SLC11A1 PROMOTER POLYMORPHISMS, GENE EXPRESSION AND ASSOCIATION WITH AUTOIMMUNE AND INFECTIOUS DISEASES

A Thesis Submitted for the Degree

of

Doctor of Philosophy

by

Nicholas Steven Archer

B. Sc.(Hons1)

School of Medical and Molecular Biosciences, Faculty of Science, University of Technology Sydney, Australia.

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Nicholas Steven Archer

2012

ACKNOWLEDGMENTS

I am grateful to many people who have supported and helped me throughout the completion of my postgraduate studies. In particular, my supervisors Dr Bronwyn O'Brien and Dr Najah Nassif, both of whom have provided immeasurable guidance, support and wisdom throughout the completion of my postgraduate work. I thank you for the effort and enthusiasm you have shown to my work.

I wish to extend a special thanks to Stephanie Dowdell for her friendship and support through the completion of my PhD and assistance with reverse-transcriptase real-time PCR. I also appreciate and acknowledge the support provided to me from the numerous postgraduate students, postdoctoral and support staff that I have had the privilege and honour to work alongside of and socialise with.

Futhermore, I would like to thank the following people for their technical guidance for the experimental work completed in this project. Paul Held and Sharon Guffogg for assistance with the Biotek fluorescent plate reader. Dr Lisa Sedger for assistance with flow cytometery and Dr Mike Johnson for confocal microscopy analysis. Narelle Woodland, Gilian Rozenberg and the Prince of Wales Hospital for assistance with staining of THP-1 cells and positive controls. Additionally, a big thankyou to David Hyatt and Lonza for the loan of the Nucleofector instrument.

I would like to also acknowledge Jenefer M. Blackwell, Anna Dubaniewicz, A Graham, Leonardo A Sechi, Lee E Sieswerda, Maria Gazouli, Margje Haverkamp, Linda Wicker, Jennie Yang, Eileen Hoal, Timothy Sterling and Alison Motsinger-Reif for supplying additional population data for the completion of meta-analyses.

Finally, I would like to thank the support of my family, my partner, Sarah, my parents, Lynette and Warwick and sister and brother-in law, Kerri and Daniel. While you never did understand exactly what I was doing, you still tried to show an interest!

ABSTRACT

Solute Carrier Family 11A Member 1 (SLC11A1) is a member of a highly conserved group of ion transporters and has restricted localisation to the phagosomal membrane of monocytes/macrophages. SLC11A1 plays an immunomodulatory role in influencing macrophage activation status and the T helper 1/T helper 2 bias. As such it modulates susceptibility to infectious/autoimmune diseases. A polymorphic (GT)_n promoter microsatellite repeat is known to alter *SLC11A1* promoter activity. Of the nine (GT)_n alleles identified, alleles 3 and 2, which account for a combined allele frequency of greater than 95%, drive high and low *SLC11A1* expression, respectively. The increased *SLC11A1* expression, driven by (GT)_n allele 3 is hypothesised to result in a heightened activation status of classically activated macrophages, affording resistance to infectious disease, but conferring susceptibility to pro-inflammatory autoimmune diseases. Conversely, decreased *SLC11A1* expression in the presence of allele 2 would confer susceptibility to infectious disease, but resistance to autoimmune disease.

A large number of studies assessing the association between the presence of specific $(GT)_n$ promoter alleles with the incidence of infectious and autoimmune disease have produced inconsistent associations. Meta-analyses are powerful analytical tools which combine individual association studies to estimate the strength of an association, therefore, meta-analyses of case control association studies (from 1991-2006) analysing the association of SLCI1AI promoter $(GT)_n$ alleles 2 and 3 with the incidence of autoimmune disease were performed. The meta-analyses found a weak predominance of disease in the absence of allele 2, with a fixed effects pooled OR of 0.80 (95% CI = 0.22), however, a random effects pooled odds ratio (OR) of 0.88 (95% CI = 0.66) for allele 3 suggested no association with the incidence of autoimmune disease.

The publication of additional case control studies between 2006 and the present allowed a more comprehensive meta-analysis to be completed. This analysis, which included additional *SLC11A1* polymorphisms, represents the largest study assessing the association of *SLC11A1* polymorphisms with disease occurrence to date. Allele 2 of the (GT)_n microsatellite was associated with increased and reduced incidence of infectious [OR=1.32 (1.20-1.46)] and autoimmune diseases [OR=0.90 (0.81-1.00)], respectively. Allele 3 was significantly associated with reduced incidence of infectious disease

[OR=0.82 (0.76-0.88)], however, the association with susceptibility to autoimmune disease occurrence did not reach statistical significance [OR=1.11 (0.98-1.26)]. The findings of the meta-analysis challenges the hypothesis that allele 3 is the disease causing variant at the $(GT)_n$ microsatellite repeat.

The results of these meta-analyses highlight small sample sizes as a major limitation of case control association studies. Completion of large-scale studies has been impractical because conventional *SLC11A1* (GT)_n genotyping methodologies are time consuming and cannot differentiate all (GT)_n variants. A high resolution melt curve methodology has been designed and optimised to genotype two *SLC11A1* polymorphisms, the (GT)_n and (CAAA)_n microsatellite repeats. Assay validation yielded a 100% success rate for genotyping of the (GT)_n and (CAAA)_n microsatellites. The designed methodology is the first to enable accurate, sensitive and high-throughput genotyping of these microsatellites and will enable the completion of sufficiently large association studies required to determine the association between the *SLC11A1* (GT)_n and (CAAA)_n polymorphisms and disease occurrence.

In addition to the (GT)_n microsatellite, the -237C/T polymorphism has also been shown to modulate SLC11A1 expression, with the T variant driving low expression in the presence of (GT)_n allele 3. Little is known about SLC11A1 transcription or the mechanism by which the (GT)_n and -237C/T promoter polymorphisms modulate SLC11A1 expression. Bioinformatic studies were completed to identify putative regulatory elements involved in transcription and promoter constructs, containing different lengths of the SLC11A1 promoter, were prepared and used to assess promoter function. A 581bp promoter region (-532 to +49) that controlled *SLC11A1* expression in monocytes was identified. Within this region was identified a 148bp minimal promoter region (-99 to +49) containing the core elements for the formation of the basal transcriptional complex. The greatest transcriptional enhancement was identified within a 170bp region (-532 to -362) containing a novel IRF-Ets composite sequence for the recruitment of transcription factors IRF-8 and PU.1. Additionally, the promoter constructs suggested that the SLC11A1 promoter may mediate bidirectional transcription. It was further determined that, in monocytic cells, the ability of (GT)_n alleles 2 and 3 to differentially modulate SLC11A1 expression was not due to their differing abilities to form Z-DNA, but to monocyte-specific factor(s) binding to a 165bp

region (-362 to -197) of the *SLC11A1* promoter. Additional bioinformatic and functional assays suggested that the T variant of the -237C/T polymorphism reduced *SLC11A1* promoter activity independently of the (GT)_n microsatellite repeat.

Infectious and autoimmune diseases are major contributors to morbidity and mortality. *SLC11A1* is instrumental in regulating macrophage function and hence susceptibility to infectious and autoimmune diseases. This study has provided insight into the association of *SLC11A1* with disease incidence, has developed a novel genotyping methodology to allow the completion of large association studies and has elucidated mechanisms of transcriptional regulation of *SLC11A1* and the influence of polymorphisms on *SLC11A1* expression.

