UNIVERSITY OF TECHNOLOGY, SYDNEY Faculty of Engineering and Information Technology

Model Predictive Control and Stabilisation of Interconnected Systems

by

Tri Tran-Cao

A THESIS SUBMITTED
IN FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2011

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as a part of the requirements for a degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research and in the preparation of the thesis itself has been fully acknowledged. In addition, I certify that all information sources and literature quoted are indicated in the thesis.

TRI TRAN-CAO

ABSTRACT

Model Predictive Control and Stabilisation of Interconnected Systems

by

Tri Tran-Cao

The attraction of having higher efficiency and quality, as well as increasing reliability and flexibility for industrial plants and network systems has created opportunities for new research in the control and optimisation fields. Among various design methods, model predictive control (MPC) strategies have proved to be effective in industrial applications. Whilst found widespread used with stand-alone controllers in the refining and many other industries, the field of orchestrating non-centralised MPCs and distributed MPCs is evaluated as still in its infancy.

The work in this thesis is concerned with stabilising methods for the control of complex interconnected systems with mixed connection configurations employing distributed and decentralised model predictive control schemes. Inheriting the advantage of the MPC strategy, the control and state constraints are naturally dealt with by the employed methods. As a result, the novel concept of asymptotically positive realness constraint (APRC) and the segregation and integration constructive methods for the constrained stabilisation of interconnected systems are introduced and developed. The MPC is formulated with state space models and stabilising constraints within the open-loop paradigm in this thesis. By having the control inputs entirely decoupled between subsystems and no additional constraints imposed on the interactive variables rather than the coupling constraint itself, the proposed approaches outreach various types of systems and applications. For parallel connections that emulate parallel redundant structures and have unknown splitting ratios, a fully decentralised

control strategy is developed as an alternative to the hybrid approaches. For the semi-automatic control systems, which is involved with both closed-loop and human-in-the-loop regulatory controls, the stability-guaranteed method of decentralised stabilising agents which are interoperable with different control algorithms is germinated and implemented for each single subsystem.

Acknowledgements

I am grateful to my PhD program advisors, Associate Professor Quang Phuc Ha and Professor Hung T. Nguyen, for their supports and assistances in correcting the theoretical developments and Thesis writings.

I would like to express my gratitude to the University of Queensland scholarship sponsors, whose organisation has given the opportunity for studying in Australia; University of Queensland scholarship students from Vietnam, including An, Thanh, Quan, Hoang, Hung and Vinh, who I have made friend with, and thanks for the inspired talks about their research, dedications and commitments.

This work is dedicated to my dear Mother who has taught her children about the importance of studies in life, and sacrificed for us.

Tri Tran-Cao (Tri Tran) Sydney, Australia, 2011.

Contents

	Cert	tificate		ii
	Abs	tract		iii
	Ack	nowledg	rments	V
	List	of Illus	trations	X
	Nota	ation		xvi
	Abb	reviatio	n	xix
1	Int	roduc	tion	1
	1.1	Backgr	round	1
	1.2	Thesis	Objectives	5
	1.3	Thesis	Contributions	6
		1.3.1	Asymptotically Positive Realness Constraint (APRC) and	
			Novel Stabilisability Conditions - An Open-Loop Paradigm	7
		1.3.2	Parallel Connections with Unknown Splitting Ratios - A Fully	
			Decentralised Approach	8
		1.3.3	Stabilising Constraints for Distributed and Decentralised	
			MPCs - Integrated Constructive Method	S
		1.3.4	Stabilising Agents for Semi-Automatic Control Systems -	
			Segregated Constructive Method	10
		1.3.5	Semi-Automatic Control Method for Networked-Control-System	n 12
		1.3.6	Decentralised MPC for Coupling-Delayed Interconnected	
			Systems with State and Input Constraints	13
	1.4	Signific	cance and Innovation	13

				vii
	1.5	Outlin	ne of the Thesis	14
2	Mo	del P	Predictive Control - A Survey	18
	2.1	Gener	al	18
	2.2	Indust	rial Model Predictive Control	20
	2.3	Stabili	ising Methods for Distributed and Decentralised Model	
		Predic	etive Control	25
3	As	ympto	otically Positive Realness Constraint and Stabil	_
	isir	ng Co	nstraint for Model Predictive Control	32
	3.1	Introd	uction	32
	3.2	Contro	ol and System Models	33
	3.3	Interco	onnection Stabilisability Condition	35
		3.3.1	Asymptotically Positive Realness Constraint	36
		3.3.2	Bounded Control Feasibility of Asymptotically Positive	
			Realness Constraints	38
		3.3.3	Dissipativity and APRC-Based Stabilisability Conditions	40
	3.4	APRO	Based Decentralised Model Predictive Control	44
	3.5	Flexib	le Stabilisability Conditions	48
		3.5.1	With Non-Conservative Multiplier Matrices	48
	3.6	Paralle	el Splitting Subsystems	50
		3.6.1	Interconnection Stabilisability Condition	52
		3.6.2	Decentralised MPC for Parallel Splitting Systems	55
		3.6.3	With Parallel Masking Dissipativity Criterion	57
	3.7	Nume	rical Simulations	66
		3.7.1	Illustrative Example 1	66
		3.7.2	Illustrative Example 2	89
	3.8	Conclu	uding Remarks	93

