

Network Security Mechanisms and

Implementations for the Next
Generation Reliable Fast Data

Transfer Protocol - UDT

Danilo Valeros Bernardo

A THESIS SUBMITTED AS

A PARTIAL REQUIREMENT FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

OF

THE UNIVERSITY OF TECHNOLOGY – SYDNEY

AUSTRALIA

School of Computing and Communications

Faculty of Engineering and Information Technology

The University of Technology – Sydney

Australia

The shades of night were falling fast,

As through an Alpine Village passed

A youth, who bore, ‘mid snow and ice,

A banner with the strange device,

Excelsior!

– H. Longfellow

CERTIFICATE OF AUTHORSHIP

/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a

degree nor has it been submitted as part of requirements for a degree except as

fully acknowledged within the text.

I also certify that the thesis has been written by me. Any assistance I have

received in my research work and the preparation of the thesis itself has been

acknowledged. In addition, I certify that all information sources and literature

used are fully indicated in the thesis.

Signature of Candidate

Acknowledgements

Completing a rigorous PhD by research in half the required maximum number of years is

a feat that not many can achieve, especially when there are demanding work
commitments to meet outside the academia.

This milestone obviously is not possible without the support of many people.

It is therefore only audaciously appropriate to thank the members of the Faculty and i-
Next and staff of the University Graduate School (UGS) for their support, and especially

for the interests, advice, and assistance they provide to this project, and for their

unwavering support in providing funding arrangements that resulted to a string of
almost 22 peer-reviewed academic papers written and published about this work.

I wish to thank Prof. Doan B. Hoang, my thesis advisor and supervisor, who fostered good
research and development of models, and helped ascertain that the focus of this work was

within the specific area of research. His meticulous assessment and his honest feedback

have been invaluable, leading to the improvement of this dissertation. His recognition of
my strong academic and research capabilities have been instrumental, prompting the

University to waive the coursework requirements which would have extended additional
years of arduous challenges. His advice on the importance of the use of citations and

references, which in their absence can lead to some issues for a student like me (who
incidentally has a semi eidetic memory), has left me wondering if this ability of

remembering information verbatim is a curse or a gift. Eventually, I obligingly consented
to cite someone’s work whenever necessary.

In addition, the encouragement and sheer independence I have been given in the

development of this dissertation, whilst publishing 2 books and almost 18 additional
research papers in other areas of interests, doubtless proved to be invaluable to my

present and surely to my future research and consulting work.

Moreover, the work presented in this thesis would also not have been possible without
the support, in the form of advice and research direction, of the following:

Dr. Yunhong Gu of the National Data Mining Centre at the University of Illinois, United

States, now a software engineer at Google, who provided initial guidance in the
implementation of UDT in a test environment, and provided invaluable insights that

improved this work.

Nicolas Williams of Sun Corporation, United States, and anonymous reviewers for their

constructive comments that helped improve the publications which supported and
validated the overall work in the development of a few security mechanisms in this

dissertation.

Prof. John Mitchell and Stephan Stiller of Security Laboratory, Stanford University,

California, United States, for providing very comprehensive literature about Protocol

Composite Logic technique: literature that helped improve the analysis of the proposed
mechanisms for UDT.

Dr. Henry Leitner of Harvard University, for his rigorous classes in Computer Science

that were instrumental in the development of the Project UDT Tool in Java.

The Australian Government for the Higher Degree Commonwealth Research Scholarship.

Friends and colleagues at NSW State Government.

Lastly and importantly, to my family for their continuing support in the countless

journeys I take, including this journey, which I initially thought the longest to complete.
Their support has always been the bedrock of my accomplishments.

Dedicated to DAB , Linda, Beverly, Jojo, and Bee Bee

Abstract

TCP protocol variants (such as FAST, BiC, XCP, Scalable and High Speed) have
demonstrated improved performance in simulation and in several limited
network experiments. However, practical use of these protocols is still very
limited because of implementation and installation difficulties. Users who
require to transfer bulk data (e.g., in Cloud/GRID computing) usually turn to
application level solutions where these variants do not fair well. Among protocols
considered in the application level are User Datagram Protocol (UDP)-based
protocols, such as UDT (UDP-based Data Transport Protocol). UDT is one of the
most recently developed new transport protocols with congestion control
algorithms. It was developed to support next generation high-speed networks,
including wide area optical networks. It is considered a state-of-the-art protocol,
addressing infrastructure requirements for transmitting data in high-speed
networks. Its development, however, creates new vulnerabilities because like
many other protocols, it relies solely on the existing security mechanisms for
current protocols such as the Transmission Control Protocol (TCP) and UDP.
Certainly, both UDT and the decades-old TCP/UDP lack a well-thought-out
security architecture that addresses problems in today’s networks. In this
dissertation, we focus on investigating UDT security issues and offer important
contributions to the field of network security. The choice of UDT is significant for
several reasons: UDT as a newly designed next generation protocol is considered
one of the most promising and fastest protocols ever created that operates on top
of the UDP protocol. It is a reliable UDP-based application-level data-transport
protocol intended for distributing data intensive applications over wide area
high-speed networks. It can transfer data in a highly configurable framework and
can accommodate various congestion control algorithms. Its proven success at
transferring terabytes of data gathered from outer space across long distances is
a testament to its significant commercial promise. In this work, our objective is to
examine a range of security methods used on existing mature protocols such as
TCP and UDP and evaluate their viability for UDT. We highlight the security
limitations of UDT and determine the threshold of feasible security schemes
within the constraints under which UDT was designed and developed.
Subsequently, we provide ways of securing applications and traffic using UDT
protocol, and offer recommendations for securing UDT. We create security
mechanisms tailored for UDT and propose a new security architecture that can
assist network designers, security investigators, and users who want to
incorporate security when implementing UDT across wide area networks.

We then conduct practical experiments on UDT using our security mechanisms
and explore the use of other existing security mechanisms used on TCP/UDP for
UDT. To analyse the security mechanisms, we carry out a formal proof of
correctness to assist us in determining their applicability by using Protocol
Composition Logic (PCL). This approach is modular, comprising a separate proof
of each protocol section and providing insight into the network environment in
which each section can be reliably employed. Moreover, the proof holds for a
variety of failure recovery strategies and other implementation and configuration
options. We derive our technique from the PCL on TLS and Kerberos in the
literature. We maintain, however, the novelty of our work for UDT particularly
our newly developed mechanisms such as UDT-AO, UDT-DTLS, UDT-Kerberos
(GSS-API) specifically for UDT, which all now form our proposed UDT security
architecture.

We further analyse this architecture using rewrite systems and automata. We

outline and use symbolic analysis approach to effectively verify our proposed

architecture. This approach allows dataflow replication in the implementation of

selected mechanisms that are integrated into the proposed architecture. We

consider this approach effective by utilising the properties of the rewrite systems

to represent specific flows within the architecture to present a theoretical and

reliable method to perform the analysis. We introduce abstract representations of

the components that compose the architecture and conduct our investigation,

through structural, semantics and query analyses.

The result of this work, which is first in the literature, is a more robust

theoretical and practical representation of a security architecture of UDT, viable

to work with other high speed network protocols.

Publications

Most of the chapters that are presented in this dissertation have been accepted,

published or have been submitted for publication in refereed /peer reviewed research
journals and conference proceedings (IEEE, Elsevier, Springer Verlag – LNCS and

IETF).

Research Accomplishments:

Served as Technical Session Chair at the Information Security Assurance Conference in
Japan, sponsored by Springer –Verlag Berlin Heidelberg in 2010.

Served as research and technical reviewer for the following international journals:

Computer & Security –Elsevier 2011, 2012

International Journal of Earth Science Informatics - Springer Verlag 2012

Management of Information Systems -MIS Review (MISR) 2012

Open Access Journals – Network Protocols and Algorithms, sponsored by

Polytechnic University of Valencia 2010-2012

International Journal of Network and Information Security 2009

This research work was supported by UTS FEIT, i-NEXT and Vice Chancellor Travel
Grants. This was also partly supported by industry Global Science and Technology

Initiatives Grant sponsored by Db2Powerhouse Social Enterprise.

Best Paper Award

 Bernardo, D.V., Hoang, D.B., (2010), ‘Security Analysis of Proposed Practical
Security Mechanisms for High Speed Data Transfer Protocol’ 4th Information
Security Assurance 2010, Japan, LNCS Springer –Verlag Berlin Heidelberg,
June 23-25, 2010 (Book Chapter).

Outstanding Research Presentation

 Bernardo, D.V., (2012),’ Enciphering the Thoughts: Towards Achieving Ultimate
Information Security’, 3rd International Arts and Sciences, Harvard University
Boston, USA, May 27-31, 2012 ,ISSN 1943-6114 (Conference).

Innovation Patents

 Innovation in Encryption systems Patent 2012100172
 Innovation in e-information systems Patent 2006100469

Portions of this work are published in the following publications:

Other/Books

 Bernardo, D.V., (2008) i-Think 1st Edition: Selected Works in Business ,
Technology, Research and Innovation, March 2008, book paperback, Sydney,
Singapore, UK and USA, ISBN 978-0-646-486- 543.
http://nla.gov.au/anbd.biban42560289

 Bernardo, D.V., Hoang, D.B., (2009) Security Requirements for UDT, IETF3

(working paper), RFC Request for Comments, Internet and Engineering Task
Force.

 Bernardo, D.V., (2009) i-Think 2nd Edition: Selected Works in Business ,

Technology, Research and Innovation, March 2008, book paperback, Sydney,
Singapore, UK and USA, ISBN 978-0-646-486- 543.
http://nla.gov.au/anbd.biban42560289

International Journals

 Bernardo, D.V., Hoang, D.B., (2011) ‘Multi-layer Security Analysis and
Experimentation of High Speed Protocol Data Transfer for GRID’, Int. Journal of
Grid and Utility Computing (IJGUC), SN 1741-8488, ISSN 1741-847X. (by
invitation)

 Bernardo, D.V., Hoang, D.B., (2010), ‘A Pragmatic Approach:

Achieving Acceptable Security Mechanisms for High Speed Data Transfer
Protocol – UDT’, SERSC, International Journal of Security and its Applications
Vol. 4, no. 3, ISSN 1738-9976.(by invitation)

 Bernardo, D.V., Hoang, D.B., (2010),’Securing Data Transfer in the Cloud

through Introducing Identification Packet, and UDT Authentication Option
Field: A Characterization’, International Journal of Network Security and its
Applications ISSN 0974- 9330 and 0975-2307. (by invitation)

 Bernardo, D.V., Hoang, D.B., (2009), ‘Network Security Considerations for a

New Generation Protocol UDT’ JCSIA- Journal of Computer Security and
Information Assurance, Volume 4 –Issue 4, 2009 , Dynamic Publishing, USA,
ISSN 1554- 1010 (by invitation)

Book Chapters

 Bernardo, D.V., Hoang, D.B.,(2011), Security Technology 2011,” Formalization
and Information-Theoretic Soundness in the Development of Security
Architecture for Next Generation Protocol – UDT” Jeju Island Korea, LNCS
Springer–Verlag Berlin Heidelberg, December 8-10, 2011 (Book Chapter)

 Bernardo, D.V., Hoang, D.B.,(2010), International Conference on Future

Generation Communication and Networking 2010, “End-to-End Security
Methods for UDT Data Transmissions” Jeju Island Korea, LNCS Springer–
Verlag Berlin Heidelberg, December 13-15, 2010 (Book Chapter)

 Bernardo, D.V., Hoang, D.B.,(2010), 4th Information Security Assurance 2010,

“Security Analysis of Proposed Practical Security Mechanisms for High Speed
Data Transfer Protocol”, Japan, LNCS Springer–Verlag Berlin Heidelberg,
June 23-25, 2010 (Book Chapter)

International Conferences Publications and Proceedings

 Bernardo, D.V., Hoang, D.B.,(2012), "Securing the Cloud, Dispelling Fears: An
initiative" 16th IEEE Network Based-Information Systems (NBIS)
Trustworthy Computing (TwC-2012) Workshop, Melbourne, September 26-28,
2012

 Bernardo, D.V., Hoang, D.B.,(2012), "Symbolic Analysis of UDT Security

Architecture " 26th IEEE Advanced International Network Information and
Application -Workshop , AINA Fukuoka Japan, March 26-29, 2012

 Bernardo, D.V., Hoang, D.B.,(2012), "Compositional Logic for Proof of

Correctness of Proposed UDT Security Mechanisms " 26th IEEE Advanced
International Network Information and Application AINA Fukuoka Japan,
March 26-29, 2012

 Bernardo, D.V., Hoang, D.B.,(2011), "Empirical Survey: Experimentation and

Implementations of High Speed Protocol Data Transfer for GRID " 26th IEEE
Advance International Network Information and Application –AINA and 8th
FINA Frontiers Information Network and Application, Workshop Singapore,
March 22-25, 2011

 Bernardo, D.V., Hoang, D.B.,(2010), “A Conceptual Approach against Next

Generation Security Threats: Securing High Speed Network Protocols “ 2nd
IEEE International Conference of Future Networks ICFN 2010 proceedings
Sanya, China January 22-24, 2010

 Bernardo, D.V., (2010), “UDT –AO Approach” 6th IEEE International

Assurance and Security, sponsored by IEEE Intelligent Transportation
Systems Society, Atlanta, USA August 23-25, 2010

 Bernardo, D.V., Hoang, D.B.,(2009), 2nd IEEE ICCSIT 2009 proceedings re

Network Security Considerations for a New Generation Protocol UDT, Volume
3, IEEE ISBN 978-1-4244-4519-6, Beijing China, August 8-11, 2009

 Bernardo, D.V., Hoang, D.B.,(2009), 8th IEEE ICISM 2009 proceedings re

Quantitative Security Risk Assessment (SRA) Method: An empirical case
study , Coimbatore India, December 9 -11, 2009.

 Bernardo, D.V., Hoang, D.B.,(2010), 4th IEEE International Conference on

Emerging Security Information, Systems and Technologies SECURWARE
2010 re “Protecting Next Generation High Speed Protecting–UDT through
Generic Security Service Application Program Interface GSS-API”
Venice/Mestre, Italy , July 18-25, 2010.

The research work presented in this thesis has been performed jointly with

Prof. Doan B. Hoang

Head of School

Director, iNext, School of Computing and Communications

Faculty of Engineering and Information Technology

The University of Technology, Sydney

NSW, 2000

Australia.

Abbreviations

Description

ACK2 Acknowledge of ACK
AES Advanced Encrypt Standard

AH Authentication Header
AIMD Additive Increase/Multiplicative Decrease Algorithm

AIP Accountable Internet Protocol
AO Authentication Option

BDP Bandwidth-Delay Product
BiC Binary Increase Congestion Control

CCC Configurable Congestion Control
CGA Cryptographically Generated Addresses

CRS Constrained Rewrite Systems
CTCP TCP Congestion Control Algorithm

DCCP Datagram Congestion Control Protocol
DTLS Data Transport Layer Security

EMIST Evaluation Methods for Internet Security Technology Tool

FAST FAST TCP Avoidance Algorithm for Long Distance
GRS Growing Rewrite Systems

GSS-API Generic Security Service - Application Program Interface
HI /HIT Host Identifier

HIP Host Identity Protocol
IDS Intrusion Detection System

IP Internet Protocol
IPS Intrusion Prevention System

IPSec Internet Protocol Security
IPv4 Internet Protocol Version 4

IPV6 Internet Protocol Version 6
KDF Key Derivation Functions

MAC Message Authentication Code

MD5 Message-Digest algorithm 5
MSS Maximum Segmentation/Segment Size

MTU Maximum Transmission Unit
NAK Negative Acknowledgement

NBN Network Broadband Network
NS2 Network Simulation 2

PCL Protocol Composite Logic

P2P Peer to Peer

POP3 Post Office Protocol 3
PSK Private Shared Keys

RFC Request For Comments
RSA Rivest, Shamir and Adleman Algorithm

RTT Round-Trip Time
SASL Simple Authentication and Security Layer

SDSS Sloan Digital Sky Survey
SHA-1,2,256 Secure Hash Algorithm

SMTP Simple Mail Transport Protocol
STCP Stream Transport Protocol

SYN Synchronisation/Synchronise
TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TLS Transport Layer Security
UDP User Datagram Protocol

UDT UDP-based Data Transfer
VLAN Virtual Local Area Network

VPN Virtual Private Network
WOAN Wide Optical Area Network

XCP Xplicit Congestion Protocol

Figures Description Pages
Figure 1-1 UDT in Layer Architecture 7
Figure 1-2 Research Model 12

Figure 1-3 Research Phases 13
Figure 2-1 Streamline Join Example 21

Figure 2-2 Layered Architecture of UDT 25
Figure 2-3 Relationship UDT Sender and Receiver 26

Figure 2-4 UDT Packet Header Structures 30

Figure 2-5 Socket System Calls 35
Figure 2-6 Socket System Calls and Associations 36

Figure 2-7 UDT Data Flow 37
Figure 2-8 Challenge Response 43

Figure 3-1 First Packet Identity in UDT 64
Figure 3-2 UDT Packet Identity Packet 64

Figure 3-3 Host Identity Protocol Architecture 66
Figure 3-4 Simplified CGA 69

Figure 3-5 UDT Flow End-to-End Security 72
Figure 3-6 Schematic Diagram of UDT in IPsec 73

Figure 4-1 Built Environment 79
Figure 4-2 UDT RTT Fairness 83

Figure 4-3 Program Process 85
Figure 4-4 Main Menu Project UDT Tool 87

Figure 4-5 Accept Text File Menu 87

Figure 4-6 UDT Output Graph 90
Figure 4-7 Send Packet Connection Results 90

Figure 4-8 Receive Packet Connection 91
Figure 4-9 Unsecured Data Transfer Results 93

Figure 4-10 Secured Data Transfer Results 93
Figure 4-11 Unsecured Environment 98

Figure 4-12 Unsecured Environment (with AO, DTLS and GSS-API) 99
Figure 6-1 Layer-to-Layer Architecture 136

Figure 6-2 Proposed UDT Security Architecture 137
Figure 6-3 Data Flow through Proposed Mechanisms 146

Figure 8-1 Australian Data Transmission 168
Figure 8-2 Barrier to Cloud Adoption 171

Figure 8-3 Layer-to-Layer GRID 174

Figure 8-4 Example of Smart GRID 175
Figure 8-5 Technology Trend 175

Tables Description Pages
Table 2-1 Example of UDT Increase Parameter Computation 28
Table 2-2 Challenge Init and Response 43

Table 4-1 Results with security /encryption 94

Table 4-2 Results without security /encryption 94
Table 4-3 UDT test results with (encrypted data) and without (or

plain data) encryption in secured Data File Transmission

95

Table 4-4 UDT test results with (encrypted data) and without (or
plain data) encryption- in unsecured UDT Data File
Transmission

95

Table 4-5 Transport Protocol Matrix 100
Table 4-6 Summary of Schemes 101

Table 5-1 UDP+UDT Process 110
Table 5-2 Successful Message Exchange in UDT-AO 111

Table 5-3 KDF-AES-128-CMAC 112
Table 5-4 Formal Description of UDT-AO 115

Table 5-5 Formal Description of UDT+DTLS 124
Table 5-6 Honest Rule 126

Table 5-7 DTLS Invariants 127
Table 5-8 Formal Description of UDT + GSS-API 130

Table 8-1 Cloud/Grid Deployment

173

Table of Contents

 Acknowledgements

 Abstract

 Publications

1 Introduction……………………………………………………………………………..

1

 1.1 Contributions…………………………………………………....................................... 2

 1.2 Organisation……..………………………………………………………………………… 4

 1.3 Background…..……………………………………………………………………………. 4

 1.4 Overview…………………………………………………………………………………… 6

 1.5 Related Works…………………………………………………………………………….. 7

 1.6 Constraints and Hypotheses...………………………………………………………….. 8

 1.6.1 Research Objectives and Scope…………………………………………….. 11

 1.6.1.1 Scope…………………………………………………………….. 11

 1.6.1.2 Key Research Objectives……………………………………… 11

2 State of the Art Protocol…………………………………………………………. 15

 2.1 Transport Protocols and Network Congestion Control …………………………….. 17

 2.1.1 TCP’s Constraints ……………………..…………………………………….. 19

 2.1.2 UDT – An Alternative……………………………………………………….. 20

 2.2 The UDT Protocol ……………………………….……………………………………….. 25

 2.2.1 Overview………………………………………………………………………. 25

 2.2.2. Congestion Control…………………………………………………………... 27

 2.3 UDT Packet Structures………………………………………………………………….. 29

 2.4 UDT Application Socket Interface……………………………………………………… 31

 2.5 Uses of API ………………………………………………………………………………... 32

 2.5.1 Initialise a socket…………………………………………………………….. 32

 2.5.2 Bind a socket to a port address ……………………………………………. 32

 2.5.3 Indicate readiness to receive connections ……………………………….. 33

 2.5.4 Accept a connection……………..........……………………………………... 33

 2.5.5 Request connection to server……………………………………………….. 34

 2.5.6 Send and/or receive data……………………………………………………. 34

 2.5.7 Close a socket…………………………………………………………………. 34

 2.6 UDT Application Socket Interface……………………………………………………… 37

 2.6.1 Implementation…….....……………………………………………………… 38

 2.6.2 Software Architecture……………………………………………………….. 38

 2.6.3 User Interface………………………………………………………………… 39

 2.6.4 Protocol Configuration………………………………………………………. 40

 2.7 Approaches………….……………………………………………………………………... 42

 2.7.1 PCL …………...……….………………………………………………………. 43

 2.7.1.1 PCL Notations………………………………………………….. 45

 2.7.2 Rewrite Systems and Automata …………………………………………... 47

 2.8 Concluding Remarks……………………………………………………………………... 50

3 Security Mechanisms…………………………………….………………………….

53

 3.1 UDT-Authentication Option Field.……………………......…………………………... 53

 3.1.1 UDT Option for Authentication……………….…………………………… 54

 3.1.2 Syntax for UDT Option……………………………………………………… 54

 3.1.3 Implications…………………………………………………………………… 58

 3.1.3.1 Header Size……………………………………………………... 58

 3.1.3.2 Hashing Algorithm……………………………………………. 59

 3.1.3.3 Key configuration……………………………………………… 59

 3.2 Generic Security Service- Application Program Interface (GSS-API) …...………. 60

 3.3 Identity Packet with UDT …….………………………………………………………... 60

 3.4 Other Mechanisms ……………………………………………………………………….. 66

 3.4.1 Diminishing MSS..…………………………………………………………... 67

 3.4.2 Cryptographically Generated Addresses (CGA)……………..………….. 68

 3.4.3 HIP-CGA and UDT…………………………………………………………... 69

 3.4.4 Data Transport Layer Security (DTLS)…………………………………... 71

 3.4.5 Internet Protocol Security (IPsec)…………………………………………. 72

 3.5 Concluding Remarks …………………………………………………………………….. 74

 3.5.1 Summary of GSS-API……………………………………………………….. 74

 3.5.2 Summary of UDT-AO……………………………………………………….. 74

 3.5.3 Summary of the UDT-Identification Packet……………………………... 75

 3.5.4 Summary of the other mechanisms…..…………………………………… 75

4

Experimental Validations and Practical Implementations………...... 77

 4.1 Outcomes …..……………………………………………………………………………… 78

 4.1.1 Environment …………………………………………………………………. 78

 4.1.2 Proprietary Tool……………………………………………………………… 80

 4.1.3 Methodology ………………………………………………………………….. 80

 4.1.4 Data Collection ………………………………………………………………. 84

 4.1.5 Description of Tool …………………………………………………………... 84

 4.1.6 Program and Image Files…………………………………………………… 86

 4.1.7 Summary………………………………………………………………………. 88

 4.2 Practical Validations …………………………………………………………………….. 89

 4.2.1 Measurement Schemes and Results….…………………………………… 92

 4.2.2 Impact on Performance ………..…………………………………………… 96

 4.2.3 Socket and Application Layer UDT Protection..………………………… 97

 4.2.4 Results ……………………………………………...…………………………. 98

 4.3 Concluding Remarks …………………………………………………………………….. 103

5 Proof of Correctness of the Selected UDT Security Mechanisms…..

107

 5.1 Overview of Proof Method………….………………………..

107

 5.1.1 Significance...…………………………………………………………………. 109

 5.1.2 PCL Method………………..…………………………………………………. 109

 5.2 Proof of UDT-AO Protocol ……………………………………………………………….

110

 5.2.1 UDT-AO Description …………..……………………………………………. 112

 5.2.2 UDT-AO Proof of Correctness…...…………………………………………. 114

 5.2.3 Formal Description of UDT-AO in the Formal Language……………... 115

 5.2.4 UDT-AO Security Properties………………………………………………. 116

 5.2.5 UDT-AO Axioms……………………………………………………………… 119

 5.2.6 UDT-AO Operating Environment…………………………………………. 122

 5.3 Proof of UDT+DTLS Protocol ……………………………..

123

 5.3.1 UDT-DTLS Description……..………………………………………………. 123

 5.3.2 UDT-DTLS Proof of Correctness…………………………………………... 124

 5.3.3 Formal Description of UDT+DTLS in the Formal Language…………. 124

 5.3.4 UDT-DTLS Security Properties……………………………………………. 125

 5.3.5 UDT-DTLS Operating Environment……………………………………… 127

 5.4 Proof of UDT+GSS-API (Kerberos) Protocol…………………………………………..

128

 5.4.1 UDT+GSS-API (Kerberos) Description ………………………………….. 128

 5.4.2 Proof of UDT+GSS-API through Kerberos………………………………. 128

 5.4.3 Formal Description of UDT + GSS-API in the Formal Language.…… 130

 5.4.4 GSS-API Kerberos Properties and Operating Environment………….. 131

 5.5 Concluding Remarks……………………………………………………………………... 131

6 High Speed Data Transfer Security Architecture………………………..

133

 6.1 Framework Objectives…………………………………………………………………… 133

 6.1.1 Milestone………………………………………………………………………. 134

 6.1.2 Summary of Work …...…………………………………….......................... 134

 6.2 Architecture………………………………………………………………………………... 136

 6.3 Synopsis……......…………………………………………………………………………... 138

 6.4 Symbolic Analysis of Proposed UDT Security Architecture………...……………... 139

 6.5 Approach…………………………………………………………………………………… 141

 6.5.1 Term Algebra…… …...…………………………………….......................... 141

 6.5.2 Tree Automata ….…...…………………………………….......................... 142

 6.5.3 Rewrite Systems ..…...…………………………………….......................... 142

 6.5.4 Extension to Rewrite Systems...……

143

 6.6 Formalisation……………………………………………………………………………… 145

 6.6.1 Data Flow………………………...……

146

 6.6.2 Architecture Flow……………...……

147

 6.7 Analysis of the Architecture ……………………………………………………………. 149

 6.7.1 Semantic Analysis…………………………………………………………… 149

 6.7.2 Structural Analysis………………………………………………………….. 151

 6.8 Concluding Remarks……………………………………………………………………... 153

7 Conclusion and Scope for Future Work………………………………………

155

 7.1 Summary ………………………………………………………………………………….. 155

 7.2 Assessment ……………………………………………………………………………….. 156

 7.3 Conclusion………………………………………………………………………………….. 158

 7.4 Future Work……………………………………………………………………………….. 159

 7.4.1 Future Analysis: Proposed UDT Security Mechanisms………………... 160

 7.4.2 Project UDT Enhancement…………………………………………………. 161

8 Epilogue…………………………….…………………………………………………….

163

 8.1 Security the Cloud, Dispelling Fears: Ways to Combat Climate Change………...

163

8.1.1 Introduction.…………..……………………………………………………… 164

 8.1.2 Contributions………….……………………………………………………… 166

 8.1.3 Security in High-Speed Networks…………………………………………. 167

 8.1.4 Current Trend………………………………………………………………… 168

 8.1.4.1 Securing e-Health …………...………………………………... 169

 8.1.4.2 Securing Smart GRID, Smart City…………………………. 170

 8.1.4.3 Priorities and Barriers to Dematerialisation……………… 170

 8.1.4.4 User Impact…………………………………………………….. 171

8.2 Discussions……………………………………………………………………………….... 172

8.3 Conclusion and Future Work...…………………………………………………………. 176

Bibliography…………………………………………………………………………………….

177

Appendices……………………………………………………………………………………….

191

 Appendix A……………………………………………………………………………….... 191

 Appendix B……………………………………………………………………………….... 259

In Deo confidimus

 1

Chapter 1

Introduction

The rapid growth of advanced high-speed networks has created opportunities for

new technology to prosper. With this trend, high-speed networks are becoming

increasingly available, such that the Australian government recently initiated

the ambitious project of implementing the National Broadband Network (NBN)

[120], bringing high-speed networks through optical fibre connections across the

country. The utilisation of high-speed networks addresses many of the problems

consumers are confronting, such as education disparity, high carbon emissions,

and slow delivery of e-health.

The increasing requirements of high-speed networks, meanwhile, have

subsequently pushed researchers to develop new protocols that support high

density data transmissions in various networks. Many of these protocols are

Transport Control Protocol (TCP) [6,46] variants, which have demonstrated

better performance in simulation and several limited network experiments.

However, they have limited practical applications because of implementation and

installation difficulties. Meanwhile, users who need to transfer bulk data (e.g., in

Cloud/GRID computing) frequently turn to application level solutions, where

these variants become problematic. UDP-based protocols like UDT (UDP-based

Data Transport Protocol) are among the protocols considered in the application

level solutions for Cloud/GRID computing.

UDT — a fast data transfer protocol — was successfully implemented by

capturing data from outer space, gathering terabytes of information, and

2

transferring these across the continents in a high-speed network. This

demonstrates a compelling commercial promise in data communications

networks.

Whilst many types of protocols solve many of the problems in terms of achieving

speed and better network performance, one problem that continues to dominate

thus hindering their progression: security.

Today, weak security – or the lack of it – continues to be a perennial challenge to

various network implementations.

1.1 Contributions

This work introduces for the first time a security architecture for a UDP-based

protocol: UDT. In verifying this architecture, extensive reviews, validations, and

implementations of security mechanisms are performed. Some of these

mechanisms are created and subjected to theoretical and practical validations to

achieve proofs of secrecy, authentication, and applicability to sustain the

architecture in securing UDT.

In 2009, part of the early work [22] on UDT Security Architecture formed fraction

of the proposal that was then put forward to the International Engineering Task

Force (IETF) [33]. Further improvement of this proposal, however, will continue

through this thesis and its enhanced version will be presented to IETF in the

future. The rationale is to standardise UDT Security Requirements and

Architecture to support application and network deployments.

The architecture will be exhibited with supplemental information on the schemes

that can provide a foundation for basic, if not comprehensive, security of data

flow, specifically in the higher-level communication layers.

This work thus presents the following paradigms to the security analysis and

implementations of our newly developed and proposed security mechanisms

specific to UDT. These mark a first in the literature:

1. Where practical validations pose constraints, formalisation of inductive

properties in a set of newly introduced axioms; inference rules and proof

 3

of soundness of the proposed mechanisms over the widely used model

(Chapter 5); and the foundational development of these mechanisms for

inductive proof analysis and automata of their security properties

(Chapters 5 &6) are presented.

2. Formalisation of the proposed architecture through proofs of correctness

of mechanisms and secrecy properties in data flow (Chapter 6).

On the practical side, the theoretic approach to the analysis of the real world

UDT implementations – with proposed security mechanisms – is extensively

applied. These also mark a first in the literature:

1. Systematic investigation of the design and implementation of security –

specifically, its absence in UDT.

2. Proofs of authentication and secrecy properties of Generic Security Service

– Application Program Interface (GSS-API) and Kerberos, with both

symmetric and public-key initialisation in the given theoretic models.

(Chapters 5 & 6).

3. Proofs of secrecy and authentication properties of the created UDT-

Authentication Option (AO), UDT + Datagram Transport Layer Security

(DTLS), and UDT+GSS-API in a real world test environment (Chapters 5

& 6).

4. Development of a proprietary UDT visualisation tool in Java (Chapter 4).

While there are existing sophisticated tools available for evaluating the

performance of existing protocols, none was available specifically for UDT.

We developed a unique Java program that scans UDT static data in a file

and demonstrates them in a graph. This is an initial step to developing a

clear understanding of how data sets vary when gauging UDT’s

performance in different scenarios. It is noteworthy that the development

of a proprietary tool to assist the evaluation of UDT merits a separate

thesis in the research area of network protocols’ performance, their

evaluations, and simulations.

4

5. Evaluation of the role of UDT Security Architecture in Cloud/GRID in

climate change initiatives (Epilogue).

1.2 Organisation

The compositions of each chapter were published in peer-reviewed international

conferences, proceedings, and journals. Some of these conferences were sponsored

by Springer Verlag Lecture Series in Computer Science (LNCS) and the Institute

of Electrical and Electronics Engineers (IEEE).

Considering this thesis was published in multiple peer-reviewed conferences and

publications, the chapters that form this work are organised that incorporates

the comments of various reviewers. In Chapter 2, we present an overview of UDT

[82]. We review existing research on UDT [22-33, 82]. We review existing

literature and present our proposed security designs and implementations. We

then outline the motivation behind this work. In Chapters 3, 4, and 5, we present

existing and new approaches to secure UDT. These chapters also describe

theoretic analyses, experiments, simulations, and implementations of these

approaches. In Chapter 6, we outline the architecture, analysing it through

rewrite systems and automata. In Chapter 7, we conclude the dissertation and

describe possible directions for future work. In the Epilogue, we present

additional contribution of our work to climate change initiatives.

1.3 Background

Recent developments in network research introduced UDT, which is considered

to be one of the next-generation of high performance data transfer protocols [82].

UDT introduces a new three-layer protocol architecture composed of a connection

flow multiplexer, enhanced congestion control, and resource management. The

new design allows protocol to be shared by parallel connections and to be used by

future connections. It improves congestion control and reduces connection set-up

time.

UDT also provides better usability by supporting a variety of network

environments and application scenarios [22-33]. It addresses TCP’s limitations by

reducing the overhead required to send and receive streams of data.

 5

One example of the implementation of UDT is the Sloan Digital Sky Survey

(SDSS) project [82, 79, 139], which involves mapping in detail one quarter of the

entire sky and determining the positions and brightness of more than 300 million

celestial objects. The project measures distances to more than a million galaxies

and quasars. The data from the SDSS project have so far increased to 2

terabytes, and this number continues to grow [82,139]. Currently, these terabytes

of data are delivered to Europe via Chicago, then to the Asia-Pacific region,

including Australia, Japan, South Korea, and China. Astronomers execute online

analyses on multiple datasets stored in geographically distributed locations [79].

This implementation offers a promising direction for the future deployment of

high-speed data transfer in various industries. However, for the industries to

benefit from this technology, it is of utmost importance that the data must be

secured and UDT itself must be protected in wide area networks.

However, the present challenge of reducing the cost and complexity of running

streaming applications over the Internet as well as through wireless and mobile

devices – all while maintaining security and privacy for their communication

links – continues to mount.

This challenge is compounded by the absence of well-thought-out security

mechanisms for protocols (such as UDT) during its early stage of development; it

is this that drives this dissertation to introduce novel ways of securing UDT in

extensive implementation scenarios.

The goal is to introduce an architecture that supports the modularity and

structure of a protocol such as UDT. To develop this architecture, and to further

enhance our work, we introduce application and IP-based mechanisms as well as

a combination of existing security solutions of existing layers.

The proposed [22-33] architecture will adequately address vulnerability issues by

implementing security mechanisms in UDT while maintaining transparency in

data delivery. Its development is based on the analyses drawn from the source

codes of UDT found at SourceForge.net. The source codes are analysed and tested

on Windows and Linux environments to gain a better understanding of the

functions and characteristics of this new protocol. A data analysis tool developed

6

to visualise UDT data transmission in either secure or non-secure environments

will be used.

Also to be performed are network and security simulations such as NS2 [86,123]

and the Evaluation Methods for Internet Security Technology tool (EMIST),

developed at the Pennsylvania State University with support from the US

Department of Homeland Security and the National Science Foundation.

Furthermore, we will survey and use other available security network devices

and tools (e.g., firewalls) that are widely used in the industry.

Most of the security vulnerability testing, meanwhile, will be conducted through

penetration and traffic load tests. The results will provide significant groundwork

for the development of a proposal and, eventually, of an architecture

encompassing a variety of mechanisms designed to secure UDT against various

adversaries, such as Sybil, man-in-the-middle, and the most common, Denial-of

Service (DoS) attacks.

1.4 Overview

In this section, we discuss our research on developing a unified security

architecture for UDT. We use the terms ‘approach,’ ‘methodology,’ ‘method,’

‘framework,’ and ‘architecture’ interchangeably in this dissertation as these

terms share connotations in both our past and present publications.

In a part of this dissertation published in [22-33], we highlighted the security

limitations of UDT and determined the threshold of feasible security schemes

within the constraints under which UDT was designed and developed. We

introduced a method of securing applications and traffic using the UDT protocol

and offered recommendations to meet security requirements for UDT.

Here, we summarise the breadth of security methods proposed for UDT and

review the results. We present an improved security methodology and

architecture after extensive specification and conformance tests. The results from

these tests can assist network and security investigators, designers, and users

who consider and incorporate security when implementing UDT across wide area

networks.

 7

1.5 Related Works

We present a security architecture with various feasible mechanisms that can

secure UDT [22-27, 33]. This architecture focuses on UDT’s position in the Open

Systems Interface (OSI) layer architecture, which can provide a layer-to-layer

approach to address security. We develop the architecture with the knowledge

that UDT security relies mainly on the security in existing mature protocols.

A summary of security mechanisms and their implementations is presented in

Figure 1-1. This summary is used as a basis to create a comprehensive security

architecture, which is presented in Chapter 6.

Figure 1-1: UDT in Layer Architecture. UDT is in the application layer
above UDP. The application exchanges its data through the UDT socket,
which then uses the UDP socket to send or receive data [22-33].

Because UDT operates between the application and transport layers running on

top of UDP, data being carried must be transmitted securely and correctly. This

must be implemented by each application, an operating system, and, whenever

possible, by proprietary mechanisms using a separate stack [22-33].

The implementation must be based on generic libraries [30] and supported by the

application-dependent components, such as the API module, the sender, receiver,

Message

Application Layer

UDT

UDP

 UDT Socket

 OS Socket Interface

Src addr, Dest addr, Chksm

Src IP, Dest IP, Chksm ,TTL

Src Port, Dest Port, Len, Chksm

ETH Header

IP Header

UDP Header

UDT Data from Sender to
Receiver

UDT Control Flow -
Receiver to Receiver

SSL/TLS

Ipsec – Network /IP layer

CCC

8

and UDP channel. It also relies on the sender’s protocol buffer, receiver’s protocol

buffer, sender’s loss list, and receiver’s loss list [24].

1.6 Constraints and Hypotheses

UDT is a connection-oriented duplex protocol [30], which supports data

streaming and partial reliable messaging. It also uses rate-based congestion

control (rate control) and window-based flow control to regulate outgoing traffic.

This has been designed so that rate control updates the packet sending period at

constant intervals, while flow control updates the flow window size each time an

acknowledgment packet is received. The protocol has also been expanded to

satisfy additional requirements for both network research and applications

development [21-31]. This expansion is called Composable UDT and is designed

to complement kernel-space network stacks. However, this expansion is intended

for:

Implementation and deployment of new control algorithms. Data

transfer through private links can be implemented using

Composable UDT;

Support of application-aware algorithms;

Ease of testing new algorithms for kernel space.

The Composable UDT library implements a standard TCP Congestion Control

Algorithm (CTCP). CTCP can be redefined to implement more TCP variants,

such as TCP (low-based) and TCP (delay-based). The designers [33] emphasise

that the Composable UDT library does not implement the same mechanisms as

those in the TCP specification. TCP uses byte-based sequencing, whereas UDT

uses packet-based sequencing. This, therefore, does not prevent UDT from

simulating TCP’s congestion avoidance behaviour [23, 30, 32-33].

UDT, moreover, is designed with the Configurable Congestion Control (CCC)

interface that uses the following techniques: 1) control event handler call backs,

2) protocol behaviour configuration, 3) packet extension, and 4) performance

 9

monitoring. Its features can be used for bulk data transfer and streaming data

processing, unlike TCP, which cannot be used for this type of processing because

of two impediments: firstly, in TCP the link must be clean (with little packet loss)

for it to fully utilise the bandwidth; secondly, when two TCP streams start at the

same time, the stream with the longer Round-Trip Time (RTT) will be starved,

due to the RTT bias problem [26, 28]; the data analysis process will thus have to

wait for the slower data stream.

Since UDT does not have well-thought-out security mechanisms, we approach the

development of these mechanisms in three phases (Figure 1-2): first, by

developing research questions based on the building blocks (the objectives and

aims of this work); second, by drawing research outcomes based on the results of

analyses and methods; and third, by confirming the techniques and strategies

(such as simulation, analysis, experimentation, implementation, and evaluation)

that can be used in this development.

The need for security mechanisms for UDT is derived [22-33] from the following

observations about UDT:

Its dependencies on user preferences and implementation on the

layer on which it is implemented;

Its dependencies on existing security mechanisms of other layers on

the stack;

Its dependencies on TCP/UDP, which are dependent on nodes and

their addresses for high-speed data transfer protocols.

This research, therefore, explores the existing security tools and determines

which of these can best secure UDT in a networked environment. The following

research questions are investigated in this work:

Can UDT address existing and future network adversaries and threats?
Hypothesis: UDT can practically be secured through a variety of security

mechanisms.

10

Are the proposed methods of securing UDT, UDP, and TCP materialising
possible on the application, presentation, transport, and network layers?
Hypothesis: The proposed methods can be implemented on selected layers.

Which are the best and most practical methods to secure UDT?
Hypothesis: Both commercially proven and proprietarily developed

security mechanisms can best secure UDT.

Are the methods applicable to existing protocols, and can they be used in
the development of new fast data protocols?
Hypothesis: Methods of securing UDT on the application, session,

transport, and Internet Protocol (IP) can be used in future protocols.

These questions are addressed using various approaches, including theoretic

inductive proofs, simulation, and experimentation.

With the aforementioned taken into consideration, this work investigates a way

to secure UDT, its practical use in networked environments, and its contribution

to future applications and networks. We explore and analyse various security

mechanisms, such as GSS-API [23,99,109-110,148], UDT-AO [19,32,36],

Cryptographically Generated Addresses (CGA) [11, 22-33], Host Identity Protocol

(HIP) [7, 12, 83, 96, 105-106,118,137], DTLS/TLS [59-60, 128], Internet Protocol

Security (IPSec) [21-33] and propose the best method to secure UDT.

