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The shades of night were falling fast, 

As through an Alpine Village passed 

A youth, who bore, ‘mid snow and ice,  

A banner with the strange device,  

Excelsior!  

 

– H. Longfellow 
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Abstract  

TCP protocol variants (such as FAST, BiC, XCP, Scalable and High Speed) have 
demonstrated improved performance in simulation and in several limited 
network experiments. However, practical use of these protocols is still very 
limited because of implementation and installation difficulties. Users who 
require to transfer bulk data (e.g., in Cloud/GRID computing) usually turn to 
application level solutions where these variants do not fair well. Among protocols 
considered in the application level are User Datagram Protocol (UDP)-based 
protocols, such as UDT (UDP-based Data Transport Protocol). UDT is one of the 
most recently developed new transport protocols with congestion control 
algorithms. It was developed to support next generation high-speed networks, 
including wide area optical networks. It is considered a state-of-the-art protocol, 
addressing infrastructure requirements for transmitting data in high-speed 
networks. Its development, however, creates new vulnerabilities because like 
many other protocols, it relies solely on the existing security mechanisms for 
current protocols such as the Transmission Control Protocol (TCP) and UDP. 
Certainly, both UDT and the decades-old TCP/UDP lack a well-thought-out 
security architecture that addresses problems in today’s networks. In this 
dissertation, we focus on investigating UDT security issues and offer important 
contributions to the field of network security. The choice of UDT is significant for 
several reasons: UDT as a newly designed next generation protocol is considered 
one of the most promising and fastest protocols ever created that operates on top 
of the UDP protocol. It is a reliable UDP-based application-level data-transport 
protocol intended for distributing data intensive applications over wide area 
high-speed networks. It can transfer data in a highly configurable framework and 
can accommodate various congestion control algorithms. Its proven success at 
transferring terabytes of data gathered from outer space across long distances is 
a testament to its significant commercial promise. In this work, our objective is to 
examine a range of security methods used on existing mature protocols such as 
TCP and UDP and evaluate their viability for UDT. We highlight the security 
limitations of UDT and determine the threshold of feasible security schemes 
within the constraints under which UDT was designed and developed. 
Subsequently, we provide ways of securing applications and traffic using UDT 
protocol, and offer recommendations for securing UDT. We create security 
mechanisms tailored for UDT and propose a new security architecture that can 
assist network designers, security investigators, and users who want to 
incorporate security when implementing UDT across wide area networks.  



  
   

We then conduct practical experiments on UDT using our security mechanisms 
and explore the use of other existing security mechanisms used on TCP/UDP for 
UDT. To analyse the security mechanisms, we carry out a formal proof of 
correctness to assist us in determining their applicability by using Protocol 
Composition Logic (PCL). This approach is modular, comprising a separate proof 
of each protocol section and providing insight into the network environment in 
which each section can be reliably employed.  Moreover, the proof holds for a 
variety of failure recovery strategies and other implementation and configuration 
options. We derive our technique from the PCL on TLS and Kerberos in the 
literature. We maintain, however, the novelty of our work for UDT particularly 
our newly developed mechanisms such as UDT-AO, UDT-DTLS, UDT-Kerberos 
(GSS-API) specifically for UDT, which all now form our proposed UDT security 
architecture.  

We further analyse this architecture using rewrite systems and automata. We 

outline and use symbolic analysis approach to effectively verify our proposed 

architecture. This approach allows dataflow replication in the implementation of 

selected mechanisms that are integrated into the proposed architecture. We 

consider this approach effective by utilising the properties of the rewrite systems 

to represent specific flows within the architecture to present a theoretical and 

reliable method to perform the analysis. We introduce abstract representations of 

the components that compose the architecture and conduct our investigation, 

through structural, semantics and query analyses. 

The result of this work, which is first in the literature, is a more robust 

theoretical and practical representation of a security architecture of UDT, viable 

to work with other high speed network protocols. 
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Chapter 1  

 

Introduction  

 

 

The rapid growth of advanced high-speed networks has created opportunities for 

new technology to prosper. With this trend, high-speed networks are becoming 

increasingly available, such that the Australian government recently initiated 

the ambitious project of implementing the National Broadband Network (NBN) 

[120], bringing high-speed networks through optical fibre connections across the 

country. The utilisation of high-speed networks addresses many of the problems 

consumers are confronting, such as education disparity, high carbon emissions, 

and slow delivery of e-health.   

The increasing requirements of high-speed networks, meanwhile, have 

subsequently pushed researchers to develop new protocols that support high 

density data transmissions in various networks. Many of these protocols are 

Transport Control Protocol (TCP) [6,46] variants, which have demonstrated 

better performance in simulation and several limited network experiments. 

However, they have limited practical applications because of implementation and 

installation difficulties. Meanwhile, users who need to transfer bulk data (e.g., in 

Cloud/GRID computing) frequently turn to application level solutions, where 

these variants become problematic. UDP-based protocols like UDT (UDP-based 

Data Transport Protocol) are among the protocols considered in the application 

level solutions for Cloud/GRID computing.  

UDT — a fast data transfer protocol — was successfully implemented by 

capturing data from outer space, gathering terabytes of information, and 
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transferring these across the continents in a high-speed network. This 

demonstrates a compelling commercial promise in data communications 

networks.  

Whilst many types of protocols solve many of the problems in terms of achieving 

speed and better network performance, one problem that continues to dominate 

thus hindering their progression: security.  

Today, weak security – or the lack of it – continues to be a perennial challenge to 

various network implementations. 

1.1 Contributions  

 
This work introduces for the first time a security architecture for a UDP-based 

protocol: UDT.  In verifying this architecture, extensive reviews, validations, and 

implementations of security mechanisms are performed. Some of these 

mechanisms are created and subjected to theoretical and practical validations to 

achieve proofs of secrecy, authentication, and applicability to sustain the 

architecture in securing UDT. 

In 2009, part of the early work [22] on UDT Security Architecture formed fraction 

of the proposal that was then put forward to the International Engineering Task 

Force (IETF) [33]. Further improvement of this proposal, however, will continue 

through this thesis and its enhanced version will be presented to IETF in the 

future. The rationale is to standardise UDT Security Requirements and 

Architecture to support application and network deployments.  

The architecture will be exhibited with supplemental information on the schemes 

that can provide a foundation for basic, if not comprehensive, security of data 

flow, specifically in the higher-level communication layers. 

This work thus presents the following paradigms to the security analysis and 

implementations of our newly developed and proposed security mechanisms 

specific to UDT. These mark a first in the literature:  

1. Where practical validations pose constraints, formalisation of inductive 

properties in a set of newly introduced axioms; inference rules and proof 
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of soundness of the proposed mechanisms over the widely used model 

(Chapter 5); and the foundational development of these mechanisms for 

inductive proof analysis and automata of their security properties 

(Chapters 5 &6) are presented. 

 

2. Formalisation of the proposed architecture through proofs of correctness 

of mechanisms and secrecy properties in data flow (Chapter 6). 

 

On the practical side, the theoretic approach to the analysis of the real world 

UDT implementations – with proposed security mechanisms – is extensively 

applied. These also mark a first in the literature: 

1. Systematic investigation of the design and implementation of security – 

specifically, its absence in UDT. 

 

2. Proofs of authentication and secrecy properties of Generic Security Service 

– Application Program Interface (GSS-API) and Kerberos, with both 

symmetric and public-key initialisation in the given theoretic models. 

(Chapters 5 & 6). 

 

3. Proofs of secrecy and authentication properties of the created UDT-

Authentication Option (AO), UDT + Datagram Transport Layer Security 

(DTLS), and UDT+GSS-API in a real world test environment (Chapters 5 

& 6). 

 

4. Development of a proprietary UDT visualisation tool in Java (Chapter 4). 

While there are existing sophisticated tools available for evaluating the 

performance of existing protocols, none was available specifically for UDT. 

We developed a unique Java program that scans UDT static data in a file 

and demonstrates them in a graph. This is an initial step to developing a 

clear understanding of how data sets vary when gauging UDT’s 

performance in different scenarios. It is noteworthy that the development 

of a proprietary tool to assist the evaluation of UDT merits a separate 

thesis in the research area of network protocols’ performance, their 

evaluations, and simulations.  
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5. Evaluation of the role of UDT Security Architecture in Cloud/GRID in 

climate change initiatives (Epilogue). 

 

1.2 Organisation  

The compositions of each chapter were published in peer-reviewed international 

conferences, proceedings, and journals. Some of these conferences were sponsored 

by Springer Verlag Lecture Series in Computer Science (LNCS) and the Institute 

of Electrical and Electronics Engineers (IEEE). 

Considering this thesis was published in multiple peer-reviewed conferences and 

publications, the chapters that form this work are organised  that incorporates 

the comments of various reviewers. In Chapter 2, we present an overview of UDT 

[82]. We review existing research on UDT [22-33, 82]. We review existing 

literature and present our proposed security designs and implementations. We 

then outline the motivation behind this work. In Chapters 3, 4, and 5, we present 

existing and new approaches to secure UDT. These chapters also describe 

theoretic analyses, experiments, simulations, and implementations of these 

approaches. In Chapter 6, we outline the architecture, analysing it through 

rewrite systems and automata. In Chapter 7, we conclude the dissertation and 

describe possible directions for future work. In the Epilogue, we present 

additional contribution of our work to climate change initiatives. 

1.3 Background 

Recent developments in network research introduced UDT, which is considered 

to be one of the next-generation of high performance data transfer protocols [82]. 

UDT introduces a new three-layer protocol architecture composed of a connection 

flow multiplexer, enhanced congestion control, and resource management. The 

new design allows protocol to be shared by parallel connections and to be used by 

future connections. It improves congestion control and reduces connection set-up 

time.  

UDT also provides better usability by supporting a variety of network 

environments and application scenarios [22-33]. It addresses TCP’s limitations by 

reducing the overhead required to send and receive streams of data. 
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One example of the implementation of UDT is the Sloan Digital Sky Survey 

(SDSS) project [82, 79, 139], which involves mapping in detail one quarter of the 

entire sky and determining the positions and brightness of more than 300 million 

celestial objects. The project measures distances to more than a million galaxies 

and quasars. The data from the SDSS project have so far increased to 2 

terabytes, and this number continues to grow [82,139]. Currently, these terabytes 

of data are delivered to Europe via Chicago, then to the Asia-Pacific region, 

including Australia, Japan, South Korea, and China. Astronomers execute online 

analyses on multiple datasets stored in geographically distributed locations [79].  

This implementation offers a promising direction for the future deployment of 

high-speed data transfer in various industries. However, for the industries to 

benefit from this technology, it is of utmost importance that the data must be 

secured and UDT itself must be protected in wide area networks. 

However, the present challenge of reducing the cost and complexity of running 

streaming applications over the Internet as well as through wireless and mobile 

devices – all while maintaining security and privacy for their communication 

links – continues to mount.   

This challenge is compounded by the absence of well-thought-out security 

mechanisms for protocols (such as UDT) during its early stage of development; it 

is this that drives this dissertation to introduce novel ways of securing UDT in 

extensive implementation scenarios.  

The goal is to introduce an architecture that supports the modularity and 

structure of a protocol such as UDT. To develop this architecture, and to further 

enhance our work, we introduce application and IP-based mechanisms as well as 

a combination of existing security solutions of existing layers.  

The proposed [22-33] architecture will adequately address vulnerability issues by 

implementing security mechanisms in UDT while maintaining transparency in 

data delivery. Its development is based on the analyses drawn from the source 

codes of UDT found at SourceForge.net. The source codes are analysed and tested 

on Windows and Linux environments to gain a better understanding of the 

functions and characteristics of this new protocol. A data analysis tool developed 
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to visualise UDT data transmission in either secure or non-secure environments 

will be used.     

Also to be performed are network and security simulations such as NS2 [86,123] 

and the Evaluation Methods for Internet Security Technology tool (EMIST), 

developed at the Pennsylvania State University with support from the US 

Department of Homeland Security and the National Science Foundation. 

Furthermore, we will survey and use other available security network devices 

and tools (e.g., firewalls) that are widely used in the industry.  

Most of the security vulnerability testing, meanwhile, will be conducted through 

penetration and traffic load tests. The results will provide significant groundwork 

for the development of a proposal and, eventually, of an architecture 

encompassing a variety of mechanisms designed to secure UDT against various 

adversaries, such as Sybil, man-in-the-middle, and the most common, Denial-of 

Service (DoS) attacks.  

1.4 Overview  

In this section, we discuss our research on developing a unified security 

architecture for UDT. We use the terms ‘approach,’ ‘methodology,’ ‘method,’ 

‘framework,’ and ‘architecture’ interchangeably in this dissertation as these 

terms share connotations in both our past and present publications.  

In a part of this dissertation published in [22-33], we highlighted the security 

limitations of UDT and determined the threshold of feasible security schemes 

within the constraints under which UDT was designed and developed. We 

introduced a method of securing applications and traffic using the UDT protocol 

and offered recommendations to meet security requirements for UDT.  

Here, we summarise the breadth of security methods proposed for UDT and 

review the results. We present an improved security methodology and 

architecture after extensive specification and conformance tests. The results from 

these tests can assist network and security investigators, designers, and users 

who consider and incorporate security when implementing UDT across wide area 

networks.  
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1.5 Related Works 

We present a security architecture with various feasible mechanisms that can 

secure UDT [22-27, 33]. This architecture focuses on UDT’s position in the Open 

Systems Interface (OSI) layer architecture, which can provide a layer-to-layer 

approach to address security. We develop the architecture with the knowledge 

that UDT security relies mainly on the security in existing mature protocols.  

A summary of security mechanisms and their implementations is presented in 

Figure 1-1. This summary is used as a basis to create a comprehensive security 

architecture, which is presented in Chapter 6. 

 

  

 

 

 

 

 

 

 

Figure 1-1: UDT in Layer Architecture. UDT is in the application layer 
above UDP. The application exchanges its data through the UDT socket, 
which then uses the UDP socket to send or receive data [22-33]. 

Because UDT operates between the application and transport layers running on 

top of UDP, data being carried must be transmitted securely and correctly. This 

must be implemented by each application, an operating system, and, whenever 

possible, by proprietary mechanisms using a separate stack [22-33].  

The implementation must be based on generic libraries [30] and supported by the 

application-dependent components, such as the API module, the sender, receiver, 
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and UDP channel. It also relies on the sender’s protocol buffer, receiver’s protocol 

buffer, sender’s loss list, and receiver’s loss list [24]. 

1.6 Constraints and Hypotheses 

UDT is a connection-oriented duplex protocol [30], which supports data 

streaming and partial reliable messaging. It also uses rate-based congestion 

control (rate control) and window-based flow control to regulate outgoing traffic. 

This has been designed so that rate control updates the packet sending period at 

constant intervals, while flow control updates the flow window size each time an 

acknowledgment packet is received. The protocol has also been expanded to 

satisfy additional requirements for both network research and applications 

development [21-31]. This expansion is called Composable UDT and is designed 

to complement kernel-space network stacks. However, this expansion is intended 

for: 

Implementation and deployment of new control algorithms. Data 

transfer through private links can be implemented using 

Composable UDT; 

 

Support of application-aware algorithms; 

 

Ease of testing new algorithms for kernel space.  

 

The Composable UDT library implements a standard TCP Congestion Control 

Algorithm (CTCP). CTCP can be redefined to implement more TCP variants, 

such as TCP (low-based) and TCP (delay-based). The designers [33] emphasise 

that the Composable UDT library does not implement the same mechanisms as 

those in the TCP specification. TCP uses byte-based sequencing, whereas UDT 

uses packet-based sequencing. This, therefore, does not prevent UDT from 

simulating TCP’s congestion avoidance behaviour [23, 30, 32-33]. 

UDT, moreover, is designed with the Configurable Congestion Control (CCC) 

interface that uses the following techniques: 1) control event handler call backs, 

2) protocol behaviour configuration, 3) packet extension, and 4) performance 
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monitoring. Its features can be used for bulk data transfer and streaming data 

processing, unlike TCP, which cannot be used for this type of processing because 

of two impediments: firstly, in TCP the link must be clean (with little packet loss) 

for it to fully utilise the bandwidth; secondly, when two TCP streams start at the 

same time, the stream with the longer Round-Trip Time (RTT) will be starved, 

due to the RTT bias problem [26, 28]; the data analysis process will thus have to 

wait for the slower data stream.  

Since UDT does not have well-thought-out security mechanisms, we approach the 

development of these mechanisms in three phases (Figure 1-2): first, by 

developing research questions based on the building blocks (the objectives and 

aims of this work); second, by drawing research outcomes based on the results of 

analyses and methods; and third, by confirming the techniques and strategies 

(such as simulation, analysis, experimentation, implementation, and evaluation)  

that can be used in this development.  

The need for security mechanisms for UDT is derived [22-33] from the following 

observations about UDT:  

Its dependencies on user preferences and implementation on the 

layer on which it is implemented; 

 

Its dependencies on existing security mechanisms of other layers on 

the stack; 

 

Its dependencies on TCP/UDP, which are dependent on nodes and 

their addresses for high-speed data transfer protocols.   

 

This research, therefore, explores the existing security tools and determines 

which of these can best secure UDT in a networked environment. The following 

research questions are investigated in this work: 

Can UDT address existing and future network adversaries and threats? 
Hypothesis: UDT can practically be secured through a variety of    security 

mechanisms. 
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Are the proposed methods of securing UDT, UDP, and TCP materialising 
possible on the application, presentation, transport, and network layers?  
Hypothesis: The proposed methods can be implemented on selected layers. 

Which are the best and most practical methods to secure UDT? 
Hypothesis: Both commercially proven and proprietarily developed 

security mechanisms can best secure UDT. 

Are the methods applicable to existing protocols, and can they be used in 
the development of new fast data protocols? 
Hypothesis: Methods of securing UDT on the application, session, 

transport, and    Internet Protocol (IP) can be used in future protocols. 

These questions are addressed using various approaches, including theoretic 

inductive proofs, simulation, and experimentation. 

With the aforementioned taken into consideration, this work investigates a way 

to secure UDT, its practical use in networked environments, and its contribution 

to future applications and networks. We explore and analyse various security 

mechanisms, such as GSS-API [23,99,109-110,148], UDT-AO [19,32,36], 

Cryptographically Generated Addresses (CGA) [11, 22-33], Host Identity Protocol 

(HIP) [7, 12, 83, 96, 105-106,118,137], DTLS/TLS [59-60, 128], Internet Protocol 

Security (IPSec) [21-33] and propose the best method to secure UDT.  

The following are the potential applications of this research:  

Techniques for the development of security mechanisms for protocol 

libraries;  

 

Provision of well-thought-out security mechanisms and architecture for 

existing and future protocols; and 

 

Deployment of more secure data transfer in a Cloud/GRID.  

 

The techniques and methods for securing UDT (and other future protocols), as 

presented in this dissertation, provide a foundation for developers seeking to 

secure next-generation protocols. 
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1.6.1 Research Objectives and Scope 

This dissertation focuses on UDT and proposes a practical security architecture 

for the protocol.    

1.6.1.1 Scope  

The scope of this work is to develop mechanisms suitable for UDT and 

other fast data protocols, which currently have no security mechanisms in 

place. This work attempts to address at least three research problems:  

1. The introduction of new techniques, which can be achieved 

through characterisation and utilisation of implementation 

as a validation scheme;  

2. The creation of an empirical model, which can be achieved 

by addressing the question of generalisability and by using 

analysis as validation; and    

3. The realisation of an analytic model and architecture, which 

can be achieved by addressing the question of selection, and 

by using experience, simulation, and experimentation as 

validation schemes based on the activities and 

implementations performed in a controlled environment. 

1.6.1.2 Key Research Objectives   

 The key research objectives of this work are framed by the research model 

(Figure 1-2):  
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Figure 1-2: Research Model 

 

o To explore the various security mechanisms available, as well as 

their uses to existing protocols; 

 

o To conduct a comprehensive security analysis on UDT;  

 

o To provide mechanisms suitable for securing UDT in a networked 

environment; and 

 

o To establish the practicality of such mechanisms for other fast 

protocols.    

 

The scope and objectives of this work are determined by the research questions, 

by the strategies for achieving research outcomes, and by the use of a few 

validation schemes for achieving practicability. The guiding principles of this 

work are based on the research phases (Figure 1-3), which contributed to the 

development of the comprehensive building blocks of this work. 

We demonstrate a comprehensive way of achieving research outcomes. Since the 

focus of the research is on technology – and not on computer science alone – the 

identification of some key features to describe modern technology is performed. 
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Figure 1-3: Research Phases 

Since UDT is designed to run on UDP [82], it depends on UDP’s existing security 

mechanisms. Consequently, designers of the applications using UDT are faced 

with limited security choices.   

In our published works [22-33], we presented an overview of the basic security 

mechanisms for UDT. As the research progressed, we achieved the following: 

Firstly, we modified the UDT codes – changing the Maximum Segment Size 

(MSS) values, introducing a checksum, and using Message-Digest Algorithm 5 

(MD5) [88, 107, 146] in its codes. However, this is only suitable for some 

applications.  

Secondly, we designed custom security mechanisms on the application layer, 

using API (such as GSS-API) or custom security mechanisms on the IP layer 

(such as HIP-CGA or IPSec).  

Thirdly, we introduced UDT-AO for secrecy and authentication in data 

transmission.  

Finally, we integrated existing transport layer implementation schemes, such as 

DTLS [22-33, 114]. 

The following mechanisms can be significant for application- and transport-layer-

based authentication and end-to-end security for UDT. These are as follows: 
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Security through: 

IP Layer 

HIP – Host Identification Packet [7, 83,96,105-106,118,137] 

Cryptographically Generated Address (CGA) [11, 22-33] 

Self-certifying addresses using HIP-CGA [7, 11, 22-33, 83, 96, 105-

106, 118, 137] 

IPSec – IP security [21-33] 

 

Session/Application and Transport Layers 

GSS-API - Generic Security Service Application Program Interface 

[22-31, 99,109-110,148]   

UDT-AO - Authentication Option [19, 32, 36] 

SASL - Simple Authentication and Security Layer (SASL) [114] 

DTLS – Data Transport Layer Security [59-60, 128] 

 

In addressing UDT’s security requirements, we present powerful paradigms for 

the security analysis of the newly developed and proposed security mechanisms 

through formal language and practical implementations. These paradigms 

support the development of the security architecture of UDT while achieving 

substantial and compositional verification of each of the proposed mechanism in 

isolation. 
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Chapter 2     

 

State-of-the-Art Protocol  

 

 

The growth of network bandwidths since the introduction of packet switching 

has contributed to the significant rise in Internet traffic. In recent years, new 

applications such as peer-to-peer (P2P) file sharing, multimedia, and mobile 

computing have increased users’ expectations, motivating new designs in which 

various communication links, such as GRID [81], satellite, wireless and mobile 

computing, can securely participate and handle traffic at higher layers of the 

protocol stack. 

These new applications vary in traffic, connection characteristics, and 

communication links. While most of these applications still use TCP for data 

transfer because of its reliability and stability, performance issues have been 

noted in the implementation of large networks that require high bandwidths. 

These issues have led to the development of new and different schemes with 

more reliable characteristics and better congestion control. One example is XCP 

(eXplicit Congestion control Protocol) [47,100], which demonstrates good 

performance characteristics when tested on routers and satellite systems [100]; 

other variants, meanwhile, such as STCP and DCCP, are designed to improve 

congestion control. However, a number of these new schemes face challenges on 

deployment because they require changes in the routers as well as the operating 

systems of end hosts. Recent studies have shown that the gradual deployment to 

update Internet-facing routers results in a significant performance drop. XCP, 
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with characteristics similar to TCP, has also exhibited a number of security 

flaws. 

Apart from congestion control and performance, for which TCP variants were 

originally developed, security considerations also need to be included in the 

architectural designs of the new generation of protocols [24]. 

Developments in 2007 introduced the state-of-the-art UDT, a next generation of 

high-performance data transfer protocol. UDT introduces a new three-layer 

protocol architecture composed of a connection flow multiplexer, enhanced 

congestion control and resource management. The design allows the protocol to 

be shared by parallel connections and by future connections. It also improves 

congestion control and reduces connection set-up time. Moreover, UDT provides 

better usability by supporting a variety of network environments and application 

scenarios [22]. It addresses TCP’s limitations by reducing the overhead required 

to send and receive streams of data. However, the pressure to reduce the cost and 

complexity of running streaming applications over the Internet and through 

wireless and mobile devices continues to mount. Users have also expressed the 

demand for better security and privacy for their communication links. Despite 

being widely used, existing protocols, e.g., TCP and UDP, have a number of 

inherent serious security flaws. 

This work focuses on UDT’s security requirements, based on existing network 

protocols. It is aimed at determining and developing security mechanisms to form 

a robust security architecture that will preserve the security and privacy of the 

data flow.  

Since UDT relies on UDP to check IP streams, it is susceptible to attacks such as 

snooping, packet interception, and IP masquerading. Its objective is to deliver 

bandwidth-intensive applications over a protocol that carries a minimal amount 

of overhead (such as UDP), but it cannot guarantee that it will avoid 

compromising the security, privacy, and data integrity desired by users. 

Furthermore, UDT is a UDP-based approach [31-33] and is considered to be the 

only UDP-based protocol that employs a congestion control algorithm targeting 
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shared networks. It is a new application-level protocol with support for user-

configurable control algorithms and more powerful APIs.  

2.1  Transport Protocols and Network Congestion Control 

In this literature review, we discuss existing Internet transport protocols and 

network congestion control algorithms. We briefly demonstrate the layered 

architecture of Transmission Control Protocol/Internet Protocol (TCP/IP) 

[6,61,62,69] and discuss UDT based on the existing literature [72], which we fully 

acknowledge in this section. 

In order to provide various functionalities to applications, including but not 

limited to data delivery, data reliability control, and streaming or messaging 

service, transport protocols are designed and created with four fundamental 

objectives usually transparent to such applications: efficiency, fairness, 

convergence, and distributedness [81-82]. 

[146,151] highlighted that transport protocol also needs to be efficient: it needs to 

utilise the available bandwidth as efficiently as possible. To be efficient, as 

further explained by [72] and supported by [135], a protocol must accomplish the 

following two tasks in a short time: a) probe the maximum available bandwidth, 

and b) recover to maximum speed when congestion or packet loss causes a drop 

in the sending rate. Once it reaches maximum speed, it should remain at its 

current state until the network situation changes, i.e., oscillations should be as 

small as possible [82]. 

On the other hand, the network bandwidth is expected to be shared fairly among 

all concurrent flows. The measurement of fairness can have different standards. 

The most common one is the max-min fairness, the objective of which is to 

maximise the minimum throughput [81-82]. 

Literature [81-82,135,151-152] defines intra-protocol fairness of a protocol as a 

fairness property among all flows belonging to the same protocol. In particular, 

RTT (Round-Trip Time) independence is used to describe the special case of 

fairness over topology with different RTTs; this is not satisfied by TCP [152]. The 

fairness problem becomes more difficult when heterogeneous protocols coexist. A 
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new transport protocol is required to consider the situation wherein it coexists 

with TCP before it is widely deployed on the Internet. The fairness between TCP 

and the new protocol is called TCP friendliness [151-152]. 

According to [82], the data sending rate must converge to a unique equilibrium 

from any starting point, given any specific network situation. Because binary 

feedbacks are typically used to notify changes in the network situation, it is thus 

acceptable that the throughput oscillates around a fixed point [81-82]. This is the 

global stability property of Internet transport protocols. 

Finally, because the Internet is such a large distributed system, it is impossible 

to have a server dispatch the bandwidth. It is at the end hosts that transport 

protocols [151] must control their data sending rate, with or without assistance 

from the routers through which the traffic passes. The end-to-end principle 

[27,35,73,84] states that, whenever possible, transport protocol operations should 

only occur at end hosts in order to increase the system's scalability. It is also 

necessary that end hosts have congestion control functionalities [30], even with 

the existence of gateway operators. 

In order to achieve these objectives, congestion control is utilised in the transport 

protocol. The transport protocol adjusts the data sending rate using a certain 

congestion control algorithm, which functions as a feedback system and produces 

feedback that can either be explicitly generated from intermediate nodes such as 

routers; or estimated by packet losses, increase trends in packet delay, or timeout 

events [27,82]. Explicit feedback from routers brings more accurate information, 

but it also requires higher computation and deployment costs. The data sending 

rate can be tuned through either the inter-packet time or the number of 

outstanding packets. The former method is called rate-based congestion control 

while the latter is called window-based congestion control. Both methods can be 

applied at the same time. A linear system is often applied in a control scheme to 

tune these parameters because of its simplicity [84]. The most famous control 

algorithm is TCP's AIMD algorithm [6], or additive increase/multiplicative 

decrease algorithm [81-82]. 
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2.1.1 TCP’s Constraints 

TCP has been widely adopted as a data transfer protocol for high-speed networks. 

However, many literature reviews [6,81-82,151-152] emphasise that TCP 

substantially underutilises network bandwidth over high-speed connections. TCP 

[6,46] increases its congestion window by one at the length of Round-Trip Time 

(RTT) and reduces it by half at a loss event [81].  As discussed in the works of 

[6,81-82], in order for TCP to increase its window for full ulitilisation of 10 Gbps, 

for example, with 1.5 kilobyte packets, it requires over 83,333 RTTs. Moreover, 

with 100ms RTT, it takes approximately 1.5 hours for full utilisation in steady 

state according to Gu [82]; therefore, the loss rate cannot be more than 1 loss 

even per 5 Gbyte packets, which is less than the theoretical limit of the network’s 

bit error rates. 

TCP’s AIMD-based control algorithm [6,46] increases the sending rate (via 

congestion window size) by approximately 1 segment per RTT, but halves it once 

there is a loss event.  

The throughput of a TCP flow can be approximately modeled by [6,151-152] 

 

where S is the TCP segment size, R is the network RTT, p is the loss rate, and 

tRTO is the TCP timeout value. 

A number of proposals [47,100] have been presented to fine-tune TCP 

parameters. One of these proposes an increase in packet size by setting the 

jumbo packet option to up to 64k bits, with multiple TCP connections in use 

according to [6,46]. This model indicates that TCP becomes ineffective as the 

network bandwidth and delay both increase [6, 22-33,81-82,151-152]. 
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On the other hand, the existence of the RTT in the TCP throughput model means 

that concurrent flows with different RTTs may have different throughputs: a 

manifestation commonly known as RTT bias. 

After acknowledging TCP’s limitation, researchers responded by introducing 

several promising new protocols i.e., XCP and UDT [81-82]. These protocols – 

with the exception of XCP, a router-assisted protocol [100] – adaptively adjust 

their increase rates based on the current window size. Consequently, the larger 

the congestion window is, the faster it grows. These protocols are designed to be 

TCP-friendly [6,151-152] in high loss rate environments and highly scalable in 

low loss environments. 

2.1.2 UDT – An Alternative 

 The widespread presence of short-lived, web-like flows on the Internet and TCP’s 

stability drive the success of the use of Transmission Control Protocol. However, 

it has been noted [6,81-82,151-152] that the usage of network resources in high-

performance distributed data-intensive applications is quite different from that of 

traditional Internet applications because of the following reasons: first, the data 

transfer often lasts a very long time at very high speeds; second, distributed 

applications need cooperation among multiple data connections. Therefore, 

fairness between flows with different start times and network delays is desirable.  

Finally, in GRID computing over high-performance networks, the abundant 

optical bandwidth is usually shared by only a small number of bulk sources. The 

concurrency is much smaller than that on the Internet [6,22-33,100]. 

Here we adopt an example presented by [81-82]. It presented a simple but typical 

example application, called the streaming join. The main contention was 

assuming that the real-time data streams come from a remote machine A and a 

local machine B, which were joined by another local machine C with a window-

based join algorithm [81]. 

It was assumed that the two data streams were composed of records of the same 

size.  
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Figure 2-1 illustrates the network topology (Figure courtesy of Gu [81-82]). 

 

 Figure 2-1: A streaming join example. The two data streams from A and B are sent to C and 
converged there. The RTT between A and C is 100ms, whereas it is only 1ms between B and C. 
Both links share a 1Gb/s bottleneck at C.[82] 

In the experiment [82], TCP is used to transfer the streams, in both a real 

network and the simulated environment using NS-2 simulator. It is observed 

that the throughputs of the two streams are 3.52 and 863 Mb/s in the real 

network and 80.5 and 807 Mb/s in the simulation environment, respectively. The 

slower stream (AC), according to [82] limits the join throughput to AC*2, or 7 

Mb/s in the real network and 160 Mb/s in the simulation environment (out of the 

1 Gb/s maximum possible throughput). Although applications can sometimes 

tune the data source rate to alleviate this problem, this needs global knowledge 

of the network topology and static network environment, which is unrealistic in 

most cases. 

In this dissertation, we analyse UDT in order to develop a comprehensive 

security architecture for distributed data-intensive applications in wide-area 

high-speed networks.  

UDT addresses the solution by investigating two orthogonal research problems 

[72]: 1) the design and implementation of transport protocols with respect to 

throughput and CPU usage; and 2) the Internet congestion control algorithm 

with respect to efficiency, fairness, and stability. 
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UDT is an application-level, end-to-end, unicast, reliable, connection-oriented 

streaming data transport protocol. The UDT protocol is completely at user space 

above UDP, i.e., it uses UDP to transfer user data and protocol control 

information. UDT uses packet-based sequencing to check packet loss and 

guarantee data reliability. It is specially designed for high-speed bulk data 

transfer by aiming to remove or reduce the overhead of memory copy, loss 

information processing, acknowledging, etc. UDT provides reliable streaming 

data transfer service, similar to TCP. 

The UDT protocol supports a large variety of control algorithms. Moreover, it 

supports congestion control algorithms to be configured at run time; each UDT 

flow can thus have its own control algorithm, and it can change the algorithm at 

any time. 

The built-in (default) UDT congestion control algorithm is proposed to utilise 

high bandwidth efficiently and fairly. The UDT algorithm uses a loss-based 

AIMD mechanism. Bandwidth estimation technique is used to optimize its 

increase parameter dynamically. A random decrease factor is used to remove the 

negative effect of loss synchronisation [82]. 

According to [81-82], UDT is not used to replace TCP on the Internet, where the 

bottleneck bandwidth is relatively small and there are large amounts of 

multiplexed short life flows.  

It must be emphasised that UDT, when coexisting with TCP flows, is designed 

not to occupy more bandwidth than does TCP, unless the TCP flows fail to utilise 

their fair share due to TCP's efficiency problems in high bandwidth-delay product 

(BDP) environments. TCP will still be used in these high BDP networks, and an 

application that uses UDT may sometimes run on public networks. 
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UDT is defined and distinguished by its three major aspects [82]: 

• UDT is at the application level , thus promotes better deployment method than 

in kernel protocols.  UDT is designed with an efficient and fair congestion control 

algorithm, which is considered a better approach than other UDP-based protocols 

that very limited congestion control capabilities [82]. 

UDT itself is also a protocol framework with configurable 

congestion control, which according to [82] both support 

application awareness and support evaluation of new 

congestion control algorithms. 

The development of UDT protocol addresses numerous research problems in data 

transport protocols [82]. This development makes the following specific 

contributions: 

UDT provides a timely and practical solution to the problem 

of transferring bulk data in high-speed wide-area networks.  

Therefore, UDT is easily deployable. There are only four versions of TCP that 

have been widely deployed in the past three decades, and, according to [82], this 

is because of the long time lag of standardisation, implementation, and 

deployment of kernel space protocols. While there were numerous TCP variants 

proposed at the same time that UDT was developed, these protocols are not 

expected to be deployed widely in the near future. In addition, bandwidth 

estimation techniques are used in the UDT congestion control mechanism such 

that there is no need for the manual tuning of control parameters. 

Gu’s [82] work systematically investigated the design and 

implementation issues of high-performance data transport 

protocol at the application level [22-33,81-82].  

While often neglected, protocol design and implementation have a significant 

impact on efficiency. In the UDT project, we identified the overhead arising from 

acknowledgments, loss processing, threading, and memory copy, and to these we 

proposed appropriate solutions. 
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UDT’s congestion control algorithm addresses both 

efficiency         and fairness objectives [81-82].  

Therefore, UDT’s algorithm takes approximately a constant time to converge to 

90% of the available bandwidth. UDT flows are fair to each other, even if they 

have different RTTs. While UDT is highly efficient, it is not that aggressive. It is 

friendly to concurrent TCP flows. Furthermore, the UDT algorithm solves the 

loss synchronisation problem by using a random decreasing method. 

Finally, UDT can also handle limited non-congestion packet losses. 

UDT’s approach is highly scalable. Given that there is 

enough CPU power, UDT can support unlimited bandwidth 

within terrestrial ranges. No matter how fast the data 

transfer rate is, the timer-based selective acknowledgment 

generates a constant number of acknowledgments (ACKs). 

The congestion control algorithm and the bandwidth 

estimation technique, meanwhile, allow UDT to increase to 

90% of the available bandwidth no matter how large it is. In 

addition, the constant rate control interval helps realize 

RTT fairness. 

Composable UDT offers more to application development 

and network research by allowing configurable congestion 

control algorithms. This feature enables easy development 

of application- or network-specific control mechanisms, as 

well as easy evaluation of new control algorithms. 

Finally, Gu [82] developed a productivity quality open 

source UDT library that can be used in real world 

applications and research work [81-82]. 
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2.2  The UDT Protocol  

In this chapter we describe how UDT works through its design and 

implementation. After our overview of the UDT protocol in section 2.1, we 

describe in detail the UDT protocol, including packet structures, connection 

maintenance, packet sequencing, acknowledging, and reliability control. We also 

introduce UDT's flow and congestion control in this section, followed by an 

analysis of the control algorithm in the next chapter. Finally, we present brief 

concluding remarks in section 2.8. 

2.2.1 Overview 

UDT adapts itself into the layered network protocol architecture (Figure 2-2), 

and uses UDP through the socket interface provided by operating systems. 

