
Computing Theory With Relevance

Wayne Brookes

Faculty of Information Technology
University of Technology, Sydney,

PO Box 123, Broadway, NSW 2007,
Email: brookes@it.uts.edu.au

Abstract

In computer science education, the topic of computing
theory is one that is commonly not well received by stu-
dents. Career-oriented students often view the topic as
irrelevant, and would rather learn new skills and tech-
nologies that they perceive will improve their future em-
ployment prospects. This paper outlines an approach that
attempts to blend these two apparent extremes by using
"popular" technologies, including XML, to motivate and
illustrate concepts of computing theory in a first-year un-
dergraduate computing subject.

Kevwords: computer science education, computing the-
ory, XML

1 Introduction

Computing theory encompasses a range of topics that ad-
dress the mathematical foundations of computer science.
Typically it includes topics from discrete mathematics, al-
gorithmic complexity and computability, finite state au-
tomata and regular expressions, and others.

Teaching computing theory topics at undergraduate
level has always been a challenge. Students often strug-
gle with theoretical topics; educators search for new ways
to make theory seem interesting and relevant; and some
graduates working in industry look back and question the
usefulness of ever learning computing theory at all.

There are pressures from students and industry to re-
duce the amount of theory covered and instead offer more
practical skills. This has become increasingly so with
the diversification of computing degrees from traditional
"computer science" to include more marketable degree ti-
tles such as information technology, information systems,
software engineering, Internet computing and electronic
commerce.

This reduction in theory coverage is discussed by
Tucker et al. (2001) in some detail. Tucker et al. argue
that "Our discipline is thus presented as less like a sci-
ence and more like a collection of techniques and artifacts
that reftect current technologies. This strategy may pre-
pare graduates for today's technology, but it will likely not
prepare them well for the longer haul."

On the relevance of computing theory to computer sci-
ence education, the Joint IEEE Computer Society / ACM
Task Force on Computing Curricula 2001 (IEEE Com-
puter Society and ACM 2001) emphasises the importance
of various elements of computing theory to undergradu-
~te computing curricula, particularly discrete mathemat-
ICS. Indeed the Discrete Structures area in Computing
Curricula 2001 contains more core hours than any other

Copyright ©2004. Australian Computer Society. Inc. This pa-
per appeared at Sixth Australasian Computing Education Conference
(ACE2004), Dunedin, NZ. Conferences in Research and Practice in In-
fonnation Technology, Vol. 30. Raymond Lister and Alison Young, Eds.
Reproduction for academic, not-for profit purposes permitted provided
this text is inc! uded.

knowledge area. Despite this, Computing Curricula 2001
has also been criticised for its reduction in computing
theory topics since the previous version released in 1991
(Tucker, Kelemen & Bruce 2001).

While there seems to be some agreement on the impor-
tance of various computing theory topics in the computer
science education community, there is also acknowledge-
ment that these topics are often conceptually difficult for
students, and often difficult for students to see the rele-
vance to their future careers.

This paper presents one approach to try and address
the problem of making computing theory relevant for stu-
dents. Traditionally, computing theory is taught in a sep-
arate subject, often in the second or third year of the de-
gree. Rather than teaching computing theory as a stan-
dalone subject, here it is integrated into a larger subject
that covers a range of foundation issues on distributed
and Internet-based computing. Relevance is provided by
linking computing theory topics with XML (Extensible
Markup Language) and related practical topics. On the
surface, the students may think they are just going to learn
XML. In practice, they also learn some of the theoretical
underpinnings of XML, and indeed some of the theoretical
underpinnings of computer science in general.

While this does not reduce the conceptual difficulty
that the students face, it does offer additional motivation
for students to study computing theory topics that are of-
ten otherwise perceived as dry and irrelevant. This paper
argues that linking computing theory with currently pop-
ular technologies can be an effective approach of integrat-
ing theory into a practice-based undergraduate computing
curriculum.

