Novel Fingermark Detection Techniques Using Upconverters with Anti-Stokes Luminescence

By

Rongliang MA

A thesis submitted for the degree of Doctor of Philosophy
University of Technology, Sydney

2012
Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate
Acknowledgements

I would hereby sincerely like to acknowledge the assistance I received from various people during my studies at the University of Technology, Sydney (UTS).

First, I would like to convey my appreciation to my principal supervisor, Professor Claude Roux, for his support throughout my study. I thank him for assisting me with the scholarship, the visit to the Lausanne University in Switzerland and for taking the trouble to help me with many other aspects of my study.

I would also like to express my thanks to my external supervisor, Professor Chris Lennard at the University of Canberra, for all his help since my admittance to UTS, his assistance during the whole project and for teaching me how to write scientifically. I wish also to thank all my other supervisors: Dr Andrew McDonagh for his invaluable suggestions on the writing of my papers and thesis; Dr Ronald Shimmon for his help in the experiment, and especially his encouragement through the tough times at the beginning of my study; Dr Philip Maynard for his assistance during the experiment and the writing.

I wish to thank Professor Hilton Kobus from Flinders University who assisted with my visit to Australia in 2004, which resulted in my PhD study at UTS, and for many other helpful things throughout my study.

I would also express my appreciation to the following people:

Dr Congji Zha from the Commonwealth Science, Industry and Research Organization (CSIRO) for all his invaluable help and advice during the whole project.

Dr Linda Xiao for helping me with so many aspects.

Professor Fuyou Li for his precious advice in synthesising the functionalised UCs.

Dr Annette Dowd for her help in solving the imaging problem, which was critical to my project.
Acknowledgement

Dr Barry Liu for his assistance with the Par bomb device in the synthesis.

Dr Peter Osvath and Dr Andrew Scully from CSIRO for their assistance with my experiment.

Dr Mi Jung Choi for all the encouragement and kind support with my application since my arrival in Sydney in 2005.

Dr Mark Tatouh for his help and good ideas for the experiment.

Dr Xanthe Spindler for aiding me with my experiment and thesis writing.

Harry Simpson for all his kind and patient help with the experiment.

Jean-Pierre Guerbois for helping me with the heating devices in the experiment.

Dr Richard Wuher in the Microstructural Analysis Unit (MAU) at UTS for all his help with SEM.

Rochelle Seneviratne for all her kind assistance with my study.

Greg Dalsanto who helped me with the Teflon autoclave for the synthesis.

Professor Besim Ben-Nissan for the assistance with the synthesis and other invaluable advice.

Amir Moezzi for the assistance with some of the softwares in my thesis writing.

Dr Lucas Blanes, one of my best friends, not only for the best fingermark samples provided, but also for all the funny stories and laughs. You also taught me a different attitude to life: to keep a curiosity for all the new things and enjoy life.

A special thanks goes to my proofreader, Joanne Watson.

I would also like to thank some of my fellow students and the staff at UTS for their help. They are Mark Berkahn, Jim Franklin, Stuart Dines, Scott Chadwick, Amanda Van Gramberg, Adrian De Grazia, Ayling Rubin, Andrew Malecki, Gemma Armstrong and Adam Georgius.
Finally, I would like to thank my mother and father, and my sister and nephew. Thanks for the unconditional love you give to me. A big thank you to my wife, Kangling Ren, who gave up wonderful business opportunities to come to Sydney with me and live a ‘poor’ life. Thank you for your sacrifice. To my daughter, Yifan, who was born in the busiest time of my PhD study. You gave me so many sleepless nights, but I never regretted having your company. Your smile is the best reward for me and you are the driving force in my life.
Table of Contents

Certificate of Authorship/Originality ... ii
Acknowledgements .. iii
Table of Contents .. vi
Table of Figures .. x
List of Tables .. xviii
Abbreviations .. xix
Publications and Manuscripts Arising From This Work xxi
Abstract .. xxiii

Chapter 1. Luminescence Techniques and Upconverters for Fingermark Detection ... 2