Meanwhile, it provides a UDT socket interface to applications, which can then 

call the UDT socket API in the same way they call the system socket API. 

 

Figure 2-2 Layered architecture of UDT (courtesy of Gu [82]). In this layered architecture, the UDT 
layer is completely in user space above the network transport layer of UDP, whereas the UDT layer 
itself provides transport functionalities to applications. 
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 UDT is a duplex transport protocol. Each UDT entity has two logical parts: the 

sender and the receiver. The sender sends (and retransmits) application data 

according to flow control and rate control. The receiver, meanwhile, receives both 

data packets and control packets, and also sends out control packets according to 

the received packets. 

Figure 2-3 describes the relationship between the UDT sender and the receiver. 

In Figure 2-3, the UDT entity A sends application data to the UDT entity B. The 

data is sent from A’s sender to B’s receiver, whereas the control flow is exchanged 

between the two receivers. 

 

 

 

Figure 2-3: Relationship between UDT sender and receiver (courtesy of Gu [82]). All UDT entities 
have the same architecture, each having both a sender and receiver. This figure demonstrates the 
situation wherein a UDT entity A sends data to another UDT entity B. Data is transferred from A’s 
sender to B’s receiver, whereas control information is exchanged between the two receivers. 

 The receiver is also responsible for triggering and processing all control events, 

including congestion control and reliability control, as well as their related 

mechanisms. 

UDT uses rate-based congestion control (rate control) and window-based flow 

control to regulate the outgoing data traffic. Rate control updates the packet-

sending period every constant interval, whereas flow control updates the flow 

window size each time an acknowledgment packet is received. UDT always tries 

to pack application data into fixed-size packets, unless there is not enough data 

to be sent. Since UDT is supposed to be used to transfer bulk data streams, we 

assume that there is only a very small portion of irregularly sized packets in a 

UDT session. The fixed size can be set up by applications and the optimal value 
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is the path MTU (including all packet headers). The actual size of a UDT packet 

can be known from the UDP header [82]. 

2.2.2 Congestion Control  

The congestion window size (W) is dynamically updated according to the product 

of packet arrival speed (AS) and the sum of SYN and RTT: W = AS * (SYN + 
RTT). Here, SYN is the constant rate control interval, which is defined as 0.01 

seconds in the current protocol specification. 

For protocols that acknowledge every data packet, the maximum amount of data 

packets on the fly is the product of sending speed and RTT. In UDT, however, 

acknowledgment is triggered every SYN time, so that the value should be the 

product of sending rate and (SYN + RTT). In addition, we use the receiving speed 

instead of the sending speed, because the former can reflect the network 

situation more precisely. 

UDT uses a modified AIMD algorithm [82], for which the formula is as follows 

[22-33,82]. 

Every SYN time, if there is no NAK, but there are ACKs received in the previous 

SYN time, the number of packets to be increased in the next SYN time (inc) is 

calculated by:  

 

(1) 
 

 

where B is the estimated available bandwidth in bits per second and MSS is the 

maximum segmentation size in bytes [82], which is also the fixed UDT packet 

size. 

The easiest way to understand (1) is through Table 2-1, which gives examples of 

inc, wherein MSS is 1500 bytes. If MSS is not 1500 bytes, the increments listed 

in Table 2-1 will be corrected by the ratio of 1500/MSS. 
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Table 2-1: UDT increase parameter computation example (courtesy of Gu [82]). The first column 
represents the estimated available bandwidth and the second column represents the increase in 
packets per SYN. While the available bandwidth increases to the next scope of 10's integral power, 
the increase parameter also increases by 10 times. 

 

B (Mb/s) inc (packets/SYN) [82] 

B  0.1 0.00067 

0.1 < B  1 0.001 

1 < B  10 0.01 

10 < B  100 0.1 

100 < B  1000 1 

… … 

The packet sending period P is then recalculated according to equation (2), where 

P’ is the current packet sending period [72]: 

(2) SYN / P = SYN / P’ + inc  

Once a NAK is received, the packet-sending period is increased by 1/8: 

(3) P = P’ * 1.125  
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If the largest sequence number in this NAK is greater than the largest sequence 

number sent when the last decrease occurred according to [82], the sender stops 

sending packets in the next SYN time to help clear the congestion. 

The UDT congestion control described above is not enabled until the first NAK is 

received or the flow window size has reached the maximum flow window size. 

This is the slow start period of the UDT congestion control. During this time, the 

inter-packet time is kept as zero. The initial flow window size is 2 and it is 

doubled each time an ACK is received. The slow start only happens at the 

beginning of a UDT connection, and once the above congestion control scheme is 

enabled, it will not happen again. 

However, UDT was developed without a well-thought-out security architecture. 

Unlike TCP, many security mechanisms and architectures were developed to 

secure data, information, and communications. 

2.3 UDT Packet Structures 

UDT is designed to have two packet structures: the data packets and the control 

packets. These are distinguished by the first bit (flag bit) of the packet header. 

The data packet header starts with 0, while the control packet starts with 1.  

Data Packet 

 

 

 

 

 

 

 

 

0 or 1 Sequence Number 0-31 bit 

FF Message Number 29 bit 

 Time Stamp 32 bit 
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Control Packet 

Flag 0 /   1 Packet type Information             0- 15 User defined types 0-31 

1 Type 

 

 Extended Type 31 bit 

  ACK Sub –Sequence Number   

  Time Stamp   

  Control Information   

 

 Figure 2-4: UDT packet header structures [82]. The first bit of the packet header is a flag that 
indicates whether this is a data packet or a control packet. Data packets contain a 31-bit sequence 
number, a 29-bit message number, and a 32-bit timestamp. A control packet header, on the other 
hand, uses 1-15 bit for the packet type information, as well as 16-31 for user defined types. The 
detailed control information depends on the packet type [22-33,82]. 

The packet sequence number uses 31 bits after the flag bit. It uses packet-based 

sequencing, which means that the sequence number increases by 1 for each sent 

data packet in the order of packet sending. The Sequence Number is wrapped 

once it has increased to reach the maximum number (231 -1) [20,82]. 

As in other protocols such as DCCP, the sequence number is used to arrange 

packets into sequence, to detect loss [6,46] and network duplicates, and to protect 

against attackers, half-open connections, and delivery of very old packets. Every 

packet carries a Sequence Number; most packet types also include an 

Acknowledgment Number, which is carried in a control packet, the second packet 

structure of UDT. The control packet is parsed according to the structure if the 

flag bit of a UDT packet is 1. 

UDT is a connection-oriented duplex protocol, which supports data streaming 

and partial reliable messaging. It also uses rate-based congestion control (rate 

control) and window-based flow control to regulate outgoing traffic. This was 

designed such that rate control updates the packet sending period at constant 

intervals, whereas flow control updates the flow window size each time an 

acknowledgment packet is received. It has since expanded to satisfy additional 

requirements of both network research and applications development. This 

expansion is called Composable UDT, and it is designed to complement the 

kernel space network stacks. However, this feature is intended for: 
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Implementation and deployment of new control algorithms. Data 

transfer through the private links can be implemented using 

Composable UDT; 

Composable UDT supports application-aware algorithms; 

Ease of testing new algorithms for kernel space when using 

Composable UDT compared to modifying an OS kernel. 

 

The Composable UDT library implements a standard TCP Congestion Control 

Algorithm (CTCP). CTCP can be redefined to implement more TCP variants, 

such as TCP (low-based) and TCP (delay-based). The designers [6,61,81] 

emphasised that a Composable UDT library does not implement the same 

mechanisms as in the TCP specification. TCP uses byte-based sequencing, 

whereas UDT uses packet-based sequencing. It was stressed that this does not 

prevent CTCP from simulating TCP’s congestion avoidance behaviour [6,37,61]. 

2.4 UDT and Application Programming Interface  

Application programming interfaces allow developers to write applications that 

can make use of UDT services. In this chapter, we provide an overview of the 

most common APIs for IP applications. We then present an approach in securing 

UDT by interfacing with APIs, using GSS-API to meet UDT security 

requirements. 

The socket interface is one of several application programming interfaces (APIs) 

used in communication protocols. Designed to be a generic communication 

programming interface, it was first introduced by the 4.2 BSD UNIX system. 

Although it has not been standardised, it has become a de facto industry 

standard. 

The socket interface is differentiated by the services that are provided to 

applications: stream sockets (connection-oriented), datagram sockets 

(connectionless), and raw sockets (direct access to lower layer protocols) services. 
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A variation of the BSD sockets interface is provided by the Winsock interface 

developed by Microsoft and other vendors to support TCP/IP applications on 

Windows operating systems. Winsock provides a more generalised interface, 

allowing applications to communicate with any available transport layer protocol 

and underlying network services, including, but not limited to, TCP/IP. 

2.5 Uses of API 

The following lists some common and basic socket interface calls. In the next 

section, we see an example scenario of using these socket interface calls [65].   

2.5.1 Intitalise a socket 

  FORMAT 

          int sockfd= socket(iint family, int type, int protocol)   

  Where:   

- family stands for addressing family. It can take on values such as 

AF_UNIX, AF_INET, AF_OS2, AF_NS and AF_IUCV. Its purpose is to 

specify the method of addressing used by the socket. 

- type stands for the type of socket interface to be used. It can take on 

values such as SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, and 

SOCK_SEQPACKET. 

- protocol can be UDP, TCP, IP or ICMP or any other existing variants 

such as UDT. 

- sockfd is an integer (similar to a file descriptor) returned by the socket 

call. 

 

2.5.2. Bind (register) a socket to a port address 
  FORMAT 

int bind(int sockfd, struct sockaddr * localaddr, int  addrlen) 
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Where:   

- sockfd is the same integer returned by the socket call. 

- localaddr is the local address returned by the bind call. 

 

Note that after the bind call, we now have the values for the first three 

parameters inside our 5-tuple association: {protocol, local-address, local-
process, foreign-address, foreign-process)  

2.5.3 Indicate readiness to receive connections 

  FORMAT 

      int listen(int sockfd, int queue-size) 

  Where:   

- sockfd is the same integer returned by the socket call. 

- queue-size indicates the number of connection requests that can be 

queued by the system while the local process has not yet issued the 

accept call.  

 

2.5.4 Accept a connection  
 

FORMAT 

      int accept(int sockfd, struct sockaddr * foreign-address,  

      int addrlen) 

  Where:   

- sockfd is the same integer returned by the socket call. 

- foreign-address is the address of the foreign (client) process returned by 

the accept call. 
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Note that this accept call is issued by a server process rather than a client 

process. If there is a connection request waiting on the queue for this socket 

connection, accept takes the first request on the queue and creates another socket 

with the same properties as sockfd; otherwise, accept will block the caller process 

until a connection request arrives. 

2.5.5 Request connection to the server  

  FORMAT 

      int connect(int sockfd, struct sockaddr * foreign-address,  

      int addrlen) 

  Where:  

- sockfd is the same integer returned by the socket call. 

- foreign-address is the address of the foreign (server) process returned 

by the connect call. 

 

Note that this call is issued by a client process rather than a server process. 

2.5.6 Send and /or receive data. 
 

The read(), readv(sockfd, char *buffer int addrlen), recv(), readfrom(), 

send(sockfd, msg, len, flags) and write() calls can be used to receive and send 

data in an established socket association (or connection). 

Note that these calls are similar to the standard read and write file I/O 

system calls. 

2.5.7 Close a socket.   
 

FORMAT 

      int close(int sockfd)  
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  Where: 

- sockfd is the same integer returned by the socket call. 

 

 

Example Scenario 

As an example, consider the socket system calls commonly presented for a 

connection-oriented protocol in Figure 2-5. 

 

 

Figure 2-5:  Socket System Calls for Connection-Oriented Protocol 
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Consider the previous socket system calls in terms of specifying the elements of 

the association: 

   Protocol Local  Local  Foreign Foreign 

    Address, Process Address, Process 

connection-oriented 

server Socket() bind()   Listen() Accept()

connection-oriented 

client Socket()   connect()     

connectionless server Socket() bind()   recvfrom()   

Connectionless 

client  Socket() bind()   Sendto()   

 

Figure 2-6: Socket System Calls and Association 

The socket interface is differentiated by the different services that are provided. 

Stream, datagram, and raw sockets each define  a different service available to 

applications. 

1. Stream socket interface (SOCK_STREAM): It defines a reliable 

connection-oriented service (over TCP for example). Data is sent without 

errors or duplication and is received in the same order as it is sent. Flow 

control is built-in to avoid data overruns. No boundaries are imposed on 

the exchanged data, which is considered to be a stream of bytes. An 

example of an application that uses stream sockets is the File Transfer 

Program (FTP). 

 

2. Datagram socket interface (SOCK_DGRAM): It defines a connectionless 

service (over UDP for example). Datagrams are sent as independent 

packets. The service provides no guarantees; data can be lost or 

duplicated, and datagrams can arrive out of order. No disassembly and 

reassembly of packets is performed. An example of an application that 

uses datagram sockets is the Network File System (NFS). 
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3. Raw socket interface (SOCK_RAW): It allows direct access to lower later 

protocols such as IP and ICMP. This interface is often used for testing new 

protocol implementations. An example of an application that uses raw 

sockets is the Ping command. 

 

2.6 UDT Application Socket Interface 

UDT uses UDP through the socket interface provided by operating systems. It 

provides its own UDT socket interface to applications [82].  

Applications can call the UDT socket API in the same way they call the system 

socket API. 

Since UDT is a duplex transport protocol, according to Gu [82] each UDT entity 

has two logical parts: the sender and the receiver. The sender sends (and 

retransmits)  application data according to flow control and rate control. The 

receiver receives both data packets and control packets, and sends out control 

packets according to the received packets as well. 

 

Figure 2-7: The solid line represents the data flow, and the dashed line 
represents the control flow. The shading blocks (buffers and loss lists) are 
the four data components, whereas the blank blocks (API, UDP channel, 
sender, receiver, and listener) are function components [82]. Details 
presented in this chapter  were a review of the works of Gu [82]. 
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2.6.1   Implementation 

According to Gu [82], the special difficulty in processing Gb/s speed data transfer 

was noticed a decade ago.  Gu [82] contended that although the need for 

additional processor and hardware overhead no longer required today, the 

implementation of an application level transport protocol is still sensitive to its 

performance. Overheads of memory copies and context switches bring more 

difficulty for application level implementations. 

2.6.2   Software Architecture 

 We review the architecture presented by [82]. The Figure 2-2 depicts the UDT 

software architecture, which highlights the UDT layer that has five function 

components: the API module, the sender, the receiver, the listener, and the UDP 

channel, as well as four data components: sender’s protocol buffer, receiver’s 

protocol buffer, sender’s loss list, and receiver’s loss list [20,22,81-82]. Because 

UDT is bi-directional, all UDT entities have the same structure.    

The API module is responsible for interacting with applications. The data to be 

sent is passed to the sender's buffer and sent out by the sender into the UDP 

channel [82]. At the other side of the connection (not shown in this figure but it 

has the same architecture), the receiver reads data from the UDP channel into 

the receiver's buffer, reorders the data, and checks packet losses. Applications 

can read the received data from the receiver's buffer. 

The receiver also processes received control information. It will update the 

sender's loss list (when NAK is received) and the receiver's loss list (when loss is 

detected). Certain control events will trigger the receiver to update the 

congestion control module, which is in charge of the sender’s packet sending. 

The UDT socket options are passed to the sender/receiver (synchronization 

mode), the buffer management modules (buffer size), the UDP channel (UDP 

socket option), the listener (backlog), and CC (the congestion control algorithm, 

which is only used in Composable UDT). Options can also be read from these 

modules and provided to applications by the API module [81]. 
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2.6.3  User Interface 

The API (application programming interface) is an important consideration when 

implementing a transport protocol. Generally, it is a good practice to comply with 

the socket semantics. However, due to the special requirements and use 

scenarios in high performance applications, additional modifications to the 

original API are necessary according to Gu [81-82] and Bernardo [22-33]. 

In the past several years, network programmers have welcomed the new sendfile 
method [22-33,81-82]. It is also an important method in data intensive 

applications, as these are often involved with disk-network IO. In addition to 

sendifle, a new recvfile method is also added, to receive data directly onto disk. 

The sendfile/recvfile interfaces and send/recv interfaces are orthogonal [82]. 

UDT also implements overlapped IO at both the sender and the receiver sides. 

Related functions and parameters are added into the API. 

Some lower level APIs should be exposed to applications by an upper level 

protocol. For example, if the transport layer knows whether a packet loss is due 

to congestion or link error from the network layer, it will be very helpful for 

congestion control on links with high bit error rates. UDT exposes many UDP 

interfaces to give applications the most flexibility for configuring their transport 

facilities. 

An application can make use of the UDT library in a few ways according to Gu 

[81]. The library provides a set of C++ API that is very similar to the system 

socket API. Network programmers can learn it easily and use it in a similar way 

as using TCP sockets. 

When used in applications written by languages other than C/C++, an API 

wrapper can be used. So far, both Java and Python UDT API wrappers have been 

developed [22,82]. 

Certain applications have a data transport middleware to make use of multiple 

transport protocols. In this situation, a new UDT driver can be added to this 

middleware, and then used by the applications transparently. For example, a 
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UDT XIO driver has been developed so that the library can be used in Globus 

[79] applications. 

Finally, the library also provides a set of C API that has exactly the same 

semantics as the system socket API. An existing application can be re-compiled 

and linked against the UDT/CCC C library. In this way, the applications use our 

library transparently [82] without any changes to the source codes. There is one 

limitation, though. UDT does not support multi-process models (e.g., using fork 
system call) due to efficiency considerations, so this method does not work if the 

existing application uses the same sockets in multiple processes. 

2.6.4  Protocol Configuration 

To accommodate certain control algorithms, some of the protocol behaviour has to 

be customized. For example, a control algorithm may be sensitive to the way that 

data packets are acknowledged. UDT/CCC provides necessary protocol 

configuration APIs for these purposes. 

It allows users to define how to acknowledge received packets at the receiver 

side. The functions of setACKTimer and setACKInterval  determine how often an 

acknowledgment is sent [82], in elapsed time and the number of arrived packets, 

respectively. 

The method of sendCustomMsg sends out a user-defined control packet to the 

peer side of a UDT connection, where it is processed by callback functions 

processCustomMsg. 

Finally, UDT/CCC [82] also allows users to modify the values of RTT and RTO. A 

new congestion control class can choose to use either the RTT value provided by 

UDT, or its own calculated value. Similarly, the RTO value can also be redefined. 

There are other features of the UDT protocol that are either not related to 

congestion control or are helpful to most control algorithms. These features, such 

as selective acknowledgment (SACK) [6,82] and robust reordering (RR) [82], 

cannot be configured by CCC users, although some of the features can be 

configured through UDT interfaces. 
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An application exchanges data through the UDT socket but relies on the UDP 

socket to send and receive data. This results problems during data transmission 

from the UDP socket, such as unreliable data, and security flaws [22].  UDT’s 

Sequence Number is 31 and a bit long. This is a small sequence space that does 

not effectively protect connections against some blind attacks, such as the 

injection of resets into the connection. It does not have a feature that avoids 

sequence number attacks, where an attacker can guess the sequence numbers 

that a future connection would use [20]. 

The distinction between UDT and other protocols, such as UDP, TCP, STCP and 

DCCP, is that UDT does not have a reliable checksum algorithm [22-33]. For 

most protocols, checksum is applied to the protocol header. It applies strong 

integrity checks, which are available in other protocols (e.g. DCCP). They use the 

same algorithm to generate the IP checksum to generate this number. The 

checksum can be included for the segment in UDT, in addition to providing the 

information contained, and to prevent packets from being incorrectly forwarded 

by UDP. This provides an added security feature to ensure segment integrity.  

As a Fast Data Transfer protocol, UDT additionally needs to provide a 

mechanism to limit the potential impact of some denial-of-service attacks. It 

needs to provide limitations on requests, processing options and ICMP messages, 

and excessive packet generation avoidance on the servers. Because it was 

designed as an application level protocol that is intended for delivery of data in 

high speed networks, the need to establish how it handles QoS is essential [2,3]. 

It is a relatively new protocol, tested in limited production cases in 2004 and 

focused on performance between long distance links, before UDTv4 was 

developed and introduced in 2007 [22-33,81-82].  
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2.7 Approaches  

There are research works that use discrete mathematics, set theory (computer 

logic), and so forth to prove their hypotheses. Many of these works have a 

theoretical component, but their uses differ in the various works. For instance, 

we employ formal methods in verifying our work, but we do so in two basic but 

unique ways. First, while most works deal only with mechanisms that already 

exist, the components that now become the techniques we use in this work will 

encompass all mechanisms that do exist, will exist, and can ever be thought of 

and conceptualised. Second, most works are interested in how best to do things; 

while we are not at all interested in optimality and performance (although in our 

work we address them through simulations and experimentations), we are 

concerned with the question of feasibility: what can and what cannot be done in 

the given topology. We shall look at this from the perspective of which language 

structures and formal methods the mechanisms and the architecture we describe 

in this work can and cannot describe and accept, and what possible meaning 

their output may have.  

Thus, in this dissertation, we shall not only perform the simulations and 

experiments to validate our work; we also verify by describing, specifying, and 

proving our proposed mechanisms employing Protocol Composite Logic (PCL), 

and by using formal methods for verification to form the proposed architecture.   

PCL is employed to theoretically and compositionally analyse each security 

mechanism we introduced. This technique was developed at Stanford Security 

Laboratory and has since gained momentum in the research community in the 

field of theoretical computer science. New notations have since been produced as 

of this writing, however, and they continue to be tested in existing security 

protocols.  

The technique we use, therefore, will be based on the existing notations, which 

were already extensively used to prove mature security protocols.  
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2.7.1 PCL 

 

PCL is a formal language for describing protocols. It uses terms and actions 

instead of informal arrows-and-message notation. It provides operational 

semantics that provide description of protocol executions. However the main idea 

of PCL is to provide protocol logic, which states security properties in terms of 

secrecy and authentication. Its proof system is comprehensive that specifies 

axioms and inference rules for formally proving security properties. 

 

We present an example of PCL in Challenge-Response Threads 

 

Challenge – Response Threads 

 

Figure 2-8: Challenge Response. A signature of signed message and signature on the message yield 
m,n,A, sig B{m,n,A}. 

Table 2-2: Challenge Init and Response 

InitCR(A, X) = [ 

 new m; 

 send A, X, {m, A}; 

 receive X, A, {x, sigX{m, x, A}}; 

 send A, X, sigA{m, x, X}; 

] 

RespCR(B) = [ 

 receive Y, B, {y, Y}; 

 new n; 

 send B, Y, {n, sigB{y, n, Y}}; 

 receive Y, B, sigY{y, n, B}; 

] 
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Shared secret in key establishment 

 KE |   [ InitKE(A, B) ] A  Honest(B)    

             (Has(X, m)  X=A  X=B ) 

After IInitKE(A,B) initiates this mechanism 

If BB is Honest… 

Then if some party XX knows secret mm, then XX can only be either AA, or BB 

Initiator authentication in Challenge-Response 

CR |   [ InitCR(A, B) ]A  Honest(B)    ActionsInOrder(   

   Send(A, {A,B,m}),  

   Receive(B, {A,B,m}),  

   Send(B, {B,A,{n, sigB{m, n, A}}}),  

   Receive(A, {B,A,{n, sigB{m, n, A}}}) 

  ) 

After initiator executes his program ---  InitCR(A, B) 

If  B is honest… 

…then mmsg sends and receives must have happened in order prescribed by 
protocol spec 

Correctness of Challenge-Response 

InitCR(A, X) = [ 

 new m; 

 send A, X, {m, A}; 

 receive X, A, {x, sigX{m, x, A}}; 

 send A, X, sigA{m, x, X}; 

] 

RespCR(B) = [ 

 receive Y, B, {y, Y}; 

 new n; 

 send B, Y, {n, sigB{y, n, Y}}; 

 receive Y, B, sigY{y, n, B}}; 

] 
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CR |- [ InitCR(A, B) ]A  Honest(B)   ActionsInOrder( 

   Send(A, {A,B,m}),  

   Receive(B, {A,B,m}),  

   Send(B, {B,A,{n, sigB {m, n, A}}}),  

   Receive(A, {B,A,{n, sigB {m, n, A}}}) 

  ) 

2.7.1.1 PCL Notations 

 

The following notations are employed in this work. Just like mathematical 

notations, the analysis and verifications require basic understanding of proofs 

inferences, definitions, axioms, and set theory.  

          Proof - formally prove properties of security protocols 

          Axioms - simple formulas that are provable by hand 

          Inference rules - proof steps 

          Theorem - a formula obtained from axioms by application of inference rules 

Properties of Proof System 

Soundness 

• If  is a theorem, then  is a valid formula 
– Q |-  implies Q |=  

• Informally: if we can prove something in the logic, then it is 
actually true 

 
Proved formula holds in any step of any run 

• There is no bound on the number of sessions 
• Unlike finite-state checking, the proved property is true for the 

entire protocol, not for specific session(s) 
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Sample Axioms 

       New data 

• [ new x ]P  Has(P,x) 
• [ new x ]P  Has(Y,x)  Y=P 

 

Acquiring new knowledge 

• [ receive m ]P  Has(P,m) 
 

Performing actions 

• [ send m ]P  Send(P,m) 
• [ match x/sigX{m} ] P  Verify(P,m) 

 

Reasoning About Cryptography  

Pairing 

• Has(X, {m,n})  Has(X, m)  Has(X, n) 
 

Symmetric encryption  

• Has(X, encK(m))  Has(X, K-1)  Has(X, m) 
 

Public-key encryption 

• Honest(X)  Decrypt(Y, encX{m})  X=Y 
 

Signatures 

• Honest(X)  Verify(Y, sigX{m})   m’ ( Send(X, m’)  
Contains(m’, sigX{m}) 

 
Honesty rule 

roles R of Q.  initial segments A  R. 

              Q  |-   [ A ]X   

              Q  |- Honest(X)   
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Terms  (letter assignment is assignable) 

 t ::=             c |   constant  

  x |   variable 

  N |   name 

  K |   key 

  t, t |   tuple 

  sigK{t}  |  signature 

  encK{t}  encryption 

These notations are rigorously used to achieve verification and compositionality 

of security mechanisms. 

2.7.2 Rewrite Systems and Automata 

Another approach we use is rewrite systems and automata. We specify and 

analyse our proposed security mechanisms in the UDT security architecture and 

show that the specifications allow us to validate their viability through analysing 

the data flow. Furthermore, we conduct structural, semantic and query analyses 

and describe the security mechanisms’ data flow through formal methods to 

verify our architecture. The properties of rewrite systems are related to the 

security data and network flows and therefore, classical theoretical and practical 

analysis can be conducted the same way they are used to specify these flows 

across network topologies. 

The increasing complexity of developing and validating a security architecture 

has led to less extensive practical experiments being performed as single-faceted 

approach. Topologies composed of numerous devices in various networks are used 

to reflect an extensive representation of a specific environment. However, 

because of the heterogeneity of devices required across multiple-environments, it 

is difficult to analyse the security mechanisms’ functionalities. The formal 

specifications of the security mechanism’s data flow, therefore, are crucial. We 
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use formal methods to specify their data flow within the architecture, thus, allow 

us to carry out analyses across the architecture reflecting with lesser constraints. 

In rewrite system, we define constant signature with arity, and positions of 

mechanisms and data flow in terms and variables. We introduce set of rewrite 

rules, with syntactic classes. We look at rewrite closure and automata with the 

defined constraints, examples: 

Given the substitutions  f(x, g(c, y)) 

These are represented in rewrite rules 

l  r 

    f(x, g(c, y))  g(x, y) 

f(x, x)  c 

 

Rewriting Closure, note the idea: *  = 1o  2, where 1 and 2 might not be 

defined as rewriting relations but are in some way easier to analyse, which is  

specifically used with: 

 

1 - constrained decreasing rewriting ( ) 

2 - increasing ground rewriting (>) 

l  r if [condition] 
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Conditions generally on reachability and joinability on variables from l: 

x|y 

c *  z 

f(x, g(y, z))  c if [x|y, d *  z] 

 

Moreover, we use automata to achieve decidability in rewrite systems. We note 

that the emptiness of a language accepted by a reduction automaton is decidable. 

This class of reduction automata is closed under union and intersection, where 

there is a construction for the union that preserves determinism. 
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2.8 Concluding Remarks 

We briefly discussed UDT and highlighted the absence of a well-thought-out 

security. We reviewed existing literature based on the work of Gu [81-82]. We 

also presented a brief example of how a socket creates a connection, which proved 

to be useful in creating mechanisms as an add-on library to secure UDT. We also 

provided a brief description of the approaches we use to achieve formal 

verification of our mechanisms and architecture in this dissertation.  

These approaches will be briefly outlined in Chapters 5 and 6. 

In the following chapters, we look into the schemes available and develop a novel 

security architecture specifically for UDT.  
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Chapter 3   

 

Security Mechanisms  

 

 

Network protocols do not rely solely on the lower layers of the OSI stack for 

security; they also rely on other layers. Like other new high-speed protocols, UDT 

relies on the Application, Transport, IP, and Network layers for data delivery and 

protection. Like other existing protocols, UDT also has a socket interface for 

linking with API, a feature that makes it flexible in implementation. In this 

chapter, we view at how a UDT user can achieve security by using another 

application service interface. By implementing adequate security mechanisms, 

UDT can achieve authentication, maintain confidentiality and integrity during 

data transmission. The rationale is to provide a new way of securing high-speed 

network protocols such as UDT when implemented in various network 

environments. 

 3.1 UDT-Authentication Option Field  

In this section, we create and introduce UDT-Authentication Option (AO) [19, 32, 

36] as another way of securing UDT. We call this AO to differentiate this 

mechanism in the introduction of a UDT extension to achieve security. We 

evaluate UDT-AO [19,32] through the use of existing message authenticity for 

other protocols such as TCP.  We review existing message protection that can act 

like a signature for UDT segments, incorporating information known only to the 

connection endpoints. Since UDT operates on UDP for high-speed data transfer, 

we propose the creation of a new option in UDT that can significantly reduce the 
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danger of attacks on applications running UDT. This can maintain message 

integrity during data transmissions on high-speed networks. 

A few security mechanisms proposed are application and IP-based. We present a 

combination of existing security solutions on various layers [22-33] for UDT. 

3.1.1 UDT Option for Authentication  

UDT is a connection-oriented protocol, and therefore it needs to include an option 

for authentication. In TCP, this is part of the options (0-44 bytes) that occupy 

space at the end of the TCP header.  

Similarly, to use the option in TCP (RFC 2385) [88], it needs to be enabled in the 

socket. A few systems support this option, which is identified as the 

TCP_MD5SIG option.  

int opt = 1; Enabling this option

setsockopt(sockfd, IPPROTO_UDT, UDT_MD5SIG, &opt, sizeof(opt)); 

The option can be included in the checksum. However, there is no negotiation for 

the use of this option in a connection; rather, it is purely a matter of site 

requirement as to whether or not its connections use the option. 

3.1.2 Syntax for UDT Option 

We propose an option that can be applied to Type 2 of the UDT header. This field 

is reserved for defining specific control packets in the Composable UDT 

framework.  

Every segment sent on a UDT connection (if it is to be protected against spoofing) 

will contain the 16-byte MD5 [88, 107, 146] digest produced by applying the MD5 

algorithm to these items in the following order, similar to that required for TCP: 

1. UDP pseudo header  (Source and Destination 

IP addresses, port number, and segment 

length) 

2. UDT header + UDP (Sequence number and 
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timestamp), and assuming a UDP checksum 

zero 

3. UDT control packet or segment data (if any) 

4. Independently-specified key or password, 

known to both UDTs and  presumably 

connection-specific 

5. Connection key 

  

The UDT packet header and UDP pseudo-header are in network byte order. The 

nature of the key is deliberately left unspecified, but it must be known by both 

ends of the connection. A particular UDT implementation will determine what 

the application may specify as the key. 

In order to calculate checksum, a "pseudo header" is added to the UDP message 

header. This includes: 

IP Source Address        4 bytes 

IP Destination Address   4 bytes 

Protocol              2 bytes 

UDP Length              2 bytes 

 

The checksum is calculated over all the octets of the pseudo header, UDP header, 

and data. 

If the data contains an odd number of octets a pad, zero octet is added to the end 

of data. The pseudo header and the pad are not transmitted with the packet. 

In the example code, 

u16 buff[] is an array containing all the octets in the UDP header and data. 

u16 len_udp is the length (number of octets) of the UDP header and data. 

BOOL padding is 1 if data has an even number of octets and 0 for an odd number. 



56 

u16 src_addr [4] and u16 dest_addr [4] are the IP source and destination address 

octets

/*

**************************************************************************

Function: udp_sum_calc() modified 

Description: Calculate UDP checksum 

***************************************************************************

*/

typedef unsigned short u16; 

typedef unsigned long u32; 

u16 udp_sum_calc(u16 len_udp, u16 src_addr [],u16 dest_addr [], BOOL padding, u16 

buff[])

{

u16 prot_udp=17; 

u16 padd=0; 

u16 word16; 

u32 sum; 

// Find out if the length of data is even or odd number. If odd, 

// add a padding byte = 0 at the end of packet 

if (padding&1==1){ 

padd=1;

buff[len_udp]=0;

}

//initialize sum to zero 

sum=0;

// make 16 bit words out of every two adjacent 8 bit words and 
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// calculate the sum of all 16 vit words 

for (i=0;i<len_udp+padd;i=i+2){ 

word16 =((buff[i]<<8)&0xFF00)+(buff[i+1]&0xFF); 

sum = sum + (unsigned long)word16; 

}

// add the UDP pseudo header which contains the IP source and destinationn addresses 

for (i=0;i<4;i=i+2){ 

word16 =((src_addr[i]<<8)&0xFF00)+(src_addr[i+1]&0xFF); 

sum=sum+word16;

}

for (i=0;i<4;i=i+2){ 

word16 =((dest_addr[i]<<8)&0xFF00)+(dest_addr[i+1]&0xFF); 

sum=sum+word16;

}

// the protocol number and the length of the UDP packet 

sum = sum + prot_udp + len_udp; 

// keep only the last 16 bits of the 32 bit calculated sum and add the carries 

while (sum>>16) 

sum = (sum & 0xFFFF)+(sum >> 16); 

// Take the one's complement of sum 

sum = ~sum; 

return ((u16) sum); 

}

Upon receipt of the signed segment, the receiver must validate it by calculating 

its own digest from the same data (using its own key) and comparing the two 

digests. A failed comparison must result in the segment being dropped, and must 
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not produce any response back to the sender. Logging the failure is 

recommended. 

Unlike other TCP extensions (e.g., the Window Scale option [RFC1323]), the 

absence of the option in the SYN-ACK segment must not cause the sender to 

disable its sending of signatures. This negotiation is typically done to prevent 

some TCP implementations from misbehaving upon receiving options in non-SYN 

segments. In UDT, it is ACK2 (ACK of ACK). 

This is not a problem for this option, since, similarly, the SYN-ACK sent during 

connection negotiation will not be signed and will thus be ignored. The same 

applies to ACK2 for UDT: the connection will never be made, and non-SYN 

segments (which do not exist in UDP) with options will never be sent. More 

importantly, the sending of signatures must be under the complete control of the 

application, not at the mercy of the remote host failing to recognise and 

understand the option. 

The proposed option has the following format: 

+---------+---------+-------------------+

| Kind=19 |Length=18| MD5 digest... | 

+---------+---------+-------------------+

The MD5 digest is always 16 bytes in length, and the option will appear in every 

segment of a connection.  

3.1.3 Implications 

3.1.3.1 Header Size 

As with other options that are added to every segment, the size of the MD5 

option in TCP must be factored into the MSS offered to the other side during 

connection negotiation. Specifically, the size of the header to subtract from the 

MTU (whether it is the MTU of the outgoing interface or IP’s minimal MTU of 

576 bytes) is at least 18 bytes larger in TCP. 
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On the other hand, the UDP header specifies where segment data starts with a 4-

bit field, which gives the total size of the header (including options) in a 32-byte 

word. This means that the total size of the header plus option must be less than 

or equal to 60 bytes — this leaves 40 bytes for options. 

As a concrete example, existing BSD defaults to sending window-scaling and 

timestamp information for the connections it initiates. The most loaded segment 

will be the initial SYN packet that starts the connection. With MD5 signatures, 

the SYN packet will contain the following: 

-- 1 byte packet type of control packet of UDT 

-- 8 bytes for sequence number from the data packet 

-- 8 bytes for timestamp  (data packet) 

-- 16 bytes for MD5 digest 

This adds up to 33 bytes 

3.1.3.2   Hashing Algorithm 

MD5 [88, 107, 146] algorithm has been found to be vulnerable to collision search 

attacks, and it is considered to be insufficiently strong for this type of application. 

However, we specify the MD5 algorithm for this option as a basis of our 

argument to include AO in UDT. Systems that use UDT have been deployed 

operationally, and no "algorithm type" field has been defined to allow an upgrade 

using the same option number. Therefore, this does not prevent the deployment 

of another similar option that uses another hashing algorithm (like SHA-1, SHA-

256). Moreover, should most implementations pad the 18 byte option as defined 

to 20 bytes anyway, it would be best to define a new option that contains an 

algorithm type field. To address this, we recommend using a more secure 

message algorithm such as SHA-1 or SHA-256.   

3.1.3.3   Key configuration 

It should be noted that the key configuration mechanism of routers may restrict 

the possible keys used between peers. It is strongly recommended that an 
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implementation be able to support, at minimum, a key composed of a string of 

printable ASCII of 80 bytes or less, which is also the current practice in TCP. 

3.2 Generic Security Service - Application Program Interface 

(GSS-API) 

The GSS-API [23, 99] is a generic API for performing UDT client-server 

authentication. The motivation behind it is that every security system has its 

own API [99], and there are difficulties involved in adding different security 

systems to applications due to the variance between security APIs. However, 

with a common API, application vendors can write to the generic API, which 

works with any number of security systems [23, 99, 109-110,148], and use GSS-

API during the UDT implementation. It is also considered the easiest to use and 

implement with other schemes, such as Kerberos [18, 39-40, 45, 110, 121]. 

