
Teaching Java First: Experiments with a Pigs-Early Pedagogy

Raymond Lister
Faculty ofInformation Technology
University of Technology, Sydney

PO Box 123, Broadway, NSW 2007, Australia

rayrnond@it.uts.edu.au

Abstract

This paper introduces PigWorld, a tool for teaching Java to
novice programmers, via the objects-early style. Three
design guidelines for object-early assignments are discussed:
(I) emphasize message passing between instances of the
same class; (2) use only simple loops that search for smallest
or largest values in a sequence; (3) teach linked lists before
collections and collections before arrays. The paper offers a
first step to resolving the dilemma over whether procedural
programming must be taught before objects, via the
following principle: in the procedural style, algorithms are
encoded explicitly within the methods of an object, but in the
object oriented style, algorithms emerge implicitly from the
interactions between objects.

Keywords: CSI, Java, Objects-Early, Pigs.

1 Introduction
The Joint Task Force on Corrputing Curricula (2001) notes
that Java and C++ 'hre significantly more complex than
classical languages. Unless instructors take special care to
introduce the material in a way that limits this complexity,
such details can easily overwhelm introductory sudents"
In what is probably the largest study ever done of the
conceptual structures of novice programmers (Petre et al.,
2004), there is evidence that the current methods of teaching
Java and C++ have overwhelmed the students. In that study,
students were asked to place various programming
constructs and concepts into categories, based on criteria
chosen by the student. The construct "Object" was most
commonly placed with three other terms, "Tree", "List", and
"Array". In our view, this indicates that many students think
of objects naively, as being primarily a place where data is
stored. We believe this is the result of a preponderance of
examples of classes containing little more than private data
members and their "get" and "set" methods; hence this
student view of objects-as-data-structure.

Copyright © 2004, Australian Computer Society, Inc. This paper
appeared at the 6th Australasian Computer Education Conference
(ACE2004), Dunedin. Conferences in Research and Practice in
Information Technology, Vol. 30. R. Lister and A. Young, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

Some computer scientists believe the problem goes beyond
the choice of programming language, arguing more
fundamentally that the teaching of the procedural
programming paradigm must come first, as object-oriented
programming "in no way replaces the older paradigm ...
rather it is in addition to it" (Burton and Bruhn, 2003).
Rebuttals of such arguments have been written (CuIwin,
1999, Mitchell, 2001), but it must be conceded that the
principled teaching of object-oriented programming has
proved more difficult than many of us had originally hoped.

Long before Java, ways were sought to teach programming
more gently. The seminal "Karel the Robot" (pattis, 1981)
was used to teach Pascal, in the context of programming a
virtual robot to perform tasks in a grid-world. The Karel
approach has been updated for Java in at least three
independent cases (Becker, 2001, Bergin, 2003, Buck and
Stucki, 200 I). However, the emphasis in some cases on
algorithms encoded within a single class, frequently
recursive algorithms, brings a strong procedural flavour to
the teaching.

This paper describes Pigworld, our vehicle for exposing
students to object-oriented programming. PigWorld is in the
"Karel" tradition, with the world's principal characters
being pig's who move, eat, and make love within a
grid-based micro world. The organic metaphor of PigWorid
is not the first use of a non-robotic, organic metaphor
(Barnes & Kolling, 2003, Brady, 2002, Pattis, 1997), but our
use of the organic metaphor in PigWorid has led to a
micro-world which places emphasis on interactions between
objects, particularly instances of the same class. As the
development of PigWorid has evolved over several
semesters, we have developed an approach that doesn't treat
"objects" and "procedural" as a dichotomy. While we place
greater emphasis on objects, PigWorid allows us to
incorporate an algorithmic component to the subject.
However, instead of encoding those algorithms within the
methods of an object, our algorithms emerge from the
interactions between objects.

