain_le60 gain_le75 if  xsmoke==2 

Random-effects probit regression                Number of obs      =      2384 
Group variable: rid                             Number of groups   =       149 

Random effects u_i ~ Gaussian                   Obs per group: min =        16 
                                                               avg =      16.0 
                                                               max =        16 

                                                Wald chi2(9)       =    254.46 
Log likelihood  = -1502.9223                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------
 gain_linear |   .1056183   .0135427     7.80   0.000     .0790751    .1321615 
 gain_female |  -.0046569    .004775    -0.98   0.329    -.0140156    .0047019 
  gain_highy |  -.0020351   .0055389    -0.37   0.713    -.0128911    .0088209 
 gain_smoker |  -.0778522    .006557   -11.87   0.000    -.0907037   -.0650006 
gain_healt~e |   .0167515   .0090112     1.86   0.063    -.0009101     .034413 
gain_iscarer |   .0308998   .0053467     5.78   0.000     .0204205    .0413791 
   gain_le45 |   .0182201    .011002     1.66   0.098    -.0033434    .0397837 
   gain_le60 |    .003862   .0122108     0.32   0.752    -.0200707    .0277947 
   gain_le75 |  -.0048195   .0106837    -0.45   0.652    -.0257592    .0161201 
       _cons |  -.0283684   .0272208    -1.04   0.297    -.0817202    .0249835 
-------------+----------------------------------------------------------------
    /lnsig2u |  -5.637662   3.685329                     -12.86077    1.585451 
-------------+----------------------------------------------------------------
     sigma_u |   .0596757   .1099623                      .0016118     2.20941 
         rho |   .0035485   .0130312                      2.60e-06    .8299751 
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------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =     0.08 Prob >= chibar2 = 0.391 

. xtprobit choice gain_linear gain_female  gain_highy gain_smoker gain_healthylife 
gain_iscarer gain_le45 gain_le60 gain_le75 if  xsmoke==3 

Random-effects probit regression                Number of obs      =      4800 
Group variable: rid                             Number of groups   =       300 

Random effects u_i ~ Gaussian                   Obs per group: min =        16 
                                                               avg =      16.0 
                                                               max =        16 

                                                Wald chi2(9)       =    716.52 
Log likelihood  = -2880.9742                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------
 gain_linear |   .1480773   .0098186    15.08   0.000     .1288333    .1673213 
 gain_female |   .0073785   .0033866     2.18   0.029     .0007409     .014016 
  gain_highy |  -.0134026   .0039067    -3.43   0.001    -.0210596   -.0057457 
 gain_smoker |  -.1042372   .0048601   -21.45   0.000    -.1137628   -.0947117 
gain_healt~e |   .0066006   .0066532     0.99   0.321    -.0064394    .0196407 
gain_iscarer |   .0376087   .0037742     9.96   0.000     .0302113     .045006 
   gain_le45 |   .0038155   .0074531     0.51   0.609    -.0107922    .0184233 
   gain_le60 |   .0030792   .0084886     0.36   0.717    -.0135583    .0197166 
   gain_le75 |  -.0210496   .0076711    -2.74   0.006    -.0360847   -.0060144 
       _cons |  -.0238383    .019246    -1.24   0.215    -.0615597    .0138831 
-------------+----------------------------------------------------------------
    /lnsig2u |  -13.61361   15.01698                     -43.04634    15.81912 
-------------+----------------------------------------------------------------
     sigma_u |   .0011062    .008306                      4.49e-10    2723.194 
         rho |   1.22e-06   .0000184                      2.02e-19    .9999999 
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =  3.0e-04 Prob >= chibar2 = 0.493 
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Appendix 13: Equity Weights carer status subgroup analysis 

. xtprobit choice gain_linear gain_female  gain_highy gain_smoker gain_healthylife 
gain_iscarer gain_le45 gain_le60 gain_le75 if xcarer==1 

Random-effects probit regression                Number of obs      =      1744 
Group variable: rid                             Number of groups   =       109 

Random effects u_i ~ Gaussian                   Obs per group: min =        16 
                                                               avg =      16.0 
                                                               max =        16 

                                                Wald chi2(9)       =    208.34 
Log likelihood  = -1088.2375                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------
 gain_linear |    .095296   .0157386     6.05   0.000     .0644489    .1261431 
 gain_female |   .0092815   .0054569     1.70   0.089    -.0014137    .0199768 
  gain_highy |  -.0120714   .0064099    -1.88   0.060    -.0246345    .0004917 
 gain_smoker |  -.0738925   .0073305   -10.08   0.000    -.0882601   -.0595248 
gain_healt~e |   .0042248   .0102024     0.41   0.679    -.0157716    .0242211 
gain_iscarer |   .0489755    .006133     7.99   0.000      .036955     .060996 
   gain_le45 |   .0153945   .0127333     1.21   0.227    -.0095623    .0403514 
   gain_le60 |   .0093859   .0141401     0.66   0.507    -.0183281       .0371 
   gain_le75 |  -.0107986   .0128213    -0.84   0.400    -.0359279    .0143307 
       _cons |  -.0551244     .03152    -1.75   0.080    -.1169025    .0066536 
-------------+----------------------------------------------------------------
    /lnsig2u |  -14.11102    23.8034                     -60.76482    32.54279 
-------------+----------------------------------------------------------------
     sigma_u |   .0008626   .0102669                      6.38e-14    1.17e+07 
         rho |   7.44e-07   .0000177                      4.08e-27           1 
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =     0.00 Prob >= chibar2 = 1.000 

. xtprobit choice gain_linear gain_female  gain_highy gain_smoker gain_healthylife 
gain_iscarer gain_le45 gain_le60 gain_le75 if xcarer==2 

Random-effects probit regression                Number of obs      =      7088 
Group variable: rid                             Number of groups   =       443 

Random effects u_i ~ Gaussian                   Obs per group: min =        16 
                                                               avg =      16.0 
                                                               max =        16 

                                                Wald chi2(9)       =    778.35 
Log likelihood  = -4459.2897                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------
      choice |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------------
 gain_linear |   .1158256   .0076241    15.19   0.000     .1008827    .1307685 
 gain_female |   .0010243   .0027105     0.38   0.705    -.0042882    .0063369 
  gain_highy |  -.0085474   .0031335    -2.73   0.006     -.014689   -.0024059 
 gain_smoker |  -.0743339   .0037643   -19.75   0.000    -.0817118    -.066956 
gain_healt~e |   .0183744   .0051797     3.55   0.000     .0082223    .0285264 
gain_iscarer |   .0287044   .0030414     9.44   0.000     .0227434    .0346655 
   gain_le45 |    .009064   .0061107     1.48   0.138    -.0029129    .0210408 
   gain_le60 |   .0072691   .0069074     1.05   0.293    -.0062692    .0208074 
   gain_le75 |  -.0108814   .0061109    -1.78   0.075    -.0228585    .0010957 
       _cons |  -.0300547   .0155115    -1.94   0.053    -.0604567    .0003473 
-------------+----------------------------------------------------------------
    /lnsig2u |  -12.46204   9.573827                      -31.2264    6.302312 
-------------+----------------------------------------------------------------
     sigma_u |   .0019674    .009418                      1.66e-07    23.36306 
         rho |   3.87e-06   .0000371                      2.75e-14    .9981713 
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------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =  9.8e-04 Prob >= chibar2 = 0.487 
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Appendix 14: Variance Covariance Matrices (Utility Function A) 
 
Variance Covariance Matrix for Model A5 

Mean 
(se) 

Gain Female High 
Income

Smoker Healthy 
Lifestyle

Carer Life 
expect 

45 

Life 
expect 

60 

Life 
expect 

75 
Gain 0.701 

(0.053)
*** 

        

Female -0.014 
(0.020)

0.267 
(0.017) 

*** 

       

High 
Income 

-0.024 
(0.020)

-0.054 
(0.019) 

*** 

-0.212 
(0.018) 

*** 

      

Smoker -0.176 
(0.042)

*** 

-0.085 
(0.029) 

*** 

0.008 
(0.039)

-0.437 
(0.030) 

