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the first time suggested that “Flowers of zinc” be named “zinc oxide” reflecting the 

elements in the nomenclature of compound. 

 

"We think only through the medium of words. Languages are true analytical 

methods. Algebra, which is adapted to its purpose in every species of expression, in the 

most simple, most exact, and best manner possible, is at the same time a language and 

an analytical method. The art of reasoning is nothing more than a language well 

arranged." 

Antoine Laurent Lavoisier, Traité Élémentaire de Chimie, 1789 

Adopted from translation by Robert Kerr, 1790
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Abstract 

Zinc oxide is an important material industrially and scientifically. It has a long 

history dating back to more than four thousand years ago. It has applications in rubber 

production, cosmetics, pigments and ceramics. The properties of zinc oxide such as 

porosity, specific surface area and optical properties change as a result of changing the 

synthetic method and process conditions. The suitability of ZnO for different 

applications depends on the properties of the material, which in turn are influenced by 

synthetic routes. 

Knowledge of the processes underpinning the various synthetic techniques is key to 

understanding the properties of the ZnO end-product. In this work, various synthetic 

techniques have been investigated that may be amenable to large-scale production. The 

resultant materials were studied and important insights were obtained. For example, it 

was found that the precursor materials and method of processing for the production of 

zinc oxide have important roles in controlling the properties of the product such as 

specific surface area, crystal morphology, particle size and amount of surface hydroxyl 

groups embedded in the product. 

In single-stage production methods, zinc oxide is precipitated directly from a zinc 

solution. Influences of reaction temperature, concentration of the reactants and feeding 

techniques on the properties of the products were determined. 

In multi-stage routes, intermediate zinc-bearing materials including zinc peroxide 

and zinc hydroxy carbonate, sulphate, chloride, nitrate and acetate were synthesised. 

These intermediate materials were then used as precursors for the formation of zinc 

oxide particles. Relationships between the properties of the precursor zinc-containing 

compound and the end-product zinc oxide were studied and unexpected results were 

obtained. For example, it was shown that specific surface area of the zinc oxide product 

depends significantly on the precursor material from which it is produced. Techniques 

were investigated that can produce multiple important zinc-bearing compounds and it 

was found that it could be engineered by selection of the appropriate precursors and 

process conditions. 
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