2 An Overview of Pigworld
Figure I shows a picture of a typical PigWorld scenario. In
this scenario, there is one boy pig, on the left hand side, and
one girl pig. (On a computer screen the color band on the
bottom of boy pigs is blue, and for girl pigs it is pink.) There

177

mailto:rayrnond@it.uts.edu.au


are two pig food trees, and adjacent to one of the trees is a
pill-like object, indicating that one of the trees has dropped
some pig food. In PigWorld, hungry pigs move, one square
at a time, toward the nearest pig food, which they then eat to
absorb its energy. Moving around PigWorld takes energy. In
Figure I, the number and bar on the right of the girl pig icon
indicates that she has 44 units of energy, while the boy pig
has zero energy.

As pigs move around the world, they trail behind them a
rope. The rope serves as a reminder to a pig of squares it has
already visited, and by this device they can navigate the
maze. In Figure I,both pigs are trailing rope, across several
squares.

At the bottom of Figure I, there is a tool bar of various radio
buttons. These buttons allow the user to add other elements
to PigWorld, including walls. (Pigs cannot pass through
walls.) Toward the right of Figure I are two controllers, one
for each pig. The "Id" number in the top left of each
controller matches the number displayed in the top left of a
pig.

When a pig's energy level has risen sufficiently, the pig will
lose interest in food. Instead, the pig becomes "in the mood
for love". When a pig is in such a mood, little hearts appear
on the pig's icon, and the pig's tight lips give way to a smile.

While in the mood for love, a girl pig emits a (virtual) noise.
The "oink" propagates throughout PigWorld, with the
volume of the oink decreasing with distance from the girl pig.
Any boy pig also in the mood for love will move from his
current square to the adjacent square where the "oink" is
loudest. Thus, eventually, the amorous girl pig will be
surrounded by a choice of suitors.

If a girl pig and a boy pig, both in the mood for love, should
occupy adjacent squares, they may mate to produce a new
pig. The progeny will appear on a vacant square adjacent to
the parents. After mating, the two parents enjoy a short
post-coital nap. When sleeping, a pig displays "Zzz" on its
Icon.

Pigs have poor eyesight, so in PigWorld they use radar to
sense their surroundings. Radars return an instance of the
class "Echo", containing the compass angle and distance to
the entity just detected. Radars see through walls, so
although a pig might know there is something of interest
nearby, the pig may need to navigate around walls to reach
it.

Life in PigWorld is not all food and sex. Wolves and other
predators haunt PigWorld, preying on pigs.

(A small point about implementation: the current version of
PigWorld uses AWT, but a Swing version is anticipated.)

3 The Class Hierarchy

Figure 2 shows the classes cornpnsmg Pig World, as
displayed in Blue.I (Barnes & Kolling, 2003), with the
"uses" arrows turned off. (We find Bluel to be an excellent
teaching environment, but PigWorld can run in any lava
programming environment, as it is pure Java.)

The first strong impression from Figure 2 is that PigWorld
contains over 40 classes. For 4-6 weeks prior to PigWorld,
students work on lab exercises which have no more than 3
classes. After their initial shock of seeing 40 classes, and
some soothing words, students settle down and work
comfortably in PigWorld. We scaffold tasks so that students
aren't left to wander through 40 classes. In PigWorld
assignments, we specify the particular method of a class to
be modified, and frequently specify the methods of other
classes that may have to be invoked. We support the
guideline (Kolling & Rosenberg, 200 I) that students should
start by making small changes to large projects, emphasizing
reading of classes over writing of code.

A second impression from Figure 2 is the class hierarchy, as
indicated by the inheritance arrows. The students mostly
work on classes that extend from "Thing", the classes
"Animal", "Vegetable", and "Mineral", and in tum their
extensions.

Each class that inherits from Thing has a matching "view"
class. Most animals share a single AnimalController class.
Early in semester, the primary virtue of the
Model/View/Controller pattern in PigWorld is that it allows
us to concentrate on the model classes without being
distracted by graphics and event handling. Later in semester,
students perform assignment tasks on the view/controller
classes.