1.1. Introduction .. 2

1.1.1. Fingermarks ... 2

1.1.2. Fingermark detection techniques ... 3

1.2. Luminescence Techniques for Fingermark Detection 4

1.2.1. Introduction ... 4

1.2.2. Advanced luminescence techniques ... 6

1.3. Upconversion (Anti-Stokes Luminescence) ... 14

1.4. Possible Approaches to Use UCs in Fingermark Detection 18

1.4.1. UCs as a dry powder and as a suspension 19

1.4.2. UCs of smaller particle size for inserting in CA fumed (CAF) fingermarks matrices ... 20

1.4.3. Functionalised UC nanoparticles .. 21

1.5. Conclusions ... 23

Chapter 2. Imaging for Upconversion Luminescence 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Introduction</td>
<td>25</td>
</tr>
<tr>
<td>2.2. Materials and Methods</td>
<td>25</td>
</tr>
<tr>
<td>2.2.1. General</td>
<td>25</td>
</tr>
<tr>
<td>2.2.2. Comparison of Different Light Sources</td>
<td>26</td>
</tr>
<tr>
<td>2.2.3. Comparison of Different Image Recording Devices</td>
<td>27</td>
</tr>
<tr>
<td>2.3. Results and Discussion</td>
<td>27</td>
</tr>
<tr>
<td>2.3.1. The Wavelength and Intensity of Laser Applied for UC Illumination</td>
<td>27</td>
</tr>
<tr>
<td>2.3.2. Comparison of Different Light Sources</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3. Recording Device</td>
<td>35</td>
</tr>
<tr>
<td>2.3.4. Safety Measures</td>
<td>40</td>
</tr>
<tr>
<td>2.4. Conclusions</td>
<td>41</td>
</tr>
<tr>
<td>3.1. Introduction</td>
<td>43</td>
</tr>
<tr>
<td>3.2. Materials and methods</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1. General</td>
<td>44</td>
</tr>
<tr>
<td>3.2.2. Fingermark Development with Dry Powder</td>
<td>45</td>
</tr>
<tr>
<td>3.2.3. Fingermark Development Using a Wet Powder Method</td>
<td>46</td>
</tr>
<tr>
<td>3.2.4. Comparison with CAF / rhodamine 6G Staining</td>
<td>46</td>
</tr>
<tr>
<td>3.2.5. Comparison and Assessment of Developed Fingermarks</td>
<td>47</td>
</tr>
<tr>
<td>3.3. Results and Discussion</td>
<td>48</td>
</tr>
<tr>
<td>3.3.1. Characterisation of NaYF₄: Er,Yb Powder</td>
<td>48</td>
</tr>
<tr>
<td>3.3.2. Fingermarks Developed with NaYF₄: Er,Yb Powder</td>
<td>50</td>
</tr>
<tr>
<td>3.3.3. NaYF₄: Er,Yb as a wet Powder</td>
<td>57</td>
</tr>
<tr>
<td>3.3.4. Comparison with CAF / rhodamine 6G Staining</td>
<td>59</td>
</tr>
<tr>
<td>3.4. Conclusions</td>
<td>60</td>
</tr>
<tr>
<td>Chapter 4. Fingermark Detection Using YVO₄:Er,Yb Upconverter particles</td>
<td>62</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4.1. Introduction ...</td>
<td>62</td>
</tr>
<tr>
<td>4.2. Materials and Methods ..</td>
<td>62</td>
</tr>
<tr>
<td>4.2.1. Synthesis and Characterisation of YVO₄:Er,Yb Particles ...</td>
<td>63</td>
</tr>
<tr>
<td>4.2.2. Fingermark Deposition and Imaging</td>
<td>63</td>
</tr>
<tr>
<td>4.2.3. Fingermark Development with Dry Powder</td>
<td>64</td>
</tr>
<tr>
<td>4.2.4. Fingermark Development Using a Wet Powder Method</td>
<td>64</td>
</tr>
<tr>
<td>4.2.5. Comparison with CAF and Staining on Luminescent Substrates</td>
<td>65</td>
</tr>
<tr>
<td>4.2.6. Comparison and Assessment of Developed Fingermarks</td>
<td>65</td>
</tr>
<tr>
<td>4.3. Results and Discussion ..</td>
<td>65</td>
</tr>
<tr>
<td>4.3.1. Properties of YVO₄:Er,Yb Powder</td>
<td>65</td>
</tr>
<tr>
<td>4.3.2. Fingermarks Developed with YVO₄:Er,Yb Dry Powder</td>
<td>66</td>
</tr>
<tr>
<td>4.3.3. YVO₄:Er,Yb as a Wet Powder ...</td>
<td>71</td>
</tr>
<tr>
<td>4.3.4. Comparison with CAF/staining on Luminescent Substrates ...</td>
<td>73</td>
</tr>
<tr>
<td>4.4. Conclusions ...</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5. Smaller Upconverter Particles as a Staining Reagent for Cyanoacrylate-Fumed Fingermarks</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Introduction ...</td>
<td>78</td>
</tr>
<tr>
<td>5.2. Sieving ..</td>
<td>80</td>
</tr>
<tr>
<td>5.2.1. Materials and Methods ...</td>
<td>80</td>
</tr>
<tr>
<td>5.2.2. Results and Discussion ..</td>
<td>81</td>
</tr>
<tr>
<td>5.3. Suspension Method ...</td>
<td>82</td>
</tr>
<tr>
<td>5.3.1. Introduction ..</td>
<td>82</td>
</tr>
<tr>
<td>5.3.2 Materials and Methods ...</td>
<td>82</td>
</tr>
<tr>
<td>5.3.3. Results and Discussion ...</td>
<td>83</td>
</tr>
<tr>
<td>5.4. Ball Milling ...</td>
<td>87</td>
</tr>
</tbody>
</table>
Table of Contents