The following are the potential applications of this research:

Techniques for the development of security mechanisms for protocol

libraries;

Provision of well-thought-out security mechanisms and architecture for

existing and future protocols; and

Deployment of more secure data transfer in a Cloud/GRID.

The techniques and methods for securing UDT (and other future protocols), as

presented in this dissertation, provide a foundation for developers seeking to

secure next-generation protocols.

 11

1.6.1 Research Objectives and Scope

This dissertation focuses on UDT and proposes a practical security architecture

for the protocol.

1.6.1.1 Scope

The scope of this work is to develop mechanisms suitable for UDT and

other fast data protocols, which currently have no security mechanisms in

place. This work attempts to address at least three research problems:

1. The introduction of new techniques, which can be achieved

through characterisation and utilisation of implementation

as a validation scheme;

2. The creation of an empirical model, which can be achieved

by addressing the question of generalisability and by using

analysis as validation; and

3. The realisation of an analytic model and architecture, which

can be achieved by addressing the question of selection, and

by using experience, simulation, and experimentation as

validation schemes based on the activities and

implementations performed in a controlled environment.

1.6.1.2 Key Research Objectives

 The key research objectives of this work are framed by the research model

(Figure 1-2):

12

Figure 1-2: Research Model

o To explore the various security mechanisms available, as well as

their uses to existing protocols;

o To conduct a comprehensive security analysis on UDT;

o To provide mechanisms suitable for securing UDT in a networked

environment; and

o To establish the practicality of such mechanisms for other fast

protocols.

The scope and objectives of this work are determined by the research questions,

by the strategies for achieving research outcomes, and by the use of a few

validation schemes for achieving practicability. The guiding principles of this

work are based on the research phases (Figure 1-3), which contributed to the

development of the comprehensive building blocks of this work.

We demonstrate a comprehensive way of achieving research outcomes. Since the

focus of the research is on technology – and not on computer science alone – the

identification of some key features to describe modern technology is performed.

 13

Figure 1-3: Research Phases

Since UDT is designed to run on UDP [82], it depends on UDP’s existing security

mechanisms. Consequently, designers of the applications using UDT are faced

with limited security choices.

In our published works [22-33], we presented an overview of the basic security

mechanisms for UDT. As the research progressed, we achieved the following:

Firstly, we modified the UDT codes – changing the Maximum Segment Size

(MSS) values, introducing a checksum, and using Message-Digest Algorithm 5

(MD5) [88, 107, 146] in its codes. However, this is only suitable for some

applications.

Secondly, we designed custom security mechanisms on the application layer,

using API (such as GSS-API) or custom security mechanisms on the IP layer

(such as HIP-CGA or IPSec).

Thirdly, we introduced UDT-AO for secrecy and authentication in data

transmission.

Finally, we integrated existing transport layer implementation schemes, such as

DTLS [22-33, 114].

The following mechanisms can be significant for application- and transport-layer-

based authentication and end-to-end security for UDT. These are as follows:

14

Security through:

IP Layer

HIP – Host Identification Packet [7, 83,96,105-106,118,137]

Cryptographically Generated Address (CGA) [11, 22-33]

Self-certifying addresses using HIP-CGA [7, 11, 22-33, 83, 96, 105-

106, 118, 137]

IPSec – IP security [21-33]

Session/Application and Transport Layers

GSS-API - Generic Security Service Application Program Interface

[22-31, 99,109-110,148]

UDT-AO - Authentication Option [19, 32, 36]

SASL - Simple Authentication and Security Layer (SASL) [114]

DTLS – Data Transport Layer Security [59-60, 128]

In addressing UDT’s security requirements, we present powerful paradigms for

the security analysis of the newly developed and proposed security mechanisms

through formal language and practical implementations. These paradigms

support the development of the security architecture of UDT while achieving

substantial and compositional verification of each of the proposed mechanism in

isolation.

 15

Chapter 2

State-of-the-Art Protocol

The growth of network bandwidths since the introduction of packet switching

has contributed to the significant rise in Internet traffic. In recent years, new

applications such as peer-to-peer (P2P) file sharing, multimedia, and mobile

computing have increased users’ expectations, motivating new designs in which

various communication links, such as GRID [81], satellite, wireless and mobile

computing, can securely participate and handle traffic at higher layers of the

protocol stack.

These new applications vary in traffic, connection characteristics, and

communication links. While most of these applications still use TCP for data

transfer because of its reliability and stability, performance issues have been

noted in the implementation of large networks that require high bandwidths.

These issues have led to the development of new and different schemes with

more reliable characteristics and better congestion control. One example is XCP

(eXplicit Congestion control Protocol) [47,100], which demonstrates good

performance characteristics when tested on routers and satellite systems [100];

other variants, meanwhile, such as STCP and DCCP, are designed to improve

congestion control. However, a number of these new schemes face challenges on

deployment because they require changes in the routers as well as the operating

systems of end hosts. Recent studies have shown that the gradual deployment to

update Internet-facing routers results in a significant performance drop. XCP,

16

with characteristics similar to TCP, has also exhibited a number of security

flaws.

Apart from congestion control and performance, for which TCP variants were

originally developed, security considerations also need to be included in the

architectural designs of the new generation of protocols [24].

Developments in 2007 introduced the state-of-the-art UDT, a next generation of

high-performance data transfer protocol. UDT introduces a new three-layer

protocol architecture composed of a connection flow multiplexer, enhanced

congestion control and resource management. The design allows the protocol to

be shared by parallel connections and by future connections. It also improves

congestion control and reduces connection set-up time. Moreover, UDT provides

better usability by supporting a variety of network environments and application

scenarios [22]. It addresses TCP’s limitations by reducing the overhead required

to send and receive streams of data. However, the pressure to reduce the cost and

complexity of running streaming applications over the Internet and through

wireless and mobile devices continues to mount. Users have also expressed the

demand for better security and privacy for their communication links. Despite

being widely used, existing protocols, e.g., TCP and UDP, have a number of

inherent serious security flaws.

This work focuses on UDT’s security requirements, based on existing network

protocols. It is aimed at determining and developing security mechanisms to form

a robust security architecture that will preserve the security and privacy of the

data flow.

Since UDT relies on UDP to check IP streams, it is susceptible to attacks such as

snooping, packet interception, and IP masquerading. Its objective is to deliver

bandwidth-intensive applications over a protocol that carries a minimal amount

of overhead (such as UDP), but it cannot guarantee that it will avoid

compromising the security, privacy, and data integrity desired by users.

Furthermore, UDT is a UDP-based approach [31-33] and is considered to be the

only UDP-based protocol that employs a congestion control algorithm targeting

 17

shared networks. It is a new application-level protocol with support for user-

configurable control algorithms and more powerful APIs.

2.1 Transport Protocols and Network Congestion Control

In this literature review, we discuss existing Internet transport protocols and

network congestion control algorithms. We briefly demonstrate the layered

architecture of Transmission Control Protocol/Internet Protocol (TCP/IP)

[6,61,62,69] and discuss UDT based on the existing literature [72], which we fully

acknowledge in this section.

In order to provide various functionalities to applications, including but not

limited to data delivery, data reliability control, and streaming or messaging

service, transport protocols are designed and created with four fundamental

objectives usually transparent to such applications: efficiency, fairness,

convergence, and distributedness [81-82].

[146,151] highlighted that transport protocol also needs to be efficient: it needs to

utilise the available bandwidth as efficiently as possible. To be efficient, as

further explained by [72] and supported by [135], a protocol must accomplish the

following two tasks in a short time: a) probe the maximum available bandwidth,

and b) recover to maximum speed when congestion or packet loss causes a drop

in the sending rate. Once it reaches maximum speed, it should remain at its

current state until the network situation changes, i.e., oscillations should be as

small as possible [82].

On the other hand, the network bandwidth is expected to be shared fairly among

all concurrent flows. The measurement of fairness can have different standards.

The most common one is the max-min fairness, the objective of which is to

maximise the minimum throughput [81-82].

Literature [81-82,135,151-152] defines intra-protocol fairness of a protocol as a

fairness property among all flows belonging to the same protocol. In particular,

RTT (Round-Trip Time) independence is used to describe the special case of

fairness over topology with different RTTs; this is not satisfied by TCP [152]. The

fairness problem becomes more difficult when heterogeneous protocols coexist. A

18

new transport protocol is required to consider the situation wherein it coexists

with TCP before it is widely deployed on the Internet. The fairness between TCP

and the new protocol is called TCP friendliness [151-152].

According to [82], the data sending rate must converge to a unique equilibrium

from any starting point, given any specific network situation. Because binary

feedbacks are typically used to notify changes in the network situation, it is thus

acceptable that the throughput oscillates around a fixed point [81-82]. This is the

global stability property of Internet transport protocols.

Finally, because the Internet is such a large distributed system, it is impossible

to have a server dispatch the bandwidth. It is at the end hosts that transport

protocols [151] must control their data sending rate, with or without assistance

from the routers through which the traffic passes. The end-to-end principle

[27,35,73,84] states that, whenever possible, transport protocol operations should

only occur at end hosts in order to increase the system's scalability. It is also

necessary that end hosts have congestion control functionalities [30], even with

the existence of gateway operators.

In order to achieve these objectives, congestion control is utilised in the transport

protocol. The transport protocol adjusts the data sending rate using a certain

congestion control algorithm, which functions as a feedback system and produces

feedback that can either be explicitly generated from intermediate nodes such as

routers; or estimated by packet losses, increase trends in packet delay, or timeout

events [27,82]. Explicit feedback from routers brings more accurate information,

but it also requires higher computation and deployment costs. The data sending

rate can be tuned through either the inter-packet time or the number of

outstanding packets. The former method is called rate-based congestion control

while the latter is called window-based congestion control. Both methods can be

applied at the same time. A linear system is often applied in a control scheme to

tune these parameters because of its simplicity [84]. The most famous control

algorithm is TCP's AIMD algorithm [6], or additive increase/multiplicative

decrease algorithm [81-82].

 19

2.1.1 TCP’s Constraints

TCP has been widely adopted as a data transfer protocol for high-speed networks.

However, many literature reviews [6,81-82,151-152] emphasise that TCP

substantially underutilises network bandwidth over high-speed connections. TCP

[6,46] increases its congestion window by one at the length of Round-Trip Time

(RTT) and reduces it by half at a loss event [81]. As discussed in the works of

[6,81-82], in order for TCP to increase its window for full ulitilisation of 10 Gbps,

for example, with 1.5 kilobyte packets, it requires over 83,333 RTTs. Moreover,

with 100ms RTT, it takes approximately 1.5 hours for full utilisation in steady

state according to Gu [82]; therefore, the loss rate cannot be more than 1 loss

even per 5 Gbyte packets, which is less than the theoretical limit of the network’s

bit error rates.

TCP’s AIMD-based control algorithm [6,46] increases the sending rate (via

congestion window size) by approximately 1 segment per RTT, but halves it once

there is a loss event.

The throughput of a TCP flow can be approximately modeled by [6,151-152]

where S is the TCP segment size, R is the network RTT, p is the loss rate, and

tRTO is the TCP timeout value.

A number of proposals [47,100] have been presented to fine-tune TCP

parameters. One of these proposes an increase in packet size by setting the

jumbo packet option to up to 64k bits, with multiple TCP connections in use

according to [6,46]. This model indicates that TCP becomes ineffective as the

network bandwidth and delay both increase [6, 22-33,81-82,151-152].

20

On the other hand, the existence of the RTT in the TCP throughput model means

that concurrent flows with different RTTs may have different throughputs: a

manifestation commonly known as RTT bias.

After acknowledging TCP’s limitation, researchers responded by introducing

several promising new protocols i.e., XCP and UDT [81-82]. These protocols –

with the exception of XCP, a router-assisted protocol [100] – adaptively adjust

their increase rates based on the current window size. Consequently, the larger

the congestion window is, the faster it grows. These protocols are designed to be

TCP-friendly [6,151-152] in high loss rate environments and highly scalable in

low loss environments.

2.1.2 UDT – An Alternative

 The widespread presence of short-lived, web-like flows on the Internet and TCP’s

stability drive the success of the use of Transmission Control Protocol. However,

it has been noted [6,81-82,151-152] that the usage of network resources in high-

performance distributed data-intensive applications is quite different from that of

traditional Internet applications because of the following reasons: first, the data

transfer often lasts a very long time at very high speeds; second, distributed

applications need cooperation among multiple data connections. Therefore,

fairness between flows with different start times and network delays is desirable.

Finally, in GRID computing over high-performance networks, the abundant

optical bandwidth is usually shared by only a small number of bulk sources. The

concurrency is much smaller than that on the Internet [6,22-33,100].

Here we adopt an example presented by [81-82]. It presented a simple but typical

example application, called the streaming join. The main contention was

assuming that the real-time data streams come from a remote machine A and a

local machine B, which were joined by another local machine C with a window-

based join algorithm [81].

It was assumed that the two data streams were composed of records of the same

size.

 21

Figure 2-1 illustrates the network topology (Figure courtesy of Gu [81-82]).

 Figure 2-1: A streaming join example. The two data streams from A and B are sent to C and
converged there. The RTT between A and C is 100ms, whereas it is only 1ms between B and C.
Both links share a 1Gb/s bottleneck at C.[82]

In the experiment [82], TCP is used to transfer the streams, in both a real

network and the simulated environment using NS-2 simulator. It is observed

that the throughputs of the two streams are 3.52 and 863 Mb/s in the real

network and 80.5 and 807 Mb/s in the simulation environment, respectively. The

slower stream (AC), according to [82] limits the join throughput to AC*2, or 7

Mb/s in the real network and 160 Mb/s in the simulation environment (out of the

1 Gb/s maximum possible throughput). Although applications can sometimes

tune the data source rate to alleviate this problem, this needs global knowledge

of the network topology and static network environment, which is unrealistic in

most cases.

In this dissertation, we analyse UDT in order to develop a comprehensive

security architecture for distributed data-intensive applications in wide-area

high-speed networks.

UDT addresses the solution by investigating two orthogonal research problems

[72]: 1) the design and implementation of transport protocols with respect to

throughput and CPU usage; and 2) the Internet congestion control algorithm

with respect to efficiency, fairness, and stability.

22

UDT is an application-level, end-to-end, unicast, reliable, connection-oriented

streaming data transport protocol. The UDT protocol is completely at user space

above UDP, i.e., it uses UDP to transfer user data and protocol control

information. UDT uses packet-based sequencing to check packet loss and

guarantee data reliability. It is specially designed for high-speed bulk data

transfer by aiming to remove or reduce the overhead of memory copy, loss

information processing, acknowledging, etc. UDT provides reliable streaming

data transfer service, similar to TCP.

The UDT protocol supports a large variety of control algorithms. Moreover, it

supports congestion control algorithms to be configured at run time; each UDT

flow can thus have its own control algorithm, and it can change the algorithm at

any time.

The built-in (default) UDT congestion control algorithm is proposed to utilise

high bandwidth efficiently and fairly. The UDT algorithm uses a loss-based

AIMD mechanism. Bandwidth estimation technique is used to optimize its

increase parameter dynamically. A random decrease factor is used to remove the

negative effect of loss synchronisation [82].

According to [81-82], UDT is not used to replace TCP on the Internet, where the

bottleneck bandwidth is relatively small and there are large amounts of

multiplexed short life flows.

It must be emphasised that UDT, when coexisting with TCP flows, is designed

not to occupy more bandwidth than does TCP, unless the TCP flows fail to utilise

their fair share due to TCP's efficiency problems in high bandwidth-delay product

(BDP) environments. TCP will still be used in these high BDP networks, and an

application that uses UDT may sometimes run on public networks.

 23

UDT is defined and distinguished by its three major aspects [82]:

• UDT is at the application level , thus promotes better deployment method than

in kernel protocols. UDT is designed with an efficient and fair congestion control

algorithm, which is considered a better approach than other UDP-based protocols

that very limited congestion control capabilities [82].

UDT itself is also a protocol framework with configurable

congestion control, which according to [82] both support

application awareness and support evaluation of new

congestion control algorithms.

The development of UDT protocol addresses numerous research problems in data

transport protocols [82]. This development makes the following specific

contributions:

UDT provides a timely and practical solution to the problem

of transferring bulk data in high-speed wide-area networks.

Therefore, UDT is easily deployable. There are only four versions of TCP that

have been widely deployed in the past three decades, and, according to [82], this

is because of the long time lag of standardisation, implementation, and

deployment of kernel space protocols. While there were numerous TCP variants

proposed at the same time that UDT was developed, these protocols are not

expected to be deployed widely in the near future. In addition, bandwidth

estimation techniques are used in the UDT congestion control mechanism such

that there is no need for the manual tuning of control parameters.

Gu’s [82] work systematically investigated the design and

implementation issues of high-performance data transport

protocol at the application level [22-33,81-82].

While often neglected, protocol design and implementation have a significant

impact on efficiency. In the UDT project, we identified the overhead arising from

acknowledgments, loss processing, threading, and memory copy, and to these we

proposed appropriate solutions.

24

UDT’s congestion control algorithm addresses both

efficiency and fairness objectives [81-82].

Therefore, UDT’s algorithm takes approximately a constant time to converge to

90% of the available bandwidth. UDT flows are fair to each other, even if they

have different RTTs. While UDT is highly efficient, it is not that aggressive. It is

friendly to concurrent TCP flows. Furthermore, the UDT algorithm solves the

loss synchronisation problem by using a random decreasing method.

Finally, UDT can also handle limited non-congestion packet losses.

UDT’s approach is highly scalable. Given that there is

enough CPU power, UDT can support unlimited bandwidth

within terrestrial ranges. No matter how fast the data

transfer rate is, the timer-based selective acknowledgment

generates a constant number of acknowledgments (ACKs).

The congestion control algorithm and the bandwidth

estimation technique, meanwhile, allow UDT to increase to

90% of the available bandwidth no matter how large it is. In

addition, the constant rate control interval helps realize

RTT fairness.

Composable UDT offers more to application development

and network research by allowing configurable congestion

control algorithms. This feature enables easy development

of application- or network-specific control mechanisms, as

well as easy evaluation of new control algorithms.

Finally, Gu [82] developed a productivity quality open

source UDT library that can be used in real world

applications and research work [81-82].

 25

2.2 The UDT Protocol

In this chapter we describe how UDT works through its design and

implementation. After our overview of the UDT protocol in section 2.1, we

describe in detail the UDT protocol, including packet structures, connection

maintenance, packet sequencing, acknowledging, and reliability control. We also

introduce UDT's flow and congestion control in this section, followed by an

analysis of the control algorithm in the next chapter. Finally, we present brief

concluding remarks in section 2.8.

2.2.1 Overview

UDT adapts itself into the layered network protocol architecture (Figure 2-2),

and uses UDP through the socket interface provided by operating systems.

Meanwhile, it provides a UDT socket interface to applications, which can then

call the UDT socket API in the same way they call the system socket API.

Figure 2-2 Layered architecture of UDT (courtesy of Gu [82]). In this layered architecture, the UDT
layer is completely in user space above the network transport layer of UDP, whereas the UDT layer
itself provides transport functionalities to applications.

26

 UDT is a duplex transport protocol. Each UDT entity has two logical parts: the

sender and the receiver. The sender sends (and retransmits) application data

according to flow control and rate control. The receiver, meanwhile, receives both

data packets and control packets, and also sends out control packets according to

the received packets.

Figure 2-3 describes the relationship between the UDT sender and the receiver.

In Figure 2-3, the UDT entity A sends application data to the UDT entity B. The

data is sent from A’s sender to B’s receiver, whereas the control flow is exchanged

between the two receivers.

Figure 2-3: Relationship between UDT sender and receiver (courtesy of Gu [82]). All UDT entities
have the same architecture, each having both a sender and receiver. This figure demonstrates the
situation wherein a UDT entity A sends data to another UDT entity B. Data is transferred from A’s
sender to B’s receiver, whereas control information is exchanged between the two receivers.

 The receiver is also responsible for triggering and processing all control events,

including congestion control and reliability control, as well as their related

mechanisms.

UDT uses rate-based congestion control (rate control) and window-based flow

control to regulate the outgoing data traffic. Rate control updates the packet-

sending period every constant interval, whereas flow control updates the flow

window size each time an acknowledgment packet is received. UDT always tries

to pack application data into fixed-size packets, unless there is not enough data

to be sent. Since UDT is supposed to be used to transfer bulk data streams, we

assume that there is only a very small portion of irregularly sized packets in a

UDT session. The fixed size can be set up by applications and the optimal value

 27

is the path MTU (including all packet headers). The actual size of a UDT packet

can be known from the UDP header [82].

2.2.2 Congestion Control

The congestion window size (W) is dynamically updated according to the product

of packet arrival speed (AS) and the sum of SYN and RTT: W = AS * (SYN +
RTT). Here, SYN is the constant rate control interval, which is defined as 0.01

seconds in the current protocol specification.

For protocols that acknowledge every data packet, the maximum amount of data

packets on the fly is the product of sending speed and RTT. In UDT, however,

acknowledgment is triggered every SYN time, so that the value should be the

product of sending rate and (SYN + RTT). In addition, we use the receiving speed

instead of the sending speed, because the former can reflect the network

situation more precisely.

UDT uses a modified AIMD algorithm [82], for which the formula is as follows

[22-33,82].

Every SYN time, if there is no NAK, but there are ACKs received in the previous

SYN time, the number of packets to be increased in the next SYN time (inc) is

calculated by:

(1)

where B is the estimated available bandwidth in bits per second and MSS is the

maximum segmentation size in bytes [82], which is also the fixed UDT packet

size.

The easiest way to understand (1) is through Table 2-1, which gives examples of

inc, wherein MSS is 1500 bytes. If MSS is not 1500 bytes, the increments listed

in Table 2-1 will be corrected by the ratio of 1500/MSS.

28

Table 2-1: UDT increase parameter computation example (courtesy of Gu [82]). The first column
represents the estimated available bandwidth and the second column represents the increase in
packets per SYN. While the available bandwidth increases to the next scope of 10's integral power,
the increase parameter also increases by 10 times.

B (Mb/s) inc (packets/SYN) [82]

B 0.1 0.00067

0.1 < B 1 0.001

1 < B 10 0.01

10 < B 100 0.1

100 < B 1000 1

… …

The packet sending period P is then recalculated according to equation (2), where

P’ is the current packet sending period [72]:

(2) SYN / P = SYN / P’ + inc

Once a NAK is received, the packet-sending period is increased by 1/8:

(3) P = P’ * 1.125

 29

If the largest sequence number in this NAK is greater than the largest sequence

number sent when the last decrease occurred according to [82], the sender stops

sending packets in the next SYN time to help clear the congestion.

The UDT congestion control described above is not enabled until the first NAK is

received or the flow window size has reached the maximum flow window size.

This is the slow start period of the UDT congestion control. During this time, the

inter-packet time is kept as zero. The initial flow window size is 2 and it is

doubled each time an ACK is received. The slow start only happens at the

beginning of a UDT connection, and once the above congestion control scheme is

enabled, it will not happen again.

However, UDT was developed without a well-thought-out security architecture.

Unlike TCP, many security mechanisms and architectures were developed to

secure data, information, and communications.

2.3 UDT Packet Structures

UDT is designed to have two packet structures: the data packets and the control

packets. These are distinguished by the first bit (flag bit) of the packet header.

The data packet header starts with 0, while the control packet starts with 1.

Data Packet

0 or 1 Sequence Number 0-31 bit

FF Message Number 29 bit

 Time Stamp 32 bit

30

Control Packet

Flag 0 / 1 Packet type Information 0- 15 User defined types 0-31

1 Type

 Extended Type 31 bit

 ACK Sub –Sequence Number

 Time Stamp

 Control Information

 Figure 2-4: UDT packet header structures [82]. The first bit of the packet header is a flag that
indicates whether this is a data packet or a control packet. Data packets contain a 31-bit sequence
number, a 29-bit message number, and a 32-bit timestamp. A control packet header, on the other
hand, uses 1-15 bit for the packet type information, as well as 16-31 for user defined types. The
detailed control information depends on the packet type [22-33,82].

The packet sequence number uses 31 bits after the flag bit. It uses packet-based

sequencing, which means that the sequence number increases by 1 for each sent

data packet in the order of packet sending. The Sequence Number is wrapped

once it has increased to reach the maximum number (231 -1) [20,82].

As in other protocols such as DCCP, the sequence number is used to arrange

packets into sequence, to detect loss [6,46] and network duplicates, and to protect

against attackers, half-open connections, and delivery of very old packets. Every

packet carries a Sequence Number; most packet types also include an

Acknowledgment Number, which is carried in a control packet, the second packet

structure of UDT. The control packet is parsed according to the structure if the

flag bit of a UDT packet is 1.

UDT is a connection-oriented duplex protocol, which supports data streaming

and partial reliable messaging. It also uses rate-based congestion control (rate

control) and window-based flow control to regulate outgoing traffic. This was

designed such that rate control updates the packet sending period at constant

intervals, whereas flow control updates the flow window size each time an

acknowledgment packet is received. It has since expanded to satisfy additional

requirements of both network research and applications development. This

expansion is called Composable UDT, and it is designed to complement the

kernel space network stacks. However, this feature is intended for:

 31

Implementation and deployment of new control algorithms. Data

transfer through the private links can be implemented using

Composable UDT;

Composable UDT supports application-aware algorithms;

Ease of testing new algorithms for kernel space when using

Composable UDT compared to modifying an OS kernel.

The Composable UDT library implements a standard TCP Congestion Control

Algorithm (CTCP). CTCP can be redefined to implement more TCP variants,

such as TCP (low-based) and TCP (delay-based). The designers [6,61,81]

emphasised that a Composable UDT library does not implement the same

mechanisms as in the TCP specification. TCP uses byte-based sequencing,

whereas UDT uses packet-based sequencing. It was stressed that this does not

prevent CTCP from simulating TCP’s congestion avoidance behaviour [6,37,61].

2.4 UDT and Application Programming Interface

Application programming interfaces allow developers to write applications that

can make use of UDT services. In this chapter, we provide an overview of the

most common APIs for IP applications. We then present an approach in securing

UDT by interfacing with APIs, using GSS-API to meet UDT security

requirements.

The socket interface is one of several application programming interfaces (APIs)

used in communication protocols. Designed to be a generic communication

programming interface, it was first introduced by the 4.2 BSD UNIX system.

Although it has not been standardised, it has become a de facto industry

standard.

The socket interface is differentiated by the services that are provided to

applications: stream sockets (connection-oriented), datagram sockets

(connectionless), and raw sockets (direct access to lower layer protocols) services.

32

A variation of the BSD sockets interface is provided by the Winsock interface

developed by Microsoft and other vendors to support TCP/IP applications on

Windows operating systems. Winsock provides a more generalised interface,

allowing applications to communicate with any available transport layer protocol

and underlying network services, including, but not limited to, TCP/IP.

2.5 Uses of API

The following lists some common and basic socket interface calls. In the next

section, we see an example scenario of using these socket interface calls [65].

2.5.1 Intitalise a socket

 FORMAT

 int sockfd= socket(iint family, int type, int protocol)

 Where:

- family stands for addressing family. It can take on values such as

AF_UNIX, AF_INET, AF_OS2, AF_NS and AF_IUCV. Its purpose is to

specify the method of addressing used by the socket.

- type stands for the type of socket interface to be used. It can take on

values such as SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, and

SOCK_SEQPACKET.

- protocol can be UDP, TCP, IP or ICMP or any other existing variants

such as UDT.

- sockfd is an integer (similar to a file descriptor) returned by the socket

call.

2.5.2. Bind (register) a socket to a port address
 FORMAT

int bind(int sockfd, struct sockaddr * localaddr, int addrlen)

 33

Where:

- sockfd is the same integer returned by the socket call.

- localaddr is the local address returned by the bind call.

Note that after the bind call, we now have the values for the first three

parameters inside our 5-tuple association: {protocol, local-address, local-
process, foreign-address, foreign-process)

2.5.3 Indicate readiness to receive connections

 FORMAT

 int listen(int sockfd, int queue-size)

 Where:

- sockfd is the same integer returned by the socket call.

- queue-size indicates the number of connection requests that can be

queued by the system while the local process has not yet issued the

accept call.

2.5.4 Accept a connection

FORMAT

 int accept(int sockfd, struct sockaddr * foreign-address,

 int addrlen)

 Where:

- sockfd is the same integer returned by the socket call.

- foreign-address is the address of the foreign (client) process returned by

the accept call.

34

Note that this accept call is issued by a server process rather than a client

process. If there is a connection request waiting on the queue for this socket

connection, accept takes the first request on the queue and creates another socket

with the same properties as sockfd; otherwise, accept will block the caller process

until a connection request arrives.

2.5.5 Request connection to the server

 FORMAT

 int connect(int sockfd, struct sockaddr * foreign-address,

 int addrlen)

 Where:

- sockfd is the same integer returned by the socket call.

- foreign-address is the address of the foreign (server) process returned

by the connect call.

Note that this call is issued by a client process rather than a server process.

2.5.6 Send and /or receive data.

The read(), readv(sockfd, char *buffer int addrlen), recv(), readfrom(),

send(sockfd, msg, len, flags) and write() calls can be used to receive and send

data in an established socket association (or connection).

Note that these calls are similar to the standard read and write file I/O

system calls.

2.5.7 Close a socket.

FORMAT

 int close(int sockfd)

 35

 Where:

- sockfd is the same integer returned by the socket call.

Example Scenario

As an example, consider the socket system calls commonly presented for a

connection-oriented protocol in Figure 2-5.

Figure 2-5: Socket System Calls for Connection-Oriented Protocol

36

Consider the previous socket system calls in terms of specifying the elements of

the association:

 Protocol Local Local Foreign Foreign

 Address, Process Address, Process

connection-oriented

server Socket() bind() Listen() Accept()

connection-oriented

client Socket() connect()

connectionless server Socket() bind() recvfrom()

Connectionless

client Socket() bind() Sendto()

Figure 2-6: Socket System Calls and Association

The socket interface is differentiated by the different services that are provided.

Stream, datagram, and raw sockets each define a different service available to

applications.

1. Stream socket interface (SOCK_STREAM): It defines a reliable

connection-oriented service (over TCP for example). Data is sent without

errors or duplication and is received in the same order as it is sent. Flow

control is built-in to avoid data overruns. No boundaries are imposed on

the exchanged data, which is considered to be a stream of bytes. An

example of an application that uses stream sockets is the File Transfer

Program (FTP).

2. Datagram socket interface (SOCK_DGRAM): It defines a connectionless

service (over UDP for example). Datagrams are sent as independent

packets. The service provides no guarantees; data can be lost or

duplicated, and datagrams can arrive out of order. No disassembly and

reassembly of packets is performed. An example of an application that

uses datagram sockets is the Network File System (NFS).

 37

3. Raw socket interface (SOCK_RAW): It allows direct access to lower later

protocols such as IP and ICMP. This interface is often used for testing new

protocol implementations. An example of an application that uses raw

sockets is the Ping command.

2.6 UDT Application Socket Interface

UDT uses UDP through the socket interface provided by operating systems. It

provides its own UDT socket interface to applications [82].

Applications can call the UDT socket API in the same way they call the system

socket API.

Since UDT is a duplex transport protocol, according to Gu [82] each UDT entity

has two logical parts: the sender and the receiver. The sender sends (and

retransmits) application data according to flow control and rate control. The

receiver receives both data packets and control packets, and sends out control

packets according to the received packets as well.

Figure 2-7: The solid line represents the data flow, and the dashed line
represents the control flow. The shading blocks (buffers and loss lists) are
the four data components, whereas the blank blocks (API, UDP channel,
sender, receiver, and listener) are function components [82]. Details
presented in this chapter were a review of the works of Gu [82].

38

2.6.1 Implementation

According to Gu [82], the special difficulty in processing Gb/s speed data transfer

was noticed a decade ago. Gu [82] contended that although the need for

additional processor and hardware overhead no longer required today, the

implementation of an application level transport protocol is still sensitive to its

performance. Overheads of memory copies and context switches bring more

difficulty for application level implementations.

2.6.2 Software Architecture

 We review the architecture presented by [82]. The Figure 2-2 depicts the UDT

software architecture, which highlights the UDT layer that has five function

components: the API module, the sender, the receiver, the listener, and the UDP

channel, as well as four data components: sender’s protocol buffer, receiver’s

protocol buffer, sender’s loss list, and receiver’s loss list [20,22,81-82]. Because

UDT is bi-directional, all UDT entities have the same structure.

The API module is responsible for interacting with applications. The data to be

sent is passed to the sender's buffer and sent out by the sender into the UDP

channel [82]. At the other side of the connection (not shown in this figure but it

has the same architecture), the receiver reads data from the UDP channel into

the receiver's buffer, reorders the data, and checks packet losses. Applications

can read the received data from the receiver's buffer.

The receiver also processes received control information. It will update the

sender's loss list (when NAK is received) and the receiver's loss list (when loss is

detected). Certain control events will trigger the receiver to update the

congestion control module, which is in charge of the sender’s packet sending.

The UDT socket options are passed to the sender/receiver (synchronization

mode), the buffer management modules (buffer size), the UDP channel (UDP

socket option), the listener (backlog), and CC (the congestion control algorithm,

which is only used in Composable UDT). Options can also be read from these

modules and provided to applications by the API module [81].

 39

2.6.3 User Interface

The API (application programming interface) is an important consideration when

implementing a transport protocol. Generally, it is a good practice to comply with

the socket semantics. However, due to the special requirements and use

scenarios in high performance applications, additional modifications to the

original API are necessary according to Gu [81-82] and Bernardo [22-33].

In the past several years, network programmers have welcomed the new sendfile
method [22-33,81-82]. It is also an important method in data intensive

applications, as these are often involved with disk-network IO. In addition to

sendifle, a new recvfile method is also added, to receive data directly onto disk.

The sendfile/recvfile interfaces and send/recv interfaces are orthogonal [82].

UDT also implements overlapped IO at both the sender and the receiver sides.

Related functions and parameters are added into the API.

Some lower level APIs should be exposed to applications by an upper level

protocol. For example, if the transport layer knows whether a packet loss is due

to congestion or link error from the network layer, it will be very helpful for

congestion control on links with high bit error rates. UDT exposes many UDP

interfaces to give applications the most flexibility for configuring their transport

facilities.

An application can make use of the UDT library in a few ways according to Gu

[81]. The library provides a set of C++ API that is very similar to the system

socket API. Network programmers can learn it easily and use it in a similar way

as using TCP sockets.

When used in applications written by languages other than C/C++, an API

wrapper can be used. So far, both Java and Python UDT API wrappers have been

developed [22,82].

Certain applications have a data transport middleware to make use of multiple

transport protocols. In this situation, a new UDT driver can be added to this

middleware, and then used by the applications transparently. For example, a

40

UDT XIO driver has been developed so that the library can be used in Globus

[79] applications.

Finally, the library also provides a set of C API that has exactly the same

semantics as the system socket API. An existing application can be re-compiled

and linked against the UDT/CCC C library. In this way, the applications use our

library transparently [82] without any changes to the source codes. There is one

limitation, though. UDT does not support multi-process models (e.g., using fork
system call) due to efficiency considerations, so this method does not work if the

existing application uses the same sockets in multiple processes.

2.6.4 Protocol Configuration

To accommodate certain control algorithms, some of the protocol behaviour has to

be customized. For example, a control algorithm may be sensitive to the way that

data packets are acknowledged. UDT/CCC provides necessary protocol

configuration APIs for these purposes.

It allows users to define how to acknowledge received packets at the receiver

side. The functions of setACKTimer and setACKInterval determine how often an

acknowledgment is sent [82], in elapsed time and the number of arrived packets,

respectively.

The method of sendCustomMsg sends out a user-defined control packet to the

peer side of a UDT connection, where it is processed by callback functions

processCustomMsg.

Finally, UDT/CCC [82] also allows users to modify the values of RTT and RTO. A

new congestion control class can choose to use either the RTT value provided by

UDT, or its own calculated value. Similarly, the RTO value can also be redefined.

There are other features of the UDT protocol that are either not related to

congestion control or are helpful to most control algorithms. These features, such

as selective acknowledgment (SACK) [6,82] and robust reordering (RR) [82],

cannot be configured by CCC users, although some of the features can be

configured through UDT interfaces.

 41

An application exchanges data through the UDT socket but relies on the UDP

socket to send and receive data. This results problems during data transmission

from the UDP socket, such as unreliable data, and security flaws [22]. UDT’s

Sequence Number is 31 and a bit long. This is a small sequence space that does

not effectively protect connections against some blind attacks, such as the

injection of resets into the connection. It does not have a feature that avoids

sequence number attacks, where an attacker can guess the sequence numbers

that a future connection would use [20].

The distinction between UDT and other protocols, such as UDP, TCP, STCP and

DCCP, is that UDT does not have a reliable checksum algorithm [22-33]. For

most protocols, checksum is applied to the protocol header. It applies strong

integrity checks, which are available in other protocols (e.g. DCCP). They use the

same algorithm to generate the IP checksum to generate this number. The

checksum can be included for the segment in UDT, in addition to providing the

information contained, and to prevent packets from being incorrectly forwarded

by UDP. This provides an added security feature to ensure segment integrity.

As a Fast Data Transfer protocol, UDT additionally needs to provide a

mechanism to limit the potential impact of some denial-of-service attacks. It

needs to provide limitations on requests, processing options and ICMP messages,

and excessive packet generation avoidance on the servers. Because it was

designed as an application level protocol that is intended for delivery of data in

high speed networks, the need to establish how it handles QoS is essential [2,3].

It is a relatively new protocol, tested in limited production cases in 2004 and

focused on performance between long distance links, before UDTv4 was

developed and introduced in 2007 [22-33,81-82].

42

2.7 Approaches

There are research works that use discrete mathematics, set theory (computer

logic), and so forth to prove their hypotheses. Many of these works have a

theoretical component, but their uses differ in the various works. For instance,

we employ formal methods in verifying our work, but we do so in two basic but

unique ways. First, while most works deal only with mechanisms that already

exist, the components that now become the techniques we use in this work will

encompass all mechanisms that do exist, will exist, and can ever be thought of

and conceptualised. Second, most works are interested in how best to do things;

while we are not at all interested in optimality and performance (although in our

work we address them through simulations and experimentations), we are

concerned with the question of feasibility: what can and what cannot be done in

the given topology. We shall look at this from the perspective of which language

structures and formal methods the mechanisms and the architecture we describe

in this work can and cannot describe and accept, and what possible meaning

their output may have.

Thus, in this dissertation, we shall not only perform the simulations and

experiments to validate our work; we also verify by describing, specifying, and

proving our proposed mechanisms employing Protocol Composite Logic (PCL),

and by using formal methods for verification to form the proposed architecture.

PCL is employed to theoretically and compositionally analyse each security

mechanism we introduced. This technique was developed at Stanford Security

Laboratory and has since gained momentum in the research community in the

field of theoretical computer science. New notations have since been produced as

of this writing, however, and they continue to be tested in existing security

protocols.

The technique we use, therefore, will be based on the existing notations, which

were already extensively used to prove mature security protocols.

 43

2.7.1 PCL

PCL is a formal language for describing protocols. It uses terms and actions

instead of informal arrows-and-message notation. It provides operational

semantics that provide description of protocol executions. However the main idea

of PCL is to provide protocol logic, which states security properties in terms of

secrecy and authentication. Its proof system is comprehensive that specifies

axioms and inference rules for formally proving security properties.

We present an example of PCL in Challenge-Response Threads

Challenge – Response Threads

Figure 2-8: Challenge Response. A signature of signed message and signature on the message yield
m,n,A, sig B{m,n,A}.

Table 2-2: Challenge Init and Response

InitCR(A, X) = [

 new m;

 send A, X, {m, A};

 receive X, A, {x, sigX{m, x, A}};

 send A, X, sigA{m, x, X};

]

RespCR(B) = [

 receive Y, B, {y, Y};

 new n;

 send B, Y, {n, sigB{y, n, Y}};

 receive Y, B, sigY{y, n, B};

]

44

Shared secret in key establishment

 KE | [InitKE(A, B)] A Honest(B)

 (Has(X, m) X=A X=B)

After IInitKE(A,B) initiates this mechanism

If BB is Honest…

Then if some party XX knows secret mm, then XX can only be either AA, or BB

Initiator authentication in Challenge-Response

CR | [InitCR(A, B)]A Honest(B) ActionsInOrder(

 Send(A, {A,B,m}),

 Receive(B, {A,B,m}),

 Send(B, {B,A,{n, sigB{m, n, A}}}),

 Receive(A, {B,A,{n, sigB{m, n, A}}})

)

After initiator executes his program --- InitCR(A, B)

If B is honest…

…then mmsg sends and receives must have happened in order prescribed by
protocol spec

Correctness of Challenge-Response

InitCR(A, X) = [

 new m;

 send A, X, {m, A};

 receive X, A, {x, sigX{m, x, A}};

 send A, X, sigA{m, x, X};

]

RespCR(B) = [

 receive Y, B, {y, Y};

 new n;

 send B, Y, {n, sigB{y, n, Y}};

 receive Y, B, sigY{y, n, B}};

]

 45

CR |- [InitCR(A, B)]A Honest(B) ActionsInOrder(

 Send(A, {A,B,m}),

 Receive(B, {A,B,m}),

 Send(B, {B,A,{n, sigB {m, n, A}}}),

 Receive(A, {B,A,{n, sigB {m, n, A}}})

)

2.7.1.1 PCL Notations

The following notations are employed in this work. Just like mathematical

notations, the analysis and verifications require basic understanding of proofs

inferences, definitions, axioms, and set theory.

 Proof - formally prove properties of security protocols

 Axioms - simple formulas that are provable by hand

 Inference rules - proof steps

 Theorem - a formula obtained from axioms by application of inference rules

Properties of Proof System

Soundness

• If is a theorem, then is a valid formula
– Q |- implies Q |=

• Informally: if we can prove something in the logic, then it is
actually true

Proved formula holds in any step of any run

• There is no bound on the number of sessions
• Unlike finite-state checking, the proved property is true for the

entire protocol, not for specific session(s)

46

Sample Axioms

 New data

• [new x]P Has(P,x)
• [new x]P Has(Y,x) Y=P

Acquiring new knowledge

• [receive m]P Has(P,m)

Performing actions

• [send m]P Send(P,m)
• [match x/sigX{m}] P Verify(P,m)

Reasoning About Cryptography

Pairing

• Has(X, {m,n}) Has(X, m) Has(X, n)

Symmetric encryption

• Has(X, encK(m)) Has(X, K-1) Has(X, m)

Public-key encryption

• Honest(X) Decrypt(Y, encX{m}) X=Y

Signatures

• Honest(X) Verify(Y, sigX{m}) m’ (Send(X, m’)
Contains(m’, sigX{m})

Honesty rule

roles R of Q. initial segments A R.