PUBLICATIONS ARISING FROM THE WORK DESCRIBED IN THIS THESIS

(A) PUBLICATIONS IN PEER-REVIEWED JOURNALS

Nicholas S. Archer, Najah Nassif & Bronwyn A. O'Brien (2012) "The *SLC11A1* (GT)_n promoter polymorphism modulates expression through monocyte specific factor(s) to alter susceptibility to infectious and autoimmune diseases", (Manuscript in preparation).

Nicholas S. Archer, Najah Nassif & Bronwyn A. O'Brien (2012) "Meta-analysis of *SLC11A1* polymorphisms: (GT)_n allele 2 exerts selective pressure in infectious and autoimmune disease", (Manuscript in preparation).

Nicholas S. Archer, Melinda Sirmias, Stephanie Dowdell, Najah Nassif & Bronwyn A. O'Brien (2012) "Genotyping disease-associated *SLC11A1* microsatellite repeats by high resolution melt analysis", (Submitted).

Nicholas S. Archer, Najah Nassif & Bronwyn A. O'Brien (2010) "Discrimination of microsatellite repeat polymorphisms of the *SLC11A1* promoter by melting curve analysis using the Eppendorf Mastercycler ep *realplex*", Eppendorf Technical Application Note 206.

Bronwyn O'Brien, **Nicholas S. Archer**, Fraser Torpy & Najah Nassif (2008) "Association of *SLC11A1* Promoter Polymorphisms with the incidence of autoimmune and Inflammatory Diseases: A Meta-Analysis", *Journal of Autoimmunity*, 31(1): 42-51.

(B) CONFERENCE ABSTRACTS

Nicholas Archer, Najah Nassif & Bronwyn O'Brien (2011) Poster entitled: "Macrophage specific factors differentially regulate allele specific *SLC11A1* expression and consequent susceptibility to infectious and autoimmune disease", 32nd Lorne Genome Conference.

Nicholas Archer, Najah Nassif & Bronwyn O'Brien (2010) Presentation entitled: "The *SLC11A1* (GT)_n promoter polymorphism modulates susceptibility to infectious and autoimmune disease", 27th Combined RNSH/UTS/USyd/KIMR Scientific Research Meeting – Winner of the John Hambly award for best UTS presentation.

Nicholas Archer, Najah Nassif & Bronwyn O'Brien (2010) Poster entitled: "Elucidation of the essential promoter region of *SLC11A1*", 31st Lorne Genome Conference.

Nicholas Archer, Melinda Sirmias, Stephanie Dowdell, Najah Nassif & Bronwyn O'Brien (2009) Poster entitled: "Genotyping of functional SLC11A1 polymorphisms associated with infectious and autoimmune diseases", 26th Combined RNSH/UTS/USyd/KIMR Scientific Research Meeting.

Nicholas Archer, Najah Nassif & Bronwyn O'Brien (2008) Presentation in the Young Investigator Category "Elucidation of the Essential Promoter Region of *SLC11A1*", 25th Combined RNSH/UTS/USyd/KIMR Scientific Research Meeting.

Nicholas Archer, Najah Nassif & Bronwyn O'Brien (2007) Presentation entitled: "Genotyping SLC11A1 promoter polymorphisms by high resolution melt (HRM) analysis", 24th Combined RNSH/UTS/USyd/KIMR Scientific Research Meeting.

(C) AWARDS

Awarded the John Hambly Award for the best UTS presentation at the Combined RNSH/UTS/USyd/KIMR Scientific Research Meeting 2010.

CONTENTS

CERTIFICATE OF AUTHORSHIP/ORIGINALITY	11
ACKNOWLEDGMENTS	iii
ABSTRACT	iv
PUBLICATIONS ARISING FROM THE WORK DESCRIBED IN THIS THESIS	Svii
(A) PUBLICATIONS IN PEER-REVIEWED JOURNALS	vii
(B) CONFERENCE ABSTRACTS	Viii
(C) AWARDS	viii
CONTENTS	ix
LIST OF FIGURES	xxiii
LIST OF TABLES	xxix
LIST OF APPENDICES	xxxi
LIST OF ABBREVIATIONS	.xxxii
CHAPTER 1 – INTRODUCTION	1
1.1 STRUCTURE AND FUNCTION OF SLC11A1	2
1.1.1 Historical Background	2
1.1.1.1 Discovery of the Human SLC11A1 Gene	3
1.1.2 Structure of SLC11A1	4
1.1.3 Tissue and Cellular Expression of SLC11A1	7
1.1.3.1 SLC11A1 is Recruited to the Phagosomal Membrane in	
Macrophages/Monocytes	7
1.1.3.2 SLC11A1 Expression and Monocyte/Macrophage Development	9
1.1.3.3 SLC11A1 Expression in PMN Leukocytes	11
1.1.3.4 Expression of SLC11A1 in Other Tissues	11
1.1.4 Function of SLC11A1	12
1.1.4.1 SLC11A1 Functions as a Symporter to Transport Cations Out of the	3
Phagosome	12
1.1.4.2 Role of SLC11A1 in Resting Macrophages	13
1.1.5 Pleiotropic Effects of SLC11A1	15
1.1.5.1 SLC11A1 Modulates Adaptive Immune Responses	16
1.1.5.2 SLC11A1 Modulates Cytokine Levels	16

1.1.5.3 SLC11A1 Modulates Expression of Pro-Inflammatory Effector	
Molecules	17
1.1.6 SLC11A1 and Autoimmune Disease	18
1.2 SLC11A1 POLYMORPHISMS	21
1.2.1 Genomic Organisation of the SLC11A1 Locus	21
1.2.2 SLC11A1 Polymorphisms	21
1.2.3 SLC11A1 Functional Polymorphisms	24
1.2.4 SLC11A1 Polymorphisms Affecting Expression Levels	25
1.2.4.1 SLC11A1 Promoter Polymorphisms	26
1.2.4.2 SLC11A1 UTR Polymorphisms	26
1.3 SLC11A1 PROMOTER POLYMORPHISMS AND DISEASE OCCURRE	ENCE
	27
1.3.1 The SLC11A1 (GT) _n Microsatellite Promoter Polymorphism	27
1.3.2 The (GT) _n Promoter Polymorphisms Modulate SLC11A1 Expression	29
1.3.3 The SLC11A1 -237C/T Promoter Polymorphism	30
1.3.4 The Association of SLC11A1 (GT) _n Promoter Variants with Infectious	and
Autoimmune Diseases	31
1.3.4.1 SLC11A1 (GT) _n Promoter Polymorphism and Infection	32
1.3.4.2 SLC11A1 (GT) _n Promoter Polymorphisms and Autoimmune Dise	ase34
1.3.5 Limitations of Association Studies Analysing the SLC11A1 (GT) _n	
Polymorphism and Disease Occurrence	37
1.4 BACKGROUND TO THE PROJECT AND AIMS	38
1.4.1 Background to Project	38
1.4.2 Aims of the Project	39
CHAPTER 2 – GENERAL MATERIALS & METHODS	42
2.1 MATERIALS	43
2.1.1 General Materials and Reagents	43
2.1.2 DNA Size Standards	43
2.1.3 Oligonucletides	44
2.2 METHODS	45
2.2.1 Sterility and Containment	45
2.2.2 DNA Techniques	45
2.2.2.1 PCR 1 – General PCR	45
2.2.2.2 Purification of PCR Products	46