The GSS-API provides security services to calling applications. It allows a 

communicating application to authenticate the user associated with another 

application, to delegate rights to another application, and to apply security 

services such as confidentiality and integrity on a per-message basis. Notably, 

the GSS-API [23, 99, 109-110, 148] is used in four stages: 

    Firstly, the application acquires a set of credentials with which it may 

prove its identity to other processes. These credentials confirm the 

application’s global identity, which may or may not be related to any 

local username under which it may be running. 

    Secondly, a pair of communicating applications establishes a joint 

security context using these credentials. The security context is a pair 

of GSS-API data structures containing shared state information, 

which is required in order for the per-message security services to be 

provided. Examples of state information that may be shared between 

applications as part of a security context are cryptographic keys and 

message sequence numbers. As part of the establishment of a security 

context, the initiator is authenticated to the responder, and may 

require that the responder is authenticated in return. As an option, 

the initiator may give the responder the right to initiate further 
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security contexts, acting as an agent or delegate of the initiator. This 

transfer of rights is termed delegation, and it is achieved by creating a 

set of credentials similar to that used by the initiating application, but 

which may also be used by the responder [99, 109]. 

    To establish and maintain the shared information that makes up the 

security context, certain GSS-API calls will return a token data 

structure, which is an opaque data type that may contain 

cryptographically protected data. The caller of a GSS-API  [110,148] 

routine is responsible for transferring the token to the peer 

application, encapsulated, if necessary, in an application-application 

protocol. Upon receipt of such a token, the peer application should 

pass it to a corresponding GSS-API routine, which will then decode 

the token and extract the information, updating the security context 

state information accordingly. 

Thirdly, per-message services are invoked to apply either integrity 

and data origin authentication or confidentiality, integrity and data 

origin authentication to application data, which are treated by GSS-

API as arbitrary octet strings. An application transmitting a message 

that it wishes to protect will call the appropriate GSS-API routine 

(gss_get_mic or gss_wrap) to apply protection [23, 99, 109] – specifying 

the appropriate security context – and send the resulting token to the 

receiving application. The receiver will pass the received token (and, 

in the case of data protected by gss_get_mic, the accompanying 

message-data) to the corresponding decoding routine (gss_verify_mic 

or gss_unwrap) to remove the protection and validate the data. 

Lastly, at the completion of a communications session (which may 

extend across several transport connections) [109-110], each 

application calls a GSS-API routine to delete the security context. 

Multiple contexts may also be used either successively or 

simultaneously within a single communications association, at the 

option of the applications [23,99,109-110]. 
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In summary, the protocol when used in UDT application can be viewed as: 

Authenticate (exchange opaque GSS context) through the user 

interface and CCC option of UDT; 

Utilise per-message token functions (GSS-API) to protect UDT 

messages during transmissions. 

 

The GSS-API is a rather large API. For applications using UDT, one need only 

use a small subset of that API.  

3.3 Identity Packet within UDT  

In today’s Internet, the first packet (eg. the TCP SYN) carries no higher-level 

data that provides adequate sender’s information. On the initial transmission, it 

only carries the source IP address (network layer) and an initial sequence 

number (transport layer). The high-level data can only be exchanged or 

transmitted after the complete ACK has been instantiated. Consequently, the 

receivers will not be able to establish who is sending the data without using 

additional overhead. 

In TCP, the first packet of interaction should carry identity information. 

Therefore, we propose the use of an Identity Packet within UDT. UDT, like TCP, 

contains no data which can be used to identify a user (except such information as 

contained within the [unencrypted] data part of the packet). While the source and 

destination ports (TCP/UDP), in cooperation with the IP address of the sender 

and receiver, can identify both participating parties in the lower level, UDT 

carries no higher-level data that can identify the source before an application 

processes the packets received.  

Network protocols like UDT, meanwhile, have a Sequence Number Field that 

provides identification; the initial value, however, is determined by the 

implementer, who decides how the initial sequence number is chosen, e.g., 

randomly. The same is true, for instance, for the Window field used for 

congestion control. Since congestion control has a key influence on the overall 
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performance of the protocol, operating system manufacturers have made many 

attempts to optimise it.  

The lack of identity at the lower-level (network layer) in existing network 

protocols has made achieving network security difficult. Several protocols 

developed and implemented on top of transport and IP layers have usually 

created overhead and network incompatibilities. It is a challenge to develop a 

new technology that includes identity directly into the packets while retaining 

backward compatibility. Some have placed encrypted and digitally signed 

identity information into the packets by developing applications that become part 

of the stack, adding digitally signed identity information to the packets and 

decoding the information of any incoming connection attempts. 

In order for UDT to be used in tomorrow’s Internet, it has to be able to 

accommodate higher-level data association while also maintaining its 

dependency on low-level protocols such as TCP and UDP. The initial packet of 

any association, which is called the rendezvous packet, carries high-level 

information to initiate the association. This provides the receiving entity with the 

information that enables it to decide whether or not to process the first packet of 

an association. This information can be delivered in a reliable manner - that is, 

by cryptographically protecting it prior to and during the transmission.  

A mechanism for “First Packet Identity” (see Figure. 3-1) within UDT should be 

devised, and it should be robust enough that a receiver cannot be flooded by 

requests to take action before they have verified the identity and trust at the 

application level. This information can be created using user-defined types field + 

information. It is possible to delegate this first-packet-identity decision-making to 

a guard machine that can take on the burden as well as the risk of overload.  
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Figure 3-1. First Packet Identity in UDT in Layer Architecture. The 
application exchanges its data through the UDT socket, which then uses the 
UDP socket to send or receive data through an encrypted mechanism [22-33]. 

 

UDT  Packet 

0    

1 

Packet 

type 

Information                

15  

User defined 

types  

1         Type 

IDENTITY packet 

  
Extended 
Type 31 bit 

X   

ACK Sub –

Sequence Number     

    Time Stamp      

    
Control 
Information    

Figure 3-2. UDT Packet composes of Identity Packet. 

UDT needs to build on the identity representation used at the application level, 

because even though the data may not be visible to the routes (e.g., it may be 

encrypted), it may still reveal too many attributes of the user. Moreover, it may 

not be associated with each transmission unit, though applications may be 
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willing to install more state than routers are. It needs to be robust to deal with 

resource usage and flooding attacks. 

Implementing Host Identity Protocol (HIP) [7, 12, 73, 96, 105-106, 118, 137] is 

one possible way to secure UDT on top of UDP and IP. This protocol solves the 

problem of address generation in a different way: by removing the dual 

functionality of IP addresses as both host identifiers and topological locations. In 

order to achieve this, a new network layer called the Host Identity is required. 

Furthermore, it is important to highlight the problem of securing IP addresses, 

which plays an important role in networking, especially in the transport layer. 

Generating a secure IP address can be achieved through HIP, which is 

considered a building block for IP security used in other protocols. It is 

considered another way of securing the address generation in practice.  

More works  [5, 34-35, 44, 47, 55, 74] have been published in connection with this 

issue; these include various research projects on HIP since it was first introduced 

in RFC 4423 [118]. This resulted in a number of new experimental RFCs in April 

of 2008. 

Host identification is attained by using IP addresses that depend on the 

topological location of the hosts, consequently overloading them. The main 

motivation behind HIP is to separate the location and host identification 

information in order to minimise stressing IP addresses, which typically identify 

both hosts and topological locations. HIP introduces a new namespace, 

cryptographic in nature, for host identities. The IP addresses, meanwhile, 

continue to be used for packet routing. 

The use of HIP for UDP/TCP in the transport layer of the new network layer, 

called Host Identity (HI), protects not only the underlying protocol, but UDT as 

well, since it is running on top of UDP. HI is placed between the IP and transport 

layer; see Figure 3-2. 

 



66 

 

        

       Figure 3-3: Host Identity Protocol Architecture [22-33,105-106,118].  

In HIP, the public-key of an asymmetric key pair is used as the HI and the host 

itself is defined as the entity that holds the private-key of the key pair. 

Application and other higher layer protocols are bound to HI – and not to an IP 

address. The prerequisite for HIP implementation should support RSA and DSA 

for the public-key cryptography. 

3.4  Other Mechanisms 

In this section, we survey and present other viable mechanisms for securing 

UDT. In previous studies [22-33], we presented an overview of ways to secure 

UDT implementations in various layers. However, securing UDT in application 

and other layers needs to be explored in future UDT deployments in various 

applications.  

There are application and transport layer-based authentication and end-to-end 

[22-33] security options for UDT. We advocate the use of GSS-API in UDT in the 

development of an application using TCP/UDP. The use of HIP, a state-of-the-art 
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protocol, combined with CGA, is explored to solve the problems of address-related 

attacks.   

3.4.1 Diminishing MSS  

Here we consider the phenomenon of UDT diminishing its sending rates in the 

presence of retransmission time-outs and the arrival of duplicate 

acknowledgments. We note that an attacker can impair its connection by either 

causing data packets or their acknowledgments to be lost, or by forging excessive 

duplicate acknowledgments. Causing three congestion control events back-to-

back will often cut the ss threshold to its minimum value of 3*MSS, causing the 

connection to enter the slower-performing congestion avoidance mode. 

Here is the pseudo-code of the fast retransmit and fast recovery algorithm, with 

UDT’s CTCP redefined two handlers: onACK and onTimeout.  

Virtual void onACK (cons tint&ack) 

{ 

   if(three duplicate ACK detected) 

  {  

   //ssthresh=max{flight_size /2,3} 

   // cwnd=ssthresh + 3* MSS 

   } 

   else if (further duplicate ACK detected) 

  { 

   //cwnd=cwnd + MSS 

   } 

   else if (end fast recovery) 

   { 
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    // cwnd=ssthresh 

   } 

   else 

  { 

  //cwnd=cwnd+1/cwnd 

  } 

} 

It is important to ensure that the sending rates do not cause a slower performing 

congestion avoidance phase. 

3.4.2 Cryptographically Generated Addresses (CGA) 

Solving the problems of address-related attacks can also be achieved by using 

CGA for address generation and verification. Self-certifying is widely used and 

standardized, such as by HIP [7, 12, 83, 96, 105-106, 118,137] and Accountable 

Internet Protocol (AIP) [8]. 

CGA uses the cryptographic hash of the public key. It is a generic method for self-

certifying address generation and verification that can be used for specific 

purposes. In this thesis, the conventions used are either Internet Protocol 

Version 4 or 6 (IPv4) or (IPv6). 

The simplified setting for CGA [11] is presented in Figure 3-3. The interface 

identifier is generated by taking the cryptographic hash of the encoded public-key 

of the user. Modern cryptography has functions that produce a message digest 

with more than the required number of bits in CGA. The interface identifier is 

formed by truncating the output of the cryptographic hash function to a specific 

number of bits, depending on the leftmost number of bits that form the subnet 

prefix, e.g., IPv6 addresses are 128-bit data blocks; therefore, the leftmost bits 

are 64 and the rightmost bits are 64. The prefix is used to determine the location 

of each node in Internet topology and the interface identifier is used as an 
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identity of the node. Using a cryptographic hash of the public-key is the most 

effective method for generating self-certifying addresses. 

In CGA, the assumption is that each node in the network is equipped with a 

public-key before generating its address and the underlying public-key 

cryptosystems have no known weaknesses. Similarly, in UDT, the assumption is 

that its protection is derived from the security controls implemented on existing 

transport layers. In this thesis, we consider evaluating the generic attack models 

that can be adapted to both UDT and CGA. 

 

 

Figure 3-4: Simplified and modified principle of Cryptographically 
Generated Addresses.  

3.4.3  HIP-CGA and UDT         

HIP introduces a new namespace, which is cryptographic in nature for host 

identifiers. Furthermore, it introduces a way of separating the location and host 

identity information.  

A hashed encoding of the HI, the HIT is used in protocols to represent the Host 

Identity. The HIT is 128 bits long and has the following three properties [7, 12, 

83, 96, 105-106]:  

- It can be used in address-sized fields in APIs and protocols;  
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- It is self-certifying (i.e., it is computationally hard to find a Host Identity 

key that matches a given HIT); 

 

- The probability of HIT collision between two hosts is very low. 

 

As stated above, the HITs are self-certifying. This means that no certificates are 

needed in practice. 

In order to establish an IP-layer communications context, an association needs to 

be created. This is called HIP association, which is being utilised for base-

exchange protocol [7, 12, 83, 96, 105-106, 118, 137]. The details are briefly 

summarised below: 

- Initiator sends to the responder a trigger packet (I1) containing the HIT of 

the initiator and possibly the HIT of the responder, if it is known. 

 

- Next, the responder sends the (R1) packet which contains a puzzle, a 

cryptographic challenge that the initiator must solve before continuing the 

exchange. The puzzle mechanism serves to protect the responder from a 

number of DoS threats; see RFC 5201 [119]. R1 contains the initial Diffie-

Hellman parameters and a signature, covering a part of the message. 

 

- In the I2 packet, the initiator must display the solution to the received 

puzzle. If an incorrect solution is given, the I2 message is discarded. I2 also 

contains a Diffie-Hellman parameter that carries information needed by the 

responder. The packet is signed by the sender. 

 

- The R2 packet finalizes the base exchange and the packet is then signed. 

 

The base exchange protocol is used to establish a pair of IPsec security 

associations between two hosts for further communication. This is important 

since HIP introduces a cryptographic namespace for host identifiers to remove 

the dual functionality of IP addresses as both identifiers and topological 

locations.   
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When UDT is implemented on top of UDP, its packets are delivered through HIP. 

With HIP, the transport layer operates on Host Identities instead of using IP 

addresses as end points. At the same time, the network layer uses IP addresses 

as pure locators. This provides added protection to the transport layer with 

applications using UDT’s high-speed data transmission. With the development of 

hashed encoding of the HI, a HI Tag can be used in address-sized fields in APIs 

and protocols, including UDT. The hash is truncated to values which are larger 

in the case of IPv6 implementation, and thus more secure compared to all 

security levels of CGA.  

Since HIP uses base exchange protocol [105-106] to establish a pair of IPsec 

security associations between two hosts for further communication, the main 

challenge of its implementation is the requirement of a new network layer, called 

the HI. This is difficult to run with existing networking protocols in use. 

3.4.4  Data Transport Layer Security (DTLS) 

Another proposed mechanism is DTLS [59-60, 128]. DTLS provides 

communications privacy for datagram protocols. The protocol allows client/server 

applications to communicate in a way that is designed to prevent eavesdropping, 

tampering, or message forgery.   

The DTLS protocol is based on the Transport Layer Security (TLS); however, 

unlike TLS, it is designed for datagram transport. TLS [60] protocol provides 

equivalent security guarantees. On the other hand, datagram semantics of the 

underlying transport are preserved by the DTLS protocol.  

High-speed data transmission uses datagram transport such as UDP for 

communication due to the delay-sensitive nature of transported data. The speed 

of delivery and behaviour of applications running UDT are unchanged when 

DTLS is used to secure communication, since it does not compensate for lost or 

re-ordered data traffic when applications that use UDT running on top of UDP 

are employed. 

DTLS, however, is susceptible to DoS attacks. Such attacks are launched by 

consuming excessive resources on the server via the transmission of a series of 

handshake initiation requests, and by sending connection initiation messages 
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with a forged source of the victim. The server sends its next message to the 

victim’s machine, thus flooding it. In implementing DTLS, during the 

implementation of applications using UDT and UDP, designers need to include 

cookie exchange with every handshake. 

3.4.5 Internet Protocol Security (IPsec)   

Most protocols for application security such as DTLS operate at or above the 

transport layer. This renders the underlying transport connections vulnerable to 

denial of service attacks, including connection assassination (RFC 3552). IPsec 

[21] offers the promise of protecting against many denials of service attacks. It 

also offers other potential benefits. Conventional software-based IPsec 

implementations, for example, isolate applications from the cryptographic keys, 

thus improving security by making inadvertent or malicious key exposure more 

difficult. In addition, specialized hardware may allow encryption keys protected 

from disclosure within trusted cryptographic units. Custom hardware units, 

moreover, may well lead to higher performance.  

 

 

Figure 3-5: UDT flow using end-to-end security [21-33]. IPsec can be used without 
modifying UDT and the applications running it.  

Implementing UDT running at or above the application layers with IPsec 

provides adequate protection for data transmission (Figure. 3-4). A datagram-

oriented client application using UDT will use the connection-oriented part of its 
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API (because it is using a given datagram socket to talk to a specific server), 

while the server it is talking to can use the connection-oriented API because it is 

using a single socket to receive requests from, and send replies to, a large 

number of clients.  

IPsec can be administered separately and its management can be left to 

administrators to maintain. It is possible to create an arrangement for securing 

UDT connections, such as authentication handled by IPsec. Since IPsec relies on 

UDP, developers can use UDP encapsulation (see Figure. 3-5) to ensure that the 

connection from UDP is secure. IPsec provides encryption and keying services 

and offers authentication services; adding ESP extends services to encryption. 

Specifications on protecting UDP packets can be found on RFC3948. 

 

UDP encapsulation of IPsec ESP Packets 

Source    

Port  Destination Port   

Length Checksum   

 

ESP Header 

(RFC2406) 

 

 

 
  

           Figure 3-6: Schematic diagram of securing UDT on top of UDP [22-33] 
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 3.5  Concluding Remarks 

3.5.1 Summary of GSS-API 

The utilisation of GSS-API to secure UDT needs to be thoroughly evaluated by 

application vendors. However, the use of the GSS-API interface does not, in itself, 

provide an absolute security service or assurance; rather, such assurance is 

dependent on the underlying mechanism(s) of UDT.   

3.5.2  Summary of UDT-AO 

A security option for UDT has been proposed in an attempt to improve the 

current situation, wherein UDT lacks any form of security. While the MD5 option 

will soon be replaced by SHA-1 or above, the MD5 option for security remains a 

significant requirement for the internetworking. Many of the existing network 

and security systems still use MD5, and this is why the approaches to address its 

vulnerabilities are important in the implementation phase.  

We use UDT-AO instead of IPsec because of rudimentary reason: UDT-AO can 

support routing protocols, in some cases, connections where keys need to be 

assigned with individual transport sessions that handle large data 

transmissions.  Moreover, it includes a socket pair which can be used as a 

security parameter index, rather than using a separate field as an index (IPsec’s 

Security Paramater Index (SPI)).   

AO is intended to protect the UDT protocol itself from attacks that other data 

stream protection mechanisms cannot. However, when there is a level of security 

to protect the UDT congestion control attack due to UDT’s sequence number, 

IPsec is recommended. 

In the preceding chapters, we explained that UDT provides a Type 2 field, which 

is reserved for user-defined control packets in Composable UDT. The detailed 

control information carried by these packets varies and depends on the packet 

types; however, since the UDT/CC library is designed to focus on congestion 

control algorithms, this field has limited customisation ability. Therefore, there is 

a need to introduce and expand this customisation ability to include security 

algorithms.  
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3.5.3  Summary of the UDT-Identification Packet 

‘First packet identity’ needs to be instituted, and devised in such a way that it is 

robust enough that a receiver cannot be flooded with requests requiring them to 

take excessive action(s) before verifying the identity and trust at the application 

level.  

The preceding discussions in this thesis have focused on the conceptual low-level 

protection of the end node. Fundamentally, UDT relies on TCP and UDP for data 

delivery, which can include data identity in terms of its packet header before the 

transmission is validated at the application level.  

3.5.4  Summary of the other mechanisms 

Securing UDT can be achieved by introducing approaches related to self-

certifying address generation and verification. A technique that can be applied 

without major modifications in practice is Cryptographically Generated 

Addresses (CGA). This technique is standardised in a protocol for IPv6. Similarly, 

HIP solves the problem of address generation, and it does so by removing the 

functionality of IP addresses as both host identifiers and topological locations. To 

achieve this, however, a new network layer called Host Identity must be 

introduced. This makes HIP incompatible with current network protocols.  

During the simulation of implementation schemes, such as those that will be 

presented in Chapter 4, it is noted that IPsec provides basic protection on UDT 

data transfer, as well as end-to-end protection on source and destination nodes. 

In this scheme, the performance of UDT remains the same. However, we propose 

other mechanisms that can provide security on UDT connections (e.g., UDT-AO, 

GSS-API) where keys need to be assigned with individual transport sessions that 

handle large data transmissions.   
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Chapter 4  
 
 
Experimental Validations and 
Practical  Implementation 
 

 

In this chapter, we work on validating the applicability of our proposed 

mechanisms for the UDT architecture. We focus on practical mechanisms and 

their applications to UDT, while also considering their limitations.  

In the course of our validations, we develop a program to aid our experiment on 

UDT. This program is developed to support our data gathering activities, since 

UDT, a new protocol, has no proprietary software tools readily available. 

Furthermore, we create tailored environments in which to conduct experiments 

on UDT in several important steps and scenarios.  

We create a secure environment wherein UDT operates outside a secure 

perimeter. We then operate UDT inside a secure perimeter, this time within 

various security devices. These devices include firewalls, anti-virus software, and 

intrusion detection systems. Subsequently, we introduce our proposed 

mechanisms and eliminate those that are not theoretically viable for UDT. Our 

basis for elimination is drawn from the UDT design, its compatibility with 

existing mechanisms, and complexity. Finally, we select the proposed 

mechanisms we developed and attempt to expand their practical applications. We 

then theoretically achieve proof of correctness of our created mechanisms for 

implementations in Chapter 5. 



 

78  

4.1   Outcomes  

We published part of this work in [22-33]. We highlighted UDT security 

vulnerabilities and evaluated the protocol in an environment with commercially 

available equipment and tools to support the experiments.  

We introduce a data gathering tool we developed to capture the data transmitted 

by UDT and to show the results in a visual presentation. We create, for the first 

time in the literature, a tool (Project UDT) specifically for UDT, which can be 

used in other experiments on other network protocols. The algorithms designed 

to capture and interpret data are written to accommodate other protocols for data 

capturing and presentation. Our intention is to analyse data and protocol 

performance for the sake of UDT security.   

Project UDT can be used to capture data across high-speed networks in long 

distances, and to interpret such data. It provides straightforward data gathering 

and simulations. To create this tool, we investigate how UDT captures data and 

how these data vary as the distance increases. We have written an algorithm to 

assist us in the analysis and development of an architecture that is useful in 

various UDT implementations. It is initiated with supplemental information on 

the schemes, which can provide basic if not comprehensive security of data flow 

from lower-level to higher-level network communication layers.  

4.1.1   Overview and Environment 

We designed and built a private high-speed WAN extended across metropolitan 

areas within the city of Sydney to the Western suburbs, NSW, Australia. We 

provisioned two links (internal and external) across the Virtual Local Area 

Network (VLAN) (Figure 4-1). This was our physical model. To compare the 

results, we conducted actual experiments and, at the same time, executed 

simulations based on our assumptions. 
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The assumptions resulted to the creation of robust environments supporting 

high-speed network data transmission. On the right in Figure 4-1 is the primary 

(located in Sydney) and on the left is the secondary (located in Western Sydney), 

set 40 km apart from each other.   

 

Figure 4-1: Built Environment. It supports high-speed network data 
transmissions.  

Our security model was composed of two high-speed security devices and routers. 

To analyse the network performance using realistic assumptions, a series of 

queues were used. In the assumptions, we considered validation of Poisson  

arrivals in this specific network and security model – this time in both 

unprotected and protected environments. While the simulation was running, we 

operated the real transmissions of data through the high-speed data transfer 

protocol and noted that as the number of connections on the link increased, the 

superposition pushed the arrivals towards Poisson status [17].   

We consider these transmissions, as independent assumptions, taking into 

consideration new packets (specifically length) of UDT is independently chosen 

for the packet each time the packet was received at one node in both secured and 

unsecured connections. It is also based to obtain expected packet waits and 

expected number of packets.  
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In the experiment, we sent a large amount of data from one location to another 

based on two scenarios. In the first scenario, the data (>10 Tb) was sent through 

the unprotected environment through the internal network. During the 

transmission, TCP flooding and simulated attacks were performed. In the second 

scenario, the data was transmitted through the protected environment. We 

gathered both results and captured them in a UDT txt file for analysis. We 

implemented the mechanisms (UDT-AO, DTLS, and Kerberos) in limited but 

practical scenarios, and simulated the data transmissions with basic 

authentication schemes on our routers for AO as well as on servers (in the case of 

Kerberos). We tested DTLS by implementing it with UDP datagram, while also 

performing basic functionality tests during UDT data transmissions. We used 

Kerberos to simulate GSS-API, using Microsoft’s SSP architecture version 5. We 

used keys for basic authentications from the UDT client workstation to the UDT 

server. Modifications were made in the UDT codes, although we experienced C++ 

compilations run-time issues, as expected, which we eventually fixed with add-on 

C++ libraries. 

In the end, we relied more on the initial assumptions made about the above 

scenarios running multiple mechanisms at the same time, albeit in the given 

constraints. We focused on packet transmissions and basic modified UDT codes to 

meet our basic assumptions. The packets traversed to various scenarios in 

parallel with the simulations (e.g. attacks and mechanisms), providing adequate 

results to support our hypotheses. 

4.1.2 Proprietary Tool 

In this section, we briefly introduce our program called Project UDT. It is used 

mainly to capture the packet transmitted from a static file, and to give a visual 

representation of how the packet transmission behaved. This program can be 

implemented in both protected and unprotected environments to gauge the 

security mechanisms introduced for UDT. 

4.1.3   Methodology 

The modelling methodology, which the program formed, is based on the 

assumptions presented. The program relies on the methodology, and scales the 
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analysis from the data captured in a text file. It then plots a graph based on the 

values captured to a file. The ratio of the slopes and values scales the graph to 

achieve a visual representation of the data captured. The program also performs 

the analysis based on the Pollaczek-Khintchine formula [22-33] to obtain the 

expected data packet waits and expected number of packets transmitted. This 

formula is not dependent on the type of network protocol used; neither is it 

dependent on whether the network protocol used, e.g., UDT, for data 

transmission is protected or unprotected. We then obtain second moments of 

these distributions mathematically. To capture the rate of link time, we send the 

results with the rate and speed of data UDT transmission to a flat file.  

Java Code:  //values are read from the UDT file and presented in a graph 

for (int j = 0; j < dataValues.size(); j++) { 

       int valueP = j * bar_width + 1; 

       /* 

       if (j%2 ==0){ 

        valueP += 50; 

       }*/ 

// capture the data and calculate their performance based on the 

time they were transmitted. 

// optional -System.out.println("valueP: valueP); 

    int valueQ = title_height;

    int height = (int) (dataValues.get(j) * graphScale); 

   if (dataValues.get(j) >= 0)  

      valueQ += (int) ((maxDataValue - dataValues.get(j))

           * graphScale); 

   else { 
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        valueQ += (int) (maxDataValue * graphScale); 

         height = -height; 

       } 

// calculate the performance based on the algorithm that supports 

the waiting time queue (Laplace transform) 

The project UDT program analyses the distributions from the flat file and 

characterises arrival or service processes. The well-known problem in studying 

distribution systems is that they do not possess a closed form Laplace transform 

– negating the direct application of results from queuing theory [22-33].  

A recursion in the data transmission is thus developed to analyse a three-point 

discrete distribution of packet sizes, based on the assumptions of the discrete 

queuing systems assumed for a specific environment. Therefore, the algorithms 

for the program are created to numerically study link congestion and generate all 

link waiting time distributions on these links. 

Consider the standard queuing system [22-33]: if Wq (t) is the probability that a 

system waiting time in the queue is less than or equal to t, then its Laplace 

transform is given by :          

   Wq * (s) =   e –st Wq (t) dt=   (1- ) 

                    0                 s- (1-B*(s)) 

Typically, one plugs in the Laplace transform B*(s) of the service time then 

inverts Wq* (s) either analytically or numerically. When the service time 

distribution is heavy-tailed, B*(s) does not exist in closed form, and transform 

approximation is used to numerically approximate B*(s) with a discrete 

approximation.   

An initial version of UDT-data capture is developed to analyse data packets, and 

to present these for data modelling and interpretation (see Figure.4-2).  
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Input File: UDTFile.txt (tested data transmission) 

SendRate(Mb/s) RTT(ms) CWnd PktSndPeriod(us) RecvACK RecvNAK 

 

3.00126 12.832 307   3872.83 28 12 

1.88694 0.734 194   4536.45 29 2 

2.07238 1.268 13   2191.21     29 3 

4.07238 4.278 11   2132.13     29 3 

6.07238 1.268 14   2110.34     29 3 

7.07238 1.268 12   3121.16     29 3 

1.07238 3.268 11   2112.28     29 3 

2.07238 1000 16   1192.10     29 3 

      

 

Figure 4-2: The figure presents UDT RTT fairness; an average of 
throughput (given a data size of 100mb~1TB) . Two concurrent UDT flows 
are simulated in the above fig. 1 topology, with one link having an RTT of 
1ms and the other having an RTT of 1000ms. This result yields the same 
output  [22-33] 

 

The algorithm of the program is explicit and novel to cater to data gathering and 

interpretation. A file captures the data from either protected or unprotected 

environment in the simulated environment based on the assumptions presented 

in this section.  

The data that will be captured include two important scenarios: (1) attacks on 

data transmitted by UDT with its underlying security mechanisms, and (2) 

attacks on data transmitted by UDT without any security mechanisms.  

These scenarios consider physical and digital attacks; for example, in the 

physical attack to a link or node, the link is disabled. The traffic is re-routed by 



 

84  

an alternative link in the given environment. UDT, however, does not estimate 

any performance gathered between time intervals during data transmission. The 

tool thus models the data captured and displays it for estimation and 

interpretation. The physical or cyber attacks will not significantly affect UDT 

data gathering. 

4.1.4    Data Collection  

The task of collecting and interpreting data is undoubtedly extensive. This is due 

to the sporadic behaviour of packets in high-speed networks. Here, a tool is 

developed to specifically capture and interpret the data transmitted through 

UDT. The objective is to collect and interpret the data in the file, with appended 

packets transmitted on a high-speed network either in encrypted or unencrypted 

mode in various proposed schemes (e.g., UDT-AO, UDT+TLS, UDT+GSS-API) 

that use a newly developed high-speed data transfer protocol UDT. The program 

developed has become a key tool in data analysis, and replaces the existing 

manual collection of information of the data transferred for statistical analysis. 

4.1.5 Description of Tool 

The tool is developed in Java. It has a visualisation capability to present 

transmitted data. Its basic functionalities allow displaying a set of data in a file 

and representing this in a graph. 

The tool is dependent on two sub-components (ProjectUDT.java -390 lines and 

GenerateBarGraph.java -150 lines).  

Project UDT is the main program. It starts with a Graphics Unit Interface (GUI) 

Menu. 

The menu-driven options provide choices such as “Process a File,” “Exit,” 

and “Help”. 

“Process a File” accepts file in text format only. In this program, the file 

name of this text file is UDTFile.txt. This is a file with raw entries 

captured from a live data transmission across multiple sites running on a 

high-speed optical network/WAN. 
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The tool then processes the two important entries of the file and displays 

these in a GUI format. An option is then provided to interpret the entries 

in a bar graph. 

The entries are then presented by a graph. This graph is derived from the 

gif file. 

The following flow chart summarizes the above process flow. 

      FFiigguurree  44--33::  PPrrooggrraamm  PPrroocceessss  

  

      The following is a list of inclusions: 

Menu  

Help Section 

File Processor (Input/upload a file) 

Data graph 

Output a file (a readable) 
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4.1.6 Program and Image Files 

ProjectUDT.java 

 

Number of 

Constructs/Methods 

8 

Number of Classes 1 

Number of 

Variables/Imports 

12 approx and 36 imports 

Number of Codes 386  less 15% spaces and comments 

 

GenerateBarGraph.java 
 

Number of 

Constructs/Methods 

2  

Number of Classes 1 

Number of 

Variables/Imports 

15 approx and 7 imports 

Number of Codes 144 less 15% spaces and comments 

 

Image Files 

   - image.gif ( project) 

          - globe.jpg (supplementary project) 

Input file  (see Appendix for full entries) 

    - UDTFile.txt 
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Figure 4-4: Main Menu of Project UDT is composed of the following options: Menu, 
Help Section, File Processor (Input/upload a file), Data graph, Output a file 
(ASCII). 

 

Figure 4-5: Accept text file 

 

Figure 4-6: Output graph.gif 
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The graph of the given data visually shows that the RTT is higher than the 

SendRate in a given distance of 40 km (i.e., from CBD to Western Sydney). This 

means that the SendRate is directly proportional to the distance and resistance 

of existing network connections. This trend changes when tested on the different 

volatile network connections (e.g., wireless, optical, and satellite) based on the 

following equation [82]: 

 

The use of data under baseline conditions provides an initial analysis that yields 

mean and standard deviations of any delays during data transmissions in a 

protected environment. Protected environment means that data are either 

transmitted with encrypted mechanisms (AO and GSS-API), or transmitted in 

protected communication channels (such as IPSec and DTLS). 

4.1.7   Summary 

Project UDT gathers and represents data from the initial test results in different 

scenarios. These scenarios are practical: first, under a normal environment; and 

second, under a DoS attack. The components in various scenarios are subjected to 

an attack across locations in the outskirts of Sydney, about 30-40 km apart. 

Agents for this attack are simulated packet transmissions using UDT. The path 

of the attack traffic is from various locations. The attack traffic causes the 

saturation of unprotected links across locations.  

Overall, the simulation comparisons have indicated that the analytic 

methodology approximates the actual environment and the assumptions defined. 

Both results provide a clear indication of how the tested security mechanisms 

behave when used with UDT. In a DoS scenario, the link overloading has 

highlighted interesting effects on the network through packet transmission and 

packet size distribution. These scenarios aid in determining what kind of 

modifications, if any, can be made to better capture the results. 



 

89 

In addition to further research on the specific model for UDT [22-33], the 

validations of the strength of security mechanisms against other attacks, such as 

worms, have been confidently dealt with and neutralised in the end-to-end 

security architecture in a real practical scenario, with UDT integrated and 

implemented with selected security mechanisms. 

In the next sections, experimentations and practical simulations are presented 

using the commercially available tools. To support the theoretical proofs, other 

security mechanisms are also attempted. These are performed in Chapters 5 and 

6. 

4.2 Practical Validations  

In this section, we employ existing commercial tools and devices to represent a 

testbed environment. We use common methods for analysis, from layer 2 to layer 

5 of the TCP/IP layers.  

Like many TCP and UDP implementations, there are various mechanisms 

considered unsuitable for UDT (for example, using TLS on layer 2 for UDT and 

UDP). In this section, we attempt to establish suitable scenarios that are 

practical and cost-effective for UDT experimentation and implementation – by  

exploring security methods operating on layer 3. 

For the UDT data file transfer tests, the protocol developments provided by 

FreeBSD Release and Windows were briefly covered. The ‘sendfile.cpp’ and 

‘recvfile.cpp’ (on port 9000) were executed on each client and server nodes (see 

Figure 4-7 and Figure 4-8). Moreover, short samples of data (from 100meg, 1G 

and 4G, gradually increasing the size to 13 terabytes) were used. The data 

transfer was performed from one data centre to another – situated in two 

geographical locations, roughly 20 to 40 km apart – via 1Gb/s link through the 

cloud. 
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Figure 4-8: Receive Packet Connection (Client Side). Attempts were also made while the port 9000 
was not listening. The connection setup failure message should be displayed if this port is not 
listening on the server. The graph represents when Appclient IP ADDRESS 9000 was operated, 
with results on SendRate(Mb/s)  RTT(ms) CWnd PktSndPeriod(us)RecvACK-RecvNAK. Details 
found in Appendix B.   
 

The experiments were conducted using a gateway-to-gateway encryption method 

in two separate data centres. We attempted GSS-API + UDT (Kerberos ticketing 

systems) along with UDT-AO and UDT+DTLS scenarios.  In the tests, UDT 

performance in gateway-to-gateway mode was evaluated, and UDT was tested 

using commercial security products with IPSec capability in this mode. In 

addition, a network comprising two gateway hosts was created, and two firewalls 

at the gateways were utilised, with each configured for site-to-site VPN. 

Furthermore, the clients used for the test were composed of 100TB storage and 

servers were running on Windows OS, with a sample application to handle data 

transfer using UDT behind the gateways.  

The intention was to transfer data across both secured and unsecured 

environments, i.e., encrypted and unencrypted links, and to conduct simulated 

attacks on the application that was running UDT. 
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4.2.1 Measurement Schemes and Results  

In order to test the performance, the data file transfer was repeated using several 

measurement tools (e.g., ArcSight, AlgoSec, PCAP, HP OpenView, Statscout, 

Juniper VPN-Firewalls, NS-2, and Wireshark) which entailed measuring the size 

of the files and documenting the time in which they reached their destinations. In 

order to test security, vulnerability tests, such as conducting simulated DoS 

attacks (e.g. sending continuous ICMP packets, TCP SYN flooding, transferring 

virus infected files and so forth) were carried out. Moreover, a proprietary 

vulnerability assessment testing tool was used (e.g., Nessus) ; in order to 

simulate a real-life scenario, while also determining how traffic could influence 

normal network activity, the testing tool included a regularly updated database – 

of the latest threats– which served to ensure that existing adversaries and the 

most prominent potential threats were considered. 

Also utilised were tools that allowed the generation of  line rate stateful traffic at 

up to 10 Gbps, thereby allowing trunk ports to be directly tested while also 

determining the impact of multiple GigE ports being aggregated over 10 Gbps. 

The tools used are considered to be the industry’s most comprehensive layer 4-7 

applications testing solution, supporting all major protocols – including UDP, 

TCP, streaming media, IPv6, IPSec, and custom protocols – as well as a number 

of enterprise applications via the capture/replay function.  

In the test network, encryption was performed on the higher specification 

gateways and firewalls (Figure. 4-1, page 69).  