 Q |- [A]X

 Q |- Honest(X)

 47

Terms (letter assignment is assignable)

 t ::= c | constant

 x | variable

 N | name

 K | key

 t, t | tuple

 sigK{t} | signature

 encK{t} encryption

These notations are rigorously used to achieve verification and compositionality

of security mechanisms.

2.7.2 Rewrite Systems and Automata

Another approach we use is rewrite systems and automata. We specify and

analyse our proposed security mechanisms in the UDT security architecture and

show that the specifications allow us to validate their viability through analysing

the data flow. Furthermore, we conduct structural, semantic and query analyses

and describe the security mechanisms’ data flow through formal methods to

verify our architecture. The properties of rewrite systems are related to the

security data and network flows and therefore, classical theoretical and practical

analysis can be conducted the same way they are used to specify these flows

across network topologies.

The increasing complexity of developing and validating a security architecture

has led to less extensive practical experiments being performed as single-faceted

approach. Topologies composed of numerous devices in various networks are used

to reflect an extensive representation of a specific environment. However,

because of the heterogeneity of devices required across multiple-environments, it

is difficult to analyse the security mechanisms’ functionalities. The formal

specifications of the security mechanism’s data flow, therefore, are crucial. We

48

use formal methods to specify their data flow within the architecture, thus, allow

us to carry out analyses across the architecture reflecting with lesser constraints.

In rewrite system, we define constant signature with arity, and positions of

mechanisms and data flow in terms and variables. We introduce set of rewrite

rules, with syntactic classes. We look at rewrite closure and automata with the

defined constraints, examples:

Given the substitutions f(x, g(c, y))

These are represented in rewrite rules

l r

 f(x, g(c, y)) g(x, y)

f(x, x) c

Rewriting Closure, note the idea: * = 1o 2, where 1 and 2 might not be

defined as rewriting relations but are in some way easier to analyse, which is

specifically used with:

1 - constrained decreasing rewriting ()

2 - increasing ground rewriting (>)

l r if [condition]

 49

Conditions generally on reachability and joinability on variables from l:

x|y

c * z

f(x, g(y, z)) c if [x|y, d * z]

Moreover, we use automata to achieve decidability in rewrite systems. We note

that the emptiness of a language accepted by a reduction automaton is decidable.

This class of reduction automata is closed under union and intersection, where

there is a construction for the union that preserves determinism.

50

2.8 Concluding Remarks

We briefly discussed UDT and highlighted the absence of a well-thought-out

security. We reviewed existing literature based on the work of Gu [81-82]. We

also presented a brief example of how a socket creates a connection, which proved

to be useful in creating mechanisms as an add-on library to secure UDT. We also

provided a brief description of the approaches we use to achieve formal

verification of our mechanisms and architecture in this dissertation.

These approaches will be briefly outlined in Chapters 5 and 6.

In the following chapters, we look into the schemes available and develop a novel

security architecture specifically for UDT.

 51

 53

Chapter 3

Security Mechanisms

Network protocols do not rely solely on the lower layers of the OSI stack for

security; they also rely on other layers. Like other new high-speed protocols, UDT

relies on the Application, Transport, IP, and Network layers for data delivery and

protection. Like other existing protocols, UDT also has a socket interface for

linking with API, a feature that makes it flexible in implementation. In this

chapter, we view at how a UDT user can achieve security by using another

application service interface. By implementing adequate security mechanisms,

UDT can achieve authentication, maintain confidentiality and integrity during

data transmission. The rationale is to provide a new way of securing high-speed

network protocols such as UDT when implemented in various network

environments.

 3.1 UDT-Authentication Option Field

In this section, we create and introduce UDT-Authentication Option (AO) [19, 32,

36] as another way of securing UDT. We call this AO to differentiate this

mechanism in the introduction of a UDT extension to achieve security. We

evaluate UDT-AO [19,32] through the use of existing message authenticity for

other protocols such as TCP. We review existing message protection that can act

like a signature for UDT segments, incorporating information known only to the

connection endpoints. Since UDT operates on UDP for high-speed data transfer,

we propose the creation of a new option in UDT that can significantly reduce the

54

danger of attacks on applications running UDT. This can maintain message

integrity during data transmissions on high-speed networks.

A few security mechanisms proposed are application and IP-based. We present a

combination of existing security solutions on various layers [22-33] for UDT.

3.1.1 UDT Option for Authentication

UDT is a connection-oriented protocol, and therefore it needs to include an option

for authentication. In TCP, this is part of the options (0-44 bytes) that occupy

space at the end of the TCP header.

Similarly, to use the option in TCP (RFC 2385) [88], it needs to be enabled in the

socket. A few systems support this option, which is identified as the

TCP_MD5SIG option.

int opt = 1; Enabling this option

setsockopt(sockfd, IPPROTO_UDT, UDT_MD5SIG, &opt, sizeof(opt));

The option can be included in the checksum. However, there is no negotiation for

the use of this option in a connection; rather, it is purely a matter of site

requirement as to whether or not its connections use the option.

3.1.2 Syntax for UDT Option

We propose an option that can be applied to Type 2 of the UDT header. This field

is reserved for defining specific control packets in the Composable UDT

framework.

Every segment sent on a UDT connection (if it is to be protected against spoofing)

will contain the 16-byte MD5 [88, 107, 146] digest produced by applying the MD5

algorithm to these items in the following order, similar to that required for TCP:

1. UDP pseudo header (Source and Destination

IP addresses, port number, and segment

length)

2. UDT header + UDP (Sequence number and

 55

timestamp), and assuming a UDP checksum

zero

3. UDT control packet or segment data (if any)

4. Independently-specified key or password,

known to both UDTs and presumably

connection-specific

5. Connection key

The UDT packet header and UDP pseudo-header are in network byte order. The

nature of the key is deliberately left unspecified, but it must be known by both

ends of the connection. A particular UDT implementation will determine what

the application may specify as the key.

In order to calculate checksum, a "pseudo header" is added to the UDP message

header. This includes:

IP Source Address 4 bytes

IP Destination Address 4 bytes

Protocol 2 bytes

UDP Length 2 bytes

The checksum is calculated over all the octets of the pseudo header, UDP header,

and data.

If the data contains an odd number of octets a pad, zero octet is added to the end

of data. The pseudo header and the pad are not transmitted with the packet.

In the example code,

u16 buff[] is an array containing all the octets in the UDP header and data.

u16 len_udp is the length (number of octets) of the UDP header and data.

BOOL padding is 1 if data has an even number of octets and 0 for an odd number.

56

u16 src_addr [4] and u16 dest_addr [4] are the IP source and destination address

octets

/*

**

Function: udp_sum_calc() modified

Description: Calculate UDP checksum

*/

typedef unsigned short u16;

typedef unsigned long u32;

u16 udp_sum_calc(u16 len_udp, u16 src_addr [],u16 dest_addr [], BOOL padding, u16

buff[])

{

u16 prot_udp=17;

u16 padd=0;

u16 word16;

u32 sum;

// Find out if the length of data is even or odd number. If odd,

// add a padding byte = 0 at the end of packet

if (padding&1==1){

padd=1;

buff[len_udp]=0;

}

//initialize sum to zero

sum=0;

// make 16 bit words out of every two adjacent 8 bit words and

 57

// calculate the sum of all 16 vit words

for (i=0;i<len_udp+padd;i=i+2){

word16 =((buff[i]<<8)&0xFF00)+(buff[i+1]&0xFF);

sum = sum + (unsigned long)word16;

}

// add the UDP pseudo header which contains the IP source and destinationn addresses

for (i=0;i<4;i=i+2){

word16 =((src_addr[i]<<8)&0xFF00)+(src_addr[i+1]&0xFF);

sum=sum+word16;

}

for (i=0;i<4;i=i+2){

word16 =((dest_addr[i]<<8)&0xFF00)+(dest_addr[i+1]&0xFF);

sum=sum+word16;

}

// the protocol number and the length of the UDP packet

sum = sum + prot_udp + len_udp;

// keep only the last 16 bits of the 32 bit calculated sum and add the carries

while (sum>>16)

sum = (sum & 0xFFFF)+(sum >> 16);

// Take the one's complement of sum

sum = ~sum;

return ((u16) sum);

}

Upon receipt of the signed segment, the receiver must validate it by calculating

its own digest from the same data (using its own key) and comparing the two

digests. A failed comparison must result in the segment being dropped, and must

58

not produce any response back to the sender. Logging the failure is

recommended.

Unlike other TCP extensions (e.g., the Window Scale option [RFC1323]), the

absence of the option in the SYN-ACK segment must not cause the sender to

disable its sending of signatures. This negotiation is typically done to prevent

some TCP implementations from misbehaving upon receiving options in non-SYN

segments. In UDT, it is ACK2 (ACK of ACK).

This is not a problem for this option, since, similarly, the SYN-ACK sent during

connection negotiation will not be signed and will thus be ignored. The same

applies to ACK2 for UDT: the connection will never be made, and non-SYN

segments (which do not exist in UDP) with options will never be sent. More

importantly, the sending of signatures must be under the complete control of the

application, not at the mercy of the remote host failing to recognise and

understand the option.

The proposed option has the following format:

+---------+---------+-------------------+

| Kind=19 |Length=18| MD5 digest... |

+---------+---------+-------------------+

The MD5 digest is always 16 bytes in length, and the option will appear in every

segment of a connection.

3.1.3 Implications

3.1.3.1 Header Size

As with other options that are added to every segment, the size of the MD5

option in TCP must be factored into the MSS offered to the other side during

connection negotiation. Specifically, the size of the header to subtract from the

MTU (whether it is the MTU of the outgoing interface or IP’s minimal MTU of

576 bytes) is at least 18 bytes larger in TCP.

 59

On the other hand, the UDP header specifies where segment data starts with a 4-

bit field, which gives the total size of the header (including options) in a 32-byte

word. This means that the total size of the header plus option must be less than

or equal to 60 bytes — this leaves 40 bytes for options.

As a concrete example, existing BSD defaults to sending window-scaling and

timestamp information for the connections it initiates. The most loaded segment

will be the initial SYN packet that starts the connection. With MD5 signatures,

the SYN packet will contain the following:

-- 1 byte packet type of control packet of UDT

-- 8 bytes for sequence number from the data packet

-- 8 bytes for timestamp (data packet)

-- 16 bytes for MD5 digest

This adds up to 33 bytes

3.1.3.2 Hashing Algorithm

MD5 [88, 107, 146] algorithm has been found to be vulnerable to collision search

attacks, and it is considered to be insufficiently strong for this type of application.

However, we specify the MD5 algorithm for this option as a basis of our

argument to include AO in UDT. Systems that use UDT have been deployed

operationally, and no "algorithm type" field has been defined to allow an upgrade

using the same option number. Therefore, this does not prevent the deployment

of another similar option that uses another hashing algorithm (like SHA-1, SHA-

256). Moreover, should most implementations pad the 18 byte option as defined

to 20 bytes anyway, it would be best to define a new option that contains an

algorithm type field. To address this, we recommend using a more secure

message algorithm such as SHA-1 or SHA-256.

3.1.3.3 Key configuration

It should be noted that the key configuration mechanism of routers may restrict

the possible keys used between peers. It is strongly recommended that an

60

implementation be able to support, at minimum, a key composed of a string of

printable ASCII of 80 bytes or less, which is also the current practice in TCP.

3.2 Generic Security Service - Application Program Interface

(GSS-API)

The GSS-API [23, 99] is a generic API for performing UDT client-server

authentication. The motivation behind it is that every security system has its

own API [99], and there are difficulties involved in adding different security

systems to applications due to the variance between security APIs. However,

with a common API, application vendors can write to the generic API, which

works with any number of security systems [23, 99, 109-110,148], and use GSS-

API during the UDT implementation. It is also considered the easiest to use and

implement with other schemes, such as Kerberos [18, 39-40, 45, 110, 121].

The GSS-API provides security services to calling applications. It allows a

communicating application to authenticate the user associated with another

application, to delegate rights to another application, and to apply security

services such as confidentiality and integrity on a per-message basis. Notably,

the GSS-API [23, 99, 109-110, 148] is used in four stages:

 Firstly, the application acquires a set of credentials with which it may

prove its identity to other processes. These credentials confirm the

application’s global identity, which may or may not be related to any

local username under which it may be running.

 Secondly, a pair of communicating applications establishes a joint

security context using these credentials. The security context is a pair

of GSS-API data structures containing shared state information,

which is required in order for the per-message security services to be

provided. Examples of state information that may be shared between

applications as part of a security context are cryptographic keys and

message sequence numbers. As part of the establishment of a security

context, the initiator is authenticated to the responder, and may

require that the responder is authenticated in return. As an option,

the initiator may give the responder the right to initiate further

 61

security contexts, acting as an agent or delegate of the initiator. This

transfer of rights is termed delegation, and it is achieved by creating a

set of credentials similar to that used by the initiating application, but

which may also be used by the responder [99, 109].

 To establish and maintain the shared information that makes up the

security context, certain GSS-API calls will return a token data

structure, which is an opaque data type that may contain

cryptographically protected data. The caller of a GSS-API [110,148]

routine is responsible for transferring the token to the peer

application, encapsulated, if necessary, in an application-application

protocol. Upon receipt of such a token, the peer application should

pass it to a corresponding GSS-API routine, which will then decode

the token and extract the information, updating the security context

state information accordingly.

Thirdly, per-message services are invoked to apply either integrity

and data origin authentication or confidentiality, integrity and data

origin authentication to application data, which are treated by GSS-

API as arbitrary octet strings. An application transmitting a message

that it wishes to protect will call the appropriate GSS-API routine

(gss_get_mic or gss_wrap) to apply protection [23, 99, 109] – specifying

the appropriate security context – and send the resulting token to the

receiving application. The receiver will pass the received token (and,

in the case of data protected by gss_get_mic, the accompanying

message-data) to the corresponding decoding routine (gss_verify_mic

or gss_unwrap) to remove the protection and validate the data.

Lastly, at the completion of a communications session (which may

extend across several transport connections) [109-110], each

application calls a GSS-API routine to delete the security context.

Multiple contexts may also be used either successively or

simultaneously within a single communications association, at the

option of the applications [23,99,109-110].

62

In summary, the protocol when used in UDT application can be viewed as:

Authenticate (exchange opaque GSS context) through the user

interface and CCC option of UDT;

Utilise per-message token functions (GSS-API) to protect UDT

messages during transmissions.

The GSS-API is a rather large API. For applications using UDT, one need only

use a small subset of that API.

3.3 Identity Packet within UDT

In today’s Internet, the first packet (eg. the TCP SYN) carries no higher-level

data that provides adequate sender’s information. On the initial transmission, it

only carries the source IP address (network layer) and an initial sequence

number (transport layer). The high-level data can only be exchanged or

transmitted after the complete ACK has been instantiated. Consequently, the

receivers will not be able to establish who is sending the data without using

additional overhead.

In TCP, the first packet of interaction should carry identity information.

Therefore, we propose the use of an Identity Packet within UDT. UDT, like TCP,

contains no data which can be used to identify a user (except such information as

contained within the [unencrypted] data part of the packet). While the source and

destination ports (TCP/UDP), in cooperation with the IP address of the sender

and receiver, can identify both participating parties in the lower level, UDT

carries no higher-level data that can identify the source before an application

processes the packets received.

Network protocols like UDT, meanwhile, have a Sequence Number Field that

provides identification; the initial value, however, is determined by the

implementer, who decides how the initial sequence number is chosen, e.g.,

randomly. The same is true, for instance, for the Window field used for

congestion control. Since congestion control has a key influence on the overall

 63

performance of the protocol, operating system manufacturers have made many

attempts to optimise it.

The lack of identity at the lower-level (network layer) in existing network

protocols has made achieving network security difficult. Several protocols

developed and implemented on top of transport and IP layers have usually

created overhead and network incompatibilities. It is a challenge to develop a

new technology that includes identity directly into the packets while retaining

backward compatibility. Some have placed encrypted and digitally signed

identity information into the packets by developing applications that become part

of the stack, adding digitally signed identity information to the packets and

decoding the information of any incoming connection attempts.

In order for UDT to be used in tomorrow’s Internet, it has to be able to

accommodate higher-level data association while also maintaining its

dependency on low-level protocols such as TCP and UDP. The initial packet of

any association, which is called the rendezvous packet, carries high-level

information to initiate the association. This provides the receiving entity with the

information that enables it to decide whether or not to process the first packet of

an association. This information can be delivered in a reliable manner - that is,

by cryptographically protecting it prior to and during the transmission.

A mechanism for “First Packet Identity” (see Figure. 3-1) within UDT should be

devised, and it should be robust enough that a receiver cannot be flooded by

requests to take action before they have verified the identity and trust at the

application level. This information can be created using user-defined types field +

information. It is possible to delegate this first-packet-identity decision-making to

a guard machine that can take on the burden as well as the risk of overload.

64

Message

Application Layer

UDT

UDP

 UDT Socket

 OS Socket Interface

Src addr, Dest addr, Chksm

Src IP, Dest IP, Chksm ,TTL

Src Port, Dest Port, Len, Chksm

ETH Header
IP Header

UDP Header

UDT Data from Sender to
Receiver

UDT Control Flow -
Receiver to Receiver

SSL/TLS, SSH, HTTPS

Ipsec – Network /IP layer

CCC

Figure 3-1. First Packet Identity in UDT in Layer Architecture. The
application exchanges its data through the UDT socket, which then uses the
UDP socket to send or receive data through an encrypted mechanism [22-33].

UDT Packet

0

1

Packet

type

Information

15

User defined

types

1 Type

IDENTITY packet

Extended
Type 31 bit

X

ACK Sub –

Sequence Number

 Time Stamp

Control
Information

Figure 3-2. UDT Packet composes of Identity Packet.

UDT needs to build on the identity representation used at the application level,

because even though the data may not be visible to the routes (e.g., it may be

encrypted), it may still reveal too many attributes of the user. Moreover, it may

not be associated with each transmission unit, though applications may be

 65

willing to install more state than routers are. It needs to be robust to deal with

resource usage and flooding attacks.

Implementing Host Identity Protocol (HIP) [7, 12, 73, 96, 105-106, 118, 137] is

one possible way to secure UDT on top of UDP and IP. This protocol solves the

problem of address generation in a different way: by removing the dual

functionality of IP addresses as both host identifiers and topological locations. In

order to achieve this, a new network layer called the Host Identity is required.

Furthermore, it is important to highlight the problem of securing IP addresses,

which plays an important role in networking, especially in the transport layer.

Generating a secure IP address can be achieved through HIP, which is

considered a building block for IP security used in other protocols. It is

considered another way of securing the address generation in practice.

More works [5, 34-35, 44, 47, 55, 74] have been published in connection with this

issue; these include various research projects on HIP since it was first introduced

in RFC 4423 [118]. This resulted in a number of new experimental RFCs in April

of 2008.

Host identification is attained by using IP addresses that depend on the

topological location of the hosts, consequently overloading them. The main

motivation behind HIP is to separate the location and host identification

information in order to minimise stressing IP addresses, which typically identify

both hosts and topological locations. HIP introduces a new namespace,

cryptographic in nature, for host identities. The IP addresses, meanwhile,

continue to be used for packet routing.

The use of HIP for UDP/TCP in the transport layer of the new network layer,

called Host Identity (HI), protects not only the underlying protocol, but UDT as

well, since it is running on top of UDP. HI is placed between the IP and transport

layer; see Figure 3-2.

66

 Figure 3-3: Host Identity Protocol Architecture [22-33,105-106,118].

In HIP, the public-key of an asymmetric key pair is used as the HI and the host

itself is defined as the entity that holds the private-key of the key pair.

Application and other higher layer protocols are bound to HI – and not to an IP

address. The prerequisite for HIP implementation should support RSA and DSA

for the public-key cryptography.

3.4 Other Mechanisms

In this section, we survey and present other viable mechanisms for securing

UDT. In previous studies [22-33], we presented an overview of ways to secure

UDT implementations in various layers. However, securing UDT in application

and other layers needs to be explored in future UDT deployments in various

applications.

There are application and transport layer-based authentication and end-to-end

[22-33] security options for UDT. We advocate the use of GSS-API in UDT in the

development of an application using TCP/UDP. The use of HIP, a state-of-the-art

 67

protocol, combined with CGA, is explored to solve the problems of address-related

attacks.

3.4.1 Diminishing MSS

Here we consider the phenomenon of UDT diminishing its sending rates in the

presence of retransmission time-outs and the arrival of duplicate

acknowledgments. We note that an attacker can impair its connection by either

causing data packets or their acknowledgments to be lost, or by forging excessive

duplicate acknowledgments. Causing three congestion control events back-to-

back will often cut the ss threshold to its minimum value of 3*MSS, causing the

connection to enter the slower-performing congestion avoidance mode.

Here is the pseudo-code of the fast retransmit and fast recovery algorithm, with

UDT’s CTCP redefined two handlers: onACK and onTimeout.

Virtual void onACK (cons tint&ack)

{

 if(three duplicate ACK detected)

 {

 //ssthresh=max{flight_size /2,3}

 // cwnd=ssthresh + 3* MSS

 }

 else if (further duplicate ACK detected)

 {

 //cwnd=cwnd + MSS

 }

 else if (end fast recovery)

 {

68

 // cwnd=ssthresh

 }

 else

 {

 //cwnd=cwnd+1/cwnd

 }

}

It is important to ensure that the sending rates do not cause a slower performing

congestion avoidance phase.

3.4.2 Cryptographically Generated Addresses (CGA)

Solving the problems of address-related attacks can also be achieved by using

CGA for address generation and verification. Self-certifying is widely used and

standardized, such as by HIP [7, 12, 83, 96, 105-106, 118,137] and Accountable

Internet Protocol (AIP) [8].

CGA uses the cryptographic hash of the public key. It is a generic method for self-

certifying address generation and verification that can be used for specific

purposes. In this thesis, the conventions used are either Internet Protocol

Version 4 or 6 (IPv4) or (IPv6).

The simplified setting for CGA [11] is presented in Figure 3-3. The interface

identifier is generated by taking the cryptographic hash of the encoded public-key

of the user. Modern cryptography has functions that produce a message digest

with more than the required number of bits in CGA. The interface identifier is

formed by truncating the output of the cryptographic hash function to a specific

number of bits, depending on the leftmost number of bits that form the subnet

prefix, e.g., IPv6 addresses are 128-bit data blocks; therefore, the leftmost bits

are 64 and the rightmost bits are 64. The prefix is used to determine the location

of each node in Internet topology and the interface identifier is used as an

 69

identity of the node. Using a cryptographic hash of the public-key is the most

effective method for generating self-certifying addresses.

In CGA, the assumption is that each node in the network is equipped with a

public-key before generating its address and the underlying public-key

cryptosystems have no known weaknesses. Similarly, in UDT, the assumption is

that its protection is derived from the security controls implemented on existing

transport layers. In this thesis, we consider evaluating the generic attack models

that can be adapted to both UDT and CGA.

Figure 3-4: Simplified and modified principle of Cryptographically
Generated Addresses.

3.4.3 HIP-CGA and UDT

HIP introduces a new namespace, which is cryptographic in nature for host

identifiers. Furthermore, it introduces a way of separating the location and host

identity information.

A hashed encoding of the HI, the HIT is used in protocols to represent the Host

Identity. The HIT is 128 bits long and has the following three properties [7, 12,

83, 96, 105-106]:

- It can be used in address-sized fields in APIs and protocols;

70

- It is self-certifying (i.e., it is computationally hard to find a Host Identity

key that matches a given HIT);

- The probability of HIT collision between two hosts is very low.

As stated above, the HITs are self-certifying. This means that no certificates are

needed in practice.

In order to establish an IP-layer communications context, an association needs to

be created. This is called HIP association, which is being utilised for base-

exchange protocol [7, 12, 83, 96, 105-106, 118, 137]. The details are briefly

summarised below:

- Initiator sends to the responder a trigger packet (I1) containing the HIT of

the initiator and possibly the HIT of the responder, if it is known.

- Next, the responder sends the (R1) packet which contains a puzzle, a

cryptographic challenge that the initiator must solve before continuing the

exchange. The puzzle mechanism serves to protect the responder from a

number of DoS threats; see RFC 5201 [119]. R1 contains the initial Diffie-

Hellman parameters and a signature, covering a part of the message.

- In the I2 packet, the initiator must display the solution to the received

puzzle. If an incorrect solution is given, the I2 message is discarded. I2 also

contains a Diffie-Hellman parameter that carries information needed by the

responder. The packet is signed by the sender.

- The R2 packet finalizes the base exchange and the packet is then signed.

The base exchange protocol is used to establish a pair of IPsec security

associations between two hosts for further communication. This is important

since HIP introduces a cryptographic namespace for host identifiers to remove

the dual functionality of IP addresses as both identifiers and topological

locations.

 71

When UDT is implemented on top of UDP, its packets are delivered through HIP.

With HIP, the transport layer operates on Host Identities instead of using IP

addresses as end points. At the same time, the network layer uses IP addresses

as pure locators. This provides added protection to the transport layer with

applications using UDT’s high-speed data transmission. With the development of

hashed encoding of the HI, a HI Tag can be used in address-sized fields in APIs

and protocols, including UDT. The hash is truncated to values which are larger

in the case of IPv6 implementation, and thus more secure compared to all

security levels of CGA.

Since HIP uses base exchange protocol [105-106] to establish a pair of IPsec

security associations between two hosts for further communication, the main

challenge of its implementation is the requirement of a new network layer, called

the HI. This is difficult to run with existing networking protocols in use.

3.4.4 Data Transport Layer Security (DTLS)

Another proposed mechanism is DTLS [59-60, 128]. DTLS provides

communications privacy for datagram protocols. The protocol allows client/server

applications to communicate in a way that is designed to prevent eavesdropping,

tampering, or message forgery.

The DTLS protocol is based on the Transport Layer Security (TLS); however,

unlike TLS, it is designed for datagram transport. TLS [60] protocol provides

equivalent security guarantees. On the other hand, datagram semantics of the

underlying transport are preserved by the DTLS protocol.

High-speed data transmission uses datagram transport such as UDP for

communication due to the delay-sensitive nature of transported data. The speed

of delivery and behaviour of applications running UDT are unchanged when

DTLS is used to secure communication, since it does not compensate for lost or

re-ordered data traffic when applications that use UDT running on top of UDP

are employed.

DTLS, however, is susceptible to DoS attacks. Such attacks are launched by

consuming excessive resources on the server via the transmission of a series of

handshake initiation requests, and by sending connection initiation messages

72

with a forged source of the victim. The server sends its next message to the

victim’s machine, thus flooding it. In implementing DTLS, during the

implementation of applications using UDT and UDP, designers need to include

cookie exchange with every handshake.

3.4.5 Internet Protocol Security (IPsec)

Most protocols for application security such as DTLS operate at or above the

transport layer. This renders the underlying transport connections vulnerable to

denial of service attacks, including connection assassination (RFC 3552). IPsec

[21] offers the promise of protecting against many denials of service attacks. It

also offers other potential benefits. Conventional software-based IPsec

implementations, for example, isolate applications from the cryptographic keys,

thus improving security by making inadvertent or malicious key exposure more

difficult. In addition, specialized hardware may allow encryption keys protected

from disclosure within trusted cryptographic units. Custom hardware units,

moreover, may well lead to higher performance.

Figure 3-5: UDT flow using end-to-end security [21-33]. IPsec can be used without
modifying UDT and the applications running it.

Implementing UDT running at or above the application layers with IPsec

provides adequate protection for data transmission (Figure. 3-4). A datagram-

oriented client application using UDT will use the connection-oriented part of its

 73

API (because it is using a given datagram socket to talk to a specific server),

while the server it is talking to can use the connection-oriented API because it is

using a single socket to receive requests from, and send replies to, a large

number of clients.

IPsec can be administered separately and its management can be left to

administrators to maintain. It is possible to create an arrangement for securing

UDT connections, such as authentication handled by IPsec. Since IPsec relies on

UDP, developers can use UDP encapsulation (see Figure. 3-5) to ensure that the

connection from UDP is secure. IPsec provides encryption and keying services

and offers authentication services; adding ESP extends services to encryption.

Specifications on protecting UDP packets can be found on RFC3948.

UDP encapsulation of IPsec ESP Packets

Source

Port Destination Port

Length Checksum

ESP Header

(RFC2406)

 Figure 3-6: Schematic diagram of securing UDT on top of UDP [22-33]

74

 3.5 Concluding Remarks

3.5.1 Summary of GSS-API

The utilisation of GSS-API to secure UDT needs to be thoroughly evaluated by

application vendors. However, the use of the GSS-API interface does not, in itself,

provide an absolute security service or assurance; rather, such assurance is

dependent on the underlying mechanism(s) of UDT.

3.5.2 Summary of UDT-AO

A security option for UDT has been proposed in an attempt to improve the

current situation, wherein UDT lacks any form of security. While the MD5 option

will soon be replaced by SHA-1 or above, the MD5 option for security remains a

significant requirement for the internetworking. Many of the existing network

and security systems still use MD5, and this is why the approaches to address its

vulnerabilities are important in the implementation phase.

We use UDT-AO instead of IPsec because of rudimentary reason: UDT-AO can

support routing protocols, in some cases, connections where keys need to be

assigned with individual transport sessions that handle large data

transmissions. Moreover, it includes a socket pair which can be used as a

security parameter index, rather than using a separate field as an index (IPsec’s

Security Paramater Index (SPI)).

AO is intended to protect the UDT protocol itself from attacks that other data

stream protection mechanisms cannot. However, when there is a level of security

to protect the UDT congestion control attack due to UDT’s sequence number,

IPsec is recommended.

In the preceding chapters, we explained that UDT provides a Type 2 field, which

is reserved for user-defined control packets in Composable UDT. The detailed

control information carried by these packets varies and depends on the packet

types; however, since the UDT/CC library is designed to focus on congestion

control algorithms, this field has limited customisation ability. Therefore, there is

a need to introduce and expand this customisation ability to include security

algorithms.

 75

3.5.3 Summary of the UDT-Identification Packet

‘First packet identity’ needs to be instituted, and devised in such a way that it is

robust enough that a receiver cannot be flooded with requests requiring them to

take excessive action(s) before verifying the identity and trust at the application

level.

The preceding discussions in this thesis have focused on the conceptual low-level

protection of the end node. Fundamentally, UDT relies on TCP and UDP for data

delivery, which can include data identity in terms of its packet header before the

transmission is validated at the application level.

3.5.4 Summary of the other mechanisms

Securing UDT can be achieved by introducing approaches related to self-

certifying address generation and verification. A technique that can be applied

without major modifications in practice is Cryptographically Generated

Addresses (CGA). This technique is standardised in a protocol for IPv6. Similarly,

HIP solves the problem of address generation, and it does so by removing the

functionality of IP addresses as both host identifiers and topological locations. To

achieve this, however, a new network layer called Host Identity must be

introduced. This makes HIP incompatible with current network protocols.

During the simulation of implementation schemes, such as those that will be

presented in Chapter 4, it is noted that IPsec provides basic protection on UDT

data transfer, as well as end-to-end protection on source and destination nodes.

In this scheme, the performance of UDT remains the same. However, we propose

other mechanisms that can provide security on UDT connections (e.g., UDT-AO,

GSS-API) where keys need to be assigned with individual transport sessions that

handle large data transmissions.

76

77

Chapter 4

Experimental Validations and
Practical Implementation

In this chapter, we work on validating the applicability of our proposed

mechanisms for the UDT architecture. We focus on practical mechanisms and

their applications to UDT, while also considering their limitations.

In the course of our validations, we develop a program to aid our experiment on

UDT. This program is developed to support our data gathering activities, since

UDT, a new protocol, has no proprietary software tools readily available.

Furthermore, we create tailored environments in which to conduct experiments

on UDT in several important steps and scenarios.

We create a secure environment wherein UDT operates outside a secure

perimeter. We then operate UDT inside a secure perimeter, this time within

various security devices. These devices include firewalls, anti-virus software, and

intrusion detection systems. Subsequently, we introduce our proposed

mechanisms and eliminate those that are not theoretically viable for UDT. Our

basis for elimination is drawn from the UDT design, its compatibility with

existing mechanisms, and complexity. Finally, we select the proposed

mechanisms we developed and attempt to expand their practical applications. We

then theoretically achieve proof of correctness of our created mechanisms for

implementations in Chapter 5.

78

4.1 Outcomes

We published part of this work in [22-33]. We highlighted UDT security

vulnerabilities and evaluated the protocol in an environment with commercially

available equipment and tools to support the experiments.

We introduce a data gathering tool we developed to capture the data transmitted

by UDT and to show the results in a visual presentation. We create, for the first

time in the literature, a tool (Project UDT) specifically for UDT, which can be

used in other experiments on other network protocols. The algorithms designed

to capture and interpret data are written to accommodate other protocols for data

capturing and presentation. Our intention is to analyse data and protocol

performance for the sake of UDT security.

Project UDT can be used to capture data across high-speed networks in long

distances, and to interpret such data. It provides straightforward data gathering

and simulations. To create this tool, we investigate how UDT captures data and

how these data vary as the distance increases. We have written an algorithm to

assist us in the analysis and development of an architecture that is useful in

various UDT implementations. It is initiated with supplemental information on

the schemes, which can provide basic if not comprehensive security of data flow

from lower-level to higher-level network communication layers.

4.1.1 Overview and Environment

We designed and built a private high-speed WAN extended across metropolitan

areas within the city of Sydney to the Western suburbs, NSW, Australia. We

provisioned two links (internal and external) across the Virtual Local Area

Network (VLAN) (Figure 4-1). This was our physical model. To compare the

results, we conducted actual experiments and, at the same time, executed

simulations based on our assumptions.

79

The assumptions resulted to the creation of robust environments supporting

high-speed network data transmission. On the right in Figure 4-1 is the primary

(located in Sydney) and on the left is the secondary (located in Western Sydney),

set 40 km apart from each other.

Figure 4-1: Built Environment. It supports high-speed network data
transmissions.

Our security model was composed of two high-speed security devices and routers.

To analyse the network performance using realistic assumptions, a series of

queues were used. In the assumptions, we considered validation of Poisson

arrivals in this specific network and security model – this time in both

unprotected and protected environments. While the simulation was running, we

operated the real transmissions of data through the high-speed data transfer

protocol and noted that as the number of connections on the link increased, the

superposition pushed the arrivals towards Poisson status [17].

We consider these transmissions, as independent assumptions, taking into

consideration new packets (specifically length) of UDT is independently chosen

for the packet each time the packet was received at one node in both secured and

unsecured connections. It is also based to obtain expected packet waits and

expected number of packets.

80

In the experiment, we sent a large amount of data from one location to another

based on two scenarios. In the first scenario, the data (>10 Tb) was sent through

the unprotected environment through the internal network. During the

transmission, TCP flooding and simulated attacks were performed. In the second

scenario, the data was transmitted through the protected environment. We

gathered both results and captured them in a UDT txt file for analysis. We

implemented the mechanisms (UDT-AO, DTLS, and Kerberos) in limited but

practical scenarios, and simulated the data transmissions with basic

authentication schemes on our routers for AO as well as on servers (in the case of

Kerberos). We tested DTLS by implementing it with UDP datagram, while also

performing basic functionality tests during UDT data transmissions. We used

Kerberos to simulate GSS-API, using Microsoft’s SSP architecture version 5. We

used keys for basic authentications from the UDT client workstation to the UDT

server. Modifications were made in the UDT codes, although we experienced C++

compilations run-time issues, as expected, which we eventually fixed with add-on

C++ libraries.

In the end, we relied more on the initial assumptions made about the above

scenarios running multiple mechanisms at the same time, albeit in the given

constraints. We focused on packet transmissions and basic modified UDT codes to

meet our basic assumptions. The packets traversed to various scenarios in

parallel with the simulations (e.g. attacks and mechanisms), providing adequate

results to support our hypotheses.

4.1.2 Proprietary Tool

In this section, we briefly introduce our program called Project UDT. It is used

mainly to capture the packet transmitted from a static file, and to give a visual

representation of how the packet transmission behaved. This program can be

implemented in both protected and unprotected environments to gauge the

security mechanisms introduced for UDT.

4.1.3 Methodology

The modelling methodology, which the program formed, is based on the

assumptions presented. The program relies on the methodology, and scales the

81

analysis from the data captured in a text file. It then plots a graph based on the

values captured to a file. The ratio of the slopes and values scales the graph to

achieve a visual representation of the data captured. The program also performs

the analysis based on the Pollaczek-Khintchine formula [22-33] to obtain the

expected data packet waits and expected number of packets transmitted. This

formula is not dependent on the type of network protocol used; neither is it

dependent on whether the network protocol used, e.g., UDT, for data

transmission is protected or unprotected. We then obtain second moments of

these distributions mathematically. To capture the rate of link time, we send the

results with the rate and speed of data UDT transmission to a flat file.

Java Code: //values are read from the UDT file and presented in a graph

for (int j = 0; j < dataValues.size(); j++) {

 int valueP = j * bar_width + 1;

 /*

 if (j%2 ==0){

 valueP += 50;

 }*/

// capture the data and calculate their performance based on the

time they were transmitted.

// optional -System.out.println("valueP: valueP);

 int valueQ = title_height;

 int height = (int) (dataValues.get(j) * graphScale);

 if (dataValues.get(j) >= 0)

 valueQ += (int) ((maxDataValue - dataValues.get(j))

 * graphScale);

 else {

82

 valueQ += (int) (maxDataValue * graphScale);

 height = -height;

 }

// calculate the performance based on the algorithm that supports

the waiting time queue (Laplace transform)

The project UDT program analyses the distributions from the flat file and

characterises arrival or service processes. The well-known problem in studying

distribution systems is that they do not possess a closed form Laplace transform

– negating the direct application of results from queuing theory [22-33].

A recursion in the data transmission is thus developed to analyse a three-point

discrete distribution of packet sizes, based on the assumptions of the discrete

queuing systems assumed for a specific environment. Therefore, the algorithms

for the program are created to numerically study link congestion and generate all

link waiting time distributions on these links.

Consider the standard queuing system [22-33]: if Wq (t) is the probability that a

system waiting time in the queue is less than or equal to t, then its Laplace

transform is given by :

 Wq * (s) = e –st Wq (t) dt= (1-)

 0 s- (1-B*(s))

Typically, one plugs in the Laplace transform B*(s) of the service time then

inverts Wq* (s) either analytically or numerically. When the service time

distribution is heavy-tailed, B*(s) does not exist in closed form, and transform

approximation is used to numerically approximate B*(s) with a discrete

approximation.

An initial version of UDT-data capture is developed to analyse data packets, and

to present these for data modelling and interpretation (see Figure.4-2).

83

Input File: UDTFile.txt (tested data transmission)

SendRate(Mb/s) RTT(ms) CWnd PktSndPeriod(us) RecvACK RecvNAK

3.00126 12.832 307 3872.83 28 12

1.88694 0.734 194 4536.45 29 2

2.07238 1.268 13 2191.21 29 3

4.07238 4.278 11 2132.13 29 3

6.07238 1.268 14 2110.34 29 3

7.07238 1.268 12 3121.16 29 3

1.07238 3.268 11 2112.28 29 3

2.07238 1000 16 1192.10 29 3

Figure 4-2: The figure presents UDT RTT fairness; an average of
throughput (given a data size of 100mb~1TB) . Two concurrent UDT flows
are simulated in the above fig. 1 topology, with one link having an RTT of
1ms and the other having an RTT of 1000ms. This result yields the same
output [22-33]

The algorithm of the program is explicit and novel to cater to data gathering and

interpretation. A file captures the data from either protected or unprotected

environment in the simulated environment based on the assumptions presented

in this section.

The data that will be captured include two important scenarios: (1) attacks on

data transmitted by UDT with its underlying security mechanisms, and (2)

attacks on data transmitted by UDT without any security mechanisms.

These scenarios consider physical and digital attacks; for example, in the

physical attack to a link or node, the link is disabled. The traffic is re-routed by

84

an alternative link in the given environment. UDT, however, does not estimate

any performance gathered between time intervals during data transmission. The

tool thus models the data captured and displays it for estimation and

interpretation. The physical or cyber attacks will not significantly affect UDT

data gathering.

4.1.4 Data Collection

The task of collecting and interpreting data is undoubtedly extensive. This is due

to the sporadic behaviour of packets in high-speed networks. Here, a tool is

developed to specifically capture and interpret the data transmitted through

UDT. The objective is to collect and interpret the data in the file, with appended

packets transmitted on a high-speed network either in encrypted or unencrypted

mode in various proposed schemes (e.g., UDT-AO, UDT+TLS, UDT+GSS-API)

that use a newly developed high-speed data transfer protocol UDT. The program

developed has become a key tool in data analysis, and replaces the existing

manual collection of information of the data transferred for statistical analysis.

4.1.5 Description of Tool

The tool is developed in Java. It has a visualisation capability to present

transmitted data. Its basic functionalities allow displaying a set of data in a file

and representing this in a graph.

The tool is dependent on two sub-components (ProjectUDT.java -390 lines and

GenerateBarGraph.java -150 lines).

Project UDT is the main program. It starts with a Graphics Unit Interface (GUI)

Menu.

The menu-driven options provide choices such as “Process a File,” “Exit,”

and “Help”.

“Process a File” accepts file in text format only. In this program, the file

name of this text file is UDTFile.txt. This is a file with raw entries

captured from a live data transmission across multiple sites running on a

high-speed optical network/WAN.

85

The tool then processes the two important entries of the file and displays

these in a GUI format. An option is then provided to interpret the entries

in a bar graph.

The entries are then presented by a graph. This graph is derived from the

gif file.

The following flow chart summarizes the above process flow.