2.2.2.3 Restriction Enzyme Digestion.	.46
2.2.2.4 Small-Scale Preparation of Plasmid DNA ('mini'-prep)	.46
2.2.2.5 Agarose Gel Electrophoresis	.47
2.2.2.6 DNA Sequencing	.47
2.2.2.7 Determination of DNA Concentration	47
2.2.3 Microbiological Techniques	.48
2.2.3.1 Luria Bertani Medium	.48
2.2.3.2 Cloning of PCR Products	48
2.2.3.3 Isolation and Culture of Positive Colonies	.48
2.2.4 Bioinformatics	.49
2.2.4.1 Restriction Mapping	.49
2.2.4.2 Analysis of Sequence Data	.49
CHAPTER 3 – ASSOCIATION OF <i>SLC11A1</i> PROMOTER POLYMORPHISMS	
WITH THE INCIDENCE OF AUTOIMMUNE AND INFLAMMATORY DISEASE	ES:
A META-ANALYSIS	.50
3.1 PREFACE	.51
3.2 INTRODUCTION	.51
3.3 METHODS	. 54
3.3.1 Data Collection	. 54
3.3.2 Statistical Analyses	.55
3.4 RESULTS	. 57
3.5 DISCUSSION	.61
CHAPTER 4 – HIGH-THROUGHPUT GENOTYPING OF SLC11A1	
MICROSATELLITE REPEATS BY HIGH RESOLUTION MELT CURVE	
ANALYSIS	.67
4.1 INTRODUCTION	.68
4.1.1 High-Throughput Genotyping of SLC11A1 Microsatellite Repeats Using	
High Resolution Melt Curve Analysis	.71
4.2 MATERIALS AND METHODS	.74
4.2.1 Materials	.74
4.2.1.1 General Materials	.74
4.2.1.2 Oligonucleotides	.74
4.2.2 Methods	.75
1221 Genomic DNA Collection	75

4.2.2.1.1 Buccal Cell Collection	75
4.2.2.1.2 FTA Card Immobilisation of Buccal Cells	75
4.2.2.1.3 Collection of Blood Cells	76
4.2.2.2 Genomic DNA Extraction	76
4.2.2.2.1 Preparation of FTA Card Immobilised gDNA for PCR Analysis	76
4.2.2.2 Elution of FTA Card Immobilised gDNA	76
4.2.2.2.3 Direct Addition of Buccal Cells to the PCR	77
4.2.2.3 Cloning of SLC11A1 (GT) _n and (CAAA) _n Polymorphic Variants	77
4.2.2.4 PCR Protocols	78
4.2.2.4.1 PCR 2 – Optimisation of Parameters for Real-Time PCR Analysis	s 78
4.2.2.4.2 PCR 3 – Optimised Real-Time PCR Protocol for the Genotyping	of
SLC11A1 Microsatellite Repeats by HRM Analysis	79
4.2.2.4.3 PCR 4 – Nested PCR Protocol to Increase Starting Template for	
HRM Genotyping from FTA Card Immobilised gDNA	80
4.2.2.5 Genotyping of SLC11A1 Microsatellite Polymorphisms by HRM Cur-	ve
Analysis	80
4.2.2.6 Software	81
4.2.2.6.1 Prediction of Amplicon Melting using Poland	81
4.2.2.6.2 Genotype Determination from Transformed Raw Melt Curve Dat	a81
4.3 RESULTS	83
4.3.1 HRM Analysis Assay Design	83
4.3.1.1 Oligonucleotide Design for Genotyping of the SLC11A1 (GT) _n and	
(CAAA) _n Microsatellites by HRM Analysis	83
4.3.1.2 PCR Amplification using the Designed HRM Oligonucleotides Produ	iced
Amplicons of the Correct Length and Sequence	86
4.3.2 Optimisation of Real-time PCR Parameters for HRM Analysis	87
4.3.2.1 Optimisation of PCR Annealing Temperature	87
4.3.2.2 Optimisation of Magnesium Chloride Concentration	88
4.3.2.3 Optimisation of Primer Concentrations by Real-time PCR	89
4.3.2.4 Selection of <i>Taq</i> Polymerase and Optimisation of Real-time PCR	
Cycling Parameters	92
4.3.3 HRM Genotyping of Simulated <i>SLC11A1</i> (GT) _n and (CAAA) _n Genotypes	.93
4.3.3.1 Optimisation of HRM Parameters - Ramp Rate and HR-1 Software	
Analysis Parameters	93

4.3.3.2 The Optimised HRM Genotyping Methodologies Successfully	
Differentiates Simulated (GT) _n and (CAAA) _n Genotypes	97
4.3.3.3 Differentiation of the Common and Rare (GT) _n Heterozygous Ger	notypes
using the Developed HRM Assay	98
4.3.4 Validation of the SLC11A1 (GT) _n and (CAAA) _n HRM Genotyping	
Methodologies	99
4.3.4.1 Direct use of FTA Card Punches in the PCR	99
4.3.4.2 HRM Genotyping of Samples after Elution of DNA from FTA Ca	ards 101
4.3.4.3 Amplification from Buccal Cells Added Directly to the PCR	102
4.3.4.4 Introduction of a Nested PCR Approach to Allow for the Validati	on of
the HRM Assay for the (CAAA) _n Polymorphism	103
4.3.4.5 Validation of the (GT) _n HRM Genotyping Assay using gDNA Iso	lated
from Blood	104
4.3.5 Genotypes of the SLC11A1 (GT) _n and (CAAA) _n Repeat can be Different	entiated
using the Eppendorf realplex Real-Time PCR Instrument	106
4.4 DISCUSSION	109
4.4.1 Introduction	109
4.4.2 Design and Optimisation of the HRM Genotyping Assays	109
4.4.3 Validation of the HRM Genotyping Assays	111
4.4.4 Sample Spiking with a Known Genotype May Increase the Robustnes	s of the
HRM Assays	113
4.4.5 The HRM Genotyping Assays can Detect Novel Variants and Rare (G	$T)_n$
Alleles in a Heterozygous Form	114
4.4.6 Conclusion	115
CHAPTER 5 – FUNCTIONAL ANALYSIS OF THE SLC11A1 PROMOTER	117
5.1 INTRODUCTION	118
5.1.1 The SLC11A1 Promoter	118
5.1.2 Mechanisms of Eukaryotic Transcription Initiation	120
5.1.2.1 The Basal Transcriptional Complex	120
5.1.2.2 Transcription from Non-Canonical (TATA-less) Promoters	121
5.1.2.3 Transcriptional Activators and Repressors	123
5.1.3 The <i>SLC11A1</i> Promoter and Transcription	124
5.1.4 SLC11A1 Promoter Polymorphisms Modulate SLC11A1 Expression	126

5.1.4.1 The <i>SLC11A1</i> (GT) _n Microsatellite has Endogenous Enhance	er Activity
5.1.4.2 Z-DNA Structure and Function.	127
5.1.4.2.1 Z-DNA Formation May Modulate Allelic Differences in	SLC11A1
Expression	128
5.1.5 Aims	129
5.2 MATERIALS AND METHODS	130
5.2.1 Materials	130
5.2.1.1 General Materials	130
5.2.1.2 Oligonucleotides	130
5.2.2 Methods	131
5.2.2.1 Bioinformatic Analysis of the SLC11A1 Promoter	131
5.2.2.1.1 Bioinformatic Storage and Analysis using LaserGene	13
5.2.2.1.2 ClustalW Alignment of the Promoter Regions of SLC11.	A1
Homologs	132
5.2.2.1.3 Identification of Conserved SLC11A1 Promoter Element	ts by
WeederH Analysis	133
5.2.2.1.4 Analysis of SLC11A1 for Transcription Factor Binding	Sites 133
5.2.2.1.5 Identification of Z-DNA Forming Sequences in the SLC	11141
Promoter by Z-Hunt Analysis	135
5.2.2.1.6 Dectection of Alu Elements and Other Repetitive Eleme	ents within
the SLC11A1 Promoter	136
5.2.2.2 DNA Techniques	136
5.2.2.2.1 PCR 5 – Amplification of Promoter Regions for Promot	er Analysis
	130
5.2.2.2 Gel Purification of DNA Fragments for Cloning	137
5.2.2.2.3 Production of the 1A-bla(M) Plasmid	13′
5.2.2.2.4 <i>In Vitro</i> Site-Directed Mutagenesis	138
5.2.2.5 Verification of the 1A-bla(M) Plasmids by Sequence Ar	nalysis139
5.2.2.2.6 The pGeneBLAzer Cloning Protocol to Produce the 1A-	-bla(M)
Plasmid and Smaller SLC11A1 Promoter Constructs	140
5.2.2.7 Addition of A Overhangs for TOPO TA Cloning	14
5.2.2.2.8 Verification of <i>SLC11A1</i> Promoter Constructs	
5.2.2.9 Production of the Negative Control Plasmid emp-bla(M))142