The remainder of this paper is organised as follows.
Section 2 presents an overview of the subject that was run,
both its content and its overall positioning within the de-
gree program, and section 3 describes the subject's learn-
ing modes and assessment pattern. Section 4 describes
in detail how computing theory topics were linked with
XML. Section 5 considers the benefits and challenges of
the approach, and section 6 examines other authors' ap-
proaches to improving students' learning of computing
theory topics.

2 Background

This section introduces the background of the subject and
the motivation for the presented approach of integrating
computing theory topics with XML technologies.

2.1 Content

The first important point to note is that the subject is not
about computing theory, but rather focuses on distributed
computing. The unifying theme of the subject is how var-
ious technologies and techniques can be used to address
problems in the application domain of electronic business
(e-business).

9

mailto:brookes@it.uts.edu.au


Approximately half of the subject covers topics from
distributed computing, including clienUserver, three-tier
and N-tier distributed architectures; network communica-
tion mechanisms such as sockets, Remote Procedure Cal1,
and middleware technologies; and an introduction to how
such technologies fit together in the e-business domain.
The other half of the subject covers XML and related top-
ics, such as XML Schema, XSLT, and the DOM and SAX
parsers for XML. These are explained in more detail later
in the paper.

At first glance, this seems an unlikely place to cover
aspects of computing theory. However it forms part of
the overall design for the undergraduate curriculum at the
University of Technology, Sydney (UTS). The previous
version of the curriculum included fairly traditional, stan-
dalone subjects on computing theory: one in first year and
one in the final year. Feedback from students and gradu-
ates indicated that the standalone theory subjects were per-
ceived as not being relevant, and that the subjects seemed
out of line with the practice-based focus of the remainder
of the course.

When the curriculum was redesigned, a decision was
made to remove the standalone theory subjects, and in-
stead to integrate aspects of computing theory into other
core subjects in the curriculum where appropriate. Thus
computing theory becomes a constantly recurring theme
throughout the degree program, and rather than being
taught as a single unit, instead is taught in the context of
other topics where relevance can be demonstrated. In this
approach, every core subject becomes a potential candi-
date for inclusion of some aspects of computing theory, if
relevance can be demonstrated. Computing theory is not
the only topic to be treated as a recurring theme through-
out the degree program. A similar approach is taken in
covering material on ethics, usability, business needs and
generic skills.

In the context of the subject discussed here, an im-
portant implication is that the distributed computing top-
ics drive the computing theory, rather than the other way
around. Traditional subjects on computing theory focus
on the theory first, and then present examples of where it
may be used. In the approach described here, the applica-
tion domain is introduced first, and the computing theory
is presented as the foundation.

A danger in this approach is that students may not see
computing theory as a single unified branch of computer
science. Different universities generally have different ap-
proaches to teaching computer science. At some universi-
ties, theoretical foundations of computer science strongly
drive the curriculum, while at others, current business
needs have a stronger influence over the curriculum. The
University ofTech~ology, Sydney leans more towards the
business-oriented end of the spectrum. The approach pre-
sented here may not fit well into the overall curriculum
design at universities more strongly driven by theoreti-
cal foundations. However in more theoretically-oriented
universities, the approach presented here may possibly be
used to augment (rather than replace) standalone subjects
on computing theory.

2.2 Context

The subject is a compulsory subject in the university's un-
dergraduate information technology degree programs, and
is typically studied in the second semester of first year.
This has three implications. Firstly, the enrolment is large,
with up to 350 students enrolled at one time. Secondly,
as the subject is compulsory, it includes students from di-
verse backgrounds, and who have diverse career aspira-
tions. This also means that not all students enrolled in the
subject are interested in the subject content. Thirdly, as it
is a first-year subject, the content covered must be appro-
priate for that level.

In particular, in their first semester at university,

10

st~dents would hav~ completed o?e subject on object-
onented prograrnmrng: one subject introducing dis-
tributed and Internet-based computing, and computer ar-
chitecture; one subject on introductory computer network-
ing; and one subject introducing information systems.
This restricts the amount and kinds of computing theory
that are appropriate for this level.