*** 

     

Healthy 
Lifestyle 

-0.052 
(0.030)

* 

0.023 
(0.027) 

0.034 
(0.028)

0.062 
(0.037) 

* 

0.211 
(0.029) 

*** 

    

Carer 0.045 
(0.019)

** 

-0.016 
(0.022) 

0.089 
(0.022) 

*** 

0.027 
(0.020) 

-0.018 
(0.022) 

-0.269 
(0.019)

*** 

   

Life 
expect 

45 

-0.200 
(0.033)

*** 

0.006 
(0.032) 

-0.028 
(0.033)

0.042 
(0.030) 

0.038 
(0.033) 

0.137 
(0.030)

*** 

0.208 
(0.030) 

*** 

  

Life 
expect 

60 

-0.344 
(0.040)

*** 

-0.029 
(0.035) 

0.022 
(0.039) 

 

0.122 
(0.036) 

*** 

0.088 
(0.036) 

** 

0.158 
(0.038)

*** 

0.242 
(0.034) 

*** 

0.173 
(0.033)

*** 

 

Life 
expect 

75 

-0.487 
(0.046)

*** 

-0.109 
(0.037) 

*** 

-0.030 
(0.047)

0.135 
(0.047) 

*** 

0.266 
(0.040) 

*** 

0.263 
(0.045)

*** 

0.222 
(0.039) 

*** 

0.352 
(0.039)

*** 

0.099 
(0.052)

* 
Statistical significance noted at the 1% level (***), the 5% level (**) and the 10% level (*)  
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Variance Covariance Matrix for Model A6 
Mean 

(standard 
error) 

Gain Female High 
Income

Smoker Healthy 
Lifestyle

Carer Life 
expect 

45 

Life 
expect 

60 

Life 
expect 

75 
Gain -1.577 

(0.312)
*** 

        

Female 0.075 
(0.025)

*** 

0.746 
(0.15) 
*** 

       

High 
Income 

-0.225 
(0.05) 
*** 

-0.027 
(0.017) 

0.363 
(0.071) 

*** 

      

Smoker -0.316 
(0.065)

*** 

-0.363 
(0.091) 

*** 

-0.346 
(0.07) 
*** 

0.743 
(0.154) 

*** 

     

Healthy 
Lifestyle 

0.345 
(0.072)

*** 

0.273 
(0.073) 

*** 

0.163 
(0.047) 

*** 

0.32 
(0.08) 
*** 

0.167 
(0.05) 
*** 

    

Carer 0.063 
(0.034)

* 

-0.095 
(0.033) 

*** 

-0.591 
(0.121) 

*** 

-0.345 
(0.076) 

*** 

0.472 
(0.093) 

*** 

-0.257 
(0.048) 

*** 

   

Life 
expect 

45 

0.283 
(0.073)

*** 

0.022 
(0.052) 

0.331 
(0.072) 

*** 

0.085 
(0.049) 

* 

-0.062 
(0.041) 

0.32 
(0.068) 

*** 

0.596 
(0.121) 

*** 

  

Life 
expect 

60 

0.788 
(0.157)

*** 

0.1 
(0.056) 

* 

0.535 
(0.122) 

*** 

0.258 
(0.088) 

*** 

0.175 
(0.055) 

*** 

0.54 
(0.105) 

*** 

0.633 
(0.13) 
*** 

0.327 
(0.069)

*** 

 

Life 
expect 

75 

1.087 
(0.22) 
*** 

0.12 
(0.057) 

** 

0.753 
(0.157) 

*** 

0.369 
(0.102) 

*** 

0.475 
(0.11) 
*** 

1.087 
(0.218) 

*** 

0.589 
(0.13) 
*** 

0.855 
(0.19) 
*** 

-0.375 
(0.089)

*** 
Statistical significance noted at the 1% level (***), the 5% level (**) and the 10% level (*) 
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Appendix 15: Variance Covariance Matrices (Utility Function B) 
 
Variance Covariance Matrix for Model B5 

Mean 
(standard 

error) 

Gain Female High 
Income

Smoker Healthy 
Lifestyle

Carer Life 
expect 

45 

Life 
expect 

60 

Life 
expect 

75 
Gain 0.678 

(0.054)
*** 

        

Female -0.013 
(0.021)

0.261 
(0.017) 

*** 

       

High 
Income 

-0.012 
(0.020)

-0.051 
(0.021) 

** 

-0.207 
(0.018) 

*** 

      

Smoker -0.156 
(0.043)

*** 

-0.077 
(0.030) 

** 

0.008 
(0.035)

-0.427 
(0.029) 

*** 

     

Healthy 
Lifestyle 

-0.050 
(0.031)

 

0.025 
(0.029) 

0.038 
(0.028)

0.059 
(0.035) 

* 

0.197 
(0.030) 

*** 

    

Carer 0.038 
(0.019)

* 

-0.013 
(0.024) 

0.087 
(0.023) 

*** 

0.023 
(0.020) 

-0.020 
(0.023) 

-0.259 
(0.019) 

*** 

   

Life 
expect 

45 

-0.207 
(0.034)

*** 

0.002 
(0.032) 

-0.029 
(0.032)

0.034 
(0.029) 

0.033 
(0.033) 

0.135 
(0.029) 

*** 

0.205 
(0.031) 

*** 

  

Life 
expect 

60 

-0.351 
(0.041)

*** 

-0.029 
(0.034) 

0.013 
(0.039)

0.109 
(0.034) 

*** 

0.083 
(0.036) 

** 

0.157 
(0.036) 

*** 

0.235 
(0.033) 

*** 

0.164 
(0.032)

*** 

 

Life 
expect 

75 

-0.485 
(0.046)

*** 

-0.106 
(0.039) 

*** 

-0.035 
(0.052)

0.120 
(0.044) 

*** 

0.258 
(0.039) 

*** 

0.265 
(0.043) 

*** 

0.215 
(0.038) 

*** 

0.345 
(0.038)

*** 

0.094 
(0.057)

* 
Statistical significance noted at the 1% level (***), the 5% level (**) and the 10% level (*)  
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Variance Covariance Matrix for Model B6 

Mean 
(standard 

error) 

Gain Female High 
Income

Smoker Healthy 
Lifestyle

Carer Life 
expect 

45 

Life 
expect 

60 

Life 
expect 

75 
Gain -2.426 

(0.434)
*** 

        

Female 0.021 
(0.035)

1.013 
(0.178) 

*** 

       

High 
Income 

-0.098 
(0.041)

** 

-0.208 
(0.046) 

*** 

0.387 
(0.071) 

*** 

      

Smoker 1.076 
(0.192)

*** 

-0.382 
(0.077) 

*** 

0.524 
(0.101) 

*** 

-1.404 
(0.250) 

*** 

     

Healthy 
Lifestyle 

0.268 
(0.084)

*** 

0.267 
(0.066) 

*** 

0.475 
(0.106) 

*** 

0.360 
(0.075) 

*** 

-0.320 
(0.067) 

*** 

    

Carer -0.292 
(0.068)

*** 

-0.127 
(0.039) 

*** 

-0.510 
(0.100) 

*** 

-0.156 
(0.041) 

*** 

-0.380 
(0.064) 

*** 

0.573 
(0.100) 

*** 

   

Life 
expect 

45 

0.634 
(0.132)

*** 

-0.04 
(0.065) 

0.366 
(0.078) 

*** 

0.242 
(0.065) 

*** 

0.445 
(0.101) 

*** 

0.284 
(0.074) 

*** 

0.322 
(0.086) 

*** 

  

Life 
expect 

60 

1.137 
(0.207)

*** 

-0.094 
(0.064) 

0.564 
(0.113) 

*** 

0.588 
(0.118) 

*** 

0.712 
(0.140) 

*** 

0.288 
(0.073) 

*** 

0.275 
(0.071) 

*** 

0.729 
(0.130)

*** 

 

Life 
expect 

75 

1.768 
(0.324)

*** 

-0.027 
(0.073) 

1.122 
(0.203) 

*** 

0.971 
(0.184) 

*** 

0.678 
(0.124) 

*** 

0.478 
(0.111) 

*** 

-0.153 
(0.062) 

** 

1.205 
(0.203)

*** 

-0.379 
(0.090)

*** 
Statistical significance noted at the 1% level (***), the 5% level (**) and the 10% level (*)



 

301 
 

Bibliography 

 

Addelman S. 1961. Irregular fractions of the 2n factorial. Technometrics 4: 479-496. 

Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions 
on Automatic Control 19: 716-723. 

Arora N, Huber J. 2001. Improving parameter estimates and model prediction by 
aggregate customization in choice experiments. Journal of Consumer 
Research 28: 273-283. 

Arrow KJ. 1963. Uncertainty and the welfare economics of medical care. American 
Economic Review 53: 941-973. 

Arrow KJ. 1950. A difficulty in the concept of social welfare. Journal of Political 
Economy 58: 328-346. 

Arrow KJ, Lind RC. 1970. Uncertainty and the evaluation of public investment 
decisions. American Economic Review 60: 364-378. 

Attema AE, Brouwer W. 2010. The value of correcting values: Influence and 
importance of correcting tto scores for time preference. Value in Health 13: 
879-884. 

Augustovski FA, Irazola VE, Velazquez AP, Gibbons L, Craig BM. 2009. Argentine 
valuation of the EQ-5D health states. Value in Health 12: 587-596. 

Australian Bureau of Statistics. Tobacco smoking in australia: A snapshot, 2004-05 
Australian Bureau of Statistics: Canberra, 2006a. 

Australian Bureau of Statistics. 2006 census data by location (accessed 12th october 
2011). Australian Bureau of Statistics: Canberra, 2006b. 

Australian Bureau of Statistics. Population clock (accessed 12/10/11). Australian 
Bureau of Statistics: Canberra, 2011. 

Australian Bureau of Statistics. Education and training indicators, australia, 2002. 
Canberra, 2002. 

Australian Bureau of Statistics. Population projections, australia, 2004 to 2101 
(3222.0). Australian Bureau of Statistics: Canberra, 2005. 



 

 302

Australian Bureau of Statistics. Household income and income distribution, australia, 
2005-06. Canberra, 2007. 

Badia X, Roset M, Herdman M, Kind P. 2001. A comparison of united kingdom and 
spanish general population time trade-off values for EQ-5D health states. 
Medical Decision Making 21: 7-16. 

Badia X, Roset M, Monserrat S, Herdman M. The spanish vas tariff based on 
valuation of EQ-5D health states from the general population (euroqol 
plenary meeting 2-3 october 1997). Rotterdam, 1997. 

Bala MV, Zarkin GA, Mauskopf JA. 2002. Conditions for the near equivalence of 
cost-effectiveness and cost-benefit analyses. Value in Health 5: 338-346. 

Bansback N, Brazier J, Tsuchiya A, Anis A. 2012. Using a discrete choice experiment 
to estimate societal health state utility values. Journal of Health Economics 
31: 306-318. 

Barton GR, Sach TH, Avery AJ, Jenkinson C, Doherty M, Whynes DK, et al. 2008. A 
comparison of the performance of the EQ-5D and SF-6D for individuals aged 
> 45 years. Health Economics 17: 815-832. 

Becker G, Murphy K, Philipson T. The value of life near its end and terminal care. 
National Bureau of Economic Research: Cambridge, MA, 2007. 

Ben-Akiva M, Lerman S. 1985. Discrete choice analysis: Theory and application to 
travel demand. MIT: Cambridge. 

Bentham J. 1789. An introduction to the principle of morals and legislation. 1948 ed. 
Blackwell: Oxford. 

Bhat C. 2001. Quasi-random maximum simulated likelihood estimation of the mixed 
multinomial logit model. Transportation Research Part B 35: 677-693. 

Birch S, Donaldson C. 2003. Valuing the benefits and costs of health care 
programmes: Where's the 'extra' in extra-welfarism? Social Science and 
Medicine 56: 1121-1133. 

Bleichrodt H, Diecidue E, Quiggin J. 2004. Equity weights in the allocation of health 
care: The rank-dependent qaly model. Journal of Health Economics 23: 157-
171. 

Bleichrodt H, Doctor J, Stolk E. 2005. A nonparametric elicitation of the equity-
efficiency trade-off in cost-utility analysis. Journal of Health Economics 24: 
655-678. 



 

 303

Bleichrodt H, Johannesson M. 1997. The validity of qalys: An experimental test of 
constant proportional tradeoff and utility independence. Medical Decision 
Making 17: 21-32. 

Bleichrodt N, Wakker P, Johannesson M. 1997. Characterizing qalys by risk 
neutrality. Journal of Risk and Uncertainty 15: 107-114. 

Boatwright P, Nunes JC. 2001. Reducing assortment: An attribute-based approach. 
Journal of Marketing 65: 50-63. 

Bognar G. 2008. Age-weighting. Economics and Philosophy 24: 167-189. 

Bowling A. 2005. Mode of questionnaire administration can have serious effects on 
data quality. Journal of Public Health (Oxford) 27: 281-291. 

Box GEP, Hunter WG, Hunter JS. 1978. Statistics for experimenters:An introduction 
to design, data analysis and model building. John Wiley & Sons: New York. 

Boyle MH, Torrance GW, Sinclair JC, Horwood SP. 1983. Economic evaluation of 
neonatal intensive care of very-low-birth-weight infants. New England 
Journal of Medicine 308: 1330-1337. 

Bradley RA, Terry ME. 1952. Rank analysis of incomplete block designs. I. The 
method of paired comparisons. Biometrika 39: 324-345. 

Brazier J, Ratcliffe J, Salomon JA, Tsuchiya A. 2007. Measuring and valuing health 
benefits for economic evaluation. Oxford University Press: Oxford. 

Brazier J, Roberts J. 2004. The estimation of a preference-based measure of health 
from the sf-12. Medical Care 42: 851-859. 

Brazier J, Roberts J, Deverill M. 2002. The estimation of a preference-based measure 
of health from the SF-36. Journal of Health Economics 21: 271-292. 

Brazier J, Roberts J, Tsuchiya A, Busschbach J. 2004. A comparison of the EQ-5D 
and SF-6D across seven patient groups. Health Economics 13: 873-884. 

Brazier JE, Fukuhara S, Roberts J, Kharroubi S, Yamamoto Y, Ikeda S, et al. 2009. 
Estimating a preference-based index from the japanese SF-36. Journal of 
Clinical Epidemiology 62: 1323-1331. 

Brooks R, Rabin R, De Charro F. 2003. The measurement and valuation of health 
statis using EQ-5D: A european perspective. Kluwer Academic Press: 
Dordrecht. 

Broome J. 1991. Weighting goods. Blackwell: Oxford. 



 

 304

Brouwer WB, Culyer AJ, van Exel NJ, Rutten FF. 2008. Welfarism vs. Extra-
welfarism. Journal of Health Economics 27: 325-338. 

Bunch DS, Louviere J, Anderson D. A comparison of experimental design strategies 
for multinomial logit models: The case of generic attributes. University of 
California, Davis, 1996. 

Burgess L, Street D. 2006. The optimal size of choice sets in choice experiments. 
Statistics 40: 507-515. 

Burgess L, Street DJ, Wasi N. In Press. Comparing designs for choice experiments 
using various models: A case study. Journal of Statistical Theory and 
Practice. 

Canadian Agency for Drugs and Technologies in Health. Guidelines for the economic 
evaluation of health technologies: Canada. Ottawa, 2006. 

Carlsson F, Martinsson P. 2003. Design techniques for stated preference methods in 
health economics. Health Economics 12: 281-294. 

Chapman RG, Staelin R. 1982. Exploring rank ordered choice set data within the 
stochastic utility model. Journal of Marketing Research 19: 288-301. 

Charny MC, Lewis PA, Farrow SC. 1989. Choosing who shall not be treated in the 
nhs. Social Science and Medicine 28: 1331-1338. 

Claes C, Greiner W, Uber A, Graf von der Schulenburg JM. An interview-based 
comparison of the tto and vas values given to euroqol states of health by the 
general german population (euroqol plenary meeting 1-2 october 1998). Uni-
Verlag Witte: University of Hannover, 1999. 