 FFiigguurree 44--33:: PPrrooggrraamm PPrroocceessss

 The following is a list of inclusions:

Menu

Help Section

File Processor (Input/upload a file)

Data graph

Output a file (a readable)

86

4.1.6 Program and Image Files

ProjectUDT.java

Number of

Constructs/Methods

8

Number of Classes 1

Number of

Variables/Imports

12 approx and 36 imports

Number of Codes 386 less 15% spaces and comments

GenerateBarGraph.java

Number of

Constructs/Methods

2

Number of Classes 1

Number of

Variables/Imports

15 approx and 7 imports

Number of Codes 144 less 15% spaces and comments

Image Files

 - image.gif (project)

 - globe.jpg (supplementary project)

Input file (see Appendix for full entries)

 - UDTFile.txt

87

Figure 4-4: Main Menu of Project UDT is composed of the following options: Menu,
Help Section, File Processor (Input/upload a file), Data graph, Output a file
(ASCII).

Figure 4-5: Accept text file

Figure 4-6: Output graph.gif

88

The graph of the given data visually shows that the RTT is higher than the

SendRate in a given distance of 40 km (i.e., from CBD to Western Sydney). This

means that the SendRate is directly proportional to the distance and resistance

of existing network connections. This trend changes when tested on the different

volatile network connections (e.g., wireless, optical, and satellite) based on the

following equation [82]:

The use of data under baseline conditions provides an initial analysis that yields

mean and standard deviations of any delays during data transmissions in a

protected environment. Protected environment means that data are either

transmitted with encrypted mechanisms (AO and GSS-API), or transmitted in

protected communication channels (such as IPSec and DTLS).

4.1.7 Summary

Project UDT gathers and represents data from the initial test results in different

scenarios. These scenarios are practical: first, under a normal environment; and

second, under a DoS attack. The components in various scenarios are subjected to

an attack across locations in the outskirts of Sydney, about 30-40 km apart.

Agents for this attack are simulated packet transmissions using UDT. The path

of the attack traffic is from various locations. The attack traffic causes the

saturation of unprotected links across locations.

Overall, the simulation comparisons have indicated that the analytic

methodology approximates the actual environment and the assumptions defined.

Both results provide a clear indication of how the tested security mechanisms

behave when used with UDT. In a DoS scenario, the link overloading has

highlighted interesting effects on the network through packet transmission and

packet size distribution. These scenarios aid in determining what kind of

modifications, if any, can be made to better capture the results.

89

In addition to further research on the specific model for UDT [22-33], the

validations of the strength of security mechanisms against other attacks, such as

worms, have been confidently dealt with and neutralised in the end-to-end

security architecture in a real practical scenario, with UDT integrated and

implemented with selected security mechanisms.

In the next sections, experimentations and practical simulations are presented

using the commercially available tools. To support the theoretical proofs, other

security mechanisms are also attempted. These are performed in Chapters 5 and

6.

4.2 Practical Validations

In this section, we employ existing commercial tools and devices to represent a

testbed environment. We use common methods for analysis, from layer 2 to layer

5 of the TCP/IP layers.

Like many TCP and UDP implementations, there are various mechanisms

considered unsuitable for UDT (for example, using TLS on layer 2 for UDT and

UDP). In this section, we attempt to establish suitable scenarios that are

practical and cost-effective for UDT experimentation and implementation – by

exploring security methods operating on layer 3.

For the UDT data file transfer tests, the protocol developments provided by

FreeBSD Release and Windows were briefly covered. The ‘sendfile.cpp’ and

‘recvfile.cpp’ (on port 9000) were executed on each client and server nodes (see

Figure 4-7 and Figure 4-8). Moreover, short samples of data (from 100meg, 1G

and 4G, gradually increasing the size to 13 terabytes) were used. The data

transfer was performed from one data centre to another – situated in two

geographical locations, roughly 20 to 40 km apart – via 1Gb/s link through the

cloud.

90

 Appserver

 Figure 4-7: Send Packet Connection (Server Side)

1

10 19 28 37 46 55 64 73 82 91

10
0

SendRate(Mb/s)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

SendRate(Mb/s)

RTT(ms)

CWnd

PktSndPeriod(us)

RecvACK

RecvNAK

91

Figure 4-8: Receive Packet Connection (Client Side). Attempts were also made while the port 9000
was not listening. The connection setup failure message should be displayed if this port is not
listening on the server. The graph represents when Appclient IP ADDRESS 9000 was operated,
with results on SendRate(Mb/s) RTT(ms) CWnd PktSndPeriod(us)RecvACK-RecvNAK. Details
found in Appendix B.

The experiments were conducted using a gateway-to-gateway encryption method

in two separate data centres. We attempted GSS-API + UDT (Kerberos ticketing

systems) along with UDT-AO and UDT+DTLS scenarios. In the tests, UDT

performance in gateway-to-gateway mode was evaluated, and UDT was tested

using commercial security products with IPSec capability in this mode. In

addition, a network comprising two gateway hosts was created, and two firewalls

at the gateways were utilised, with each configured for site-to-site VPN.

Furthermore, the clients used for the test were composed of 100TB storage and

servers were running on Windows OS, with a sample application to handle data

transfer using UDT behind the gateways.

The intention was to transfer data across both secured and unsecured

environments, i.e., encrypted and unencrypted links, and to conduct simulated

attacks on the application that was running UDT.

92

4.2.1 Measurement Schemes and Results

In order to test the performance, the data file transfer was repeated using several

measurement tools (e.g., ArcSight, AlgoSec, PCAP, HP OpenView, Statscout,

Juniper VPN-Firewalls, NS-2, and Wireshark) which entailed measuring the size

of the files and documenting the time in which they reached their destinations. In

order to test security, vulnerability tests, such as conducting simulated DoS

attacks (e.g. sending continuous ICMP packets, TCP SYN flooding, transferring

virus infected files and so forth) were carried out. Moreover, a proprietary

vulnerability assessment testing tool was used (e.g., Nessus) ; in order to

simulate a real-life scenario, while also determining how traffic could influence

normal network activity, the testing tool included a regularly updated database –

of the latest threats– which served to ensure that existing adversaries and the

most prominent potential threats were considered.

Also utilised were tools that allowed the generation of line rate stateful traffic at

up to 10 Gbps, thereby allowing trunk ports to be directly tested while also

determining the impact of multiple GigE ports being aggregated over 10 Gbps.

The tools used are considered to be the industry’s most comprehensive layer 4-7

applications testing solution, supporting all major protocols – including UDP,

TCP, streaming media, IPv6, IPSec, and custom protocols – as well as a number

of enterprise applications via the capture/replay function.

In the test network, encryption was performed on the higher specification

gateways and firewalls (Figure. 4-1, page 69).

The resulting performance was acceptable with encryption. The significant result

was that the encrypted throughput was seen to be acceptable with the rate of the

non-encrypted throughput (Figure 4-9 and Figure 4-10). Detailed results can be

observed in Table 4-1, which reflects the use of high-speed bandwidth and high-

end firewall capabilities on the edge of the networks.

Finally, ‘data file transfer’ tests were performed between the two gateways, with

the response time being measured in milliseconds.

93

Figure 4-9: Secured Data Transfer Graph results (In the secured environment
we tested file encryption to both ASCII and Binary Data streams to determine
if there was impact to the speed transfer when using UDT)

Figure 4-10: Unsecured Data Transfer Graph results (In the unsecured
environment we tested file encryption to both ASCII and Binary Data
streams to determine if there was impact to the speed transfer when using
UDT)

94

Table 4-1. Secured Transmission. Results with security/ encryption

Secured transmission

(10 repeats)

Measurement Average Plain Average with Encryption

TCP throughput 200.9 ms 180.4 ms

UDP throughput 140.2 ms 130.3 ms

UDT throughput 9000 ms 6000 ms

TCP response time 1/1/1 ms min/avg/max .8/1/1.2 ms min/avg/max

UDP response time 1/1/1 ms min/avg/max 1/1/1 ms min/avg/max

UDT response time 1/1/1 ms min/avg/max .9/.95/1 ms min/avg/max

Table 4-2. Unprotected Transmission. Results without security / encryption

Unprotected Transmission

(10 repeats)

Measurement Average Plain Average

TCP throughput 187 ms 162 ms

UDP throughput 120.1 ms 113 ms

UDT throughput 7000 ms 4000 ms

TCP response time 1/1/1 ms min/avg/max 1.2/2.1/3 ms min/avg/max

UDP response time 1/1/1 ms min/avg/max 1.2/2.1/3 ms min/avg/max

UDT response time 1/1/1 ms min/avg/max 1.2/2.1/3 ms min/avg/max

95

Table 4-3. UDT test results with (encrypted data) and without (or plain data) encryption.

Secured UDT Data File Transfer

Table 4-4. UDT test results with (file encryption) and without (or plain data) encryption.

Unsecured UDT Data File Transfer

UDT Time (sec)

Plain

Mbytes Time (sec)

Encrypted

Mbyte/s Repeat

Server-gateway-

gateway-server 2.3 1.2 1 0.6 1

 2 1.3 1 0.8 2

 1.8 1 1 0.6 3

 2.2 1.2 1 0.7 4

 2.4 1.2 2 0.8 5

 1.9 1.05 1 0.5 6

 2 1.3 1 0.5 7

 2.6 1.4 2 1 8

 2 1.4 1 0.8 9

 1.8 1.2 1 0.9 10

UDT Time (sec) Plain Mbyte/s Time (sec)

Encrypted

Mbyte/s Repeat

Server-gateway-

gateway-server 2.1 1.2 2 0.6 1

 1.6 1.3 2 0.8 2

 1.2 1 2 0.6 3

 1.8 1.2 1 0.7 4

 2 1.2 1 0.8 5

 2.2 1.05 1 0.5 6

 1.8 1.3 1 0.5 7

 2.1 1.4 2 1 8

 1 1.4 1 0.8 9

 1.8 1.2 1 0.9 10

96

The raw response times were found to be poorer for the non-encrypted (clear)

test, but it was presumed that the intervening gateways without security were

responsible for such an effect. The unsecured environment was susceptible to

DoS attacks on the gateways and servers, which therefore affected data transfer

performance and integrity. Results, however, can be improved significantly,

especially for much larger packet sizes, wherein fragmentation occurs in a

protected link, such as IPSec.

Overall, the results established throughout this experiment illustrate the

improved performance that can be delivered by the use of a higher specification

encrypting device with higher bandwidth links. The results of the various

throughput tests performed suggest that, at the bandwidth levels requiring fast

data transfer, the protected environment would appear to offer a scenario that

does not have a significant impact in terms of latency or session quality.

4.2.2 Impact on Performance

The trials of both secured and unsecured environments imply that encryption at

the network layer does not impose significant performance problems in the

middle of attacks. Perceived latency is very similar in these tests, and the

empirical results imply that the overhead at the network layer is in the order of a

handful of milliseconds.

It should be noted that, in addition to the encryption overhead on the CPU, the

encrypted packets will also be larger, owing to the additional AH/ESP data being

sent, and that the packet re-assembly at the far end will take longer, due to

delays in the passing of encrypted data beyond just the raw computational

burden.

In terms of the algorithms, one may assume that weaker algorithms are less

computationally expensive; however, existing encryption algorithms such as AES

can offer improved encryption in comparison to 3DES (which the commercial

IPSec VPN product uses), and for less processor effort, too (an important

consideration when encryption is required on miniature smart type devices).

97

Coupled with advances in processor and bandwidth speed, the latency penalty for

encryption will continue to fall as a percentage of the time and bandwidth

required for high data transfer. The same, of course, may not be true in the case

of UDT implementations over a low bandwidth network like a cellular wireless

network (where the packet size overhead is far more significant).

4.2.3 Socket and Application Layer UDT Protection

The simulated and implementation schemes based on the previous tests created

for the network and IP layers were performed in order to observe the behaviours

of UDT in both secured and unsecured settings in the application and socket

layers. Notably, the simulated environment operated separately on NS2 and

EMIST, so as to provide internal validation. This environment was used in order

to simulate the behaviours of data transmission in cases wherein UDT is used on

top of UDP. A test was also performed using a new probabilistic packet marking

scheme and other commercially available tools (eg. IPS) constituted by 3,000

nodes; 1,000 attackers were selected randomly.

In order to test and determine the number of packets required to reconstruct the

attacking path, the selection of one path from all of the attacking paths and its

length was defined as w, w=1,2…30. For each number of paths, a simultaneous

change of values of w was repeatedly changed until the protocol showed a clear

attacking path; this permitted the simulation to produce a pattern of the

behaviours of UDT without any means of protection.

The implementation environment featured a simple topology. Two honeypot

servers (HP1 and HP2) with UDT for Windows were installed at two separate

locations. They were in a network operating environment running on a 10G pipe

trunk 802.1q for tunnelling behind firewalls. The attackers were sourced from

the Internet. In the first implementation, all traffic was permitted to traverse

through any source, destined through any port on UDP and TCP, and locked to

the destination honey pot, where UDT was running on top of UDP. A simple data

transfer of 600MB–200GB to 2TB to another server was then performed. The test

was initially performed without any protection, while subsequent tests were

performed with the proposed security mechanisms in place. The results were

then compared.

98

The following protection schemes were attempted:

1. A simple authentication scheme using Kerberos [42-43] for GSS-API on an

application running UDT and UDP;

2. UDT-AO and UDT-DTLS across border gateway routers;

3. Using VPN SSL connections and running the applications in H1 and H2.

4.2.4 Results

The number of attacks in Figures 4-11 and 4-12 was constant in the

implementation scheme. The dropped packets were detected when the IDS/IPS

was activated on the firewalls. The simple authentication scheme – which was

developed to transfer a file via UDT, provided by Kerberos using GSS-API on the

UDP socket where UDT was operating – provided added protection that sourced

the location of the authenticating party in the protected environment.

Figure 4-11: Unsecured environment

 Y - Traffic

X- Nodes

0
10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1000 2000 3000 4000 5000 6000

Attacks

unknown traffic

99

Figure 4-12: Secured environment (with UDT-AO, UDT-DTLS and GSS-API implementations)

The trend presented in Figure 4-12 yielded significant improvements. Moreover,

the end-to-end transfer of data was transparent to the UDT application. The

available security mechanisms for UDT requiring minimal application and

program development are feasible and predominantly applicable to UDT

implementation.

In the case of simple file transfer, many available mechanisms for UDP and TCP,

as well as existing security protections for applications, are acceptable, i.e.,

simple authentication. However, in cases of extensive use of UDT — such as in

SDSS and other large project implementations requiring security — UDT

requires a security mechanism that is developed and tailored for its behaviours

and characteristics based on its design. This work emphasises the need for UDT

— just like the existing mature protocols — to be subjected to continuing security

evaluations. Amendments based on the evaluations will aim to develop and

provide adequate protection, thereby maintaining integrity and confidentiality

against various adversaries and unknown attacks. To ensure minimal overhead

in data and message transmission streams, these amendments will also minimise

dependencies on other security solutions applied on some protocols.

The limitations of the simulation and implementation schemes constructed may

be related to the simplicity of the applications developed for the tests.

X- Nodes Y - Traffic

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 1000 2000 3000 4000 5000 6000

Attacks

unknown
traffic/DROPPED

100

Experiments are difficult to perform on the following mechanisms: HIP, owing to

the required additional layer HIT; and DTLS + CGA.

 Table 4-5. Transport Protocol Matrix

A more extensive development of an application using UDT may yield more

detailed and comprehensive results (Table 4-5); in addition, the number of false

positives and collisions was not considered in the tests. The results nonetheless

provide an important indication of how the application using UDT behaves in

such environments. Accordingly, protecting UDT can be achieved by introducing

approaches related to self-certifying address-generation and verification. A

technique that can be applied without major modifications in practice is CGA,

which is standardised in a protocol for IPv6.

Similarly, HIP solves the problem of address-generation in a different way: by

removing the functionality of IP addresses as both host identifiers and topological

101

locations. To achieve this, however, a new network layer known as HI has been

introduced, making HIP incompatible with current network protocols (Table 4-6).

The protection of UDT through the use of GSS-API in UDT, meanwhile,

represents another approach; however, this requires thorough evaluation by

application vendors.

 Table 4-6. Summary of Schemes

The use of the GSS-API interface does not in itself provide absolute security or

assurance; rather, such attributes are dependent on the underlying mechanisms

of UDT, which support a GSS-API implementation to achieve an adequate

security mechanism. Another method of ensuring UDT protection is through the

introduction of the Authentication-Option (AO); this, however, requires changes

to the design of UDT, so as to accommodate an AO field. There is also the

requirement to use a better hashing algorithm to ensure that messages

transmitted are duly protected.

With the results, we can draw our experience from the comparisons between the

various scenarios. Since UDT is a new protocol, there has been little adoption of

it; therefore, no security mechanisms are so far available for the application

layer. Initially, we considered host-to-host encryption as a feasible solution,

depending on the operating system and method desired; however, it was noted

that this was likely to require some expertise in the end user of the end host’s

system, and would further cause various problems related to firewalls, because

Method Complexity Practicality New Layer required Analysis Simulation/Experiment

Checksum High Moderate NA Completed Application dependent

GSS-API Medium Moderate NA Completed Application dependent

SASL Medium Moderate NA Completed NA

HIP High Moderate HIT Completed Application dependent

UDT-AO High Moderate NA Completed Algorithmic dependent

DTLS High Low NA Completed NA

IPSec Medium Moderate NA Completed Operations dependent

102

stateful inspection for UDP — on which UDT runs — cannot be performed on an

encrypted session.

The gateway-to-gateway encryption appears to offer a flexible and relatively

efficient means to encrypt UDT and UDP data over the public element of a

session connection, although it remains vulnerable to interference and probing on

the internal site network behind the gateway – unless, that is, appropriate

security solutions are taken.

Additionally, it has been observed, based on limited tests performed on entry-

level high-speed gateway devices, that the latency effects of encryption do not

appear to be significant. Increasing commodity CPU power is making encryption

even more viable for reasonable UDT data transfer. Notably, opportunistic

encryption is desirable. The VPN firewalls include support for this, but this so far

has not been tested in detail: the scaling issues may be significant and should be

tested further if stateful/proxy types of firewalls are to be considered for wider

UDT deployment.

Gateway encryption (IPSec) – via the existing security devices for higher

bandwidth and larger environments – is presently an effective method. Such a

device and its configurations, however, require wider-scale testing prior to

potential use. Moreover, end-to-end encryption through gateway-to-gateway

encryption offers security for UDT, as it does to other protocols.

In the simulation and implementation schemes, IPSec provided adequate

protection in terms of data transfer, and similarly provided end-to-end protection

on source and destination nodes. In this scheme, the performance of UDT

remained the same.

103

4.3 Concluding Remarks

Experiments and simulations were performed for the proposed mechanisms for

practical reasons: first, to determine the viability of the selected mechanisms;

second, to determine if UDT is applicable to practical applications with the

support of resources given the current high-speed network specifications; and

third, to subject UDT in rigorous tests within both unprotected and protected

environments, in the given limited and isolated constraints.

In this chapter, we presented our own UDT proprietary tool, which was

developed to capture UDT traffic. Using this tool to capture data transmissions,

we also conducted a comprehensive test and analysed the traffic of data in

various environments using the proposed mechanisms.

In the results, it was noted that various mechanisms worked for the existing

protocols — such as TCP and UDP — but did not, as expected, work for UDT (see

Table 4-5). There were, however, various mechanisms found to be viable for UDT

but not for UDP, such as AO and GSS-API. The combination of UDT and UDP

provided UDT with the connection and flow control that it required to operate in

the selected mechanisms.

The approach presented in this chapter emphasised the following:

(1) Most mechanisms presented were experimentally validated on

connection-based protocols.

(2) The method of security connections through IPSec and DTLS

worked well for UDP and UDT.

(3) The use of GSS-API, HIP, and CGA were complex and costly, but

provided security solutions for the new protocol. Proof of methods

through formalisation will be used for verification.

(4) An option such as AO is suitable for UDT, provided that an

alternative or a combination of hash methods is used.

(5) Practical solutions include running IPSec on top of UDP, and

SSL. However, these solutions can sometimes be detrimental to

business needs, such as creating constraints on data flow access

104

and performance [19] in a more open and trusted environment

wherein IPSec is not a requirement.

(6) Public Key can be used, but is also costly when the application

relies on certificate authorities.

(7) The methodology, as observed in Table 4-6, provides a new

opportunity to address security for UDT and other protocols. The

results can assist network and security investigators, designers,

and users, all of whom consider and incorporate security when

implementing UDT across wide area networks. These can also

support the security architectural designs of UDP-based

protocols, as well as assist in the future development of other

state-of-the-art fast data transfer protocols.

This experiment is extended in the next chapter to rigorous theoretic proof of

correctness. It will focus on three mechanisms found provable within UDT

implementations. By provable, we mean that these mechanisms are successfully

simulated and tested in UDT practical environments, albeit with minor changes

required. While the work focuses on limited and minimal resources as well as on

the prevention of dramatic changes to the UDT design, we yield promising

results from the proposed mechanisms – with, of course, selected techniques in

the design and implementation put in place.

Three of these mechanisms are found to be practically viable for UDT due to

three important reasons: first, the design of UDT is closely based on TCP and

UDP, and therefore much of the design of the security for UDT should also be

viable to TCP and UDP; second, existing security mechanisms (e.g., IPSec, DTLS,

and Kerberos) have proven to fair well in the TCP and UDP implementations;

third, the data flow and multiple connection characteristics of UDT require

features that these mechanisms provide – features such as authentication,

confidentiality, and data integrity – proving these to be useful and compatible

with existing protocols.

105

106

 107

Chapter 5

Proof of Correctness of the Selected
UDT Security Mechanisms

In this chapter, an approach analysing the applicability and secrecy properties of

the selected security mechanisms when implemented with UDT is introduced. In

this approach, a formal proof of correctness, thereby determining applicability

with formal composition logic is carried out. This approach is modular; it has a

separate proof for each protocol section that provides insight into the network

environment in which each section can be reliably employed. Moreover, the proof

holds for a variety of failure recovery strategies and other implementation and

configuration options. The technique is derived from Protocol Composite Logic

(PCL) on TLS and Kerberos in the literature. The novelty of this work on UDT is

maintained: specifically on the developed mechanisms such as UDT-AO,

UDT+DTLS, UDT+GSS-API.

5.1 Overview of Proof Method

To analyse the protocol based on formal language and logic, we employ the PCL

method.

PCL [52] entails reasoning about properties achieved by formalised steps in a

setting that does not compel explicit reasoning about attacker actions. Many

literatures define PCL as a formal approach for proving security properties of a

class of network protocols. According to [1,2,44,52-55,66-65,87,115-116], the

central question addressed by PCL is whether it is possible to prove properties of

108

security protocols compositionally, by using reasoning steps that do not explicitly

mention attacker actions. In order to reason about the protocols, the proof of

properties of one sequence of actions by one agent involves not only local

reasoning about the security goal of that component [113,115-116], but also about

environmental conditions that prevent destructive interference from other actors

that may use the same certificates of key materials, according to [115].

These environmental conditions are generally formulated as protocol invariants.

These are properties true for all of the roles of the protocol at hand, and

according to [114,115-116], there are properties that may be required in any

other protocol operating in the same environment.

Various versions of PCL investigated in past work proved to be sound for protocol

executions that employ any number of principals and sessions, over both

symbolic models, and over more traditional cryptographic assumptions [1,2,

113,115-116].

Several groups of researchers, according to [2], have taken measures to

concatenate the symbolic model to the probabilistic polynomial-time

computational model used in security protocol studies, e.g. [44,52-55,65-

67,87,113,115-116].

In this chapter, we will prove correctness of each selected security mechanisms

for UDT in the symbolic model [30], and determine any issues in its

implementation through employing formal logic. Connections between symbolic

trace properties and computational soundness properties are achieved in [37]. All

these efforts have been directed at proving security properties for well-

established mechanisms.

 109

5.1.1 Significance

The major milestone of this technique is its use in the integration of methods of

security mechanism analysis into the verification process prior to their

deployment in UDT.

5.1.2 PCL Method

We begin with a brief discussion of PCL relevant to the analysis, [1,2,54]. We

base our discussion on the original proponents of PCL [54], which we fully

acknowledge in this chapter.

To model protocols, we need to define a protocol by a set of roles, [1,2,52-55] each

specifying a sequence of actions to be executed by an honest agent. In PCL,

protocol roles are characterised employing a simple ‘protocol programming

language’ according to [54-55] based on cords. The possible protocol actions

include nonce generation, signatures and encryption, communication steps, and

decryption and signature verification via pattern matching [54]. Programs can

also rely on input parameters that are typically decided by context, or are the

result of set-up operations, and supply output parameters to subsequent

operations.

In this Chapter, we outline the proof system and the proof of soundness of the

axioms [54] and the rules [1,2,44,52-55,65-67,87,113,115-116]. Most protocol

proofs employ formulas of the form [P]X , which expresses that initiating from

a state where formula is true, after actions P are determined and executed by

the thread X, the formula is true in the resulting state. Formulas and
typically create assertions about temporal order of actions and the data

accessible to various principals that are useful for stating secrecy [115-116].

The proof system extends first-order logic with axioms and proof rules for

protocol actions, temporal reasoning, knowledge, and a specialised form of

invariance rule called the honesty rule [52-55,65-67,87,113,115-116]. The honesty

rule is essential for merging facts about one role with inferred actions of other

roles, in the presence of attackers. Intuitively, according to [115-116] if Alice

receives a response from a message sent to Bob, the honesty rule obtains Alice’s

ability to exercise properties of Bob’s role to assert about how Bob created his

110

reply. In short, if Alice contends that Bob is honest [52-54], she may inherit Bob’s

role to reason from this assumption.

5.2 Proof of UDT-AO Protocol

The first mechanism we propose is UDT-AO protocol. It is a lightweight protocol

part of our ongoing IETF review process for UDT. We show how UDT-AO is

intended to secure long-lived connections for UDT when used in various routing

protocols. It is not intended to replace IPsec suite to secure connections. Hence,

we analyse UDT-AO protocol for consideration in the development of a viable

security architecture. We employ a finite-state method to ascertain that this

protocol does not have any flaws. We also substantiate the protocol utilising a

protocol verification logic. We use formal proof to verify the viability of this

protocol to secure UDT transmission.

The UDT-AO is an authentication framework that was proposed to the Internet

Engineering Task Force (IETF). It operates on the transport layer and supports a

variety of mechanisms for two entities to authenticate themselves to each other.

UDT is a connection-oriented protocol. As such, it requires to include an OPTION

for authentication when it is used in data transmission. This is because its

connections, like TCP, are likely to be spoofed [142].

The proposed option can be implemented on Type 2 of the UDT header. This field

is reserved to determine specific control packets in the Composable UDT

framework. Every segment sent on a UDT connection to be secured against

spoofing will similarly contain the 16-byte MD5 digest achieved by applying the

MD5 algorithm to these items, in the following (Table 5-1) similar order required

for UDT:

Table 5-1: UDT + UDP Process

1. UDP pseudo header (Source and Destination IP

 addresses, port number, and segment length)

2. UDT header + UDP (Sequence number and timestamp), and

 assuming a UDP checksum zero

3. UDT control packet or segment data (if any)

 111

4. Independently-specified key or password, known to both

 UDTs and presumably connection specific and

5. Connection key

The UDT packet header and UDP pseudo-header are in network byte order. The

nature of the key is deliberately left unspecified, but it must be known by both

ends of the connection, similar with TCP [34,36-37,61,151]. However, a particular

UDT implementation will determine what the application may specify as the key.

The focus is on validating the protocols and their applicability to UDT by

determining if errors and incompatibility problems exist, and, therefore, in their

absence re-enforce the viability of AO for UDT security architecture.

UDT-AO provides message authentication verification between two end points

[22-33]. This message authentication function protects a message’s data integrity

[33]. In order to accomplish this function, Message Authentication Codes (MAC)

are utilised, which rely on Shared Keys (SK). There are various ways to generate

MACs. The general requirements are outline for MACs used in UDT-AO, both

for currently specified MACs and for any future specified MACs. Two MACs

algorithms selected that are necessary in all UDT-AO implementations.

Moreover, two Key Derivation Functions (KDFs) employed to create traffic keys

used by the MACs are introduced. These KDFs are required by all UDT-AO

implementations, as presented (Table 5-2) below.

Table 5-2: Successful Message Exchange in UDT-AO

[Message 1:S . P]: SNonce, S, AlgocryptList

[Message 2:P . S]: P, S, PNonce, SNonce, AlgocryptList, AlgocryptSel,

 {Payload}KDF(PKEY),MACSK

[Message 3:S . P]: PNonce, SNonce, AlgocryptSel, {Payload}KDF

 (PKEY),MACSK

[Message 4: P . S]:{Payload}KDF (PKEY),MACSK

112

Successful UDT-AO message transfer exchange.

The Keys Shared (SKey), (PKey), and Private Keys (PSK) are derived from a key

derivation function KDF, which names a Pseudorandom Function (PRF) and uses

a Master_Key (MKey) and some connection-specific input with that PRF to

generate Traffic_Keys (TKey), the keys suitable for authenticating and integrity-

checking individual UDT segments.

5.2.1 UDT-AO Description

MKey is generated as seed for the KDF. It is similarly assumed this is a

readable PSK; thus, it is also considered, which based on the characteristics of

existing protocols, it is of variable length. MKey should be random, but in some

cases when chosen by the user, it might not be. For interoperability, the

management interface by which the PSK is configured [117] must acknowledge

ASCII strings, and must also permit for configuration of any arbitrary binary

string in hexadecimal form.

The assumption is that KDF-X selects two arguments, a key and a seed, and

outputs a bit string of length X [2]. The notation KDF-X(Y,Z) [i..j] constitutes the

i’th through j’th octets (8 bits) of the output of the KDF-X. The PSK has length

PL, while the SKey and PKey have length KS, which is a value specified by the

example Algocrypt (Table 5-3).

Table 5-3: KDF-AES-128-CMAC

KDF-AES-128-CMAC

Input : MKey (Skey or PKey length KS)

 :I (input data of the PRF)

 : MKeyLen (length of MKey in octets)

 : len (length in octets)

Output: TKey (Traffic_key, 128-bit Pseudo-Random Variable)

Variable: Key (128-bit for AES-CMAC)

Step 1. If MKeyLen is equal to 16

Step 1a. then

 113

 K :=MKey;

Step 1b. else

 K: = AES-CMAC(0^128, MKey, MKeylen);

Step 2. TKey : AES-CMAC(K,I, len);

 Return TKey;

Key derivation is defined as follows:

inHEX=0x00.

inputString = PNonce || P || SNonce || S.

MKey = KDF-KS(inHEX value, PL || PSK || AlgocryptSel || inputString)[0..KS-
1].

Assumption 160 bits in case of KDF_ HMAC_SHA1

SKey = KDF-{160+2*KS}(MKey, inputString)[160..159+KS].

PKey = KDF-{160+2*KS}(MKey, inputString)[160+KS..159+2*KS].

Assumption 128 bits in case of KDF_AES128_CMAC based on AES-CMA-PRF-128

SKey = KDF-{128+2*KS}(MKey, inputString)[128..127+KS].

PKey = KDF-{128+2*KS}(MKey, inputString)[128+KS..127+2*KS].

Similarly, the first 128 octets of KDF-{128+2*KS}(MKey,

inputString)[128+KS..127+2*KS] are divided into two keys [117] which are

exported as part of the protocol. They may be employed for key derivation in

higher level protocols [1,2]. Every AO method which supports key derivation is

needed to export such keys, but they have been omitted because they are not

relevant to the current analysis.

UDT-AO is designed to equip mutual basic authentication between the peer and

the server (end-to-end). The successful message exchange decides the

authenticity of the peer by the use of key SKey, which is deduced from the long-

term key PSK for MAC in Message 2 in the algorithm found in Table 5.2. The

successful message exchange purports [117] the authenticity of the server by the

use of SKey for the MAC in Message 3. AO is also designed to cater for session

independence. This means that even if there is a weakened exchange, this

prevents the attacker from compromising past or future sessions. AO is a

114

symmetric key authentication protocol, and therefore the secrecy of long-term

key PSK is essential for all the above introduced properties to hold [52-54].

Both the peer and the server are dependent upon to silently dispose of any

message which is unexpected (e.g., receiving Message 4 instead of Message 2),

doesn’t parse (e.g. the wrong nonce is returned), or whose MAC is invalid. The

only exception is for Message 2. If the server acquires an invalid MAC then it

must respond with an UDT-AO failure message. The peer must always be willing

to accept Message 1 from a server since there is no integrity protection [1,2,52-

55].

The analysis that was determined confirms the basic requisite for securing UDT.

The non-standard use of a key derivation function [117] which is exhausted to

create session keys is a fundamental weakness, but does not accommodate an

obvious attack detrimental to UDT data transmission. In addition, the difficulties

which such non-standard usage composes when trying to validate the protocol’s

correctness should not be rejected. This is because of the fact that the messages

are not encrypted, and therefore a basic authentication is more so a necessity.

Using a modular approach to protect UDT data transmission by combining other

security mechanisms to guarantee a secure UDT implementation, without

computation overload, therefore, is prescribed.

5.2.2 UDT-AO Proof of Correctness

In this section, the introduction of a formal correctness proof of UDT-AO using a

formal language method that executes any number of principals and sessions,

over both symbolic models and over more traditional cryptographic assumptions

is presented.

 115

5.2.3 Formal Description of UDT-AO in the Formal Language

Table 5-4: Formal Description of UDT-AO

UDT: Server [

new SNonce;

send SNonce. ˆ S.ALGOCRYPTLIST;

receive ˆ P. ˆ S.PNonce.SNonce.

ALGOCRYPTLIST.ALGOCRYPTSEL.enc1.mac1;

MKEY := prg PSK;

InputString := PNonce. ˆ P.SNonce.
ˆS;

SKEY := kdf1 InputString,MKEY;

PKEY := kdf2 InputString,MKEY;

pl1 := symdec enc1, PKEY;

verifymac mac1, ˆ P. ˆ
S.PNonce.SNonce.

ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY;

enc2 := symenc pl2, PKEY;

mac2 := mac PNonce.SNonce.

ALGOCRYPTLIST.enc2, SKEY;

send PNonce.SNonce. ˆ
S.ALGOCRYPTLIST.enc2.mac2;

receive enc3.mac3;

verifymac mac3, enc3, SKEY;

pl3 := symdec enc3, PKEY;

]S

UDT: Peer [

receive SNonce. ˆ S.ALGOCRYPTLIST;

new PNonce;

MKEY := prg PSK;

InputString := PNonce. ˆ P.SNonce.
ˆS;

SKEY := kdf1 InputString,MKEY;

PKEY := kdf2 InputString,MKEY;

enc1 := symenc pl1, PKEY;

mac1 := mac ˆ P. ˆ S.PNonce.SNonce.

ALGOCRYPTLIST.ALGOCRYPTSEL.enc1;

send ˆ P. ˆ S.PNonce.SNonce.

ALGOCRYPTLIST.ALGOCRYPTSEL.enc1.mac1;

receive PNonce.SNonce. ˆ
S.ALGOCRYPTLIST.

enc2.mac2;

verifymac mac2, PNonce.SNonce.

ALGOCRYPTLIST.enc2, SKEY;

pl2 := symdec enc2;

enc3 := symenc pl3;

mac3 := mac enc3, SKEY;

send enc3.mac3;

]P

116

5.2.4 UDT-AO Security Properties

The properties that UDT-AO ought to satisfy include:

Setup Assumption. To establish security properties of the UDT-AO protocol,

[1,2,52-55], it is deduced that the ServerˆS and the PeerˆP in consideration are

both honest, and are the only parties which recognise the corresponding shared

PSK. However, this acquiesces all other principals in the network to be

potentially malicious and capable of reading, blocking and changing messages

transmitted to the network.

Definition 1 (Secrecy). The Server to Peer is said to exchange key secrecy, where
defined as:

setup Honest(ˆ P) ^ Honest(ˆ S) ^ (Has(X, PSK) ˆX = ˆ S v ˆX = ˆ P)

Security Theorems. The secrecy theorem for UDT-AO inculcates that the signing

and encryption keys SKey and PKey should not be obvious and known to any

principal other than the peer and the server. For serverˆS and peerˆP, this

property is used as SECudt-ao(S,P) defined as:

SECudt-ao(S, P) (Has(X, PKey) v Has(X, SKey)) v (ˆX = ˆ S ˆX = ˆ P)

Theorem 1 (AO-Secrecy). On execution of the server role, key secrecy holds.
Similarly for the peer role. Formally, UDT-AO _ SECserver pkey,skey , SECpeer
pkey,skey, where

SECserver pkey,skey [UDT: Server]S SECudt-ao(S, P)

SECpeer pkey,skey [UDT: Peer]P SECudt-ao(S, P)

Proof Sketch. Proof intuition is as follows:

PSK is considered to be known to ˆP and ˆS only. The keys SKey,PKey are

determined by employing PSK in a key derivation function (MKEY could be a

truncation of PSK or generated by application of a PRG to PSK, according to the

length needed). The honest parties employ SKey,PKey as only encryption or

signature keys - none of the payloads are determined by a KDF application. This

is the intuition why SKey,PKey remain secrets. A rigorous proof would utilise a

stronger induction hypothesis and induction over all honest party actions [54].

 117

The authentication theorem for UDT-AO creates that on completion of the

protocol, the principals accede on each other’s identity, protocol completion

status, the cryptographic suite list and selection, and each other’s nonces. The

authentication property for UDT-AO is determined in terms of matching

conversations [2]. The basic idea of matching conversations is that on execution

of a server role, we corroborate that there exists a role of the designated peer

with a corresponding view of the interaction [117].

For server ˆS, communicating with client ˆP, matching conversations are created

as AUTHudt-ao(S, P) defined below:

AUTHudt-ao(S, P) (Send(S, msg1) < Receive(P,msg1))^

 (Receive(P,msg1) < Send(P,msg2))^

 (Send(P,msg2) < Receive(S, msg2))^

 (Receive(S, msg2) < Send(S, msg3)

Definition 2. Server is said to execute and formulate authentication session for
the authenticator.

Theorem 2 (AO-Authentication). On formulation of the server role,
authentication holds. Similarly for the peer role. Formally, UDT-AO _
AUTHserver peer ,AUTHpeer server, where

AUTHserverpeer [UDT: Server] S . P = (ˆ P,) ^ AUTHudt-ao(S, P)

 AUTHpeer server [UDT: Peer] P . S = (ˆ S,) ^ AUTHudt-ao(S, P)

Proof Sketch. The formal proof in PCL is in Section 5.2.3. We formulate the proof

intuition here. We required to add two new axioms MMAC0 and VVMAC (see

Section 5.2.5) to the extant PCL proof system in order to contend about MACS.

Axiom MMAC0 says that anybody calculating a mac on a message m with key k
must include both m and k. Axiom VVMAC says that if a mac is proven to be

correct, it must have been generated by a mac action.

AUTHserver peer: The Server validates the mac1 on msg2 to be a mac with the

key SK. By axiom VVMAC, it must have been formulated by a mac action and by

MAC0, it must be by someone who has SKey. Hence by secrecy, it is either P or S

118

and therefore, in either case, an honest party. It is an invariant of the protocol

that a mac action on a message of the form Xˆ.Y.XNonce.Y
Nonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc is executed by a thread of ˆX,

captured by 1 - hence it must be a thread of ˆP, say P. Also using 1 it ascertain

that P received the first message and generated nonce PNonce [117] and sent it

out first in the message msg2. From the actions of S, its newly determined

SNonce is sent out first in msg1. Employing this information and axioms FFS1,
FS2, the sequence order then actions as receive and send as described in

AUTHserver peer.

AUTHpeer server : The Peer verifies the mac2 on msg3 to be a mac with the key

SK. By axiom VVMAC, it must have been determined by a mac action and by

MAC0, it must be by someone who has SKey [117]. Hence by secrecy, it is some

thread of either ˆP or ˆS and therefore, in either case, an honest party. It is an

invariant of the protocol that a mac action on a message of the form

YNonce.XNonce.ˆY.ALGOCRYPTLIST.enc, is performed by a thread of ˆY ,

captured by 2 - hence it must be a thread of ˆS, say S.

However, this mac according to [117] does not restrict the variables

ALGOCRYPTSEL and enc1 sent in msg2. So to ascertain that S received the

exact same message that P sent, we utilise 2 to further reason that S verified a

mac on a message of the form of msg2. And axioms VVMAC, MAC0 repeat to

deduce that this mac [117] was generated by threads of ˆS or ˆP. Now, it is

possible to use 1 and the form of msg2 to contend that a thread of ˆP did it,

which also generated PNonce - hence by AAN1, it must be P itself. Now an

invariant can be managed that states that a thread initiating such a mac does it

uniquely, captured by 3, thus binding ALGOCRYPTSEL, enc1. Moreover, FFS1,
FS2 can now be managed as in the previous proof to create the order described in

AUTHpeer server.

 119

5.2.5 UDT-AO Axioms

The proof system enhances first-order logic with axioms and proof rules for

protocol actions, temporal reasoning, properties of security (e.g., cryptographic)

primitives, and a specialised form of program invariance rule called honesty rule

[54-55]. Below is the list of axioms employed in this thesis.

Formal Proofs

New Axioms

MAC0 Mac(X, m, k) Has(X,m) Has(X, k) means anybody computing a mac on a message m with k must possess both m and k.

VMAC VerifyMac(X, m’,m, k) Y. Mac(Y,m, k) m’ = MAC[k](m) states that if a mac is verified to be correct, it must have
been generated by a mac action

Note: Extant PCL proof system reason about MACS through the new axioms MAC0 and VMAC

Invariants

1 Mac(Z, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc,K) ˆ Z = ˆX (Receive(Z, Y
Nonce. ˆY .ALGOCRYPTLIST) - assign 1 invariant for AUTHserver peer. – it captures the mac action on a message of the form
XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc, which is performed by a thread X.ˆ, captured by 1

 < Send(Z, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc.mac))

 mac = MAC[K](ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc)

 FirstSend(Z,XNonce, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc.mac)

2 Mac(Z, Y Nonce.XNonce. ˆY .ALGOCRYPTLIST.enc,SKEY) SKEY = KDF1[K](YNonce. ˆY .XNonce.ˆX)

 ˆZ = ˆ Y ALGOCRYPTSEL‘, enc1. (Send(Z, Y Nonce. ˆY .ALGOCRYPTLIST) <

 Receive(Z, Yˆ .Xˆ.Y Nonce.XNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1.mac1) <

 Send(Z, Y Nonce.XNonce.ALGOCRYPTLIST.enc.mac))

 mac1 = MAC[SKEY](Yˆ .Xˆ.Y Nonce.XNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1)

120

 mac = MAC[SKEY](Y Nonce.XNonce.ALGOCRYPTLIST.enc)

 VerifyMac(Z,mac1, Yˆ .Xˆ.Y Nonce.XNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’ .enc1, SKEY)

 FirstSend(Z, Y Nonce, Y Nonce. ˆY .ALGOCRYPTLIST) - assign 2 invariant for AUTHpeerserver

3 Mac(Z, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc,K)

 Mac(Z, ˆ X.ˆY .XNonce.YNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc’ ,K) ALGOCRYPTSEL =

 ALGOCRYPTSEL’ enc = enc’ assign 3 invariant for AUTHpeerserver

Formal Proof of AUTHserver

 peer

AA1 [UDT-AO : Server]S VerifyMac(S, mac1, ˆ P. ˆ S.PNonce.SNonce. (1)

 ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY)

Axiom VMAC is generated by a mac action and by MAC0, it be someone with SKEY

 SECserver VMAC [UDT-AO : Server]S X. (ˆX = ˆ P ˆX = ˆ S) (2)

 pkey,SKey , Mac(X,
P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY)

AUTHserver peer verifies the mac1 on msg2 to be a mac with key SKEY

 1 [UDT-AO : Server]S . P0 = (ˆ P,)

Mac(P0, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY)

By using 1 we prove that P received the first message and generated nonce PNonce and sent it out first in the message msg2.