5.4.1. Introduction ... 87
5.4.2. Materials and Methods ... 87
5.4.3. Results and Discussion .. 88
5.5. Conclusions .. 89

Chapter 6. Fingermark Detection by Functionalised Upconverters 91
6.1. Introduction .. 91
6.2. Materials and Methods .. 95
 6.2.1. General .. 95
 6.2.2. Synthesis and Characterization of Functionalised UCs 95
 6.2.3. Fingermark Development .. 100
6.3. Results and Discussion .. 101
 6.3.1. UC-PEI ... 101
 6.3.2. UC-AA .. 110
 6.3.3. UC-PVP .. 116
 6.3.4. UC-AOT ... 117
6.4. Conclusions .. 117

Chapter 7. General Conclusions ... 120
7.1. General Discussion and Conclusions .. 120
7.2. Future Directions .. 122

References .. 124
Table of Figures

Figure 1.1. Schematic representation of the Stokes shift in a luminescence process [4]..5

Figure 1.2. Comparison of perylene dye on TiO$_2$ and commercial fluorescent powders, viewed using a 575 nm long-pass filter and 505 nm illumination. (A) (Left) Perylene dye/TiO$_2$ particles (Degussa), and (right) Black Emerald fluorescent magnetic powder on polyethylene. (B) (Left) Fluorescent dye/TiO$_2$ particles (Degussa), and (right) Blitz Green fluorescent magnetic powder on polyethylene [18]...10

Figure 1.3. Schematic representation of anti-Stokes photoluminescence; Stokes shift is considered negative [39]. ...15

Figure 1.4. Schematic representation of the two most prominent UC mechanisms: (1) ground-state absorption (GSA), excited-state absorption (ESA) and (2) ground-state absorption (GSA), energy transfer upconversion (ETU). The dotted arrows represent non-radiative energy transfer (ET) processes. The straight arrows indicate radiative transitions. The transients indicated in (b) and (d) describe the time-evolution of the emission of the upconversion luminescence after a short excitation pulse [37]..16