3 Approach

The subject includes a fairly typical pattern of lectures, tu-
torials and laboratory sessions. However, rather than the
traditional approach of having tutorials and laboratory ses-
sions based principally on material presented in the lec-
ture, instead each type of session approaches the content
from a different angle.

The laboratory sessions provide a series of exercises
that students work on involving XML and related tech-
nologies. The XML content is primarily delivered via the
laboratory sessions and associated readings. Very little
time is spent in lectures or tutorials on practical matters
like language syntax.

The lectures focus primarily on conceptual material,
making references to the XML languages when necessary.
For example, when XML is first introduced, the lecture
content is actually about trees. XML is used as an example
of a tree-structured document format, and XML examples
are used throughout the lecture, but the XML syntax is not
the focus of the lecture.

The tutorials include some exercises based on the lec-
ture material. But as an added dimension, the tutorials
also include a small number of student presentations of
articles broadly related to that week's topic. For example,
when the week's topic is finite state automata, the articles
for that week cover how automata are used in web ap-
plications, and how automata are used in UML (Unified
Modelling Language) modelling.

The assessment for the subject consists of a mid-
semester examination covering only theory topics, a final
examination covering a mixture of theoretical and practi-
cal topics, a practical assignment where students create a
simple web-based application involving XML, and SOr:1e
marks are also awarded for students' tutorial presentations
and contribution to class discussions.

4 Linking XML with computing theory

As already discussed, the approach taken was to define
the subject content in terms of distributed computing top-
ics (in particular, XML) and to use computing theory to
support their presentation. This section illustrates how
some of the XML technologies were linked with associ-
ated computing theory topics.

4.1 XML and trees

XML is a language for structured information represen-
tation. It is a tag-based markup language, and the tags
are nested resulting in a hierarchical information struc-
ture. Thus it is quite natural to introduce tree structures
when introducing XML.

Informally, tree structures are already familiar to most
students, for example from their experiences with hierar-
chical file systems.

What is 'new for students is approaching trees in a for-
mal manner. The subject introduces the mathematical def-
inition of trees as a set of vertices and a set of edges, with
all the vertices connected, and without any cycles in the
set of edges. Examples of XML documents are used to
illustrate the basic tree concepts.

Tree traversals are also introduced: preorder, inorder
and postorder. This is very relevant for XML, as most
programs that process XML documents need to decide in



whi~h order ~hey will process each node. Books and arti-
cles mtroducmg XML for programmers often mention the
XML "tree walking algorithm". In fact, this tree walking
algorithm is just a preorder traversal.

Using simple trees as a starting point, more complex
kinds of trees (such as binary search trees) are introduced
to students, even though they are not directly related to
XML. Some coverage of graphs is also provided, although
again this is not directly related to XML.

Overall, XML and trees are a good match of topics.
XML itself is a simple language, and easy for first year
students to understand. Trees are also a concept that stu-
dents easily grasp informally. Presenting a mathematical
introduction to trees as part of a module on XML is an
ideal match of theory with practice.

4.2 DOM and SAXparsing

Many students start with the myth that XML is a replace-
ment for HTML, and the primary use of XML is for cre-
ating web pages. This subject introduces broader uses of
XML, in particular examining the use of XML as a lan-
guage for networked applications to exchange informa-
tion. In order for an application to use an XML document,
it needs to read the contents of a document stored on the
filesystem and store the document's data into variables in
a running program. This introduces the need for parsing.

Document Object Model (DOM) and Simple API for
XML (SAX) are two standardised programming interfaces
for parsing an XML document. A DOM parser reads an
entire XML document at once, and constructs a tree repre-
sentation of the document in memory. The DOM API then
provides various methods for accessing different parts of
the in-memory tree structure.

A SAX parser is event-driven. A SAX parser reads
an XML document sequentially, and triggers events when
various kinds of XML markup are encountered. The pro-
grammer is required to implement an event handler that is
invoked when the events are triggered.

DOM and SAX are language independent interfaces
for XML parsing. Implementations of DOM and SAX
parsers are available for a range of different programming
languages. In this subject, Java implementations of the
parsers are used, as the students are already familiar with
Java from their prior studies.