4	Ext	tende	d Implementation Methods	
	Sem	ni-Auto	omatic Control with Stabilising Agent and	
	Rec	eding-l	Horizon Stabilising Constraint for	
	Dist	ribute	d Model Predictive Control	94
	4.1	Introd	uction	94
		4.1.1	Stabilising Agent for Semi-Automatic Control Systems	94
		4.1.2	Receding-Horizon Stabilising Constraint	96
	4.2	Stabili	sing Agent	97
		4.2.1	Stabilising Agent Operation	97
		4.2.2	Constructive Procedure for Stabilising Agents	99
		4.2.3	Graphical Presentation	101
	4.3	Illustra	ative Example	103
		4.3.1	Concluding Remarks	108
	4.4	Distrib	outed Model Predictive Control Problem with	
		Recedi	ing-Horizon Stabilising Constraint	109
		4.4.1	Optimisation Objective Function	110
		4.4.2	Constraint on Decision Variables	111
		4.4.3	APRC-Based Receding-Horizon Stabilising Constraint	111
		4.4.4	Distributed MPC with Receding-Horizon Stabilising Constraint	113
		4.4.5	Decentralised MPC with Receding-Horizon Stabilising	
			Constraint	114
		4.4.6	Optimising Feasibility	114
		4.4.7	Illustrative Examples	118
	4.5	An En	ergy Dissipation View Point on the Equilibrium-Independent	
		Dissipa	ativity	124
		4.5.1	Preliminary	124

		4.5.2	Experimental Predictive PID for Equilibrium Independent	
			Dissipativity	130
		4.5.3	Concluding Remarks	134
5	Ne	twork	ked-Control Interconnected Systems with Asymp	p -
	tot	ically	Positive Realness Constraint	136
	5.1	Introd	luction	136
	5.2	System	m and Networked Control Models	139
	5.3	Stabil	isability Conditions for Networked Control Systems	142
	5.4	Illustr	rative Example	146
		5.4.1	Case Study 1	146
		5.4.2	Case Study 2	150
	5.5	Distri	buted Model Predictive Control with Perturbed State Feedback	
		for M	ultiple Network Topologies	152
		5.5.1	Introduction to DeMPC and PSF	152
		5.5.2	Communication Networks	155
		5.5.3	System and Control Model	156
		5.5.4	Data Loss Process	159
		5.5.5	State Constraint	159
		5.5.6	Asymptotic Quadratic Constraint	160
		5.5.7	Subsystem Data-Lost Robust Dissipativity	161
		5.5.8	Task Description	162
	5.6	Concl	uding Remarks	164
6	Co	uplin	g Delayed Interconnected Systems with Asymp)-
	tot	ically	Positive Realness Constraint	165
	6.1	Contr	ol System Models	167
	6.2	Interc	connection Stabilisability Conditions with Coupling Delay	169

	Bil	oliogra	aphy	1	95
7	Co	nclusi	on	1	.93
	6.5	Conclu	iding Remarks		192
	6.4	Illustr	ative Example		189
		6.3.3	Constraint Feasibility for $\beta\tau-{\rm APRC}$ Stability Constraint		188
		6.3.2	$\beta\tau$ -APRC Stability Constraint		187
		6.3.1	MPC Stability Constraint		186
	6.3	Decen	tralised Model Predictive Control		182
		6.2.6	APRC-Based Stabilisability Conditions		179
		6.2.5	$\beta\tau$ -APRC Based Stabilisability Conditions		178
		6.2.4	$\beta\tau$ —Asymptotically Positive Realness Constraint		177
		6.2.3	Quadratic Constraint		176
		6.2.2	Delay-Robust Quadratic Dissipativity		172
		6.2.1	Accumulatively Quadratic Dissipativity		169