Receive(P0,msg1) < Send(P0,msg2)

FirstSend(P0, PNonce,msg2) (3)

(3) temporary predicate requires only until the same nonce used by the peer succeeds in completion

InstP0 P[UDT-AO:Server]SMac(P,

ˆP.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY)

 Receive(P,msg1) < Send(P,msg2)

 121

 FirstSend(P, PNonce,msg2) (4)
(4) temporary predicate requires only until the same nonce used by the peer succeeds in completion

 FS1 [UDT-AO : Server]S FirstSend(S, SNonce,msg1) order the receives and sends (5)

 FS2, [UDT-AO : Server]S (Send(S,msg1) < Receive(P,msg1)) order the receives and sends

 (Receive(P,msg1) < Send(P,msg2))

 (Send(P,msg2) < Receive(S,msg2)) (6)

AA4 [UDT-AO : Server]S (Receive(S,msg2) < Send(S,msg3)) (7)

AUTHserver (8)

 peer

Formal Proof of AUTHpeerserver

 AA1 [UDT-AO : Peer]P VerifyMac(P,mac2, PNonce.SNonce. ˆ S.ALGOCRYPTLIST.enc2, SKEY) (9)

SECserver VMAC [UDT-AO : Peer]P X. (ˆX = ˆ P ˆX = ˆS)

pkey,SKey , Mac(X, PNonce.SNonce. ˆ S.ALGOCRYPTLIST.enc2, SKEY) (10)

 2, [UDT-AO : Peer]P . S0 = (ˆ S,)

ALGOCRYPTSEL’, enc1’. (Send(S0, SNonce. ˆ S.ALGOCRYPTLIST) <

 Receive(S0, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’.mac1) <

 Send(S0,PNonce.SNonce.ALGOCRYPTLIST.enc2.mac))

 mac1 = MAC[SKEY](ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’)

 mac = MAC[SKEY](PNonce.SNonce.ALGOCRYPTLIST.ˆS.enc2)

 FirstSend(S0, SNonce, SNonce. ˆ S.ALGOCRYPTLIST) (11)

Inst S0 S [UDT-AO : Peer]P ALGOCRYPTSEL’, enc1’. (Send(S, SNonce. ˆ S.ALGOCRYPTLIST) <

 Receive(S, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’.mac1) <

 Send(S, PNonce.SNonce. ˆ S.ALGOCRYPTLIST.enc2.mac))

 mac1 =MAC[SKEY](ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’)

 mac = MAC[SKEY](PNonce.SNonce. ˆ S.ALGOCRYPTLIST.enc2)

122

 VerifyMac(S,mac1, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’, SKEY)

FirstSend(S, SNonce, SNonce. ˆ S.ALGOCRYPTLIST) (12)

Inst ALGOCRYPTSEL’, enc1’, [UDT-AO : Peer]P X. (ˆX = ˆ P ˆX = ˆS)

VMAC,MAC0 Mac(X, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’,SKEY) (13)

1,AA1, [UDT-AO : Peer]P New(X, PNonce) New(P, PNonce) (14)

AN1, [UDT-AO : Peer]P X = P AN1 generated by PNonce for P thread (15)

 AA1, [UDT-AO : Peer]P Mac(X, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL’.enc1’, SKEY)
 Mac(X, ˆ P.ˆS.PNonce.SNonce.ALGOCRYPTLIST.ALGOCRYPTSEL.enc1,SKEY) (16)

3, [UDT-AO : Peer]P ALGOCRYPTSEL’ = ALGOCRYPTSEL enc1’ = enc1 (17)

[UDT-AO : Peer]P (Send(S,msg1) < Receive(S,msg2) < Send(S,msg3)) (18)

 FS1 [UDT-AO : Peer]P FirstSend(P, PNonce,msg2) order receives and sends (19)

 FS2, [UDT-AO : Peer]P (Send(S,msg1) < Receive(P,msg1)) order receives and sends

(Send(P,msg2) < Receive(S,msg2))

(Receive(S,msg2) < Send(S,msg3)) (20)

 AA4 [UDT-AO : Peer]P (Receive(P,msg1) < Send(P,msg2)) (21)

AUTHpeer (22)

 server

Axioms define general truths applicable to every protocol [54-55]. For instance,

the axiom VMAC encodes the common property of signatures [1,2,54] that if a

thread verifies that a message x is assigned by a principal Y^, it must be Y^

signature key used to generate the signature. Further, if the agent Y^ is honest,

no one else has access to this key, implying that there exists a thread of the agent

Y that did indeed sign the term x, according to [52-55].

5.2.6 UDT-AO Operating Environment

The formal proof outlined above applies to the case where fresh nonces for UDT-

AO are generated every time. When the peer employs the same nonce repeatedly

until it succeeds in completion [117], a different form of reasoning needs to be

utilised to ascertain the intended message ordering. Specifically, the predicate

 123

FirstSend(P, PNonce,msg2) does not necessarily hold anymore [117]. However, it

is possible to still appeal to the fact that a MAC must have been generated and

distributed before it could be received and verified, to be able to sequentially

order messages. Therefore, formalising this requires the new axiom VMAC:

VMAC’ Receive(X,m2) ^ Contains(m2,m’) ^VerifyMac(X,m’,m, k) ^

Mac(X,m, k) Y,m1. Mac(Y,m, k) ^ Contains(m1,m’) ^

(Send(Y,m1) < Receive(X,m2))

The proof above uses axioms previously proved sound in the symbolic model.

5.3 Proof of UDT+DTLS Protocol

In this section, we outline the DTLS with UDT protocol. In UDT+DTLS, we focus

on two principals called the UDT+DTLS client and the UDT+DTLS server. In a

way correlative to TLS, DTLS guarantees mutual authentication and establishes

a shared key between these two principals. The proof of UDT+DTLS, therefore,

lies on the authentication property. The identification of any UDT+DTLS

program invariants also emphasises the security properties of UDT+DTLS as

part of the development of the security architecture.

 55.3.1 UDT-DTLS Description

We outline DTLS protocol in the formal language we introduced in the earlier

sections. DTLS protocol provides end-to-end security; it is selectively deployed on

the Internet in some security and e-commerce systems. We focus on how DTLS

can be used to mutually authenticate the supplicant and the authenticator, and

to derive a shared secret key [1,2,30,52-54] to add security in UDT data

transmissions. We will be proving DTLS in isolation and will be identifying

conditions under which other protocols may operate concurrently without

introducing any vulnerabilities. Identifying such conditions appears valuable,

given the promising deployment of DTLS on UDT. We employ the terms client

and server for DTLS protocol participants, and similarly, we adhere to the proof

of correctness of DTLS based on TLS, when deploying UDT.

124

5.3.2 UDT-DTLS Proof of Correctness

DTLS has many possible modes of operation. Similarly, we limit our attention to

the mode where both the server and the client have certificates, since this mode

satisfies the mutual authentication property. DTLS is developed to construct over

datagram to cater for unreliable packet transmission, retransmission and

reordering. To the greatest extent, DTLS is identical to TLS, however unlike

TLS, DTLS adds explicit state to records and adds explicit sequence numbers to

secure datagrams.

The DTLS utilises a simple retransmission timer to handle packet loss. The

description in 5.3.3 illustrates the basic concept using the first phase of DTLS

handshake. Server programs are elucidated in the following section, where Vy

and Vx exhibits the protocol version and cipher suite, Ky is the server’s public

key, V is the client’s verification key. We employ the match action to check

signatures, verify keyed hashes and generate decryption. Observe that the terms

handShake1 and handShake2 exhibit the concatenation of all the terms sent and

received by a principal up to the point it is used in the program.

5.3.3 Formal Description of UDT+DTLS in the Formal Language

Table 5-5: Formal Description of UDT+DTLS

UDT:DTLS Server = [

DTLS : Server = (Y, Vy)[

receive ˆX. ˆ Y .nx.Vx; new ny;

send ˆ Y . ˆX .ny.Vy;

receive ˆX. ˆ Y .encky.sig.hc200;

sigterm := ˆX . ˆ Y .nx.Vx · ˆ Y . ˆX
.ny.Vy·

encky;

verify sig, sigterm, ˆX;

secret := pkeydec encky, ˆ Y ;

hc20 := ˆX. ˆ Y .nx.Vx · ˆ Y . ˆX
.ny.Vy·

UDT: DTLS Client = [

DTLS : Client = (X, ˆ Y , Vx)[

new nx; send ˆX. ˆ Y .nx.Vx;

receive ˆ Y . ˆX .ny.Vy;

new secret;

encky := pkeyenc secret, ˆ Y ;

sigterm := ˆX . ˆ Y .nx.Vx · ˆ Y . ˆX
.ny.Vy·

encky;

sigvx := sign sigterm, ˆX;

hc2 := hash ˆX. ˆ Y .nx.Vx · ˆ Y .
ˆX.ny.Vy·

 125

encky · sig · “client”;

verifyhash hc200, hc20, secret;

hs := hash ˆX . ˆ Y .nx.Vx · ˆ Y . ˆX
.ny.Vy · ˆX . ˆ Y .

encky · sig · “server”, secret;

send ˆ Y . ˆX .hs;

]Y hY, ˆX , secretiY

encky · sigvx · “client”, secret;

send ˆX . ˆ Y .encky.sigvx.hc2;

receive ˆ Y . ˆX .hs00;

hs0 := ˆX . ˆ Y .nx.Vx · ˆ Y . ˆX
.ny.Vy · ˆX. ˆ Y .

encky · sigvx · “server”;

verifyhash hs00, hs0, secret;

]XhX, ˆ Y , secretiX

5.3.4 UDT-DTLS Security Properties

The properties that DTLS (based on TLS) ought to satisfy include:

1. Like TLS, the DTLS principals accede on each other’s identity [128]

protocol completion status, the values of the protocol version,

cryptographic suite, and the secret that the client sends to the server. For

server ˆY communicating with client ˆX, this property is formulated in

Definition 3.

2. The secret that the client formulates should not be known to any principal

other than the client and the server [1,2,22-33,54,128]. For server ˆY and

client ˆX , this property is generated in Definition 4.

126

Definition 3. (DTLS Authentication, similar to TLS [60]))

DTLS is said to formulate session authentication for the server role if Dtls,auth holds,

where

Table 5-6: Honest Rule

Dts,auth ::= Honest(ˆX) ^ Honest(ˆ Y) X.ActionsInOrder(

Send(X, ˆX , ˆY ,m1),

Receive(Y, ˆX, ˆY ,m1),

Send(Y, ˆ Y , ˆX ,m2),

Receive(X, ˆ Y , ˆX ,m2),

Send(X, ˆX , ˆY ,m3),

Receive(Y, ˆX, ˆY ,m3),

Send(Y, ˆ Y , ˆX ,m4))

and m1, m2, m3, m4 represent the corresponding DTLS messages.

Definition 4 (DTLS Key Secrecy). DTLS is said to provide secrecy if Dtls,sec holds,

where

 Dtls,sec ::= Honest(ˆX) ^ Honest(ˆ Y)

 Has(ˆX , secret) ^

 Has(ˆ Y , secret) ^

(Has(ˆ Z, secret) ˆ Z = ˆX v ˆ Z = ˆ Y)

The proof system is used to prove guarantees for both the client and the server.

Due to space constraints, the list only includes the guarantee for the

authenticator in Theorem 3. The client guarantee is similar. The secrecy of the

exchanged key material in TLS is established by combining local reasoning based

on the client’s actions with global reasoning about actions of honest agents.

Intuitively, a client that generates the secret only sends it out either encrypted

with an honest party’s public key or uses it as a key for a keyed hash (this is

captured by the predicate NonceSource). Furthermore, no honest user will ever

decrypt the secret and send it in the clear. Specifically, an honest party can send

 127

the secret in the clear only if it receives it in the clear first. Secrecy follows

directly from these two facts.

Theorem 3 (DTLS Server Guarantee).

(1) On execution of the server role, key secrecy and session authentication are

guaranteed if the formulas in (2) hold.

Formally,

Dtls,1 ^ Dtls,,2 |-

DTLS:Server]X Dtls,auth ^ Dtls,,sec

(2) The formulas in below are invariants of DTLS.

Formally, DTLS Invariants:

Table 5-7: DTLS Invariants

Dtls,1 := m.Send(X,m) ^ (Contains(m,HASHsecret(handShake1, “server”))

Contains(m,HASHsecret(handShake2, “client”)) Contains(m, SIGV
x(handShake1)))

Dtls,2 := Honest(ˆ Y) ^ Send(Y,m) ^ ContainsOut(m, secret,ENCKy(secret))

(Decrypts(Y,m) ^ Contains(m , secret))v (Receives(Y,m) < FirstSend(Y,
secret) ^ ContainsOut(m , secret,ENCKy(secret)))

5.3.5 UDT-DTLS Operating Environment

We now characterise the class of protocols that safely constitutes with DTLS. As

in the preceding section, we relate DTLS invariants to deployment

considerations.

DTLS,1 states that messages of a certain format should not be sent out by any

protocol that executes in the same environment as TLS. One set of terms exhibit

keyed hashes of the handshake, where the key is the shared secret established by

a DTLS session; [22-33,54,60] another set refers to signatures on the handshake

messages. A client running a protocol that signs messages indiscriminately could

128

instigate the loss of the authentication property. Such an attack would only be

possible if the client certificate used by DTLS was shared with other protocols

and was infringed by them.

DTLS rules out an undesirable sequence of actions that may allow an intruder to

learn the shared secret. Intuitively, if an honest principal is tricked into

decrypting a term containing the secret using its private key, after which it sends

out the contents of the encryption [60], the secrecy property of DTLS is lost.

Clearly, if principals utilise an exclusive public/private key pair for DTLS, such

an attack is not possible. However, since another protocol may employ the same

public/private key pair as DTLS, it is important to check that these formulas are

invariants of any other protocol.

5.4 Proof of UDT+GSS-API (Kerberos) Protocol

The third mechanism proposed is UDT+GSS-API. We illustrate the proof system

in this section using GSS-API and we focus on Kerberos V5 [39-40,45,110],

proven to any protocols, which GSS-API uses. In this section we illustrate how

Kerberos is formalised to achieve proofs of secrecy and authentication.

5.4.1 UDT+GSS-API (Kerberos) Description

The formulation is based on the A level formalisation of Kerberos V5 in [110].

Kerberos provides mutual authentication and establishes keys between Clients

and application Servers, employing a sequence of two message interactions with

trusted parties called the Kerberos Authentication Server (KAS), and the Ticket

Granting Server (TGS) [35,37,43].

5.4.2 Proof of UDT+GSS-API through Kerberos

Mechanisms are denoted in a process calculus by defining a set of roles [54], such

as ‘Client’, or ‘Server.’ Each role is provided by a sequence of actions such as

sending or receiving a message, generating a new nonce, or decrypting or

encrypting a message [110]. In a run of a mechanism, a principal may execute

one or more instances of each role, each execution constituting a thread identified

by a pair (^X;), where ^X is a principal and is a unique session identifier.

 129

Kerberos has four roles [110]: Client, KAS, TGS and Server. The pre-shared

long-term keys between the client and KAS, the KAS and TGS, and the TGS and

the application server, will be written as k X;Y type where X and Y are the

principals sharing the key. The type appearing in the superscript indicates the

relationship between X and Y: c k indicates that X is acting as a Client and Y is

acting as a KAS, t k for TGS and KAS and s t for application server and TGS.

In the first stage, the Client (C) generates a nonce (represented by new n1) and

sends it to the KAS (K) along with the identities of the TGS (T) and itself. The

KAS generates a new nonce (AKey - Authentication Key) [115] to be utilised as a

session key between the Client and the TGS. It then sends this key along with

some other fields to the client encrypted under two different keys- one it shares

with the Client (kc kC,K) and one it shares with the TGS(kt kT,K). The encryption

with kt kT,K is called the Ticket Granting Ticket (tgt). The Client extracts AKey by

decrypting the component encrypted with kc kC,K and recovering its parts using

the match action which deconstructs textkc and associates the parts of this

plaintext with AKey, 1, and T^. The ellipses (…) indicates further Client steps

for interacting with KAS, TGS.

In the second stage, the Client gets a new session key (SKey - Service Key) and a

service ticket (st) to converse with the application server S which takes place in

the third stage. The control flow of Kerberos exhibits a staged architecture where

once one stage has been completed successfully, the subsequent stages can be

performed multiple times, or aborted and started over for handling errors.

130

5.4.3 Formal Description of UDT + GSS-API in the Formal Language

Table 5-8: Formal Description of UDT + GSS-API

Client = (C; ^K ; ^ T; ^ S; t) [

new n1;

send ^ C: ^ T:n1;

receive ^ C:tgt:enckc;

textkc := symdec enckc; kc!k

C;K ;

match textkc as AKey:n1: ^ T;

_ _ _ stage boundary _ _ _

new n2;

encct := symenc ^ C;AKey;

send tgt:encct: ^ C: ^ S; n2;

receive ^ C:st:enctc;

texttc := symdec enctc;AKey;

match texttc as SKey:n2: ^ S;

_ _ _ stage boundary _ _ _

enccs := symenc ^ C:t; SKey;

send st:enccs;

receive encsc;

textsc := symdec encsc; SKey;

match textsc as t;

]C

KAS = (K) [

receive ^ C: ^ T:n1;

new AKey;

tgt := symenc AKey: ^ C; kt!k

T;K ;

enckc := symenc AKey:n1: ^ T; kc!k

C;K ;

send ^ C:tgt:enckc;

]K

TGS = (T; ^K) [

receive tgt:encct: ^ C: ^ S:n2;

texttgt := symdec tgt; kt!k

T;K ;

match texttgt as AKey: ^ C;

textct := symdec encct;AKey;

match textct as ^ C;

new SKey;

st := symenc SKey: ^ C; ks!t

S;T ;

enctc := symenc SKey:n2: ^ S;AKey;

send ^ C:st:enctc;

]T

Server = (S; ^ T) [

receive st:enccs;

textst := symdec st; ks!t

S;T ;

 131

match textst as SKey: ^ C;

textcs := symdec enccs; SKey;

match textcs as ^ C:t;

encsc := symenc t; SKey;

send encsc;

]S

5.4.4 GSS-API Kerberos Properties and Operating Environment

The security objectives of proving Kerberos are of two types: authentication and

secrecy. The authentication objectives take the form that a message of a certain

format was indeed sent by some thread of the expected principal. The secrecy

objectives achieve the form that a putative secret is a good key for certain

principals. For example, AUTHclientkas outlines that when C completes executing

the Client role, some thread of K^ indeed sent the expected message; SECclientakey

outlines that the authorisation key is good after execution of the Client role by C;

the other security properties are related.

The proof of Kerberos Security properties clearly underscores and demonstrates

an interleaving of authentication and secrecy properties, reflecting the institution

behind the proposed mechanism.

5.5 Concluding Remarks

In this chapter, 3 mechanisms were selected and analysed: the UDT-AO,

UDT+DTLS and UDT+GSS-API, Kerberos [22-33,39-40,110] authentication

protocols.

We found a few anomalies that are widely found in authentication protocols

[72,73]. Similarly, we raised the issues of a repairable DoS attack, an anomaly in

the derivation of the master key MKey, and a potential algocrypt or in some cases

simple cipher suite downgrading attack. While the third anomaly is unavoidable,

proper awareness of an attacker’s ability to weaken algocryptList in Message 1

and provision of appropriate measures to address it should prevent problems

from arising. We found that by flooding the network with fake Message 1’s, an

132

attacker can force a peer to re-compute the MAC key SKey, causing the peer to be

unable to correctly process Message 3 from a legitimate server. This attack is

especially problematic because UDT-AO [22-33] is designed to work on devices

such as routers with easily exhaustible limited memory. To minimise the chance

of a DoS attack, we propose a fix that allows the peer to maintain state per

connection and session, instead of state per message [43,142]. We also identified

an anomaly in the derivation of the master key MKey, similar to the findings of

[48-50]. Specifically, MKey was derived using a KDF; most of the key derivation

is assigned with initial constant key value, though this does not provide an

obvious way for an attacker to reliably learn session keys [1,2,22-33,44], but it is

better to use a more standard implementation, such as key reset and variable

assignment of initial KDF [110].

In case of DTLS, we identified the secrecy and authentication properties of this

mechanism viable with UDT through the use of sequence numbers. Properties of

secrecy, however, rely on how data are transmitted based on a presumed secrecy

of long-tem shared symmetric keys [1,2,22-33,52,84].

In Kerberos, the secrecy of encryption keys [18,39-40,45,110,121] allows the

establishment of authentication, which is achieved by virtue of ciphertext

integrity offered by the symmetric encryption scheme. Similarly, it can be

understood that a ciphertext could have been produced only by one of the

possessors of the corresponding key.

The execution of Client role within UDT environment by a principal is

guaranteed, because there is an asymptotically overwhelming probability and

that the intended ticket sent the expected response, assuming that the client is

trustworthy before the data are transmitted through UDT.

The theoretic and discussed proofs of secrecy and authentication of UDT-AO,

UDT+DTLS, and UDT+GSS-API, Kerberos [22-33] demonstrate they are useful

mechanisms for UDT, provided that appropriate techniques are supplemented

with extensive practical validations in UDT implementations.

 133

Chapter 6

High Speed Data Transfer Security
Architecture

The primary objective of the architecture includes the management of messages through

the proposed security mechanisms and cryptographic keys, the security of data

communications, and the integration of data protection enhancing technologies. Our

approach is based on the results of our work which formulated on the enhancement of

existing schemes to create a novel approach to secure UDT. They rely upon well-discussed

schemes that can be upgraded to provide improved security and primary protection in

future extensive UDT deployments.

Essentially, the idea is to use a common baseline design that, on one hand, provides a

sufficient level of protection of data and communication, but which, on the other hand, is

deemed practical and deployable to UDT and to other similar protocols. The design will rely

on well-established and understood cryptographic primitives, which are fully scrutinised,

thus sufficiently trusted and implementable in various environments.

6.1 Framework Objectives

The goals our architecture seek to achieve include: using a cryptographic key management

for messages, privacy and data integrity, and secure communication. The architecture

focuses on the upper layers, from IP through to the application layers of the stack. In

134

addition, our architecture will also seek to address the basic fundamental design of UDT

and to introduce a security mechanism that is not available at the packet level.

The design is partially drawn from the architecture of TCP and UDP. We introduce a

proprietary design intended for UDT basing on the foundation laid by Gu [82]. The design is

novel and applicable to the future design of UDP-reliant protocols.

6.1.1 Milestone

We present a practical security architecture for UDT that is also applicable to other high-

speed data transfer protocols. We also describe scalable mechanisms to achieve the desired

protection. To develop this architecture, extensive reviews and validations were conducted,

as well as implementations of existing mechanisms on UDT. The results were presented in

the preceding chapters.

The architecture is useful in several ways. It is presented with supplemental information

on the schemes, which can provide a basis for basic, if not comprehensive, security of data

flow — specifically in the higher-level communication layers.

6.1.2 Summary of Work

The importance of studying UDT is highlighted owing to two reasons: firstly, it has

potential commercial promise; secondly, it is one of the Fastest Data Transfer protocol

available but has no security to protect data transfer.

We introduce an approach securing UDT-implementations in various layers [22-33].

However, securing UDT in terms of both application and other layers needs to be further

explored in future UDT deployments in various applications. It is important to note that

there are applications, transport layer-based authentications and end-to-end security

options for UDT.

 135

In this chapter, we discuss the results of our work by presenting an experimentally

validated framework to secure UDT. There are five important areas which the framework

highlights:

Security at the application and session layers via UDT extensions require

client and servers, and significant changes to applications to accommodate

security features;

Security on the layers 2-3. The encryption is performed, and abstracted from

the UDT application, eg., via gateway-to-gateway, Virtual Private Networks

(VPNs), when security on the application layer becomes too complex to

develop;

Other mechanisms that are available - such as IPSec- can protect data

traffic. However, the development of specific mechanisms for UDT

minimises reliance on mechanisms that can affect performance and add

overhead and complexity in UDT implementations;

Introduction of viable mechanisms UDT-AO, UDT+DTLS, and UDT+GSS-

API or UDT-Kerberos. These mechanisms achieved proof of correctness and

are therefore suitable for UDT;

The inclusion of all existing mechanisms for the data flow within the

architecture provides an extensive analysis of other mechanisms that can be

implemented with UDT.

136

6.2 Architecture

Based on the schemes reviewed, the following layer-to-layer architecture is presented for

UDT.

Figure 6-1. Layer-to-Layer Architecture. In this architecture, the UDT layer provides transport
functionalities to applications. The security schemes that can be implemented on this layer are DTLS
and SASL for the upper layer. The layer above using UDT Socket can be implemented with GSS-API.
UDT, however, can implement AO at the transport layer. The remaining lower layer can be protected
using IPSec (securing end-to-end), HIP through the Application layer. CGA is specifically implemented
on the IP layer provided HIP is not binding to the UDT socket.

 137

Figure 6-2: Proposed UDT Security Architecture

From Figure 6-1, the detailed data flows with the proposed mechanisms are presented in

Figure 6-2. With the introduction of IPSec, GSS-API, SA, SASL (a standard mechanism

required to manage secret encryption and authorisation keys), a generic key management

API is proposed, which can be used for IPSec and other existing security services. Similar to

using sockets, this specific API creates a new protocol family — the PF_Key domain. This

must be constant and must be used with key management sockets, according to RFC 2367.

It is important to note that IPsec provides services to packets based on the Security

Association (SA) [20,22-33], which is stored for use in the Security Association Database

(SADB) [21-33]. This can be used for other routing protocols.

138

Key operations are supported on key management sockets, such as:

1. UDT can request a key from a key management daemon. The process /application

that uses UDT can send a message to the kernel with open key management sockets

by writing to a key management socket.

2. A process can read a message from the kernel (that UDT operates). The kernel uses

this facility to request that a key management daemon install an SA for a new UDT

connection.

The security architecture has been introduced following an extensive review, which

included a design for a security-specific modular structure for the UDT protocol, which is

also practical for other data transfer protocols.

6.3 Synopsis

We have presented our methods by using existing security mechanisms and developed one

for UDT with the specifications of TCP, UDP, and Sockets API. Our design is the result of

extensive experiments and implementations, and – using existing high speed appliances to

support our schemes – has practical application.

The implementation of this architecture is not limited to UDT. It is designed to be

adaptable and to work with other fast data transfer protocols.

Special consideration on different layers of the stacks and the introduction of either

proprietary or commercially designed types to meet stringent security requirements can

achieve enhanced security.

 139

6.4 Symbolic Analysis of Proposed UDT Security Architecture

In this section, we introduce an approach using rewrite based systems and automata in

order to specify and analyse the selected security mechanisms and data flow. We outline

and employ this approach to verify more effectively our proposed architecture.

This approach is closely replicating dataflow to allow a real representation of the

implementation of selected mechanisms integrated into the architecture. We consider this

approach effective in corresponding with the properties of the rewrite systems; the

specifications of the architecture to utilise theoretical but proven approach to perform the

analysis.

There are not many verification tools available and specifically tailored to analyse our

proposed architecture and its underlying components. We state abstract representation of

the components that compose the architecture and conduct our analysis, through extensive

analyses. These analyses will examine the relationship between components within the

architecture. These will also examine the possibility of issues (i.e., design anomalies,

adversarial attacks). We employ these analyses as a way to avoid or mitigate successful

attacks.

140

The use of automata to achieve decidability in rewrite systems will highlight an important

class of reduction automata which is closed under union and intersection. With each

reduction automaton we can associate a complete reduction automaton that accepts the

same language. This construction preserves determinism. The class of complete

deterministic reduction automata is closed under complement. These important properties

assist us in determining the data flow confluence of the security mechanisms analysed

through the rewrite systems.

The possible inputs and data flow on which these mechanisms can work are determined

through the use of the above approaches. They can assist us analyse the strengths and

weaknesses of the proposed mechanisms. We then arrive at what the results which lead to

conclude to be the most feasible mechanisms possible. When we do, we shall expect to

determine tasks that even it cannot perform. This will be our ultimate result, that no

matter what mechanisms and architecture we build, there will always be questions that are

simple to state that our approaches can either accept or reject. Along the way, we attempt

to evaluate some of the issues, such as optimality through practical simulations and

experimentations in a real environment.

As we conduct important analyses: structural, semantic, and query analyses. Structural

and semantic analyses examine the relationships that the mechanisms have with other

mechanisms, and examine the decision processes within the architecture. Query analysis on

the other hand provides analysis such where does the data flow across the UDT

architecture come from and from which a security mechanism it passes through. In this

work, we concentrate on tracing the data flow to ensure that anomalies can be detected.

 141

6.5 Approach

A brief description of the basic notions related to the terms ‘algebra’ (i.e., terms,

substitutions, positions), ‘rewriting systems’ (i.e., reduction relation, confluence,

termination) [49, 64] and ‘tree automata’ is discussed. In the succeeding sections of this

chapter, we discuss and outline some basic notions that we used and. We also introduce the

notion of constrained rewrite systems. The main interests in the sections are based on

formal languages and rewrite based systems.

6.5.1 Term Algebra

Many sorted signatures of the form (F, S) consisting of a set of sorts S and a set of function

symbols F have been considered. Symbols of F are denoted by bold characters ff, gg, and so

on, and their profiles are denoted as follows ff : s1 x…x sn s where s1,…,s are sorts of S

and n is the arity of ff. The set of terms of sort s built [49,64,71] out of symbols from F and of

sorted variables from a set is denoted by and the set of ground terms of sort s is

denoted by . For any denotes the variables occurring in t. If any

variable of t occurs only once in t, then t is said to linear. A position within t is a sequence

 of integers describing the path from the root of t (seen as a finite labelled tree) to the root

of the subterm at that position, denoted by . We use for the empty sequence .| | is

the length of the position. Pos(t) denotes the set of position of t. t() is the symbol of t at

position and tt[s]w the term t with the subterm at position replaced by s. A

substitution is a mapping from to which is the identity except over a finite set of

variables (its domain) and which is extended to an endomorphism of . A substitution is

said ground if all the variables of its domain are mapped to ground terms. A term t matches

a term t’ iff (t’)=t for some substitution . Two terms t and t’ are unifiable iff (t’) =

(t) from some substitution [42, 49-50, 63-64, 78, 104,141].

142

6.5.2 Tree Automata

A tree automaton is a triple where Q is a finite set of symbols called states

disjoint from F, is the set of final states and is a finite set of transitions of the

form f (q1,…,qn) where q1,…,qn, q and n is the arity of f . is extended to * as

follows [49-50,64,104,141]: if and f (q1,…,qn) q, then f (t1,…,tn) q. The

language recognised by is . A set (or a

language) of terms recognised by a tree automaton is said regular. A relation R is regular if

there exists an automaton recognising where for any t = (t1,…,tn) and

with if and the special

symbol otherwise. Boolean operations, Cartesian product, projection and cylindrification

preserve regularity. It can be stated that a set or a relation is effectively regular iff it is

regular and can compute an automaton which recognises it.

6.5.3 Rewrite Systems

A rewrite rule is a pair of terms l r. The terms l and r are respectively called the left-

hand side and right-hand side of the rule. A rewrite system [139,142] R is a finite set of

rewrite rules. Any rewrite system R induces binary relation over terms denoted by R as

follows: for any terms t, t’, t R t’ if there exist a rule l r of R, and a

substitution such that and . A rewrite rule is linear iff its left-

hand side and right-hand side are linear. A rewrite system is linear if all its rules are

linear. A Growing Rewrite System (GRS) [42, 50, 97, 104, 141] is a linear rewrite system

such that for every rule l r, for some positions then .

 143

6.5.4 Extension to Rewrite Systems

Without restriction, we can consider that any GRS (Growing Rewrite Systems) is a set of

rules of one of the following forms (extension of Jacquemard’s [49, 95]):

Knowing that any unconstrained variable x can be seen as a variable constrained by x A

where A is the automaton recognising all ground terms. Thus, we consider that any

variable is constrained.

Let be L a regular language recognised by AL and R a CGRS. The automaton recognising

 is built as follows:

where the disjoint sum of two automata over the same signature is the automaton

whose set of states, set of final states and set of rules are the union of corresponding sets of

the two automata, provided that they are all disjoint [95]. Then, we transform

into by applying the following rules:

144

with the conditions:

1. for all 1 i n, qi’ is a final state of Ai

2. for all 1 j m, there exists a substitution such that

 and for each xi occurring in g(r1,…,rm), we have _

with the conditions:
1. x = xi for some 1 i n
2. for all 1 i n, if xi = x then qi’ = q, otherwise qi’ is a final state of Ai.

The desired automaton is where QL is the set of final states of AL.

An ordered rewrite system is a rewrite system in which rules are ordered. For an ordered

rewrite system R, R is defined as follows: for any terms t, t’, t R t’ if there exists a rule l

 r of R, and a substitution such that and and such

that there is no prior rule l’ r’ such that for some and [64, 95, 104].

A constrained rewrite system (CRS) is a rewrite system [42, 50] that defines a constrained

such that for every rule l r is associated to a set of membership constraints x A where

x is in Var(l) and A is a regular tree language. If l r is associated

to , we write l r || x1 A1,…,xn An. The binary relation R

induced by a constrained rewrite system R is de_ned as follows: for any terms t, t’, t R t’

iff_there exists a rule l r || x1 A1,…,xn An of R, and a substitution

such that and and such that for every i.

 145

Given a rewrite system R, R* denotes the reflexive transitive closure of the relation

induced by R. For any term v, R-1 (v) denotes the set . For any set of ground

terms denotes the set v}. A rewrite system R is confluent

iff for any terms u,w, v, if u R*v and u R* w, then there exists t such that v R* t and

w R* t. u is irreducible w.r.t R iff there is no v such that u R v. If u R v and v is

irreducible w.r.t R, then v is a normal form of u.

For any linear (constrained or not) rewrite system R and rule r of R, it is denoted by rec(r)

the regular set of ground terms that are reducible by r. If R is an ordered rewrite systems,

it is denoted by rec(r/R) the set of terms that are reducible by r and by no rule prior to r in

R.

6.6 Formalisation

In this section, we formalise the proposed architecture based on specified rewrite rules. We

exhibit the flow as rewrite rules. These specifications are available in the flow of data

through the proposed security mechanisms.

Formalisation achieves validation without system overload. The theoretical proofs of the

mechanisms operating within the proposed architecture are adequate in this work to

substantiate the correct data flow within compositional layers of the mechanisms. These

either functional in isolation or in a group with other mechanisms defined in the design.

Example 1. We base our example on Figure 6-3. Data flow from either left to right, or

up to down, and vice versa. Mechanisms put in place monitors the flow and accept and exit

flows. Reject flows only occur if an anomaly is detected in either in the flow-source or flow-

destinations within the data flow of UDT.

146

A
PI

U
D

P C
hannel

C
ongestion C

ontrol

ab(6)

U
pper Layer M

echanism
s

Figure 6-3: Data Flow through mechanisms (m) with in architecture.

6.6.1 Data Flow

In our approach, data flow is demonstrated as an algebraic term. The selected symbolic

representation of data flow is based on the following signatures:

Note: (from(ab,x),dest(ab,x)) represents a dataflow (from(ab(1),x),dest(ab(1),x’)) to the set of data whose flow-
source comes from a security mechanism ab# and flow-destination exits

Left, right: data data ab(#)data flow from left to right

Right, left: data data ab(#)data flow from right to left

Up, down : data data ab(#)data flow from up to down (as above Figure 6-3)

Down, up : data data ab(#)data flow from down to up (as above Figure 6-3)

: data value of # such that a(1)…a(7)

From : data x data flow-source

Dest : data x data flow-destination

Dataflow : flow-source x flow-destination Dataflow (as above Figure 6-3)

a,b : mechanism mechanism (as above Figure 6-3)

We label the mechanisms as ab(#), such that term t=ab(#) and where # is a value.

mechanisms : ab(1) CGA, ab(2) GSS-API, ab(3) SASL, ab(4) UDT+DTLS, ab(5) UDT-

AO,ab(6) SA, ab(7) HIP

 147

There are various possibilities to describe how the data flow passes through the

mechanisms. The flow, however, only relies on the given flow source. To distinguish which

mechanisms are used, we represent these as words over {a,b} and a value # (1,2..n). We

restrict our representation of data as dataflow, flow-source, flow-destination, and # to

specific mechanisms we proposed.

For example the term t=ab(#). # identifies as a mechanism; example ab(1) is assigned to a

specific mechanism CGA. This representation allows us to build a tree automata that

recognises data flow and mechanisms to analyse the architecture as a state.

Data are terms of sort Dataflow for example, the term dataflow (from(ab,x),dest(ab,x))
represents a dataflow (from(ab(1),x),dest(ab(1),x’)) to the set of data whose flow-source

comes from a security mechanism ab# and flow-destination exits to the same mechanism is

a given flow.

In the preceding section, we define how the flow can be secured across ab(#) mechanisms

(using the symbols flow-source and flow-destination), thus allowing us to encode and

assume a symbolic attack by appropriate tree automata, which we use for the analysis.

6.6.2 Architecture Flow

Furthermore, to extend the data flow in the proposed architecture, the following symbols

are added.

Enter or accept, Exit or reject : Decision

From a rewriting point of view, the flow rewrites a dataflow into enter, exit or reject.

Definition 1 (Mechanism). A mechanism is composed of ordered rewrite systems Prem,
Processm, and Exitm such that:

148

rules of Prem are of the form of p d where p is a linear term of sort Dataflow and d

a (ground) term of sort Decision;

rules of Prem and Exitm are, respectively, of the form:

From(mechanism, x) From(mechanism’, x’)

Dest(mechanism, x) Dest(mechanism’, x’)

Where mechanism, x are linear terms and mechanism’, x’ are ground terms.

Example 2. The mechanism described in Example 1 can be specified as follows:

{

Dataflow (
From (ab[x],data)

)

accept

Dest (ab[y],z)

Dataflow (x,y) exit

Definition 2 (Semantics). For any mechanism [1…n], its semantics is denoted by [m] and

defined as follows:

[m] = [m]accept U [m]exit OR [m] reject

With R:{x x} is the rewrite system R in which the rule x x has been added as the last

rule.

[m] accept = {(t,u) Tdataflow x Tdataflow | v Tdataflow, t Prem;{ x x } v

Processm enter v Exitm;{ x x } u}

 149

[m] exit ={(t, exit) Tdataflow x TDecision | v Tdataflow, t Prem;{ x x }u

Processm exit}

From an abstract point of view, a mechanism can be distinguished as a partial or total

function which takes an input (data / dataflow) and returns either exit/reject.

6.7 Analysis of the Architecture

It can be observed that this rewrite specification not only allows automatic checking of

properties of semantics of a mechanism, as part of the overall architecture; it also permits

structural and query analysis on the architecture itself.

6.7.1 Semantics Analysis

A mechanism can be observed as a decision process that allows dataflow with data that can

be either accepted or rejected. Therefore, the following properties require verification:

consistency, which indicates that at most, one decision is taken for a given data flow;
termination, which ensures that a mechanism computes a decision in a finite time; and
completeness, which signifies that for any dataflow, the mechanism returns a decision.

By construction, any mechanism that denotes a terminating and consistent decision process

is a function. Completeness can be therefore defined as follows:

Definition 3 (Completeness). It states that a mechanism (m) as part of the whole

architecture (a), is a complete iff [m], which is a total function.

The particular shape of the rules defining a mechanism allows it to represent the semantics

of a mechanism as a regular relation and to verify its completeness.

150

Proposition 1. Completeness is decidable.

Proof. The proof relies on the regularity of the relations involved in the definition of the

semantics of a mechanism as part of the architecture. Since the left-hand sides of all the

rewrite rules composing a particular mechanism are linear and share no variable with their

right-hand sides, we can show that Prem;{ and Exitm;{are regular trees relations. Since the

identity is a regular relation, it follows that Prem;{ x x } and Exitm;{ x x } are also regular. By

composition and restriction, we obtain that [m] accept and [m] exit/reject are regular tree

(functional) relations. Subsequently, [m] is a regular tree (functional) relation. The

completeness can be tested by checking that the first projection of [m] covers the (regular)

set of all possible incoming data transported by the dataflow.

In case of a complete architecture - yet selecting only the applicable mechanisms in either

in isolation or in compositional groups, where these are used at the same time, but

independently operate on a given speed, it is important to determine if the chosen

mechanism is applicably stronger than the others. This can be accomplished, through

verification, based on specifications of the mechanisms.

Definition 4 (Order). A partial order can be defined over complete mechanism within a

complete architecture as follows: for any m and m’,m m’ (m’ is more permissive than m) iff

[m]accept [m’] accept. We write m m’ iff m m’ and m’ m.

A mechanism m’ is thus permissive than a mechanism mm if it accepts all data flow that mm

accepts. Note that m m’ iff [m]=[m’].

 151

For the same reasons, it can decided whether a mechanism is more or less permissive than

the other within the architecture.

Proposition 2. The order relation is decidable.

Proof. As it has already been shown, for any mechanism [m], [m]accept/enter and [m]exit/reject and

[m] are regular relation. Consequently, the inclusion [m]accept/enter [m’]accept/enter is decidable.

Note that two mechanisms may have the same semantics even if their rules are different.

This is particularly interesting since it allows to simplify and optimise the flows of a

mechanism and check if the succeeding mechanism has the same semantics as the

preceding one.