Many textbooks and technical articles introducing
DOM and SAX focus on providing cut-and-paste exam-
ples of source code to use the parsers. However in this
subject, where the goal is to introduce elements of com-
puting theory in context, DOM and SAX provide an op-
portunity to introduce the theoretical concepts of formal
languages, grammars and parsing.

Thus, before discussing DOM and SAX, the lecture
stream of the subject introduces the concept of formal lan-
guages. The parsing process is described, including the
construction of parse trees and abstract syntax trees, lever-
aging off the students existing knowledge of trees. In dis-
cussing how a parser takes an input string of characters
and constructs a parse tree, the topic of grammars natu-
rally arises. The mathematical definition of a context-free
grammar is introduced, as well as the Backus-Naur Form
(BNF) notation for writing grammars. The grammars dis-
cussed in this part of the subject are all context-free, how-
ever regular grammars are also covered in a later section
of the material.

Finally, the DOM and SAX parsers for XML are in-
troduced. Students find the operation of the DOM parser
relatively easy to understand, as it fits with their existing
notion of tree-structured XML. However the SAX parser
is not so intuitive as students have had limited exposure to
event-driven programming at this stage in their degree.

In summary, discussion of how to use information from
an XML document in an application provides a convenient
way to introduce the concept of parsing. In this subject,

the labor~t~ry session~ provide an opportunity for students
to use exisnng parser Implementations to read XML doc-
u!TIentsinto their own applicarions, while the lectures pro-
VIde a forum for presentation of some of the theoretical
background to formal languages, grammars and parsing.

4.3 XML Schema and Regular Expressions

XML Schema is a mechanism for defining restricted sub-
sets of XML that are appropriate for particular usage sce-
narios. Each schema defines a set of rules. An XML doc-
ument instance that conforms to these rules is said to be
valid (or schema-valid). For example, in a business con-
text, there might be one XML Schema that defines the for-
mat of an XML purchase order, and another XML Schema
that defines the format of an XML invoice. The schema
definition includes at least the set of elements (tags) per-
mitted, their sequencing, and the values that are permitted
for certain elements.

The XML Schema specification includes a rich set of
data types that element values may have, including in-
tegers, decimal numbers, date and time values, strings,
etc. It also provides rules for creating constrained subsets
of these data types, such as specifying the maximum and
minimum values for numbers, specifying the length of a
string, etc. When the data type of an element is a string, it
can also be constrained by using a regular expression.

Regular expressions lead nicely into the discussion of
regular languages and regular grammars. From a theoreti-
cal perspective, this complements the earlier presentation
of context-free languages and context-free grammars.

In traditional computing theory subjects, discussion of
regular expressions often leads into the topic of finite state
automata, and the same approach has been taken here. Fi-
nite state automata are introduced as "machines" that can
implement a regular expression. Automata are presented
both diagrammatically and mathematically.

Unfortunately it is not as easy to use XML or XML
Schema to motivate discussion of finite state automata, as
automata have little obvious direct relationship with XML
or XML Schema. Fortunately there are other ways to mo-
tivate discussion of finite state automata, such as statechart
diagrams from the Unified Modelling Language (UML),
and Model-View-Controller design patterns where the
controller is often an implementation of a finite state au-
tomata.

Overall, students respond well to the theoretical ma-
terial on regular expressions, and can clearly see the re-
lationship to XML Schema and its use of regular expres-
sions. However it is a little harder to convince students of
the relevance of finite state automata in this context. As
this is the students' first formal exposure to automata, and
the fact that the material is somewhat more abstract than
regular expressions (which students can experiment with
in laboratory sessions), it is not surprising that students
struggle a little more with automata concepts.

4.4 XSLTand Declarative Programming

The final example of using XML technologies to illustrate
more theoretical aspects of computing is the use of XSLT
(XML Style Language: Transformations) to illustrate the
concept of declarative programming. This example is per-
haps less theoretical than the previous three, as it does not
rely upon mathematics as its foundation.