Figure 1.5. UC-G powder developed latent marks (a) viewed using a low pass filter (b) viewed using a 513 nm centred band pass filter. 980 nm excitation and 10.19 x magnification by a Visual Spectral Recorder [(VSC) it was not mentioned on what substrate the fingermark was developed] [38]. ...19

Figure 2.1. Fingermark developed by NaYF$_4$: Er,Yb UCs and then illuminated by the modified Polilight. No fingermark detail can be seen under this illumination. ...28

Figure 2.2. Laser diode with power supply (Roithner Australia).......................29

Figure 2.3. Laser pointer (Techlasers, Hong Kong)..................................30
Table of Figures

Figure 2.4. The same fresh fingermarks on plastic developed by NaYF₄: Er,Yb dry powdering, under the illumination of a 980 nm laser diode (A) and pointer (B) and observed using a Rofin Poliview system with the 555nm band pass filter and 5 s exposure time. ...32

Figure 2.5. The Crime-Lite ASV (Foster and Freeman, UK).33

Figure 2.6. Fresh fingermarks on glass developed by NaYF₄: Er,Yb dry powdering, under the illumination of The Crime-Lite ASV and imaged using a Canon EOS 450 D SLR camera with F 5.6 and 2.0 second exposure time.33

Figure 2.7. A plastic specimen that was deformed by the heat produced by the Crime-Lite ASV .. 34

Figure 2.8. The Rofin Poliview system ...35

Figure 2.9. Fingermark developed by NaYF₄: Er,Yb powder and illuminated by laser pointer, imaged under the Poliview without the 555nm band pass filter showing the interference from the IR light (A) and with the 555 nm band pass filter (B)37

Figure 2.10. Video Spectral Comparator (Foster and Freeman, UK): A. 2000/HR; B. VSC6000. .. 38

Figure 2.11. The Cannon EOS 450 D SLR camera..39

Figure 2.12. Safety goggles (A: Dioptika LG 001S OD 7+ glasses; B: LG 001 OD 7+ laser glasses) ...40

Figure 3.1. Fluorescence emission spectrum of NaYF₄: Er,Yb, excitated by a 980 nm laser. ...48

Figure 3.2. Scanning electron micrograph of NaYF₄: Er,Yb powder.49

Figure 3.3. XRD spectrum of NaYF₄: Er,Yb. ...50
Figure 3.4. Fresh fingermarks (<12 hrs old) on glass (A), polyethylene plastic (B) and Aluminium foil (C) developed with: (left) aluminium powder and (right) NaYF$_4$:Er,Yb powder, visualised in the reflection mode under white light.51

Figure 3.5. Fresh fingermarks on glass developed with: (left) Al powder and (right) NaYF$_4$:Er,Yb powder. This image was taken in transmission mode with white light illumination. Fingermarks are shown as the darker features. The right-handed side image shows less powder deposited in the fingermark valley regions compared to the image on the left. ..52

Figure 3.6. 19-month-old fingermark glass developed by dry powdering with NaYF$_4$: Er,Yb under the illumination of 980 nm laser pointer with a 555nm band pass filter and 15.2 s exposure time. ..52

Figure 3.7. Fresh fingermark on magazine paper developed by dry powdering method of UC particles, under the illumination of 980 nm laser pointer with a 555nm band pass filter and 10.3 s exposure time. ...54

Figure 3.8. Fresh fingermark on beer can developed by dry powdering method of UC particles, under the illumination of 980 nm laser pointer with a 555nm band pass filter and 15.2 s exposure time. ..54

Figure 3.9. Fresh fingermark on Coca cola plastic tag developed by dry powdering method of UC particles, under the illumination of 980 nm laser pointer with a 555nm band pass filter and 10.3 s exposure time. ...55