5.2.2.3 Microbial Techniques
5.2.2.3.1 Large Scale Preparation of Plasmid DNA (Maxi-prep)143
5.3 RESULTS
PART 1: Discovery of Important SLC11A1 Promoter Elements by Bioinformatic
Analysis145
5.3.1.1 A Model of Regulation of <i>SLC11A1</i> Expression
5.3.1.2 Identification of Conserved Regions within the SLC11A1 Promoter 147
5.3.1.3 Identification of Conserved Elements within the SLC11A1 Promoter .150
5.3.1.4 Identification of Transcription Factor Binding Sites within the SLC11A1
Promoter 154
5.3.1.4.1 Bioinformatic Analysis Failed to Identify Consensus Sequences for
Core Proteins Involved in the Basal Transcriptional Complex
5.3.1.4.2 Identification of Putative TFBS in the <i>SLC11A1</i> Promoter156
5.3.1.4.3 SLC11A1 Promoter Polymorphisms and Transcription Factor
Binding156
5.3.1.5 Multiple Regions of the SLC11A1 Promoter Display a Propensity to
Form Z-DNA 157
5.3.1.5.1 The (GT) _n Microsatellite Alleles Differ in their Z-DNA Forming
Ability
5.3.1.6 <i>In Silico</i> Identification of Transcription Factor Binding Sites and
Promoter Activity: GeneQuest Summary
5.3.1.7 Conclusions of the Bioinformatic Analysis
PART 2: Design and Construction of SLC11A1 Promoter Constructs for Functional
Analysis
5.3.2.1 Primer Site Determination and Primer Design
5.3.2.1.1 Optimisation of PCR Conditions for the Amplification of <i>SLC11A1</i>
Promoter Regions 167
5.3.2.2 Selection of <i>SLC11A1</i> Promoter Regions for Cloning and Reporter
Analyses
5.3.2.2.1 Identification of <i>SLC11A1</i> Promoter Regions Containing Core
Elements for the Formation of the Basal Transcriptional Complex
5.3.2.2.2 Determination of the Effect of Variants at the (GT) _n and -237C/T
Polymorphisms on <i>SLC11A1</i> Expression

5.3.2.2.3 Determination of the Ability of the <i>SLC11A1</i> Promoter to Mo	
Bidirectional Transcription	170
5.3.2.3 Construction of the Largest <i>SLC11A1</i> Promoter Plasmid: 1A-bla((M).171
5.3.2.3.1 In Vitro Site-Directed Mutagenesis to Generate the -237 T V	ariant
5.3.2.3.2 Verification of 1A-bla(M) Clones by Sequence Analysis	
5.3.2.4 Production of the Smaller <i>SLC11A1</i> Promoter Plasmids	
5.3.2.5 Production of the Control Plasmids	
5.3.2.6 Identification of Novel Sequence Variants within the <i>SLC11A1</i> P	
5.4 DISCUSSION	180
5.4.1 <i>In Silico</i> Identification of Putative Elements Involved in <i>SLC11A1</i>	
Transcription	
5.4.2 Mechanism of Differential <i>SLC11A1</i> Expression Mediated by the Fun	
Promoter Polymorphisms	182
5.4.3 Conclusion	184
CHAPTER 6 – FUNCTIONAL ANALYSIS OF THE <i>SLC11A1</i> PROMOTER	
6.1 INTRODUCTION	186
6.1.1 Detection of <i>SLC11A1</i> Promoter Activity using the GeneBLAzer Rep	orter
System	187
6.2 MATERIALS AND METHODS	190
6.2.1 Materials	190
6.2.1.1 Cell Lines	190
6.2.2 Methods	191
6.2.2.1 Cell Culture Techniques	191
6.2.2.1.1 Sterility and Containment	191
6.2.2.1.2 Culture and Maintenance of Human Embryonic Kidney 2937	Cells
	191
6.2.2.1.3 Culture and Maintenance of U937 Cells	191
6.2.2.1.4 Culture and Maintenance of THP-1 Cells	191
6.2.2.1.5 Passaging of Cell Lines	192
6.2.2.1.6 Determination of Cell Viability	193
6.2.2.1.7 Reviving Mammalian Cell Lines	193
6.2.2.1.8 Storage of Mammalian Cell Lines	193

6.2.2.1.9 Differentiation and Cytokine Stimulation of THP-1 Cells	193
6.2.2.2 Transfection Protocols	194
6.2.2.2.1 Transfection of 293T Cells using Lipofectamine 2000	194
6.2.2.2 Transfection of THP-1 Cells with Lipofectamine LTX	194
6.2.2.2.3 Transfection of THP-1 Cells Using Nucleofection	195
6.2.2.2.4 Addition of Substrate (CCF2-AM) For Reporter Analysis	195
6.2.2.3 Analyses of Human Cell Lines Transfected with SLC11A1 Promote	er
Constructs	197
6.2.2.3.1 Fluorescence/Light Microscopy Analysis of Human Cell Lines	}
Transfected with the SLC11A1 Promoter Constructs	197
6.2.2.3.2 Confocal Microscopy Analysis of Human Cell Lines Transfect	ed
with the SLC11A1 Promoter Constructs	197
6.2.2.3.3 Fluorescence Plate Reader Analysis of Human Cell Lines	
Transfected with the SLC11A1 Promoter Constructs	198
6.2.2.3.4 Flow Cytometric Analysis of Human Cell Lines Transfected w	ith the
SLC11A1 Promoter Constructs	199
6.2.2.4 Staining Techniques for the Characterisation of the THP-1 Cell Lir	ne.200
6.2.2.4.1 Morphological Assessment of THP-1 Cells	200
6.2.2.4.2 Slide Preparation for Cytochemical Analyses	200
6.2.2.4.3 Periodic Acid-Schiff Staining	201
6.2.2.4.4 Sudan Black B Staining of THP-1 Cells	201
6.2.2.4.5 Myeloperoxidase Staining of THP-1 Cells	202
6.2.2.4.6 Combined α-Naphthyl butyrate and AS-D Chloroacetate estera	ise
Staining of THP-1 Cells	202
6.2.2.4.7 Analysis of THP-1 Cell Morphology and Cytochemistry by Li	ght
Microscopy	203
6.2.2.5 Techniques for Quantiation of <i>SLC11A1</i> Expression	203
6.2.2.5.1 RNA extraction	203
6.2.2.5.2 Synthesis of cDNA	203
6.2.2.5.3 PCR 6 – Quantitation of <i>SLC11A1</i> Expression by Real-time PC	CR 204
6.3 RESULTS	205
PART 3: Analysis of the <i>SLC11A1</i> Promoter using Promoter Assays	205
6.3.1 Determination of the Promoter Activity of SLC11A1 Constructs Transfe	ected
into 293T Cells	205