XSLT is a language that allows the definition of a set
of rules that can be used to transform one XML document
into another format, often another XML document with
a different structure. For example, XSLT can be used to
rename elements (tags) in an XML document, or can be
used to selectively extract a subsection of an XML docu-
ment. Another common application of XSLT is to convert
an XML document into an HTML document suitable for
display in a web browser.

11



In most computing curricula, a number of different
proQrammi~g .languages are presen~ in core subjects.
TypIcally thIS mcludes two or more object-oriented and/or
procedural (imperative) languages as well as at least one
other language that is of a quite different style. Often
the non-imperative language introduces functional pro-
gramming or logic programming, with the intention of
challenging students' understanding of programming lan-
guage concepts.

In this subject, rather than present a functional or logic-
based language, XSLT provides the opportunity to use
declarative programming as an alternative to imperative
approaches.

An XSLT "program" consists of a set of templates
(rules) that each may match a certain part of the input
XML document (e.g. a particular element). When a match
is encountered, the XSLT template is invoked to gener-
ate output depending on the contents of the template. The
templates are not invoked sequentially, but rather are in-
voked whenever a matching element is encountered in the
input. One template may be invoked many times, or a tem-
plate may not be invoked at all, depending upon the input
XML document.

This challenges students' views of programming, as
until this point in their degree, the principal programming
language encountered is Java Indeed when students begin
to write XSLT, their first instincts are to think of writing
XSLT templates in sequential steps.

This example of using XSLT to illustrate declarative
programming is not quite as theoretical as the previous ex-
amples presented, but offers another way to leverage XML
related technologies to introduce more abstract computing
concepts.

5 Evaluation

The approach described in this paper aims to better
demonstrate to students the relevance of various comput-
ing theory topics by presenting them as foundational ma-
terial to XML. Overall, based on student feedback, the ap-
proach seems to have been successful.

The XML and computing theory topics were covered
in the first half of the subject, and the mid-semester exam-
ination was the main assessment instrument for the com-
puting theory topics. Shortly after the mid-semester ex-
amination, students were asked to complete an anonymous
survey about their experiences in the mid-semester exam-
ination.

One of the questions was "Please rate how well you
think the theory covered in the subject relates to practice in
the real world?". Answers were on a five point scale: 'al-
ways', 'usually', 'about half the time', 'occasionally' and
'never'. Of 109 students enrolled, 50 students responded
to the survey. Of those who responded, 26% of students
indicated that they could 'always' see the relationship be-
tween theory and applications in the real world. Another
32% chose 'usually' (total 58%). Of the remainder, 32%
said 'about half the time', 10% said 'occasionally', and no
students chose 'never'.

It is worth noting that this question was part of a six-
question survey, and was surrounded by other questions
about the difficulty of the exam and the topics on the exam.
This was done so as not to draw special attention to this
particular question.

This survey indicated that 90% of the students who re-
sponded could see the relationship of theory to practice
'about half the time' or more, with 58% seeing the re-
lationship 'usually' or 'always'. Although I do not have
data to compare this with a more traditional approach to
teaching computing theory, these results are encouraging.

Anecdotal feedback from students throughout the
semester indicated that although some found the theo-
retical material challenging, they were generally positive
about how the theory was linked to XML. It would also be

12

reason~ble to say.that the majority of the students see ed
keenly mterested m XML. m
. ~nalysing the students' performance in the final exam-
matron, overall performance was about the same for both
the theory-oriented questions and the more practically-
oriented questions, hopefully indicating that students di-
vided their attention appropriately between the XML and
theory topics.

My own reflection was that overall the approach
seemed successful. Creating XML-oriented examples that
could be related to the otherwise symbolic world of com-
puting theory certainly made the development of material
both more challenging and more interesting.