Cleemput I. Economic evaluation in renal transplantation: Outcome assessment and 
cost-utility of non-compliance. Katholieke Universiteit Leuven: Leuven, 2003. 

Coast J. 2009. Maximisation in extra-welfarism: A critique of the current position in 
health economics. Social Science and Medicine 69: 786-792. 

Coast J, Flynn TN, Salisbury C, Louviere J, Peters TJ. 2006. Maximising responses to 
discrete choice experiments: A randomised trial. Applied Health Economics 
and Health Policy 5: 249-260. 

Cochran WG, Chambers SP. 1965. The planning of observational studies of human 
populations. Journal of the Royal Statistical Society (Series A (General)) 128: 
234-266. 



 

 305

Culyer AJ. 1989. The normative economics of health care finance and provision. 
Oxford Review of Economic Policy 5: 34-58. 

Culyer AJ. 1991. The normative economics of health care finance and provision. In 
Providing health care: The economics of alternative systems of finance and 
delivery, McGuire A, Fenn P, Mayhew K, (eds.). OUP: Oxford. 

Cystic Fibrosis Australia. Cystic fibrosis in australia 2007 - 10th annual report from 
the australian cystic fibrosis data registry. Cystic Fibrosis Australia: Sydney, 
2009. 

Daniels N. 1988. Am i my parents' keeper? An essay on justice between the young and 
the old. Oxford University Press: London. 

de Bekker-Grob EW, Ryan M, Gerard K. 2012. Discrete choice experiments in health 
economics: A review of the literature. Health Economics 21: 145-172. 

Deaton A, Muellbauer J. 1980. Economics and consumer behaviour. Cambridge 
University Press: Cambridge. 

Department of Health and Ageing. Guidelines for preparing submissions to the 
pharmaceutical benefits advisory committee (version 4.2) 
(http://www.Health.Gov.Au/internet/main/publishing.Nsf/content/pbacguidelin
es-index). Canberra, 2007. 

Department of Health and Ageing. Funding for new medical technologies and 
procedures: Application and assessment guidelines. Department of Health and 
Ageing: Canberra, 2005. 

Devlin N, Tsuchiya A, Buckingham K, Tilling C. 2011. A uniform time trade off 
method for states better and worse than dead: Feasibility study of the 'lead 
time' approach. Health Economics 20: 348-361. 

Devlin NJ, Hansen P, Kind P, Williams A. 2003. Logical inconsistencies in survey 
respondents' health state valuations -- a methodological challenge for 
estimating social tariffs. Health Economics 12: 529-544. 

Dey A. 1985. Orthogonal fractional factorial designs. Wiley: New York. 

Dolan P. 1997. Modelling valuations for euroqol health states. Medical Care 35: 
1095-1108. 

Dolan P. 1996. Modelling valuations for health states: The effect of duration. Health 
Policy 38: 189-203. 



 

 306

Dolan P. 2011. Thinking about it: Thoughts about health and valuing qalys. Health 
Economics 20: 1407-1416. 

Dolan P, Cookson R, Ferguson B. 1999. Effect of discussion and deliberation on the 
public's views of priority setting in health care: Focus group study. BMJ 318: 
916-919. 

Dolan P, Gudex C, Kind P, Williams A. 1996. The time trade-off method: Results 
from a general population study. Health Economics 5: 141-154. 

Dolan P, Gudex C, Kind P, Williams A. 1995. A social tariff for euroqol: Results 
from a UK general population study.Centre for health economics york 
discussion paper no. 138. Centre for Health Economics: York. 

Dolan P, Kahneman D. 2008. Interpretations of utility and their implications for the 
valuation of health. The Economic Journal 118: 215-234. 

Dolan P, Shaw R, Tsuchiya A, Williams A. 2005. Qaly maximisation and people's 
preferences: A methodological review of the literature. Health Economics 14: 
197-208. 

Dolan P, Tsuchiya A. 2009. The social welfare function and individual responsibility: 
Some theoretical issues and empirical evidence. Journal of Health Economics 
28: 210-220. 

Donaldson C. 1998. The (near) equivalence of cost-effectiveness and cost-benefit 
analyses. Fact or fallacy? Pharmacoeconomics 13: 389-396. 

Drukker DM, Gates R. 2006. Generating halton sequences using mata. The STATA 
Journal 6: 214-228. 

Drummond M, O'Brien BJ, Stoddart GL, Torrance GW. 2004. Methods for the 
economic evaluation of health care programmes. Oxford Medical 
Publications: Oxford. 

Dworkin R. 1977. Taking rights seriously. Harvard University Press: Cambridge. 

Dworkin R. 1981a. What is equality? Part 2: Equality of resources. Philosophy and 
Public Affairs 10: 283-345. 

Dworkin R. 1981b. What is equality? Part 1: Equality of welfare. Philosophy and 
Public Affairs 10: 185-246. 

Eisenberg D, Freed GL. 2007. Reassessing how society prioritizes the health of young 
people. Health Affairs 26: 345-354. 



 

 307

El Helbawy AT, Bradley RA. 1978. Treatment contrasts in paired comparisons: 
Large-sample results, applications and some optimal designs. Journal of the 
American Statistical Association 73: 831-839. 

Fanshel S, Bush J. 1970. A health status index and its application to health service 
outcomes. Operations Research 18: 1021-1066. 

Feeny D, Furlong W, Boyle M, Torrance GW. 1995. Multi-attribute health status 
classification systems. Health utilities index. Pharmacoeconomics 7: 490-502. 

Feeny D, Furlong W, Torrance GW, Goldsmith CH, Zhu Z, DePauw S, et al. 2002. 
Multiattribute and single-attribute utility functions for the health utilities index 
mark 3 system. Medical Care 40: 113-128. 

Feldstein M. 1963. Economic analysis, operational research, and the national health 
service. Oxford Economic Papers 15 (March): 19-31. 

Ferreira L, Ferreira P, Pereira L, Brazier J. 2008. An application of the SF-6D to 
create heath values in portuguese working age adults. Journal of Medical 
Economics 11: 215-233. 

Ferrini S, Scarpa R. 2007. Designs with a priori information for non-market valuation 
with choice experiments: A monte carlo study. Journal of Environmental 
Economics and Management 53: 342-363. 

Fiebig D, Keane M, Louviere J, Wasi N. 2010. The generalized multinomial logit 
model: Accounting for scale and coefficient heterogeneity. Marketing Science 
29: 393-421. 

Fisher I. 1918. Is "utility" the most suitable term for the concept it is used to denote? 
American Economic Review 8: 335. 

Fisher RA. 1935. The design of experiments. MacMillan: Hampshire, U.K. 

Fisher RA. 1925. Statistical methods for research workers. Oliver and Boyd: 
Edinburgh. 

Flynn T. 2010. Using conjoint analysis to estimate health state values for cost-utility 
analysis: Issues to consider. Pharmacoeconomics 28: 711-722. 

Flynn TN, Louviere JJ, Marley AA, Coast J, Peters TJ. 2008. Rescaling quality of life 
values from discrete choice experiments for use as qalys: A cautionary tale. 
Population Health Metrics 6: 6. 



 

 308

Flynn TN, Louviere JJ, Peters TJ, Coast J. 2010. Using discrete choice experiments to 
understand preferences for quality of life. Variance-scale heterogeneity 
matters. Social Science and Medicine 70: 1957-1965. 

Gafni A. 1994. The standard gamble method: What is being measured and how it is 
interpreted. Health Services Research 29: 207-224. 

Gan TJ, Lubarsky DA, Flood EM, Thanh T, Mauskopf J, Mayne T, et al. 2004. 
Patient preferences for acute pain treatment. British Journal of Anaesthesia 
92: 681-688. 

Gold M. 1996. Cost-effectiveness in health and medicine. OUP: New York. 

Golicki D, Jakubczyk M, Niewada M, Wrona W, Busschbach JJ. 2010. Valuation of 
EQ-5D health states in poland: First tto-based social value set in central and 
eastern europe. Value in Health 13: 289-297. 