6.7.2 Structural Analysis

Structural analysis refers to the detection of so-called anomalies [64] in the

implementations of a particular mechanism. These anomalies are looked at as properties

expressed as relationships between the rules of mechanisms (rm) within the proposed

architecture. Examples of anomalies are superseding (an rm leads to decisions

contradictory to decisions of prior rules of prior mechanisms), redundancy (an rm can be

removed without any impact to other mechanisms and data flow), and generalisation (an

rm matches a superset of the set of data matched by a prior rm with a different decision). It

should be mentioned that, while several approaches have been developed for the detection

of the above anomalies, these approaches are often intentionally introduced in order to

obtain more compact or more effective rm sets. Detecting anomalies is still interesting since

it can outline some mitigation. Only discussed here is the approach for detecting

superseding; the other anomalies can be treated in a similar way. Recall the definition of

the superseding anomaly in this context: it can be said that a mechanism superseding iff it
contains at least one rule, such that all dataflow it allows and accepts are rejected by a

prior rm. In such a case, the concerned rm is said to be superseded.

152

The detection of the superseded rms, as well as of the other anomalies, is based on the

regularity of the sets of terms associated to a given rm. More precisely, each rule rm =r is

associated to several sets: rec(r), denoting the set of data matching r; rec(r=Processm),

denoting the set of data matching r that match no S prior rule of Processm (i.e. rec(r)\ r’<r
rec(r’)) and rec(r=Processm [d]) denoting the set of data matching r that match no other rule

of Processm associated to the decision d. Since the left-hand sides of the processing rules are

linear terms, all the sets rec(r) are regular; the other sets are also regular since they can be

built starting from rec(r) and using operations that preserve regularity. Anomalies can then

be detected using inclusion or emptiness tests. For example, to detect if a rule r is

superseded, it suffices to check the emptiness of rec(r=Processm[accept/enter]) if the right-

hand side of r is dropped while the emptiness of rec(r= Processm[exit/reject]) is not dropped.

It is well-known that operations over tree automata are highly complex. In this case, the

complexity of the needed operations strongly depends on the representation of data and, in

particular, on the representation of dataflow. The choice of dataflow as words over {a,b} or

{0,1} (or equivalently as terms built from the monadic symbols 0 and 1, a and b, and the

constant #) is indeed made in order to obtain efficient implementations of the corresponding

automata operations.

To simplify, consider the word automata; the correspondence with tree automata is

straightforward. Due to the representation of ab(i…n) ranges, we are confronted with n-

prefix (or simply prefix) languages, i.e. regular languages of the form

 or (a,b}*. A good property of the manipulated ranges is that

corresponding minimal and deterministic automata have no loop except at their unique

final state, which loops over itself for any word.

Moreover, as discussed, the sets of dataflow of a given mechanism are 1-prefix. It follows

that rec(r), rec(r=Processm),…, are prefix languages. Consequently, anomalies can be

efficiently detected using our approach.

 153

Query analysis is another kind of analysis attempted. This kind of analysis has assisted us

in understanding the behaviour of a mechanism within the architecture through deriving

outputs based on pre-determined and pre-defined queries, such as “which mechanism will

receive the data flowing from left to the right side of the architecture?” It was introduced

earlier the semantics of the mechanisms and the architecture as regular relation.

6.8 Concluding Remarks

In verifying our proposed architecture, we use symbolic analysis of each mechanism within

the edge of UDT data flow. Then we analyse the overall architecture with the mechanism’s

data flow.

By using this approach, we show the viability of these mechanisms for this architecture. We

describe the architecture using structural and query analyses, and automata, aside from

using rewrite systems, which interpret relevant properties and semantics through classical

theoretical and practical way. We show that these approaches and analyses highlight any

foreseen anomalies that require decision processes, thereby assisting in solving and

mitigating risks. Mitigations may include additional security mechanisms, proprietary

layer 7 and layer 3-4 devices and so on. We use formalisation to understand the flow of data

from and within the architecture.

The approach we use allows us to address implementation scenarios from theoretical and

practical point of views. Using automata operations and performing basic practical

applications and implementations, as described in the preceding chapters, allow us to

understand and address any issues in the mechanisms underlying the security architecture.

We find that rewrite systems, combined with structural and query analyses, effectively

highlight any vulnerabilities and anomalies in the composition of a viable UDT security

architecture.

 155

 155

Chapter 7

Conclusion and Scope for Future
Work

The final chapter of this dissertation summarises and assesses the original

contributions of this work. This final section describes the continuing security

evaluation of UDT and continuing improvement of the proposed architecture, and

presents the scope for future work.

7.1 Summary

In Chapter 1, we presented concepts and hypotheses of this work. We introduced

the specific network protocol of interest and discussed its security limitations. In

Chapter 2, we outlined the existing literature written and published about the

network protocol. In Chapter 3, we proposed security mechanisms, and modified

important variables in the UDT structure itself by adjusting the values of MSS,

header, and size, in various scenarios to facilitate performance evaluation within

both secure and unsecure environments. In Chapter 4, we presented and

described the design and implementation of a unique visualisation tool—Project

UDT—which constitutes a multi-faceted tool to assist in UDT analysis. Then we

presented our experiments that aimed to derive practical verifications of our

mechanisms.

156

By using readily available security devices to build an infrastructure for

conducting experiments, we examined activity at the given protocol level with an

accurate knowledge of events at other levels.

In Chapter 5, we used information-theoretic and proof of correctness and

verifications of selected mechanisms to further substantiate the results of our

simulations and experiments.

In Chapter 6, we presented the architecture with these mechanisms and

analysed the architecture’s data flow, traceability, applicability, and security by

using rewrite systems and automata.

7.2 Assessment

This section of the dissertation measures our work described in the previous

chapters towards the thesis and the hypotheses presented in Chapter 1.

The thesis of this dissertation may be summarised as: outcome of the observation

of UDT data flow and the determination of the absence of its security functions

which relied upon existing mechanisms of other protocols and in which, largely

for practical reasons, are of limited capability. No research relying on these

mechanisms may in consequence be restricted in its scope or accuracy, or even

determined by the available mechanisms with which they can be adopted. New

mechanisms and techniques are needed which, by supporting a more robust and

viable security architecture, will contribute to better understanding of UDT’s

practical applications and the other protocols and its systems as a whole, its

constituent components, and in particular, the interaction of security

mechanisms to secure UDT data transfer within and across the network protocol

stack.

The hypotheses follow that UDT is distinctive and not secure compared to other

known network protocols, and these are tested through experimentation and

implementation to confirm the contention. The hypotheses follow that the

proposed mechanisms to secure UDT can be implemented on the selected layers

of the protocol stack, and are also tested through information-theoretic, symbolic

 157

analysis, compositional proof of correctness, automata and rewrite systems.

Moreover, the hypotheses follow that, using the commercially proven and

proprietarily developed security mechanisms can protect not only UDT but also

other protocols, and are also tested through experimentation and implementation

to confirm our contentions. Lastly, the hypotheses also follow that securing UDT

on all protocol layers using our proposed security mechanisms is the best

technique, which is also applicable to existing protocols, and are also tested

through symbolic, information-theoretic, proof of correctness, and practical

implementations, which in their absence would not have been possible to develop

the security UDT architecture.

We achieve important research outcomes and highlight these in fourfold:

1. Development of security mechanisms to form a novel security architecture

for UDT;

2. Introduction of new axioms for inductive proofs to verify proofs of secrecy,

authentication, and applicability of the proposed mechanisms;

3. Use of techniques to verify traceability, applicability, secrecy, and

authentication of security properties of mechanisms within the proposed

architecture to ensure a secure data flow, and lastly;

4. Development of a proprietary program for UDT data transmission

analysis and visualisation. All of these are first in the literature, in

addition to the practical security implementations on UDT itself to form a

reliable, secure data integrity and data flow through the architecture.

158

7.3 Conclusion

In validating our proposals, we developed and created techniques which merit a

separate dissertation. Although there is a body of research dedicated to these

techniques, we highlighted them in this work.

We presented an approach to the formal verification of cryptographic

authentication protocols, specifically on our proposed mechanisms. We illustrated

the mechanisms in single and multi-session capabilities. We created our own

axioms and techniques to form a reliable proof simplification and proof

automaton. We used PCL for the proof of authentication protocols (for our

proposed and developed UDT-AO, UDT+DTLS, and UDT+GSS-API).

To achieve applicability of the proposed mechanisms and architecture to other

network protocols, we recommend that verification activity be conducted and

reused and tested in a practical context.

The reuse from one mechanism to another occurs when each activity is

independent of the mechanism itself. This happens in the case of an anomaly and

adversary. Moreover, activities such as identifying and proving invariants, or

formalising and proving secrecy and authentication properties, are similar from

one architecture to another and can be reused. In Chapter 5, we showed how the

confidentiality of some keys was used in the mechanisms for UDT.

The main aim of this work has been to address the absence of security for UDT.

Our proofs of secrecy and authentication of security properties of the selected

mechanisms, including those practically developed for UDT, provided support

based on the strength of these mechanisms and based on their applicability to

other high speed network protocols that rely on the speed of UDP.

In order to model our mechanisms we used a powerful paradigm (eg. rewrite

systems and formalisms) sometimes referred to as the chemical abstract machine

paradigm: it means that a system is a set of atomic actions which may be applied

repeatedly, and in any order, and whenever the proper pre-condition holds.

 159

We used states and relations and formalisms to present semantics which we

represent in simple and basic mathematical notation. We applied rewrite

systems and automata to achieve theoretic proof of security properties, proof of

secrecy, authentication, and applicability of mechanisms within the architecture.

We analysed and interpreted the likelihood of data flow failure that can be

caused by anomalies or adversaries.

Lastly, we expressed the secrecy and authentication properties that we wanted

the protocol to satisfy and observe the complete view of the proposed mechanisms

and the proposed architecture data flow based on the understanding of trustable

principles to guarantee data integrity and security. Our modeling of the

adversary (in the form of an intruder) provides the possibility of a compromised

mechanism in the architecture design. And by identifying constraints, we applied

a mechanism that prevents this from occurring. We imposed a sequencing

constraint which amounts to forbid multi-session capabilities when an attack

occurs. We also imposed a parallel multi-session that can still allow the data to

flow across other mechanisms securely.

The potential of our tool, techniques, mechanisms, and the architecture in itself,

created a breadth of interesting novel and multi-faceted research which drew

positive reviews from various independent international academic conferences

and journals.

7.4 Future Work

It is interesting to present discussion of the scope for future work in the form of

further investigation into the UDT implementations and UDT security

architecture to support its objectives and continuing Project UDT development,

with further analysis of existing and new mechanisms for UDT and other

protocols.

160

7.4.1 Further Analysis: Proposed UDT Security Mechanisms

The transition from low-speed to high-speed networking in some sectors,

therefore, comes at a time when societal reliance upon networks is greater than

its already significant level. The assured use and access of these networks in a

private, protected and reliable manner, and also with appropriate service

guarantees, is deemed fundamental, which has motivated this thesis to

investigate the available mechanisms which are widely used, and to develop the

security architecture for UDT.

The security architecture is introduced following extensive review, which

included a design for a security-specific modular structure for the UDT protocol

which is also considered to be practical for other data transfer protocols.

Moreover, methods using existing security mechanisms have been introduced,

and a framework for UDT with the specification of TCP, UDP and UDT, and

Sockets API has been developed. The design is the result of extensive

experiments and implementations, and has broad coverage in terms of practical

applications with the use of existing high-speed appliances to support the

schemes. In addition, the framework has been presented with notable schemes,

all of which aim to ensure utility and value to users and designers of high-speed

network and data transfer protocols.

The practicality of our design architecture for UDT suggests that similar designs

should be created applicable and desirable for future protocol design, thereby

leading to a more secure-capable protocol with higher-quality implementation

security schemes.

Whilst the mechanisms in our works have been introduced so as to develop a

comprehensive architecture for UDT and have therefore been subject to extensive

validation and annotation, and eventually implementation and deployment, the

architecture nevertheless still requires improvement, and is not as clearly

presented as it might be. With this in mind, it would be interesting to see how it

can be used with other fast data-transfer protocols.

 161

Since the architecture has been developed based on particular implementations

and with reference to the UDT source code and existing mechanisms, we have

aimed to make it sufficiently flexible so as to permit other implementation and

deployment schemes created in relation to other protocols. Notably, it would be

interesting to use the framework to guide the fresh implementation and

deployment of new protocols so as to determine how much implementation

security-specific change is required.

Essentially, UDT does not have a clear modular structure, but rather has

accreted functionality following the new versions being released; nevertheless,

security mechanisms remain notably absent. Due to this situation, it is

recognised that any improvement to this structure would be worthwhile. For

instance, future work focuses on good security and modular structure that would

introduce an improved checksum and authentication option without redesigning

the entire structure of a protocol when deploying in IP V6.

7.4.2 Project UDT Tool Enhancement

Current work is focused on expanding the Project UDT tool to real-time and

performance analysis. Options to allow additional protocol-based data extraction

modules and the scope for further work using this tool is wide—the limits of

existing powerful tools for UDT lead to further innovative research. Future work

may include investigations of new mechanisms and DoS attack detection, traffic

engineering issues, and Cloud/GRID security.

The use of the tool, mechanisms, and architecture is not limited to the

observation of well-established protocols and their security mechanisms: our

work and techniques are valuable to other researchers and the industry in the

development of new high-speed protocols and their security.

162

 163

Chapter 8

Epilogue

In our published work, we presented the important socio-economic relationship of

IT Security to Climate Change. We emphasised the importance of developing a

tailored security architecture for new high-speed network protocols that operate

on Cloud/GRID (C/G) computing. In this dissertation, we presented techniques

that assisted us in developing a security architecture for UDT. Our verification

techniques in the development of this architecture are applicable to other

protocols; these require, however, continual attention and improvement given the

fast development of network and security technologies as well as the prevalence

of cyber adversaries. We published our works and extended our contributions to

Environmental Science and Technology. The succeeding sections highlight the

relationship of IT Security and our developed architecture, which we used as an

example, to support climate change initiatives.

8.1 Future Direction: Securing the Cloud, Dispelling Fears:

Ways to Combat Climate Change

High-speed network protocols operate on high-speed networks, which offer easy

and low-cost access to education, e-health, communication and business services.

Going forward, one of their most valuable features is their capacity to replace

physical goods with virtual ones (dematerialisation). Research shows that digital

goods are superior in terms of minimising the use of energy and carbon dioxide

(CO2) versus their physical counterparts, including physical activities (e.g.,

164

travel). But dematerialisation of goods comes with its own challenges. One of

them is security. Because of cyber adversaries, various educational, military,

government and medical institutions have been reluctant to adopt the full

dematerialisation of their specific goods (medical records, and classified military

and government information) and delivery of services. For these organisations,

transmitting sensitive data is as important as national security.

In this work, we present situations that reflect user’s fears and reluctance about

fully adopting technology in order to achieve its benefits. We surveyed a few

organisations to highlight the reasons of low and poor C/G adoption. Our findings

highlight and confirm the importance of our work on developing a security

architecture tailored for a specific network protocol that runs on a Smart GRID.

We introduce this architecture as one of the many solutions to address the

security challenge. We deviate from using technical jargon to describe this

architecture; however, we will briefly present this architecture to demonstrate

how it can protect a Smart GRID protocol.

Clearly, increasing the level of awareness as well as increasing security

technologies to protect data transfer may dispel the security fears of

organisations. Similar security designs and solutions that will be introduced to

fast-growing high-speed networks, such as the NBN in Australia, address users’

confidence and increase C/G adoption, therefore also increasing the

dematerialisation of objects and services and helping minimise CO2 and energy

consumption. Underscoring the importance of securing C/G through IT security

in the field of environmental science and technology is another first in the

literature.

8.1.1 Introduction

Climate change has become one of the most challenging problems faced by society

today. Undoubtedly, organisations are working on addressing this problem

through various means. Universities and research and non-for-profit institutions,

for instance, have been investing a significant amount of resources and time to

find solutions that address this ongoing problem, which, according to UNESCO’s

report [144], has affected and continues to affect various countries around the

world. From the American continents, Africa, Australia-Asia Pacific to Europe,

 165

weather changes – and their impact on the environment, on the world’s ecology,

on resources such as food, and on human security itself – have become a major

concern for many governments. In recent years, many researches have started

focusing on the use of technology to tackle and minimise this problem.

Major steps were taken and the introduction of green technology, environmental

science, and technology provided promising directions to assist in minimising

climate change. On one hand, new interdisciplinary courses are now being offered

in various institutions to raise the awareness of climate change. Government

initiatives, on the other hand, introduced ways to expand network

infrastructures, such as the NBN in Australia, and have taken important steps in

implementing this high-speed network in various selected schools, health centres,

homes, and industries. These have created new opportunities to provide socio-

economic solutions through the Internet and C/G computing.

No doubt, the Internet and C/G computing, its applications, and IT in general

play an increasingly important role today, more so than in previous years.

Examples of this have brought social and political changes (e.g., Asia’s Philippine

revolutions and the Arab Spring Uprising, to name a few). Technology and its

applications have aided civil societies and provided innovative reforms, through

e-voting and e-governments.

Without a doubt, they have also become tools for tackling climate change. With

the right framework and a clear understanding of technology’s capabilities,

minimising the impact of climate change can be achieved. However, while

technology can be a great tool to address global problems, many organisations are

still reluctant to fully embrace its potential.

We contend that one of the reasons that explain this problem of low C/G adoption

is cyber threats. The attacks reported in [10,48,51] have increased and these

continually stalled organisations to fully digitise their objects and services.

Securing high-speed networks, therefore, has since pushed researchers to develop

new architectures for high density data transmissions in WAN [22-33]. Many of

these protocols are developed based on different technology variants, which have

demonstrated better performance in simulation and in several network

166

experiments but have limited practical applications because of implementation

and installation difficulties [24-26].

Some organisations wanting to digitise goods (dematerialisation of goods) and

virtualise service delivery (through transferring bulk data over long distances,

thus minimising energy and CO2 for travelling) turn to application level

solutions where these variants do not fair well. Many examples of this technology

considered in the application level solutions are UDP-based protocols, such as

UDT for C/G computing [15]. UDT was developed in a research laboratory at the

National Data Mining Center, University of Illinois, Chicago [22-23,82].

However, the absence of security features for this new technology stalls its full

deployment to various implementation scenarios.

We analyse common issues of poor C/G adoption across organisations in Europe,

US, and Australia. We focus on the most common and predominant issue and

present an approach that can increase users’ confidence towards C/G adoption,

and serve to support existing climate change initiatives.

In the succeeding sections of this work, we highlight our contributions. We then

outline the issues of users’ reluctance towards C/G adoption; we focus on the role

of security and introduce a basic example of a security architecture that we

developed for high-speed network protocol that operates on a Smart GRID. We

present our discussions in Section 8.2. Finally, we end this chapter with the

conclusion and future work in Section 8.3.

8.1.2 Contributions

In our works [22-33], we presented our important contributions to securing high-

speed networks that use a specific variant, called UDT. We conducted

formalisation to develop the architecture through proofs of mechanisms and

secrecy properties in data flow, and provided a clearer understanding of how they

work and secure protocols without using extensive resources to achieve

verification on its applicability and adaptability to networks. For detailed

information, we encourage the readers to read [22-33].

 167

In this work, we present and extend our contributions to environmental science

and technology, by highlighting the importance of the security1 to climate change.

We argue that security does not only protect infrastructures that support climate

change initiatives; it also significantly and indirectly decreases environmental

impact through the minimisation of carbon emissions and energy consumption.

The major contribution of this work is to underscore the important role of

security in achieving climate change initiatives.

8.1.3 Security in High-Speed Networks

As an example, we selected a future generation GRID protocol that runs on high-

speed networks. This protocol was designed to transfer a large amount of data

sets across long distances. It was used in collecting large data sets from Outer

Space, which were then transferred across Chicago, New York, Amsterdam,

Korea, Japan, and Australia. The development of UDT, a fast data transfer

protocol for C/G computing, holds great promise to the future progression of data-

intensive network capabilities. This protocol was successfully implemented by

capturing data, gathering terabytes of information, and transferring these across

the continents in a high-speed network. This provided a compelling commercial

promise in Wide Optical Area Network (WOAN) [22] and NBN[120]. Whilst many

types of protocols solve many of the problems related to achieving speed,

performance, and environmental issues (minimisation of carbon emissions), one

common problem remains: security.

Securing protocols, such as UDT, to achieve privacy, confidentiality, and data

integrity in wide optical area networks is a challenge against existing anomalies.

The study of the security of UDT is new and presents interesting challenges.

Many of the security problems present in existing protocols like TCP and UDP

are also applicable to UDT. Moreover, many of the traditional security

mechanisms, e.g., end-to-end encryption, may be applicable to UDT

implementation and, in certain cases, may be even more necessary[24-26].

We will not discuss the technical aspects [22-33] of this protocol. Instead we will

use the architecture we designed for this protocol as an enabling attribute to

exemplify the need to secure Smart GRID. We believe that securing the protocols

168

that operate in the GRID will create opportunities for organisations and

individuals to adopt new technologies.

In this work, we survey and review existing literature that will assist in

determining the relationship between C/G adoption and security. We present the

relationship between security and climate change, and the significance of this

relationship.

We then discuss our proposed approach in addressing the problem of slow C/G

adoption: by introducing a comprehensive security architecture for GRID

protocol, UDT, which we worked on for 3 years. We present this as part of our

approach to secure the C/G and to dispel fears related to the adoption of this

technology in the wider community.

8.1.4 Current Trend

There is an increasing number of organisations and citizens capitalising the

Internet by joining online communities (through fixed and wireless connections)

using a high-speed network (Figure. 8-1).

Volume of data transmission by Australian Internet users

200 000

 16 990

 13 330 174 665

150 000

 14 251

 141 892

100 000 113 410

50 000

0

Dial up

294

Dial up

280

Dial up

183

 Wireless

 Fixed line

 Figure 8-1 Source Data: ABS,8153.0 Internet Activity, Australia, December 2010[13]

 169

In 2010 alone, there were almost 11 million active Internet subscribers in

Australia [13]. According to the report [13, 120], 93% of Internet connections had

more than 1.5 megabits of download capabilities. Over time, Internet activity will

increase its consumption of resources, e.g., data consumption. In 2010, there were

191 terabytes of data downloaded [120]: a significant increase from the 99

terabytes of downloaded data recorded in the previous year. Based on this trend,

the online capacity and requirements will only continue to increase and become

even more data-intensive in the future. However, a few companies and

individuals continue to avoid dematerialising their objects (data) and services;

and many still send their data through physical media (e.g., DVD, CD, and USB)

because of their fear of cyber threats[10,15,51,93].

We present a few situations to highlight this challenge.

8.1.4.1 Securing e-Health

A major health company [120] outside of Sydney transmits data across long

distances. These data are health records of their patients, some of which have to

be transmitted in bulk across Sydney to Singapore for analysis and medical

treatment. Technologies for data transmission and performance are now

available, but this company faces a new challenge: securing the data being

transferred across long distances.

In the past, this company had to courier these data by mail. Now that high-speed

networks are available through NBN, the company, which wants to capitalise on

the new technology, continues to express apprehensions about security.

“In the past it was too hard to physically send data over long distances; often,
they had to be delivered by hand. Security was not an issue then. Now, over the
high-speed network, location and distance are no longer an issue; the size of data
is no longer a problem either. The greater obstacle to us is security. We want to
make sure that large amounts of data are secure when delivered over the
Internet. We cannot afford to expose our patients’ sensitive information.”

170

8.1.4.2 Securing Smart GRID, Smart City

In alliance with the Federal Government, a state government in Australia has

pooled up to 100 million dollars [120] for the Smart GRID, Smart City [29]

initiative, which will demonstrate an electricity system of the future. This

initiative will employ various technologies and provide customers with informed

choices about their energy use.

One non-profit organisation involved in the evaluation of the technology raises

the issue of threats: threats that do not only fall under the physical threat to the

GRID and infrastructure itself, but also threats that can occur when data

transmitted across smart meter applications and delivered across at least 3000

homes / end points [120].

“The government must consider the risks involved in deploying these types of
technologies and address them. We believe that technologies can be detrimental
when used and abused by adversaries. Lessons must be learned from the 9/11
attack in the United States. The data – such as information of customers, their
addresses – and security features of these smart applications must be introduced
and evaluated.”

8.1.4.3 Priorities and Barriers to Dematerialisation

Additionally, European organisations are continually making the transition to

C/G computing. However, in the 2010 survey [10,13,120], a range of factors

considered to be barriers to C/G-based services included geographical location

of services, contract lock-ins, to name a few.

According to [48], in 2011, security remained the biggest identified barrier to

adoption (63%), followed by integration issues (57%) and performance /

reliability concerns (55%). Furthermore, the same survey revealed that

security was deemed an ongoing issue that went beyond C/G (74%), but was

certainly a priority in evaluating and managing IT delivered via C/G (80%).

Figure 8-2 also shows that it remained the single biggest hurdle impacting

C/G take-up (63%), despite being less significant than in the previous year’s

 171

survey (71%). Security was a particular issue for companies in the United

Kingdom (UK) (74%) and Germany (70%) [48].

Barrier to CLOUD adoption

74%

70%

56%

57%

56%

UK

Germany

Spain

France

Benelux

Figure 8-2: Source Data: Colt CIO Cloud Survey, May 2011 [48]

8.1.4.4 User impact

According to a UK [10] study commissioned by a security software maker, more

than 1,400 regular Internet users stated that cybercrime was the UK’s most

feared crime, outranking physical burglary, assault, and robbery [10, 48]. The

study also found that 87% of the participants were worried about the threat of

cybercrime, 33% were not convinced they had adequate measures in place to

protect themselves, and 25% said there was not enough information available on

cybercrime to protect themselves effectively. That left a significant percentage of

people (62%) who, while they could find enough information to protect

themselves, were still inherently worried about the threat of cybercrime.

An organisation, Db2Powerhouse, quoted a research: “Furedi (2002) and others
have portrayed the general culture of fear as a type of psychological fear of fear
(Phobophobia), which can lead to stress, intense anxiety, and unrealistic and
persistent public fear of crime and danger, regardless of the actual presence of
such fear factors. Garland (2002) describes this phenomenon as the crime
complex, a societal state where public anxiety about crime is the norm and has
been imprinted in people’s everyday lives as an established and expected societal

172

aspect. In a 2003 survey (PewInternet, 2003), 49% of US citizens said that they
were afraid of cyber assaults on key parts of the US economy. Lack of control
over a situation that is perceived as threatening or dangerous gives rise to
feelings of emotional distress, fear, and insecurity. Such strong emotions can
inhibit flexible thinking and lead to irrational behaviour (Sutherland, 2007, p.
89) or other equally strong reactions. The effects of cybercrime and
cyberterrorism-related discourse and the induced fear in the public can be seen
by acts such as the need for more laws protecting against illegal cyber activity
and the giving away of people’s own privacy in exchange for better security.”

Results show that organisations are still uncertain whether or not they can

secure their data as these are transmitted across high-speed networks. These

valid concerns merit considerations to meet and maximise the benefit of high-

speed networks empowering digital economy. Given that digital economy is

dynamic, it is important to recognise the need of additional and continuing

requirements of citizens. Investigating the issue of security and cyber threats

should be closely monitored with new initiatives being introduced.

8.2 Discussions

In this work, we reaffirm that cyber threats remain a major inhibitor to the

adoption of Internet technology and C/G across industries and schools,

specifically in Europe, US, and Australia. There are, of course, huge cultural

differences between these countries, and we did not attempt to directly compare

these differences due to the constrained scope of research.

To support the findings and the situations presented, we looked at various

avenues ranging from socio-economic to technical perspectives. We also visited

existing literature [10,13,15,48,51,76-77,145] and surveyed 4 Australian

organisations (schools and research institutes, non-profit organisations, a

government agency, and a university; labelled as A, B C and D on Table 8-1). We

used existing research approaches: the Theory of Reasoned Action, the Theory of

Planned Behaviour, the Technology Acceptance Model (TAM) [4-5, 56-57] and

Diffusion of Innovations. From these approaches we derived how the respondents

perceived C/G to improve their organisational performance. Three important

issues emerged: user trust, commitment, and satisfaction. All of the respondents

 173

from these organisations revealed their reluctance to adopting the C/G (see Table

8-1). This suggests that organisations perceive that the dangers of Internet C/G

adoption outweigh the benefits, particularly in the absence of a comprehensive

security architecture to protect information being transmitted across the GRID.

 Table 8-1 * = Inhibiting Issue + = Enabling Issue. Internet Security is considered an inhibiting issue to
full acceptance and deployment of C/G in Australia.

Probing Issues Emergent

Themes

O
rg

. A

O
rg

. A

O
rg

. B

O
rg

. B

O
rg

. C

O
rg

. C

O
rg

. D

O
rg

. D

User Trust Internet*

Security

78 % 76% 80% 67 %

 Legislation * 1% 4% 2% 6%

 Reliability + 2% 3% 3% 4%

 Knowledge

and Skills +

1% 2% 5% 5% 3%

Commitment Loyalty 1 % 5% 4% 2%

 Communicati

on of Service

 10% 2% 2% 4%

Satisfaction Conflict

Reduction

 3.5% 4% 2% 4%

 Risk

Reduction

1.5% 1% 2% 10%

To dispel this fear, we introduced a foundational framework applicable across

existing IT initiatives:

Introduction of a security architecture, presented in Figure 5-6. This

sample presents security architecture of a specific protocol that can be

deployed within a next-generation high-speed network data transmission

operating on high-speed Smart GRID;

Introduction of appropriate security policies and standards (i.e., ISO

27001/2) [94] and implementations of security mechanisms

infrastructures within the organisations, based on these policies and

standards;

Increased level of security awareness to individuals and organisations;

Institutional initiative that promotes security as a vital component to

addressing climate change.

174

Figure 8-3: Layer-to-Layer GRID UDT Architecture. In our proposed architecture,
the UDT layer provides transport functionalities to applications (Smart GRID
metering applications, data and image transmissions) with security schemes that
can be implemented. We encourage the readers to visit [22-33] for more technical
details of the architecture. Attributes ab(1 to 7) are security mechanisms.

The framework presented underscores the relationships of network security

technologies in tackling the inhibitor of C/G adoption. The framework is

comprised of increasing awareness, implementing initiatives, and security

primitives across vital components of the network through which data will be

intensively transmitted, thereby increasing the use and deployment of virtual

objects, accelerating the replacement of physical objects and activities by virtual

services, and moving away from energy waste and intensive resource

consumption (see Figures 8-4 and 8-5).

 175

Figure 8-4: Example of Smart GRID (A to F) Flow Courtesy of

[91,93]

Figure 8-5: Securing the technology applied to the protocol that operates
within a high-speed network increases the onset of virtual objects and
proportionally decreases energy and CO2 consumption, thereby
addressing climate change.

176

8.3 Conclusion and Future Work

In this work, we reviewed the existing concerns – including inhibitors to C/G

adoption – and the obvious benefits of high-speed networks such as NBN to

combat climate change. However, if cyber threats continue to be a major factor of

slow technology adoption, the benefits of using this next-generation technology

will create little impact. We looked at introducing security as a major component

in addressing these issues. We investigated the growing concerns of cyber threats

that slow down the maximisation of the benefits of NBN. We introduced security

and highlighted its role in achieving proprietary technology such as UDT to

address climate change.

We also introduced techniques and mechanisms that can protect existing high-

speed data network transfer protocols with limited interdependencies [22-33].

Our security architecture and its underlying techniques can increase user

confidence in NBN and potentially move users to embrace full dematerialisation

of physical objects and activities in service delivery. By providing security on

protocols that run on high-speed networks, we believe that our contribution can

assist not only in raising awareness of the important link that network security

has, but also in maximising the use of various innovative technologies that can

assist in combating climate change.

Future work focuses on developing international and industry standards for

security in high-speed network data transfer protocols, such as Internet

Engineering Task Force (IETF) and International Standard Organisations (ISO)

[94] – specifically addressing continuing challenges that involve the role of

technology and important components like network security in order to address

climate change.

Questions on the applicability of the architecture across high-speed network

protocols running on NBN can be further addressed. The most important of these

are exploratory questions on how technology and the use of it – through

dematerialising objects and physical services moving towards a full deployment

of C/G computing – can continue to progress across regional areas and cities in

Europe, Asia, US, Australia, and beyond.

 177

Bibliography

[1.] Abadi, M., Rogaway,P. (2002), Reconciling two views of cryptography (the

computational soundness of formal encryption). Journal of Cryptology 15, 103–

127.

[2.] Adao, P., Bana, G., Scedrov, A.(2005), Computational and information-theoretic

soundness and completeness of formal encryption. CSFW18, 170–184.

[3.] Ajzen, I. (1991), “The Theory of Planned Behavior.” Organizational Behavior and

Human Decision Processes 50(2): 179-211.

[4.] Ajzen, I. and Fishbein, M. (1980), Understanding Attitudes and Predicting Social

Behavior. London, Prentice-Hall, Englewood Cliffs.

[5.] Ajzen, I. and Madden, T. (1986), “Prediction of Goal-Directed Behavior:

Attitudes, Intentions, and Perceived Behavioral Control.” Journal of

Experimental Social Psychology 22: 453-474.

[6.] Allman, M., Paxson, V. and Stevens, W.(2009): TCP congestion control. IETF,

RFC 2581, April 1999.

[7.] Al-Shraideh, F. (2006), Host Identity Protocol. In ICN/ICONS/MCL, page 203.

IEEE Computer Society.

[8.] Andersen, D.G., Balakrishnan, H., Feamster, N., Koponen, T., Moon, D. and

Shenker, S. (2008), Accountable Internet Protocol (AIP). In Bahl, V. Wetherall,

D. Savage, S. and Stoica, I., editors, SIGCOMM, pages 339–350. ACM.

[9.] Aoto, T., Yoshida, J., and Toyama, Y.,Proving confluence of term rewriting

systems automatically. In Rewriting Techniques and Applications, pages 93-102.

Springer, 2009.

178

[10.] Ashford, W. (2007, October 29), Cybercrime is biggest UK fear. Computer

Weekly. Retrieved from: http://www.computerweekly.com/;accessed on October 1,

2010.

[11.] Aura, T. (2005), Cryptographically Generated Addresses (CGA). RFC 3972,

IETF.

[12.] Aura, T., Nagarajan, A., and Gurtov A., (2005), Analysis of the HIP Base

Exchange Protocol. In 10th Australasian Conference on Information Security

and Privacy ACISP, pages 481–494.

[13.] Australian Bureau of Statistics, 8153.0 – Internet Activity, Australia, December

(2010) http://www.abs.gov.au/ausstats/abs@.nsf/mf/8153.0I; last accessed Oct 16,

2011.

[14.] Backes, M., Pfitzmann, B., Waidner, M. (2003), A universally composable

cryptographic library. Cryptology ePrint Archive, Report 2003/015.

[15.] Baranetsky, V. (2009, November 6). What is cyberterrorism? Even experts can’t

agree. Harvard Law Record. Retrieved from: http://www.hlrecord.org/news/what-

is-cyberterrorism-even-experts-can-t-agree-1.861186 ;accessed Nov. 6, 2009.

[16.] Baudet, M., Cortier, V., Kremer,S., Computationally Sound Implementations of

Equational Theories against Passive Adversaries. In, Caires, L., Italiano,

G.F.,Monteiro, L., Palamidessi,

[17.] Baudrillard, J. (1994), Simulacra and Simulation. Ann Arbor: University of

Michigan Press.

[18.] Bella, G., Paulson, L.C. (1998), Kerberos version IV, Inductive analysis of the

secrecy goals. In, Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D.

(eds.) ESORICS 1998. LNCS, vol. 1485, pp. 361–375. Springer, Heidelberg.

[19.] Bellare, M., Rogaway,P. (1994), Entity authentication and key distribution. In,

Stinson, D.R. (ed.) CRYPTO 1994. LNCS, vol. 773, pp. 232–249. Springer,

Heidelberg.

[20.] Bellovin, S. (1996), “ Defending Against Sequence Number Attacks”, RFC 1948.

[21.] Bellovin, S.(2003), "Guidelines for Mandating the Use of IPsec", Work in

Progress, IETF.

[22.] Bernardo, D.V and Hoang, D. (2008), “Network Security Considerations for a

New Generation Protocol UDT. Presented at Proc. IEEE the 2nd ICCIST

Conference, Beijing China.

 179

[23.] Bernardo, D.V. and Hoang, D. (2010), “Protecting Next Generation High Speed

Protecting–UDT through Generic Security Service Application Program Interface

GSS-API”. Presented at 4th IEEE International Conference on Emerging

Security Information, Systems and Technologies SECURWARE 2010

Venice/Mestre, Italy.

[24.] Bernardo, D.V. and Hoang, D. (2009), A Security Framework and its

Implementation in Fast Data Transfer Next Generation Protocol UDT, Journal

of Information Assurance and Security Vol 4(354-360). ISN 1554-1010.

[25.] Bernardo, D.V. and Hoang, D. (2010), “A Conceptual Approach against Next

Generation Security Threats: Securing a High Speed Network Protocol – UDT”,

Proc. IEEE the 2nd ICFN 2010, Shanya China.

[26.] Bernardo, D.V. and Hoang, D. (2010), A Pragmatic Approach: Achieving

Acceptable Security Mechanisms for High Speed Data Transfer Protocol- UDT

SERSC. International Journal of Security and Its Applications Vol. 4, No. 4,

October, 2010.

[27.] Bernardo, D.V. and Hoang, D. (2010), End-to-End Security Methods for UDT

Data Transmissions. FGIT 2010, Korea: 383-393 LNCS, Springer, Heidelberg.

[28.] Bernardo, D.V. and Hoang, D. (2010), Security Analysis of the Proposed Practical

Security Mechanisms for High Speed Data Transfer Protocol.

AST/UCMA/ISA/ACN 2010: 100-114, Japan, LNCS Springer –Verlag Germany.

[29.] Bernardo, D.V. and Hoang, D. (2011), “ Empirical Survey: Experimentation and

Implementations of High Speed Protocol Data Transfer for Grid, 25th IEEE

AINA Workshop 2011, pp. 335-340.

[30.] Bernardo, D.V. and Hoang, D. (2011), “Formalisation and Information-Theoretic

Soundness in the Development of Security Architecture for Next Generation

Network Protocol – UDT”, SECTECH Conference, Jeju Island, Korea 2011 LNCS

Springer, Heidelberg.

[31.] Bernardo, D.V. and Hoang, D. (2011), Multi-layer Security Analysis and

Experimentation of High Speed Protocol Data Transfer for GRID,

International Journal of Grid and Utility Computing, in the press, October, 2011.

[32.] Bernardo, D.V., “UDT (2010) -Authentication Option field, An approach “

Presented at 6th IEEE International Conference of Information Assurance and

Security (IAS), Atlanta, USA, August 23-25, 2010.

180

[33.] Bernardo, D.V., and D. Hoang (2009) “Security Architecture for UDT”, Work in

Progress, IETF.

[34.] Bishop., S., Fairbairn, M., Norrish, P., Sewell, P., Smith, M., and Wansbrough,

K., TCP, UDP, and Sockets:rigorous and experimentally-validated behavioural

specification: Volume 2: The Specification. Technical Report UCAM-CL-TR-625,

Computer Laboratory, University of Cambridge, Mar. 2005. 386pp.

[35.] Blumenthal, M., and Clark, D., (2001). Rethinking the Design of the Internet,

End-to-End Argument vs. the Brave New World, Presented in Proc. ACM Trans

Internet Technology, 1

[36.] Bonica, R. ,Weis B., Viswanathan, S., Lange, A., Wheeler, O. (2007),

“Authentication for TCP-based Routing and Management Protocols, “ draft-

bonica-tcp-auth-06, (work in progress), Feb. 2007.

[37.] Brackmo, L., O’Malley, S. and Peterson, L. (1994) “TCP Vegas: New Techniques

for congestion detection and avoidance”, 1994 ACM SIGCOMM Conference,

pages 24-25.

[38.] Braun, T. and Diot, C. (1995) : Protocol implementation using integrated layer

processing. ACM SIGCOMM '95, Cambridge, MA, Aug. 28 - Sep. 1, 1995.

[39.] Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A. (2006), Verifying

confidentiality and authentication in kerberos 5. In, Futatsugi, K., Mizoguchi, F.,

Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 1–24. Springer, Heidelberg.

[40.] Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A. (2002), A Formal Analysis of

Some Properties of Kerberos 5 UsingMSR. In, Fifteenth Computer Security

FoundationsWorkshop—CSFW-15, Cape Breton, NS, Canada, pp. 175–190.

IEEE Computer Society Press, Los Alamitos.

[41.] Canetti, R., Herzog, J. (2006), Universally composable symbolic analysis of

mutual authentication and key-exchange protocols. In, Halevi, S., Rabin, T. (eds.)

TCC 2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg.

[42.] Caron, A.C., "Linear bounded automata and rewrite systems: Influence of initial

configurations on decision properties" TAPSOFT '91 LNCS, Vol 493/1991, 74-89,

DOI 10.1007/3-540-53982-4_5

[43.] CERT, 1996a. “UDP Port Denial-of-Service Attack,” Advisory CA-96.01,

Computer Response Team, Pittsburg, PA.

 181

[44.] Cervasato, I., Meadows, C., Pavlovic, D. (2005), An encapsulated authentication

logic for reasoning about key distribution. In, CSFW-18, IEEE Computer Society,

Los Alamitos.

[45.] Cervesato, I., Jaggard, A., Scedrov, A., Tsay, J.K., Walstad, C. (2005) ,Breaking

and fixing publickey kerberos (Technical report).

[46.] Clark, D., Lambert, M. and Zhang, L. (1987) “NETBLT: A High Throughput

Transport Protocol .” Proc. of SIGCOMM ’87, pp. 353-359.

[47.] Clark, D., Sollins, L., Wroclwski, J.,Katabi, D., Kulik,J., Yang, X., (2003) New

Arch, Future Generation Internet Architecture, Technical Report, DoD – ITO.

[48.] Colt Security Consulting CIO Cloud Survey May (2011).

[49.] Comon, H., Dauchet,M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., and

Tommasi, M., Tree automata techniques and applications. Available on:

http://www.grappa.univ-lille3.fr/tata, 2008.

[50.] Contejean, E., Paskevich, A., Urbain, X., Courtieu ,P., Pons, O., and Forest,J.,

PAT, an approach for certified automated termination proofs. In ACM SIGPLAN

Work. on Partial evaluation and program manipulation, pages 63-72. ACM,

2010.