6.3.1.1 Characterisation of the 293T Cell Line	205
6.3.1.2 Transfection of <i>SLC11A1</i> Promoter Constructs into 293T Cells	207
6.3.1.2.1 Determination of Important Promoter Regions Driving SLC11A	1
Transcription in 293T Cells	207
6.3.1.2.2 Assessment of the Ability of the SLC11A1 Promoter to Mediate	
Bidirectional Transcription	209
6.3.1.2.3 The Promoter Variants Allele 2 and Allele T Drive Higher Pron	noter
Activity Compared to the Allele 3 Variant in 293T Cells	211
6.3.2 Determination of the Promoter Activity of SLC11A1 Constructs Transfer	eted
into THP-1 Cells	213
6.3.2.1 Selection of a Monocytic Cell Line with SLC11A1 Expression	213
6.3.2.2 Characterisation of the THP-1 Cell Line	215
6.3.2.2.1 Morphological/Cytochemical Characterisation of THP-1 Cells	215
6.3.2.2.2 Quantitation of SLC11A1 Expression in THP-1 Cells	218
6.3.2.3 Optimisation of THP-1 Cell Transfection with the SLC11A1 Promot	er
Constructs	219
6.3.2.3.1 Detection of SLC11A1 Promoter Activity using a Fluorescence	Plate
Reader	219
6.3.2.3.2 Flow Cytometric Analysis Enabled the Selective Detection of	
Transfected THP-1 Cells	221
6.3.2.3.3 Nucleofection of THP-1 Cells Resulted in Increased Cell Viabil	ity
and Transfection Efficiency as Compared to Lipofectamine LTX	223
6.3.2.4 Transfection of SLC11A1 Promoter Constructs into THP-1 Cells	226
6.3.2.4.1 Determination of Important Promoter Regions Driving SLC11A	1
Transcription in Monocyte-Like THP-1 Cells	226
6.3.2.4.2 The SLC11A1 Promoter Shows Evidence of Bidirectional	
Transcription	230
6.3.2.4.3 Promoter Constructs Containing Allele 3 Drive Higher Promote	r
Activity Compared to Allele 2 and Allele T in THP-1 Cells	232
6.3.2.5 Further Bioinformatic Analysis of Important SLC11A1 Promoter Re	gions
Identified by the Reporter Assays	234
6.3.2.5.1 The Basal Transcriptional Complex Assembles within a 148bp	
Region (-99 to +49) of the SLC11A1 Promoter	234

6.3.2.5.2 Analysis of the 170bp Region (-532 to -362) Exerting the High	ıest
SLC11A1 Promoter Activity	236
6.3.2.5.3 Binding of a Monocyte Specific Transcription Factor within th	ie -
362 to -197 Region Mediates Allelic Differences in SLC11A1 Expression	n . 238
6.4 DISCUSSION	240
6.4.1 Overview	240
6.4.2 THP-1 Cells are an Appropriate Model for the Investigation of <i>SLC11A</i>	11
Expression	
6.4.3 <i>SLC11A1</i> Promoter Analysis	241
6.4.3.1 A 148bp Region of the <i>SLC11A1</i> Promoter Defines the Minimal	
Promoter Region	241
6.4.3.2 Mechanism of the Formation of the Basal Transcriptional Complex	
6.4.3.3 The 5'UTR and First Intron do not Function to Enhance <i>SLC11A1</i>	
Transcription in Monocytic Cells	245
6.4.3.4 Identification of <i>SLC11A1</i> Promoter Regions Important in the	
Recruitment of Transcription Factors	246
6.4.3.4.1 Transcription Factors IRF and PU.1 are Candidates for the	
Transcriptional Enhancement of the -532 to -362 <i>SLC11A1</i> Promoter Re	egion
	•
6.4.3.4 The <i>SLC11A1</i> Promoter Shows Evidence of Bidirectional Transcrip	
C. T.S. I THE SECTION TRANSPORT SHOWS EVILLENCE OF EXAMPLES OF STATE OF STA	
6.4.4 The Influence of <i>SLC11A1</i> Promoter Polymorphisms on <i>SLC11A1</i> Promoter Polymorphisms of <i>SLC11A</i>	
Activity	
6.4.4.1 The (GT) _n Variants Mediate Differential Transcription Through the	
Binding of a Monocyte-Specific Transcription Factor to the -362 to -197 R	
Emaing of a fronce, to openine Transcription Factor to the 302 to 1971	Č
6.4.4.2 The -237C/T Polymorphism Functions Independently of the (GT) _n	201
Microsatellite Repeat to Modulate <i>SLC11A1</i> Expression	256
6.4.5 Conclusion	
6.5 Future Directions	
6.5.1 Assessment of the Minimal Promoter Region to Determine the Location	
Core Elements	
6.5.2 Analysis of the 170bp Promoter Region Driving High Promoter Activit	
0.3.4 Analysis of the 17000 Florilotel Region Driving fligh Floriloter Activit	y∠01

6.5.3 Determination of the Monocyte-Specific Transcription Factor Interacting	
with Allelic Variants to Modulate Differential Levels of SLC11A1 Expression	. 262
6.5.4 Analysis of Sequence Elements Identified by the WeederH Analysis	. 263
6.5.5 Analysis of the Mechanisms of SLC11A1 Transcription at Different Stage	es of
Monocyte/Macrophage Differentiation and Stimulation	. 263
6.5.6 Validation of Novel Sequence Variants of the SLC11A1 Promoter Identifi	ied
During the Preparation of the Promoter Constructs	. 264
CHAPTER 7 - META-ANALYSES ASSESSING THE ASSOCIATION OF <i>SLC11</i> .	A1
POLYMORPHISMS WITH THE OCCURRENCE OF AUTOIMMUNE AND	
INFECTIOUS DISEASE	. 265
7.1 INTRODUCTION	. 266
7.2 METHODS	. 269
7.2.1 Criteria for Study Inclusion.	. 269
7.2.2 Statistical analysis	.270
7.2.2.1 Determination of the Source of Heterogeneity using Logistic Regress	ion
Analysis	.272
7.2.3 Detection of Bias using the Funnel Plot.	.273
7.2.4 Continuity Corrections for Zero Observations	. 274
7.3 RESULTS	. 275
7.3.1 Associations of SLC11A1 Polymorphisms with the Incidence of Autoimm	ıune
Disease	.276
7.3.1.1 Association of the (GT) _n Promoter Alleles with the Incidence of	
Autoimmune/Inflammatory Disease	. 278
7.3.1.1.1 (GT) _n Allele 2 is Associated with Marginal Protection Against th	ie
Occurrence of Autoimmune Disease	. 279
7.3.1.1.2 The (GT) _n Allelic Variants are Associated with the Incidence of	
Sarcoidosis and Type 1 Diabetes	. 279
7.3.1.2 The -237C/T, 274C/T and 469+14G/C Polymorphisms are Associated	d
with the Incidence of Autoimmune Disease	.281
7.3.1.3 Polymorphisms Within the 3' Region of SLC11A1 are Not Associated	d
with the Incidence of Autoimmune Disease	. 283
7.3.1.4 Logistic Regression Analysis to Determine the Source of Heterogene	ity
Identified in the Meta-Analyses	283