Figure 3.10. A: Fresh fingermarks (<5 hrs old) on an Australian five dollar polymer banknote developed with NaYF$_4$: Er,Yb. Illuminated using 980 nm laser light and imaged using a Rofin Poliview fitted with a 555nm band pass filter and using an exposure time of approximately 15 seconds. B: A fresh fingerprint (<1 hr old) on an Australian five dollar polymer banknote developed with Aluminium powder. Illuminated using 530 nm Rofin Polilight and imaged using a Rofin Poliview fitted with a 610nm long pass filter and using an exposure time of 1.33 seconds. ..56
Figure 3.11. Comparison of fresh fingermarks glass (A), aluminium foil (B) and plastic (C) developed using NaYF₄: Er,Yb by different methods under the illumination of 980 nm laser pointer with a 555nm band pass filter and 20.3 s exposure time. (Left) dry powdering, (Middle) CTAB suspension and (Right) homogenization suspension. ... 58

Figure 3.12. Comparison of a fresh fingermark left on soft drink plastic trademark developed by CAF and rhodamine 6G staining, illuminated at 505 nm for 1.23 s and observed at 610 nm (left half) and NaYF₄:Er,Yb dry powdering, illuminated using a 980 nm laser pointer with 1.68 s exposure time and a 555nm band pass filter (right half). .. 59

Figure 4.1. Comparison of fingermark developed on glass slides by Al (left) and YVO₄: Er,Yb (right) under a Leica DMC comparison microscope. This image was taken in the transmission mode with white light illumination. 66

Figure 4.2. Fresh fingermarks (<1 hr old) on glass (A) and plastic (B) developed by dry powdering with (left) aluminium powder and (right) YVO₄:Er,Yb powder, recorded in the reflection mode under white light. ... 67

Figure 4.3. Fresh fingermarks on glass (A) and plastic (B) developed with: (left) NaYF₄: Er, Yb powders and (right) by YVO₄: Er,Yb powder in reflection mode under white light. ... 68

Figure 4.4. Fresh fingermarks (< 2 hours old) on glass (A) and plastic (B) developed with: (left) NaYF₄: Er, Yb powders and (right) by YVO₄: Er,Yb powder, under the illumination of a 980 nm laser pointer with a 555nm band pass filter. 69

Figure 4.5. Aged fingermarks (1 year old) on glass developed by dry powdering with YVO₄:Er,Yb. Illumination at 980 nm and imaged with a 555nm band pass filter. .. 70

Figure 4.6. Fresh fingerprint (< 2 hrs old) on an Australian five dollar polymer banknote developed with YVO₄:Er,Yb dry powdering. Illuminated at 980 nm and
imaged with a 555nm band pass filter. The absence of visible background should be noted.

Figure 4.7. Fresh fingermarks (<2 hrs old) on glass (A) and plastic (B) developed by different methods: (left) dry powdering; (middle) Tergitol suspension; and (right) homogenised suspension. Illumination at 980 nm using a laser pointer and imaged using a Rofin Poliview with a 555 nm band pass filter.

Figure 4.8. Fresh fingermarks developed on the sticky side of the black cloth tape using a YVO₄: Er,Yb suspension in a Kodak Photoflo 200/water (50:50) solution. Illumination using a 980 nm laser pointer, imaged using a Rofin Poliview with a 555nm band pass filter.

Figure 4.9. Fresh fingermarks (< 2 hrs old) developed on a plastic soft drink label: (left) CAF and rhodamine 6G staining, illuminated at 530 nm and with a 610 nm band pass filter; (right) YVO₄:Er,Yb dry-powdered, illuminated using a 980 nm laser pointer and with a 555nm band pass filter.

Figure 4.10. Fresh fingermarks (<2 hrs old) developed on a soft drink can. (left) CAF and rhodamine 6G staining, illuminated at 530 nm with a 610 nm band pass filter; (right) YVO₄: Er,Yb dry-powdered, illuminated using a 980 nm laser pointer with a 555nm band pass filter.

Figure 4.11. Left: Fresh fingermarks (<2 hrs old) developed on glossy magazine paper. (left) CAF and rhodamine 6G staining, illuminated at 530 nm and with a 610 nm band pass filter; (right) YVO₄: Er,Yb dry-powdered, illuminated using a 980 nm laser pointer with a 555nm band pass filter.

Figure 5.1. CA polymerisation reaction that results in the formation of a hard, white polymer known as polycyanoacrylate [1].