On the negative side, the unusual combination of topics
meant that a single suitable textbook could not be found
for the subject. Instead, students were referred to chapters
from different textbooks as appropriate, as well as other
background readings. Students were also provided with
detailed lecture notes to support their learning.
. Another p~int to note in evaluating the approach taken
IS that the subject only covered those topics in computing
theory that could be reasonably related to XML technolo-
gies. This was in keeping with the approach of teaching
computing theory in the context in which it can be demon-
strated as most relevant. This meant omission of some
computing theory topics that would normally be found in
a more traditional subject on computing theory. Some top-
ics w~re also ~~vered more I!ghtly than normally encoun-
tered m a traditional compuung theory subject, either be-
cause the students are only in first year, or because of time
constraints.

Some examples .of t~pics that might traditionally be
taught that were omitted include proof-by-induction tech-
niques: ~ondeterministic pushdown automata as a way of
recogmsmg context-free languages; the Pumping Lemma
for finit~ state a~tomata; complexity an~ computability;
and Tunng machines, Some of these topics will be cov-
ered by later subjects in the degree program.

6 Related work

This paper presents an approach to making computing the-
ory relevant by relating it to a currently popular technol-
ogy like XML. This is not the only subject to have at-
tempted this. A linkage .between computing theory and
XML has also been used m the teaching of a subject enti-
tled "Languages and Algorithms" at Napier University in
the UK (Napier University 2003).

However, the Napier approach differs from the one
presented here in a number of ways. Firstly, the audi-
ence of the Napier subject is honours-level students in
a Bachelor of Engineering (Honours) program, whereas
the .approac~ presented here is for first-year undergradu-
ate information technology students. The Napier approach
pr~sents the theoretical material in more depth, as appro-
pnate for honours-level students. Another significant dif-
ference in t~e appr~ach is that the Napier subject is based
on a theoretical tOpIC- languages and algorithms - and
XML is use~ as an exa~ple .. In the approach presented
here, the basis of the subject IS actually distributed com-
puting, and the theoretical topics are the supporting mate-
rial, rather than the principal focus of the subject.

Other authors have considered the role of XML in
the curriculum. For example, Paxton (2001) discusses
the role of XML in the computer science curriculum. In
particular, he talks ~bout h~w XMI: might be integrated
into the core cornputmg cumculum, mcluding suggestions
such as (Paxton 2001):

• "In an advanced data structures and algorithms
course, XML and DTD can be examined from the
standpoint of the multiway tree abstract data type
Trees are a topic that need to be covered and XML
provides a convenient mechanism to illustrate some
of the concepts."



• "I" a programming languages class, DTDs can be
used as a practical tool for learning more about the
Backus-Naur Form (BNF)."

In the approach presented here, techniques similar to
these have been adopted (although XML Schema was used
rather than DTDs because of its stronger data types and
use of regular expressions), and other techniques have
been added. However in the approach presented here,
the computing theory supports the XML, rather than vice
versa as proposed by Paxton.

Moving away from discussion of XML, other authors
have taken various alternative approaches to making com-
puting theory more accessible to students.

Perhaps the most common approach is to provide
animation and simulation tools for supporting students'
learning of computing theory, particularly automata the-
ory. Chesfievar (2003) presents a summary of some of
the more common tools, although many such tool sets are
available.

The approach of using animation and simulation tools
to assist students in visualising some of the more abstract
concepts in computing theory is complementary to the ap-
proach presented here. Indeed when the subject was run,
students were provided with access to freely available sim-
ulation tools on the Internet to assist their learning.

Another common approach is to provide students with
access to small executable tools that can be used to mo-
tivate and reinforce students' learning of different theory
topics. One example is the use of the Unix 'grep' tool to
assist understanding of regular expressions. Another ex-
ample is in learning algorithmic complexity, where stu-
dents are often provided with (or expected to produce)
different algorithm implementations and experiment with
tools to analyse algorithm performance (for example, to
illustrate the different complexities of recursive versus it-
erative algorithms).

Another successful approach to better supporting stu-
dents' learning of computing theory topics is to adopt
a problem-based learning model (Hamilton, Harland &
Padgham 2003). In this approach, students work in small
teams on problems that require application of computing
theory knowledge to solve. The tutorial classes become
the main learning forum, and the lectures are providing the
necessary background information for the problem solv-
ing process. While such an approach was not used in the
subject described in this paper, the idea has some simi-
larities in that the computing theory topics are being mo-
tivated by real problems, rather than the artificial mini-
problems often presented in textbooks from which it can
be difficult to see overall relevance.