Gonçalves Campolina A, Bruscato Bortoluzzo A, Bosi Ferraz M, Mesquita Ciconelli 
R. 2009. Validity of the SF-6D index in brazilian patients with rheumatoid 
arthritis. Clinical and Experimental Rheumatology 27: 237-245. 

Greene W. 2003. Econometric analysis. 5th Edition ed. Prentice Hall: Saddle River. 

Greene WH, Hensher DA. 2011. Does scale heterogeneity across individuals matter? 
An empirical assessment of alternative logit models. Transportation 37: 413-
428. 

Greiner W, Claes C, Busschbach JJ, Graf von der Schulenburg JM. 2005. Validating 
the EQ-5D with time trade off for the german population. European Journal of 
Health Economics 6: 124-130. 

Greiner W, Weijnen T, Nieuwenhuizen M, Oppe S, Badia X, Busschbach J, et al. 
2003. A single european currency for EQ-5D health states. Results from a six-
country study. European Journal of Health Economics 4: 222-231. 

Gu Y, Hole AR, Knox S. 2011. Estimating the generalized multinomial logit model in 
stata (unpublished manuscript). 

Gyrd-Hansen D, Sogaard J. 2001. Analysing public preferences for cancer screening 
programmes. Health Economics 10: 617-634. 

Haas M. 2005. The impact of non-health attributes of care on patients' choice of gp. 
Australian Journal of Primary Health 11: 40-46. 



 

 309

Hakim Z, Pathak DS. 1999. Modelling the euroqol data: A comparison of discrete 
choice conjoint and conditional preference modelling. Health Economics 8: 
103-116. 

Hall J, Fiebig DG, King MT, Hossain I, Louviere JJ. 2006a. What influences 
participation in genetic carrier testing? Results from a discrete choice 
experiment. Journal of Health Economics 25: 520-537. 

Hall J, Gafni A, Birch S. Health economics critiques of welfarism and their 
compatibility with sen’s capabilities approach. Chere working paper series 
2006/16. Sydney, 2006b. 

Harberger AC. 1971. Three basic postulates for applied welfare economics: An 
interpretative essay. Journal of Economic Literature 9: 785-797. 

Harris K, Keane M. 1999. A model of health plan choice: Inferring preferences and 
perceptions from a combination of revealed preference and attitudinal data. 
Journal of Econometrics 89: 131-157. 

Hausman DM, McPherson MS. 1996. Economic analysis and moral philosophy. 
Cambridge University Press: Cambridge. 

Hausman J, Wise D. 1978. A conditional probit model for qualitative choice: Discrete 
decisions recognising interdependence and heterogeneous preferences. 
Econometrica: 403-429. 

Hawthorne G, Osborne R. 2005. Population norms and meaningful differences for the 
assessment of quality of life (aqol) measure. Australian and New Zealand 
Journal of Public Health 29: 136-142. 

Hawthorne G, Richardson J, Day NA. 2001. A comparison of the assessment of 
quality of life (aqol) with four other generic utility instruments. Annals of 
Medicine 33: 358-370. 

Hawthorne G, Richardson J, Day NA, Osborne R, McNeil H. Construction and utility 
scaling of the assessment of quality of life (aqol) instrument. Monash 
University: Melbourne, 2000. 

Hawthorne G, Richardson J, Osborne R. 1999. The assessment of quality of life (aqol) 
instrument: A psychometric measure of health-related quality of life. Quality 
of Life Research 8: 209-224. 

Hensher DA, Louviere JJ, Swait J. 1999. Combining sources of preference data. 
Journal of Economics 89: 197-221. 



 

 310

Herdman M, Gudex C, Lloyd A, Janssen MF, Kind P, Parkin D, et al. 2011. 
Development and preliminary testing of the new five-level version of EQ-5D 
(EQ-5D-5l). Quality of Life Research 20: 1727-1736. 

Hicks JR. 1939. The foundations of welfare economics. The Economic Journal 49: 
696-712. 

Hildreth C, Houck JP. 1968. Some estimators for a model with random coefficients. 
Journal of American Statistical Association 63: 584-595. 

Hole A. 2007a. Fitting mixed logit models by using maximum simulated likelihood. 
The STATA Journal 7: 388-401. 

Hole AR. 2007b. A comparison of approaches to estimating confidence intervals for 
willingness to pay measures. Health Economics 16: 827-840. 

Hole AR. 2008. Modelling heterogeneity in patients' preferences for the attributes of a 
general practitioner appointment. Journal of Health Economics 27: 1078-
1094. 

Horsman J, Furlong W, Feeny D, Torrance G. 2003. The health utilities index (hui): 
Concepts, measurement properties and applications. Health and Quality of 
Life Outcomes 1: 54. 

Huber J, Zwerina K. 1996. The importance of utility balance in efficient choice 
designs. Journal of Marketing Research 33: 307-317. 

Hurley J. 2000. An overview of the normative economics of the health sector. In 
Handbook of health economics, Culyer AJ, Newhouse JP, (eds.). Elsevier: 
Amsterdam. 

Iyengar SS, Lepper MR. 2000. When choice is demotivating: Can one desire too 
much of a good thing? Journal of Personality and Social Psychology 79: 995-
1006. 

Janssen MF, Birnie E, Bonsel GJ. 2008a. Quantification of the level descriptors for 
the standard EQ-5D three-level system and a five-level version according to 
two methods. Quality of Life Research 17: 463-473. 

Janssen MF, Birnie E, Haagsma JA, Bonsel GJ. 2008b. Comparing the standard EQ-
5D three-level system with a five-level version. Value in Health 11: 275-284. 

Jelsma J, Hansen K, De Weerdt W, De Cock P, Kind P. 2003. How do zimbabweans 
value health states? Population Health Metrics 1: 11. 



 

 311

Jo MW, Yun SC, Lee SI. 2008. Estimating quality weights for EQ-5D health states 
with the time trade-off method in south korea. Value in Health 11: 1186-1189. 

Johannesson M, Johansson PO. 1997. Is the valuation of a qaly gained independent of 
age? Some empirical evidence. Journal of Health Economics 16: 589-599. 

Kahneman D, Tversky A. 1979. Prospect theory: An analysis of decision under risk. 
Econometrica 47: 263-291. 

Kahneman D, Tversky A. 1982. The psychology of preferences. Scientific American 
Journal I: 160-173. 

Kanninen B. 2002. Optimal designs for multinomial choice experiments. Journal of 
Marketing Research 39: 214-217. 

Kant I. 1785 (translation 1959). Foundations of the metaphysics of morals (translated 
by lewis white beck). Library of Liberal Arts: 

Kaplan RM, Tally S, Hays RD, Feeny D, Ganiats TG, Palta M, et al. 2011. Five 
preference-based indexes in cataract and heart failure patients were not equally 
responsive to change. Journal of Clinical Epidemiology 64: 497-506. 

Keane M, Wasi N. Comparing alternative models of heterogeneity in consumer 
choice behavior. UNSW Working Paper Series, available at 
http://research.economics.unsw.edu.au/mkeane/MM-MNL_June_15_09.pdf: 
Sydney, 2009. 

Keeney R, Raiffa H. 1993. Decisions with multiple objectives: Preferences and value 
tradeoffs. 2nd ed. Cambridge University Press: New York. 

Kessels R, Goos P, Vandebroek M. 2006. A comparison of criteria to design efficient 
choice experiments. Journal of Marketing Research 43: 409-419. 

Khan MA, Richardson J. A comparison of 7 instruments in a small, general 
population. Research paper 60. Centre for Health Economics, Monash 
University: Melbourne, 2011. 

Kharroubi S, O'Hagan A, Brazier J. 2005. Estimating utilities from individual health 
state preference data: A nonparametric bayesian approach. Applied Statistics 
54: 879-895. 

Kharroubi SA, Brazier JE, Roberts J, O'Hagan A. 2007. Modelling SF-6D health state 
preference data using a nonparametric bayesian method. Journal of Health 
Economics 26: 597-612. 