Figure 5.2. Polycyanoacrylate structure on a developed fingermark as imaged by SEM [69].

Figure 5.3. Sieving device for the commercial NaYF₄:Er,Yb powder showing the order of sieves (A); Sieving device placed in the shaking bath (B).
Table of Figures

Figure 5.4. The SEM image of 0.5 hour (A), 1 hour (B), 1.5 hour (C), and 2 hour (D) suspension of NaYF₄:Er,Yb particles... 85

Figure 5.5. Fingermark developed by the 0.5 hour suspension of NaYF₄:Er,Yb particles. Photographed using a Canon SLR Digital Camera (EOS 500D) at ISO 400, F6.3, 2S exposure time with illumination from a 980 nm laser pointer................. 86

Figure 5.6. The Fritsch Pulverisette (type 07.302) milling machine used in this study .. 88

Figure 5.7. The SEM image of NaYF₄:Er,Yb particles after being milled. 89

Figure 6.1. The structure of branched PEI [80] ... 92

Figure 6.2. Synthesis mechanism of carboxylic acid-functionalised UCs from oleic acid-capped precursors [52]. ... 93

Figure 6.3. Synthesis of silica-coated PVP/NaYF₄ nanocrystals doped with lanthanide ions. TEOS=tetraethoxysilane [51]. .. 94

Figure 6.4. Synthesis mechanism for biocompatible UCNPs by a modified hydrothermal micro-emulsion route [83]. .. 94

Figure 6.5. Luminescence emission spectrum for UC-PEI when illuminated by a 1.5 watt laser diode at 980 nm. .. 102

Figure 6.6. SEM image of the synthesised UC-PEI particles............................ 103

Figure 6.7. FTIR spectrum for the synthesised UC-PEI 104

Figure 6.8. Fresh fingermarks developed by UC-PEI particles on a glass slide (applied as a dry powder). Illuminated with a 980 nm laser light and imaged using a Rofin Poliview fitted with a 555nm band pass filter and using an exposure time of approximately 10 seconds. ... 104
Figure 6.9. Fresh fingermarks on a soft drink can developed with CAF followed by UC-PEI staining. Illuminated using a 980 nm laser pointer with 20s exposure time and imaged using a Rofin Poliview system with a 555nm band pass filter... 105

Figure 6.10. Fresh fingermarks on a plastic label developed with CAF followed by UC-PEI staining. Illuminated using a 980 nm laser pointer with 20s exposure time and imaged using a Rofin Poliview system with a 555nm band pass filter... 106

Figure 6.11. CAF fingermarks on a plastic soft drink label followed by different staining methods. (Left) rhodamine 6G staining, illumination at 530 nm with 610 nm band pass filter; (Right) UC-PEI staining, illumination at 980 nm and imaged using a Rofin Poliview with a 555nm band pass filter and an exposure time of approximately 10 seconds. ... 106

Figure 6.12. CAF fingermarks on a plastic label followed by different staining methods. (Left) rhodamine 6G staining, illumination at 530 nm with 610 nm band pass filter; (Right) UC-PEI staining, illumination at 980 nm and imaged using a Rofin Poliview with a 555nm band pass filter and an exposure time of approximately 33.7 seconds. .. 108

Figure 6.13. Luminescence emission spectrum for UC-AA, illuminated at 980 nm by a laser pointer. .. 111

Figure 6.14. SEM image for UC-AA. ... 111

Figure 6.15. FTIR spectrum for NaYF₄: Er,Yb-Azelaic Acid. 112

Figure 6.16. CA-fumed fingermark on glass (A), plastic (B) and aluminium (C) stained by UC-AA. Illumination at 980 nm and imaged using a Rofin Poliview with a 555nm band pass filter and an exposure time of approximately 3 seconds. The arrow shows the position of a CA-fumed only fingermark. 113