4 Assessment Structure

Like all subjects at our university, there are four passing
grades, from the lowest "Pass", then "Credit", "Distinction",
and finally "High Distinction". The assessment structure for
this subject is unusual. It was described at last year's
conference (Lister and Leaney, 2003). Students who are
satisfied to merely pass this subject need not attempt the
PigWorld assignment. The assignment is broken up into a
series of tasks. In the most recent semester, in a class of 103
students, 49 students (48%) completed at least one of the
seven tasks of the PigWorld assignment. As the first of those
seven tasks is quite simple, we conclude that half the class
simply elected to settle for a "Pass", not that half the class
found all aspects of the assignment too hard.

5 Traditional OOP Moments

Each semester we set our students an assignment to augment
PigWorld in various ways. The assignment solution in one
semester becomes the (refactored) case study for the next

178



semester's class. In this section, we describe some
experiences with orthodox object-oriented exercises from
past semesters.

5.1 Message Passing Between Class Instances

In PigWorld's first semester, in what we thought was a
simple familiarization exercise, we asked students to prevent
pig procreation if the pair were brother-and-sister. Each pig
carries references to its parents, so preventing such
procreation requires each pig in a potential mating pair to
compare their parent references to the equivalent references
of the other pig. Students could encode this behaviour in a
single "if' condition. We were therefore surprised to find
that some students had difficulty, especially if they had prior
experience in a procedural language. These students had
developed a buggy concept of objects, which was closer to
procedural. They saw a class and an instance of a class as
being equivalent. Therefore, communication between
instances of the same class appeared to them to be a
recursive-like process in which an object communicated
with itself. While in earlier Java exercises, they had written
code for message passing between objects, these earlier
exercises had involved objects of different classes, and thus
the students' buggy notion had not been exposed. The
modification to prevent brother-sister procreation was the
first time they had written code for sending messages
between instances of the same class. In subsequent
semesters, we have made a point of including assignment
tasks that require method passing between instances of the
same class. Indeed, we have come to believe that
communication between instances of the same class should
be taught as early as possible, and reinforced as often as
possible: it is fundamental to the teaching of object oriented
programming.

5.2 GUI Exercises

PigWorld abounds with opportunities to add simple GUI
elements. The use of the Model/Viewer/Controller means
that students are exposed early to this concept.

In the most recent semester, pigs began to manipulate rope
(discussed at length later), and a button for destroying a
pig's rope was set as an assignment exerc ise. However, as
rope is unique to pigs, the "rope" button could not be added
to the AnimalController, so students were instructed to add
the "rope" button to a new class, "PigController", which
extended AnimalController. Of the 49 students who
attempted the assignment, 37 (76%) successfully completed
this task (i.e. 36% of the entire class).

5.3 Radars, Directions, and Echoes

In the first semester, PigWorld was without walls, and pigs
roamed free. In that semester, students wrestled with the

code within Pigs that uses a radar to locate food and other
pigs.

Before writing that code, students first needed to understand
two classes, the first being the "Direction" class, which
essentially encapsulates an angle. In addition to the
appropriate "get" and "set" methods for that angle, the
Direction class also contained static directions, "EAST" (0
degrees), "NORTH_EAST" (45 degrees), "NORTH" (90
degrees), etc. The other class that students needed to
understand was "Echo", which encapsulated both a
reference to an instance of Direction and a distance.

A pig needed to proceed as follows. First, the pig needed to
instantiate a radar, specifying as a parameter to the
constructor what sort of entity the pig wished to detect. Then
the pig needed to make a series of invocations of the "ping"
method within that radar, to perform a 360 degree sweep of
the world. The first invocation of "ping" would see the radar
commence a sweep in the direction EAST, proceeding
anti clockwise until an instance of the target class was
detected. The "ping" method then returned a reference to an
instance of Echo. The pig would then make further
invocations of "ping", with each invocation continuing from
where the previous invocation finished. To indicate that a
full 360 degree sweep has been completed, the radar returns
null. Throughout the sweep, the pig needed to retain the
instance of Echo returned by the nearest entity detected thus
far. On completing the sweep, the pig then stepped toward
that entity.