The resulting performance was acceptable with encryption. The significant result 

was that the encrypted throughput was seen to be acceptable with the rate of the 

non-encrypted throughput (Figure 4-9 and Figure 4-10). Detailed results can be 

observed in Table 4-1, which reflects the use of high-speed bandwidth and high-

end firewall capabilities on the edge of the networks. 

Finally, ‘data file transfer’ tests were performed between the two gateways, with 

the response time being measured in milliseconds.  
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Figure 4-9: Secured Data Transfer Graph results (In the secured environment 
we tested file encryption to both ASCII and Binary Data streams to determine 
if there was impact to the speed transfer when using UDT) 

 
 

Figure 4-10: Unsecured Data Transfer Graph results (In the unsecured 
environment we tested file encryption to both ASCII and Binary Data 
streams to determine if there was impact to the speed transfer when using 
UDT)  
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Table 4-1. Secured Transmission. Results with  security/ encryption 

Secured  transmission  

(10 repeats)   

Measurement Average Plain Average with Encryption 

TCP throughput 200.9 ms 180.4 ms

UDP throughput 140.2 ms 130.3 ms

UDT throughput 9000 ms 6000 ms

TCP response time 1/1/1 ms min/avg/max .8/1/1.2 ms min/avg/max

UDP response time 1/1/1 ms min/avg/max 1/1/1 ms min/avg/max

UDT response time 1/1/1 ms min/avg/max .9/.95/1 ms min/avg/max

 

Table 4-2. Unprotected Transmission. Results without security / encryption                            

Unprotected Transmission     

(10 repeats)    

Measurement Average Plain Average 

TCP throughput 187 ms 162 ms

UDP throughput 120.1 ms 113 ms

UDT throughput 7000 ms 4000 ms

TCP response time 1/1/1 ms min/avg/max 1.2/2.1/3 ms min/avg/max

UDP response time 1/1/1 ms min/avg/max 1.2/2.1/3 ms min/avg/max

UDT response time 1/1/1 ms min/avg/max 1.2/2.1/3 ms min/avg/max
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Table 4-3. UDT test results with (encrypted data) and without (or plain data) encryption.  

Secured UDT Data File Transfer 

 

Table 4-4. UDT test results with (file encryption) and without (or plain data) encryption. 

Unsecured UDT Data File Transfer  

UDT Time (sec)  

Plain 

Mbytes Time (sec) 

Encrypted 

Mbyte/s Repeat 

Server-gateway-

gateway-server 2.3 1.2 1 0.6 1

  2 1.3 1 0.8 2

  1.8 1 1 0.6 3

  2.2 1.2 1 0.7 4

  2.4 1.2 2 0.8 5

  1.9 1.05 1 0.5 6

  2 1.3 1 0.5 7

  2.6 1.4 2 1 8

  2 1.4 1 0.8 9

  1.8 1.2 1 0.9 10

UDT Time (sec)  Plain Mbyte/s Time (sec) 

Encrypted 

Mbyte/s Repeat 

Server-gateway-

gateway-server 2.1 1.2 2 0.6 1

  1.6 1.3 2 0.8 2

  1.2 1 2 0.6 3

  1.8 1.2 1 0.7 4

  2 1.2 1 0.8 5

  2.2 1.05 1 0.5 6

  1.8 1.3 1 0.5 7

  2.1 1.4 2 1 8

  1 1.4 1 0.8 9

  1.8 1.2 1 0.9 10
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The raw response times were found to be poorer for the non-encrypted (clear) 

test, but it was presumed that the intervening gateways without security were 

responsible for such an effect. The unsecured environment was susceptible to 

DoS attacks on the gateways and servers, which therefore affected data transfer 

performance and integrity. Results, however, can be improved significantly, 

especially for much larger packet sizes, wherein fragmentation occurs in a 

protected link, such as IPSec.  

Overall, the results established throughout this experiment illustrate the 

improved performance that can be delivered by the use of a higher specification 

encrypting device with higher bandwidth links. The results of the various 

throughput tests performed suggest that, at the bandwidth levels requiring fast 

data transfer, the protected environment would appear to offer a scenario that 

does not have a significant impact in terms of latency or session quality. 

4.2.2 Impact on Performance 

The trials of both secured and unsecured environments imply that encryption at 

the network layer does not impose significant performance problems in the 

middle of attacks. Perceived latency is very similar in these tests, and the 

empirical results imply that the overhead at the network layer is in the order of a 

handful of milliseconds. 

It should be noted that, in addition to the encryption overhead on the CPU, the 

encrypted packets will also be larger, owing to the additional AH/ESP data being 

sent, and that the packet re-assembly at the far end will take longer, due to 

delays in the passing of encrypted data beyond just the raw computational 

burden. 

In terms of the algorithms, one may assume that weaker algorithms are less 

computationally expensive; however, existing encryption algorithms such as AES 

can offer improved encryption in comparison to 3DES (which the commercial 

IPSec VPN product uses), and for less processor effort, too (an important 

consideration when encryption is required on miniature smart type devices).  
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Coupled with advances in processor and bandwidth speed, the latency penalty for 

encryption will continue to fall as a percentage of the time and bandwidth 

required for high data transfer. The same, of course, may not be true in the case 

of UDT implementations over a low bandwidth network like a cellular wireless 

network (where the packet size overhead is far more significant). 

4.2.3 Socket and Application Layer UDT Protection  

The simulated and implementation schemes based on the previous tests created 

for the network and IP layers were performed in order to observe the behaviours 

of UDT in both secured and unsecured settings in the application and socket 

layers. Notably, the simulated environment operated separately on NS2 and 

EMIST, so as to provide internal validation. This environment was used in order 

to simulate the behaviours of data transmission in cases wherein UDT is used on 

top of UDP. A test was also performed using a new probabilistic packet marking 

scheme and other commercially available tools (eg. IPS) constituted by 3,000 

nodes; 1,000 attackers were selected randomly.  

In order to test and determine the number of packets required to reconstruct the 

attacking path, the selection of one path from all of the attacking paths and its 

length was defined as w, w=1,2…30. For each number of paths, a simultaneous 

change of values of w was repeatedly changed until the protocol showed a clear 

attacking path; this permitted the simulation to produce a pattern of the 

behaviours of UDT without any means of protection.  

The implementation environment featured a simple topology. Two honeypot 

servers (HP1 and HP2) with UDT for Windows were installed at two separate 

locations. They were in a network operating environment running on a 10G pipe 

trunk 802.1q for tunnelling behind firewalls. The attackers were sourced from 

the Internet. In the first implementation, all traffic was permitted to traverse 

through any source, destined through any port on UDP and TCP, and locked to 

the destination honey pot, where UDT was running on top of UDP. A simple data 

transfer of 600MB–200GB to 2TB to another server was then performed. The test 

was initially performed without any protection, while subsequent tests were 

performed with the proposed security mechanisms in place. The results were 

then compared. 
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The following protection schemes were attempted: 

1. A simple authentication scheme using Kerberos [42-43] for GSS-API on an 

application running UDT and UDP; 

2. UDT-AO and UDT-DTLS across border gateway routers; 

3. Using VPN SSL connections and running the applications in H1 and H2. 

 

4.2.4 Results 

The number of attacks in Figures 4-11 and 4-12 was constant in the 

implementation scheme. The dropped packets were detected when the IDS/IPS 

was activated on the firewalls. The simple authentication scheme – which was 

developed to transfer a file via UDT, provided by Kerberos using GSS-API on the 

UDP socket where UDT was operating – provided added protection that sourced 

the location of the authenticating party in the protected environment. 

 

Figure 4-11: Unsecured environment 
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Figure 4-12: Secured environment (with UDT-AO, UDT-DTLS and GSS-API implementations) 

The trend presented in Figure 4-12 yielded significant improvements. Moreover, 

the end-to-end transfer of data was transparent to the UDT application. The 

available security mechanisms for UDT requiring minimal application and 

program development are feasible and predominantly applicable to UDT 

implementation.  

In the case of simple file transfer, many available mechanisms for UDP and TCP, 

as well as existing security protections for applications, are acceptable, i.e., 

simple authentication. However, in cases of extensive use of UDT — such as in 

SDSS and other large project implementations requiring security — UDT 

requires a security mechanism that is developed and tailored for its behaviours 

and characteristics based on its design. This work emphasises the need for UDT 

— just like the existing mature protocols — to be subjected to continuing security 

evaluations. Amendments based on the evaluations will aim to develop and 

provide adequate protection, thereby maintaining integrity and confidentiality 

against various adversaries and unknown attacks. To ensure minimal overhead 

in data and message transmission streams, these amendments will also minimise 

dependencies on other security solutions applied on some protocols.  

The limitations of the simulation and implementation schemes constructed may 

be related to the simplicity of the applications developed for the tests. 
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Experiments are difficult to perform on the following mechanisms: HIP, owing to 

the required additional layer HIT; and DTLS + CGA.  

                                          Table 4-5. Transport Protocol Matrix 

 

A more extensive development of an application using UDT may yield more 

detailed and comprehensive results (Table 4-5); in addition, the number of false 

positives and collisions was not considered in the tests. The results nonetheless 

provide an important indication of how the application using UDT behaves in 

such environments. Accordingly, protecting UDT can be achieved by introducing 

approaches related to self-certifying address-generation and verification. A 

technique that can be applied without major modifications in practice is CGA, 

which is standardised in a protocol for IPv6.  

Similarly, HIP solves the problem of address-generation in a different way: by 

removing the functionality of IP addresses as both host identifiers and topological 
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locations. To achieve this, however, a new network layer known as HI has been 

introduced, making HIP incompatible with current network protocols (Table 4-6). 

The protection of UDT through the use of GSS-API in UDT, meanwhile, 

represents another approach; however, this requires thorough evaluation by 

application vendors.  

 Table 4-6. Summary of Schemes 

 

The use of the GSS-API interface does not in itself provide absolute security or 

assurance; rather, such attributes are dependent on the underlying mechanisms 

of UDT, which support a GSS-API implementation to achieve an adequate 

security mechanism. Another method of ensuring UDT protection is through the 

introduction of the Authentication-Option (AO); this, however, requires changes 

to the design of UDT, so as to accommodate an AO field. There is also the 

requirement to use a better hashing algorithm to ensure that messages 

transmitted are duly protected. 

With the results, we can draw our experience from the comparisons between the 

various scenarios. Since UDT is a new protocol, there has been little adoption of 

it; therefore, no security mechanisms are so far available for the application 

layer. Initially, we considered host-to-host encryption as a feasible solution, 

depending on the operating system and method desired; however, it was noted 

that this was likely to require some expertise in the end user of the end host’s 

system, and would further cause various problems related to firewalls, because 

Method  Complexity  Practicality New Layer required Analysis  Simulation/Experiment 

Checksum High Moderate NA Completed Application dependent 

GSS-API Medium Moderate NA Completed Application dependent 

SASL Medium Moderate NA Completed NA 

HIP High Moderate HIT Completed Application dependent 

UDT-AO High Moderate NA Completed Algorithmic dependent 

DTLS High     Low NA Completed NA 

IPSec Medium Moderate NA Completed Operations dependent 
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stateful inspection for UDP — on which UDT runs — cannot be performed on an 

encrypted session.  

The gateway-to-gateway encryption appears to offer a flexible and relatively 

efficient means to encrypt UDT and UDP data over the public element of a 

session connection, although it remains vulnerable to interference and probing on 

the internal site network behind the gateway – unless, that is, appropriate 

security solutions are taken.  

Additionally, it has been observed, based on limited tests performed on entry-

level high-speed gateway devices, that the latency effects of encryption do not 

appear to be significant. Increasing commodity CPU power is making encryption 

even more viable for reasonable UDT data transfer. Notably, opportunistic 

encryption is desirable. The VPN firewalls include support for this, but this so far 

has not been tested in detail: the scaling issues may be significant and should be 

tested further if stateful/proxy types of firewalls are to be considered for wider 

UDT deployment.  

Gateway encryption (IPSec) – via the existing security devices for higher 

bandwidth and larger environments – is presently an effective method. Such a 

device and its configurations, however, require wider-scale testing prior to 

potential use.  Moreover, end-to-end encryption through gateway-to-gateway 

encryption offers security for UDT, as it does to other protocols. 

In the simulation and implementation schemes, IPSec provided adequate 

protection in terms of data transfer, and similarly provided end-to-end protection 

on source and destination nodes. In this scheme, the performance of UDT 

remained the same. 
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4.3 Concluding Remarks 

Experiments and simulations were performed for the proposed mechanisms for 

practical reasons: first, to determine the viability of the selected mechanisms; 

second, to determine if UDT is applicable to practical applications with the 

support of resources given the current high-speed network specifications; and 

third, to subject UDT in rigorous tests within both unprotected and protected 

environments, in the given limited and isolated constraints. 

In this chapter, we presented our own UDT proprietary tool, which was 

developed to capture UDT traffic. Using this tool to capture data transmissions, 

we also conducted a comprehensive test and analysed the traffic of data in 

various environments using the proposed mechanisms.  

In the results, it was noted that various mechanisms worked for the existing 

protocols — such as TCP and UDP — but did not, as expected, work for UDT (see 

Table 4-5). There were, however, various mechanisms found to be viable for UDT 

but not for UDP, such as AO and GSS-API. The combination of UDT and UDP 

provided UDT with the connection and flow control that it required to operate in 

the selected mechanisms.  

The approach  presented in this chapter emphasised the following: 

(1) Most mechanisms presented were experimentally validated on 

connection-based protocols. 

(2) The method of security connections through IPSec and DTLS 

worked well for UDP and UDT. 

(3) The use of GSS-API, HIP, and CGA were complex and costly, but 

provided security solutions for the new protocol. Proof of methods 

through formalisation will be used for verification. 

(4) An option such as AO is suitable for UDT, provided that an 

alternative or a combination of hash methods is used. 

(5) Practical solutions include running IPSec on top of UDP, and 

SSL. However, these solutions can sometimes be detrimental to 

business needs, such as creating constraints on data flow access 
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and performance [19] in a more open and trusted environment 

wherein IPSec is not a requirement. 

(6) Public Key can be used, but is also costly when the application 

relies on certificate authorities.  

(7) The methodology, as observed in Table 4-6, provides a new 

opportunity to address security for UDT and other protocols. The 

results can assist network and security investigators, designers, 

and users, all of whom consider and incorporate security when 

implementing UDT across wide area networks. These can also 

support the security architectural designs of UDP-based 

protocols, as well as assist in the future development of other 

state-of-the-art fast data transfer protocols.   
 

This experiment is extended in the next chapter to rigorous theoretic proof of 

correctness. It will focus on three mechanisms found provable within UDT 

implementations. By provable, we mean that these mechanisms are successfully 

simulated and tested in UDT practical environments, albeit with minor changes 

required. While the work focuses on limited and minimal resources as well as on 

the prevention of dramatic changes to the UDT design, we yield promising 

results from the proposed mechanisms – with, of course, selected techniques in 

the design and implementation put in place.  

Three of these mechanisms are found to be practically viable for UDT due to 

three important reasons: first, the design of UDT is closely based on TCP and 

UDP, and therefore much of the design of the security for UDT should also be 

viable to TCP and UDP; second, existing security mechanisms (e.g., IPSec, DTLS, 

and Kerberos) have proven to fair well in the TCP and UDP implementations; 

third, the data flow and multiple connection characteristics of UDT require 

features that these mechanisms provide – features such as authentication, 

confidentiality, and data integrity – proving these to be useful and compatible 

with existing protocols. 
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Chapter 5  
 
 
Proof of Correctness of the Selected 
UDT Security  Mechanisms 
 

 

In this chapter, an approach analysing the applicability and secrecy properties of 

the selected security mechanisms when implemented with UDT is introduced. In 

this approach, a formal proof of correctness, thereby determining applicability 

with formal composition logic is carried out. This approach is modular; it has a 

separate proof for each protocol section that provides insight into the network 

environment in which each section can be reliably employed. Moreover, the proof 

holds for a variety of failure recovery strategies and other implementation and 

configuration options. The technique is derived from Protocol Composite Logic 

(PCL) on TLS and Kerberos in the literature. The novelty of this work on UDT is 

maintained: specifically on the developed mechanisms such as UDT-AO, 

UDT+DTLS, UDT+GSS-API. 

5.1 Overview of Proof Method 

To analyse the protocol based on formal language and logic, we employ the PCL 

method.  

PCL [52] entails reasoning about properties achieved by formalised steps in a 

setting that does not compel explicit reasoning about attacker actions. Many 

literatures define PCL as a formal approach for proving security properties of a 

class of network protocols. According to [1,2,44,52-55,66-65,87,115-116], the 

central question addressed by PCL is whether it is possible to prove properties of 
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security protocols compositionally, by using reasoning steps that do not explicitly 

mention attacker actions. In order to reason about the protocols, the proof of 

properties of one sequence of actions by one agent involves not only local 

reasoning about the security goal of that component [113,115-116], but also about 

environmental conditions that prevent destructive interference from other actors 

that may use the same certificates of key materials, according to [115]. 

These environmental conditions are generally formulated as protocol invariants. 

These are properties true for all of the roles of the protocol at hand, and 

according to [114,115-116], there are properties that may be required in any 

other protocol operating in the same environment.  

Various versions of PCL investigated in past work proved to be sound for protocol 

executions that employ any number of principals and sessions, over both 

symbolic models, and over more traditional cryptographic assumptions [1,2, 

113,115-116]. 

Several groups of researchers, according to [2], have taken measures to 

concatenate the symbolic model to the probabilistic polynomial-time 

computational model used in security protocol studies, e.g. [44,52-55,65-

67,87,113,115-116]. 

In this chapter, we will prove correctness of each selected security mechanisms 

for UDT in the symbolic model [30], and determine any issues in its 

implementation through employing formal logic. Connections between symbolic 

trace properties and computational soundness properties are achieved in [37]. All 

these efforts have been directed at proving security properties for well-

established mechanisms.   
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5.1.1 Significance 

The major milestone of this technique is its use in the integration of methods of 

security mechanism analysis into the verification process prior to their 

deployment in UDT.  

5.1.2 PCL Method 

We begin with a brief discussion of PCL relevant to the analysis, [1,2,54]. We 

base our discussion on the original proponents of PCL [54], which we fully 

acknowledge in this chapter.  

To model protocols, we need to define a protocol by a set of roles, [1,2,52-55] each 

specifying a sequence of actions to be executed by an honest agent. In PCL, 

protocol roles are characterised employing a simple ‘protocol programming 

language’ according to [54-55] based on cords. The possible protocol actions 

include nonce generation, signatures and encryption, communication steps, and 

decryption and signature verification via pattern matching [54]. Programs can 

also rely on input parameters that are typically decided by context, or are the 

result of set-up operations, and supply output parameters to subsequent 

operations. 

In this Chapter, we outline the proof system and the proof of soundness of the 

axioms [54] and the rules [1,2,44,52-55,65-67,87,113,115-116]. Most protocol 

proofs employ formulas of the form [P]X , which expresses that initiating from 

a state where formula  is true, after actions P are determined and executed by 

the thread X, the formula  is true in the resulting state. Formulas  and   
typically create assertions about temporal order of actions and the data 

accessible to various principals that are useful for stating secrecy [115-116]. 

The proof system extends first-order logic with axioms and proof rules for 

protocol actions, temporal reasoning, knowledge, and a specialised form of 

invariance rule called the honesty rule [52-55,65-67,87,113,115-116]. The honesty 

rule is essential for merging facts about one role with inferred actions of other 

roles, in the presence of attackers. Intuitively, according to [115-116] if Alice 

receives a response from a message sent to Bob, the honesty rule obtains Alice’s 

ability to exercise properties of Bob’s role to assert about how Bob created his 
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reply. In short, if Alice contends that Bob is honest [52-54], she may inherit Bob’s 

role to reason from this assumption. 

5.2 Proof of UDT-AO Protocol 

The first mechanism we propose is UDT-AO protocol. It is a lightweight protocol 

part of our ongoing IETF review process for UDT. We show how UDT-AO is 

intended to secure long-lived connections for UDT when used in various routing 

protocols. It is not intended to replace IPsec suite to secure connections. Hence, 

we analyse UDT-AO protocol for consideration in the development of a viable 

security architecture. We employ a finite-state method to ascertain that this 

protocol does not have any flaws. We also substantiate the protocol utilising a 

protocol verification logic. We use formal proof to verify the viability of this 

protocol to secure UDT transmission.  

The UDT-AO is an authentication framework that was proposed to the Internet 

Engineering Task Force (IETF). It operates on the transport layer and supports a 

variety of mechanisms for two entities to authenticate themselves to each other.  

UDT is a connection-oriented protocol. As such, it requires to include an OPTION 

for authentication when it is used in data transmission. This is because its 

connections, like TCP, are likely to be spoofed [142].  

The proposed option can be implemented on Type 2 of the UDT header. This field 

is reserved to determine specific control packets in the Composable UDT 

framework. Every segment sent on a UDT connection to be secured against 

spoofing will similarly contain the 16-byte MD5 digest achieved by applying the 

MD5 algorithm to these items, in the following (Table 5-1) similar order required 

for UDT: 

Table 5-1:  UDT + UDP Process 

1. UDP pseudo header  (Source and Destination IP           

   addresses, port number, and  segment length) 

2. UDT header + UDP (Sequence number and timestamp), and        

   assuming a UDP  checksum zero 

3. UDT control packet or segment data (if any) 
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4. Independently-specified key or password, known to both   

   UDTs and presumably connection specific and 

5. Connection key 

 

The UDT packet header and UDP pseudo-header are in network byte order. The 

nature of the key is deliberately left unspecified, but it must be known by both 

ends of the connection, similar with TCP [34,36-37,61,151]. However, a particular 

UDT implementation will determine what the application may specify as the key. 

The focus is on validating the protocols and their applicability to UDT by 

determining if errors and incompatibility problems exist, and, therefore, in their 

absence re-enforce the viability of AO for UDT security architecture. 

UDT-AO provides message authentication verification between two end points 

[22-33]. This message authentication function protects a message’s data integrity 

[33]. In order to accomplish this function, Message Authentication Codes (MAC) 

are utilised, which rely on Shared Keys (SK). There are various ways to generate 

MACs. The general requirements are outline for  MACs used in UDT-AO, both 

for currently specified MACs and for any future specified MACs. Two MACs 

algorithms selected that are necessary in all UDT-AO implementations. 

Moreover, two Key Derivation Functions (KDFs) employed to create traffic keys 

used by the MACs are introduced. These KDFs are required by all UDT-AO 

implementations, as presented (Table 5-2) below. 

Table 5-2: Successful Message Exchange in UDT-AO 

[Message 1:S . P]: SNonce, S, AlgocryptList  

[Message 2:P . S]: P, S, PNonce, SNonce, AlgocryptList, AlgocryptSel,   

                   {Payload}KDF(PKEY),MACSK  

[Message 3:S . P]: PNonce, SNonce, AlgocryptSel, {Payload}KDF   

                   (PKEY),MACSK  

[Message 4: P . S]:{Payload}KDF (PKEY),MACSK  
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Successful UDT-AO message transfer exchange. 

The Keys Shared (SKey), (PKey), and Private Keys (PSK) are derived from a key 

derivation function KDF, which names a Pseudorandom Function (PRF) and uses 

a Master_Key (MKey) and some connection-specific input with that PRF to 

generate Traffic_Keys (TKey), the keys suitable for authenticating and integrity-

checking individual UDT segments. 

5.2.1 UDT-AO Description 

MKey  is generated as seed for the KDF. It is similarly assumed this is a 

readable PSK; thus, it is also considered, which based on the characteristics of 

existing protocols, it is of variable length. MKey should be random, but in some 

cases when chosen by the user, it might not be. For interoperability, the 

management interface by which the PSK is configured [117] must acknowledge 

ASCII strings, and must also permit for configuration of any arbitrary binary 

string in hexadecimal form. 

The assumption is that KDF-X selects two arguments, a key and a seed, and 

outputs a bit string of length X [2]. The notation KDF-X(Y,Z) [i..j] constitutes the 

i’th through j’th octets (8 bits) of the output of the KDF-X. The PSK has length 

PL, while the SKey and PKey have length KS, which is a value specified by the 

example Algocrypt (Table 5-3).  

Table 5-3:  KDF-AES-128-CMAC 

KDF-AES-128-CMAC 

Input : MKey (Skey or PKey length KS) 

          :I (input data of the PRF) 

          :  MKeyLen (length of MKey in octets) 

          :  len ( length in octets) 

Output: TKey (Traffic_key, 128-bit Pseudo-Random Variable)  

Variable: Key (128-bit for AES-CMAC)  

Step 1.   If MKeyLen is equal to 16 

Step 1a.  then 
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          K :=MKey; 

Step 1b.  else 

          K: = AES-CMAC(0^128, MKey, MKeylen); 

Step 2.   TKey : AES-CMAC(K,I, len); 

           Return TKey; 

Key derivation is defined as follows: 

inHEX=0x00. 

inputString = PNonce || P || SNonce || S.  

MKey = KDF-KS(inHEX value, PL || PSK || AlgocryptSel || inputString)[0..KS-
1].  

Assumption 160 bits in case of  KDF_ HMAC_SHA1  

SKey = KDF-{160+2*KS}(MKey, inputString)[160..159+KS].  

PKey = KDF-{160+2*KS}(MKey, inputString)[160+KS..159+2*KS].  

Assumption 128 bits in case of KDF_AES128_CMAC based on AES-CMA-PRF-128 

SKey = KDF-{128+2*KS}(MKey, inputString)[128..127+KS].  

PKey = KDF-{128+2*KS}(MKey, inputString)[128+KS..127+2*KS].  

 

Similarly, the first 128 octets of KDF-{128+2*KS}(MKey, 

inputString)[128+KS..127+2*KS] are divided into two keys [117] which are 

exported as part of the protocol. They may be employed for key derivation in 

higher level protocols [1,2]. Every AO method which supports key derivation is 

needed to export such keys, but they have been omitted because they are not 

relevant to the current analysis. 

UDT-AO is designed to equip mutual basic authentication between the peer and 

the server (end-to-end). The successful message exchange decides the 

authenticity of the peer by the use of key SKey, which is deduced from the long-

term key PSK for MAC in Message 2 in the algorithm found in Table  5.2. The 

successful message exchange purports [117] the authenticity of the server by the 

use of SKey for the MAC in Message 3. AO is also designed to cater for session 

independence. This means that even if there is a weakened exchange, this 

prevents the attacker from compromising past or future sessions. AO is a 
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symmetric key authentication protocol, and therefore the secrecy of long-term 

key PSK is essential for all the above introduced properties to hold [52-54].  

Both the peer and the server are dependent upon to silently dispose of any 

message which is unexpected (e.g., receiving Message 4 instead of Message 2), 

doesn’t parse (e.g. the wrong nonce is returned), or whose MAC is invalid. The 

only exception is for Message 2. If the server acquires an invalid MAC then it 

must respond with an UDT-AO failure message. The peer must always be willing 

to accept Message 1 from a server since there is no integrity protection [1,2,52-

55]. 

The analysis that was determined confirms the basic requisite for securing UDT. 

The non-standard use of a key derivation function [117] which is exhausted to 

create session keys is a fundamental weakness, but does not accommodate an 

obvious attack detrimental to UDT data transmission. In addition, the difficulties 

which such non-standard usage composes when trying to validate the protocol’s 

correctness should not be rejected. This is because of the fact that the messages 

are not encrypted, and therefore a basic authentication is more so a necessity. 

Using a modular approach to protect UDT data transmission by combining other 

security mechanisms to guarantee a secure UDT implementation, without 

computation overload, therefore, is prescribed.   

5.2.2 UDT-AO Proof of Correctness 

In this section, the introduction of a formal correctness proof of UDT-AO using a 

formal language method that executes any number of principals and sessions, 

over both symbolic models and over more traditional cryptographic assumptions 

is presented. 
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5.2.3 Formal Description of UDT-AO in the Formal Language 

Table 5-4: Formal Description of UDT-AO 

UDT: Server  [ 

new SNonce; 

send SNonce. ˆ S.ALGOCRYPTLIST; 

receive ˆ P. ˆ S.PNonce.SNonce. 

ALGOCRYPTLIST.ALGOCRYPTSEL.enc1.mac1; 

MKEY := prg PSK; 

InputString := PNonce. ˆ P.SNonce. 
ˆS; 

SKEY := kdf1 InputString,MKEY; 

PKEY := kdf2 InputString,MKEY; 

pl1 := symdec enc1, PKEY; 

verifymac mac1, ˆ P. ˆ 
S.PNonce.SNonce. 

ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY; 

enc2 := symenc pl2, PKEY; 

mac2 := mac PNonce.SNonce. 

ALGOCRYPTLIST.enc2, SKEY; 

send PNonce.SNonce. ˆ 
S.ALGOCRYPTLIST.enc2.mac2; 

receive enc3.mac3; 

verifymac mac3, enc3, SKEY; 

pl3 := symdec enc3, PKEY; 

]S 

UDT: Peer  [ 

receive SNonce. ˆ S.ALGOCRYPTLIST; 

new PNonce; 

MKEY := prg PSK; 

InputString := PNonce. ˆ P.SNonce. 
ˆS; 

SKEY := kdf1 InputString,MKEY; 

PKEY := kdf2 InputString,MKEY; 

enc1 := symenc pl1, PKEY; 

mac1 := mac ˆ P. ˆ S.PNonce.SNonce. 

ALGOCRYPTLIST.ALGOCRYPTSEL.enc1; 

send ˆ P. ˆ S.PNonce.SNonce. 

ALGOCRYPTLIST.ALGOCRYPTSEL.enc1.mac1; 

receive PNonce.SNonce. ˆ 
S.ALGOCRYPTLIST. 

enc2.mac2; 

verifymac mac2, PNonce.SNonce. 

ALGOCRYPTLIST.enc2, SKEY; 

pl2 := symdec enc2; 

enc3 := symenc pl3; 

mac3 := mac enc3, SKEY; 

send enc3.mac3; 

]P 
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5.2.4 UDT-AO Security Properties 

The properties that UDT-AO ought to satisfy include: 

Setup Assumption. To establish security properties of the UDT-AO protocol, 

[1,2,52-55], it is deduced that the ServerˆS and the PeerˆP in consideration are 

both honest, and are the only parties which recognise the corresponding shared 

PSK. However, this acquiesces all other principals in the network to be 

potentially malicious and capable of reading, blocking and changing messages 

transmitted to the network. 

Definition 1 (Secrecy). The Server to Peer is said to exchange key secrecy, where 
defined as: 

setup  Honest( ˆ P) ^ Honest( ˆ S) ^ (Has(X, PSK)  ˆX = ˆ S v ˆX = ˆ P) 

Security Theorems. The secrecy theorem for UDT-AO inculcates that the signing 

and encryption keys SKey and PKey should not be obvious and known to any 

principal other than the peer and the server. For serverˆS and peerˆP, this 

property is used as SECudt-ao(S,P) defined as: 

SECudt-ao(S, P)  (Has(X, PKey) v Has(X, SKey)) v (ˆX = ˆ S ˆX = ˆ P) 

Theorem 1 (AO-Secrecy). On execution of the server role, key secrecy holds. 
Similarly for the peer role. Formally, UDT-AO _ SECserver pkey,skey , SECpeer 
pkey,skey, where  

SECserver pkey,skey  [UDT: Server]S SECudt-ao(S, P) 

SECpeer pkey,skey  [UDT: Peer]P SECudt-ao(S, P) 

Proof Sketch. Proof intuition is as follows: 

PSK is considered to be known to ˆP and ˆS only. The keys SKey,PKey are 

determined by employing PSK in a key derivation function (MKEY could be a 

truncation of PSK or generated by application of a PRG to PSK, according to the 

length needed). The honest parties employ SKey,PKey as only encryption or 

signature keys - none of the payloads are determined by a KDF application. This 

is the intuition why SKey,PKey remain secrets. A rigorous proof would utilise a 

stronger induction hypothesis and induction over all honest party actions [54]. 
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The authentication theorem for UDT-AO creates that on completion of the 

protocol, the principals accede on each other’s identity, protocol completion 

status, the cryptographic suite list and selection, and each other’s nonces. The 

authentication property for UDT-AO is determined in terms of matching 

conversations [2]. The basic idea of matching conversations is that on execution 

of a server role, we corroborate that there exists a role of the designated peer 

with a corresponding view of the interaction [117]. 

For server ˆS, communicating with client ˆP, matching conversations are created 

as AUTHudt-ao(S, P) defined below: 

AUTHudt-ao(S, P)  (Send(S, msg1) < Receive(P,msg1))^ 

      (Receive(P,msg1) < Send(P,msg2))^ 

      (Send(P,msg2) < Receive(S, msg2))^  

      (Receive(S, msg2) < Send(S, msg3) 

Definition 2. Server is said to execute and formulate authentication session for 
the authenticator. 

Theorem 2 (AO-Authentication). On formulation of the server role, 
authentication holds. Similarly for the peer role. Formally, UDT-AO _ 
AUTHserver peer ,AUTHpeer server, where 

AUTHserverpeer  [UDT: Server] S . P = ( ˆ P, ) ^ AUTHudt-ao(S, P) 

         AUTHpeer server  [UDT: Peer] P . S = (ˆ S, ) ^ AUTHudt-ao(S, P) 

Proof Sketch. The formal proof in PCL is in Section 5.2.3. We formulate the proof 

intuition here. We required to add two new axioms MMAC0 and VVMAC (see 

Section 5.2.5 ) to the extant PCL proof system in order to contend about MACS. 

Axiom MMAC0 says that anybody calculating a mac on a message m with key k 
must include both m and k. Axiom VVMAC says that if a mac is proven to be 

correct, it must have been generated by a mac action.  

AUTHserver peer: The Server validates the mac1 on msg2 to be a mac with the 

key SK. By axiom VVMAC, it must have been formulated by a mac action and by 

MAC0, it must be by someone who has SKey. Hence by secrecy, it is either P or S 
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and therefore, in either case, an honest party. It is an invariant of the protocol 

that a mac action on a message of the form Xˆ.Y.XNonce.Y 
Nonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc is executed by a thread of ˆX, 

captured by 1 - hence it must be a thread of ˆP, say P. Also using 1 it ascertain 

that P received the first message and generated nonce PNonce [117] and sent it 

out first in the message msg2. From the actions of S, its newly determined 

SNonce is sent out first in msg1. Employing this information and axioms FFS1, 
FS2, the sequence order then actions as receive and send as described in 

AUTHserver peer.   

AUTHpeer server  : The Peer verifies the mac2 on msg3 to be a mac with the key 

SK. By axiom VVMAC, it must have been determined by a mac action and by 

MAC0, it must be by someone who has SKey [117]. Hence by secrecy, it is some 

thread of either ˆP or ˆS and therefore, in either case, an honest party. It is an 

invariant of the protocol that a mac action on a message of the form 

YNonce.XNonce.ˆY.ALGOCRYPTLIST.enc, is performed by a thread of ˆY , 

captured by 2 - hence it must be a thread of ˆS, say S. 

However, this mac according to [117] does not restrict the variables 

ALGOCRYPTSEL and enc1 sent in msg2. So to ascertain that S received the 

exact same message that P sent, we utilise 2 to further reason that S verified a 

mac on a message of the form of msg2. And axioms VVMAC, MAC0 repeat to 

deduce that this mac [117] was generated by threads of ˆS or ˆP. Now, it is 

possible to use 1  and the form of msg2 to contend that a thread of ˆP did it, 

which also generated PNonce - hence by AAN1, it must be P itself. Now an 

invariant can be managed that states that a thread initiating such a mac does it 

uniquely, captured by 3, thus binding ALGOCRYPTSEL, enc1. Moreover, FFS1, 
FS2 can now be managed as in the previous proof to create the order described in 

AUTHpeer server.  
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5.2.5 UDT-AO Axioms 

The proof system enhances first-order logic with axioms and proof rules for 

protocol actions, temporal reasoning, properties of security (e.g., cryptographic) 

primitives, and a specialised form of program invariance rule called honesty rule 

[54-55]. Below is the list of axioms employed in this thesis.  

 

Formal Proofs 

New Axioms 

 

MAC0 Mac(X, m, k) Has(X,m)  Has(X, k)  means anybody computing a mac on  a message m with k must possess both m and k. 

VMAC VerifyMac(X, m’,m, k) Y. Mac(Y,m, k) m’ = MAC[k](m) states that if a mac is verified to be correct, it must have 
been generated by a mac action 

Note: Extant PCL proof system reason about MACS through the new axioms MAC0 and VMAC 

Invariants 

 

1  Mac(Z, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc,K)  ˆ Z = ˆX  (Receive(Z, Y 
Nonce. ˆY .ALGOCRYPTLIST)   - assign 1 invariant for AUTHserver peer. – it captures the mac action on a message of the form 
XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc, which is performed by a thread X.ˆ, captured by  1 

        < Send(Z, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc.mac))  

         mac = MAC[K]( ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc)

          FirstSend(Z,XNonce, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc.mac) 

2  Mac(Z, Y Nonce.XNonce. ˆY .ALGOCRYPTLIST.enc,SKEY) SKEY = KDF1[K](YNonce. ˆY .XNonce.ˆX)    

         ˆZ = ˆ Y  ALGOCRYPTSEL‘, enc1. (Send(Z, Y Nonce. ˆY .ALGOCRYPTLIST) < 

         Receive(Z, Yˆ .Xˆ.Y Nonce.XNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1.mac1) < 

         Send(Z, Y Nonce.XNonce.ALGOCRYPTLIST.enc.mac))  

          mac1 = MAC[SKEY](Yˆ .Xˆ.Y Nonce.XNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1)  
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          mac = MAC[SKEY](Y Nonce.XNonce.ALGOCRYPTLIST.enc)

          VerifyMac(Z,mac1, Yˆ .Xˆ.Y Nonce.XNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’ .enc1, SKEY)  

          FirstSend(Z, Y Nonce, Y Nonce. ˆY .ALGOCRYPTLIST) - assign 2 invariant for AUTHpeerserver  

3  Mac(Z, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc,K)  

         Mac(Z, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc’ ,K)  ALGOCRYPTSEL = 

          ALGOCRYPTSEL’  enc = enc’ assign 3 invariant for AUTHpeerserver 

 

 

Formal Proof of AUTHserver 

                                     peer 

AA1 [UDT-AO : Server]S VerifyMac(S, mac1, ˆ P. ˆ S.PNonce.SNonce.                   (1) 

          ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY)   

Axiom VMAC is generated by a mac action and by MAC0, it be someone with SKEY 

          SECserver VMAC [UDT-AO : Server]S X. ( ˆX = ˆ P ˆX = ˆ S) (2) 

           pkey,SKey ,    Mac(X,         
P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY)    

AUTHserver peer verifies the mac1 on msg2 to be a mac with key SKEY    

                         1 [UDT-AO : Server]S . P0 = (ˆ P, )  

Mac(P0, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY)

By using 1 we prove that P received the first message and generated nonce PNonce and sent it out first in the message msg2. 