List of Figures

1.1	Mixed Connection Topology of a Network System	1
3.1	Mixed Connection Structure of an Interconnected System	50
3.2	Parallel Splitting of a Unit \mathcal{G}_j having Three Subsystems	60
3.3	Block Diagram of the Large-Scale System Σ on the Basis of Units \mathcal{G}_j .	61
3.4	Decentralised MPCs for the Pre-Desilication Unit Without both	
	Stabilising Constraints and Control Bounds - Time Responses	68
3.5	Decentralised MPCs for the Pre-Desilication Unit Without Stabilising	
	Constraints - Time Responses	69
3.6	APRC-Based Decentralised MPCs of the Pre-Desilication Unit with	
	Online Updated Multiplier Matrices - Time Responses	70
3.7	APRC-Based Decentralised MPCs of the Pre-Desilication Unit with	
	Flexible Multiplier Matrices - Time Responses	71
3.8	Parallel Splitting Systems - Decentralised MPC without both	
	Stabilising Constraints and Control Bounds - Time Responses	73
3.9	Parallel Splitting Systems - Decentralised MPC without Stabilising	
	Constraints - Time Responses	73
3.10	Parallel Splitting Systems - Mixed Connection Structure -	
	Decentralised MPC without Stabilising Constraints - Unknown	
	Splitting Ratios	74

3.11	Parallel Splitting Systems - Mixed Connection Structure -	
	Decentralised MPC without Stabilising Constraints - Unknown	
	Splitting Ratios	74
3.12	Parallel Splitting Systems - Mixed Connection Structure - Equal	
	Splitting Ratio - ASPRC-Based Decentralised MPC	75
3.13	Parallel Splitting Systems - Mixed Connection Structure -	
	ASPRC-Based Decentralised MPC with Unknown Splitting Ratios -	
	Simulation 1	76
3.14	Parallel Splitting Systems - Mixed Connection Structure -	
	ASPRC-Based Decentralised MPC with Unknown Splitting Ratios -	
	Simulation 2	77
3.15	Parallel Splitting Systems - Mixed Connection Structure -	
	ASPRC-Based Decentralised MPC with an Equal Splitting Ratio -	
	Smooth Control	78
3.16	Parallel Splitting Systems - Mixed Connection Structure -	
	${\it ASPRC-Based Decentralised MPC with Unknown Splitting \ Ratios -}$	
	Smooth Control - Simulation 1	78
3.17	Parallel Splitting Systems - Mixed Connection Structure -	
	${\it ASPRC-Based \ Decentralised \ MPC \ with \ Unknown \ Splitting \ Ratios -}$	
	Smooth Control - Simulation 2	79
3.18	Parallel Splitting Systems - Parallel Connection Structure Only -	
	ASPRC-Based Decentralised MPC with an Equal Splitting Ratio	80
3.19	Parallel Splitting Systems - Parallel Connection Structure Only -	
	${\it ASPRC-Based Decentralised MPC with Unknown Splitting \ Ratio -}$	
	Simulation 1	80
3.20	Parallel Splitting Systems - Parallel Connection Structure Only -	
	${\it ASPRC-Based \ Decentralised \ MPC \ with \ Unknown \ Splitting \ Ratio \ -}$	
	Simulation 2	81

3.21	Parallel Splitting Systems - Serial Connection Structure Only -	
	ASPRC-Based Decentralised MPC with an Equal Splitting Ratio	82
3.22	Parallel Splitting Systems - Serial Connection Structure Only -	
	ASPRC-Based Decentralised MPC with Unknown Splitting Ratios -	
	Simulation 1	82
3.23	Parallel Splitting Systems - Serial Connection Structure Only -	
	ASPRC-Based Decentralised MPC with Unknown Splitting Ratios -	
	Simulation 2	83
3.24	Parallel Splitting Systems - Mixed Connection Structure Case 2 -	
	ASPRC-Based Decentralised MPC with an Equal Splitting Ratio	84
3.25	Parallel Splitting Systems - Mixed Connection Structure Case 2 -	
	${\it ASPRC-Based Decentralised MPC with Unknown Splitting \ Ratios -}$	
	Simulation 1	84
3.26	Parallel Splitting Systems - Mixed Connection Structure Case 2 -	
	${\it ASPRC-Based Decentralised MPC with Unknown Splitting \ Ratios -}$	
	Simulation 2	85
3.27	Parallel Splitting Systems - Parallel Connection Structure Only Case	
	2 - ASPRC-Based Decentralised MPC with an Equal Splitting Ratio.	86
3.28	Parallel Splitting Systems - Parallel Connection Structure Only Case	
	2 - ASPRC-Based Decentralised MPC with Unknown Splitting Ratios	
	- Simulation 1	86
3.29	Parallel Splitting Systems - Parallel Connection Structure Only Case	
	2 - ASPRC-Based Decentralised MPC with Unknown Splitting Ratios	
	- Simulation 2	87
3.30	Parallel Splitting Systems - Serial Connection Structure Only Case 2	
	- ASPRC-Based Decentralised MPC with an Equal Splitting Ratio	87