To make a pig do all the above, students only needed to write
about I 0 lines of code. (Furthermore, the basic algorithm to
do so effectively requires the student to find the smallest
element in a sequence, an algorithm they are explicitly
taught. This issue is discussed again below, under
"Procedural vs. Object Algorithms") Students reported that
it took extensive study of the three given classes, Radar,
Echo, and Direction, before they could successfully
complete their 10 lines of code. That was exactly what we
hoped, as we wanted this task to be an exercise in reading
classes more than writing code.

5.4 Adding Classes/Creatures

Assignments require students to perform a series of
graduated changes to PigWorld, culminating in the addition
of complete classes. The organic metaphor makes it easy
(even fun) to invent new creatures/classes for PigWorld.

In the first semester, students added a class "Wolf', which
used its radar to hunt down and eat pigs. In the most recent
semester, students added another pig predator,
"Ropef'rawler", which relentlessly tracks down a pig by
following the trail made by the pig's rope. Of the 49 students
who attempted the assignment, 19 (39%) successfully
completed this task (i.e. 18% of the entire class).

179



6 Procedural vs, Object Algorithms

Even when taught objects -early, students must learn some
basic control logic, otherwise they can only produce objects
with data members, the associated get/set methods, and
methods that return the result from a straightforward
mathematical formula.

To produce interesting assignments within PigWorld, we
have found it is sufficient to teach one basic algorithm
finding the smallest or largest element in a sequence of
elements, where the sequence is terminated by a specified
value. Initially, this algorithm s taught as a lab exercise,
well prior to the students' introduction to PigWorld. In the
lab exercise, the sequence of elements are numbers read
from input, with the sequence terminated by zero.

We advocate that students being taught objects -early in their
first semester should not be taught anything of a procedural
nature more sophisticated than how to encode the above
algorithm within a method. This simple algorithm requires a
loop containing an "if' statement. One consequence is that
the standard quadratic sorting algorithms, which require
nested loops, are not then taught in the first semester.

We are not banning algorithm; beyond the one described
above. In fact, we advocate that students should be taught
more sophisticated algorithms, as we shall illustrate in
following sections of the paper. Crucial to understanding our
argument is the distinction between coding an algorithm in
the procedural style - as a behaviour implemented within a
single object via explicit control logic - as opposed to
implementing algorithms that emerge from interactions
between objects. The following sections illustrate the latter.

7 Maze Traversal via Flower Power

When we added walls to PigWorld, pigs could no longer
always move directly toward the object of their desire.
Inspired by the prominent role of flowers in Jeroo (Sanders
and Dorn, 2003), we added a new class, "Flower", to
PigWorld. Flowers only have one significant attribute, their
age. Students were asked to make the following changes to
pig behavior. As a pig moved, it would leave a trail of
flowers. If a pig moved on to a square that already had a
flower, then the pig would replace that flower with a new
flower. Thus, the age of a flower on a square is an indication
of how long it has been since a pig visited that s quare. A pig
still used its wall penetrating radar to choose the entity
toward which it wanted to move, and if the next square in the
direction of that entity was not blocked by a wall, or
occupied by a flower, then the pig moved on to that square.
However, if that square was blocked by a wall or had a
flower on it, then the pig had to choose a different adjacent
square to move to, based on the following three criteria:

1. A square not containing a flower is preferred.

2. If there is a choice between two squares, neither of
which contains a flower, then the square in the
direction nearest to the pig's intended target is
preferred.

3. If all available squares contain flowers, then the
square with the oldest flower is preferred

Criteria 2 and 3 are simple variations on the basic algorithm
for finding the smallest element in a sequence.