Receive(P0,msg1) < Send(P0,msg2)  

FirstSend(P0, PNonce,msg2)       (3) 

(3) temporary predicate requires only until the same nonce used by the peer succeeds in completion 

InstP0 P[UDT-AO:Server]SMac(P, 

ˆP.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY)  

        Receive(P,msg1) < Send(P,msg2)  



  121 

        FirstSend(P, PNonce,msg2)       (4) 
(4) temporary predicate requires only until the same nonce used by the peer  succeeds in completion 

               FS1 [UDT-AO : Server]S FirstSend(S, SNonce,msg1)  order the receives and sends                       (5) 

                FS2,  [UDT-AO : Server]S (Send(S,msg1) < Receive(P,msg1)) order the receives and sends                        

                                     (Receive(P,msg1) < Send(P,msg2))  

         (Send(P,msg2) < Receive(S,msg2))      (6) 

AA4 [UDT-AO : Server]S (Receive(S,msg2) < Send(S,msg3))                  (7) 

AUTHserver                       (8) 

                          peer  

Formal Proof of AUTHpeerserver 

 AA1 [UDT-AO : Peer]P VerifyMac(P,mac2, PNonce.SNonce. ˆ S.ALGOCRYPTLIST.enc2, SKEY)                 (9) 

SECserver VMAC [UDT-AO : Peer]P X. ( ˆX = ˆ P ˆX = ˆS)         

pkey,SKey ,  Mac(X, PNonce.SNonce. ˆ S.ALGOCRYPTLIST.enc2, SKEY)                 (10)                       

      2,       [UDT-AO : Peer]P . S0 = (ˆ S, )  

ALGOCRYPTSEL’, enc1’. (Send(S0, SNonce. ˆ S.ALGOCRYPTLIST) < 

                         Receive(S0, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’.mac1) < 

                         Send(S0,PNonce.SNonce.ALGOCRYPTLIST.enc2.mac))  

                         mac1 = MAC[SKEY]( ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’)  

                         mac = MAC[SKEY](PNonce.SNonce.ALGOCRYPTLIST.ˆS.enc2)  

         FirstSend(S0, SNonce, SNonce. ˆ S.ALGOCRYPTLIST)                                               (11)
              

Inst S0  S [UDT-AO : Peer]P ALGOCRYPTSEL’, enc1’. (Send(S, SNonce. ˆ S.ALGOCRYPTLIST) < 

                              Receive(S, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’.mac1) < 

                             Send(S, PNonce.SNonce. ˆ S.ALGOCRYPTLIST.enc2.mac))  

                             mac1 =MAC[SKEY]( ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’)  

                             mac = MAC[SKEY](PNonce.SNonce. ˆ S.ALGOCRYPTLIST.enc2)  
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            VerifyMac(S,mac1, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’, SKEY)  

FirstSend(S, SNonce, SNonce. ˆ S.ALGOCRYPTLIST)             (12)           

Inst ALGOCRYPTSEL’, enc1’, [UDT-AO : Peer]P X. ( ˆX = ˆ P ˆX = ˆS)  

VMAC,MAC0  Mac(X, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’,SKEY)          (13) 
            

1,AA1,  [UDT-AO : Peer]P New(X, PNonce)  New(P, PNonce)                              (14) 

AN1, [UDT-AO : Peer]P X = P  AN1 generated by PNonce for P thread                                            (15)
                                           

     AA1,  [UDT-AO : Peer]P Mac(X, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’, SKEY)
 Mac(X, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY)                            (16) 

3,  [UDT-AO : Peer]P ALGOCRYPTSEL’ = ALGOCRYPTSEL  enc1’ = enc1            (17) 

[UDT-AO : Peer]P (Send(S,msg1) < Receive(S,msg2) < Send(S,msg3))                            (18) 

     FS1 [UDT-AO : Peer]P FirstSend(P, PNonce,msg2) order receives and sends                                           (19) 

     FS2,  [UDT-AO : Peer]P (Send(S,msg1) < Receive(P,msg1))  order receives and sends  

(Send(P,msg2) < Receive(S,msg2))  

(Receive(S,msg2) < Send(S,msg3))               (20) 

     AA4 [UDT-AO : Peer]P (Receive(P,msg1) < Send(P,msg2))              (21) 

AUTHpeer                     (22) 

                                      server  

Axioms define general truths applicable to every protocol [54-55]. For instance, 

the axiom VMAC encodes the common property of signatures [1,2,54] that if a 

thread verifies that a message x is assigned by a principal Y^, it must be Y^ 

signature key used to generate the signature. Further, if the agent Y^ is honest, 

no one else has access to this key, implying that there exists a thread of the agent 

Y that did indeed sign the term x, according to [52-55]. 

5.2.6 UDT-AO Operating Environment  

The formal proof outlined above applies to the case where fresh nonces for UDT-

AO are generated every time. When the peer employs the same nonce repeatedly 

until it succeeds in completion [117], a different form of reasoning needs to be 

utilised to ascertain the intended message ordering. Specifically, the predicate 
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FirstSend(P, PNonce,msg2) does not necessarily hold anymore [117]. However, it 

is possible to still appeal to the fact that a MAC must have been generated and 

distributed before it could be received and verified, to be able to sequentially 

order messages. Therefore, formalising this requires the new axiom VMAC: 

VMAC’ Receive(X,m2) ^ Contains(m2,m’) ^VerifyMac(X,m’,m, k) ^ 

Mac(X,m, k)  Y,m1. Mac(Y,m, k) ^ Contains(m1,m’) ^ 

(Send(Y,m1) < Receive(X,m2)) 

The proof above uses axioms previously proved sound in the symbolic model.  

5.3  Proof of UDT+DTLS Protocol 

In this section, we outline the DTLS with UDT protocol. In UDT+DTLS, we focus 

on two principals called the UDT+DTLS client and the UDT+DTLS server. In a 

way correlative to TLS, DTLS guarantees mutual authentication and establishes 

a shared key between these two principals. The proof of UDT+DTLS, therefore, 

lies on the authentication property. The identification of any UDT+DTLS 

program invariants also emphasises the security properties of UDT+DTLS as 

part of the development of the security architecture. 

 55.3.1 UDT-DTLS Description 

We outline DTLS protocol in the formal language we introduced in the earlier 

sections. DTLS protocol provides end-to-end security; it is selectively deployed on 

the Internet in some security and e-commerce systems. We focus on how DTLS 

can be used to mutually authenticate the supplicant and the authenticator, and 

to derive a shared secret key [1,2,30,52-54] to add security in UDT data 

transmissions.  We will be proving DTLS in isolation and will be identifying 

conditions under which other protocols may operate concurrently without 

introducing any vulnerabilities. Identifying such conditions appears valuable, 

given the promising deployment of DTLS on UDT. We employ the terms client 

and server for DTLS protocol participants, and similarly, we adhere to the proof 

of correctness of DTLS based on TLS, when deploying UDT.  
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5.3.2 UDT-DTLS Proof of Correctness 

DTLS has many possible modes of operation. Similarly, we limit our attention to 

the mode where both the server and the client have certificates, since this mode 

satisfies the mutual authentication property. DTLS is developed to construct over 

datagram to cater for unreliable packet transmission, retransmission and 

reordering. To the greatest extent, DTLS is identical to TLS, however unlike 

TLS, DTLS adds explicit state to records and adds explicit sequence numbers to 

secure datagrams.  

The DTLS utilises a simple retransmission timer to handle packet loss. The 

description in 5.3.3 illustrates the basic concept using the first phase of DTLS 

handshake. Server programs are elucidated in the following section, where Vy 

and Vx exhibits the protocol version and cipher suite, Ky is the server’s public 

key, V is the client’s verification key. We employ the match action to check 

signatures, verify keyed hashes and generate decryption. Observe that the terms 

handShake1 and handShake2 exhibit the concatenation of all the terms sent and 

received by a principal up to the point it is used in the program.  

5.3.3 Formal Description of UDT+DTLS in the Formal Language 

Table 5-5:  Formal Description of UDT+DTLS  

UDT:DTLS Server = [ 

DTLS : Server = (Y, Vy)[ 

receive ˆX. ˆ Y .nx.Vx; new ny; 

send ˆ Y . ˆX .ny.Vy; 

receive ˆX. ˆ Y .encky.sig.hc200; 

sigterm := ˆX . ˆ Y .nx.Vx · ˆ Y . ˆX 
.ny.Vy· 

encky; 

verify sig, sigterm, ˆX; 

secret := pkeydec encky, ˆ Y ; 

hc20 := ˆX. ˆ Y .nx.Vx · ˆ Y . ˆX 
.ny.Vy· 

UDT: DTLS Client = [ 

DTLS : Client = (X, ˆ Y , Vx)[ 

new nx; send ˆX. ˆ Y .nx.Vx; 

receive ˆ Y . ˆX .ny.Vy; 

new secret; 

encky := pkeyenc secret, ˆ Y ; 

sigterm := ˆX . ˆ Y .nx.Vx · ˆ Y . ˆX 
.ny.Vy· 

encky; 

sigvx := sign sigterm, ˆX; 

hc2 := hash ˆX. ˆ Y .nx.Vx · ˆ Y . 
ˆX.ny.Vy· 
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encky · sig · “client”; 

verifyhash hc200, hc20, secret; 

hs := hash ˆX . ˆ Y .nx.Vx · ˆ Y . ˆX 
.ny.Vy · ˆX . ˆ Y . 

encky · sig · “server”, secret; 

send ˆ Y . ˆX .hs; 

]Y hY, ˆX , secretiY 

encky · sigvx · “client”, secret; 

send ˆX . ˆ Y .encky.sigvx.hc2; 

receive ˆ Y . ˆX .hs00; 

hs0 := ˆX . ˆ Y .nx.Vx · ˆ Y . ˆX 
.ny.Vy · ˆX. ˆ Y . 

encky · sigvx · “server”; 

verifyhash hs00, hs0, secret; 

]XhX, ˆ Y , secretiX 

 

 

 

5.3.4 UDT-DTLS Security Properties 

The properties that DTLS (based on TLS) ought to satisfy include: 

1. Like TLS, the DTLS principals accede on each other’s identity [128] 

protocol completion status, the values of the protocol version, 

cryptographic suite, and the secret that the client sends to the server. For 

server ˆY communicating with client ˆX, this property is formulated in 

Definition 3. 

 

2. The secret that the client formulates should not be known to any principal 

other than the client and the server [1,2,22-33,54,128]. For server ˆY and 

client ˆX , this property is generated in Definition 4. 
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Definition 3. (DTLS Authentication, similar to TLS [60])) 

DTLS is said to formulate session authentication for the server role if Dtls,auth holds, 

where 

Table 5-6: Honest Rule 

Dts,auth ::= Honest( ˆX ) ^ Honest( ˆ Y )  X.ActionsInOrder( 

Send(X, ˆX , ˆY ,m1), 

Receive(Y, ˆX, ˆY ,m1), 

Send(Y, ˆ Y , ˆX ,m2), 

Receive(X, ˆ Y , ˆX ,m2), 

Send(X, ˆX , ˆY ,m3), 

Receive(Y, ˆX, ˆY ,m3), 

Send(Y, ˆ Y , ˆX ,m4)) 

and m1, m2, m3, m4 represent the corresponding DTLS messages.  

Definition 4 (DTLS Key Secrecy). DTLS is said to provide secrecy if Dtls,sec holds, 

where 

 Dtls,sec ::= Honest( ˆX) ^ Honest( ˆ Y )  

 Has( ˆX , secret) ^ 

 Has( ˆ Y , secret) ^ 

(Has( ˆ Z, secret)  ˆ Z = ˆX v ˆ Z = ˆ Y ) 

 

The proof system is used to prove guarantees for both the client and the server. 

Due to space constraints, the list only includes the guarantee for the 

authenticator in Theorem 3. The client guarantee is similar. The secrecy of the 

exchanged key material in TLS is established by combining local reasoning based 

on the client’s actions with global reasoning about actions of honest agents. 

Intuitively, a client that generates the secret only sends it out either encrypted 

with an honest party’s public key or uses it as a key for a keyed hash (this is 

captured by the predicate NonceSource). Furthermore, no honest user will ever 

decrypt the secret and send it in the clear. Specifically, an honest party can send 



  127 

the secret in the clear only if it receives it in the clear first. Secrecy follows 

directly from these two facts. 

Theorem 3 (DTLS Server Guarantee). 

(1) On execution of the server role, key secrecy and session authentication are 

guaranteed if the formulas in (2) hold.  

Formally, 

Dtls,1  ^ Dtls,,2 |- 

DTLS:Server]X Dtls,auth  ^ Dtls,,sec 

 

(2) The formulas in below are invariants of DTLS.  

 

Formally, DTLS Invariants: 

Table 5-7: DTLS Invariants 

Dtls,1 := m.Send(X,m) ^  (Contains(m,HASHsecret(handShake1, “server”))  

Contains(m,HASHsecret(handShake2, “client”))  Contains(m, SIGV 
x(handShake1))) 

Dtls,2 := Honest( ˆ Y ) ^  Send(Y,m) ^  ContainsOut(m, secret,ENCKy(secret)) 

( Decrypts(Y,m )  ^  Contains(m , secret))v (Receives(Y,m ) < FirstSend(Y, 
secret) ^  ContainsOut(m , secret,ENCKy(secret))) 

 

5.3.5 UDT-DTLS Operating Environment  

We now characterise the class of protocols that safely constitutes with DTLS. As 

in the preceding section, we relate DTLS invariants to deployment 

considerations. 

DTLS,1 states that messages of a certain format should not be sent out by any 

protocol that executes in the same environment as TLS. One set of terms exhibit 

keyed hashes of the handshake, where the key is the shared secret established by 

a DTLS session; [22-33,54,60] another set refers to signatures on the handshake 

messages. A client running a protocol that signs messages indiscriminately could 
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instigate the loss of the authentication property. Such an attack would only be 

possible if the client certificate used by DTLS was shared with other protocols 

and was infringed by them. 

DTLS rules out an undesirable sequence of actions that may allow an intruder to 

learn the shared secret. Intuitively, if an honest principal is tricked into 

decrypting a term containing the secret using its private key, after which it sends 

out the contents of the encryption [60], the secrecy property of DTLS is lost. 

Clearly, if principals utilise an exclusive public/private key pair for DTLS, such 

an attack is not possible. However, since another protocol may employ the same 

public/private key pair as DTLS, it is important to check that these formulas are 

invariants of any other protocol. 

5.4 Proof of UDT+GSS-API (Kerberos) Protocol 
 

The third mechanism proposed is UDT+GSS-API. We illustrate the proof system 

in this section using GSS-API and we focus on Kerberos V5 [39-40,45,110], 

proven to any protocols, which GSS-API uses. In this section we illustrate how 

Kerberos is formalised to achieve proofs of secrecy and authentication. 

5.4.1 UDT+GSS-API (Kerberos) Description  

The formulation is based on the A level formalisation of Kerberos V5 in [110]. 

Kerberos provides mutual authentication and establishes keys between Clients 

and application Servers, employing a sequence of two message interactions with 

trusted parties called the Kerberos Authentication Server (KAS), and the Ticket 

Granting Server (TGS) [35,37,43]. 

5.4.2 Proof of UDT+GSS-API through Kerberos 

Mechanisms are denoted in a process calculus by defining a set of roles [54], such 

as ‘Client’, or ‘Server.’ Each role is provided by a sequence of actions such as 

sending or receiving a message, generating a new nonce, or decrypting or 

encrypting a message [110]. In a run of a mechanism, a principal may execute 

one or more instances of each role, each execution constituting a thread identified 

by a pair (^X; ), where ^X is a principal and  is a unique session identifier. 
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Kerberos has four roles [110]:  Client, KAS, TGS and Server. The pre-shared 

long-term keys between the client and KAS, the KAS and TGS, and the TGS and 

the application server, will be written as k X;Y type where X and Y are the 

principals sharing the key. The type appearing in the superscript indicates the 

relationship between X and Y: c k indicates that X is acting as a Client and Y is 

acting as a KAS, t k for TGS and KAS and s t for application server and TGS.  

In the first stage, the Client (C) generates a nonce (represented by new n1) and 

sends it to the KAS (K) along with the identities of the TGS (T) and itself. The 

KAS generates a new nonce (AKey - Authentication Key) [115] to be utilised as a 

session key between the Client and the TGS. It then sends this key along with 

some other fields to the client encrypted under two different keys- one it shares 

with the Client (kc kC,K ) and one it shares with the TGS(kt kT,K ). The encryption 

with kt kT,K is called the Ticket Granting Ticket (tgt). The Client extracts AKey by 

decrypting the component encrypted with kc kC,K and recovering its parts using 

the match action which deconstructs textkc and associates the parts of this 

plaintext with AKey, 1, and T^. The ellipses (…)  indicates further Client steps 

for interacting with KAS, TGS.  

In the second stage, the Client gets a new session key (SKey - Service Key) and a 

service ticket (st) to converse with the application server S which takes place in 

the third stage. The control flow of Kerberos exhibits a staged architecture where 

once one stage has been completed successfully, the subsequent stages can be 

performed multiple times, or aborted and started over for handling errors. 
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5.4.3 Formal Description of UDT + GSS-API in the Formal Language 

Table 5-8: Formal Description of UDT + GSS-API  

Client = (C; ^K ; ^ T; ^ S; t) [ 

new n1; 

send ^ C: ^ T:n1; 

receive ^ C:tgt:enckc; 

textkc := symdec enckc; kc!k 

C;K ; 

match textkc as AKey:n1: ^ T; 

_ _ _ stage boundary _ _ _ 

new n2; 

encct := symenc ^ C;AKey; 

send tgt:encct: ^ C: ^ S; n2; 

receive ^ C:st:enctc; 

texttc := symdec enctc;AKey; 

match texttc as SKey:n2: ^ S; 

_ _ _ stage boundary _ _ _ 

enccs := symenc ^ C:t; SKey; 

send st:enccs; 

receive encsc; 

textsc := symdec encsc; SKey; 

match textsc as t; 

]C

KAS = (K) [ 

receive ^ C: ^ T:n1; 

new AKey; 

tgt := symenc AKey: ^ C; kt!k 

T;K ; 

enckc := symenc AKey:n1: ^ T; kc!k 

C;K ; 

send ^ C:tgt:enckc; 

]K 

TGS = (T; ^K) [ 

receive tgt:encct: ^ C: ^ S:n2; 

texttgt := symdec tgt; kt!k 

T;K ; 

match texttgt as AKey: ^ C; 

textct := symdec encct;AKey; 

match textct as ^ C; 

new SKey; 

st := symenc SKey: ^ C; ks!t 

S;T ; 

enctc := symenc SKey:n2: ^ S;AKey; 

send ^ C:st:enctc; 

]T 

Server = (S; ^ T) [ 

receive st:enccs; 

textst := symdec st; ks!t 

S;T ; 



  131 

match textst as SKey: ^ C; 

textcs := symdec enccs; SKey; 

match textcs as ^ C:t; 

encsc := symenc t; SKey; 

send encsc; 

]S 

 

5.4.4 GSS-API Kerberos Properties and Operating Environment 

The security objectives of proving Kerberos are of two types: authentication and 

secrecy. The authentication objectives take the form that a message of a certain 

format was indeed sent by some thread of the expected principal. The secrecy 

objectives achieve the form that a putative secret is a good key for certain 

principals. For example, AUTHclientkas outlines that when C completes executing 

the Client role, some thread of K^ indeed sent the expected message; SECclientakey 

outlines that the authorisation key is good after execution of the Client role by C; 

the other security properties are related. 

The proof of Kerberos Security properties clearly underscores and demonstrates 

an interleaving of authentication and secrecy properties, reflecting the institution 

behind the proposed mechanism.  

5.5  Concluding Remarks  

In this chapter, 3 mechanisms were selected and analysed:  the UDT-AO, 

UDT+DTLS and UDT+GSS-API, Kerberos [22-33,39-40,110] authentication 

protocols.  

We found a few anomalies that are widely found in authentication protocols 

[72,73]. Similarly, we raised the issues of a repairable DoS attack, an anomaly in 

the derivation of the master key MKey, and a potential algocrypt or in some cases 

simple cipher suite downgrading attack. While the third anomaly is unavoidable, 

proper awareness of an attacker’s ability to weaken algocryptList in Message 1 

and provision of appropriate measures to address it should prevent problems 

from arising. We found that by flooding the network with fake Message 1’s, an 
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attacker can force a peer to re-compute the MAC key SKey, causing the peer to be 

unable to correctly process Message 3 from a legitimate server. This attack is 

especially problematic because UDT-AO [22-33] is designed to work on devices 

such as routers with easily exhaustible limited memory. To minimise the chance 

of a DoS attack, we propose a fix that allows the peer to maintain state per 

connection and session, instead of state per message [43,142]. We also identified 

an anomaly in the derivation of the master key MKey, similar to the findings of 

[48-50]. Specifically, MKey was derived using a KDF; most of the key derivation 

is assigned with initial constant key value, though this does not provide an 

obvious way for an attacker to reliably learn session keys [1,2,22-33,44], but it is 

better to use a more standard implementation, such as key reset and variable 

assignment of initial KDF [110]. 

In case of DTLS, we identified the secrecy and authentication properties of this 

mechanism viable with UDT through the use of sequence numbers. Properties of 

secrecy, however, rely on how data are transmitted based on a presumed secrecy 

of long-tem shared symmetric keys [1,2,22-33,52,84]. 

In Kerberos, the secrecy of encryption keys [18,39-40,45,110,121] allows the 

establishment of authentication, which is achieved by virtue of ciphertext 

integrity offered by the symmetric encryption scheme. Similarly, it can be 

understood that a ciphertext could have been produced only by one of the 

possessors of the corresponding key. 

The execution of Client role within UDT environment by a principal is 

guaranteed, because there is an asymptotically overwhelming probability and 

that the intended ticket sent the expected response, assuming that the client is 

trustworthy before the data are transmitted through UDT. 

The theoretic and discussed proofs of secrecy and authentication of UDT-AO, 

UDT+DTLS, and UDT+GSS-API, Kerberos [22-33] demonstrate they are useful 

mechanisms for UDT, provided that appropriate techniques are supplemented 

with extensive practical validations in UDT implementations. 
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Chapter 6     
 
 
 
High Speed Data Transfer Security 
Architecture 
 
 

The primary objective of the architecture includes the management of messages through 

the proposed security mechanisms and cryptographic keys, the security of data 

communications, and the integration of data protection enhancing technologies. Our 

approach is based on the results of our work which formulated on the enhancement of 

existing schemes to create a novel approach to secure UDT. They rely upon well-discussed 

schemes that can be upgraded to provide improved security and primary protection in 

future extensive UDT deployments.  

 

Essentially, the idea is to use a common baseline design that, on one hand, provides a 

sufficient level of protection of data and communication, but which, on the other hand, is 

deemed practical and deployable to UDT and to other similar protocols. The design will rely 

on well-established and understood cryptographic primitives, which are fully scrutinised, 

thus sufficiently trusted and implementable in various environments.  

 

6.1 Framework Objectives 

 

The goals our architecture seek to achieve include: using a cryptographic key management 

for messages, privacy and data integrity, and secure communication. The architecture 

focuses on the upper layers, from IP through to the application layers of the stack. In 
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addition, our architecture will also seek to address the basic fundamental design of UDT 

and to introduce a security mechanism that is not available at the packet level.  

 

The design is partially drawn from the architecture of TCP and UDP.  We introduce a 

proprietary design intended for UDT basing on the foundation laid by Gu [82]. The design is 

novel and applicable to the future design of UDP-reliant protocols. 

 

6.1.1 Milestone 

 

We present a practical security architecture for UDT that is also applicable to other high-

speed data transfer protocols. We also describe scalable mechanisms to achieve the desired 

protection. To develop this architecture, extensive reviews and validations were conducted, 

as well as implementations of existing mechanisms on UDT. The results were presented in 

the preceding chapters.  

 

The architecture is useful in several ways. It is presented with supplemental information 

on the schemes, which can provide a basis for basic, if not comprehensive, security of data 

flow — specifically in the higher-level communication layers. 

 

6.1.2  Summary of Work 

The importance of studying UDT is highlighted owing to two reasons: firstly, it has 

potential commercial promise; secondly, it is one of the Fastest Data Transfer protocol 

available but has no security to protect data transfer. 

 

We introduce an approach securing UDT-implementations in various layers [22-33]. 

However, securing UDT in terms of both application and other layers needs to be further 

explored in future UDT deployments in various applications. It is important to note that 

there are applications, transport layer-based authentications and end-to-end security 

options for UDT.  



 

                                                                                                                                                                       135 

     

In this chapter, we discuss the results of our work by presenting an experimentally 

validated framework to secure UDT. There are five important areas which the framework 

highlights: 

 

Security at the application and session layers via UDT extensions require 

client and servers, and significant changes to applications to accommodate 

security features; 

 

Security on the layers 2-3. The encryption is performed, and abstracted from 

the UDT application, eg., via gateway-to-gateway, Virtual Private Networks 

(VPNs), when security on the application layer becomes too complex to 

develop; 

 

Other mechanisms that are available - such as IPSec- can protect data 

traffic. However, the development of specific mechanisms for UDT 

minimises reliance on mechanisms that can affect performance and add 

overhead and complexity in UDT implementations; 

 

Introduction of viable mechanisms UDT-AO, UDT+DTLS, and UDT+GSS-

API or UDT-Kerberos. These mechanisms achieved proof of correctness and 

are therefore suitable for UDT; 

 

The inclusion of all existing mechanisms for the data flow within the 

architecture provides an extensive analysis of other mechanisms that can be 

implemented with UDT. 

 

 

 

 

 

 

 



 

136 

6.2 Architecture   
 

Based on the schemes reviewed, the following layer-to-layer architecture is presented for 

UDT. 

 

 

Figure 6-1. Layer-to-Layer Architecture. In this architecture, the UDT layer provides transport 
functionalities to applications. The security schemes that can be implemented on this layer are DTLS 
and SASL for the upper layer. The layer above using UDT Socket can be implemented with GSS-API. 
UDT, however, can implement AO at the transport layer. The remaining lower layer can be protected 
using IPSec (securing end-to-end), HIP through the Application layer. CGA is specifically implemented 
on the IP layer provided HIP is not binding to the UDT socket. 
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Figure 6-2: Proposed UDT Security Architecture 

 

From Figure 6-1, the detailed data flows with the proposed mechanisms are presented in 

Figure 6-2. With the introduction of IPSec, GSS-API, SA, SASL (a standard mechanism 

required to manage secret encryption and authorisation keys), a generic key management 

API is proposed, which can be used for IPSec and other existing security services. Similar to 

using sockets, this specific API creates a new protocol family — the PF_Key domain. This 

must be constant and must be used with key management sockets, according to RFC 2367. 

 

It is important to note that IPsec provides services to packets based on the Security 

Association (SA) [20,22-33], which is stored for use in the Security Association Database 

(SADB) [21-33]. This can be used for other routing protocols.  
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Key operations are supported on key management sockets, such as: 

 

1. UDT can request a key from a key management daemon. The process /application 

that uses UDT can send a message to the kernel with open key management sockets 

by writing to a key management socket. 

 

2. A process can read a message from the kernel (that UDT operates). The kernel uses 

this facility to request that a key management daemon install an SA for a new UDT 

connection. 

  

The security architecture has been introduced following an extensive review, which 

included a design for a security-specific modular structure for the UDT protocol, which is 

also practical for other data transfer protocols.  

 

6.3 Synopsis  

 

We have presented our methods by using existing security mechanisms and developed one 

for UDT with the specifications of TCP, UDP, and Sockets API.  Our design is the result of 

extensive experiments and implementations, and – using existing high speed appliances to 

support our schemes – has practical application. 

 

The implementation of this architecture is not limited to UDT.  It is designed to be 

adaptable and to work with other fast data transfer protocols.  

 

Special consideration on different layers of the stacks and the introduction of either 

proprietary or commercially designed types to meet stringent security requirements can 

achieve enhanced security.  
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6.4 Symbolic Analysis of Proposed UDT Security Architecture 

 

In this section, we introduce an approach using rewrite based systems and automata in 

order to specify and analyse the selected security mechanisms and data flow. We outline 

and employ this approach to verify more effectively our proposed architecture.  

 

This approach is closely replicating dataflow to allow a real representation of the 

implementation of selected mechanisms integrated into the architecture. We consider this 

approach effective in corresponding with the properties of the rewrite systems; the 

specifications of the architecture to utilise theoretical but proven approach to perform the 

analysis.   

 

There are not many verification tools available and specifically tailored to analyse our 

proposed architecture and its underlying components. We state abstract representation of 

the components that compose the architecture and conduct our analysis, through extensive 

analyses. These analyses will examine the relationship between components within the 

architecture. These will also examine the possibility of issues (i.e., design anomalies, 

adversarial attacks). We employ these analyses as a way to avoid or mitigate successful 

attacks. 
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The use of automata to achieve decidability in rewrite systems will highlight an important 

class of reduction automata which is closed under union and intersection. With each 

reduction automaton we can associate a complete reduction automaton that accepts the 

same language. This construction preserves determinism. The class of complete 

deterministic reduction automata is closed under complement. These important properties 

assist us in determining the data flow confluence of the security mechanisms analysed 

through the rewrite systems.   

 

The possible inputs and data flow on which these mechanisms can work are determined 

through the use of the above approaches. They can assist us analyse the strengths and 

weaknesses of the proposed mechanisms. We then arrive at what the results which lead to 

conclude to be the most feasible mechanisms possible.  When we do, we shall expect to 

determine tasks that even it cannot perform. This will be our ultimate result, that no 

matter what mechanisms and architecture we build, there will always be questions that are 

simple to state that our approaches can either accept or reject. Along the way, we attempt 

to evaluate some of the issues, such as optimality through practical simulations and 

experimentations in a real environment. 

 

As we conduct important analyses: structural, semantic, and query analyses. Structural 

and semantic analyses examine the relationships that the mechanisms have with other 

mechanisms, and examine the decision processes within the architecture. Query analysis on 

the other hand provides analysis such where does the data flow across the UDT 

architecture come from and from which a security mechanism it passes through. In this 

work, we concentrate on tracing the data flow to ensure that anomalies can be detected. 
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6.5 Approach  

 

A brief description of the basic notions related to the terms ‘algebra’ (i.e., terms, 

substitutions, positions), ‘rewriting systems’ (i.e., reduction relation, confluence, 

termination) [49, 64] and ‘tree automata’ is discussed. In the succeeding sections of this 

chapter, we discuss and outline some basic notions that we used and. We also introduce the 

notion of constrained rewrite systems. The main interests in the sections are based on 

formal languages and rewrite based systems.    

 

6.5.1 Term Algebra 

 

Many sorted signatures of the form (F, S) consisting of a set of sorts S and a set of function 

symbols F have been considered. Symbols of F are denoted by bold characters ff, gg, and so 

on,  and their profiles are denoted as follows ff : s1 x…x sn s where s1,…,s are sorts of S 

and n is the arity of ff. The set of terms of sort s built [49,64,71] out of symbols from F and of 

sorted variables from a set  is denoted by  and the set of ground terms of sort s is 

denoted by . For any denotes the variables occurring in t. If any 

variable of t occurs only once in t, then t is said to linear. A position within t is a sequence 

 of integers describing the path from the root of t (seen as a finite labelled tree) to the root 

of the subterm at that position, denoted by . We use for the empty sequence .| | is 

the length of the position. Pos(t) denotes the set of position of t. t( ) is the symbol of t at 

position  and tt[s]w the term t with the subterm at position  replaced by s. A 

substitution is a mapping from  to  which is the identity except over a finite set of 

variables (its domain) and which is extended to an endomorphism of . A substitution is 

said ground if all the variables of its domain are mapped to ground terms. A term t matches 

a term t’ iff (t’)=t  for some substitution . Two terms t and t’ are unifiable iff (t’) = 

(t) from some substitution  [42, 49-50, 63-64, 78, 104,141].  
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6.5.2 Tree Automata 

 

A tree automaton is a triple  where Q is a finite set of symbols called states 

disjoint from F,  is the set of final states and  is a finite set of transitions of the 

form f (q1,…,qn)  where q1,…,qn, q and n is the arity of f . is extended to * as 

follows [49-50,64,104,141]: if and f (q1,…,qn) q, then f (t1,…,tn) q. The 

language recognised by is . A set (or a 

language) of terms recognised by a tree automaton is said regular. A relation R is regular if 

there exists an automaton recognising where for any t = (t1,…,tn) and 

with if and the special 

symbol  otherwise. Boolean operations, Cartesian product, projection and cylindrification 

preserve regularity. It can be stated that a set or a relation is effectively regular iff  it is 

regular and can compute an automaton which recognises it. 

 

6.5.3 Rewrite Systems 

 

A rewrite rule is a pair of terms l  r. The terms l and r are respectively called the left-

hand side and right-hand side of the rule. A rewrite system [139,142] R is a finite set of 

rewrite rules. Any rewrite system R induces binary relation over terms denoted by R as 

follows: for any terms t, t’, t R t’ if there exist a rule l  r of R,  and a 

substitution  such that and . A rewrite rule is linear iff its left-

hand side  and right-hand side are linear. A rewrite system is linear if all its rules are 

linear. A Growing Rewrite System (GRS) [42, 50, 97, 104, 141] is a linear rewrite system 

such that for every rule l r, for some positions then .  
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6.5.4 Extension to Rewrite Systems  
 

Without restriction, we can consider that any GRS (Growing Rewrite Systems) is a set of 

rules of one of the following forms (extension of Jacquemard’s [49, 95]): 

 
 

Knowing that any unconstrained variable x can be seen as a variable constrained by x A 

where A is the automaton recognising all ground terms. Thus, we consider that any 

variable is constrained. 

 

Let be L a regular language recognised by AL and R a CGRS. The automaton recognising   

 is built as follows: 

 
 
where the disjoint sum  of two automata over the same signature is the automaton 

whose set of states, set of final states and set of rules are the union of corresponding sets of 

the two automata, provided that they are all disjoint [95]. Then, we transform  

into   by applying the following rules:  
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with the conditions: 
 
1. for all 1  i n, qi’  is a final state of Ai 

2. for all 1  j  m, there exists a substitution  such that  

 and for each xi occurring in g(r1,…,rm), we have _  
 

 
 
with the conditions: 
1. x = xi  for some 1 i n 
2. for all 1  i n, if xi = x then qi’ = q, otherwise qi’ is a final state of Ai. 
 

The desired automaton is where QL is the set of final states of AL.  

An ordered rewrite system is a rewrite system in which rules are ordered. For an ordered 

rewrite system R,  R is defined as follows: for any terms t, t’, t R t’ if there exists a rule l 

 r of R,  and a substitution  such that and  and such 

that there is no prior rule l’ r’ such that for some  and  [64, 95, 104].  

 

A constrained rewrite system (CRS) is a rewrite system [42, 50] that defines a constrained 

such that for every rule l  r is associated to a set of membership constraints x  A where 

x is in Var(l) and A is a regular tree language. If l  r is associated 

to , we write l  r || x1  A1,…,xn  An. The binary relation  R 

induced by a constrained rewrite system R is de_ned as follows: for any terms t, t’, t R t’ 

iff_there exists a rule l r || x1  A1,…,xn  An of R,   and a substitution  

such that  and  and such that  for every i.  
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Given a rewrite system R, R* denotes the reflexive transitive closure of the relation 

induced by R. For any term v, R-1 (v) denotes the set . For any set of ground 

terms denotes the set v}. A rewrite system R is confluent 

iff for any terms u,w, v, if u R*v and u R* w, then there exists t such that v R* t and 

w R*  t. u is irreducible w.r.t R iff there is no v such that u R v. If u R v and v is 

irreducible w.r.t R, then v is a normal form of u.  

 

For any linear (constrained or not) rewrite system R and rule r of R, it is denoted by rec(r) 

the regular set of ground terms that are reducible by r. If R is an ordered rewrite systems, 

it is denoted by rec(r/R) the set of terms that are reducible by r and by no rule prior to r in 

R. 
 

6.6 Formalisation 
 

In this section, we formalise the proposed architecture based on specified rewrite rules. We 

exhibit the flow as rewrite rules. These specifications are available in the flow of data 

through the proposed security mechanisms. 

 

Formalisation achieves validation without system overload. The theoretical proofs of the 

mechanisms operating within the proposed architecture are adequate in this work to 

substantiate the correct data flow within compositional layers of the mechanisms. These 

either functional in isolation or in a group with other mechanisms defined in the design.  

 

Example 1. We base our example on Figure 6-3. Data flow from either left to right, or 

up to down, and vice versa. Mechanisms put in place monitors the flow and accept and exit 

flows. Reject flows only occur if an anomaly is detected in either in the flow-source or flow-

destinations within the data flow of UDT.  
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Figure 6-3: Data Flow through mechanisms (m) with in architecture.  
 