Figure 6.17. Fingermark developed on a soft drink plastic label: (left) rhodamine 6G staining, illumination at 530 nm with 610 nm band pass filter; (right) UC-AA staining, with illumination at 980 nm and imaged using a Rofin Poliview with a 555nm band pass filter and an exposure time of approximately 20 seconds......... 114
Figure 6.18. Fingermark developed on a soft drink can: (left) rhodamine 6G staining, illumination at 530 nm with 610 nm band pass filter; (right) UC-AA staining, illumination at 980 nm and imaged using a Rofin Poliview with a 555nm band pass filter and an exposure time of approximately 30 seconds. 115
List of Tables

Table 1.1. Main chemical constituents of the glandular secretions relevant to fingermark [1]..3

Table 2.1. Comparison of different light sources ...34

Table 2.2. Comparison of recording devices ...39

Table 4.1. Comparison of NaYF₄: Er,Yb and YVO₄:Er,Yb UC powders73

Table 6.1. Summary for functionalised UCs ...117
Abbreviations

AA: Azelaic acid

AFIS: Automatic fingerprint identification system

AOT: Sodium bis(2-ethylhexyl) sulfosuccinate

CA: Cyanoacrylate

CAF: Cyanoacrylate Fuming

CTAB: cetyltrimethylammonium bromide

DNA: Deoxyribose Nucleic Acid

FTIR: Fourier transform infrared spectroscopy

IR: Infrared

NIR: Near infrared

PEI: Polyethylenimine

PVP: Polyvinylpyrrolidone

SEM: Scanning electron microscope

SLR camera: Single-Lens Reflex camera

SPR: Small particle reagents

UC: Upconverter

UCNP: Upconverter nanoparticle

UC-AA: NaYF₄:Er,Yb/azelaic acid

UC (Ho)-AA: NaYF₄:Ho,Yb/azelaic acid
Abbreviations

UC (Tm)-AA: NaYF₄:Tm,Yb/azelaic acid

UC-AOT: NaYF₄:Er,Yb/sodium bis(2-ethylhexyl) sulfosuccinate

UC-PEI: NaYF₄:Er,Yb/polyethylenimine

UC-PVP: NaYF₄:Er,Yb/polyvinyl pyrrolidone

UV: Ultraviolet

VSC: Video Spectral Comparator

XRD: X-ray diffraction
Publications and Manuscripts Arising From This Work

Abstract

Fingerprinting is a mainstay of forensic science and has been used in crime investigation for more than one hundred years. However, most fingermarks found at a crime scene are latent; they may become visible through development and enhancement. Among all the fingermark development techniques, conventional luminescence methods are routinely employed, with the advantages of being both sensitive and selective on non-luminescent substrates (i.e., providing high contrast in developed marks).

Anti-Stokes luminescence or upconversion is an optical process of converting long-wavelength radiation into a shorter-wavelength emission, which is contrary to conventional Stokes luminescence. Upconversion mainly exits in rare-earth complexes and upconversion materials are referred to as upconverters. Commercially-available upconverters have been widely employed in security inks and biolabels.

Upconversion is unusual in both natural surfaces and in consumer products. If the upconverters are applied for fingerprint detection and show selective affinity to fingermark materials, theoretically the strong luminescence of the upconverters can be visualised on fingermarks as bright regions on a totally dark background. This means that fingerprint detection techniques using upconverters has the potential to eliminate interference from background printing and luminescence.

This thesis begins with the review of luminescence-based fingerprint detection techniques and previous research on the application of upconverters for fingerprint detection. The previous research showed that upconverters have an affinity for fingermark residues and are effective for fingerprint detection.

Chapter 2 describes issues with respect to imaging the upconversion luminescence. Of the options tested, a 980 nm laser pointer with 700 mW output proved to be the most suitable light source for the excitation of the upconversion luminescence. Long exposure times were needed to record the upconversion
luminescence. A Rofin Poliview fitted with a 555 nm band-pass barrier filter was found to be a suitable recording system.