3.31	Parallel Splitting Systems - Serial Connection Structure Only Case 2	
	- ASPRC-Based Decentralised MPC with Unknown Splitting Ratios -	
	Simulation 1	88
3.32	Parallel Splitting Systems - Serial Connection Structure Only Case 2	
	- ASPRC-Based Decentralised MPC with Unknown Splitting Ratios -	
	Simulation 2	88
3.33	Decentralised MPCs for the Washing Circuit Without Stabilising	
	Constraints - Time Responses	91
3.34	APRC-Based Decentralised MPCs of the Counter-Current Washing	
	Circuit with Online Updated Multiplier Matrices - Time Responses	91
3.35	APRC-Based Decentralised MPCs of the Counter-Current Washing	
	Circuit with Online Updated Multiplier Matrices - Time Responses	93
4.1	Stabilising Agent Activities	98
4.2	The Control Plane Plot with APRC Ellipsoids and the Stabilising	
	Bounds	102
4.3	Control of the Washing Circuit without Stabilising Agents -	
	Plant-Output Time Responses	105
4.4	Decentralised Stabilising Agents for the Washing Circuit - Time	
	Responses	106
4.5	Decentralised Stabilising Agents for the Washing Circuit - Time	
	Responses	107
4.6	Decentralised Stabilising Agents with a Non-zero Set Point and	
	Unmeasured Disturbance - Plant-Output Time Responses	108
4.7	Distributed MPCs with APRC-Based Receding-Horizon Stabilising	
	Constraint - Offline Multiplier Matrices - Simulation 1	119
4.8	Distributed MPCs with APRC-Based Receding-Horizon Stabilising	
	Constraint - Online Multiplier Matrices - Simulation 1	120

4.9	Distributed MPCs with APRC-Based Receding-Horizon Stabilising	
	Constraint - Offline Multiplier Matrices - Simulation 2	122
4.10	Distributed MPCs with APRC-Based Receding-Horizon Stabilising	
	Constraint - Online Multiplier Matrices - Simulation 2	123
4.11	Absolute Passive (AP) responses	125
4.12	One-Overshoot Response (OOS) Trajectory	126
4.13	OOS and Passive, but Not AP.	126
4.14	A Stable Response	127
4.15	An Energy Viewpoint for Stable and Passive Responses	128
4.16	Illustrative Predictive PID based on Dissipativity	130
4.17	Illustrative Predictive PID based on Dissipativity - Smooth	
	Adjustment for OOS	131
4.18	Illustrative Predictive PID based on Dissipativity - Non-smooth	
	Adjustments	133
5.1	Conceptual Block Diagram of the System Architecture	137
5.2	Decentralised Stabilising Agents for the Washing Circuit with	
	Networked Control Systems having MATI = 5 steps - Plant-Output	
	Time Responses.	148
5.3	Decentralised Stabilising Agents with Intermittent Data Losses -	
	Plant-Output Time Responses, $y_i(k)$	149
5.4	APRC-Based Decentralised Model Predictive Control with	
	Intermittent Data Losses - Strong Dynamic Coupling System - Time	
	Responses	151
5.5	APRC-Based Decentralised Model Predictive Control with	
	Intermittent Data Losses - Strong Dynamic Coupling System - Input	
	and Output Trajectories	151

5.6	Partially Decentralised Model Predictive Control with Two	
	Communication Networks and a Subsystem Coupling Network	153
6.1	Decentralised MPCs with Coupling Delay without Stability	
	Constraints - Plant-Output Trends $(y_1(k), y_2(k), y_3(k))$	189
6.2	Decentralised MPCs with a Coupling Delay of $\tau_{max} = 7$ steps,	
	Delay-Dependent Dissipativity and Stability Criteria - Plant-Output	
	Trends $(y_1(k), y_2(k), y_3(k))$ with Local Input Disturbances $ d_i(k) \le 1$.	190
6.3	The Average Optimising Cost Trend. The Coupling Delay time	
	$\tau = 7$ steps	101

Nomenclature and Notation

Capital letters denote matrices. Lower-case alphabet and Greek letters denote column vectors and scalars, respectively.

 \mathbb{R} , \mathbb{R}^+ , \mathbb{Z} , \mathbb{Z}^+ , \mathbb{N} denote the field of real numbers, the set of non-negative reals, the set of integers, the set of non-negative integers and the set of natural numbers, respectively.