 

6.6.1 Data Flow 

In our approach, data flow is demonstrated as an algebraic term. The selected symbolic 

representation of data flow is based on the following signatures: 

Note: (from(ab,x),dest(ab,x)) represents a dataflow (from(ab(1),x),dest(ab(1),x’)) to the set of data whose flow-
source comes from a security mechanism ab# and flow-destination exits 

Left, right:   data  data   ab(#)data flow from left to right 

Right, left:   data  data   ab(#)data flow from right to left

Up, down   :   data  data   ab(#)data flow from up to down (as above Figure 6-3)

Down, up   :   data  data   ab(#)data flow from down to up (as above Figure 6-3)

#          :         data   value of # such that a(1)…a(7)

From       :   data x data  flow-source  

Dest       :   data x data  flow-destination

Dataflow   :  flow-source x flow-destination  Dataflow (as above Figure 6-3)

a,b        :   mechanism  mechanism (as above Figure 6-3)

We label the mechanisms as ab(#), such that term t=ab(#) and where #  is a value. 

mechanisms : ab(1) CGA, ab(2) GSS-API, ab(3) SASL, ab(4) UDT+DTLS, ab(5) UDT-

AO,ab(6) SA, ab(7) HIP 
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There are various possibilities to describe how the data flow passes through the 

mechanisms. The flow, however, only relies on the given flow source. To distinguish which 

mechanisms are used, we represent these as words over {a,b} and a value # (1,2..n). We 

restrict our representation of data as dataflow, flow-source, flow-destination, and # to 

specific mechanisms we proposed.  

 

For example the term t=ab(#). # identifies as a mechanism; example ab(1) is assigned to a 

specific mechanism CGA. This representation allows us to build a tree automata that 

recognises data flow and mechanisms to analyse the architecture as a state. 

 

Data are terms of sort Dataflow for example, the term dataflow (from(ab,x),dest(ab,x)) 
represents a dataflow (from(ab(1),x),dest(ab(1),x’)) to the set of data whose flow-source 

comes from a security mechanism ab# and flow-destination exits to the same mechanism is 

a given flow. 

 

In the preceding section, we define how the flow can be secured across ab(#) mechanisms 

(using the symbols flow-source and flow-destination), thus allowing us to encode and 

assume a symbolic attack by appropriate tree automata, which we use for the analysis. 

 

6.6.2 Architecture Flow 

 

Furthermore, to extend the data flow in the proposed architecture, the following symbols 

are added. 

Enter or accept, Exit or reject :  Decision 

From a rewriting point of view, the flow rewrites a dataflow into enter, exit or reject. 

 

Definition 1 (Mechanism). A mechanism is composed of ordered rewrite systems Prem, 
Processm, and Exitm such that: 

 



 

148 

rules of Prem are of the form of p  d where p is a linear term of sort Dataflow and d 

a (ground) term of sort Decision; 

rules of Prem and Exitm are, respectively, of the form:  

      

From(mechanism, x)  From(mechanism’, x’) 

Dest(mechanism, x)  Dest(mechanism’, x’) 

 

Where mechanism, x are linear terms and mechanism’, x’ are ground terms. 

 

Example 2.  The mechanism described in Example 1 can be specified as follows: 

 

{ 
 

Dataflow (
From (ab[x],data)

)
 

 
accept 

Dest (ab[y],z) 

Dataflow (x,y)  exit 

 

 

Definition 2 (Semantics). For any mechanism [1…n], its semantics is denoted by [m] and 

defined as follows: 

[m] = [m]accept U [m]exit OR [m] reject 

With R:{x x} is the rewrite system R in which the rule x x has been added as the last 

rule. 

[m] accept = {(t,u)  Tdataflow x Tdataflow |  v  Tdataflow, t Prem;{ x x } v

Processm enter  v Exitm;{ x x } u} 
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[m] exit ={(t, exit)  Tdataflow x TDecision |  v  Tdataflow, t Prem;{ x x }u

Processm exit}

From an abstract point of view, a mechanism can be distinguished as a partial or total 

function which takes an input (data / dataflow) and returns either exit/reject. 

 

6.7 Analysis of the Architecture 

 

It can be observed that this rewrite specification not only allows automatic checking of 

properties of semantics of a mechanism, as part of the overall architecture; it also permits 

structural and query analysis on the architecture itself. 

 

6.7.1 Semantics Analysis 

 

A mechanism can be observed as a decision process that allows dataflow with data that can 

be either accepted or rejected. Therefore, the following properties require verification: 

consistency, which indicates that at most, one decision is taken for a given data flow; 
termination, which ensures that a mechanism computes a decision in a finite time; and 
completeness, which signifies that for any dataflow, the mechanism returns a decision. 

 

By construction, any mechanism that denotes a terminating and consistent decision process 

is a function. Completeness can be therefore defined as follows: 

 

Definition 3 (Completeness). It states that a mechanism (m) as part of the whole 

architecture (a), is a complete iff [m], which is a total function. 

 

The particular shape of the rules defining a mechanism allows it to represent the semantics 

of a mechanism as a regular relation and to verify its completeness. 
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Proposition 1. Completeness is decidable. 

 

Proof. The proof relies on the regularity of the relations involved in the definition of the 

semantics of a mechanism as part of the architecture. Since the left-hand sides of all the 

rewrite rules composing a particular mechanism are linear and share no variable with their 

right-hand sides, we can show that  Prem;{ and  Exitm;{are regular trees relations. Since the 

identity is a regular relation, it follows that Prem;{ x x } and Exitm;{ x x } are also regular. By 

composition and restriction, we obtain that [m] accept and [m] exit/reject are regular tree 

(functional) relations. Subsequently, [m] is a regular tree (functional) relation. The 

completeness can be tested by checking that the first projection of [m] covers the (regular) 

set of all possible incoming data transported by the dataflow. 

 

In case of a complete architecture - yet selecting only the applicable mechanisms in either 

in isolation or in compositional groups, where these are used at the same time, but 

independently operate on a given speed, it is important to determine if the chosen 

mechanism is applicably stronger than the others. This can be accomplished, through 

verification, based on specifications of the mechanisms.  

 

Definition 4 (Order). A partial order can be defined over complete mechanism within a 

complete architecture as follows: for any m and m’,m m’ (m’ is more permissive than m) iff 

[m]accept [m’] accept. We write m m’ iff m m’ and m’ m. 

 

A mechanism m’ is thus permissive than a mechanism mm if it accepts all data flow that mm 

accepts. Note that m m’ iff [m]=[m’]. 
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For the same reasons, it can decided whether a mechanism is more or less permissive than 

the other within the architecture. 

 

Proposition 2. The order relation  is decidable. 

 

Proof. As it has already  been shown, for any mechanism [m], [m]accept/enter and [m]exit/reject and 

[m] are regular relation. Consequently, the inclusion [m]accept/enter  [m’]accept/enter is decidable. 

Note that two mechanisms may have the same semantics even if their rules are different. 

This is particularly interesting since it allows to simplify and optimise the flows of a 

mechanism and check if the succeeding mechanism has the same semantics as the 

preceding one. 

 

6.7.2 Structural Analysis 

 

Structural analysis refers to the detection of so-called anomalies [64] in the 

implementations of a particular mechanism. These anomalies are looked at as properties 

expressed as relationships between the rules of mechanisms (rm) within the proposed 

architecture. Examples of anomalies are superseding (an rm leads to decisions 

contradictory to decisions of prior rules of prior mechanisms), redundancy (an rm  can be 

removed without any impact to other mechanisms and data flow), and generalisation (an 

rm  matches a superset of the set of data matched by a prior rm with a different decision). It 

should be mentioned that, while several approaches have been developed for the detection 

of the above anomalies, these approaches are often intentionally introduced in order to 

obtain more compact or more effective rm sets. Detecting anomalies is still interesting since 

it can outline some mitigation. Only discussed here is the approach for detecting 

superseding; the other anomalies can be treated in a similar way. Recall the definition of 

the superseding anomaly in this context: it can be said that a mechanism superseding iff it 
contains at least one rule, such that all dataflow it allows and accepts are rejected by a 

prior rm. In such a case, the concerned rm is said to be superseded. 
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The detection of the superseded rms, as well as of the other anomalies, is based on the 

regularity of the sets of terms associated to a given rm. More precisely, each rule rm =r is 

associated to several sets: rec(r), denoting the set of data matching r; rec(r=Processm), 

denoting the set of data matching r that match no S prior rule of Processm (i.e. rec(r)\ r’<r 
rec(r’)) and rec(r=Processm [d]) denoting the set of data matching r that match no other rule 

of Processm associated to the decision d. Since the left-hand sides of the processing rules are 

linear terms, all the sets rec(r) are regular; the other sets are also regular since they can be 

built starting from rec(r) and using operations that preserve regularity. Anomalies can then 

be detected using inclusion or emptiness tests. For example, to detect if a rule r is 

superseded, it suffices to check the emptiness of rec(r=Processm[accept/enter]) if the right-

hand side of r is dropped while the emptiness of rec(r= Processm[exit/reject])  is not dropped. 

 

It is well-known that operations over tree automata are highly complex. In this case, the 

complexity of the needed operations strongly depends on the representation of data and, in 

particular, on the representation of dataflow. The choice of dataflow as words over {a,b} or 

{0,1} (or equivalently as terms built from the monadic symbols 0 and 1, a and b,  and the 

constant #) is indeed made in order to obtain efficient implementations of the corresponding 

automata operations. 

 

To simplify, consider the word automata; the correspondence with tree automata is 

straightforward. Due to the representation of ab(i…n) ranges, we are confronted with n-

prefix (or simply prefix) languages, i.e. regular languages of the form 

 or (a,b}*. A good property of the manipulated ranges is that 

corresponding minimal and deterministic automata have no loop except at their unique 

final state, which loops over itself for any word.  

 

Moreover, as discussed, the sets of dataflow of a given mechanism are 1-prefix. It follows 

that rec(r), rec(r=Processm),…, are prefix languages. Consequently, anomalies can be 

efficiently detected using our approach. 
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Query analysis is another kind of analysis attempted. This kind of analysis has assisted us 

in understanding the behaviour of a mechanism within the architecture through deriving 

outputs based on pre-determined and pre-defined queries, such as “which mechanism will 

receive the data flowing from left to the right side of the architecture?” It was introduced 

earlier the semantics of the mechanisms and the architecture as regular relation.  

 

6.8 Concluding Remarks 

 

In verifying our proposed architecture, we use symbolic analysis of each mechanism within 

the edge of UDT data flow. Then we analyse the overall architecture with the mechanism’s 

data flow.  

 

By using this approach, we show the viability of these mechanisms for this architecture. We 

describe the architecture using structural and query analyses, and automata, aside from 

using rewrite systems, which interpret relevant properties and semantics through classical 

theoretical and practical way. We show that these approaches and analyses highlight any 

foreseen anomalies that require decision processes, thereby assisting in solving and 

mitigating risks.  Mitigations may include additional security mechanisms, proprietary 

layer 7 and layer 3-4 devices and so on. We use formalisation to understand the flow of data 

from and within the architecture. 

 

The approach we use allows us to address implementation scenarios from theoretical and 

practical point of views. Using automata operations and performing basic practical 

applications and implementations, as described in the preceding chapters, allow us to 

understand and address any issues in the mechanisms underlying the security architecture. 

We find that rewrite systems, combined with structural and query analyses, effectively 

highlight any vulnerabilities and anomalies in the composition of a viable UDT security 

architecture.
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Chapter 7 

 
 
Conclusion and Scope for Future 
Work 
 

 

The final chapter of this dissertation summarises and assesses the original 

contributions of this work. This final section describes the continuing security 

evaluation of UDT and continuing improvement of the proposed architecture, and 

presents the scope for future work.  

 

7.1 Summary 

In Chapter 1, we presented concepts and hypotheses of this work. We introduced 

the specific network protocol of interest and discussed its security limitations. In 

Chapter 2, we outlined the existing literature written and published about the 

network protocol. In Chapter 3, we proposed security mechanisms, and modified 

important variables in the UDT structure itself by adjusting the values of MSS, 

header, and size, in various scenarios to facilitate performance evaluation within 

both secure and unsecure environments. In Chapter 4, we presented and 

described the design and implementation of a unique visualisation tool—Project 

UDT—which constitutes a multi-faceted tool to assist in UDT analysis.  Then we 

presented our experiments that aimed to derive practical verifications of our 

mechanisms.   
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By using readily available security devices to build an infrastructure for 

conducting experiments, we examined activity at the given protocol level with an 

accurate knowledge of events at other levels.  

In Chapter 5, we used information-theoretic and proof of correctness and 

verifications of selected mechanisms to further substantiate the results of our 

simulations and experiments. 

In Chapter 6, we presented the architecture with these mechanisms and 

analysed the architecture’s data flow, traceability, applicability, and security by 

using rewrite systems and automata.  

7.2 Assessment 

This section of the dissertation measures our work described in the previous 

chapters towards the thesis and the hypotheses presented in Chapter 1. 

The thesis of this dissertation may be summarised as: outcome of the observation 

of UDT data flow and the determination of the absence of its security functions 

which relied upon existing mechanisms of other protocols and in which, largely 

for practical reasons, are of limited capability. No research relying on these 

mechanisms may in consequence be restricted in its scope or accuracy, or even 

determined by the available mechanisms with which they can be adopted. New 

mechanisms and techniques are needed which, by supporting a more robust and 

viable security architecture, will contribute to better understanding of UDT’s 

practical applications and the other protocols and its systems as a whole, its 

constituent components, and in particular, the interaction of security 

mechanisms to secure UDT data transfer within and across the network protocol 

stack.  

The hypotheses follow that UDT is distinctive and not secure compared to other 

known network protocols, and these are tested through experimentation and 

implementation to confirm the contention. The hypotheses follow that the 

proposed mechanisms to secure UDT can be implemented on the selected layers 

of the protocol stack, and are also tested through information-theoretic, symbolic 



  157 

analysis, compositional proof of correctness, automata and rewrite systems. 

Moreover, the hypotheses follow that, using the commercially proven and 

proprietarily developed security mechanisms can protect not only UDT but also 

other protocols, and are also tested through experimentation and implementation 

to confirm our contentions. Lastly, the hypotheses also follow that securing UDT 

on all protocol layers using our proposed security mechanisms is the best 

technique, which is also applicable to existing protocols, and are also tested 

through symbolic, information-theoretic, proof of correctness, and practical 

implementations, which in their absence would not have been possible to develop 

the security UDT architecture.  

We achieve important research outcomes and highlight these in fourfold:  

1. Development of security mechanisms to form a novel security architecture 

for UDT;  

2. Introduction of new axioms for inductive proofs to verify proofs of secrecy, 

authentication, and applicability of the proposed mechanisms; 

3. Use of techniques to verify traceability, applicability, secrecy, and 

authentication of security properties of mechanisms within the proposed 

architecture to ensure a secure data flow, and lastly;  

4. Development of a proprietary program for UDT data transmission 

analysis and visualisation. All of these are first in the literature, in 

addition to the practical security implementations on UDT itself to form a 

reliable, secure data integrity and data flow through the architecture.  
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7.3 Conclusion 

In validating our proposals, we developed and created techniques which merit a 

separate dissertation. Although there is a body of research dedicated to these 

techniques, we highlighted them in this work.  

We presented an approach to the formal verification of cryptographic 

authentication protocols, specifically on our proposed mechanisms. We illustrated 

the mechanisms in single and multi-session capabilities. We created our own 

axioms and techniques to form a reliable proof simplification and proof 

automaton. We used PCL for the proof of authentication protocols (for our 

proposed and developed UDT-AO, UDT+DTLS, and  UDT+GSS-API). 

To achieve applicability of the proposed mechanisms and architecture to other 

network protocols, we recommend that verification activity be conducted and 

reused and tested in a practical context. 

The reuse from one mechanism to another occurs when each activity is 

independent of the mechanism itself. This happens in the case of an anomaly and 

adversary. Moreover, activities such as identifying and proving invariants, or 

formalising and proving secrecy and authentication properties, are similar from 

one architecture to another and can be reused. In Chapter 5, we showed how the 

confidentiality of some keys was used in the mechanisms for UDT.  

The main aim of this work has been to address the absence of security for UDT. 

Our proofs of secrecy and authentication of security properties of the selected 

mechanisms, including those practically developed for UDT, provided support 

based on the strength of these mechanisms and based on their applicability to 

other high speed network protocols that rely on the speed of UDP.  

In order to model our mechanisms we used a powerful paradigm (eg.  rewrite 

systems and formalisms) sometimes referred to as the chemical abstract machine 

paradigm: it means that a system is a set of atomic actions which may be applied 

repeatedly, and in any order, and whenever the proper pre-condition holds. 
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We used states and relations and formalisms to present semantics which we 

represent in simple and basic mathematical notation. We applied rewrite 

systems and automata to achieve theoretic proof of security properties, proof of 

secrecy, authentication, and applicability of mechanisms within the architecture. 

We analysed and interpreted the likelihood of data flow failure that can be 

caused by anomalies or adversaries.  

Lastly, we expressed the secrecy and authentication properties that we wanted 

the protocol to satisfy and observe the complete view of the proposed mechanisms 

and the proposed architecture data flow based on the understanding of trustable 

principles to guarantee data integrity and security. Our modeling of the 

adversary (in the form of an intruder) provides the possibility of a compromised 

mechanism in the architecture design. And by identifying constraints, we applied 

a mechanism that prevents this from occurring. We imposed a sequencing 

constraint which amounts to forbid multi-session capabilities when an attack 

occurs. We also imposed a parallel multi-session that can still allow the data to 

flow across other mechanisms securely.  

The potential of our tool, techniques, mechanisms, and the architecture in itself, 

created a breadth of interesting novel and multi-faceted research which drew 

positive reviews from various independent international academic conferences 

and journals. 

7.4 Future Work 

It is interesting to present discussion of the scope for future work in the form of 

further investigation into the UDT implementations and UDT security 

architecture to support its objectives and continuing Project UDT development, 

with further analysis of existing and new mechanisms for UDT and other 

protocols.  
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7.4.1 Further Analysis: Proposed UDT Security Mechanisms 

The transition from low-speed to high-speed networking in some sectors, 

therefore, comes at a time when societal reliance upon networks is greater than 

its already significant level. The assured use and access of these networks in a 

private, protected and reliable manner, and also with appropriate service 

guarantees, is deemed fundamental, which has motivated this thesis to 

investigate the available mechanisms which are widely used, and to develop the 

security architecture for UDT.  

The security architecture is introduced following extensive review, which 

included a design for a security-specific modular structure for the UDT protocol 

which is also considered to be practical for other data transfer protocols.  

Moreover, methods using existing security mechanisms have been introduced, 

and a framework for UDT with the specification of TCP, UDP and UDT, and 

Sockets API has been developed. The design is the result of extensive 

experiments and implementations, and has broad coverage in terms of practical 

applications with the use of existing high-speed appliances to support the 

schemes. In addition, the framework has been presented with notable schemes, 

all of which aim to ensure utility and value to users and designers of high-speed 

network and data transfer protocols.  

The practicality of our design architecture for UDT suggests that similar designs 

should be created applicable and desirable for future protocol design, thereby 

leading to a more secure-capable protocol with higher-quality implementation 

security schemes.  

Whilst the mechanisms in our works have been introduced so as to develop a 

comprehensive architecture for UDT and have therefore been subject to extensive 

validation and annotation, and eventually implementation and deployment, the 

architecture nevertheless still requires improvement, and is not as clearly 

presented as it might be. With this in mind, it would be interesting to see how it 

can be used with other fast data-transfer protocols.  
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Since the architecture has been developed based on particular implementations 

and with reference to the UDT source code and existing mechanisms, we have 

aimed to make it sufficiently flexible so as to permit other implementation and 

deployment schemes created in relation to other protocols. Notably, it would be 

interesting to use the framework to guide the fresh implementation and 

deployment of new protocols so as to determine how much implementation 

security-specific change is required.  

Essentially, UDT does not have a clear modular structure, but rather has 

accreted functionality following the new versions being released; nevertheless, 

security mechanisms remain notably absent. Due to this situation, it is 

recognised that any improvement to this structure would be worthwhile. For 

instance, future work focuses on good security and modular structure that would 

introduce an improved checksum and authentication option without redesigning 

the entire structure of a protocol when deploying in IP V6. 

7.4.2 Project UDT Tool Enhancement  

Current work is focused on expanding the Project UDT tool to real-time and 

performance analysis. Options to allow additional protocol-based data extraction 

modules and the scope for further work using this tool is wide—the limits of 

existing powerful tools for UDT lead to further innovative research. Future work 

may include investigations of new mechanisms and DoS attack detection, traffic 

engineering issues, and Cloud/GRID security.  

The use of the tool, mechanisms, and architecture is not limited to the 

observation of well-established protocols and their security mechanisms: our 

work and techniques are valuable to other researchers and the industry in the 

development of new high-speed protocols and their security. 
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Chapter 8   

 

Epilogue  

 

 

In our published work, we presented the important socio-economic relationship of 

IT Security to Climate Change. We emphasised the importance of developing a 

tailored security architecture for new high-speed network protocols that operate 

on Cloud/GRID (C/G) computing. In this dissertation, we presented techniques 

that assisted us in developing a security architecture for UDT. Our verification 

techniques in the development of this architecture are applicable to other 

protocols; these require, however, continual attention and improvement given the 

fast development of network and security technologies as well as the prevalence 

of cyber adversaries. We published our works and extended our contributions to 

Environmental Science and Technology. The succeeding sections highlight the 

relationship of IT Security and our developed architecture, which we used as an 

example, to support climate change initiatives. 

8.1 Future Direction: Securing the Cloud, Dispelling Fears: 

Ways to Combat Climate Change 

 

High-speed network protocols operate on high-speed networks, which offer easy 

and low-cost access to education, e-health, communication and business services. 

Going forward, one of their most valuable features is their capacity to replace 

physical goods with virtual ones (dematerialisation). Research shows that digital 

goods are superior in terms of minimising the use of energy and carbon dioxide 

(CO2) versus their physical counterparts, including physical activities (e.g., 
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travel). But dematerialisation of goods comes with its own challenges. One of 

them is security. Because of cyber adversaries, various educational, military, 

government and medical institutions have been reluctant to adopt the full 

dematerialisation of their specific goods (medical records, and classified military 

and government information) and delivery of services. For these organisations, 

transmitting sensitive data is as important as national security.  

 

In this work, we present situations that reflect user’s fears and reluctance about 

fully adopting technology in order to achieve its benefits. We surveyed a few 

organisations to highlight the reasons of low and poor C/G adoption. Our findings 

highlight and confirm the importance of our work on developing a security 

architecture tailored for a specific network protocol that runs on a Smart GRID. 

We introduce this architecture as one of the many solutions to address the 

security challenge. We deviate from using technical jargon to describe this 

architecture; however, we will briefly present this architecture to demonstrate 

how it can protect a Smart GRID protocol.  

 

Clearly, increasing the level of awareness as well as increasing security 

technologies to protect data transfer may dispel the security fears of 

organisations. Similar security designs and solutions that will be introduced to 

fast-growing high-speed networks, such as the NBN in Australia, address users’ 

confidence and increase C/G adoption, therefore also increasing the 

dematerialisation of objects and services and helping minimise CO2 and energy 

consumption. Underscoring the importance of securing C/G through IT security 

in the field of environmental science and technology is another first in the 

literature.  

8.1.1 Introduction  

Climate change has become one of the most challenging problems faced by society 

today. Undoubtedly, organisations are working on addressing this problem 

through various means. Universities and research and non-for-profit institutions, 

for instance, have been investing a significant amount of resources and time to 

find solutions that address this ongoing problem, which, according to UNESCO’s 

report [144], has affected and continues to affect various countries around the 

world. From the American continents, Africa, Australia-Asia Pacific to Europe, 
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weather changes – and their impact on the environment, on the world’s ecology, 

on resources such as food, and on human security itself – have become a major 

concern for many governments. In recent years, many researches have started 

focusing on the use of technology to tackle and minimise this problem.   

Major steps were taken and the introduction of green technology, environmental 

science, and technology provided promising directions to assist in minimising 

climate change. On one hand, new interdisciplinary courses are now being offered 

in various institutions to raise the awareness of climate change. Government 

initiatives, on the other hand, introduced ways to expand network 

infrastructures, such as the NBN in Australia, and have taken important steps in 

implementing this high-speed network in various selected schools, health centres, 

homes, and industries. These have created new opportunities to provide socio-

economic solutions through the Internet and C/G computing.  

No doubt, the Internet and C/G computing, its applications, and IT in general 

play an increasingly important role today, more so than in previous years. 

Examples of this have brought social and political changes (e.g., Asia’s Philippine 

revolutions and the Arab Spring Uprising, to name a few). Technology and its 

applications have aided civil societies and provided innovative reforms, through 

e-voting and e-governments. 

Without a doubt, they have also become tools for tackling climate change. With 

the right framework and a clear understanding of technology’s capabilities, 

minimising the impact of climate change can be achieved. However, while 

technology can be a great tool to address global problems, many organisations are 

still reluctant to fully embrace its potential. 

We contend that one of the reasons that explain this problem of low C/G adoption 

is cyber threats. The attacks reported in [10,48,51] have increased and these 

continually stalled organisations to fully digitise their objects and services. 

Securing high-speed networks, therefore, has since pushed researchers to develop 

new architectures for high density data transmissions in WAN [22-33]. Many of 

these protocols are developed based on different technology variants, which have 

demonstrated better performance in simulation and in several network 
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experiments but have limited practical applications because of implementation 

and installation difficulties [24-26].  

Some organisations wanting to digitise goods (dematerialisation of goods) and 

virtualise service delivery (through transferring bulk data over long distances, 

thus minimising energy and CO2 for travelling) turn to application level 

solutions where these variants do not fair well. Many examples of this technology 

considered in the application level solutions are UDP-based protocols, such as 

UDT for C/G computing [15]. UDT was developed in a research laboratory at the 

National Data Mining Center, University of Illinois, Chicago [22-23,82]. 

However, the absence of security features for this new technology stalls its full 

deployment to various implementation scenarios.   

We analyse common issues of poor C/G adoption across organisations in Europe, 

US, and Australia. We focus on the most common and predominant issue and 

present an approach that can increase users’ confidence towards C/G adoption, 

and serve to support existing climate change initiatives.   

In the succeeding sections of this work, we highlight our contributions. We then 

outline the issues of users’ reluctance towards C/G adoption; we focus on the role 

of security and introduce a basic example of a security architecture that we 

developed for high-speed network protocol that operates on a Smart GRID. We 

present our discussions in Section 8.2. Finally, we end this chapter with the 

conclusion and future work in Section 8.3. 

8.1.2  Contributions  

In our works [22-33], we presented our important contributions to securing high-

speed networks that use a specific variant, called UDT. We conducted 

formalisation to develop the architecture through proofs of mechanisms and 

secrecy properties in data flow, and provided a clearer understanding of how they 

work and secure protocols without using extensive resources to achieve 

verification on its applicability and adaptability to networks. For detailed 

information, we encourage the readers to read [22-33]. 
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In this work, we present and extend our contributions to environmental science 

and technology, by highlighting the importance of the security1 to climate change. 

We argue that security does not only protect infrastructures that support climate 

change initiatives; it also significantly and indirectly decreases environmental 

impact through the minimisation of carbon emissions and energy consumption. 

The major contribution of this work is to underscore the important role of 

security in achieving climate change initiatives.  

8.1.3   Security in High-Speed Networks  

As an example, we selected a future generation GRID protocol that runs on high-

speed networks. This protocol was designed to transfer a large amount of data 

sets across long distances. It was used in collecting large data sets from Outer 

Space, which were then transferred across Chicago, New York, Amsterdam, 

Korea, Japan, and Australia. The development of UDT, a fast data transfer 

protocol for C/G computing, holds great promise to the future progression of data-

intensive network capabilities. This protocol was successfully implemented by 

capturing data, gathering terabytes of information, and transferring these across 

the continents in a high-speed network. This provided a compelling commercial 

promise in Wide Optical Area Network (WOAN) [22] and NBN[120]. Whilst many 

types of protocols solve many of the problems related to achieving speed, 

performance, and environmental issues (minimisation of carbon emissions), one 

common problem remains: security.  

Securing protocols, such as UDT, to achieve privacy, confidentiality, and data 

integrity in wide optical area networks is a challenge against existing anomalies. 

The study of the security of UDT is new and presents interesting challenges. 

Many of the security problems present in existing protocols like TCP and UDP 

are also applicable to UDT. Moreover, many of the traditional security 

mechanisms, e.g., end-to-end encryption, may be applicable to UDT 

implementation and, in certain cases, may be even more necessary[24-26].  

We will not discuss the technical aspects [22-33] of this protocol. Instead we will 

use the architecture we designed for this protocol as an enabling attribute to 

exemplify the need to secure Smart GRID. We believe that securing the protocols 
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that operate in the GRID will create opportunities for organisations and 

individuals to adopt new technologies. 

In this work, we survey and review existing literature that will assist in 

determining the relationship between C/G adoption and security. We present the 

relationship between security and climate change, and the significance of this 

relationship. 

We then discuss our proposed approach in addressing the problem of slow C/G 

adoption: by introducing a comprehensive security architecture for GRID 

protocol, UDT, which we worked on for 3 years. We present this as part of our 

approach to secure the C/G and to dispel fears related to the adoption of this 

technology in the wider community. 

8.1.4 Current Trend 

There is an increasing number of organisations and citizens capitalising the 

Internet by joining online communities (through fixed and wireless connections) 

using a high-speed network (Figure. 8-1).  
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                         Figure 8-1 Source Data: ABS,8153.0 Internet Activity, Australia, December 2010[13] 
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In 2010 alone, there were almost 11 million active Internet subscribers in 

Australia [13]. According to the report [13, 120], 93% of Internet connections had 

more than 1.5 megabits of download capabilities. Over time, Internet activity will 

increase its consumption of resources, e.g., data consumption. In 2010, there were 

191 terabytes of data downloaded [120]: a significant increase from the 99 

terabytes of downloaded data recorded in the previous year. Based on this trend, 

the online capacity and requirements will only continue to increase and become 

even more data-intensive in the future. However, a few companies and 

individuals continue to avoid dematerialising their objects (data) and services; 

and many still send their data through physical media (e.g., DVD, CD, and USB)  

because of their fear of cyber threats[10,15,51,93].  

We present a few situations to highlight this challenge. 

8.1.4.1 Securing e-Health 

A major health company [120] outside of Sydney transmits data across long 

distances. These data are health records of their patients, some of which have to 

be transmitted in bulk across Sydney to Singapore for analysis and medical 

treatment. Technologies for data transmission and performance are now 

available, but this company faces a new challenge: securing the data being 

transferred across long distances.  

In the past, this company had to courier these data by mail. Now that high-speed 

networks are available through NBN, the company, which wants to capitalise on 

the new technology, continues to express apprehensions about security.  

“In the past it was too hard to physically send data over long distances; often, 
they had to be delivered by hand. Security was not an issue then. Now, over the 
high-speed network, location and distance are no longer an issue; the size of data 
is no longer a problem either. The greater obstacle to us is security. We want to 
make sure that large amounts of data are secure when delivered over the 
Internet. We cannot afford to expose our patients’ sensitive information.” 
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8.1.4.2 Securing Smart GRID, Smart City 

In alliance with the Federal Government, a state government in Australia has 

pooled up to 100 million dollars [120] for the Smart GRID, Smart City [29] 

initiative, which will demonstrate an electricity system of the future. This 

initiative will employ various technologies and provide customers with informed 

choices about their energy use.  

One non-profit organisation involved in the evaluation of the technology raises 

the issue of threats: threats that do not only fall under the physical threat to the 

GRID and infrastructure itself, but also threats that can occur when data 

transmitted across smart meter applications and delivered across at least 3000 

homes / end points [120].  

“The government must consider the risks involved in deploying these types of 
technologies and address them. We believe that technologies can be detrimental 
when used and abused by adversaries. Lessons must be learned from the 9/11 
attack in the United States. The data – such as information of customers, their 
addresses – and security features of these smart applications must be introduced 
and evaluated.” 

8.1.4.3 Priorities and Barriers to Dematerialisation  

Additionally, European organisations are continually making the transition to 

C/G computing. However, in the 2010 survey [10,13,120], a range of factors 

considered to be barriers to C/G-based services included geographical location 

of services, contract lock-ins, to name a few. 

  

According to [48], in 2011, security remained the biggest identified barrier to 

adoption (63%), followed by integration issues (57%) and performance / 

reliability concerns (55%). Furthermore, the same survey revealed that 

security was deemed an ongoing issue that went beyond C/G (74%), but was 

certainly a priority in evaluating and managing IT delivered via C/G (80%). 

Figure 8-2 also shows that it remained the single biggest hurdle impacting 

C/G take-up (63%), despite being less significant than in the previous year’s 
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survey (71%). Security was a particular issue for companies in the United 

Kingdom (UK) (74%) and Germany (70%) [48].  
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Figure 8-2: Source Data: Colt CIO Cloud Survey, May 2011 [48] 

 

8.1.4.4  User impact 

According to a UK [10] study commissioned by a security software maker, more 

than 1,400 regular Internet users stated that cybercrime was the UK’s most 

feared crime, outranking physical burglary, assault, and robbery [10, 48]. The 

study also found that 87% of the participants were worried about the threat of 

cybercrime, 33% were not convinced they had adequate measures in place to 

protect themselves, and 25% said there was not enough information available on 

cybercrime to protect themselves effectively. That left a significant percentage of 

people (62%) who, while they could find enough information to protect 

themselves, were still inherently worried about the threat of cybercrime.   

An organisation, Db2Powerhouse, quoted a research: “Furedi (2002) and others 
have portrayed the general culture of fear as a type of psychological fear of fear 
(Phobophobia), which can lead to stress, intense anxiety, and unrealistic and 
persistent public fear of crime and danger, regardless of the actual presence of 
such fear factors. Garland (2002) describes this phenomenon as the crime 
complex, a societal state where public anxiety about crime is the norm and has 
been imprinted in people’s everyday lives as an established and expected societal 
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aspect. In a 2003 survey (PewInternet, 2003), 49% of US citizens said that they 
were afraid of cyber assaults on key parts of the US economy.  Lack of control 
over a situation that is perceived as threatening or dangerous gives rise to 
feelings of emotional distress, fear, and insecurity. Such strong emotions can 
inhibit flexible thinking and lead to irrational behaviour (Sutherland, 2007, p. 
89) or other equally strong reactions. The effects of cybercrime and 
cyberterrorism-related discourse and the induced fear in the public can be seen 
by acts such as the need for more laws protecting against illegal cyber activity 
and the giving away of people’s own privacy in exchange for better security.”  

Results show that organisations are still uncertain whether or not they can 

secure their data as these are transmitted across high-speed networks. These 

valid concerns merit considerations to meet and maximise the benefit of high-

speed networks empowering digital economy. Given that digital economy is 

dynamic, it is important to recognise the need of additional and continuing 

requirements of citizens. Investigating the issue of security and cyber threats 

should be closely monitored with new initiatives being introduced.  

8.2 Discussions  

In this work, we reaffirm that cyber threats remain a major inhibitor to the 

adoption of Internet technology and C/G across industries and schools, 

specifically in Europe, US, and Australia. There are, of course, huge cultural 

differences between these countries, and we did not attempt to directly compare 

these differences due to the constrained scope of research. 

To support the findings and the situations presented, we looked at various 

avenues ranging from socio-economic to technical perspectives. We also visited 

existing literature [10,13,15,48,51,76-77,145] and surveyed 4 Australian 

organisations (schools and research institutes, non-profit organisations, a 

government agency, and a university; labelled as A, B C and D on Table 8-1). We 

used existing research approaches: the Theory of Reasoned Action, the Theory of 

Planned Behaviour, the Technology Acceptance Model (TAM) [4-5, 56-57] and 

Diffusion of Innovations. From these approaches we derived how the respondents 

perceived C/G to improve their organisational performance. Three important 

issues emerged: user trust, commitment, and satisfaction. All of the respondents 



  173 

from these organisations revealed their reluctance to adopting the C/G (see Table 

8-1). This suggests that organisations perceive that the dangers of Internet C/G 

adoption outweigh the benefits, particularly in the absence of a comprehensive 

security architecture to protect information being transmitted across the GRID. 

   Table 8-1  * = Inhibiting Issue  + = Enabling Issue. Internet Security is considered an inhibiting issue to 
full acceptance  and   deployment of C/G in Australia. 
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To dispel this fear, we introduced a foundational framework applicable across   

existing IT initiatives: 

Introduction of a security architecture, presented in Figure 5-6. This 

sample presents security architecture of a specific protocol that can be 

deployed within a next-generation high-speed network data transmission  

operating on high-speed Smart GRID; 

Introduction of appropriate security policies and standards (i.e., ISO 

27001/2) [94] and implementations of security mechanisms 

infrastructures within the organisations, based on these policies and 

standards; 

Increased level of security awareness to individuals and organisations; 

Institutional initiative that promotes security as a vital component to 

addressing climate change. 
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Figure 8-3: Layer-to-Layer GRID UDT Architecture. In our proposed architecture, 
the UDT layer provides transport functionalities to applications (Smart GRID 
metering applications, data and image transmissions) with security schemes that 
can be implemented. We encourage the readers to visit [22-33] for more technical 
details of the architecture. Attributes ab(1 to 7) are security mechanisms. 

The framework presented underscores the relationships of network security 

technologies in tackling the inhibitor of C/G adoption. The framework is 

comprised of increasing awareness, implementing initiatives, and security 

primitives across vital components of the network through which data will be 

intensively transmitted, thereby increasing the use and deployment of virtual 

objects, accelerating the replacement of physical objects and activities by virtual 

services, and moving away from energy waste and intensive resource 

consumption (see Figures 8-4 and 8-5). 
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Figure 8-4:  Example of Smart GRID ( A to F ) Flow Courtesy of 

[91,93]       

 

Figure 8-5: Securing the technology applied to the protocol that operates 
within a high-speed network increases the onset of virtual objects and 
proportionally decreases energy and CO2 consumption, thereby 
addressing climate change.  
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8.3 Conclusion and Future Work 

In this work, we reviewed the existing concerns – including inhibitors to C/G 

adoption – and the obvious benefits of high-speed networks such as NBN to 

combat climate change. However, if cyber threats continue to be a major factor of 

slow technology adoption, the benefits of using this next-generation technology 

will create little impact. We looked at introducing security as a major component 

in addressing these issues. We investigated the growing concerns of cyber threats 

that slow down the maximisation of the benefits of NBN. We introduced security 

and highlighted its role in achieving proprietary technology such as UDT to 

address climate change. 