 

 312

Kharroubi SA, O'Hagan A, Brazier JE. 2010. A comparison of united states and 
united kingdom EQ-5D health states valuations using a nonparametric 
bayesian method. Statistics in Medicine 29: 1622-1634. 

Klarman H, Francis J, Rosenthal G. 1968. Cost-effectiveness analysis applied to the 
treatment of chronic renal disease. Medical Care 6: 48-54. 

Konerding U, Moock J, Kohlmann T. 2009. The classification systems of the EQ-5D, 
the hui ii and the SF-6D: What do they have in common. Quality of Life 
Research 18: 1249-1261. 

Kuhfeld WF. 2010. Marketing research methods in sas: Experimental design, choice, 
conjoint, and graphical techniques (mr-2010). SAS Institute Inc.: Cary, NC, 
USA. 

Lam CL, Brazier J, McGhee SM. 2008. Valuation of the SF-6D health states is 
feasible, acceptable, reliable, and valid in a chinese population. Value in 
Health 11: 295-303. 

Lamers LM, Bouwmans CAM, van Straten A, Donker MCH, Hakkaart L. 2006a. 
Comparison of EQ-5D and SF-6D utilities in mental health patients. Health 
Economics 15: 1229-1236. 

Lamers LM, McDonnell J, Stalmeier PF, Krabbe PF, Busschbach JJ. 2006b. The 
dutch tariff: Results and arguments for an effective design for national EQ-5D 
valuation studies. Health Economics 15: 1121-1132. 

Lancaster K. 1966. A new approach to consumer theory. Journal of Political 
Economy 74: 132-157. 

Lancsar E, Louviere J, Flynn T. 2007. Several methods to investigate relative attribute 
impact in stated preference experiments. Social Science and Medicine 64: 
1738-1753. 

Lancsar E, Savage E. 2004. Deriving welfare measures from discrete choice 
experiments: Inconsistency between current methods and random utility and 
welfare theory. Health Economics 13: 901-907. 

Lancsar E, Wildman J, Donaldson C, Ryan M, Baker R. 2011. Deriving distributional 
weights for qalys through discrete choice experiments. Journal of Health 
Economics 30: 466-478. 

Layard R. 1972. Cost-benefit analysis. Penguin: Harmondsworth, Middlesex. 



 

 313

Le Galés C, Buron C, Costet N, Rosman S, Slama PR. 2002. Development of a 
preference-weighted health status classification system in france: The health 
utilities index 3. Health Care Management Science 5: 41-51. 

Le Grand J. 1991. Equity and choice: An essay in economics and applied philosophy. 
Harper Collins: London. 

Loewenstein G, Angner E. 2003. Predicting and indulging changing preferences. In 
Time and decision: Economic and psychological perspectives on 
intertemporal choice. Russell Sage Foundation. 

Loomes G, McKenzie L. 1989. The use of qalys in health care decision making. 
Social Science and Medicine 28: 299-308. 

Louviere J, Hensher DA, Swait JD. 2000. Stated choice methods: Analysis and 
applications. Cambridge University Press: New York. 

Louviere J, Street D, Burgess L. 2003. A 20+ years retrospective on choice 
experiments. In Marketing research and modeling: Progress and prospects, 
Wind Y, Green PE, (eds.). Kluwer: New York. 

Louviere J, Street D, Burgess L, Wasi N, Islam T, Marley AA. 2008. Modeling the 
choices of individuals decision makers by combining efficient choice 
experiment designs with extra preference information. Journal of Choice 
Modeling 1: 128-163. 

Louviere JJ, Carson RT, Ainslie A, Cameron TA, DeShazo JR, Hensher DA, et al. 
2002. Dissecting the random component of utility. Marketing Letters 13: 177-
193. 

Louviere JJ, Meyer RJ, Bunch DS, Carson R, Dellaert B, Hanemann WM, et al. 1999. 
Combining sources of preference data for modelling complex decision 
processes. Marketing Letters 10: 205-217. 

Mæstad O, Frithjof Norheim O. 2009. Eliciting people's preferences for the 
distribution of health: A procedure for a more precise estimation of 
distributional weights. Journal of Health Economics 28: 570-577. 

Marschak J. 1960. Binary choice constraints on random utility indicators. In Stanford 
symposium on mathematical methods in the social sciences, Arrow KJ, (ed.). 
Stanford University Press: Stanford. 

McCabe C, Brazier J, Gilks P, Tsuchiya A, Roberts J, O'Hagan A, et al. 2006. Using 
rank data to estimate health state utility models. Journal of Health Economics 
25: 418-431. 



 

 314

McCabe C, Stevens K, Roberts J, Brazier J. 2005. Health state values for the hui 2 
descriptive system: Results from a UK survey. Health Economics 14: 231-244. 

McFadden D. 1981. Econometric models of probabilistic choice. In Structural 
analysis of discrete data with economic applications, Manski C, McFadden D, 
(eds.). MIT Press: Boston. 

McFadden D. 1974. Conditional logit analysis of qualitative choice behaviour. In 
Frontiers in econometrics, Zarembka P, (ed.). New York Academic Press: 
New York. 

McFadden D, Train K. 2000. Mixed mnl models for discrete response. Journal of 
Applied Econometrics 15: 447-470. 

McIntosh E, Ryan M. 2002. Using discrete choice experiments to derive welfare 
estimates for the provision of elective surgery: Implications for discontinuous 
preferences. Journal of Economic Psychology 23: 367-382. 

McKie J, Richardson J. 2003. The rule of rescue. Social Science and Medicine 56: 
2407-2419. 

McNeil BJ, Weichselbaum R, Pauker SG. 1978. Fallacy of the five-year survival in 
lung cancer. New England Journal of Medicine 299: 1397-1401. 

McTaggart-Cowan H, Tsuchiya A, O'Cathain AB, J. 2011. Understanding the effect 
of disease adaptation information on general population values for 
hypothetical health states. Social Science & Medicine 72: 1904-1912. 

Montgomery DC. 2005. Design and analysis of experiments. 6th ed. John Wiley & 
Sons: Hoboken, NJ. 

Mooney G. 2009. Challenging health economics. OUP: Oxford. 

Mooney G. 1998. "Communitarian claims" as an ethical basis for allocating health 
care resources. Social Science & Medicine 47: 1171-1180. 

Mooney G. 2005. Communitarian claims and community capabilities: Furthering 
priority setting? Social Science & Medicine 60: 247-255. 

Mooney G, Hall J, Donaldson C, Gerard K. 1991. Utilisation as a measure of equity: 
Weighing heat? Journal of Health Economics 10: 475-480. 

Mooney G, Jan S, Wiseman V. 1995. Examining preferences for allocating health 
care gains. Health Care Analysis 3: 261-265. 



 

 315

Mooney G, Russell E. 2003. Equity in health care: The need for a new economics 
paradigm? In Advances in health economics, Scott A, Maynard A, Elliott R, 
(eds.). John Wiley & Sons: Chichester. 

Murray C, Lopez A. 1994. Global comparative assessments in the health sector: 
Disease burden, expenditures and intervention packages. World Health 
Organisation (WHO): Geneva. 

MVH Group. The measurement and valuation of health. Final report on the 
modelling of valuation tariffs. York Centre for Health Economics, 1995. 

National Institute for Health and Clinical Excellence. Social value judgements: 
Principles for the development of nice guidance (2nd edition). NICE: London, 
2008. 

National Institute for Health and Clinical Excellence. The guidelines manual. National 
Institute for Health and Clinical Excellence (available from: 
www.nice.org.uk): London, 2007. 

Nord E, Pinto JL, Richardson J, Menzel P, Ubel P. 1999. Incorporating societal 
concerns for fairness in numerical valuations of health programmes. Health 
Economics 8: 25-39. 

Nord E, Street A, Richardson J, Kuhse H, Singer P. 1996. The significance of age and 
duration of effect in social evaluation of health care. Health Care Analysis 4: 
103-111. 

Norman R, Cronin P, Viney R, King M, Street D, Ratcliffe J. 2009. International 
comparisons in valuing EQ-5D health states: A review and analysis. Value in 
Health 12: 1194-1200. 