Obviously the basic approach presented is not limited
to just linking XML with computing theory topics. Other
'popular' technologies could also be chosen as a start-
ing point to examine some underlying computing theory
that is relevant. This is challenging and requires some
creativity, as it goes against the way most textbooks will
teach standard computer science topics. Beaubouef (2002)
presents some other suggestions for where mathematics
can be linked into the computer science curriculum with
the most relevance.

7 Conclusion

This paper presented one approach to improving students'
perceptions of relevance of computing theory topics. Past
experience shows that when taught in a standalone subject
on computing theory, students often struggle with seeing
the relevance of the material presented, even when many
good examples are shown.

The approach taken here was rather than teaching a
subject devoted to computing theory, instead to encour-
age students to learn specific aspects of computing the-
ory in the context in which their relevance can best be

demonstrated. Specifically, this paper examined how vari-
ous theoretical topics can be linked with XML and related
languages.

XML is a currently popular technology, and as such,
students perceive it as being highly relevant to their ca-
reer prospects. Presenting some common computing the-
ory topics as foundations to XML appears to have made
the theory more relevant to students.

A challenge is to apply this method to topics other than
XML. At the time of writing, XML is not often taught as
part of a core undergraduate computing curriculum. How-
ever, the general principle of using a technology to mo-
tivate computing theory, rather than the reverse approach
can no doubt be applied to other technical topics such as
programming, operating systems concepts, etc. The chal-
lenge is in choosing topics that students will find interest-
ing and perceive as relevant for their future careers. Un-
fortunately for educators, the technical topics students are
most likely to find interesting and relevant are topics that
are relatively new and/or transient, leading to difficult de-
cisions about what to include in the curriculum.

Although the approach presented here is not the only
way of making computing theory topics more accessible
to students, the approach seems to have been successful,
and provides another resource for the computer science
educator's toolbox.

Acknowledgements

Some of the computing theory lecture material for this
subject was originally prepared by my colleagues at the
University of Technology, Sydney, Dr Andrew Solomon
and Mr Richard Raban.

References

Beaubouef, T. (2002), 'Why computer science students
need math', ACM SIGCSE Bulletin 34(4), 57-59.

Chesfievar, C. I., Cobo, M. L. & Yurcik, W. (2003), 'Us-
ing theoretical computer simulators for formal lan-
guages and automata theory', ACM SIGCSE Bulletin
35(2),33-37.

Hamilton, M., Harland, 1. & Padgharn, L. (2003), Expe-
riences in teaching computing theory via aspects of
problem-based learning, in T. Greening & R. Lister,
eds, 'Proc, Fifth Australasian Computing Education
Conference (ACE2003), Adelaide, Australia', num-
ber 20 in 'Conferences in Research and Practice in
Information Technology', Australian Computer So-
ciety, pp. 207-211.

IEEE Computer Society and ACM (2001), Computing
Curricula 2001: Computer Science, Final Report
(December 15,2001).
URL: http://www.acm.org/sigcse!cc2001

Napier University (2003), '(042010: Languages and
Algorithms', [Internet].
URL: http://www.soc.napier.ac.ukJmodule/op/
onemodulehnoduleidlc.Oa'Zt) 10

Paxton, 1. (2001), 'XML in the CS curriculum: point-
ers and pitfalls', The Journal of Computing in Small
Colleges 17(2), 106-111.

Tucker, A. B., Kelemen, C. F. & Bruce, K. B. (2001),
Our curriculum has become math-phobic], in 'Proc,
32nd SIGCSE technical symposium on Computer
Science Education, SIGCSE 2001', Charlotte, NC,
USA, ACM Press, pp. 243-247.

13

http://www.acm.org/sigcse!cc2001
http://www.soc.napier.ac.ukJmodule/op/