[51.] Cyberterrorism (2000), Testimony before the Special Oversight Panel on

Terrorism Committee on Armed Services U.S. House of Representatives

(testimony of Denning, D. E.).

[52.] Datta, A. Derek, A., Mitchell, J.C., Pavlovic, D. (2005),A derivation system and

compositional logic for security protocols. Journal of Computer Security 13, 423–

482.

[53.] Datta, A. Derek, A., Mitchell, J.C., Warinschi, B. (2006),Computationally sound

compositional logic for key exchange protocols. In, Proceedings of 19th IEEE

Computer Security Foundations Workshop, pp. 321–334. IEEE, Los Alamitos

324,

[54.] Datta, A., Derek, A., Mitchell, J.C., Roy, A. (2007), Protocol Composition Logic

(PCL). Electronic.Notes Theory. Computer. Sci. 172, 311–358.

[55.] Datta, A., Derek, A., Mitchell, J.C., Shmatikov, V., Turuani, M. (2005),

Probabilistic polynomial time semantics for a protocol security logic. In, Caires,

L., Italiano, G.F., Monteiro, L.,Palamidessi, C., Yung, M. (eds.) ICALP 2005.

LNCS, vol. 3580, pp. 16–29. Springer, Heidelberg.

182

[56.] Davis, F. D. (1986). A Technology Acceptance Model for Empirically Testing New

End-User Information Systems: Theory and Results. Boston, MIT. PhD thesis.

[57.] Davis, F. D. (1989). “Perceived Usefulness, Perceived Ease of Use, and User

Acceptance of Information Technology.” MIS Quarterly 10(3): 318-340.

[58.] Davis, F. D., Bagozzi, R. and Warshaw, P. (1989), “User Acceptance of Computer

Technology: A Comparison of Two Theoretical Models.” Management Science

35(8): 982-1003.

[59.] Dierks, T., and Allen , C. (1999), “The TLS Protocol Version 1.0”, RFC 2246.

[60.] Dierks, T., Rescorla, E. (2006), The Transport Layer Security (TLS) Protocol

Version 1.1. RFC 4346.

[61.] Duke, M., Braden, R., Eddy, W., Blanton, E. (2006): A Roadmap for Transmission

Control Protocol (TCP), RFC 4614, IETF, September 2006.

[62.] Dunigan, T., Mathis, M. and Tierney, B. (2002), “ A TCP Tuning Daemon”, in

Proc of IEEE SuperComputing 2002.

[63.] Durand, I., and J., Meseguer, A Church-Rosser checker tool for conditional

order-sorted equational Maude specifications. pages 69- 85. Springer, 2010.

[64.] Durand, I., Autowrite: A tool for term rewrite systems and tree automata.

Electronic Notes in Th. Comp. Sci., 124(2):29-49, 2005.

[65.] Durgin, N., Mitchell, J.C., Pavlovic, D. (2001), A compositional logic for protocol

correctness. In Proceedings of 14th IEEE Computer Security Foundations

Workshop, pp. 241–255. IEEE, Los Alamitos.

[66.] Durgin, N., Mitchell, J.C., Pavlovic, D. (2003), A compositional logic for proving

security properties of protocols. Journal of Computer Security 11, 677–721.

[67.] F´abrega ,F.J.T., Herzog, J.C.,Guttman, J.D. (1998),Strand spaces, Why is a

security protocol correct? In, Proceedings of the 1998 IEEE Symposium on

Security and Privacy, Oakland, CA, pp. 160–171. IEEE Computer Society Press,

Los Alamitos.

[68.] Falby, N., Fulp, J.,Clark, P., Cote, R., Irvine, C., Dinolt, G., Levin, T., Rose, M.,

and Shifflett, D. (2004), “Information assurance capacity building, A case study,”

Presented in Proc. 2004 IEEE Workshop on Information Assurance, U.S.

Military Academy, June, 2004, 31-36.

[69.] Feng, W. and Tinnakornsrisuphap, P. (2000): The failure of TCP in high-

performance computational grids. SC '00, Dallas, TX, Nov. 4 - 10, 2000.

 183

[70.] Feuillade, G., Genet, T., and Viet Triem, T., Reachability analysis over term

rewriting systems. 33(3):341-383, 2004.

[71.] Fiedrich, O.,"On the connections between reqriting and formal language theory "

REWRITING TECHNIQUES AND APPS,11th International Conf RTA 2000,

Nowrich UK, July 2000 LNCS 1631/1999, 672, 2000.

[72.] Fishbein, M. and Ajzen, I. (1975), Belief, Attitude, Intention, and Behavior: An

Introduction to Theory and Research. Reading, Addison-Wesley.

[73.] Floyd, S. and Fall, K. (2009) : Promoting the use of end-to-end congestion control

in the Internet. IEEE/ACM Transactions on Networking, 7(4): 458-472, 1999.

[74.] Ford, B. (2007), Structured Streams: a New Transport Abstraction, ACM

SIGCOMM, August 27-31, 2007, Kyoto, Japan.

[75.] Furedi, F. (2002), Culture of Fear. London: Publisher Continuum.

[76.] Garland, D. (2008), On the concept of moral panic. Crime, Media, Culture, 4(1),

9–30.

[77.] Gefen, D. and Straub, D. (2000), “The Relative Importance of Perceived Ease of

Use in IS Adoption: A Study of E-Commerce Adoption.” Journal of the

Association for Information Systems 1.

[78.] Giesl, J., Schneider-Kamp, P., and Thiemann, R., AProVE 1.2: Automatic

termination proofs in the dependency pair framework. In Intl Joint Conf. on

Automated Reasoning, pages 281-286. Springer, 2006.

[79.] Globus XIO:unix.globus.org/toolkit/docs/3.2/xio/index.html;accessed on November

1, 2010.

[80.] Gorodetsky, V., Skormin, V. and Popyack, L. (Eds.) (2001), Information

Assurance in Computer Networks, Methods, Models, and Architecture for

Network Security, St. Petersburg, Springer.

[81.] Grossman, R.L., Gu, Y., Hanley, D., Hong, X., Lillethun, D., Levera, J.,

Mambretti, J., Mazzucco, M., and Weinberger, J. (2002), “ Experimental Studies

Using Photonic Data Services at IGrid 2002.” FGCS, 2003.

[82.] Gu,Y., Grossman, R., (2007) UDT, UDP-based Data Transfer for High-Speed

Wide Area Networks. Computer Networks (Elsevier). Volume 51, Issue 7, 2007.

[83.] H. I. , (2008) for Information Technology, H. U. of Technology, et al.

Infrastructure for HIP.

184

[84.] Hacker, T., Athey, B., and Noble, B.(2002), “The End-to-End Performance Effects

of Parallel TCP Sockets on a Lossy Wide-Area-Network”, in Proc of IPDPS 2002.

[85.] Hamill, J., Deckro, R., and Kloeber, J., (2005), “Evaluating information

assurance strategies,” in Decision Support Systems, Vol. 39, Issue 3 (May 2005),

463- 484.

[86.] Harrison, D. (2004) ,RPI NS2 Graphing and Statistics

Package,http,//networks.ecse.rpi.edu/~harrisod/graph.html; accessed on October

2, 2010.

[87.] Hasebe, K., Okada, M. (2004), Non-monotonic properties for proving correctness

in a framework of compositional logic. In, Foundations of Computer Security

Workshop, pp. 97–113.

[88.] Heffernan, A. (1998), RFC 2385 “Protection of BGP Sessions via the TCP MD5

Signature Option”, August 1998.

[89.] Herbert, T. (2006), Linux TCP/IP Networking for Embedded Systems

(Networking), Second Edition. Charles River Media, November 2006.

[90.] Herzog, J. (2004), Computational Soundness for Standard Assumptions of

Formal Cryptography. PhD thesis, MIT.

[91.] http://venturebeat.com/2011/02/01/how-secure-is-the-smart-grid/ Accessed

October 21, 2011.

[92.] http://www.cio.gov/documents.Federal-Cloud-Computing-Strategy.pdf ;accessed

October 16,2011.

[93.] http://www.pikeresearch.com/research/smart-grid-cyber-security Accessed

October 21, 2011.

[94.] ISO 27001/2 International Standards Organizations 2009-2010, ISO.

[95.] Jacquemard, F., Decidable approximations of term rewriting systems. In

Rewriting Techniques and Applications, pages 362-376. Springer, 1996.

[96.] Jokela, P., Moskowitz,R., and Nikander, P. (2008), Using the Encapsulating

Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP).

RFC 5202, IETF, April 2008.

[97.] Jouannaud, J.P.and Kirchner, C., Solving equations in abstract algebras: a rule-

based survey of unification. In Computational Logic: Essays in Honor of Alan

Robinson, chapter 8, pages 257-321. The MIT-Press, 1991.

 185

[98.] Joubert, P., King, R., Neves, R., Russinovich, M. and Tracey, J., (2001).,

Highperformance memory-based web servers, Kernel and user-space

performance. USENIX '01, Boston, Massachusetts, June 2001.

[99.] Jray, W., (2000), "Generic Security Service API Version 2 ,C-bindings", RFC

2744.

[100.] Katabi, D., Hardley, M. and Rohrs, C. (2002): Internet congestion control for

future high bandwidth-delay product environments. ACM SIGCOMM '02,

Pittsburgh, PA, Aug. 19 - 23, 2002.

[101.] Kent, S., Atkinson, R.,(1998) “Security Architecture for the Internet Protocol”,

RFC 2401.

[102.] Kirchner, C., Kirchner, H. and de Oliveira, A., Analysis of rewrite based\ access

control policies. Electronic Notes in Th. Comp. Sci., 234:55-75, 2009.

[103.] Kohler, E., Handley, M., and Floyd, S. (2006): Designing DCCP: Congestion

Control Without Reliability, Proceedings of SIGCOMM, September 2006.

[104.] Korp, M., Sternagel, C., Zankl H. and Middeldorp, A., Tyrolean termination tool

2. In R. Treinen, editor, Rewriting Techniques and Applications, volume 5595 of

Lecture Notes in Computer Science, pages 295-304. Springer Berlin / Heidelberg,

2009.

[105.] Laganier, J., Eggert,L. (2008),Host Identity Protocol (HIP) Rendezvous

Extension. RFC 5204, IETF.

[106.] Laganier, J., Koponen, T., and Eggert, L., (2008) Host Identity Protocol (HIP)

Registration Extension. RFC 5203, IETF.

[107.] Leech, M. (2003), "Key Management Considerations for the TCP MD5 Signature

Option," RFC-3562, Informational, July 2003.

[108.] Leon-Garcia, A., Widjaja, I. (2000), Communication Networks, McGraw

Hill,2000.

[109.] Linn, J., (2000) "Generic Security Service Application Program Interface Version

2, Update 1", RFC 2743, January 2000.

[110.] Linn, J., (1996), "The Kerberos Version 5 GSS-API Mechanism", IETF, RFC

1964, June 1996.

[111.] Mathis, M, Mahdavi, J., Floyd, S., and Romanow, A., (1996)., TCP selective

acknowledgment options. IETF RFC 2018, April 1996.

186

[112.] Mazzucco, M., Ananthanarayan, A., Grossman, R., Levera, J. and Bhagavantha

Rao, G. (2002): Merging multiple data streams on common keys over high

performance networks. SC '02, Baltimore, MD, Nov. 16 - 22, 2002.

[113.] Meadows, C. (1994), A model of computation for the NRL protocol analyzer. In,

Proceedings of 7th IEEE Computer Security Foundations Workshop, pp. 84–89.

IEEE, Los Alamitos.

[114.] Melnikov, A., Zeilenga, K., (2006)., Simple Authentication and Security Layer

(SASL) IETF, RFC 4422, June 2006.

[115.] Menezes, A.J., Oorschot van , P.C., and Vanstone, S.A. (1997),Handbook of

Applied Cryptography, CRC Press, 1997.

[116.] Micciancio, D., Warinschi,B. (2004), Soundness of formal encryption in the

presence of active adversaries. In, Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.

133–151. Springer, Heidelberg.

[117.] Mitchell, J.C, Roy, A., Rowe, P. and Scedrov, A. 2008. Analysis of EAP-GPSK

authentication protocol. In Proceedings of the 6th international conference on

Applied cryptography and network security (ACNS'08), Steven M. Bellovin,

Angelos Keromytis, Rosario Gennaro, and Moti Yung (Eds.). Springer-Verlag,

Berlin, Heidelberg, 309-327, 2008.

[118.] Moskowitz, R., and Nikander, P. (2006), RFC 4423, Host identity protocol (HIP)

architecture, May 2006.

[119.] Moskowitz, R., Nikander, P., Jokela, P., and Henderson, T. (2008), Host Identity

Protocol. RFC 5201, IETF, April 2008.

[120.] National Digital Economy Strategy (2010). Department of Broadband,

Communications and the Digital Economy.

[121.] Neuman, C., Yu, T., Hartman, S., Raeburn, K. (1996), Kerberos Network

Authentication Service (V5), IETF, RFC 1964, 1996.

[122.] NIST SP 800-37 (2004), Guide for the Security Certification and Accreditation of

Federal Information Systems.

[123.] NS2. http,//isi.edu/nsna/ns; accessed on October 2, 2008.

[124.] Paulson, L.C. (1998), The inductive approach to verifying cryptographic

protocols. Journal of Computer Security 6, 85–128.

 187

[125.] Postel, J. (1974), A Graph Model Analysis of Computer Communications

Protocols. University of California, Computer Science Department, PhD Thesis,

1974.

[126.] PSU Evaluation Methods for Internet Security Technology (EMIST) , 2004,

http,//emist.ist.psu.edu; accessed on December 1, 2009.

[127.] Rabin, M. (1979), “Digitized signatures and public-key functions as intractable as

Factorization,” MIT/LCS Technical Report, TR-212.

[128.] Rescorla, E., Modadugu, N. (2006), “Datagram Transport Layer Security” RFC

4347, IETF, April 2006.

[129.] Rivest, R.L., Shamir, A., and Adleman L.M.(1978) ,“A method for obtaining

digital signature and publickey cryptosystems,” Communication of ACM, 21,

(1978),120-126.

[130.] Roy, A. , Datta, A., Derek,A.(2007), Mitchell, J.C., Inductive trace properties for

computational security. WITS.

[131.] Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, A. (2000), Modelling

and Analysis of Security Protocols. Addison-Wesley Publishing Co., Reading.

[132.] Schwartz, M. (1996) ,Broadband Integrated Networks, Prentice Hall.

[133.] Serjantov, A., Sewell, P., and Wansbrough, K.(2001), The UDP Calculus:

Rigorous Semantics for real networking. Proc TACS 2001: Fourth International

Symposium on Theoretical Aspects of Computer Software, Tohoku University,

Sendai, Oct. 2001.

[134.] Smart Grid, Smart City Project

http://www.ret.gov.au/energy/energy_progams/smartgrid/Pages/default.aspx;acce

ssed on November 2, 2011.

[135.] Stevens, W.R.(1994), TCP/IP Illustrated Vol.1: The Protocols, 1994.

[136.] Stewart, R. (2007),(Editor), Stream Control Transmission Protocol, RFC 4960.

[137.] Stiemerling, M., Quittek, J., and Eggert, L. (2008), NAT and Firewall Traversal

Issues of Host Identity Protocol (HIP) Communication. RFC 5207, IETF, April

2008.

[138.] Stoica, I., Adkins, D.,Zhuang, S., Shenker, S., Surana, S. (2002), Internet

Indirection Infrastructure, Presented at Proc. ACM SIGCOMM, August 2002.

188

[139.] Szalay, A., Gray, J., Thakar,A., Kuntz, P., Malik,T., Raddick, J., Stoughton. C.,

Vandenberg,J. (2002),: The SDSS SkyServer - Public access to the Sloan digital

sky server data. ACM SIGMOD 2002.

[140.] Teraflow Testbed, http://www.teraflowtestbed.net.

[141.] Tison, S., " Tree Automata and Term reqrite systems Sophie Tison, LNCS 1833,

Bachmair, L. Editor REWRITING TECHNIQUES AND APPS 11th International

Conf RTA 2000, Nowrich UK, July 2000 176, 2000.

[142.] Touch, J. (2007), "Defending TCP Against Spoofing Attacks," RFC-4953,

Informational, Jul. 2007.

[143.] UDT source release. http://udt.sourceforge.net

[144.] United Nations Children’s Fund, Climate Change and Children, (2010).

[145.] US Government, Federal Cloud Computing Strategy (February 2010).

[146.] Wang, X., Yu, H. (2005), "How to break MD5 and other hash functions," Proc.

IACR Eurocrypt 2005, Denmark, pp.19-35.

[147.] Warinschi, B. (2003), A computational analysis of the Needham-Schroeder(-

Lowe) protocol. In, Proceedings of 16th Computer Science Foundation Workshop,

pp. 248–262. ACM Press, New York.

[148.] Williams, N.(2009), "Clarifications and Extensions to th eGeneric Security

Service Application Program Interface (GSS-API) for the Use of Channel

Bindings", RFC 5554, May 2009.

[149.] Xu, L., Harfoush, K., and Rhee, I. (2004): Binary increase congestion control for

fast long-distance networks. IEEE Infocom '04, Hongkong, China, Mar. 2004.

[150.] Yung, C.M. (2005) (eds.) ICALP. Analysis of EAP-GPSK Authentication Protocol

LNCS, vol. 3580, pp. 652–663. Springer, Heidelberg, 325, 2005.

[151.] Zhang, M., Karp, B., Floyd, S., and Peterson,L.(2003): RR-TCP: A reordering-

robust TCP with DSACK. Proc. the Eleventh IEEE International Conference on

Networking Protocols (ICNP 2003), Atlanta, GA, November 2003.

[152.] Zhang, Y., Yan, E. and Dao, S.K. (1998): A measurement of TCP over long-delay

network. The 6th International Conference on Telecommunication Systems,

Modeling and Analysis, Nashville, TN, March 1998.

 189

Recommended Readings:

1. K.H. Rosen. Discrete Mathematics and its Applications, McGraw Hill 1995.
2. J.L. Gersting. Mathematical Structures for Computer Science, Freeman 1993.
3. J.K. Truss. Discrete Mathematics for Computer Science, Addison-Wesley 1991
4. R. Johnsonbaugh, Discrete Mathematics, 5th ed. Prentice Hall 2000.
5. C. Schumacher, Fundamental Notions of Abstract Mathematics, Addison-Wesley, 2001
6. M. Sipser, Introduction to Theory of Computing, 2nd ed,Thomson Technology, 2006
7. F. Baader and T. Nipkow. Term rewriting and all that. C.U.Press, LNCS. 2007.
8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M.
Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2011

190

 191

Appendices

Appendix A

Mathematical Notations

We briefly introduce some of the mathematical notations and the graphical symbols that

we will use throughout this work:

 - Universal quantifier for all the proposition is true for all possible
values in the universe of discourse

 - Existential quantifier exists the proposition is true for some value(s)

in the universe of discourse

 - Given the statements p and q, an implication is a statement that is

false when p is true and q is false, and true otherwise

 - A biconditional statement is true whenever the truth value is the

same for both p and q and false otherwise

¬ - 'NOT:'Negation - a method of assigning the opposite truth value to

the statement

 and - Denote set membership and non membership

192

Set Union

Set Intersection

Difference

Symmetric Difference

Basic Quantifiers

Statement True when… False when...

x P(x) P(x) is true for every x There is an x for which
P(x) is false

x P(x) There is an x for which
P(x) is true P(x) is false for every x

Mixed Quantifiers

Statement True when... False when...

x y P(x,y) P(x,y) is true for every pair
x,y

There is at least one pair x,y
for which P(x,y) is false

x y P(x,y) For every x, there is a y for
which P(x,y) is true

There is an x for which P(x,y)
is false for every y

x y P(x,y) There is an x for which P(x,y)
is true for every y

For every x, there is a y for
which P(x,y) is false

x yP(x,y) There is at least one pair x,y
for which P(x,y) is true P(x,y) is false for every pair x,y

 193

Negation Truth

Statement True when... False when...

x y P(x,y) P(x,y) is true for every pair
x,y

There is at least one pair x,y
for which P(x,y) is false

x y P(x,y) For every x, there is a y for
which P(x,y) is true

There is an x for which P(x,y)
is false for every y

x y P(x,y) There is an x for which P(x,y)
is true for every y

For every x, there is a y for
which P(x,y) is false

x yP(x,y) There is at least one pair x,y
for which P(x,y) is true P(x,y) is false for every pair x,y

JAVA Codes

 Program Name : ProjectUDT.java,

 Required Supplementary Program: GenerateBarGraph.java

 Required file : UDTFile.txt

 Author : Danilo V. Bernardo

Code : ProjectUDT.java

1001 // ProjectUDT.java

1002

1003 /***

1004 * Program Name: ProjectUDT.java

1005 * Required Program: GenerateBarGraph.java

1006 * Required file : UDTFile.txt

1007 *

1008

 This program is created to aid my

 Research on UDT

1009

1010 *

194

1011

1012

1013 *

1014 * @author: Dan Bernardo

1015 * @version Last modified Nov 2, 2011

1016 *

1017 ***/

1018

1019 import java.awt.*;

1020 import java.awt.geom.*;

1021 import java.awt.image.*;

1022 import java.awt.event.*;

1023 import java.io.*;

1024 import java.util.*;

1025 import javax.swing.*;

1026 import javax.*;

1027 import javax.swing.*;

1028 import javax.imageio.*;

1029 import javax.swing.border.Border;

1030

1031

1032 // Details used

1033

1034 /***

1035 * import java.awt.Container;

1036 * import java.awt.Graphics;

1037 * import java.awt.Graphics2D;

1038 * import java.awt.Rectangle;

1039 * import java.awt.Dimension;

1040 * import java.awt.Robot;

1041 * import java.awt.event.ActionEvent;

1042 * import java.awt.event.ActionListener;

1043 * import java.awt.event.WindowAdapter;

1044 * import java.awt.event.WindowEvent;

1045 * import java.awt.geom.Path2D;

1046 * import java.awt.image.BufferedImage;

1047 * import java.io.BufferedReader;

1048 * import java.io.File;

1049 * import java.io.FileReader;

1050 * import java.util.ArrayList;

1051 * import java.util.StringTokenizer;

1052 * import javax.imageio.ImageIO;

1053 * import javax.swing.JFrame;

1054 * import javax.swing.JMenu;

1055 * import javax.swing.JMenuBar;

1056 * import javax.swing.JMenuItem;

1057 * import javax.swing.JOptionPane;

1058 * import javax.swing.JPanel;

1059 * import javax.swing.JScrollPane;

1060 * import javax.swing.JTextArea;

1061 ***/

1062

1063

1064 Public class ProjectUDT extends JFrame implements ActionListener{

1065

1066 /** JLabel object to show the help information about the program

1067 */

1068

 195

1069 private ImageIcon icon;

1070 private JFrame jf;

1071 private JLabel programInfoLabel, iconLabel ;

1072 private JMenuBar menuBar;

1073 private JMenu menu;

1074 private JMenuItem fileMenuItem;

1075 private JMenuItem exitMenuItem;

1076 private JMenu helpMenu;

1077 private JMenuItem helpMenuItem;

1078

 private Panel

panel;

1079

1080 /** Main

1081 */

1082

1083 public static void main(String[] args){

1084 new ProjectUDT() ;

1085 }

1086

1087

1088

/**

1089

 * Constuctor to initialize and display

layout

1090

 * Initializes and defines screen size, frame,

panel

1091

*/

1092

1093 public ProjectUDT(){

1094

1095

 // Label

Project

1096

1097 jf = new JFrame("Project UDT - DBernardo 2011");

1098 programInfoLabel =new JLabel();

1099

 ImageIcon icon= new

ImageIcon("image.gif");

1100

 iconLabel = new JLabel("", icon,

JLabel.CENTER);

1101

1102 Panel panel = new Panel();

1103 panel.add(iconLabel);

1104 jf.add(panel, BorderLayout.CENTER);

1105

1106 // Menu Display

1107

1108 menuBar = new JMenuBar() ;

1109 menu = new JMenu("Menu");

1110 menuBar.add(menu) ;

1111

1112

fileMenuItem = new JMenuItem("Process File -input text file

only");

1113 fileMenuItem.addActionListener(this) ;

1114

1115 exitMenuItem = new JMenuItem("Exit");

1116 exitMenuItem.addActionListener(this) ;

1117

1118 menu.add(fileMenuItem) ;

1119 menu.add(exitMenuItem) ;

196

1120

1121 helpMenu = new JMenu("Help");

1122 helpMenuItem = new JMenuItem("Info about the program");

1123 helpMenuItem.addActionListener(this) ;

1124 helpMenu.add(helpMenuItem) ;

1125 menuBar.add(helpMenu) ;

1126

1127 // Frame location and size

1128

1129 jf.setJMenuBar(menuBar);

1130 jf.setSize(500,400);

1131

 jf.setLocation(jf.getToolkit().getScreenSize().width/2-

jf.getWidth()/2,jf.getToolkit().getScreenSize().height/2-jf.getHeight()/2);

1132

1133 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

1134

jf.setVisible(true);

1135

1136 }

1137

1138

/**

1139 * Method actionPerformed calling event

1140

 * Initializes and defines screen size, frame,

panel

1141

*

1142 * @param actionEvent

1143

*

1144 */

1145

1146 public void actionPerformed(ActionEvent actionEvent){

1147

1148 JMenuItem source = (JMenuItem)(actionEvent.getSource());

1149 if (source.getText().equalsIgnoreCase("exit")) {

1150 System.exit(0) ;

1151

} else if (source.getText().equalsIgnoreCase("Process File -input text file

only")){

1152

processFile("Enter the File Name of Text

File") ;

1153

1154

} else if (source.getText().equalsIgnoreCase("Info about the

program")){

1155

showHelp();

1156 }

1157

1158 }

1159

1160

/**

1161 * Method showHelp

1162 * Opens a window with basic information

1163

*

1164

*

1165 */

1166

1167

1168

1169

1170 public void showHelp(){

1171

 197

1172

 final JFrame helpFrame = new JFrame(" Program Help")

;

1173 JPanel box = new JPanel();

1174

 JButton exitButton = new

JButton("Close") ;

1175

 exitButton.addActionListener(new

ActionListener(){

1176

 public void

actionPerformed(ActionEvent e){

1177

helpFrame.setVisible(false) ;

1178

}

1179

1180

}) ;

1181

1182 box.setLayout(new BoxLayout(box, BoxLayout.PAGE_AXIS));

1183 box.add(new JLabel("Thank you"));

1184

 JPanel pane = new JPanel(new

BorderLayout());

1185 pane.add(box, BorderLayout.PAGE_START);

1186 pane.add(exitButton, BorderLayout.PAGE_END);

1187

 Border padding =

BorderFactory.createEmptyBorder(150,150,150,150);

1188

 helpFrame.setLocation(helpFrame.getToolkit().getScreenSize().width/2-

helpFrame.getWidth()/4,helpFrame.getToolkit(). +

 .getScreenSize().height/4-

helpFrame.getHeight()/4);

1189

helpFrame.setSize(500,400);

1190 pane.setBorder(padding) ;

1191 helpFrame.add(pane) ;

1192

 helpFrame.setVisible(true)

;

1193

}

1194

1195

1196

1197

/**

1198 * Method setFramePosition

1199

 * Initializes and defines frame size and

location

1200

*

1201 * @param frame

1202

*

1203

*/

1204

1205 public void setFramePosition(JFrame frame){

1206

1207 Toolkit toolKit = Toolkit.getDefaultToolkit();

1208 Dimension screenSize = toolKit.getScreenSize();

1209 int width = (int) screenSize.getWidth();

1210

 int height = (int)

screenSize.getHeight();

198

1211 height = height - (height / 3);

1212 width = width - (width / 3);

1213

 int centerWidth=(int)(screenSize.getWidth()-

width)/2;

1214 int centerHeight=(int)(screenSize.getHeight()-height)/2;

1215 frame.setSize(width, height);

1216 frame.setLocation(centerWidth, centerHeight);

1217 }

1218

1219

/**

1220 * Method getFileName

1221 * Gets I/O error standard message

1222

*

1223 * @param message

1224

*

1225

*/

1226

1227 public String getFileName(String message){

1228

1229 String fileName = (String)JOptionPane.showInputDialog(

1230

this,

1231

message,

1232

 "File

Name",

1233 JOptionPane.PLAIN_MESSAGE,

1234

null,

1235

null,

1236

"");

1237 return fileName ;

1238 }

1239

1240

/**

1241 * Method generateBarChart

1242

*

1243 * Calls GenerateBarGraph to create graph

1244

 * Saves file to an image

file

1245

*

1246

 * @param ArrayList <Double> dataValues - for the

values

1247

 * @param ArrayList <String> dataNames - for the label where the

values taken

1248

*/

1249

1250

public void generateBarChart(ArrayList<Double> dataValues, ArrayList<String>

dataNames){

1251

1252 final JFrame frame = new JFrame() ;

1253 setFramePosition(frame) ;

1254

frame.getContentPane().add(new GenerateBarGraph(dataValues, dataNames, "Trend of Terabyte UDT High Speed Data

Transfer"));

1255

 199

1256 JPanel objJPanel = new JPanel() ;

1257

 objJPanel.setLayout(new BorderLayout())

;

1258

 JButton proceedButton = new JButton("Save Graph to GIF format")

;

1259 proceedButton.addActionListener(

1260

1261

 new

ActionListener(){

1262

1263

 public void

actionPerformed(ActionEvent event){

1264

frame.setVisible(true);

1265

1266

 //

captures screen

1267

1268

try {

1269

 BufferedImage screencapture = new Robot().createScreenCapture(new

Rectangle(Toolkit.getDefaultToolkit().getScreenSize()));

1270

 String

name = "graph.gif";

1271

 File f

= new File(name);

1272

ImageIO.write(screencapture, "gif", f);

1273

}

1274

1275

 catch

(Exception e) {

1276

 // TODO Auto-

generated catch block

1277

e.printStackTrace();

1278

}

1279 JOptionPane.showMessageDialog(null, "Completed!", "Graph Options", JOptionPane.PLAIN_MESSAGE);

1280

frame.setVisible(false); //

1281

}

1282

}

1283

) ;

1284

1285 JButton cancelButton = new JButton("Cancel") ;

1286 cancelButton.addActionListener(

1287

 New

ActionListener(){

1288

 public void

actionPerformed(ActionEvent event){

1289

frame.setVisible(false) ;

1290

}

1291

}

1292

) ;

1293

1294 objJPanel.add(proceedButton, BorderLayout.CENTER) ;

200

1295 objJPanel.add(cancelButton, BorderLayout.EAST) ;

1296 frame.add(objJPanel, BorderLayout.SOUTH) ;

1297 frame.setVisible(true) ;

1298 }

1299

1300

1301

/**

1302 * Method showFileContent

1303

*

1304 * Opens and displays file and entries

1305

*

1306 * @param dataFile

1307

*

1308

*/

1309

1310

1311 public void showFileContent(File dataFile){

1312

1313 final JFrame frame = new JFrame() ;

1314 setFramePosition(frame) ;

1315

1316

final ArrayList<String> dataEntities = new

ArrayList<String>() ;

1317 final ArrayList<Double> dataValues = new ArrayList<Double>();

1318

1319

1320 frame.setLayout(new BorderLayout()) ;

1321 JTextArea fileContentArea = new JTextArea() ;

1322 fileContentArea.setEditable(false) ;

1323

 JScrollPane scrollPane = new

JScrollPane(fileContentArea);

1324 frame.add(scrollPane, BorderLayout.CENTER) ;

1325

1326

Try {

1327 FileReader objFileReader = new FileReader(dataFile) ;

1328 BufferedReader objBufferedReader = new BufferedReader(objFileReader) ;

1329

1330 String dataLine = objBufferedReader.readLine() ;

1331 int index = 0 ;

1332 int lineNum = 0 ;

1333

while(dataLine !=

null){

1334 if (lineNum != 0){

1335

1336

// optional - console

System.out.println(dataLine);

1337

1338

String []values =

dataLine.split("\t") ;

1339

if (values.length >

2){

1340

dataValues.add(Double.parseDouble(values[0]))

;

1341

dataValues.add(Double.parseDouble(values[1]))

;

1342 dataEntities.add("RTT") ;

1343

dataEntities.add("SendRate")

;

1344 }

 201

1345

1346 }

1347

fileContentArea.append(dataLine + "\n")

;

1348

dataLine = objBufferedReader.readLine()

;

1349 lineNum ++ ;

1350 }

1351 objBufferedReader.close() ;

1352 objFileReader.close() ;

1353 } catch (FileNotFoundException e) {

1354 e.printStackTrace();

1355 } catch (IOException ioe) {

1356 ioe.printStackTrace() ;

1357 }

1358

1359

1360 JPanel objJPanel = new JPanel() ;

1361 objJPanel.setLayout(new BorderLayout()) ;

1362 JButton proceedButton = new JButton("Get the Graph") ;

1363 proceedButton.addActionListener(

1364 new ActionListener(){

1365 public void actionPerformed(ActionEvent event){

1366

frame.setVisible(false)

;

1367

generateBarChart(dataValues, dataEntities)

;

1368 }

1369 }

1370

) ;

1371

1372 JButton cancelButton = new JButton("Cancel") ;

1373 cancelButton.addActionListener(

1374 new ActionListener(){

1375 public void actionPerformed(ActionEvent event){

1376

frame.setVisible(false)

;

1377 }

1378 }

1379

)

;

1380

1381 objJPanel.add(proceedButton, BorderLayout.CENTER) ;

1382 objJPanel.add(cancelButton, BorderLayout.EAST) ;

1383

1384 frame.add(objJPanel, BorderLayout.SOUTH) ;

1385

1386

 frame.setVisible(true)

;

1387 }

1388

1389

1390

/**

1391 * Method processFile

1392

*

1393

 * Gets and validates

file

202

1394

*

1395 * @param message

1396

*

1397

*/

1398

1399

1400 public void processFile(String message){

1401

1402 String fileName = getFileName(message) ;

1403

1404

if ((fileName != null) && (fileName.length() >

0)) {

1405

File dataFile = new File("./" +

fileName);

1406

 boolean exists =

dataFile.exists();

1407

1408

 if (exists)

{

1409 showFileContent(dataFile) ;

1410

1411

 }

else{

1412

processFile("File Does not exists\nEnter the correct

name: ") ;

1413 }

1414 return;

1415

} else if (fileName != null && fileName.length() ==

0){

1416

processFile("File Does not exists\nEnter the correct

name: ") ;

1417 }

1418 }

1419 }

Code : GenerateBarGraph.java

1001 // GenerateBarGraph.java

1002

1003 /***

1004 * Program Name: GenerateBarGraph.java

1005 * Main Program: ProjectUDT.java

1006 *

1007

 * This program is created to aid my research

on UDT

1008

1009 *

1010 *

1011 *

1012 *

1013 * @author: Dan Bernardo

1014 * @version Last modified Nov 2, 2011

1015 *

1016 ***/

 203

1017

 1018

1019

1020 import java.awt.Color;

1021 import java.awt.Dimension;

1022 import java.awt.Font;

1023 import java.awt.FontMetrics;

1024 import java.awt.Graphics;

1025 import java.util.ArrayList;

1026 import javax.swing.JPanel;

1027

1028 public class GenerateBarGraph extends JPanel{

1029

1030 // Declare variables, arrays

1031

1032 private ArrayList<Double> dataValues;

1033 private ArrayList<String> dataNames;

1034 private String graphTitle;

1035 public GenerateBarGraph(ArrayList<Double> dataValues, ArrayList<String> dataNames, String graphTitle){

1036

1037 this.dataNames = dataNames;

1038 this.dataValues = dataValues;

1039 this.graphTitle = graphTitle;

1040 }

1041

1042

1043

/**

1044 * Method painComponent

1045

*

1046 * Get values and plot

1047

*

1048 * @param graphics

1049

*/

1050

1051

1052 public void paintComponent(Graphics graphics) {

1053

1054 super.paintComponent(graphics);

1055

1056

1057

 // set

bar_width

1058

1059 int bar_width = 50;

1060 Font objeFont_title = new Font("Book Antiqua", Font.BOLD, 15);

1061 Font font_label = new Font("Book Antiqua", Font.PLAIN, 10);

1062 FontMetrics fontMetrics_title = graphics.getFontMetrics(objeFont_title);

1063 FontMetrics fontMetrics_label = graphics.getFontMetrics(font_label);

1064

1065 Dimension objDimension = getSize();

1066 int frameWidth = objDimension.width;

1067 int frameHeight = objDimension.height;

1068

1069 if (dataValues == null || dataValues.size() == 0)

1070 return;

1071

204

1072 double minDataValue = 0;

1073 double maxDataValue = 0;

1074

1075 for (int i = 0; i < dataValues.size(); i++) {

1076 if (minDataValue > dataValues.get(i))

1077 minDataValue = dataValues.get(i);

1078 if (maxDataValue < dataValues.get(i))

1079 maxDataValue = dataValues.get(i);

1080 }

1081

1082

1083 // Compute and validate values

1084

1085 int titleWidth = fontMetrics_title.stringWidth(graphTitle);

1086 int q = fontMetrics_title.getAscent();

1087 int p = (frameWidth - titleWidth) / 2;

1088 graphics.setFont(objeFont_title);

1089 graphics.drawString(graphTitle, p, q);

1090

1091 int title_height = fontMetrics_title.getHeight();

1092 int label_height = fontMetrics_label.getHeight();

1093

1094 if (maxDataValue == minDataValue)

1095 return;

1096

1097 double graphScale = (frameHeight - title_height - label_height) / (maxDataValue - minDataValue);

1098 q = frameHeight - fontMetrics_label.getDescent();

1099

1100 graphics.setFont(font_label);

1101

1102 for (int j = 0; j < dataValues.size(); j++) {

1103

1104 int valueP = j * bar_width + 1;

1105 /*

1106 if (j%2==0){

1107 valueP +=50;

1108 }*/

1109

1110 // optional -System.out.println("valueP: " + valueP);

1111 int valueQ = title_height;

1112 int height = (int) (dataValues.get(j) * graphScale);

1113

1114 if (dataValues.get(j) >= 0)

1115 valueQ += (int) ((maxDataValue - dataValues.get(j)) * graphScale);

1116 else {

1117 valueQ += (int) (maxDataValue * graphScale);

1118 height = -height;

1119 }

1120

1121 // Identifies trend by colors

1122

1123 if (j % 2 == 0) {

1124 graphics.setColor(Color.BLUE); //RTT

1125 } else {

1126 graphics.setColor(Color.GREEN); //SendRate

1127 }

1128

1129

 // Plot

values

1130

1131 graphics.fillRect(valueP, valueQ, bar_width - 2, height);

1132 graphics.setColor(Color.black);

 205

1133 graphics.drawRect(valueP, valueQ, bar_width - 2, height);

1134

1135 // Label values

1136

1137 int labelWidth = fontMetrics_label.stringWidth(dataNames.get(j));

1138 p = j * bar_width + (bar_width - labelWidth) / 2;

1139 graphics.drawString(dataNames.get(j), p, q);

1140 }

1141

1142 }

1143

1144 }

206

UDT Codes

// Simulation program for UDT (UIC)

//lac.uic.edu //

// Description: the program is used to simulate UDT on NS-2 //

#ifndef __NS_UDT_H__

#define __NS_UDT_H__

#include "agent.h"

#include "packet.h"

const int MAX_LOSS_LEN = 300;

struct hdr_udt

{

 int flag_;

 int seqno_;

 int type_;

 int losslen_;

 int ackseq_;

 int ack_;

 int recv_;

 int rtt_;

 int bandwidth_;

 int loss_[MAX_LOSS_LEN];

 207

 static int off_udt_;

 inline static int& offset() { return off_udt_; }

 inline static hdr_udt* access(Packet* p) {return (hdr_udt*) p->access(off_udt_);}

 int& flag() {return flag_;}

 int& seqno() {return seqno_;}

 int& type() {return type_;}

 int& losslen() {return losslen_;}

 int& ackseq() {return ackseq_;}

 int& ack() {return ack_;}

 int& lrecv() {return recv_;}

 int& rtt() {return rtt_;}

 int& bandwidth() {return bandwidth_;};

 int* loss() {return loss_;}

};

class UdtAgent;

class SndTimer: public TimerHandler

{

public:

 SndTimer(UdtAgent *a) : TimerHandler() { a_ = a; }

protected:

 virtual void expire(Event *e);

 UdtAgent *a_;

};

208

class SynTimer: public TimerHandler

{

public:

 SynTimer(UdtAgent *a) : TimerHandler() { a_ = a; }

protected:

 virtual void expire(Event *e);

 UdtAgent *a_;

};

class AckTimer: public TimerHandler

{

public:

 AckTimer(UdtAgent *a) : TimerHandler() { a_ = a; }

protected:

 virtual void expire(Event *e);

 UdtAgent *a_;

};

class NakTimer: public TimerHandler

{

public:

 NakTimer(UdtAgent *a) : TimerHandler() { a_ = a; }

 209

protected:

 virtual void expire(Event *e);

 UdtAgent *a_;

};

class ExpTimer: public TimerHandler

{

public:

 ExpTimer(UdtAgent *a) : TimerHandler() { a_ = a; }

protected:

 virtual void expire(Event *e);

 UdtAgent *a_;

};

class LossList

{

protected:

 const bool greaterthan(const int& seqno1, const int& seqno2) const;

 const bool lessthan(const int& seqno1, const int& seqno2) const;

 const bool notlessthan(const int& seqno1, const int& seqno2) const;

 const bool notgreaterthan(const int& seqno1, const int& seqno2) const;

 const int getLength(const int& seqno1, const int& seqno2) const;

 const int incSeqNo(const int& seqno) const;

 const int decSeqNo(const int& seqno) const;

210

protected:

 int seq_no_th_; // threshold for comparing seq. no.

 int max_seq_no_; // maximum permitted seq. no.