Norman R, Gallego G. 2008. Equity weights for economic evaluation: An australian 
discrete choice experiment, chere working paper 2008/5. CHERE: Sydney. 

Norman R, King M, Clarke D, Viney R, Cronin P, Street D. 2010. Does mode of 
administration matter? Comparison of on line and face-to-face administration 
of a time trade-off task. Quality of Life Research 19: 499-508. 

Norman R, Viney R. The effect of discounting on quality of life valuation using the 
time trade-off, chere working paper series 2008/3. CHERE: Sydney, 2008. 

Ohinmaa A, Eija H, Sintonen H. 1996. Modelling euroqol values of finnish adult 
population. In Euroqol plenary meeting, Badia X, Herdman M, Segura A, 
(eds.). Institut Universitari de Salut Publica de Catalunya: Barcelona. 



 

 316

Olsen JA, Richardson J, Dolan P, Menzel P. 2003. The moral relevance of personal 
characteristics in setting health care priorities. Social Science and Medicine 
57: 1163-1172. 

Osman LM, McKenzie L, Cairns J, Friend JA, Godden DJ, Legge JS, et al. 2001. 
Patient weighting of importance of asthma symptoms. Thorax 56: 138-142. 

Packer A. 1968. Applying cost-effectiveness concepts to the community health 
system. Operations Research 16: 227-253. 

Patrick D, Bush J, Chen M. 1973. Methods for measuring levels of well-being for a 
health status index. Health Services Research 8: 228-245. 

Patrick D, Erickson P. 1993. Health status and health policy: Quality of life. In Health 
care evaluation and resource allocation. Oxford University Press: New York. 

Phelps CE, Mushlin A. 1991. On the (near) equivalence of cost-effectiveness and 
cost-benefit analysis. International Journal of Technology Assessment in 
Health Care 7: 12-21. 

Plackett RL. 1946. Some generalizations in the multifactorial design. Biometrika 33: 
328-332. 

Pliskin J, Shepard D, Weinstein M. 1980. Utility functions for life years and health 
status. Operations Research 28(1): 206-224. 

Cabasés JM, Gaminde I, editors. The slovenian vas tariff based on valuations of EQ-
5D health states from the general population. 17th Plenary Meeting of the 
EuroQoL Group; 2001; Universidad Pública de Navarra. 

Propper C. 1990. Contingent valuation of time spent on nhs waiting lists. The 
Economic Journal 100: 193-199. 

Radhakrishnan M, van Gool K, Hall J, Delatycki M, Massie J. 2008. Economic 
evaluation of cystic fibrosis screening: A review of the literature. Health 
Policy 85: 133-147. 

Ratcliffe J, Brazier J, Tsuchiya A, Symonds T, Brown M. 2009. Using dce and 
ranking data to estimate cardinal values for health states for deriving a 
preference-based single index from the sexual quality of life questionnaire. 
Health Economics 18: 1261-1276. 

Rawls J. 1999. A theory of justice. Harvard University Press: 



 

 317

Regier DA, Ryan M, Phimister E, Marra CA. 2009. Bayesian and classical estimation 
of mixed logit: An application to genetic testing. Journal of Health Economics 
28: 598-610. 

Rice T. 1992. An alternative framework for evaluating welfare losses in the health 
care market. Journal of Health Economics 11: 85-92. 

Rice T. 1998. The economics of health reconsidered. Health Administration Press: 
Chicago. 

Richardson J. 2002a. Empirical ethics. In Summary measures of population health: 
Papers from the who global conference, marrakech, december 1999, Murray 
C, Lopez A, (eds.). WHO: Geneva. 

Richardson J. 2002b. The poverty of ethical analyses in economics and the 
unwarranted disregard of evidence. In Summary measures of population 
health: Concepts, ethics, measurement and application, Murray CJL, Salomon 
JA, Mathers CD, Lopez AD, (eds.). World Health Organization: Geneva. 

Richardson J, McKie J. 2005. Empiricism, ethics and orthodox economic theory: 
What is the appropriate basis for decision-making in the health sector? Social 
Science and Medicine 60: 265-275. 

Richardson J, McKie J, Bariola E. Review and critique of health related multi 
attribute utility instruments. Research paper 64. Centre for Health Economcs, 
Monash University: Melbourne, 2011. 

Robinson A, Spencer A. 2006. Exploring challenges to tto utilities: Valuing states 
worse than dead. Health Economics 15: 393-402. 

Rodriguez E, Pinto JL. 2000. The social value of health programmes: Is age a relevant 
factor? Health Economics 9: 611-621. 

Ryan M. 2004. Deriving welfare measures in discrete choice experiments: A 
comment to lancsar and savage (1). Health Economics 13: 909-912; discussion 
919-924. 

Salomon JA. 2003. Reconsidering the use of rankings in the valuation of health states: 
A model for estimating cardinal values from ordinal data. Population Health 
Metrics 1: 12. 

Sándor Z, Wedel M. 2005. Heterogenous conjoint choice designs. Journal of 
Marketing Research 42: 210-218. 



 

 318

Santos Silva JM. 2004. Deriving welfare measures in discrete choice experiments: A 
comment to lancsar and savage (2). Health Economics 13: 913-918; discussion 
919-924. 

Sassi F, Archard L, Le Grand J. 2001. Equity and the economic evaluation of 
healthcare. Health Technology Assessment 5: 1-138. 

Scanlon T. 1975. Preference and urgency. Journal of Philosophy 72: 655-669. 

Schkade D, Kahneman D. 1998. Does living in california make people happy? A 
focusing illusion in judgments of life satisfaction. Psychological Science 9: 
340-346. 

Schwappach DLB. 2003. Does it matter who you are or what you gain? An 
experimental study of preferences for resource allocation. Health Economics 
12: 255-267. 

Schwarz GE. 1978. Estimating the dimensions of a model. Annals of Statistics 6: 461-
464. 

Scitovsky T. 1941. A note on welfare propositions in economics. Review of Economic 
Studies 9: 77-88. 

Scott A. 2001. Eliciting gps' preferences for pecuniary and non-pecuniary job 
characteristics. Journal of Health Economics 20: 329-347. 

Sculpher M, Bryan S, Fry P, de Winter P, Payne H, Emberton M. 2004. Patients' 
preferences for the management of non-metastatic prostate cancer: Discrete 
choice experiment. BMJ 328: 382. 

Sen A. 1980. Equality of what? In The tanner lectures on human values, McMurrin S, 
(ed.). Cambridge University Press: Cambridge. 

Sen A. 2009. The idea of justice. Penguin Books: London. 

Sen A. 1992. Inequality re-examined. Oxford University Press: Oxford. 

Shaw JW, Johnson JA, Coons SJ. 2005. Us valuation of the EQ-5D health states: 
Development and testing of the d1 valuation model. Medical Care 43: 203-
220. 

Sintonen H. The 15-d measure of health related quality of life: Reliability, validity 
and sensitivity of its health state descriptive system. National Centre for Health 
Program Evaluation: Working Paper Series No.41: Melbourne, 1994. 



 

 319

Small KA, Rosen HS. 1981. Applied welfare economics with discrete choice models. 
Econometrica 49: 105-130. 

Stiggelbout AM. 2006. Health state classification systems: How comparable are our 
cost-effectiveness ratios? Medical Decision Making 26: 223-225. 

Stiggelbout AM, Kiebert GM, Kievit J, Leer JW, Stoter G, de Haes JC. 1994. Utility 
assessment in cancer patients: Adjustment of time tradeoff scores for the 
utility of life years and comparison with standard gamble scores. Medical 
Decision Making 14: 82-90. 

Stolk EA, Oppe M, Scalone L, Krabbe PFM. 2010. Discrete choice modeling for the 
quantification of health states: The case of the EQ-5D. Value in Health 13: 
1005-1013. 

Stolk EA, Pickee SJ, Ament A, Busschbach JJV. 2005. Equity in health care 
prioritisation: An empirical inquiry into social value. Health Policy 74: 343-
355. 

Street D, Burgess L, Louviere JJ. 2005. Quick and easy choice sets: Constructing 
optimal and nearly optimal stated choice experiments. International Journal of 
Research in Marketing 22: 459-470. 