The notation $\Omega \subseteq \Phi$ is used to denote that Ω is a subset of Φ and $\Omega \subset \Phi$ denotes that Ω is a proper subset of Φ . For two arbitrary sets $\mathcal{P}_1 \subseteq \mathbb{R}^n$ and $\mathcal{P}_2 \subseteq \mathbb{R}^n$, $\mathcal{P}_1 \setminus \mathcal{P}_2$ denotes the relative complement of \mathcal{P}_2 in \mathcal{P}_1 , i.e. their set difference.

 $(.)^T$ denotes the transpose operation.

 I_n is the identity matrix of dimension $n \times n$. 0_n is the zero matrix of dimension $n \times n$.

 $\operatorname{diag}[A_i]_1^N$ is the block diagonal matrix with diagonal entries A_i , i = 1, 2, ..., N, while $[M_{ij}]_{i,j=1,2,...,h}$ is the matrix of sub-blocks M_{ij} .

 $\operatorname{diag}[Q_{ji}]_{j=1...h, i=1...g_j}$ is the block diagonal matrix with diagonal entries Q_{ji} , where $j=1,2,...,h;\ i=1,2,...,g_j$.

 $||u_i||_2$ and $||u_i||$ denote the ℓ_2 -norm of the vector u_i .

 $||Q||_2$ is the induced 2-norm of the matrix Q, which is defined as

$$||Q||_2 = \max\{||Qv||_2 : v \in \mathbb{R}^n, ||v||_2 \le 1\}.$$

 $Q \leq 0$ means Q is positive semi-definite i.e. $x^TQx \leq 0 \ \forall x.\ Q \leq 0$ means Q is positive definite i.e. $x^TQx < 0 \ \forall x \neq 0$.

A function $\gamma: \mathbb{R}^+ \to \mathbb{R}^+$ belongs to class \mathcal{K} if it is continuous, strictly increasing

and $\gamma(0) = 0$.

A function $\alpha: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ belongs to class \mathcal{KL} if for each fixed $\tau \in \mathbb{R}^+$, $\alpha(.,\tau) \in \mathcal{K}$ and for each fixed $s \in \mathbb{R}^+$, $\alpha(s,.)$ is decreasing and $\lim_{\tau \to \infty} \alpha(s,\tau) = 0$.

In symmetric block matrices or long matrix expressions, we use * as an ellipsis for terms that are induced by symmetry, e.g.,

$$(*)\begin{bmatrix} (*) + R & S \\ * & Q \end{bmatrix} K = K^T \begin{bmatrix} R^T + R & S \\ S^T & Q \end{bmatrix} K, \text{ or }$$

$$K^T \begin{bmatrix} R^T + (*) & * \\ S^T & Q \end{bmatrix} (*) = K^T \begin{bmatrix} R^T + R & S \\ S^T & Q \end{bmatrix} K.$$

 $\lambda_{\min}(.)$ and $\lambda_{\max}(.)$ indicate the minimum and maximum eigenvalues of the argument, respectively.

The function sgn(.) is defined by

$$\mathrm{sgn}(\xi) = \begin{cases} 1, & \text{if } \xi > 0, \\ 0, & \text{if } \xi = 0, \\ -1, & \text{if } \xi < 0 \end{cases}$$

In a proof, when the time index k is omitted for conciseness, $v(-\tau)$ denotes the vector $v(k-\tau)$.

 \hat{u} denotes a sequence of predictive vectors of u(j) starting from the current time step. \check{u} denotes a sequence of u(-j) representing historical data of u.

The ℓ^{th} element of a vector $u_i(k)$ is denoted as $u_i^{(\ell)}(k)$.

In the discrete-time domain, the time index is denoted by $k, k \in \mathbb{Z}$. For signals belonging to \mathcal{L}_2 space, $k \geq 0$.

The boldface style for letters is used in optimisation formulations to emphasise that they are variables.

Abbreviation

- APRC Asymptotically Positive Realness Constraint.
- ASPRC Asymptotically Surely Positive Realness Constraint.
- DeMPC Decentralised Model Predictive Control.
- DMPC Distributed Model Predictive Control.
- DRD Delay-Robust Dissipativity.
- IQC Integral Quadratic Constraint.
- LMI Linear Matrix Inequality.
- MATI Maximum Allowable Transmission Interval.
- MPC Model Predictive Control.
- NMPC Nonlinear Model Predictive Control.
- NCS Networked Control System.
- ODE Ordinary Differential Equation.
- PRC Positive Real (or Realness) Constraint.
- QP Quadratic Programming.
- SDP Semi-Definite Programming.