  

We also introduced techniques and mechanisms that can protect existing high-

speed data network transfer protocols with limited interdependencies [22-33]. 

Our security architecture and its underlying techniques can increase user 

confidence in NBN and potentially move users to embrace full dematerialisation 

of physical objects and activities in service delivery. By providing security on 

protocols that run on high-speed networks, we believe that our contribution can 

assist not only in raising awareness of the important link that network security 

has, but also in maximising the use of various innovative technologies that can 

assist in combating climate change.   

Future work focuses on developing international and industry standards for 

security in high-speed network data transfer protocols, such as Internet 

Engineering Task Force (IETF)  and International Standard Organisations (ISO) 

[94] – specifically addressing continuing challenges that involve the role of 

technology and important components like network security in order to address 

climate change.  

Questions on the applicability of the architecture across high-speed network 

protocols running on NBN can be further addressed. The most important of these 

are exploratory questions on how technology and the use of it – through 

dematerialising objects and physical services moving towards a full deployment 

of C/G computing – can continue to progress across regional areas and cities in 

Europe, Asia, US,  Australia, and beyond. 
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Appendices 
 

 

 

Appendix A  

Mathematical Notations  

We briefly introduce some of the mathematical notations and the graphical symbols that 

we will use throughout this work: 

 -   Universal quantifier for all the proposition is true for all possible 
values in the  universe of discourse 

 
 -   Existential quantifier exists the proposition is true for some value(s) 

in the universe of discourse 

 
 - Given the statements p and q, an implication is a statement that is 

false when p  is true and q is false, and true otherwise 

 
 - A biconditional statement is true whenever the truth value is the 

same for both p and q and false otherwise 

 
¬ - 'NOT:'Negation - a method of assigning the opposite truth value to 

the statement 

 
 and  - Denote set membership and non membership 
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Set Union  

 

Set Intersection  

 

Difference  

 

Symmetric Difference 

 

Basic Quantifiers  

Statement True when… False when... 

x P(x) P(x) is true for every x There is an x for which 
P(x) is false 

x P(x) There is an x for which 
P(x) is true P(x) is false for every x 

 

Mixed Quantifiers 

Statement True when... False when... 

x y P(x,y) P(x,y) is true for every pair 
x,y 

There is at least one pair x,y 
for which P(x,y) is false 

x y P(x,y) For every x, there is a y for 
which P(x,y) is true 

There is an x for which P(x,y) 
is false for every y 

x y P(x,y) There is an x for which P(x,y) 
is true for every y 

For every x, there is a y for 
which P(x,y) is false 

x yP(x,y) There is at least one pair x,y 
for which P(x,y) is true P(x,y) is false for every pair x,y 
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Negation Truth  

Statement True when... False when... 

x y P(x,y) P(x,y) is true for every pair 
x,y 

There is at least one pair x,y 
for which P(x,y) is false 

x y P(x,y) For every x, there is a y for 
which P(x,y) is true 

There is an x for which P(x,y) 
is false for every y 

x y P(x,y) There is an x for which P(x,y) 
is true for every y 

For every x, there is a y for 
which P(x,y) is false 

x yP(x,y) There is at least one pair x,y 
for which P(x,y) is true P(x,y) is false for every pair x,y 

JAVA Codes 

  Program Name                                : ProjectUDT.java,  

  Required Supplementary Program: GenerateBarGraph.java 

  Required file                                    : UDTFile.txt 

  Author                                              : Danilo V. Bernardo  

----------------------------------------------------------------------------------------------------------------------- 

 

Code : ProjectUDT.java 

1001 // ProjectUDT.java                                                     

1002                               

1003 /***********************************************                      

1004  *  Program Name: ProjectUDT.java                       

1005  *  Required Program: GenerateBarGraph.java                     

1006  *  Required file   : UDTFile.txt                        

1007  *                              

1008 

     This program is created to  aid  my    

    Research on UDT                        

1009                       

1010  *                              
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1011                        

1012                        

1013  *                                

1014  *  @author: Dan Bernardo                           

1015  *  @version Last modified Nov 2, 2011                         

1016  *                                

1017 ***********************************************/                        

1018                                 

1019 import java.awt.*;                             

1020 import java.awt.geom.*;                            

1021 import java.awt.image.*;                            

1022 import java.awt.event.*;                            

1023 import java.io.*;                             

1024 import java.util.*;                             

1025 import javax.swing.*;                            

1026 import javax.*;                             

1027 import javax.swing.*;                            

1028 import javax.imageio.*;                            

1029 import javax.swing.border.Border;                         

1030                                 

1031                                 

1032 // Details used                             

1033                                 

1034 /***********************************************                        

1035  * import java.awt.Container;                           

1036  * import java.awt.Graphics;                           

1037  * import java.awt.Graphics2D;                          

1038  * import java.awt.Rectangle;                           

1039  * import java.awt.Dimension;                           

1040  * import java.awt.Robot;                           

1041  * import java.awt.event.ActionEvent;                         

1042  * import java.awt.event.ActionListener;                         

1043  * import java.awt.event.WindowAdapter;                        

1044  * import java.awt.event.WindowEvent;                         

1045  * import java.awt.geom.Path2D;                          

1046  * import java.awt.image.BufferedImage;                        

1047  * import java.io.BufferedReader;                          

1048  * import java.io.File;                            

1049  * import java.io.FileReader;                           

1050  * import java.util.ArrayList;                           

1051  * import java.util.StringTokenizer;                          

1052  * import javax.imageio.ImageIO;                          

1053  * import javax.swing.JFrame;                          

1054  * import javax.swing.JMenu;                           

1055  * import javax.swing.JMenuBar;                          

1056  * import javax.swing.JMenuItem;                          

1057  * import javax.swing.JOptionPane;                         

1058  * import javax.swing.JPanel;                           

1059  * import javax.swing.JScrollPane;                          

1060  * import javax.swing.JTextArea;                          

1061 ***********************************************/                        

1062                                 

1063                                 

1064 Public class ProjectUDT extends JFrame implements ActionListener{                   

1065                                 

1066  /** JLabel object to show the help information about the program                   

1067  */                               

1068                                 
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1069         private ImageIcon icon;                         

1070         private JFrame jf;                          

1071        private JLabel programInfoLabel, iconLabel ;                    

1072     private JMenuBar menuBar;                        

1073         private JMenu menu;                         

1074         private JMenuItem fileMenuItem;                       

1075         private JMenuItem exitMenuItem;                       

1076         private JMenu helpMenu;                        

1077         private JMenuItem helpMenuItem;                       

1078 

        private Panel 

panel;                              

1079                                      

1080     /** Main                            

1081      */                             

1082                               

1083  public static void main(String[] args){                      

1084   new ProjectUDT() ;                        

1085  }                             

1086                               

1087                                     

1088 

       

/**                             

1089 

        *  Constuctor to initialize and display 

layout                      

1090 

        *  Initializes and defines screen size, frame, 

panel                    

1091 

        

*/                             

1092                               

1093  public ProjectUDT(){                         

1094                               

1095 

                // Label 

Project                         

1096                                  

1097                 jf = new JFrame("Project UDT - DBernardo 2011");                 

1098                 programInfoLabel =new JLabel();                      

1099 

                ImageIcon icon= new 

ImageIcon("image.gif");                    

1100 

                iconLabel = new JLabel("", icon, 

JLabel.CENTER);                   

1101                               

1102                 Panel panel = new Panel();                       

1103                 panel.add(iconLabel);                        

1104                 jf.add(panel, BorderLayout.CENTER);                     

1105                               

1106                 // Menu Display                          

1107                                

1108   menuBar = new JMenuBar() ;                       

1109   menu = new JMenu("Menu");                       

1110   menuBar.add(menu) ;                        

1111                               

1112   

fileMenuItem = new JMenuItem("Process File -input text file 

only");               

1113   fileMenuItem.addActionListener(this) ;                     

1114                               

1115   exitMenuItem = new JMenuItem("Exit");                    

1116   exitMenuItem.addActionListener(this) ;                     

1117                               

1118   menu.add(fileMenuItem) ;                       

1119   menu.add(exitMenuItem) ;                       
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1120                                 

1121   helpMenu = new JMenu("Help");                        

1122   helpMenuItem = new JMenuItem("Info about the program");                  

1123   helpMenuItem.addActionListener(this) ;                      

1124   helpMenu.add(helpMenuItem) ;                        

1125   menuBar.add(helpMenu) ;                         

1126                                 

1127                 // Frame location and size                          

1128                                 

1129   jf.setJMenuBar(menuBar);                         

1130                 jf.setSize(500,400);                          

1131 

                jf.setLocation(jf.getToolkit().getScreenSize().width/2-

jf.getWidth()/2,jf.getToolkit().getScreenSize().height/2-jf.getHeight()/2);     

1132                                 

1133                 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);                   

1134 

                

jf.setVisible(true);                           

1135                                 

1136  }                               

1137                                 

1138 

       

/**                               

1139         *  Method actionPerformed calling event                       

1140 

        *  Initializes and defines screen size, frame, 

panel                      

1141 

        

*                               

1142         *  @param   actionEvent                           

1143 

        

*                               

1144  */                               

1145                                 

1146  public void actionPerformed(ActionEvent actionEvent){                    

1147                                 

1148     JMenuItem source = (JMenuItem)(actionEvent.getSource());                   

1149   if (source.getText().equalsIgnoreCase("exit")) {                     

1150    System.exit(0) ;                          

1151   

} else if (source.getText().equalsIgnoreCase("Process File -input text file 

only")){              

1152    

processFile("Enter the File Name of Text 

File") ;                    

1153                                 

1154   

} else if (source.getText().equalsIgnoreCase("Info about the 

program")){                

1155 

                        

showHelp();                           

1156   }                              

1157                                 

1158  }                               

1159                                 

1160 

       

/**                               

1161         *  Method showHelp                           

1162         *  Opens a window with basic information                       

1163 

        

*                               

1164 

        

*                               

1165  */                               

1166                                 

1167                                 

1168                                 

1169                                

1170        public void showHelp(){                           

1171                                 
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1172 

                final JFrame helpFrame = new JFrame(" Program Help") 

;                 

1173                 JPanel box = new JPanel();                       

1174 

                JButton exitButton = new 

JButton("Close") ;                    

1175 

                exitButton.addActionListener(new 

ActionListener(){                  

1176 

                                public void 

actionPerformed(ActionEvent e){                  

1177 

                                         

helpFrame.setVisible(false) ;                    

1178 

                       

}                           

1179                               

1180 

                       

}) ;                           

1181                               

1182                 box.setLayout(new BoxLayout(box, BoxLayout.PAGE_AXIS));                

1183                 box.add(new JLabel("Thank you"));                   

1184 

                JPanel pane = new JPanel(new 

BorderLayout());                   

1185                 pane.add(box, BorderLayout.PAGE_START);                   

1186                 pane.add(exitButton, BorderLayout.PAGE_END);                   

1187 

                Border padding = 

BorderFactory.createEmptyBorder(150,150,150,150);              

1188 

                helpFrame.setLocation(helpFrame.getToolkit().getScreenSize().width/2-

helpFrame.getWidth()/4,helpFrame.getToolkit(). +    

                .getScreenSize().height/4-

helpFrame.getHeight()/4);                  

1189 

                

helpFrame.setSize(500,400);                       

1190   pane.setBorder(padding) ;                       

1191                 helpFrame.add(pane) ;                        

1192 

                helpFrame.setVisible(true) 

;                       

1193 

        

}                             

1194                               

1195                               

1196                               

1197 

       

/**                             

1198         *  Method setFramePosition                        

1199 

        *  Initializes and defines frame size and 

location                    

1200 

        

*                             

1201         *  @param   frame                          

1202 

        

*                             

1203 

        

*/                             

1204                               

1205  public void setFramePosition(JFrame frame){                    

1206                               

1207         Toolkit toolKit = Toolkit.getDefaultToolkit();                      

1208         Dimension screenSize = toolKit.getScreenSize();                      

1209         int width = (int) screenSize.getWidth();                        

1210 

        int height = (int) 

screenSize.getHeight();                      
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1211         height = height - (height / 3);                            

1212         width = width - (width / 3);                           

1213 

        int centerWidth=(int)(screenSize.getWidth()-

width)/2;                     

1214         int centerHeight=(int)(screenSize.getHeight()-height)/2;                    

1215         frame.setSize(width, height);                          

1216         frame.setLocation(centerWidth, centerHeight);                      

1217  }                               

1218                                 

1219 

       

/**                               

1220         *  Method getFileName                           

1221         *  Gets I/O error standard message                        

1222 

        

*                                   

1223         *  @param   message                           

1224 

        

*                               

1225 

        

*/                               

1226                                 

1227  public String getFileName(String message){                       

1228                                 

1229   String fileName = (String)JOptionPane.showInputDialog(                   

1230 

                

this,                              

1231 

                

message,                             

1232 

                "File 

Name",                            

1233                 JOptionPane.PLAIN_MESSAGE,                        

1234 

                

null,                              

1235 

                

null,                              

1236 

                

"");                              

1237   return fileName ;                           

1238  }                               

1239                                 

1240 

       

/**                               

1241         *  Method generateBarChart                          

1242 

        

*                               

1243         *  Calls GenerateBarGraph to create graph                        

1244 

        *  Saves file to an image 

file                          

1245 

        

*                               

1246 

        *  @param   ArrayList <Double> dataValues - for the 

values                    

1247 

        *  @param   ArrayList <String> dataNames  - for the label where the 

values taken                

1248 

        

*/                               

1249                                 

1250  

public void generateBarChart( ArrayList<Double> dataValues, ArrayList<String> 

dataNames){             

1251                                 

1252   final JFrame frame = new JFrame() ;                       

1253   setFramePosition(frame) ;                         

1254   

frame.getContentPane().add(new GenerateBarGraph(dataValues, dataNames, "Trend of Terabyte UDT High Speed Data 

Transfer"));    

1255                                         
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1256          JPanel objJPanel = new JPanel() ;                      

1257 

                objJPanel.setLayout(new BorderLayout()) 

;                    

1258  

        JButton proceedButton = new JButton("Save Graph to GIF format") 

;               

1259          proceedButton.addActionListener(                     

1260                               

1261 

                        new 

ActionListener(){                       

1262                                      

1263   

                        public void 

actionPerformed(ActionEvent event){                

1264 

                                        

frame.setVisible(true);                     

1265                               

1266 

                                        // 

captures screen                       

1267                               

1268 

                                  

try {                         

1269      

      BufferedImage screencapture = new Robot().createScreenCapture(new 

Rectangle(Toolkit.getDefaultToolkit().getScreenSize()) ); 

1270 

                                              String 

name = "graph.gif";                    

1271 

                                              File f 

= new File(name);                     

1272 

                                              

ImageIO.write(screencapture, "gif", f);                  

1273 

                                  

}                          

1274                               

1275 

                                        catch 

(Exception e) {                      

1276 

                                                // TODO Auto-

generated catch block                  

1277 

                                               

e.printStackTrace();                     

1278 

                             

}                          

1279 JOptionPane.showMessageDialog(null, "Completed!", "Graph Options", JOptionPane.PLAIN_MESSAGE);    

1280 

                                         

frame.setVisible(false); //                      

1281 

                       

}                           

1282 

                       

}                           

1283 

        

) ;                             

1284                               

1285        JButton cancelButton = new JButton("Cancel") ;                   

1286        cancelButton.addActionListener(                      

1287 

                        New 

ActionListener(){                       

1288 

                                public void 

actionPerformed(ActionEvent event){                 

1289 

                                        

frame.setVisible(false) ;                     

1290 

                       

}                           

1291 

                       

}                           

1292 

                

) ;                            

1293                               

1294        objJPanel.add(proceedButton, BorderLayout.CENTER) ;                 
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1295               objJPanel.add(cancelButton, BorderLayout.EAST) ;                    

1296               frame.add(objJPanel, BorderLayout.SOUTH) ;                      

1297        frame.setVisible(true) ;                          

1298  }                               

1299                                 

1300                                 

1301 

       

/**                               

1302         *  Method showFileContent                          

1303 

        

*                                 

1304         *  Opens and displays file and entries                        

1305 

        

*                               

1306         *  @param   dataFile                           

1307 

        

*                               

1308 

        

*/                               

1309                                 

1310                                 

1311  public void showFileContent(File dataFile){                       

1312                                 

1313   final JFrame frame = new JFrame() ;                       

1314   setFramePosition(frame) ;                         

1315                                 

1316   

final ArrayList<String> dataEntities = new 

ArrayList<String>() ;                  

1317   final ArrayList<Double> dataValues = new ArrayList<Double>();                  

1318                                 

1319                                        

1320          frame.setLayout( new BorderLayout()) ;                       

1321       JTextArea fileContentArea = new JTextArea() ;                      

1322          fileContentArea.setEditable(false) ;                       

1323  

        JScrollPane scrollPane = new 

JScrollPane(fileContentArea);                   

1324          frame.add(scrollPane, BorderLayout.CENTER) ;                     

1325                                        

1326 

        

Try {                               

1327     FileReader objFileReader = new FileReader(dataFile) ;                    

1328     BufferedReader objBufferedReader = new BufferedReader(objFileReader) ;                

1329                                        

1330     String dataLine = objBufferedReader.readLine() ;                      

1331     int index = 0 ;                             

1332     int lineNum = 0 ;                            

1333    

while( dataLine != 

null){                         

1334     if (lineNum != 0){                         

1335                                 

1336      

// optional - console 

System.out.println(dataLine);                  

1337                                 

1338      

String []values = 

dataLine.split("\t") ;                    

1339      

if (values.length > 

2){                       

1340       

dataValues.add(Double.parseDouble(values[0])) 

;                

1341       

dataValues.add(Double.parseDouble(values[1])) 

;                

1342       dataEntities.add("RTT") ;                     

1343       

dataEntities.add("SendRate") 

;                    

1344      }                           



 

   201 

1345                               

1346     }                          

1347     

fileContentArea.append(dataLine + "\n") 

;                  

1348     

dataLine = objBufferedReader.readLine() 

;                  

1349     lineNum ++ ;                        

1350    }                           

1351    objBufferedReader.close() ;                      

1352    objFileReader.close() ;                       

1353   } catch (FileNotFoundException e) {                     

1354    e.printStackTrace();                       

1355   } catch (IOException ioe) {                       

1356    ioe.printStackTrace() ;                       

1357   }                            

1358                                      

1359                                      

1360         JPanel objJPanel = new JPanel() ;                       

1361         objJPanel.setLayout(new BorderLayout()) ;                     

1362         JButton proceedButton = new JButton("Get the Graph") ;                  

1363         proceedButton.addActionListener(                      

1364          new ActionListener(){                        

1365           public void actionPerformed(ActionEvent event){                 

1366            

frame.setVisible(false) 

;                      

1367            

generateBarChart(dataValues, dataEntities) 

;                 

1368           }                           

1369          }                            

1370 

        

) ;                             

1371                                      

1372         JButton cancelButton = new JButton("Cancel") ;                    

1373         cancelButton.addActionListener(                       

1374          new ActionListener(){                        

1375           public void actionPerformed(ActionEvent event){                 

1376            

frame.setVisible(false) 

;                      

1377           }                           

1378          }                            

1379     

)

;                             

1380                                      

1381         objJPanel.add(proceedButton, BorderLayout.CENTER) ;                  

1382         objJPanel.add(cancelButton, BorderLayout.EAST) ;                   

1383                               

1384         frame.add(objJPanel, BorderLayout.SOUTH) ;                    

1385                                      

1386 

        frame.setVisible(true) 

;                         

1387  }                             

1388                               

1389                               

1390 

       

/**                             

1391         *  Method processFile                         

1392 

        

*                             

1393 

        *  Gets and validates 

file                         



 

202 

1394 

        

*                                 

1395         *  @param   message                           

1396 

        

*                               

1397 

        

*/                               

1398                                

1399                                 

1400  public void processFile(String message){                       

1401                                 

1402   String fileName = getFileName(message) ;                      

1403                                 

1404   

if ((fileName != null) && (fileName.length() > 

0)) {                     

1405    

File dataFile = new File("./" + 

fileName);                     

1406       

        boolean exists = 

dataFile.exists();                       

1407                                    

1408   

    if (exists) 

{                            

1409         showFileContent(dataFile) ;                        

1410                                        

1411   

    } 

else{                             

1412        

processFile("File Does not exists\nEnter the correct 

name: ") ;                 

1413       }                              

1414    return;                            

1415   

} else if ( fileName != null && fileName.length() == 

0){                    

1416    

processFile("File Does not exists\nEnter the correct 

name: ") ;                 

1417   }                              

1418  }                               

1419 }                                

                                  

                                  

                                                                

Code : GenerateBarGraph.java 

               

1001  // GenerateBarGraph.java     

1002         

1003  /***********************************************     

1004   *  Program Name: GenerateBarGraph.java    

1005   *  Main Program: ProjectUDT.java     

1006   *       

1007  

 *  This program is created to aid  my research   

on  UDT 

      

1008       

1009   *       

1010   *    

1011   *    

1012   *       

1013   *  @author: Dan Bernardo     

1014   *  @version Last modified Nov 2, 2011     

1015   *       

1016  ***********************************************/     
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1017         

      1018         

1019         

1020  import java.awt.Color;      

1021  import java.awt.Dimension;     

1022  import java.awt.Font;      

1023  import java.awt.FontMetrics;     

1024  import java.awt.Graphics;     

1025  import java.util.ArrayList;     

1026  import javax.swing.JPanel;     

1027         

1028  public class GenerateBarGraph extends JPanel{    

1029         

1030          // Declare variables, arrays     

1031            

1032   private ArrayList<Double> dataValues;    

1033   private ArrayList<String> dataNames;    

1034   private String graphTitle;     

1035   public GenerateBarGraph(ArrayList<Double> dataValues, ArrayList<String> dataNames, String graphTitle){ 

1036         

1037       this.dataNames  = dataNames;    

1038       this.dataValues = dataValues;    

1039       this.graphTitle = graphTitle;     

1040   }      

1041         

1042         

1043  

     

/**       

1044        *  Method painComponent     

1045  

      

*        

1046        *  Get values and plot     

1047  

      

*       

1048        *  @param graphics      

1049  

      

*/       

1050         

1051         

1052   public void paintComponent(Graphics graphics) {   

1053         

1054       super.paintComponent(graphics);    

1055         

1056             

1057  

            // set 

bar_width      

1058         

1059       int bar_width = 50;     

1060       Font objeFont_title = new Font("Book Antiqua", Font.BOLD, 15); 

1061       Font font_label = new Font("Book Antiqua", Font.PLAIN, 10); 

1062       FontMetrics fontMetrics_title = graphics.getFontMetrics(objeFont_title); 

1063       FontMetrics fontMetrics_label = graphics.getFontMetrics(font_label); 

1064             

1065       Dimension objDimension = getSize();    

1066       int frameWidth = objDimension.width;    

1067       int frameHeight = objDimension.height;    

1068             

1069       if (dataValues == null || dataValues.size() == 0)   

1070         return;      

1071            
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1072              double minDataValue = 0;     

1073       double maxDataValue = 0;     

1074             

1075       for (int i = 0; i < dataValues.size();  i++) {    

1076         if (minDataValue > dataValues.get(i) )    

1077             minDataValue = dataValues.get(i);    

1078         if (maxDataValue < dataValues.get(i))    

1079             maxDataValue = dataValues.get(i);    

1080       }      

1081             

1082             

1083       // Compute and validate values    

1084         

1085       int titleWidth = fontMetrics_title.stringWidth(graphTitle);   

1086       int q = fontMetrics_title.getAscent();    

1087       int p = (frameWidth - titleWidth) / 2;    

1088       graphics.setFont(objeFont_title);    

1089       graphics.drawString(graphTitle, p, q);    

1090             

1091       int title_height = fontMetrics_title.getHeight();   

1092       int label_height = fontMetrics_label.getHeight();   

1093         

1094       if (maxDataValue == minDataValue)    

1095       return;      

1096         

1097       double graphScale = (frameHeight - title_height - label_height) / (maxDataValue -    minDataValue); 

1098       q = frameHeight - fontMetrics_label.getDescent();   

1099         

1100       graphics.setFont(font_label);    

1101         

1102       for (int j = 0; j < dataValues.size(); j++) {    

1103         

1104         int valueP = j * bar_width + 1;     

1105         /*      

1106         if (j%2==0){      

1107          valueP +=50;     

1108         }*/      

1109         

1110         // optional -System.out.println("valueP: " + valueP);   

1111         int valueQ = title_height;     

1112         int height = (int) (dataValues.get(j) * graphScale);   

1113         

1114         if (dataValues.get(j) >= 0)     

1115           valueQ += (int) ((maxDataValue - dataValues.get(j)) * graphScale); 

1116         else {      

1117           valueQ += (int) (maxDataValue * graphScale);   

1118           height = -height;     

1119         }      

1120         

1121                // Identifies trend by colors      

1122         

1123         if (j % 2 == 0) {     

1124          graphics.setColor(Color.BLUE);  //RTT   

1125         } else {      

1126          graphics.setColor(Color.GREEN);  //SendRate 

1127         }      

1128         

1129  

              // Plot 

values       

1130               

1131         graphics.fillRect(valueP, valueQ, bar_width - 2, height);   

1132         graphics.setColor(Color.black);    
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1133         graphics.drawRect(valueP, valueQ, bar_width - 2, height);   

1134                      

1135         // Label values      

1136         

1137         int labelWidth = fontMetrics_label.stringWidth(dataNames.get(j)); 

1138         p = j * bar_width + (bar_width - labelWidth) / 2;   

1139         graphics.drawString(dataNames.get(j), p, q);   

1140       }      

1141           

1142   }      

1143         

1144  }       
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UDT Codes 

// Simulation program for UDT ( UIC) 

//lac.uic.edu // 

// Description: the program is used to simulate UDT on NS-2 //  

#ifndef __NS_UDT_H__ 

#define __NS_UDT_H__ 

 

#include "agent.h" 

#include "packet.h" 

 

const int MAX_LOSS_LEN = 300; 

 

struct hdr_udt  

{ 

   int flag_; 

   int seqno_; 

   int type_; 

   int losslen_; 

   int ackseq_; 

   int ack_; 

   int recv_; 

   int rtt_; 

   int bandwidth_; 

   int loss_[MAX_LOSS_LEN]; 
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   static int off_udt_; 

   inline static int& offset() { return off_udt_; } 

   inline static hdr_udt* access(Packet* p) {return (hdr_udt*) p->access(off_udt_);} 

   int& flag() {return flag_;} 

   int& seqno() {return seqno_;} 

   int& type() {return type_;} 

   int& losslen() {return losslen_;} 

   int& ackseq() {return ackseq_;} 

   int& ack() {return ack_;} 

   int& lrecv() {return recv_;} 

   int& rtt() {return rtt_;} 

   int& bandwidth() {return bandwidth_;}; 

   int* loss() {return loss_;} 

}; 

 

class UdtAgent; 

 

class SndTimer: public TimerHandler  

{ 

public: 

   SndTimer(UdtAgent *a) : TimerHandler() { a_ = a; } 

 

protected: 

   virtual void expire(Event *e); 

   UdtAgent *a_; 

}; 
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class SynTimer: public TimerHandler 

{ 

public: 

   SynTimer(UdtAgent *a) : TimerHandler() { a_ = a; } 

 

protected: 

   virtual void expire(Event *e); 

   UdtAgent *a_; 

}; 

 

class AckTimer: public TimerHandler 

{ 

public: 

   AckTimer(UdtAgent *a) : TimerHandler() { a_ = a; } 

 

protected: 

   virtual void expire(Event *e); 

   UdtAgent *a_; 

}; 

 

class NakTimer: public TimerHandler 

{ 

public: 

   NakTimer(UdtAgent *a) : TimerHandler() { a_ = a; } 
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protected: 

   virtual void expire(Event *e); 

   UdtAgent *a_; 

}; 

 

class ExpTimer: public TimerHandler 

{ 

public: 

   ExpTimer(UdtAgent *a) : TimerHandler() { a_ = a; } 

 

protected: 

   virtual void expire(Event *e); 

   UdtAgent *a_; 

}; 

class LossList 

{ 

protected: 

   const bool greaterthan(const int& seqno1, const int& seqno2) const; 

   const bool lessthan(const int& seqno1, const int& seqno2) const; 

   const bool notlessthan(const int& seqno1, const int& seqno2) const; 

   const bool notgreaterthan(const int& seqno1, const int& seqno2) const; 

 

   const int getLength(const int& seqno1, const int& seqno2) const; 

 

   const int incSeqNo(const int& seqno) const; 

   const int decSeqNo(const int& seqno) const; 
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protected: 

   int seq_no_th_;                  // threshold for comparing seq. no. 

   int max_seq_no_;                 // maximum permitted seq. no. 

}; 

//////////////////////////////////////////////////////////////////////////////// 

class SndLossList: public LossList 

{ 

public: 

   SndLossList(const int& size, const int& th, const int& max); 

   ~SndLossList(); 

 

   int insert(const int& seqno1, const int& seqno2); 

   void remove(const int& seqno); 

   int getLossLength(); 

   int getLostSeq(); 

private: 

   int* data1_;   // sequence number starts 

   int* data2_;   // seqnence number ends 

   int* next_;   // next node in the list 

   int head_;   // first node 

   int length_;   // loss length 

   int size_;   // size of the static array 

   int last_insert_pos_;  // position of last insert node 

}; 
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//////////////////////////////////////////////////////////////////////////////// 

class RcvLossList: public LossList 

{ 

public: 

   RcvLossList(const int& size, const int& th, const int& max); 

   ~RcvLossList(); 

 

   void insert(const int& seqno1, const int& seqno2); 

   bool remove(const int& seqno); 

   int getLossLength() const; 

   int getFirstLostSeq() const; 

   void getLossArray(int* array, int* len, const int& limit, const double& interval); 

 

private: 

   int* data1_;   // sequence number starts 

   int* data2_;   // sequence number ends 

   double* last_feedback_time_;  // last feedback time of the node 

   int* count_;   // report counter 

   int* next_;   // next node in the list 

   int* prior_;   // prior node in the list; 

 

   int head_;   // first node in the list 

   int tail_;   // last node in the list; 

   int length_;   // loss length 

   int size_;   // size of the static array 

}; 
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class AckWindow 

{ 

public: 

   AckWindow(); 

   ~AckWindow(); 

 

   void store(const int& seq, const int& ack); 

   double acknowledge(const int& seq, int& ack); 

 

private: 

   int* ack_seqno_; 

   int* ack_; 

   double* ts_; 

 

   const int size_; 

 

   int head_; 

   int tail_; 

}; 

class TimeWindow 

{ 

public: 

   TimeWindow(); 

   ~TimeWindow(); 
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   int getbandwidth() const; 

   int getpktspeed() const; 

   bool getdelaytrend() const; 

   void pktarrival(); 

   void ack2arrival(const double& rtt); 

   void probe1arrival(); 

   void probe2arrival(); 

private: 

   const int size_; 

   double* pkt_window_; 

   int pkt_window_ptr_; 

   double* rtt_window_; 

   double* pct_window_; 

   double* pdt_window_; 

   int rtt_window_ptr_; 

   double* probe_window_; 

   int probe_window_ptr_; 

   double last_arr_time_; 

   double probe_time_; 

   double curr_arr_time_; 

   bool first_round_; 

}; 

 

class UdtAgent: public Agent 

{ 

friend SndTimer; 
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friend SynTimer; 

friend AckTimer; 

friend NakTimer; 

friend ExpTimer; 

public: 

   UdtAgent(); 

   ~UdtAgent(); 

   int command(int argc, const char*const* argv); 

   virtual void recv(Packet*, Handler*); 

   virtual void sendmsg(int nbytes, const char *flags = 0); 

protected: 

   SndTimer snd_timer_; 

   SynTimer syn_timer_; 

   AckTimer ack_timer_; 

   NakTimer nak_timer_; 

   ExpTimer exp_timer_; 

 

   double syn_interval_; 

   double ack_interval_; 

   double nak_interval_; 

   double exp_interval_; 

   int mtu_; 

   int max_flow_window_; 

   int flow_window_size_; 

   SndLossList* snd_loss_list_; 

   RcvLossList* rcv_loss_list_; 
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   double snd_interval_; 

   int bandwidth_; 

   int nak_count_; 

   int dec_count_; 

   volatile int snd_last_ack_; 

   int local_send_; 

   int local_loss_; 

   int local_ack_; 

   volatile int snd_curr_seqno_; 

   int curr_max_seqno_; 

   int dec_random_; 

   int avg_nak_num_; 

   double loss_rate_limit_; 

   double loss_rate_; 

   AckWindow ack_window_; 

   TimeWindow time_window_; 

   double rtt_; 

   double rcv_interval_; 

   int rcv_last_ack_; 

   double rcv_last_ack_time_; 

   int rcv_last_ack2_; 

   int ack_seqno_; 

   volatile int rcv_curr_seqno_; 

   int local_recv_; 

   int last_dec_seq_; 
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   double last_delay_time_; 

   double last_dec_int_; 

   bool slow_start_; 

   bool freeze_; 

   bool firstloss_; 

protected: 

   void rateControl(); 

   void flowControl(); 

   void sendCtrl(int pkttype, int lparam = 0, int* rparam = NULL); 

   void sendData(); 

   void timeOut(); 

}; 

#endif 

Packet.cpp 

/******************************************************** 

Copyright © 2001 - 2006, The Board of Trustees of the University of Illinois. 

All Rights Reserved. UDP-based Data Transfer Library (UDT) version 3 

Laboratory for Advanced Computing (LAC) 

National Center for Data Mining (NCDM) 

University of Illinois at Chicago 

http://www.lac.uic.edu/ 

This library is free software; you can redistribute it and/or modify it under the terms of the GNU 
Lesser General Public License as published by the Free Software Foundation; either version 2.1 
of the License, or (atyour option) any later version. 

This library is distributed in the hope that it will be useful, but 

WITHOUT ANY WARRANTY; without even the implied warranty of 

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser 
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General Public License for more details. 

You should have received a copy of the GNU Lesser General Public License 

along with this library; if not, write to the Free Software Foundation, Inc.,59 Temple Place, Suite 330, 
Boston, MA 02111-1307, USA. 

********************************************************************/ 

/******************************************************************** 

This file contains the implementation of UDT packet handling modules. 

A UDT packet is a 2-dimension vector of packet header and data. 

********************************************************************/ 

////////////////////////////////////////////////////////////////////////////// 

//    0                   1                   2                   3 

//    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |                        Packet Header                          | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |                                                               | 

//   ~              Data / Control Information Field                 ~ 

//   |                                                               | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

// 

//    0                   1                   2                   3 

//    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |0|                        Sequence Number                      | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |ff |o|                     Message Number                      | 
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//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |                          Time Stamp                           | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

// 

//   bit 0: 

//      0: Data Packet 

//      1: Control Packet 

//   bit ff: 

//      11: solo message packet 

//      10: first packet of a message 

//      01: last packet of a message 

//   bit o: 

//      0: in order delivery not required 

//      1: in order delivery required 

// 

//    0                   1                   2                   3 

//    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |1|            Type             |             Reserved          | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |                       Additional Info                         | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 

//   |                          Time Stamp                           | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

// 

//   bit 1-15: 
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//      0: Protocol Connection Handshake 

//              Add. Info:    Undefined 

//              Control Info: Handshake information (see CHandShake) 

//      1: Keep-alive 

//              Add. Info:    Undefined 

//              Control Info: None 

//      2: Acknowledgement (ACK) 

//              Add. Info:    The ACK sequence number 

//              Control Info: The sequence number to which (but not include)  

//              all the previous packets have beed received 

//              Optional:     RTT 

//                            RTT Variance 

//                            advertised flow window size (number of packets) 

//                            estimated bandwidth (number of packets per //second) 

//      3: Negative Acknowledgement (NAK) 

//              Add. Info:    Undefined 

//              Control Info: Loss list (see loss list coding below) 

//      4: Congestion Warning 

//              Add. Info:    Undefined 

//              Control Info: None 

//      5: Shutdown 

//              Add. Info:    Undefined 

//              Control Info: None 

//      6: Acknowledgement of Acknowledement (ACK-square) 

//              Add. Info:    The ACK sequence number 

//              Control Info: None 
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//      7: Message Drop Request 

//              Add. Info:    Message ID 

//              Control Info: first sequence number of the message 

//                            last seqeunce number of the message 

//      65535: Explained by bits 16 - 31 

//               

//   bit 16 - 31: 

//  This space is used for future expansion or user defined control packets.  

// 

//    0                   1                   2                   3 

//    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |1|                 Sequence Number a (first)                   | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |0|                 Sequence Number b (last)                    | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

//   |0|                 Sequence Number (single)                    | 

//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

// 

//   Loss List Field Coding: 

// For any consecutive lost sequence numbers that the difference /between 

//      the last and first is more than 1, only record the first (a) and the 

//      the last (b) sequence numbers in the loss list field, and modify the 

//      the first bit of a to 1. 