Disease	284
7.3.2.1 SLC11A1 (GT) _n Allele 2 and Allele 3 are Associated with Susceptib	ility
and Resistance to Infectious Disease and Tuberculosis Alone	285
7.3.2.1.1 The Association of the (GT) _n Alleles with Infectious Disease	
According to Ethnicity	286
7.3.2.2 The 469+14G/C, 1730G/A and 1729+55del4 Polymorphisms are	
Associated with the Incidence of Infectious Disease	287
7.3.2.2.1 Association of SLC11A1 Polymorphisms with the Incidence of	
Infectious Disease According to Geographical Location/Ethnicity	288
7.3.2.3 The -237C/T, 274C/T, 1485-85G/A and 1729+271del4 Polymorhism	ns
are not Associated with the Incidence of Infectious Disease	289
7.3.2.4 Logistic Regression Analysis to Determine the Source of Heterogene	eity
Identified in the Meta-Analyses	289
7.3.3 Summary	289
7.4 DISCUSSION	292
7.4.1 Summary	292
7.4.2 Functional Variants within the 5' and 3' LD Haplotype Regions of SLC1	1A1
Influence Autoimmune and Infectious Disease Susceptibility	294
$7.4.2.1$ The $(GT)_n$ and $1730G/A$ Polymorphisms are Functional Candidates	
Altering the Cellular Phenotype of SLC11A1 to Influence	
Autoimmune/Infectious Disease Susceptibility	297
7.4.3 (GT) _n Allele 2 Exerts the Selective Pressure at the 5' End to Influence	
Infectious and Autoimmune Disease Susceptibility	298
7.4.3.1 (GT) _n Allele 2 May Influence Disease Incidence Due to a Heightene	d
Anti-inflammatory Immune Response Mediated Through Increased IL-10	
Expression	300
7.4.4 Future Association Studies Should Complete Haplotype Analysis of the	
SLC11A1 Locus	301
7.4.5 Conclusion	302
CHAPTER 8 - GENERAL DISCUSSION	305
8.1 Introduction	306
8.2 Association of (GT) _n Alleles 2 and 3 with the Incidence of	
Autoimmune/Inflammatory Diseases	307

7.3.2 Associations of SLC11A1 Polymorphisms with the Incidence of Infectious

8.3 Genotyping of SLCITAT Microsatellite Polymorphisms Using HRM	308
8.4 Localisation and Functional Evaluation of the SLC11A1 Promoter	308
8.4.1 Characterisation of the <i>SLC11A1</i> Promoter	309
8.4.1.1 A 148bp Region of the SLC11A1 Promoter Defines the Minimal	
Promoter Region	309
8.4.1.2 Transcription Factors IRF-8 and PU.1 are Candidates for the	
Transcriptional Enhancement of the -532 to -362 Promoter Region of SLC	C11A1
	310
8.4.1.3 The SLC11A1 Promoter Mediates Bidirectional Transcription	310
8.4.2 The Influence of Variants at the (GT) _n and -237C/T Promoter Polymon	phisms
on SLC11A1 Promoter Activity	310
8.4.2.1 The -362 to -197 Region Mediates Differential SLC11A1 Express	ion in
the Presence of Different (GT) _n Alleles in Monocytes	310
8.4.2.2 The -237C/T Polymorphism Alters SLC11A1 Promoter Activity	
Independently of the (GT) _n Microsatellite Repeat	311
8.5 Association of SLC11A1 Polymorphisms with the Occurrence of Infectious	and
Autoimmune Disease	312
8.5.1 Variants within the 5' and 3' LD Haplotype Regions of SLC11A1 Influ	ience
Autoimmune and Infectious Disease Susceptibility	313
8.5.2 (GT) _n Allele 2 Influences Disease Incidence Through a Heightened Ar	ıti-
Inflammatory Immune Response Mediated by Increased IL-10 Expression	314
8.6 Conclusions	314
APPENDIX	317
Appendix 1	318
Appendix 2	319
Appendix 3	320
Appendix 4	321
Appendix 5	322
Appendix 6	324
Appendix 7	326
Appendix 8	327
Appendix 9	330
REFERENCES.	331

LIST OF FIGURES

Figure 1.1 SLC11A1 gene structure, protein conformation and membrane	5
topology of Slc11a1.	
Figure 1.2 Phagosome maturation and Slc11a1 recruitment.	8
Figure 1.3 Relative SLC11A1 expression levels during macrophage	10
differentiation and activation.	
Figure 1.4 SLC11A1 functions as a divalent cation symporter.	13
Figure 1.5 Pleiotropic effects mediated by SLC11A1 expression.	15
Figure 1.6 Location and genomic organisation of the SLC11A1 locus.	22
Figure 1.7 Location of all annotated sequence variants throughout the	24
SLC11A1 locus.	
Figure 1.8 SLC11A1 expression is differentially modulated by the different	29
promoter (GT) _n microsatellite alleles.	
Figure 1.9 The influence of SLC11A1 (GT) _n allele 2 and allele 3 on	31
macrophage activation.	
Figure 3.1 Funnel plots from the analysis of the association of (GT) _n alleles	59
with the occurrence of autoimmune disease.	
Figure 4.1 Molecular mechanism of melt curve analysis.	72
Figure 4.2 Molecular species formed during melting curve analysis of a sample	73
containing heterozygous and homozygous genotypes.	
Figure 4.3 Oligonucleotide design for genotyping of the SLC11A1 (GT) _n	84
promoter polymorphism by HRM.	
Figure 4.4 Oligonucleotide design for genotyping the SLC11A1 3'UTR	85
(CAAA) _n polymorphism by HRM analysis.	
Figure 4.5 Validation of the oligonucleotides designed for HRM analysis for	86
the amplification of (GT) _n and (CAAA) _n microsatellite repeats.	
Figure 4.6 Determination of the optimal annealing temperature by gradient	88
temperature PCR.	
Figure 4.7 Determination of the optimal magnesium chloride concentration	89
using a magnesium concentration gradient PCR.	
Figure 4.8 Determination of optimal primer concentrations by analysis of	90
different combinations of forward and reverse primer concentrations.	

Figure 4.9 HRM curve analysis is sensitive to subtle changes in reaction	91
conditions.	
Figure 4.10 HR-1 software analysis of the raw melt curves of simulated (GT) _n	94
genotypes.	
Figure 4.11 Analysis of the (CAAA) _n melting curves using the HR-1 software.	95
Figure 4.12 Optimisation of the HR-1 ramp rate to enable sensitive	96
differentiation of genotypes.	
Figure 4.13 HRM analysis of simulated SLC11A1 (GT) _n and (CAAA) _n	97
genotypes.	
Figure 4.14 Differentiation of rare and common simulated (GT) _n genotypes	98
using HRM analysis.	
Figure 4.15 Real-time PCR quantification profiles of amplified plasmid alleles	100
and FTA card immobilised gDNA samples.	
Figure 4.16 PCR amplification of eluted gDNA from FTA cards using	101
different volumes of TE buffer.	
Figure 4.17 PCR amplification of the SLC11A1 promoter region containing the	103
(GT) _n microsatellite repeat from buccal cells.	
Figure 4.18 Genotyping of the SLC11A1 (CAAA) _n repeat using a nested PCR	104
protocol utilising FTA card immobilised gDNA from buccal cells.	
Figure 4.19 Representative image of the gDNA isolated from whole blood	105
collected by diabetic lancet followed by extraction using a commercial spin	
column system.	
Figure 4.20 Validation of the HRM genotyping methodology using gDNA	106
extracted from blood.	
Figure 4.21 First derivative melting profiles for genotyping the SLC11A1	108
(GT) _n and (CAAA) _n polymorphisms using the Eppendorf ep <i>realplex</i> real-time	
PCR instrument.	
Figure 5.1 SLC11A1 promoter organisation showing the positions of the	119
SLC11A1 (GT) _n and -237C/T promoter polymorphisms.	
Figure 5.2 Formation of the basal transcriptional complex.	121
Figure 5.3 Core elements involved in transcription from a non-canonical	122
TATA-less promoter.	