Chapter 3 investigates the application of the NaYF₄:Er,Yb upconverter powder for latent fingermark detection on non-porous and semi-porous surfaces. The NaYF₄:Er,Yb powder showed selective affinity to fingermark materials and the dry powdering method proved to be better than the suspension method. The upconverter powder showed strong luminescence when illuminated with 980 nm wavelength laser light and the developed fingermarks presented clear ridges with high contrast. A near-infrared laser diode and laser pointer are both effective light sources when used in conjunction with a 555 nm band-pass filter to block the IR light. In actual imaging, the fingermark substrate is still visible to some extent under long exposure times, but the interference is reduced compared to what is observed with conventional luminescence imaging and the fingermark detail is clear. In summary, the NaYF₄:Er,Yb powder can be used to detect fingermarks on various difficult surfaces that exhibit interfering background luminescence when using conventional luminescence techniques.

Chapter 4 investigates the application of another type of upconverter powder, YVO₄:Er,Yb, for fingermark detection on non-porous and semi-porous surfaces. The YVO₄:Er,Yb powder proved to be effective for latent fingermark development when used as a dry powder or as a suspension, with the former generally presenting the better result. The YVO₄:Er,Yb powder also showed selective affinity to fingermark residues on most surfaces and the developed fingermarks presented clear ridges against a clear background. The upconverter powder showed strong luminescence when illuminated with 980 nm wavelength laser light but was slightly less visually luminescent than the NaYF₄:Er,Yb powder. Both a laser diode and pointer are effective light sources when used in conjunction with a 555 nm band-pass filter to block the infrared light. As before, the fingermark substrate was visible to some extent in the upconversion luminescence mode with long exposure times, but the interference was reduced compared to that observed using conventional luminescence imaging. Clear fingermark detail was observed. In summary, the YVO₄:Er,Yb powder can be used to detect fingermarks on various difficult surfaces.
that exhibit interfering background luminescence when using conventional luminescence techniques.

Cyanoacrylate fuming is probably the most important routine technique for fingermark detection on non-porous surfaces. In the fingermark detection process, the cyanoacrylate monomer forms a white fibrous layer of polycyanoacrylate on the fingermark ridges. There are numerous holes in the fibrous polycyanoacrylate layer, with an average diameter of 1–2 micrometres. Hence, it is worth investigating smaller NaYF₄:Er,Yb upconverter particles that can penetrate into the holes in the polymer structure and remain trapped inside. In Chapter 5, three methods (sieving, suspension and milling) were investigated to isolate the smaller particles from the commercial NaYF₄:Er,Yb powders. Owing to limitations with respect to instrumentation and time, no ideal results were acquired.

Conventional upconverter materials are insoluble in water and other solvents, and this limits their application when combined with cyanoacrylate fuming. The possibility of making upconverters soluble or dispersible in water was investigated by functionalizing them as nanoparticles with hydrophilic groups. Chapter 6 explores the synthesis and use of four functionalised upconverters including UC-PEI (NaYF₄:Er,Yb/polyethylenimine), UC-AA (NaYF₄:Er,Yb/azelaic acid), UC-PVP (NaYF₄:Er,Yb/polyvinyl pyrrolidone) and UC-AOT (NaYF₄:Er,Yb /sodium bis(2-ethylhexyl) sulfo succinate) for staining CA-fumed fingermarks on various non-porous surfaces. Among them, the UC-PEI and UC-AA showed strong luminescence under 980 nm laser illumination, with the latter being more visually luminescent. The UC-PEI and UC-AA showed some advantages for fingermark detection on various difficult surfaces where background luminescence and printing interfered with conventional luminescence enhancement. Long exposure times under a Rofin Poliview system had to be employed in the imaging of fingermarks developed by the functionalised upconverters. These long exposure times resulted in the substrate itself being visible to some extent, which is different from the theoretical “ideal” scenario that would provide bright fingermarks against a totally dark background. However, functionalised upconverters still showed superior results to conventional
Abstract

luminescence techniques for fingermark detection on some difficult substrates and they have great potential to be improved through further research.

General discussion and conclusions are presented in Chapter 7. Possible future directions for fingermark detection using upconverters are also presented.