The above algorithm does not implement a shortest path
algorithm. Instead, the algorithm implements an exhaustive
search algorithm. (We admit to one negative experience
with PigWorld: many students persisted in thinking of the
algorithm as a shortest path algorithm, which caused much
confusion when they tested their code.)

In a more traditional procedural approach to searching a
maze, a pig might store information internally about its
progress through the maze, perhaps in a stack. Effectively,
such a pig would be building an internal model of the world.
In the objects-early approach to teaching algorithms, as
illustrated by the "flower power" algorithm, a pig instead
performs actions that embed in the world information about
its progress through the world. As a general design guideline
for objects-early assignments, we advocate minimizing the
state information internal to an object, instead placing that
state information into the world, external to the object.

(A small point: In retrospect, "Flower" was an unfortunate
choice of name for the class used in this algorithm. Flowers
are simple objects that merely extend Mineral. In a future
refactoring, the name is likely to change, but we are also
tempted to leave it as an illustration that no class hierarchy is
perfect.)

7.1 Formal Approaches to Algorithms

In tie debate on teaching objects -early versus teaching
procedural first, the mistake is sometimes made that
objects-early is incompatible with any treatment of
algorithms. In the following two subsections, we pose two
"flower power" problems that lend themselves to a classic
formal treatment of algorithms.

7.1.1 Exercise 1

The exercise for the students is as follows: e itherprove that a
single pig in any connected maze will eventually visit all
squares, or provide a counter example. This exercise lends
itself to a proof by induction.

7.1.2 Exercise 2

The exercise for the students is as follows: In a world
without walls, and with flowers of different ages on all
squares, find the worst case time before a pig will return to

180



its current square; giving the initial pattern of flower ages
that causes this worst case behavior.

8 Dijkstra Meets the "Oink" Algorithm
As summarized in the overview of PigWorld, any girl pig
who is in the mood for love emits an "oink" that attracts any
boy pigs who are in the same mood. A more formal
explanation follows.

In PigWorld, sound is propagated by instances of the class
"Air". Each instance of Air is associated with a square, and
each Air instance has references to the Air instances of
neighboring squares. Sound does not propagate throug~
walls so if two squares are separated by a wall, then their
associated instances of Air are not connected. This data
structure is constructed at startup, and so is immediately
available to students. In the most recent semester, students
were required to add code to "GirlPig", "BoyPig", and "Air",
to implement the behaviors described in the next paragraph.

A girl pig emits an "oink" by sending a message to the
instance of Air associated with her current square. That
message contains a single integer parameter, representing
the volume of the "oink". The Air instance passes on that
message to any neighboring Air instances, but decrements
the volume. Those instances in tum pass on a decremented
volume. When a boy pig is in the mood for love, he need
only interrogate the instances of Air associated with
neighboring squares, and move to the square with the
highest volume. Once again, that choice ofs~uare by the boy
pig is a simple variation on the basic algonthm for findmg
the largest element in a sequence.

The behaviours of the objects described in the above
paragraph collectively implement a classic algorithm,
commonly attributed to Dijkstra, for finding the shortest
path through a graph. When this algorithm is implemented .in
the traditional procedural style, the control structure IS

beyond most first year students. Of the 49 students who
attempted the assignment, 43 (88%) successfully completed
this task (i.e. 42% of the entire class). As this task was part
of an optional assignment, it was not supported by any
discussion in lectures. Students attempted the task based
upon the description in the assignment specification and
answers t 0 questions posted to an online discussion board. In
a conventional procedural style programming subject,
Dijkstra's algorithm would receive considerable attention in
lectures, and students would still probably struggle to
understand it.

The techniques used in the "oink" algorithm are
fundamental to object-oriented programming. The part that
students struggle with most was the propagation of the
sound by the instances of Air. As with the incest prevention
code discussed earlier, we suspect that the struggle was
primarily caused by their weak grasp of message-passing
between instances of the same class. We believe that the

"oink" algorithm is an entirely appropriate exercise for a
first semester objects-early programming class, as it entails
the most fundamental object-oriented concepts we want to
teach.