};

//

class SndLossList: public LossList

{

public:

 SndLossList(const int& size, const int& th, const int& max);

 ~SndLossList();

 int insert(const int& seqno1, const int& seqno2);

 void remove(const int& seqno);

 int getLossLength();

 int getLostSeq();

private:

 int* data1_; // sequence number starts

 int* data2_; // seqnence number ends

 int* next_; // next node in the list

 int head_; // first node

 int length_; // loss length

 int size_; // size of the static array

 int last_insert_pos_; // position of last insert node

};

 211

//

class RcvLossList: public LossList

{

public:

 RcvLossList(const int& size, const int& th, const int& max);

 ~RcvLossList();

 void insert(const int& seqno1, const int& seqno2);

 bool remove(const int& seqno);

 int getLossLength() const;

 int getFirstLostSeq() const;

 void getLossArray(int* array, int* len, const int& limit, const double& interval);

private:

 int* data1_; // sequence number starts

 int* data2_; // sequence number ends

 double* last_feedback_time_; // last feedback time of the node

 int* count_; // report counter

 int* next_; // next node in the list

 int* prior_; // prior node in the list;

 int head_; // first node in the list

 int tail_; // last node in the list;

 int length_; // loss length

 int size_; // size of the static array

};

212

class AckWindow

{

public:

 AckWindow();

 ~AckWindow();

 void store(const int& seq, const int& ack);

 double acknowledge(const int& seq, int& ack);

private:

 int* ack_seqno_;

 int* ack_;

 double* ts_;

 const int size_;

 int head_;

 int tail_;

};

class TimeWindow

{

public:

 TimeWindow();

 ~TimeWindow();

 213

 int getbandwidth() const;

 int getpktspeed() const;

 bool getdelaytrend() const;

 void pktarrival();

 void ack2arrival(const double& rtt);

 void probe1arrival();

 void probe2arrival();

private:

 const int size_;

 double* pkt_window_;

 int pkt_window_ptr_;

 double* rtt_window_;

 double* pct_window_;

 double* pdt_window_;

 int rtt_window_ptr_;

 double* probe_window_;

 int probe_window_ptr_;

 double last_arr_time_;

 double probe_time_;

 double curr_arr_time_;

 bool first_round_;

};

class UdtAgent: public Agent

{

friend SndTimer;

214

friend SynTimer;

friend AckTimer;

friend NakTimer;

friend ExpTimer;

public:

 UdtAgent();

 ~UdtAgent();

 int command(int argc, const char*const* argv);

 virtual void recv(Packet*, Handler*);

 virtual void sendmsg(int nbytes, const char *flags = 0);

protected:

 SndTimer snd_timer_;

 SynTimer syn_timer_;

 AckTimer ack_timer_;

 NakTimer nak_timer_;

 ExpTimer exp_timer_;

 double syn_interval_;

 double ack_interval_;

 double nak_interval_;

 double exp_interval_;

 int mtu_;

 int max_flow_window_;

 int flow_window_size_;

 SndLossList* snd_loss_list_;

 RcvLossList* rcv_loss_list_;

 215

 double snd_interval_;

 int bandwidth_;

 int nak_count_;

 int dec_count_;

 volatile int snd_last_ack_;

 int local_send_;

 int local_loss_;

 int local_ack_;

 volatile int snd_curr_seqno_;

 int curr_max_seqno_;

 int dec_random_;

 int avg_nak_num_;

 double loss_rate_limit_;

 double loss_rate_;

 AckWindow ack_window_;

 TimeWindow time_window_;

 double rtt_;

 double rcv_interval_;

 int rcv_last_ack_;

 double rcv_last_ack_time_;

 int rcv_last_ack2_;

 int ack_seqno_;

 volatile int rcv_curr_seqno_;

 int local_recv_;

 int last_dec_seq_;

216

 double last_delay_time_;

 double last_dec_int_;

 bool slow_start_;

 bool freeze_;

 bool firstloss_;

protected:

 void rateControl();

 void flowControl();

 void sendCtrl(int pkttype, int lparam = 0, int* rparam = NULL);

 void sendData();

 void timeOut();

};

#endif

Packet.cpp

/**

Copyright © 2001 - 2006, The Board of Trustees of the University of Illinois.

All Rights Reserved. UDP-based Data Transfer Library (UDT) version 3

Laboratory for Advanced Computing (LAC)

National Center for Data Mining (NCDM)

University of Illinois at Chicago

http://www.lac.uic.edu/

This library is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1
of the License, or (atyour option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser

 217

General Public License for more details.

You should have received a copy of the GNU Lesser General Public License

along with this library; if not, write to the Free Software Foundation, Inc.,59 Temple Place, Suite 330,
Boston, MA 02111-1307, USA.

**/

/**

This file contains the implementation of UDT packet handling modules.

A UDT packet is a 2-dimension vector of packet header and data.

**/

//

// 0 1 2 3

// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

// +-+

// | Packet Header |

// +-+

// | |

// ~ Data / Control Information Field ~

// | |

// +-+

//

// 0 1 2 3

// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

// +-+

// |0| Sequence Number |

// +-+

// |ff |o| Message Number |

218

// +-+

// | Time Stamp |

// +-+

//

// bit 0:

// 0: Data Packet

// 1: Control Packet

// bit ff:

// 11: solo message packet

// 10: first packet of a message

// 01: last packet of a message

// bit o:

// 0: in order delivery not required

// 1: in order delivery required

//

// 0 1 2 3

// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

// +-+

// |1| Type | Reserved |

// +-+

// | Additional Info |

// +-

// | Time Stamp |

// +-+

//

// bit 1-15:

 219

// 0: Protocol Connection Handshake

// Add. Info: Undefined

// Control Info: Handshake information (see CHandShake)

// 1: Keep-alive

// Add. Info: Undefined

// Control Info: None

// 2: Acknowledgement (ACK)

// Add. Info: The ACK sequence number

// Control Info: The sequence number to which (but not include)

// all the previous packets have beed received

// Optional: RTT

// RTT Variance

// advertised flow window size (number of packets)

// estimated bandwidth (number of packets per //second)

// 3: Negative Acknowledgement (NAK)

// Add. Info: Undefined

// Control Info: Loss list (see loss list coding below)

// 4: Congestion Warning

// Add. Info: Undefined

// Control Info: None

// 5: Shutdown

// Add. Info: Undefined

// Control Info: None

// 6: Acknowledgement of Acknowledement (ACK-square)

// Add. Info: The ACK sequence number

// Control Info: None

220

// 7: Message Drop Request

// Add. Info: Message ID

// Control Info: first sequence number of the message

// last seqeunce number of the message

// 65535: Explained by bits 16 - 31

//

// bit 16 - 31:

// This space is used for future expansion or user defined control packets.

//

// 0 1 2 3

// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

// +-+

// |1| Sequence Number a (first) |

// +-+

// |0| Sequence Number b (last) |

// +-+

// |0| Sequence Number (single) |

// +-+

//

// Loss List Field Coding:

// For any consecutive lost sequence numbers that the difference /between

// the last and first is more than 1, only record the first (a) and the

// the last (b) sequence numbers in the loss list field, and modify the

// the first bit of a to 1.

// For any single loss or consecutive loss less than 2 packets, use

// the original sequence numbers in the field.

 221

#include "packet.h"

const int CPacket::m_iPktHdrSize = 12;

// Set up the aliases in the constructure

CPacket::CPacket():

m_iSeqNo((int32_t&)(m_nHeader[0])),

m_iMsgNo((int32_t&)(m_nHeader[1])),

m_iTimeStamp((int32_t&)(m_nHeader[2])),

m_pcData((char*&)(m_PacketVector[1].iov_base))

{

 m_PacketVector[0].iov_base = (char *)m_nHeader;

 m_PacketVector[0].iov_len = CPacket::m_iPktHdrSize;

}

CPacket::~CPacket()

{

}

int CPacket::getLength() const

{

 return m_PacketVector[1].iov_len;

}

void CPacket::setLength(const int& len)

{

 m_PacketVector[1].iov_len = len;

}

222

void CPacket::pack(const int& pkttype, void* lparam, void* rparam, const int& size)

{

 // Set (bit-0 = 1) and (bit-1~15 = type)

 m_nHeader[0] = 0x80000000 | (pkttype << 16);

 // Set additional information and control information field

 switch (pkttype)

 {

 case 2: //0010 - Acknowledgement (ACK)

 // ACK packet seq. no.

 if (NULL != lparam)

 m_nHeader[1] = *(int32_t *)lparam;

 // data ACK seq. no.

 // optional: RTT (microsends), RTT variance (microseconds) advertised flow window size
(packets), and estimated link capacity (packets per second)

 m_PacketVector[1].iov_base = (char *)rparam;

 m_PacketVector[1].iov_len = size;

 break;

 case 6: //0110 - Acknowledgement of Acknowledgement (ACK-2)

 // ACK packet seq. no.

 m_nHeader[1] = *(int32_t *)lparam;

 // control info field should be none

 // but "writev" does not allow this

 m_PacketVector[1].iov_base = (char *)&__pad; //NULL;

 m_PacketVector[1].iov_len = 4; //0;

 break;

 223

 case 3: //0011 - Loss Report (NAK)

 // loss list

 m_PacketVector[1].iov_base = (char *)rparam;

 m_PacketVector[1].iov_len = size;

 break;

 case 4: //0100 - Congestion Warning

 // control info field should be none

 // but "writev" does not allow this

 m_PacketVector[1].iov_base = (char *)&__pad; //NULL;

 m_PacketVector[1].iov_len = 4; //0

 break;

 case 1: //0001 - Keep-alive

 // control info field should be none

 // but "writev" does not allow this

 m_PacketVector[1].iov_base = (char *)&__pad; //NULL;

 m_PacketVector[1].iov_len = 4; //0

 break;

 case 0: //0000 - Handshake

 // control info filed is handshake info

 m_PacketVector[1].iov_base = (char *)rparam;

 m_PacketVector[1].iov_len = size; //sizeof(CHandShake);

 break;

 case 5: //0101 - Shutdown

 // control info field should be none

 // but "writev" does not allow this

 m_PacketVector[1].iov_base = (char *)&__pad; //NULL;

224

 m_PacketVector[1].iov_len = 4; //0

 break;

 case 7: //0111 - Message Drop Request

 // msg id

 m_nHeader[1] = *(int32_t *)lparam;

 //first seq no, last seq no

 m_PacketVector[1].iov_base = (char *)rparam;

 m_PacketVector[1].iov_len = size;

 break;

 case 65535: //0x7FFF - Reserved for user defined control packets

 // for extended control packet

 // "lparam" contains the extneded type information for bit 4 - 15

 // "rparam" is the control information

 m_nHeader[0] |= (*(int32_t *)lparam) << 16;

 if (NULL != rparam)

 {

 m_PacketVector[1].iov_base = (char *)rparam;

 m_PacketVector[1].iov_len = size;

 }

 else

 {

 m_PacketVector[1].iov_base = (char *)&__pad;

 m_PacketVector[1].iov_len = 4;

 }

 225

 break;

 default:

 break;

 }

}

iovec* CPacket::getPacketVector()

{

 return m_PacketVector;

}

int CPacket::getFlag() const

{

 // read bit 0

 return m_nHeader[0] >> 31;

}

int CPacket::getType() const

{

 // read bit 1~15

 return (m_nHeader[0] >> 16) & 0x00007FFF;

}

int CPacket::getExtendedType() const

{

 // read bit 16~31

 return m_nHeader[0] & 0x0000FFFF;

}

226

int32_t CPacket::getAckSeqNo() const

{

 // read additional information field

 return m_nHeader[1];

}

int CPacket::getMsgBoundary() const

{

 // read [1] bit 0~1

 return m_nHeader[1] >> 30;

}

bool CPacket::getMsgOrderFlag() const

{

 // read [1] bit 2

 return (1 == ((m_nHeader[1] >> 29) & 1));

}

int32_t CPacket::getMsgSeq() const

{

 // read [1] bit 3~31

 return m_nHeader[1] & 0x1FFFFFFF;

}

Sendfile.cpp

#ifndef __WIN32

#include <cstdlib>

#endif

#include <fstream>

 227

#include <iostream>

#include <udt.h>

using namespace std;

int main(int argc, char* argv[])

{

 //usage: sendfile [server_port]

 if ((2 < argc) || ((2 == argc) && (0 == atoi(argv[1]))))

 {

 cout << "usage: sendfile [server_port]" << endl;

 return 0;

 }

 UDTSOCKET serv = UDT::socket(AF_INET, SOCK_STREAM, 0);

#ifdef WIN32

 int mss = 1052;

 UDT::setsockopt(serv, 0, UDT_MSS, &mss, sizeof(int));

#endif

 short port = 9000;

 if (2 == argc)

 port = atoi(argv[1]);

 sockaddr_in my_addr;

 my_addr.sin_family = AF_INET;

 my_addr.sin_port = htons(port);

 my_addr.sin_addr.s_addr = INADDR_ANY;

 memset(&(my_addr.sin_zero), '\0', 8);

228

 if (UDT::ERROR == UDT::bind(serv, (sockaddr*)&my_addr, sizeof(my_addr)))

 {

 cout << "bind: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

 cout << "server is ready at port: " << port << endl;

 UDT::listen(serv, 1);

 sockaddr_in their_addr;

 int namelen = sizeof(their_addr);

 UDTSOCKET fhandle;

 if (UDT::INVALID_SOCK == (fhandle = UDT::accept(serv, (sockaddr*)&their_addr,
&namelen)))

 {

 cout << "accept: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

 UDT::close(serv);

 // aquiring file name information from client

 char file[1024];

 int len;

 if (UDT::ERROR == UDT::recv(fhandle, (char*)&len, sizeof(int), 0))

 {

 cout << "recv: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

 229

 if (UDT::ERROR == UDT::recv(fhandle, file, len, 0))

 {

 cout << "recv: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

 file[len] = '\0';

 // open the file

 ifstream ifs(file, ios::in | ios::binary);

 ifs.seekg(0, ios::end);

 int64_t size = ifs.tellg();

 ifs.seekg(0, ios::beg);

 // send file size information

 if (UDT::ERROR == UDT::send(fhandle, (char*)&size, sizeof(int64_t), 0))

 {

 cout << "send: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

 UDT::TRACEINFO trace;

 UDT::perfmon(fhandle, &trace);

 // send the file

 if (UDT::ERROR == UDT::sendfile(fhandle, ifs, 0, size))

 {

 cout << "sendfile: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

230

 UDT::perfmon(fhandle, &trace);

 cout << "speed = " << trace.mbpsSendRate << endl;

 UDT::close(fhandle);

 ifs.close();

 return 1;

}

Recvfile.cpp

#ifndef WIN32

#include <arpa/inet.h>

#endif

#include <fstream>

#include <iostream>

#include <cstdlib>

#include <udt.h>

using namespace std;

int main(int argc, char* argv[])

{

 if ((argc != 5) || (0 == atoi(argv[2])))

 {

 cout << "usage: recvfile server_ip server_port remote_filename local_filename" << endl;

 return 0;

 }

 UDTSOCKET fhandle = UDT::socket(AF_INET, SOCK_STREAM, 0);

 sockaddr_in serv_addr;

 serv_addr.sin_family = AF_INET;

 serv_addr.sin_port = htons(short(atoi(argv[2])));

 231

#ifndef WIN32

 if (inet_pton(AF_INET, argv[1], &serv_addr.sin_addr) <= 0)

#else

 if (INADDR_NONE == (serv_addr.sin_addr.s_addr = inet_addr(argv[1])))

#endif

 {

 cout << "incorrect network address.\n";

 return 0;

 }

 memset(&(serv_addr.sin_zero), '\0', 8);

 if (UDT::ERROR == UDT::connect(fhandle, (sockaddr*)&serv_addr, sizeof(serv_addr)))

 {

 cout << "connect: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

 // send name information of the requested file

 int len = strlen(argv[3]);

 if (UDT::ERROR == UDT::send(fhandle, (char*)&len, sizeof(int), 0))

 {

 cout << "send: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

 if (UDT::ERROR == UDT::send(fhandle, argv[3], len, 0))

 {

 cout << "send: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

232

 }

 // get size information

 int64_t size;

 if (UDT::ERROR == UDT::recv(fhandle, (char*)&size, sizeof(int64_t), 0))

 {

 cout << "send: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

 // receive the file

 ofstream ofs(argv[4], ios::out | ios::binary | ios::trunc);

 int64_t recvsize;

 if (UDT::ERROR == (recvsize = UDT::recvfile(fhandle, ofs, 0, size)))

 {

 cout << "recvfile: " << UDT::getlasterror().getErrorMessage() << endl;

 return 0;

 }

 UDT::close(fhandle);

 ofs.close();

 return 1;

}

 233

cc.h

/***

DISCLAIMER: The algorithms implemented using UDT/CCC in this file may be modified. These
modifications may NOT necessarily reflect the view of the algorithms' original authors.

***************/

#ifndef WIN32

 #include <sys/time.h>

 #include <time.h>

#endif

#include <cmath>

#include <vector>

#include <algorithm>

#include <window.h>

#include <ccc.h>

#include <udt.h>

using namespace std;

/**

TCP congestion control

Reference:

M. Allman, V. Paxson, W. Stevens (consultant), TCP Congestion Control, RFC 2581, April 1999.

Note:

This base TCP control class can be used to derive new TCP variants, including those
implemented in this file: HighSpeed, Scalable, BiC, Vegas, and FAST.

**/

234

class CTCP: public CCC

{

public:

 void init()

 {

 m_bSlowStart = true;

 m_issthresh = 83333;

 m_dPktSndPeriod = 0.0;

 m_dCWndSize = 2.0;

 setACKInterval(2);

 setRTO(1000000);

 }

 virtual void onACK(const int& ack)

 {

 if (ack == m_iLastACK)

 {

 if (3 == ++ m_iDupACKCount)

 DupACKAction();

 else if (m_iDupACKCount > 3)

 m_dCWndSize += 1.0;

 else

 ACKAction();

 }

 else

 {

 if (m_iDupACKCount >= 3)

 235

 m_dCWndSize = m_issthresh;

 m_iLastACK = ack;

 m_iDupACKCount = 1;

 ACKAction();

 }

 }

 virtual void onTimeout()

 {

 m_issthresh = getPerfInfo()->pktFlightSize / 2;

 if (m_issthresh < 2)

 m_issthresh = 2;

 m_bSlowStart = true;

 m_dCWndSize = 2.0;

 }

protected:

 virtual void ACKAction()

 {

 if (m_bSlowStart)

 {

 m_dCWndSize += 1.0;

 if (m_dCWndSize >= m_issthresh)

 m_bSlowStart = false;

 }

 else

 m_dCWndSize += 1.0/m_dCWndSize;

 }

236

 virtual void DupACKAction()

 {

 m_bSlowStart = false;

 m_issthresh = getPerfInfo()->pktFlightSize / 2;

 if (m_issthresh < 2)

 m_issthresh = 2;

 m_dCWndSize = m_issthresh + 3;

 }

protected:

 int m_issthresh;

 bool m_bSlowStart;

 int m_iDupACKCount;

 int m_iLastACK;

};

/**

Scalable TCP congestion control

Reference:

Tom Kelly, Scalable TCP: Improving Performance in Highspeed Wide Area Networks, Computer
Communication Review, Vol. 33 No. 2 - April 2003

**/

class CScalableTCP: public CTCP

{

protected:

 virtual void ACKAction()

 {

 237

 if (m_dCWndSize <= 38.0)

 CTCP::ACKAction();

 else

 {

 if (m_bSlowStart)

 m_dCWndSize += 1.0;

 else

 m_dCWndSize += 0.01;

 }

 if (m_dCWndSize > m_iMaxCWndSize)

 m_dCWndSize = m_iMaxCWndSize;

 }

 virtual void DupACKAction()

 {

 if (m_dCWndSize <= 38.0)

 m_dCWndSize *= 0.5;

 else

 m_dCWndSize *= 0.875;

 if (m_dCWndSize < m_iMinCWndSize)

 m_dCWndSize = m_iMinCWndSize;

 }

private:

 static const int m_iMinCWndSize = 16;

 static const int m_iMaxCWndSize = 100000;

 static const int m_iCWndThresh = 38;

};

238

/**

HighSpeed TCP congestion control

Reference:

Sally Floyd, HighSpeed TCP for Large Congestion Windows, RFC 3649,

Experimental, December 2003

**/

class CHSTCP: public CTCP

{

public:

 virtual void ACKAction()

 {

 m_dCWndSize += a(m_dCWndSize)/m_dCWndSize;

 }

 virtual void DupACKAction()

 {

 m_dCWndSize -= m_dCWndSize*b(m_dCWndSize);

 }

private:

 double a(double w)

 {

 return (w * w * 2.0 * b(w)) / ((2.0 - b(w)) * pow(w, 1.2) * 12.8);

 }

 double b(double w)

 {

 return (0.1 - 0.5) * (log(w) - log(38.)) / (log(83000.) - log(38.)) + 0.5;

 239

 }

private:

 static const int m_iHighWnd = 83000;

 static const int m_iLowWnd = 38;

};

/**

BiC TCP congestion control

Reference:

Lisong Xu, Khaled Harfoush, and Injong Rhee, "Binary Increase Congestion Control for Fast
Long-Distance Networks", INFOCOM 2004.

**/

class CBiCTCP: public CTCP

{

public:

 CBiCTCP()

 {

 m_dMaxWin = m_iDefaultMaxWin;

 m_dMinWin = m_dCWndSize;

 m_dTargetWin = (m_dMaxWin + m_dMinWin) / 2;

 m_dSSCWnd = 1.0;

 m_dSSTargetWin = m_dCWndSize + 1.0;

 }

protected:

 virtual void ACKAction()

240

 {

 if (m_dCWndSize < m_iLowWindow)

 {

 m_dCWndSize += 1/m_dCWndSize;

 return;

 }

 if (!m_bSlowStart)

 {

 if (m_dTargetWin - m_dCWndSize < m_iSMax)

 m_dCWndSize += (m_dTargetWin - m_dCWndSize)/m_dCWndSize;

 else

 m_dCWndSize += m_iSMax/m_dCWndSize;

 if (m_dMaxWin > m_dCWndSize)

 {

 m_dMinWin = m_dCWndSize;

 m_dTargetWin = (m_dMaxWin + m_dMinWin) / 2;

 }

 else

 {

 m_bSlowStart = true;

 m_dSSCWnd = 1.0;

 m_dSSTargetWin = m_dCWndSize + 1.0;

 m_dMaxWin = m_iDefaultMaxWin;

 }

 }

 else

 241

 {

 m_dCWndSize += m_dSSCWnd/m_dCWndSize;

 if(m_dCWndSize >= m_dSSTargetWin)

 {

 m_dSSCWnd *= 2;

 m_dSSTargetWin = m_dCWndSize + m_dSSCWnd;

 }

 if(m_dSSCWnd >= m_iSMax)

 m_bSlowStart = false;

 }

 }

 virtual void DupACKAction()

 {

 if (m_dCWndSize <= m_iLowWindow)

 m_dCWndSize *= 0.5;

 else

 {

 m_dPreMax = m_dMaxWin;

 m_dMaxWin = m_dCWndSize;

 m_dCWndSize *= 0.875;

 m_dMinWin = m_dCWndSize;

 if (m_dPreMax > m_dMaxWin)

 {

 m_dMaxWin = (m_dMaxWin + m_dMinWin) / 2;

242

 m_dTargetWin = (m_dMaxWin + m_dMinWin) / 2;

 }

 }

 }

private:

 static const int m_iLowWindow = 38;

 static const int m_iSMax = 32;

 static const int m_iSMin = 1;

 static const int m_iDefaultMaxWin = 1 << 29;

 double m_dMaxWin;

 double m_dMinWin;

 double m_dPreMax;

 double m_dTargetWin;

 double m_dSSCWnd;

 double m_dSSTargetWin;

};

/**

TCP Westwood

reference:

http://www.cs.ucla.edu/NRL/hpi/tcpw/

**/

class CWestwood: public CTCP

{

public:

 CWestwood(): m_dBWE(1), m_dLastBWE(1), m_dBWESample(1), m_dLastBWESample(1)

 {

 243

 gettimeofday(&m_LastACKTime, 0);

 }

 virtual void onACK(const int& ack)

 {

 timeval currtime;

 gettimeofday(&currtime, 0);

m_dBWESample = double(ack - m_iLastACK) / double((currtime.tv_sec –

m_LastACKTime.tv_sec) * 1000.0 + (currtime.tv_usec - m_LastACKTime.tv_usec) / 1000.0);

m_dBWE = 19.0/21.0 * m_dLastBWE + 1.0/21.0 * (m_dBWESample + m_dLastBWESample);

 m_LastACKTime = currtime;

 m_dLastBWE = m_dBWE;

 m_dLastBWESample = m_dBWESample;

 if (ack == m_iLastACK)

 {

 if (3 == ++ m_iDupACKCount)

 {

 m_bSlowStart = false;

 m_issthresh = int(ceil(getPerfInfo()->msRTT * m_dBWE));

 if (m_issthresh < 2)

 m_issthresh = 2;

 m_dCWndSize = m_issthresh + 3;

 }

 else if (m_iDupACKCount > 3)

 m_dCWndSize += 1.0;

244

 else

 ACKAction();

 }

 else

 {

 if (m_iDupACKCount >= 3)

 m_dCWndSize = m_issthresh;

 m_iLastACK = ack;

 m_iDupACKCount = 1;

 ACKAction();

 }

 }

 virtual void onTimeout()

 {

 m_issthresh = int(ceil(getPerfInfo()->msRTT * m_dBWE));

 if (m_issthresh < 2)

 m_issthresh = 2;

 m_bSlowStart = true;

 m_dCWndSize = 2.0;

 };

private:

 double m_dBWE, m_dLastBWE;

 double m_dBWESample, m_dLastBWESample;

 timeval m_LastACKTime;

};

 245

/**

TCP Vegas

Reference:

L. Brakmo, S. O'Malley, and L. Peterson. TCP Vegas: New techniques for congestion detection
and avoidance. In Proceedings of the SIGCOMM '94 Symposium (Aug. 1994) pages 24-35.

Note:

This class can be used to derive new delay based approaches, e.g., FAST.

***/

class CVegas: public CTCP

{

public:

 CVegas()

 {

 m_iSSRound = 1;

 m_iRTT = 1000000;

 m_iBaseRTT = 1000000;

 gettimeofday(&m_LastCCTime, 0);

 m_iPktSent = 0;

 m_pAckWindow = new CACKWindow(100000);

 }

246

 ~CVegas()

 {

 delete m_pAckWindow;

 }

 virtual void onACK(const int& seq)

 {

 double expected, actual, diff; //kbps

 int rtt = m_pAckWindow->acknowledge(seq, const_cast<int&>(seq));

 if (rtt > 0)

 m_iRTT = (m_iRTT * 15 + rtt) >> 4;

 timeval currtime;

 gettimeofday(&currtime, 0);

 if ((currtime.tv_sec - m_LastCCTime.tv_sec) * 1000000 + (currtime.tv_usec -

 m_LastCCTime.tv_usec) < m_iRTT)

 return;

 expected = m_dCWndSize * 1000.0 / m_iBaseRTT;

actual = m_iPktSent / ((currtime.tv_sec - m_LastCCTime.tv_sec) * 1000.0 + (currtime.tv_usec -
m_LastCCTime.tv_usec) / 1000.0);

 diff = expected - actual;

 if (m_bSlowStart)

 {

 if (diff < gamma)

 m_bSlowStart = false;

 if (m_iSSRound & 1)

 m_dCWndSize *= 2;

 m_iSSRound ++;

 247

 }

 else

 {

 if (diff < alpha)

 m_dCWndSize += 1.0;

 else if (diff > beta)

 m_dCWndSize -= 1.0;

 }

 gettimeofday(&m_LastCCTime, 0);

 m_iPktSent = 0;

 if (m_iBaseRTT > m_iRTT)

 m_iBaseRTT = m_iRTT;

 }

 virtual void onPktSent(const CPacket* pkt)

 {

 m_pAckWindow->store(pkt->m_iSeqNo, pkt->m_iSeqNo);

 m_iPktSent ++;

 }

 virtual void onTimeout()

 {

 }

protected:

 int m_iSSRound;

 int m_iRTT;

 int m_iBaseRTT;

 timeval m_LastCCTime;

248

 int m_iPktSent;

 static const int alpha = 30; //kbps

 static const int beta = 60; //kbps

 static const int gamma = 30; //kbps

 CACKWindow* m_pAckWindow;

};

/***

FAST TCP

Reference:

1. C. Jin, D. X. Wei and S. H. Low, "FAST TCP: motivation, architecture, algorithms,
performance", IEEE Infocom, March 2004

2. C. Jin, D. X. Wei and S. H. Low, FAST TCP for High-Speed Long-Distance Networks, Internet
Draft, draft-jwl-tcp-fast-01.txt,

 http://netlab.caltech.edu/pub/papers/draft-jwl-tcp-fast-01.txt

Note:

 Precision of RTT measurement may make great difference in the throughput

***/

class CFAST: public CVegas

{

public:

 CFAST()

 {

 m_dOldWin = m_dCWndSize;

 m_iNumACK = 100000;

 }

 249

 virtual void onACK(const int& ack)

 {

 if (ack == m_iLastACK)

 {

 if (3 == ++ m_iDupACKCount)

 {

 m_dCWndSize *= 0.875;

 return;

 }

 }

 else

 {

 if (m_iDupACKCount >= 3)

 {

// m_dCWndSize = m_issthresh;

// return;

 }

 m_iLastACK = ack;

 m_iDupACKCount = 1;

 }

 if (0 == (++ m_iACKCount % m_iNumACK))

 m_dCWndSize += m_iIncDec;

 int rtt = m_pAckWindow->acknowledge(ack, const_cast<int&>(ack));

 if (rtt > 0)

 m_iRTT = (m_iRTT * 7 + rtt) >> 3;

250

 timeval currtime;

 gettimeofday(&currtime, 0);

if ((currtime.tv_sec - m_LastCCTime.tv_sec) * 1000000 + (currtime.tv_usec
m_LastCCTime.tv_usec) < 2 * m_iRTT)

 return;

 m_dNewWin = 0.5 * (m_dOldWin + (double(m_iBaseRTT) / m_iRTT) * m_dCWndSize + alpha);

 if (m_dNewWin > 2.0 * m_dCWndSize)

 m_dNewWin = 2.0 * m_dCWndSize;

 m_iNumACK = int(ceil(fabs(m_dCWndSize / (m_dNewWin - m_dCWndSize)) / 2.0));

 if (m_dNewWin > m_dCWndSize)

 m_iIncDec = 1;

 else

 m_iIncDec = -1;

 m_dOldWin = m_dCWndSize;

 gettimeofday(&m_LastCCTime, 0);

 m_iPktSent = 0;

 if (m_iBaseRTT > m_iRTT)

 m_iBaseRTT = m_iRTT;

 }

private:

 static const int alpha = 200;

 double m_dOldWin;

 double m_dNewWin;

 int m_iNumACK;

 int m_iIncDec;

 int m_iACKCount;

 251

};

/***

Reliable UDP Blast

Note:

The class demostrates the simplest control mechanism. The sending rate can be set at any time
by using setRate().

***/

class CUDPBlast: public CCC

{

public:

 CUDPBlast()

 {

 m_dPktSndPeriod = 1000000;

 m_dCWndSize = 83333.0;

 }

public:

 void setRate(int mbps)

 {

 m_dPktSndPeriod = (m_iSMSS * 8.0) / mbps;

 }

protected:

 static const int m_iSMSS = 1500;

};

252

/***

Group Transport Protocol

Reference:

Ryan X. Wu, and Andrew Chien, "GTP: Group Transport Protocol for Lambda-GRIDs", in
Proceedings of the 4th IEEE/ACM International Symposium on

Cluster Computing and the GRID (CCGRID), April 2004

Note: This is a demotration showing how to use UDT/CCC to implement group-based control
mechanisms, such GTP and CM.

***/

struct gtpcomp;

class CGTP: public CCC

{

friend struct gtpcomp;

public:

 virtual void init()

 {

 m_dRequestRate = 1;

 m_llLastRecvPkt = 0;

 gettimeofday(&m_LastGCTime, 0);

 m_GTPSet.insert(this);

 rateAlloc();

 }

 virtual void close()

 {

 m_GTPSet.erase(this);

 rateAlloc();

 253

 }

 virtual void onPktReceived()

 {

 timeval currtime;

 gettimeofday(&currtime, 0);

int interval = (currtime.tv_sec - m_LastGCTime.tv_sec) * 1000000 + currtime.tv_usec -
m_LastGCTime.tv_usec;

 if (interval < 2 * m_iRTT)

 return;

 const UDT::TRACEINFO* info = getPerfInfo();

 double realrate, lossrate = 0;

 realrate = (info->pktRecvTotal - m_llLastRecvPkt) * 1500 * 8.0 / interval;

 if (info->pktRecvTotal != m_llLastRecvPkt)

lossrate = double(info->pktRcvLossTotal - m_iLastRcvLoss) / (info->pktRecvTotal -
m_llLastRecvPkt);

 if (0 == lossrate)

 m_dRequestRate *= 1.02;

 else if (lossrate * 0.5 < 0.125)

 m_dRequestRate *= (1 - lossrate * 0.5);

 else

 m_dRequestRate *= 0.875;

 if (m_dRequestRate > m_dTargetRate)

 m_dRequestRate = m_dTargetRate;

 requestRate(int(m_dRequestRate));

 m_llLastRecvPkt = info->pktRecvTotal;

 m_iLastRcvLoss = info->pktRcvLossTotal;

 m_LastGCTime = currtime;

254

 m_iRTT = int(info->msRTT * 1000);

 }

 virtual void processCustomPkt(CPacket* pkt)

 {

 if (m_iGTPPktType != pkt->getExtendedType())

 return;

 m_dPktSndPeriod = (1500 * 8.0) / *(int *)(pkt->m_pcData);

 }

public:

 void setBandwidth(const double& mbps)

 {

 m_dBandwidth = mbps;

 }

private:

 void rateAlloc();

 void requestRate(int mbps)

 {

 CPacket pkt;

 pkt.pack(0x111, const_cast<void*>((void*)&m_iGTPPktType), &mbps, sizeof(int));

 sendCustomMsg(pkt);

 }

private:

 double m_dTargetRate;

 double m_dBandwidth;

 double m_dRequestRate;

 255

 timeval m_LastGCTime;

 int64_t m_llLastRecvPkt;

 int m_iLastRcvLoss;

 int m_iRTT;

private:

 static set<CGTP*> m_GTPSet;

 static const int m_iGTPPktType = 0xFFF;

};

set<CGTP*> CGTP::m_GTPSet;

struct gtpcomp

{

 bool operator()(const CGTP* g1, const CGTP* g2) const

 {

 return g1->m_dBandwidth < g2->m_dBandwidth;

 }

};

void CGTP::rateAlloc()

{

 if (0 == m_GTPSet.size())

 return;

 vector<CGTP*> GTPVec;

 copy(m_GTPSet.begin(), m_GTPSet.end(), GTPVec.begin());

 sort(GTPVec.begin(), GTPVec.end(), gtpcomp());

 int N = GTPVec.size();

 int n = 0;

 vector<CGTP*>::iterator i = GTPVec.begin();

256

 double availbw = (*(i + N - 1))->m_dBandwidth;

 double fairshare = availbw / N;

 while ((n < N) && ((*i)->m_dBandwidth < fairshare))

 {

 (*i)->m_dTargetRate = (*i)->m_dBandwidth;

 availbw -= (*i)->m_dTargetRate;

 fairshare = availbw / (N - n);

 ++ n;

 ++ i;

 }

 for (; i != GTPVec.end(); ++ i)

 (*i)->m_dTargetRate = fairshare;

}

/***

Protocol using reliable control channel

Note:

The feedback method using sendCustomMsg() as shown in CGTP sends data using unreliable
channel. If some protocol nees reliable channel to transfer control message, a seperate TCP
connection can be sarted.

The CReliableChannel class below can be used to derive such protocols.

***/

class CReliableChannel: public CCC

{

public:

 int startTCPServer(sockaddr* addr)

 {

 if (-1 == (m_TCPSocket = socket(AF_INET, SOCK_STREAM, 0)))

 257

 return -1;

 if (-1 == (bind(m_TCPSocket, addr, sizeof(sockaddr_in))))

 return -1;

 if (-1 == (listen(m_TCPSocket, 10)))

 return -1;

 if (-1 == (m_TCPSocket = accept(m_TCPSocket, NULL, NULL)))

 return -1;

 #ifndef WIN32

 pthread_create(&m_TCPThread, NULL, TCPProcessing, this);

 #endif

 return 0;

 }

 int startTCPClient(sockaddr* addr)

 {

 if (-1 == (m_TCPSocket = socket(AF_INET, SOCK_STREAM, 0)))

 return -1;

 if (-1 == (connect(m_TCPSocket, addr, sizeof(sockaddr_in))))

 return -1;

 #ifndef WIN32

 pthread_create(&m_TCPThread, NULL, TCPProcessing, this);

 #endif

 return 0;

 }

 int sendReliableMsg(const char* data, const int& size)

 {

 return send(m_TCPSocket, data, size, 0);

258

 }

protected:

 virtual void processRealiableMsg()

 {

 char data[1500];

 while (true)

 {

 recv(m_TCPSocket, data, 1500, 0);

 //process data

 }

 }

protected:

 int m_TCPSocket;

 pthread_t m_TCPThread;

private:

 static void* TCPProcessing(void* self)

 {

((CReliableChannel*)self)->processRealiableMsg();

 return NULL;

 }

};

 259

Appendix B

C:\test>appclient
usage: appclient server_ip server_port

C:\test>appclient 172.22.42.57 9000

SendRate(Mb/s) RTT(ms)
CWn
d

PktSndPeriod(us
) RecvACK

RecvNA
K

0.367358 100 32 1 1 0
3.00126 12.832 307 3872.83 28 12
1.88694 0.734 194 4536.45 29 2
2.07238 0.268 161 2192 29 3
2.70141 0.281 144 3336.36 34 12
2.26593 0.267 143 3775.9 16 2
2.33046 0.246 136 1927 30 4
2.69334 0.266 132 3803 32 14
2.75781 0.286 133 2255.17 34 12
2.79011 0.276 130 2725 35 16
2.36041 0.311 123 3222 18 10
2.99447 0.308 126 3178 34 17
2.39502 0.246 139 3963.83 34 9
2.77402 0.27 128 2847.37 32 14
2.68526 0.291 132 3919 22 12
2.97555 0.309 132 2771 33 15
2.89493 0.3 134 2788 34 19
3.01587 0.296 122 3378 34 20
2.94331 0.292 137 2868.09 34 13
3.00723 0.308 127 3301 34 21
2.74223 0.321 128 2250.42 26 17
2.86267 0.3 135 2923.23 35 11
2.92716 0.321 135 2063 34 15
3.00783 0.331 132 2539 35 16
2.44334 0.288 162 3603.11 36 9
2.83848 0.296 129 3458.56 33 15
2.70136 0.315 129 3411 29 12
2.53208 0.3 141 3041.21 26 10
2.83847 0.301 131 2828.63 34 15
3.12876 0.343 136 2920.17 34 15
3.16103 0.328 129 2628 34 18
2.83572 0.308 126 3747 35 15
2.80085 0.298 129 3164.47 34 16
2.80619 0.3 142 3505 33 15
2.88691 0.315 121 3702 22 11
2.71752 0.331 128 3083.68 30 15
2.76569 0.261 123 3570.48 34 19
2.97577 0.281 128 3214.58 36 18
2.78203 0.275 124 3225.5 33 19

260

2.52399 0.309 127 3665 36 14
2.53201 0.309 124 3861.05 35 14
2.62078 0.332 125 3569 21 12
2.31433 0.305 115 3818 30 15
2.59655 0.313 115 3734.01 33 17
2.3382 0.307 122 3969 34 15

2.88724 0.348 122 2974.28 36 20
2.45949 0.291 120 4605.45 34 16
2.33848 0.272 119 1946 35 13
2.73368 0.338 116 3469 22 17
2.51592 0.302 122 3591.25 34 16
2.32238 0.319 127 3684.68 39 14
2.66108 0.293 117 3743 34 16
2.55376 0.315 122 3509 35 14
1.92913 0.281 116 4653.46 32 4
1.85466 0.296 121 4749 31 5
2.6853 0.34 122 2486 33 17

2.20949 0.323 130 4084 20 12
2.23368 0.295 129 4266 30 10
2.31433 0.299 124 3082.31 18 7
2.78202 0.318 121 3256 33 18
2.47561 0.27 132 2763.42 32 9
2.4675 0.285 134 3056.21 33 11

2.62079 0.302 128 4355 31 15
2.85465 0.312 131 3478.09 144 76
2.96672 0.278 128 2211 32 18
3.09735 0.345 125 2536 36 18
2.83041 0.392 132 3481 35 17
2.80587 0.343 124 2360 34 15
3.01623 0.322 135 2618 21 12
2.18529 0.295 127 3487 28 12
2.52399 0.284 128 3512 32 11
2.86266 0.302 128 4036 31 18
2.65303 0.287 136 3696.37 31 14
2.79381 0.275 130 4045.78 109 39
2.69334 0.317 122 3197.24 38 13

3.29 0.327 130 2740 34 19
2.67722 0.282 125 3848 33 14
2.98359 0.303 149 1867 34 15
3.2659 0.479 142 3136 37 20

2.71752 0.293 134 3482.44 34 14
2.12077 0.375 132 3743 18 10
2.91081 0.339 127 3883 34 15
2.79033 0.299 146 1944 34 13
3.18523 0.376 129 3048 37 20
2.87067 0.32 126 2652.88 35 13
2.79014 0.293 135 1948 34 14
3.00768 0.688 200 3258.32 35 19
3.33051 0.346 131 2648 35 19
2.80621 0.314 131 3250 35 13
3.11265 0.35 129 2685 35 13
2.33045 0.31 137 3336 16 9

 261

3.12013 0.329 133 2547 35 15
2.52189 0.322 138 3946.66 19 9
2.98666 0.416 140 3687.37 36 18
2.60461 0.291 135 3903.13 36 13
2.45142 0.265 135 3672 33 7
2.79008 0.302 127 2798.33 34 15
2.95137 0.3 124 3552.46 34 18
2.85437 0.549 136 2328 40 12
3.05644 0.302 127 3246.43 34 18
3.08039 0.28 128 3120.24 27 16

	Title Page
	Acknowledgements
	Abstract
	Publications
	Abbreviations
	Figures
	Tables
	Table of Contents
	Chapter 1 Introduction
	Chapter 2 State-of-the-Art Protocol
	Chapter 3 Security Mechanisms
	Chapter 4 Experimental Validations and Practical Implementation
	Chapter 5 Proof of Correctness of the Selected UDT Security Mechanisms
	Chapter 6 High Speed Data Transfer Security Architecture
	Chapter 7 Conclusion and Scope for Future Work
	Chapter 8 Epilogue
	Bibliography
	Appendices