//      For any single loss or consecutive loss less than 2 packets, use 

//      the original sequence numbers in the field. 
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#include "packet.h" 

const int CPacket::m_iPktHdrSize = 12; 

// Set up the aliases in the constructure 

CPacket::CPacket(): 

m_iSeqNo((int32_t&)(m_nHeader[0])), 

m_iMsgNo((int32_t&)(m_nHeader[1])), 

m_iTimeStamp((int32_t&)(m_nHeader[2])), 

m_pcData((char*&)(m_PacketVector[1].iov_base)) 

{ 

   m_PacketVector[0].iov_base = (char *)m_nHeader; 

   m_PacketVector[0].iov_len = CPacket::m_iPktHdrSize; 

} 

CPacket::~CPacket() 

{ 

} 

int CPacket::getLength() const 

{ 

   return m_PacketVector[1].iov_len; 

} 

void CPacket::setLength(const int& len) 

{ 

   m_PacketVector[1].iov_len = len; 

} 
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void CPacket::pack(const int& pkttype, void* lparam, void* rparam, const int& size) 

{ 

   // Set (bit-0 = 1) and (bit-1~15 = type) 

   m_nHeader[0] = 0x80000000 | (pkttype << 16); 

   // Set additional information and control information field 

   switch (pkttype) 

   { 

   case 2: //0010 - Acknowledgement (ACK) 

      // ACK packet seq. no. 

      if (NULL != lparam) 

         m_nHeader[1] = *(int32_t *)lparam; 

      // data ACK seq. no.  

      // optional: RTT (microsends), RTT variance (microseconds) advertised flow window size    
(packets), and estimated link capacity (packets per second) 

      m_PacketVector[1].iov_base = (char *)rparam; 

      m_PacketVector[1].iov_len = size; 

      break; 

   case 6: //0110 - Acknowledgement of Acknowledgement (ACK-2) 

      // ACK packet seq. no. 

      m_nHeader[1] = *(int32_t *)lparam; 

      // control info field should be none 

      // but "writev" does not allow this 

      m_PacketVector[1].iov_base = (char *)&__pad; //NULL; 

      m_PacketVector[1].iov_len = 4; //0; 

      break; 
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   case 3: //0011 - Loss Report (NAK) 

      // loss list 

      m_PacketVector[1].iov_base = (char *)rparam; 

      m_PacketVector[1].iov_len = size; 

      break; 

   case 4: //0100 - Congestion Warning 

      // control info field should be none 

      // but "writev" does not allow this 

      m_PacketVector[1].iov_base = (char *)&__pad; //NULL; 

      m_PacketVector[1].iov_len = 4; //0 

      break; 

   case 1: //0001 - Keep-alive 

      // control info field should be none 

      // but "writev" does not allow this 

      m_PacketVector[1].iov_base = (char *)&__pad; //NULL; 

      m_PacketVector[1].iov_len = 4; //0 

      break; 

   case 0: //0000 - Handshake 

      // control info filed is handshake info 

      m_PacketVector[1].iov_base = (char *)rparam; 

      m_PacketVector[1].iov_len = size; //sizeof(CHandShake); 

      break; 

   case 5: //0101 - Shutdown 

      // control info field should be none 

      // but "writev" does not allow this 

      m_PacketVector[1].iov_base = (char *)&__pad; //NULL; 
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      m_PacketVector[1].iov_len = 4; //0 

      break; 

   case 7: //0111 - Message Drop Request 

      // msg id  

      m_nHeader[1] = *(int32_t *)lparam; 

      //first seq no, last seq no 

      m_PacketVector[1].iov_base = (char *)rparam; 

      m_PacketVector[1].iov_len = size; 

      break; 

   case 65535: //0x7FFF - Reserved for user defined control packets 

      // for extended control packet 

      // "lparam" contains the extneded type information for bit 4 - 15 

      // "rparam" is the control information 

      m_nHeader[0] |= (*(int32_t *)lparam) << 16; 

      if (NULL != rparam) 

      { 

         m_PacketVector[1].iov_base = (char *)rparam; 

         m_PacketVector[1].iov_len = size; 

      } 

      else 

      { 

         m_PacketVector[1].iov_base = (char *)&__pad; 

         m_PacketVector[1].iov_len = 4; 

      } 
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      break; 

   default: 

      break; 

   } 

} 

iovec* CPacket::getPacketVector() 

{ 

   return m_PacketVector; 

} 

int CPacket::getFlag() const 

{ 

   // read bit 0 

   return m_nHeader[0] >> 31; 

} 

int CPacket::getType() const 

{ 

   // read bit 1~15 

   return (m_nHeader[0] >> 16) & 0x00007FFF; 

} 

int CPacket::getExtendedType() const 

{ 

   // read bit 16~31 

   return m_nHeader[0] & 0x0000FFFF; 

} 
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int32_t CPacket::getAckSeqNo() const 

{ 

   // read additional information field 

   return m_nHeader[1]; 

} 

int CPacket::getMsgBoundary() const 

{ 

   // read [1] bit 0~1 

   return m_nHeader[1] >> 30; 

} 

bool CPacket::getMsgOrderFlag() const 

{ 

   // read [1] bit 2 

   return (1 == ((m_nHeader[1] >> 29) & 1)); 

} 

int32_t CPacket::getMsgSeq() const 

{ 

   // read [1] bit 3~31 

   return m_nHeader[1] & 0x1FFFFFFF; 

} 

 

Sendfile.cpp 

#ifndef __WIN32 

#include <cstdlib> 

#endif 

#include <fstream> 
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#include <iostream> 

#include <udt.h> 

using namespace std; 

int main(int argc, char* argv[]) 

{ 

   //usage: sendfile [server_port] 

   if ((2 < argc) || ((2 == argc) && (0 == atoi(argv[1])))) 

   { 

      cout << "usage: sendfile [server_port]" << endl; 

      return 0; 

   } 

   UDTSOCKET serv = UDT::socket(AF_INET, SOCK_STREAM, 0); 

#ifdef WIN32 

   int mss = 1052; 

   UDT::setsockopt(serv, 0, UDT_MSS, &mss, sizeof(int)); 

#endif 

   short port = 9000; 

   if (2 == argc) 

      port = atoi(argv[1]); 

   sockaddr_in my_addr; 

   my_addr.sin_family = AF_INET; 

   my_addr.sin_port = htons(port); 

   my_addr.sin_addr.s_addr = INADDR_ANY; 

   memset(&(my_addr.sin_zero), '\0', 8); 
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   if (UDT::ERROR == UDT::bind(serv, (sockaddr*)&my_addr, sizeof(my_addr))) 

   { 

      cout << "bind: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 

   cout << "server is ready at port: " << port << endl; 

   UDT::listen(serv, 1); 

   sockaddr_in their_addr; 

   int namelen = sizeof(their_addr); 

   UDTSOCKET fhandle; 

   if (UDT::INVALID_SOCK == (fhandle = UDT::accept(serv, (sockaddr*)&their_addr, 
&namelen))) 

   { 

      cout << "accept: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 

   UDT::close(serv); 

   // aquiring file name information from client 

   char file[1024]; 

   int len; 

   if (UDT::ERROR == UDT::recv(fhandle, (char*)&len, sizeof(int), 0)) 

   { 

      cout << "recv: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 
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   if (UDT::ERROR == UDT::recv(fhandle, file, len, 0)) 

   { 

      cout << "recv: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 

   file[len] = '\0'; 

   // open the file 

   ifstream ifs(file, ios::in | ios::binary); 

   ifs.seekg(0, ios::end); 

   int64_t size = ifs.tellg(); 

   ifs.seekg(0, ios::beg); 

   // send file size information 

   if (UDT::ERROR == UDT::send(fhandle, (char*)&size, sizeof(int64_t), 0)) 

   { 

      cout << "send: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 

   UDT::TRACEINFO trace; 

   UDT::perfmon(fhandle, &trace); 

   // send the file 

   if (UDT::ERROR == UDT::sendfile(fhandle, ifs, 0, size)) 

   { 

      cout << "sendfile: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 
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  UDT::perfmon(fhandle, &trace); 

   cout << "speed = " << trace.mbpsSendRate << endl; 

   UDT::close(fhandle); 

   ifs.close(); 

   return 1; 

} 

Recvfile.cpp 

#ifndef WIN32 

#include <arpa/inet.h> 

#endif 

#include <fstream> 

#include <iostream> 

#include <cstdlib> 

#include <udt.h> 

using namespace std; 

int main(int argc, char* argv[]) 

{ 

   if ((argc != 5) || (0 == atoi(argv[2]))) 

   { 

      cout << "usage: recvfile server_ip server_port remote_filename local_filename" << endl; 

      return 0; 

   } 

   UDTSOCKET fhandle = UDT::socket(AF_INET, SOCK_STREAM, 0); 

   sockaddr_in serv_addr; 

   serv_addr.sin_family = AF_INET; 

   serv_addr.sin_port = htons(short(atoi(argv[2]))); 
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#ifndef WIN32 

   if (inet_pton(AF_INET, argv[1], &serv_addr.sin_addr) <= 0) 

#else 

   if (INADDR_NONE == (serv_addr.sin_addr.s_addr = inet_addr(argv[1]))) 

#endif 

   { 

      cout << "incorrect network address.\n"; 

      return 0; 

   } 

   memset(&(serv_addr.sin_zero), '\0', 8); 

   if (UDT::ERROR == UDT::connect(fhandle, (sockaddr*)&serv_addr, sizeof(serv_addr))) 

   { 

      cout << "connect: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 

   // send name information of the requested file 

   int len = strlen(argv[3]); 

   if (UDT::ERROR == UDT::send(fhandle, (char*)&len, sizeof(int), 0)) 

   { 

      cout << "send: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 

   if (UDT::ERROR == UDT::send(fhandle, argv[3], len, 0)) 

   { 

      cout << "send: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 



 

232 

   } 

   // get size information 

   int64_t size; 

   if (UDT::ERROR == UDT::recv(fhandle, (char*)&size, sizeof(int64_t), 0)) 

   { 

      cout << "send: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 

   // receive the file 

   ofstream ofs(argv[4], ios::out | ios::binary | ios::trunc); 

   int64_t recvsize;  

   if (UDT::ERROR == (recvsize = UDT::recvfile(fhandle, ofs, 0, size))) 

   { 

      cout << "recvfile: " << UDT::getlasterror().getErrorMessage() << endl; 

      return 0; 

   } 

   UDT::close(fhandle); 

   ofs.close(); 

   return 1; 

} 
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cc.h 

 

/************************************************************* 

DISCLAIMER: The algorithms implemented using UDT/CCC in this file may be modified. These 
modifications may NOT necessarily reflect the view of the algorithms' original authors. 

***************/ 

#ifndef WIN32 

   #include <sys/time.h> 

   #include <time.h> 

#endif 

 

#include <cmath> 

#include <vector> 

#include <algorithm> 

#include <window.h> 

#include <ccc.h> 

#include <udt.h> 

using namespace std; 

/******************************************************************** 

TCP congestion control 

Reference:  

M. Allman, V. Paxson, W. Stevens (consultant), TCP Congestion Control, RFC  2581, April 1999. 

Note: 

This base TCP control class can be used to derive new TCP variants, including those 
implemented in this file: HighSpeed, Scalable, BiC, Vegas, and FAST. 

********************************************************************/ 
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class CTCP: public CCC 

{ 

public: 

   void init() 

   { 

      m_bSlowStart = true; 

      m_issthresh = 83333; 

      m_dPktSndPeriod = 0.0; 

      m_dCWndSize = 2.0; 

      setACKInterval(2); 

      setRTO(1000000); 

   } 

   virtual void onACK(const int& ack) 

   { 

      if (ack == m_iLastACK) 

      { 

         if (3 == ++ m_iDupACKCount) 

            DupACKAction(); 

         else if (m_iDupACKCount > 3) 

            m_dCWndSize += 1.0; 

         else 

            ACKAction(); 

      } 

      else 

      { 

         if (m_iDupACKCount >= 3) 
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         m_dCWndSize = m_issthresh; 

         m_iLastACK = ack; 

         m_iDupACKCount = 1; 

         ACKAction(); 

      } 

   } 

   virtual void onTimeout() 

   { 

      m_issthresh = getPerfInfo()->pktFlightSize / 2; 

      if (m_issthresh < 2) 

      m_issthresh = 2; 

      m_bSlowStart = true; 

      m_dCWndSize = 2.0; 

   } 

protected: 

   virtual void ACKAction() 

   { 

      if (m_bSlowStart) 

      { 

         m_dCWndSize += 1.0; 

         if (m_dCWndSize >= m_issthresh) 

         m_bSlowStart = false; 

      } 

      else 

         m_dCWndSize += 1.0/m_dCWndSize; 

   } 
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   virtual void DupACKAction() 

   { 

      m_bSlowStart = false; 

      m_issthresh = getPerfInfo()->pktFlightSize / 2; 

      if (m_issthresh < 2) 

         m_issthresh = 2; 

         m_dCWndSize = m_issthresh + 3; 

   } 

protected: 

   int m_issthresh; 

   bool m_bSlowStart; 

   int m_iDupACKCount; 

   int m_iLastACK; 

}; 

/******************************************************************** 

Scalable TCP congestion control 

Reference: 

Tom Kelly, Scalable TCP: Improving Performance in Highspeed Wide Area  Networks, Computer 
Communication Review, Vol. 33 No. 2 - April 2003 

********************************************************************/ 

class CScalableTCP: public CTCP 

{ 

protected: 

   virtual void ACKAction() 

   { 
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      if (m_dCWndSize <= 38.0) 

         CTCP::ACKAction(); 

      else 

      { 

         if (m_bSlowStart) 

            m_dCWndSize += 1.0; 

         else 

            m_dCWndSize += 0.01; 

      } 

      if (m_dCWndSize > m_iMaxCWndSize) 

         m_dCWndSize = m_iMaxCWndSize; 

   } 

   virtual void DupACKAction() 

   { 

      if (m_dCWndSize <= 38.0) 

         m_dCWndSize *= 0.5; 

      else 

         m_dCWndSize *= 0.875; 

      if (m_dCWndSize < m_iMinCWndSize) 

         m_dCWndSize = m_iMinCWndSize; 

   } 

private: 

   static const int m_iMinCWndSize = 16; 

   static const int m_iMaxCWndSize = 100000; 

   static const int m_iCWndThresh = 38; 

}; 
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/******************************************************************** 

HighSpeed TCP congestion control 

Reference: 

Sally Floyd, HighSpeed TCP for Large Congestion Windows, RFC 3649,  

Experimental, December 2003 

********************************************************************/ 

class CHSTCP: public CTCP 

{ 

public: 

   virtual void ACKAction() 

   { 

      m_dCWndSize += a(m_dCWndSize)/m_dCWndSize; 

   } 

   virtual void DupACKAction() 

   { 

      m_dCWndSize -= m_dCWndSize*b(m_dCWndSize); 

   } 

private: 

   double a(double w) 

   { 

      return (w * w * 2.0 * b(w)) / ((2.0 - b(w)) * pow(w, 1.2) * 12.8); 

   } 

   double b(double w) 

   { 

      return (0.1 - 0.5) * (log(w) - log(38.)) / (log(83000.) - log(38.)) + 0.5; 
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   } 

 

private: 

   static const int m_iHighWnd = 83000; 

   static const int m_iLowWnd = 38; 

}; 

/******************************************************************** 

BiC TCP congestion control 

Reference: 

Lisong Xu, Khaled Harfoush, and Injong Rhee, "Binary Increase Congestion  Control for Fast 
Long-Distance Networks", INFOCOM 2004. 

********************************************************************/ 

class CBiCTCP: public CTCP 

{ 

public: 

   CBiCTCP() 

   { 

      m_dMaxWin = m_iDefaultMaxWin; 

      m_dMinWin = m_dCWndSize; 

      m_dTargetWin = (m_dMaxWin + m_dMinWin) / 2; 

 

      m_dSSCWnd = 1.0; 

      m_dSSTargetWin = m_dCWndSize + 1.0; 

   } 

protected: 

   virtual void ACKAction() 
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   { 

      if (m_dCWndSize < m_iLowWindow) 

      { 

         m_dCWndSize += 1/m_dCWndSize; 

         return; 

      } 

      if (!m_bSlowStart) 

      { 

         if (m_dTargetWin - m_dCWndSize < m_iSMax) 

            m_dCWndSize += (m_dTargetWin - m_dCWndSize)/m_dCWndSize; 

         else 

            m_dCWndSize += m_iSMax/m_dCWndSize; 

         if (m_dMaxWin > m_dCWndSize) 

         { 

            m_dMinWin = m_dCWndSize; 

            m_dTargetWin = (m_dMaxWin + m_dMinWin) / 2; 

         } 

         else 

         { 

            m_bSlowStart = true; 

            m_dSSCWnd = 1.0; 

            m_dSSTargetWin = m_dCWndSize + 1.0; 

            m_dMaxWin = m_iDefaultMaxWin; 

         } 

      } 

      else 
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      { 

         m_dCWndSize += m_dSSCWnd/m_dCWndSize; 

         if(m_dCWndSize >= m_dSSTargetWin) 

         { 

            m_dSSCWnd *= 2; 

            m_dSSTargetWin = m_dCWndSize + m_dSSCWnd; 

         } 

         if(m_dSSCWnd >= m_iSMax) 

            m_bSlowStart = false; 

      }         

   } 

 

   virtual void DupACKAction() 

   { 

      if (m_dCWndSize <= m_iLowWindow) 

         m_dCWndSize *= 0.5; 

      else 

      { 

         m_dPreMax = m_dMaxWin; 

         m_dMaxWin = m_dCWndSize; 

         m_dCWndSize *= 0.875; 

         m_dMinWin = m_dCWndSize; 

 

         if (m_dPreMax > m_dMaxWin) 

         { 

            m_dMaxWin = (m_dMaxWin + m_dMinWin) / 2; 
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            m_dTargetWin = (m_dMaxWin + m_dMinWin) / 2; 

         } 

      } 

   } 

private: 

   static const int m_iLowWindow = 38; 

   static const int m_iSMax = 32; 

   static const int m_iSMin = 1; 

   static const int m_iDefaultMaxWin = 1 << 29; 

   double m_dMaxWin; 

   double m_dMinWin; 

   double m_dPreMax; 

   double m_dTargetWin; 

   double m_dSSCWnd; 

   double m_dSSTargetWin; 

}; 

/******************************************************************** 

TCP Westwood 

reference: 

http://www.cs.ucla.edu/NRL/hpi/tcpw/ 

********************************************************************/ 

class CWestwood: public CTCP 

{ 

public: 

   CWestwood(): m_dBWE(1), m_dLastBWE(1), m_dBWESample(1), m_dLastBWESample(1) 

   { 



 

   243 

      gettimeofday(&m_LastACKTime, 0); 

   } 

   virtual void onACK(const int& ack) 

   { 

      timeval currtime; 

      gettimeofday(&currtime, 0); 

m_dBWESample = double(ack - m_iLastACK) / double((currtime.tv_sec – 

m_LastACKTime.tv_sec) * 1000.0 + (currtime.tv_usec - m_LastACKTime.tv_usec) / 1000.0); 

m_dBWE = 19.0/21.0 * m_dLastBWE + 1.0/21.0 * (m_dBWESample + m_dLastBWESample); 

 

      m_LastACKTime = currtime; 

      m_dLastBWE = m_dBWE; 

      m_dLastBWESample = m_dBWESample; 

 

      if (ack == m_iLastACK) 

      { 

         if (3 == ++ m_iDupACKCount) 

         { 

            m_bSlowStart = false; 

            m_issthresh = int(ceil(getPerfInfo()->msRTT * m_dBWE)); 

            if (m_issthresh < 2) 

            m_issthresh = 2; 

            m_dCWndSize = m_issthresh + 3; 

         } 

         else if (m_iDupACKCount > 3) 

            m_dCWndSize += 1.0; 
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         else 

            ACKAction(); 

      } 

      else 

      { 

         if (m_iDupACKCount >= 3) 

            m_dCWndSize = m_issthresh; 

            m_iLastACK = ack; 

            m_iDupACKCount = 1; 

         ACKAction(); 

      } 

   } 

   virtual void onTimeout() 

   { 

      m_issthresh = int(ceil(getPerfInfo()->msRTT * m_dBWE)); 

      if (m_issthresh < 2) 

      m_issthresh = 2; 

      m_bSlowStart = true; 

      m_dCWndSize = 2.0; 

   }; 

private: 

   double m_dBWE, m_dLastBWE; 

   double m_dBWESample, m_dLastBWESample; 

   timeval m_LastACKTime; 

}; 
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/******************************************************************** 

TCP Vegas 

Reference: 

L. Brakmo, S. O'Malley, and L. Peterson. TCP Vegas: New techniques for congestion detection 
and avoidance. In Proceedings of the SIGCOMM '94 Symposium (Aug. 1994) pages 24-35.  

Note: 

This class can be used to derive new delay based approaches, e.g., FAST. 

*****************************************************************************/ 

class CVegas: public CTCP 

{ 

public: 

   CVegas() 

   { 

      m_iSSRound = 1; 

      m_iRTT = 1000000; 

      m_iBaseRTT = 1000000; 

      gettimeofday(&m_LastCCTime, 0); 

      m_iPktSent = 0; 

      m_pAckWindow = new CACKWindow(100000); 

   } 
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   ~CVegas() 

   { 

      delete m_pAckWindow;  

   } 

   virtual void onACK(const int& seq) 

   { 

      double expected, actual, diff; //kbps 

      int rtt = m_pAckWindow->acknowledge(seq, const_cast<int&>(seq)); 

      if (rtt > 0) 

          m_iRTT = (m_iRTT * 15 + rtt) >> 4; 

          timeval currtime; 

          gettimeofday(&currtime, 0); 

          if ((currtime.tv_sec - m_LastCCTime.tv_sec) * 1000000 + (currtime.tv_usec -     

            m_LastCCTime.tv_usec) < m_iRTT) 

         return; 

      expected = m_dCWndSize * 1000.0 / m_iBaseRTT; 

actual = m_iPktSent / ((currtime.tv_sec - m_LastCCTime.tv_sec) * 1000.0 + (currtime.tv_usec - 
m_LastCCTime.tv_usec) / 1000.0); 

      diff = expected - actual; 

      if (m_bSlowStart) 

      { 

         if (diff < gamma) 

            m_bSlowStart = false; 

         if (m_iSSRound & 1) 

            m_dCWndSize *= 2; 

         m_iSSRound ++; 
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      } 

      else 

      { 

         if (diff < alpha) 

            m_dCWndSize += 1.0; 

         else if (diff > beta) 

            m_dCWndSize -= 1.0; 

      } 

      gettimeofday(&m_LastCCTime, 0); 

      m_iPktSent = 0; 

      if (m_iBaseRTT > m_iRTT) 

         m_iBaseRTT = m_iRTT; 

   } 

   virtual void onPktSent(const CPacket* pkt) 

   { 

      m_pAckWindow->store(pkt->m_iSeqNo, pkt->m_iSeqNo); 

      m_iPktSent ++; 

   } 

   virtual void onTimeout() 

   { 

   } 

protected: 

   int m_iSSRound; 

   int m_iRTT; 

   int m_iBaseRTT; 

   timeval m_LastCCTime; 
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   int m_iPktSent; 

   static const int alpha = 30; //kbps 

   static const int beta = 60;  //kbps 

   static const int gamma = 30; //kbps 

   CACKWindow* m_pAckWindow; 

}; 

/***************************************************************************** 

FAST TCP 

Reference: 

1. C. Jin, D. X. Wei and S. H. Low, "FAST TCP: motivation, architecture, algorithms,     
performance", IEEE Infocom, March 2004 

2. C. Jin, D. X. Wei and S. H. Low, FAST TCP for High-Speed Long-Distance Networks, Internet 
Draft, draft-jwl-tcp-fast-01.txt, 

   http://netlab.caltech.edu/pub/papers/draft-jwl-tcp-fast-01.txt 

Note: 

   Precision of RTT measurement may make great difference in the throughput 

*****************************************************************************/ 

class CFAST: public CVegas 

{ 

public: 

   CFAST() 

   { 

      m_dOldWin = m_dCWndSize; 

      m_iNumACK = 100000; 

   } 
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   virtual void onACK(const int& ack) 

   { 

      if (ack == m_iLastACK) 

      { 

         if (3 == ++ m_iDupACKCount) 

         { 

            m_dCWndSize *= 0.875; 

            return; 

         } 

      } 

      else 

      { 

         if (m_iDupACKCount >= 3) 

         { 

//            m_dCWndSize = m_issthresh; 

//            return; 

         } 

         m_iLastACK = ack; 

         m_iDupACKCount = 1; 

      } 

      if (0 == (++ m_iACKCount % m_iNumACK)) 

         m_dCWndSize += m_iIncDec; 

      int rtt = m_pAckWindow->acknowledge(ack, const_cast<int&>(ack)); 

      if (rtt > 0) 

         m_iRTT = (m_iRTT * 7 + rtt) >> 3; 
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      timeval currtime; 

      gettimeofday(&currtime, 0); 

if ((currtime.tv_sec - m_LastCCTime.tv_sec) * 1000000 + (currtime.tv_usec 
m_LastCCTime.tv_usec) < 2 * m_iRTT) 

         return; 

  m_dNewWin = 0.5 * (m_dOldWin + (double(m_iBaseRTT) / m_iRTT) * m_dCWndSize + alpha); 

      if (m_dNewWin > 2.0 * m_dCWndSize) 

        m_dNewWin = 2.0 * m_dCWndSize; 

         m_iNumACK = int(ceil(fabs(m_dCWndSize / (m_dNewWin - m_dCWndSize)) / 2.0)); 

      if (m_dNewWin > m_dCWndSize) 

         m_iIncDec = 1; 

      else 

         m_iIncDec = -1; 

         m_dOldWin = m_dCWndSize; 

         gettimeofday(&m_LastCCTime, 0); 

          m_iPktSent = 0; 

      if (m_iBaseRTT > m_iRTT) 

          m_iBaseRTT = m_iRTT; 

   } 

private: 

   static const int alpha = 200; 

   double m_dOldWin; 

   double m_dNewWin; 

   int m_iNumACK; 

   int m_iIncDec; 

   int m_iACKCount; 
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}; 

/***************************************************************************** 

Reliable UDP Blast 

Note: 

The class demostrates the simplest control mechanism. The sending rate can be set at any time 
by using setRate(). 

*****************************************************************************/ 

class CUDPBlast: public CCC 

{ 

public: 

   CUDPBlast() 

   { 

      m_dPktSndPeriod = 1000000;  

      m_dCWndSize = 83333.0;  

   } 

public: 

   void setRate(int mbps) 

   { 

      m_dPktSndPeriod = (m_iSMSS * 8.0) / mbps; 

   } 

protected: 

  static const int m_iSMSS = 1500; 

}; 
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/***************************************************************************** 

Group Transport Protocol 

Reference: 

Ryan X. Wu, and Andrew Chien, "GTP: Group Transport Protocol for Lambda-GRIDs", in 
Proceedings of the 4th IEEE/ACM International Symposium on  

Cluster Computing and the GRID (CCGRID), April 2004 

Note: This is a demotration showing how to use UDT/CCC to implement group-based control 
mechanisms, such GTP and CM. 

*****************************************************************************/ 

struct gtpcomp; 

class CGTP: public CCC 

{ 

friend struct gtpcomp; 

public: 

   virtual void init() 

   { 

      m_dRequestRate = 1; 

      m_llLastRecvPkt = 0; 

      gettimeofday(&m_LastGCTime, 0); 

      m_GTPSet.insert(this); 

      rateAlloc(); 

   } 

   virtual void close() 

   { 

      m_GTPSet.erase(this); 

      rateAlloc(); 
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   } 

   virtual void onPktReceived() 

   { 

      timeval currtime; 

      gettimeofday(&currtime, 0); 

int interval = (currtime.tv_sec - m_LastGCTime.tv_sec) * 1000000 + currtime.tv_usec - 
m_LastGCTime.tv_usec; 

      if (interval < 2 * m_iRTT) 

         return; 

      const UDT::TRACEINFO* info = getPerfInfo(); 

      double realrate, lossrate = 0; 

      realrate = (info->pktRecvTotal - m_llLastRecvPkt) * 1500 * 8.0 / interval; 

      if (info->pktRecvTotal != m_llLastRecvPkt) 

lossrate = double(info->pktRcvLossTotal - m_iLastRcvLoss) / (info->pktRecvTotal - 
m_llLastRecvPkt); 

      if (0 == lossrate) 

         m_dRequestRate *= 1.02; 

      else if (lossrate * 0.5 < 0.125) 

         m_dRequestRate *= (1 - lossrate * 0.5);  

      else 

         m_dRequestRate *= 0.875; 

      if (m_dRequestRate > m_dTargetRate) 

         m_dRequestRate = m_dTargetRate; 

         requestRate(int(m_dRequestRate)); 

      m_llLastRecvPkt = info->pktRecvTotal; 

      m_iLastRcvLoss = info->pktRcvLossTotal; 

      m_LastGCTime = currtime; 
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      m_iRTT = int(info->msRTT * 1000); 

   } 

   virtual void processCustomPkt(CPacket* pkt) 

   { 

      if (m_iGTPPktType != pkt->getExtendedType()) 

         return; 

      m_dPktSndPeriod = (1500 * 8.0) / *(int *)(pkt->m_pcData); 

   } 

public: 

   void setBandwidth(const double& mbps) 

   { 

      m_dBandwidth = mbps; 

   } 

private: 

   void rateAlloc(); 

   void requestRate(int mbps) 

   { 

      CPacket pkt; 

      pkt.pack(0x111, const_cast<void*>((void*)&m_iGTPPktType), &mbps, sizeof(int)); 

      sendCustomMsg(pkt); 

   } 

private: 

   double m_dTargetRate; 

   double m_dBandwidth; 

   double m_dRequestRate; 
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   timeval m_LastGCTime; 

   int64_t m_llLastRecvPkt; 

   int m_iLastRcvLoss; 

   int m_iRTT; 

private: 

   static set<CGTP*> m_GTPSet; 

   static const int m_iGTPPktType = 0xFFF; 

}; 

set<CGTP*> CGTP::m_GTPSet; 

struct gtpcomp 

{ 

  bool operator()(const CGTP* g1, const CGTP* g2) const 

  { 

    return g1->m_dBandwidth < g2->m_dBandwidth; 

  } 

}; 

void CGTP::rateAlloc() 

{ 

   if (0 == m_GTPSet.size()) 

      return; 

   vector<CGTP*> GTPVec; 

   copy(m_GTPSet.begin(), m_GTPSet.end(), GTPVec.begin()); 

   sort(GTPVec.begin(), GTPVec.end(), gtpcomp()); 

   int N = GTPVec.size(); 

   int n = 0; 

   vector<CGTP*>::iterator i = GTPVec.begin(); 
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   double availbw = (*(i + N - 1))->m_dBandwidth; 

   double fairshare = availbw / N; 

   while ((n < N) && ((*i)->m_dBandwidth < fairshare)) 

   { 

      (*i)->m_dTargetRate = (*i)->m_dBandwidth; 

      availbw -= (*i)->m_dTargetRate; 

      fairshare = availbw / (N - n); 

      ++ n; 

      ++ i; 

   } 

   for (; i != GTPVec.end(); ++ i) 

      (*i)->m_dTargetRate = fairshare; 

} 

/***************************************************************************** 

Protocol using reliable control channel 

Note: 

The feedback method using sendCustomMsg() as shown in CGTP sends data using unreliable 
channel. If some protocol nees reliable channel to  transfer control message, a seperate TCP 
connection can be sarted. 

The CReliableChannel class below can be used to derive such protocols. 

*****************************************************************************/ 

class CReliableChannel: public CCC 

{ 

public: 

   int startTCPServer(sockaddr* addr) 

   { 

      if (-1 == (m_TCPSocket = socket(AF_INET, SOCK_STREAM, 0))) 
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         return -1; 

      if (-1 == (bind(m_TCPSocket, addr, sizeof(sockaddr_in)))) 

         return -1; 

      if (-1 == (listen(m_TCPSocket, 10))) 

         return -1; 

      if (-1 == (m_TCPSocket = accept(m_TCPSocket, NULL, NULL))) 

         return -1; 

      #ifndef WIN32 

         pthread_create(&m_TCPThread, NULL, TCPProcessing, this); 

      #endif 

      return 0; 

   } 

   int startTCPClient(sockaddr* addr) 

   { 

      if (-1 == (m_TCPSocket = socket(AF_INET, SOCK_STREAM, 0))) 

         return -1; 

      if (-1 == (connect(m_TCPSocket, addr, sizeof(sockaddr_in)))) 

         return -1; 

      #ifndef WIN32 

         pthread_create(&m_TCPThread, NULL, TCPProcessing, this); 

      #endif 

      return 0; 

   } 

   int sendReliableMsg(const char* data, const int& size) 

   { 

      return send(m_TCPSocket, data, size, 0); 
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   } 

protected: 

   virtual void processRealiableMsg() 

   { 

      char data[1500]; 

      while (true) 

      { 

         recv(m_TCPSocket, data, 1500, 0); 

         //process data 

      } 

   } 

protected: 

   int m_TCPSocket; 

   pthread_t m_TCPThread; 

private: 

   static void* TCPProcessing(void* self) 

   { 

((CReliableChannel*)self)->processRealiableMsg(); 

      return NULL; 

   } 

}; 
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Appendix B 

C:\test>appclient 
usage: appclient server_ip server_port 

C:\test>appclient 172.22.42.57 9000 

SendRate(Mb/s) RTT(ms) 
CWn
d 

PktSndPeriod(us
) RecvACK 

RecvNA
K  

       
0.367358 100 32 1 1 0  
3.00126 12.832 307 3872.83 28 12  
1.88694 0.734 194 4536.45 29 2  
2.07238 0.268 161 2192 29 3  
2.70141 0.281 144 3336.36 34 12  
2.26593 0.267 143 3775.9 16 2  
2.33046 0.246 136 1927 30 4  
2.69334 0.266 132 3803 32 14  
2.75781 0.286 133 2255.17 34 12  
2.79011 0.276 130 2725 35 16  
2.36041 0.311 123 3222 18 10  
2.99447 0.308 126 3178 34 17  
2.39502 0.246 139 3963.83 34 9  
2.77402 0.27 128 2847.37 32 14  
2.68526 0.291 132 3919 22 12  
2.97555 0.309 132 2771 33 15  
2.89493 0.3 134 2788 34 19  
3.01587 0.296 122 3378 34 20  
2.94331 0.292 137 2868.09 34 13  
3.00723 0.308 127 3301 34 21  
2.74223 0.321 128 2250.42 26 17  
2.86267 0.3 135 2923.23 35 11  
2.92716 0.321 135 2063 34 15  
3.00783 0.331 132 2539 35 16  
2.44334 0.288 162 3603.11 36 9  
2.83848 0.296 129 3458.56 33 15  
2.70136 0.315 129 3411 29 12  
2.53208 0.3 141 3041.21 26 10  
2.83847 0.301 131 2828.63 34 15  
3.12876 0.343 136 2920.17 34 15  
3.16103 0.328 129 2628 34 18  
2.83572 0.308 126 3747 35 15  
2.80085 0.298 129 3164.47 34 16  
2.80619 0.3 142 3505 33 15  
2.88691 0.315 121 3702 22 11  
2.71752 0.331 128 3083.68 30 15  
2.76569 0.261 123 3570.48 34 19  
2.97577 0.281 128 3214.58 36 18  
2.78203 0.275 124 3225.5 33 19  
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2.52399 0.309 127 3665 36 14  
2.53201 0.309 124 3861.05 35 14  
2.62078 0.332 125 3569 21 12  
2.31433 0.305 115 3818 30 15  
2.59655 0.313 115 3734.01 33 17  
2.3382 0.307 122 3969 34 15  

2.88724 0.348 122 2974.28 36 20  
2.45949 0.291 120 4605.45 34 16  
2.33848 0.272 119 1946 35 13  
2.73368 0.338 116 3469 22 17  
2.51592 0.302 122 3591.25 34 16  
2.32238 0.319 127 3684.68 39 14  
2.66108 0.293 117 3743 34 16  
2.55376 0.315 122 3509 35 14  
1.92913 0.281 116 4653.46 32 4  
1.85466 0.296 121 4749 31 5  
2.6853 0.34 122 2486 33 17  

2.20949 0.323 130 4084 20 12  
2.23368 0.295 129 4266 30 10  
2.31433 0.299 124 3082.31 18 7  
2.78202 0.318 121 3256 33 18  
2.47561 0.27 132 2763.42 32 9  
2.4675 0.285 134 3056.21 33 11  

2.62079 0.302 128 4355 31 15  
2.85465 0.312 131 3478.09 144 76  
2.96672 0.278 128 2211 32 18  
3.09735 0.345 125 2536 36 18  
2.83041 0.392 132 3481 35 17  
2.80587 0.343 124 2360 34 15  
3.01623 0.322 135 2618 21 12  
2.18529 0.295 127 3487 28 12  
2.52399 0.284 128 3512 32 11  
2.86266 0.302 128 4036 31 18  
2.65303 0.287 136 3696.37 31 14  
2.79381 0.275 130 4045.78 109 39  
2.69334 0.317 122 3197.24 38 13  

3.29 0.327 130 2740 34 19  
2.67722 0.282 125 3848 33 14  
2.98359 0.303 149 1867 34 15  
3.2659 0.479 142 3136 37 20  

2.71752 0.293 134 3482.44 34 14  
2.12077 0.375 132 3743 18 10  
2.91081 0.339 127 3883 34 15  
2.79033 0.299 146 1944 34 13  
3.18523 0.376 129 3048 37 20  
2.87067 0.32 126 2652.88 35 13  
2.79014 0.293 135 1948 34 14  
3.00768 0.688 200 3258.32 35 19  
3.33051 0.346 131 2648 35 19  
2.80621 0.314 131 3250 35 13  
3.11265 0.35 129 2685 35 13  
2.33045 0.31 137 3336 16 9  
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3.12013 0.329 133 2547 35 15  
2.52189 0.322 138 3946.66 19 9  
2.98666 0.416 140 3687.37 36 18  
2.60461 0.291 135 3903.13 36 13  
2.45142 0.265 135 3672 33 7  
2.79008 0.302 127 2798.33 34 15  
2.95137 0.3 124 3552.46 34 18  
2.85437 0.549 136 2328 40 12  
3.05644 0.302 127 3246.43 34 18  
3.08039 0.28 128 3120.24 27 16  
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