9 Ropes and Linked Lists

There are two problems with the earlier "flower power"
algorithm for traversing a maze. The first is that the flowers
laid down by one pig interfere with behavior of other pigs.
The second problem is that, even in a single-pig world, once
a pig has satisfied a goal (e.g. found some food), the flowers
laid down by the pig up to that point may interfere with the
pig achieving its nex goal (e.g. finding another piece of
food). These problems were addressed last semester by
replacing the role of flowers with rope. Each pig trails its
own rope, so pigs do not interfere with each others' maze
traversal, making PigWorld truly multi-pig. Furthermore,
once a pig satisfies a goal, it "rolls up" its rope and begins a
fresh maze traversal.

The class "Rope" extends Mineral. An instance of Rope is
associated with a square. Each instance has the references of
up to two other pieces of rope, the instance laid out by the
pig before this instance, and the instance laid out after. Thus,
the entire trail of rope is a doubly linked list. Last semester,
the code that allowed pigs to layout rope was supplied as
part ofthe case study. As part oftheir assignment, students
were set the task of implementing the "rolling up" of rope,
implemented as the destruction of the linked list, by having
the instances in the list pass along a "destroy" message. The
solution takes less than 10 lines of code. Of the 49 students
who attempted the assignment, 40 (82%) successfully
completed this task (i.e. 39% of the entire class).

In a procedural language, the destruction of a linked list can
be done as a short piece of iterative code, which could in
principle be taught in the first semester. In practise, however,
a thorough study of linked lists is usually left until a later
semester in procedural programming, where recursive
algorithms are used extensively. Besides, the
procedural-style first semester syllabus is already full with
other algorithms to study, particularly the venerable
bubblesort and other iterative processes on arrays.

In the objects -early approach to teaching programming, we
believe the linked list is the natural choice for the first data
structure. Linked lists reinforce core elements of
object-oriented programming, as they require students to
pass messages between multiple instances of the same class.
In Java, arrays are a peculiar beast. Java arrays are objects,
but they come with an additional syntactic overhead which
obscures for students the fact that arays are objects. We
recommend that Java arrays not be taught at all in the first
semester, as they distract students from the core elements of
object-oriented programming.

181



10 The CoUectionsFramework

Having introduced the link list, the next logical step, before
arrays, is to introduce collections. As described earlier, pigs
instantiate a radar and then repeatedly invoked the radar's
"ping" method to perform a full 360 degree sweep. In the
most recent semester, Radar also came with a new method,
"sweep", which performes a full 360 degree sweep in a
single invocation, returning an instance of "List" that
containes all the echoes. As an assignment exercise, students
were required to modify code, replacing the multiple use of
"ping" with a single invocation of the collections-oriented
"sweep". Students then had to use an Iterator to find the
appropriate (i.e. "smallest") element in that List returned by
"sweep". Of the 49 students who attempted the assignment,
35 (71%) successfully completed this task (i.e. 34% of the
entire class).

11 Conclusion

This paper presented PigWorld at three conceptual levels.
The first and most mundane conceptual level is PigWorld
itself, a piece software, a vehicle for teaching
object-oriented programming in Java. We are happy to share
this piece of software with others.

In the second conceptual level of presentation, we advocated
some objects-early assignment design principles: (l)
emphasize message passing between instances of the same
class; (2) use only simple loops that search for smallest or
largest values in a sequence; (3) teach linked lists before
collections and collections before arrays. In describing the
"flower power" algorithm, we illustrated a PigWorld design
guideline: minimize the state information internal to an
object; instead place that state information into PigWorld
itself, external to the object

In the third conceptual level of presentation, we illustrated
how a solid treatment of algorithms is not incompatible with
the objects -early approach to teaching pro gramming. We
introduced the following principle: in the procedural style,
algorithms are encoded explicitly within the methods of an
object, but in the object oriented style, algorithms emerge
implicitly from the interactions between objects. For some
years, advanced texts on object-oriented programming have
advocated keeping individual classes simple, using
compositions of objects to perform complex tasks. We have
designed PigWorld to bring that previously advanced view
down to the first semes ter of object-oriented programming.