Street DJ, Burgess L. 2007. The construction of optimal stated choice experiments: 
Theory and methods. Wiley: Hoboken, New Jersey. 

Streiner D, Norman G. 1995. Health measurement scales: A practical guide to their 
development and use. Oxford University Press: Oxford. 

Swait J, Louviere J. 1993. The role of the scale parameter in the estimation and 
comparison of multinomial logit models. Journal of Marketing Research 30: 
305-314. 

Szende A, Oppe M, Devlin N. 2007. EQ-5D value sets: Inventory, comparative 
review and user guide. Springer: Dordrecht, The Netherlands. 

Thurstone LL. 1927a. The method of paired comparisons for social values. Journal of 
Abnormal and Social Psychology 21: 384-400. 

Thurstone LL. 1927b. A law of comparative judgment. Psychological Review 34: 
273-286. 

Tilling C, Devlin N, Tsuchiya A, Buckingham K. 2010. Protocols for time tradeoff 
valuations of health states worse than dead: A literature review. Medical 
Decision Making 30: 610-619. 



 

 320

Tobin J. 1970. On limiting the domain of inequality. Journal of Law and Economics 
13: 263-277. 

Torrance GW. 1986. Measurement of health state utilities for economic appraisal. 
Journal of Health Economics 5: 1-30. 

Torrance GW. 1976. Social preferences for health states: An empirical evaluation of 
three measurement techniques. Socioeconomic Planning Science 10: 129-136. 

Torrance GW, Thomas D, Sackett D. 1972. A utility maximisation model for 
evaluation of health care programs. Health Services Research 7: 118-133. 

Train K. 2003. Discrete choice methods with simulation. Cambridge University Press: 
Cambridge. 

Tsuchiya A. 2000. Qalys and ageism: Philosophical theories and age weighting. 
Health Economics 9: 57-68. 

Tsuchiya A, Ikeda S, Ikegami N, Nishimura S, Sakai I, Fukuda T, et al. 2002. 
Estimating an EQ-5D population value set: The case of japan. Health 
Economics 11: 341-353. 

Tsuchiya A, Miguel LS, Edlin R, Wailoo A, Dolan P. 2005. Procedural justice in 
public health care resource allocation. Applied Health Economics and Health 
Policy 4: 119-127. 

Tsuchiya A, Williams A. 2005. A "fair innings" between the sexes: Are men being 
treated inequitably? Social Science and Medicine 60: 277-286. 

Tsuchiya A, Williams A. 2001. Welfare economics and economic evaluation. In 
Economic evaluation in health care: Merging theory with practice, 
Drummond M, McGuire A, (eds.). Oxford University Press: Oxford. 

Varian HR. 1984. Microeconomics analysis. 2nd ed. Norton and Company: New 
York. 

Viney R, Lancsar E, Louviere J. 2002. Discrete choice experiments to measure 
consumer preferences for health and healthcare. Expert Review of 
Pharmacoeconomics & Outcomes Research 2: 319-326. 

Viney R, Norman R, Brazier J, Cronin P, King MT, Ratcliffe J, et al. 2011a. An 
australian discrete choice experiment to value EQ-5D health states. 
Unpublished Manuscript. 

Viney R, Norman R, King MT, Cronin P, Street D, Knox S, et al. 2011b. Time trade-
off derived EQ-5D weights for australia. Value in Health 14: 928-936. 



 

 321

Viney R, Savage E. Health care policy evaluation: Empirical analysis of the 
restrictions implied by quality adjusted life years. CHERE Working Paper 
Series 2006/10. Sydney, 2006. 

Viney R, Savage E, Louviere J. 2005. Empirical investigation of experimental design 
properties of discrete choice experiments in health care. Health Economics 14: 
349-362. 

von Neumann J, Morgenstern O. 1947. Theory of games and economic behaviour. 
Princeton University Press: Princeton, NJ. 

von Neumann J, Morgenstern O. 1944. Theory of games and economic behaviour. 
Princeton University Press: Princeton, NJ. 

von Winterfeldt D, Edwards W. 1986. Decision analysis and behavioural research. 
Cambridge University Press: Cambridge. 

Wagstaff A, Van Doorslaer E. 2000. Equity in health care finance and delivery. In 
Handbook of health economics, Culyer AJ, Newhouse JP, (eds.). Elsevier: 
Amsterdam. 

Ware J, Kolinski M, Keller S. How to score the sf-12 physical and mental health 
summaries: A user's manual. The Health Institute, New England Medical 
Centre, Boston MA: 1995. 

Ware J, Snow K, Kolinski M, Gandeck B. SF-36 health survey manual and 
interpretation guide. The Health Institute, New England Medical Centre, 
Boston, MA: 1993. 

Ware JE, Kosinski M, Keller SD. 1996. A 12-item short-form health survey: 
Construction of scales and preliminary tests of reliability and validity. Medical 
Care 34: 220-233. 

Ware JE, Sherbourne CD. 1992. The mos 36-item short-form health survey (SF-36). I. 
Conceptual framework and item selection. Medical Care 30: 473-483. 

Webb SR. 1968. Non-orthogonal designs of even resolution. Technometrics 10: 291-
300. 

Weinstein MC, Manning WG, Jr. 1997. Theoretical issues in cost-effectiveness 
analysis. Journal of Health Economics 16: 121-128. 

Welsh M, Ramsey B, Accurso F, Cutting G. 2001. Cystic fibrosis. In The metabolic 
and molecular bases of inherited disease, Scriver C, Beaudet A, Sly W, Valle 
D, (eds.). McGraw-Hill: New York. 



 

 322

Whitehurst DGT, Bryan S. 2011. Another study showing that two preference-based 
measures of health-related quality of life (EQ-5D and SF-6D) are not 
interchangeable. But why should we expect them to be? Value in Health 14: 
531-538. 

Williams A. 1997. Intergenerational equity: An exploration of the 'fair innings' 
argument. Health Economics 6: 117-132. 

Williams A. 1985. Economics of coronary artery bypass grafting. British Medical 
Journal (Clinical Research Ed.) 291: 326-329. 

Wilson TD, Gilbert D. 2003. Constructive and unconstructive repetitive thought. 
Advances in Experimental Social Psychology 35: 345-411. 

Wittenberg E, Prosser LA. 2011. Ordering errors, objections and invariance in utility 
survey responses: A framework for understanding who, why and what to do. 
Applied Health Economics and Health Policy 9: 225-241. 

Wittrup-Jensen KU, Lauridsen JT, Gudex C, Brooks R, Pedersen KM. 2001. 
Estimating danish EQ-5D tariffs using the time trade-off (tto) and visual 
analogue scale (vas) methods. In Proceedings of the 18th plenary meeting of 
the euroqol group, Norinder A, Pedersen KL, Roos P, (eds.). Copenhagen. 

Wooldridge J. 2003. Introductory econometrics: A modern approach. 2nd Edition ed. 
Thomson South-Western: Mason, Ohio. 

Yu J, Goos P, Vandebroek M. 2009. Efficient conjoint choice designs in the presence 
of respondent heterogeneity. Marketing Science 28: 122-135. 

Zwerina K, Huber J, Kuhfeld WF. 2010. A general method for constructing efficient 
choice designs. In Marketing research methods in sas: Experimental design, 
choice, conjoint, and graphical techniques (mr-2010). SAS Institute Inc.: 
Cary, NC, USA. 

 

 


	Title Page
	Acknowledgements
	Table of Contents
	Figures
	Tables
	Appendices
	Abstract
	Chapter 1: The measurement of outcomes in economicevaluation of health interventions
	Chapter 2: Measuring health-related quality of life –standard and novel approaches
	Chapter 3: Discrete Choice Experiments: Principles and Application for Health Gain
	Chapter 4: Some Principles for Designing Discrete Choice Experiments
	Chapter 5: Using a Discrete Choice Experiment to Value Health Profiles in the SF-6D
	Chapter 6: Equity Weights for Use in Economic Evaluation
	Chapter 7: Conclusions and Implications
	Appendices
	Bibliography