Figure 5.4 Location of previously published putative transcription factor	125
binding sites located within the SLC11A1 promoter.	
Figure 5.5 Comparison of the structure of right handed B-DNA to the left	127
handed Z-DNA.	
Figure 5.6 Primers used to completely sequence cloned 1A-bla(M) plasmids	140
containing the different sequence variants in both the forward and reverse	
orientation.	
Figure 5.7 Hypothesised mechanism for the control of SLC11A1 expression	146
based on the findings of previously published studies.	
Figure 5.8 ClustalW alignment of the nucleotide sequences of the promoter	148
regions of 8 SLC11A1 homologs.	
Figure 5.9 The <i>SLC11A1</i> promoter showing the location of conserved regions	151
identified from the WeederH analysis and clustalW alignment.	
Figure 5.10 Summary of the most significant findings from the clustalW	153
alignment and WeederH analysis of the SLC11A1 promoter.	
Figure 5.11 TFBS search of the <i>SLC11A1</i> promoter centered on the TSS using	155
the program TESS.	
Figure 5.12 Z-Hunt analysis of the SLC11A1 (GT) _n microsatellite alleles.	159
Figure 5.13 Compilation of the findings of the bioinformatic analyses of the	160
SLC11A1 promoter and 5'UTR and comparison with previously published	
theoretical and experimentally-determined promoter elements.	
Figure 5.14 Compilation of findings of the bioinformatic analysis of the	164
SLC11A1 promoter.	
Figure 5.15 Location of designed primers for the amplification of different	166
promoter regions for subsequent production of SLC11A1 promoter plasmids.	
Figure 5.16 Designed SLC11A1 promoter regions for cloning into reporter	169
constructs to functionally test the different elements identified	
bioinformatically.	
Figure 5.17 Production of the <i>SLC11A1</i> expression plasmid 1A- <i>bla</i> (M).	172
Figure 5.18 <i>In vitro</i> site directed mutagenesis for the production of the -237 T	173
variant in <i>cis</i> with (GT) _n allele 3.	
Figure 5.19 Production of the negative control emp- <i>bla</i> (M) plasmid.	176

Figure 5.20 Sequencing electrophoregrams of novel SLC11A1 promoter	178
sequence variants.	
Figure 6.1 GeneBLAzer detection of promoter activity.	188
Figure 6.2 Microscopic analysis of 293T cells.	206
Figure 6.3 Promoter activity of SLC11A1 constructs, containing different	208
lengths of the SLC11A1 promoter, after transfection into 293T cells.	
Figure 6.4 Assessment of the ability of the SLC11A1 promoter region to	210
mediate bidirectional transcription in non-monocytic (293T) cells.	
Figure 6.5 Effect of the <i>SLC11A1</i> plasmid variants, allele 2, allele 3 and allele	212
T, on SLC11A1 promoter activity in 293T cells.	
Figure 6.6 Analysis of THP-1 and U937 cell lines for suitability for use with	214
the Geneblazer technology.	
Figure 6.7 Analysis of THP-1 cell morphology by May-Grunwald Giemsa	215
staining.	
Figure 6.8 Cytochemical analyses of THP-1 cells.	216
Figure 6.9 Combined α-naphthyl butyrate and AS-D chloroacetate esterase	217
stain.	
Figure 6.10 Lipofectamine LTX transfected THP-1 cells showing low cell	220
viability and low transfection efficiency.	
Figure 6.11 Validation of flow cytometric analyses to quantitate promoter	222
activity driven by the different SLC11A1 promoter constructs using 293T cells.	
Figure 6.12 Nucleofection of THP-1 cells increases cell viability and	224
transfection efficiency.	
Figure 6.13 Gating protocol for determining promoter activity after	225
nucleofection of THP-1 cells with SLC11A1 promoter constructs.	
Figure 6.14 Promoter activity of SLC11A1 constructs, containing different	227
lengths of the SLC11A1 promoter, after transfection into THP-1 cells.	
Figure 6.15 Comparison of promoter activity of SLC11A1 constructs,	229
containing different lengths of the SLC11A1 promoter, in 293T cells and THP-1	
cells.	
Figure 6.16 Assessment of the ability of the SLC11A1 promoter region to	231
mediate bidirectional transcription.	

Figure 6.17 Analysis of the effect of the variants at the SLC11A1 promoter	233
(GT) _n and -237C/T polymorphisms on promoter activity in THP-1 cells.	
Figure 6.18 Identified SLC11A1 minimal promoter region and putative	235
mechanism of SLC11A1 expression.	
Figure 6.19 Location of putative transcription factor binding sites within the	237
-520 to -340 region of the <i>SLC11A1</i> promoter.	
Figure 6.20 Location of putative monocyte-specific TFBS within the -360 to	239
-180 region of the <i>SLC11A1</i> promoter.	
Figure 6.21 SLC11A1 transcription appears to be initiated by a mechanism	242
different to that observed from canonical promoters.	
Figure 6.22 Transfection of the promoter constructs into THP-1 cells revealed	247
that a 581bp region is involved in expression of <i>SLC11A1</i> in monocytic cells.	
Figure 6.23 Comparison of the promoter activity of the SLC11A1 promoter	253
constructs, containing the common allelic variants, in non-monocytic and	
monocyte-like cells.	
Figure 6.24 Monocytic-specific factor(s), binding within the -362 to -197	254
region, were identified as the mechanism controlling differences in promoter	
activity in the presence of allelic variants at the (GT) _n repeat.	
Figure 6.25 Summary of the putative mechanisms of SLC11A1 expression and	258
location of experimentally determined transcription factors.	
Figure 7.1 Location of SLC11A1 polymorphisms analysed in the meta-	267
analyses.	
Figure 7.2 Flow chart outlining the methodology used to determine pooled OR	271
estimates for the association of SLC11A1 polymorphisms with the occurrence	
of infectious or autoimmune disease.	
Figure 7.3 Funnel plots of the meta-analyses assessing the association of the	278
(GT) _n alleles with the incidence of autoimmune/inflammatory disease.	
Figure 7.4 Funnel plots of the meta-analyses of the -237C/T, 274C/T and	282
469+14G/C polymorphisms with the occurrence of autoimmune disease.	
Figure 7.5 Funnel plots of the meta-analyses of allelic variants at the (GT) _n	286
repeat with the incidence of infectious disease.	

295

xxviii

Figure 7.6 Summary of the results from the meta-analyses (pooled OR estimates and 95% CI interval) assessing the association of the *SLC11A1* polymorphisms with the incidence of autoimmune disease, infectious disease and tuberculosis alone.

Figure 7.7 Linkage disequilibrium at the *SLC11A1* locus and location of polymorphisms associated with the incidence of autoimmune and infectious disease.