12 References

Barnes, D., Kolling, M (2003): Objects First With Java: A
Practical Introduction Using BlueJ. Prentice Hall.

Becker. B (2001): Teaching CSI with Karel the Robot. Proc.
ACM SIGCSE 32nd Technical Symposium on Computer
Science Education, Charlotte NC. 50-54 ACM Press.

Related materials available at
http://www.cs.uwaterloo.ca/-bwbecker/robots/

Bergin, J., Stehlik, M., Roberts, 1., Pattis, R: Karel 1. Robot:
A Gentle Introduction to the Art of Object Oriented
Programming. http://csis.pace.edu/-bergin/KareIJava2ed/
Karel++JavaEdition.html. Accessed September 2003.

Brady, A (2002): The Marine Biology Simulation Case
Study. The College Board: New York.

Buck, D., Stucki, B (2001): JKarelRobot: A Case Study in
Supporting Levels of Cognitive Development in the
Computer Science Curriculum Proc. ACM SIGCSE 32nd
Technical Symposium on Computer Science Education,
Charlotte NC. 16-20 ACM Press. Materials available at
http://math.otterbein.edu/JKareIRobot/

Burton, P.J., Bruhn, R.E (2003): Teaching Programming in
the OOP Era. SIGCSE Bulletin, 35(2): 111-114.

Culwin, F. (1999): Object Imperatives! Proc. ACM SIGCSE
30th Technical Symposium on Computer Science
Education, New Orleans LA. 31-36 ACM Press.

Joint Task Force on Computing Curricula. Computing
Curricula 2001 Computer Science. Journal of
Educational Resources in Computing, 1(3): entire issue.

Kolling, M., Rosenberg, 1. (2001): Guidelines for Teaching
Object Orientation with Java. SIGCSE Bulletin, 33(3),
33-36.

Lister, Rand Leaney, J (2003): First Year Programming: Let
All the Flowers Bloom, Fifth Australasian Computing
Education Conference (ACE2003), Adelaide, Australia.

Lister, Rand Leaney, J (2003): Introductory Programming,
Criterion Referencing, and Bloom, Proc. ACM SIGCSE
34th Technical Symposium on Computer Science
Education, Reno NV, ACM Press.

Mitchell, W. (2001): A Paradigm Shift to OOP has
Occurred... Implementation to Follow. Journal of
Computing in Small Colleges, 16(2), 95-106. ACM Press.

Pattis, R.E. (1981): Karel the Robot: A Gentle Introduction
to the Art of Programming. Wiley.

Pattis, R.E. (1997): Teaching OOP in C++ Using an
Artificial Life Framework. SIGCSE Bulletin, 29(1):
39-43.

Petre, M., et al. (2004) A large-scale elicitation of students'
knowledge of programming constructs. Srbmitted for
publication.

Sanders, D., Dom, B. (2003): Jeroo: A Tool For Introducing
Object-OrientedProgramming Proc. ACM SIGCSE 34th
Technical Symposium on Computer Science Education,
Reno NV. 201-206 ACM Press.

182

http://www.cs.uwaterloo.ca/-bwbecker/robots/
http://csis.pace.edu/-bergin/KareIJava2ed/
http://math.otterbein.edu/JKareIRobot/


Figure 1. The PigWorld user interface.

EJ
= AnimalCon1rol1er

\~~~----~ "r-. ---,

~ iL-------;:------'

<<sbstract>

MineralView
<cabstract>

Mineral

PigFoodView
\

I Tree~ew I
f---"-"'--I=BEJ

Figure 2. The PigWorld class hierarchy as displayed by Blue.I, without "uses ·'arro\\s.

183