LIST OF TABLES

Table 1.1 Homology Among Selected Nramp Family Members.	6
Table 1.2 The Location of Analysed Polymorphisms within SLC11A1.	23
Table 1.3 (GT) _n Repeat Polymorphisms of the <i>SLC11A1</i> Promoter.	27
Table 1.4 Studies Assessing the Association of the SLC11A1 (GT) _n Promoter	33
Polymorphism with the Incidence of Infectious Disease.	
Table 1.5 Studies Assessing the Association of the SLC11A1 (GT) _n Promoter	35
Polymorphism with the Incidence of Autoimmune Disease.	
Table 3.1 Details of Individual Association Studies of SLC11A1 (GT) _n Promoter	55
Polymorphisms and Autoimmune/Inflammatory Disease.	
Table 3.2 SLC11A1 Allele 3 Frequencies (Case Versus Controls) of all the	57
Individual Studies used in the Meta-Analysis.	
Table 3.3 SLC11A1 Allele 2 Frequencies (Case Versus Controls) of all the	58
Individual Studies used in the Meta-Analysis.	
Table 4.1 Oligonucleotides used for Genotyping of SLC11A1 (GT) _n and	75
(CAAA) _n Polymorphisms by HRM Analysis.	
Table 4.2 Optimisation Steps for the Production of the SLC11A1 HRM Assays.	87
Table 4.3 Differentiation of Simulated Common SLC11A1 (GT) _n Promoter	107
Genotypes using the Eppendorf Mastercycler ep realplex.	
Table 5.1 Oligonucleotides Designed for SLC11A1 Promoter Analyses.	131
Table 5.2 Method of SLC11A1 Promoter Plasmid Verification Prior to	142
Functional Analysis.	
Table 5.3 SLC11A1 Homologs Included in the ClustalW Analysis.	147
Table 5.4 Identified SLC11A1 Promoter Sequences with the Potential to Form Z-	158
DNA.	
Table 5.5 Optimised PCR Conditions for the Amplification of the Different	167
SLC11A1 Promoter Amplicons for Subsequent Cloning.	
Table 5.6 Description of Variants of the Manufactured SLC11A1 Reporter	175
Constructs.	
Table 5.7 $SLC11A1$ Promoter Haplotypes at the $G(T)_n$, Promoter $(GT)_n$ and -	179
237C/T Polymorphic Sites.	

Table 7.1 Summary of Identified Publications, Datasets Analysed and Number	275
of Cases and Controls.	
Table 7.2 Meta-analyses of the Association of SLC11A1 Polymorphisms with	277
the Incidence of Autoimmune/Inflammatory Disease.	
Table 7.3 Pooled OR Estimates of the Association of (GT) _n Alleles 3 and 2 with	280
Disease Occurrence and Ethnicity.	
Table 7.4 Meta-analyses of the Association of SLC11A1 Polymorphisms with	284
the Incidence of Infectious Disease.	
Table 7.5 Analysis of the Association of $(GT)_n$ Allele 2 and 3 with the Incidence	287
of Infectious Disease According to Ethnicity.	
Table 7.6 Analysis of the association of the 469+14G/C, 1730G/A and	288
1729+55del4 polymorphisms with the incidence of infectious disease based on	
ethnicity.	
Table 7.7 Comparison of Pooled OR Estimates between the Current and	293
Previously Completed Meta-analyses with the Incidence of Autoimmune Disease	
and Tuberculosis.	

LIST OF APPENDICES

Appendix 1 ClustalW alignment of the promoter regions of 8 SLC11A1	318
homologs showing highly conserved regions.	
Appendix 2 Allele frequency determination from carrier frequency.	319
Appendix 3 Publications identified for inclusion in the meta-analysis of	320
SLC11A1 polymorphisms with the incidence of autoimmune disease.	
Appendix 4 Publications identified for inclusion in the meta-analysis of	321
SLC11A1 polymorphisms with the incidence of infectious disease.	
Appendix 5	
Appendix 5a SLC11A1 allele 3 frequencies (case versus controls) of all	322
the individual association studies included in the meta-analysis.	
Appendix 5b SLC11A1 allele 2 frequencies (case versus controls) of all	323
the individual association studies included in the meta-analysis.	
Appendix 6	
Appendix 6a SLC11A1 frequencies (case versus controls) of all the	324
individual association studies included in the meta-analyses.	
Appendix 6b SLC11A1 frequencies (case versus controls) of all the	325
individual association studies included in the meta-analyses.	
Appendix 7	
Appendix 7a SLC11A1 allele 3 frequencies (case versus controls) of all	326
the individual association studies included in the meta-analysis.	
Appendix 7b SLC11A1 allele 2 frequencies (case versus controls) of all	326
the individual studies association included in the meta-analysis.	
Appendix 8	
Appendix 8a SLC11A1 469+14G/C frequencies (case versus controls) of	327
all the individual association studies included in the meta-analysis.	
Appendix 8b SLC11A1 1730G/A frequencies (case versus controls) of all	328
the individual association studies included in the meta-analysis.	
Appendix 8c SLC11A1 1729+55del4 frequencies (case versus controls)	329
of all the individual association studies included in the meta-analysis.	
Appendix 9 SLC11A1 polymorphisms frequencies (case versus controls) of all	330
the individual association studies included in the meta-analysis of infectious	
disease	

LIST OF ABBREVIATIONS

γ-IRE interferon-γ response element
 ALL acute lymphocytic leukaemia
 AML acute myeloid leukaemia

AMML acute myelomonocytic leukaemia

AP1 Activator protein 1

ARNT aryl hydrocarbon receptor nuclear translocator

bp base pairs

BRE TFIIB-recognition element BSA bovine serum albumin

CCF2-AM coumarin cephalosporin fluorescein CCAAT/enhancer binding protein

CI confidence interval cycle threshold

DCE downstream core element

DMEM Dulbecco's modified eagle medium

DNA deoxyribonucleic acid

DPE downstream promoter element EDTA ethylenediaminetetraacetic acid EMSA electrophoretic mobility shift assays

FBS fetal bovine serum

GM-CSF granulocyte macrophage colony-stimulating factor

h hours

HBSS Hanks buffered salt solution
HIF-1 Hypoxia inducible factor 1
HIV Human immunodeficiency virus
Idd insulin dependant diabetes (murine)

IDDM insulin dependant diabetes mellitus (human)

IECS IRF-Ets composite sequence

IFN-γ interferon-gamma IL interleukin

iNOS inducible nitric oxide synthase

Inr Initiator element

IRF interferon regulatory factors
ISRE IFN-stimulated response element

kb kilobase

KLF kruppel-like factor

l litre

Lamp1 lysosome-associated membrane protein 1

LB Luria Bertani

LPS linkage disequilibrium lipopolysaccharide

MHC major histocompatibility complex

min minutes

MTE motif ten element NF-IL6 nuclear factor IL-6

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NO nitric oxide

Nramp natural resistance-associated macrophage protein

NTC no template control
Oct-1 octamer binding protein 1

OR odds ratio

PAS periodic acid-schiff
PBS phosphate buffered saline
PCR polymerase chain reaction
PMA phorbol myristate acetate
PMN polymorphonuclear
Pol II RNA polymerase II

PU.1 protein encoded by SPI-1 gene reticuloendothelial system

RNA ribonucleic acid RNase ribonuclease

RPMI Roswell Park Memorial Institute

RT room temperature

s seconds

SBB Sudan black B

SLC11A1 Solute carrier family 11A member 1 (Human protein)
SLC11A1 Solute carrier family 11A member 1 (Human gene)
Slc11a1 Solute carrier family 11A member 1 (non-human protein)
Slc11a1 Solute carrier family 11A member 1 (non-human gene)
SLC11A2 Solute carrier family 11A member 2 (Human protein)
SLC11A2 Solute carrier family 11A member 2 (Human gene)

SNP single nucleotide polymorphism

Sp1 Specificity protein 1

SPI-1 spleen focus by forming virus proviral integration 1

TAF TBP associated factor TATA binding protein

TESS Transcription Element Search Software

TFIID transcription factor II D

TFBS transcription factor binding site

Th1 T helper 1 T helper 2

 $T_{\rm m}$ melting temperature

TNF-α tumour necrosis factor-alpha transcription start site 1
TSS2 transcription start site 2

UV ultraviolet

XCPE1 X core promoter element 1

YY1 Ying-Yang 1

ZBP-1 Z-DNA binding protein 1