
Why Teach Unix?
Bernard Doyle & Raymond Lister

Faculty of Information Technology
University of Technology, Sydney

Jones St. Broadway NSW 2007
bjd@it.uts.edu.au raymond@it.uts.edu.au

Abstract1
This paper examines computing academics’ conceptions
of the Unix operating system, and the purpose of teaching
Unix. Interview transcripts from nine academics were
analysed phenomenographically. A small number of
qualitatively different conceptions of Unix were
identified, within two broad categories. The first broad
category manifested a technical approach to Unix. Within
this broad category, the conceptions of Unix were, from
the least to most sophisticated ! (1) Unix as a set of
unrelated commands; (2) Unix as a command line
interface superior to GUIs; and (3) Unix as a problem
solving tool. The second broad category was a non
technical conception of Unix, in which Unix was seen as
a resource that is cheap, secure and robust. With regard to
teaching Unix, two broad categories of reasons were
identified ! practical and pedagogical. These results for
teachers are broadly consistent with an earlier
phenomenographic study of student conceptions of Unix.
Keywords: Phenomenography, Unix.

Introduction
There have been major changes in the content of IT
courses over the last 15 years. The ubiquity of personal
computers running Microsoft windows, the impact of the
internet as well as the widespread adoption of object
oriented programming languages such as Java and C++
have meant that the content of computing degrees has
altered radically. There has been a trend away from
subjects dealing with low level technical details in favour
of those with a high level approach or a managerial
perspective. Courses in assembler languages, logic and
discrete mathematics, compiler construction and
computer hardware are now taught as electives or have
become the responsibility of engineering faculties. The
teaching of operating systems in general, rather than
teaching a specific operating system, is now usually an
elective, if it is offered at all. The change in the content of
contemporary computing studies at university level is
also reflected in the fact that universities now offer
students choices in degrees of Information Technology,

1 Copyright © 2007, Australian Computer Society, Inc.
This paper appeared at the Ninth Australasian Computing
Education Conference (ACE2007), Ballarat, Victoria,
Australia, January 2007. Conferences in Research in
Practice in Information Technology, Vol. 66. Samuel
Mann and Simon Eds. Reproduction for academic, not-
for profit purposes permitted provided this text is
included.

Computer Science, Software Engineering and
Information Systems.
With the downturn in student enrolments, many
Australasian universities are redesigning their degrees, in
the hope of attracting more students. For academics
participating in such redesigns, the stakes are high.
Topics that some computing academics have loved and
taught for many years are being removed as part of
degree redesign, to make room for new topics.
Not all the change is one way. There is a “back to basics”
movement, which advocates reversing some of the recent
changes in computer education replace. For example,
there has recently been a vigorous debate on the teaching
of the first programming subject, with one side
advocating a change back from teaching objects-early to
the traditional procedural approach (Astrachan et al.,
2005; Bruce, 2005; Reges, 2006). At least one Australian
university has done exactly that, changing from C to Java
as the first language taught, but subsequently changing
back to C.
Lewis and Smith (2005) have placed these sorts of
debates into a broader framework, arguing that members
of the computing education community tend to debate
curriculum issues from within three main conceptual
frameworks – segregationist, integrationist, and synergist.
Academics within the first of those frameworks argue for
a traditional computer science syllabus, academics in the
second frameworks argue for change while those in the
third framework argue that syllabi should incorporate
both traditional topics and new topics.
In the case of Unix, the debate is not so much about
whether Unix should be taught at all ! it appears most
academics believe it should be taught ! but instead the
debate is about the depth to which Unix should be taught
in redesigned degrees, and also the style of instruction
that should be used to teach Unix.
In this paper, the authors do not argue their own position
in the Unix debate. Instead, we seek to document and
formalise the various views on Unix and its teaching. In
particular, we seek to make explicit what often remains
implicit in the heat of committee room debate. Our
intention is similar to that of McCauley (2004) who,
within the context of a different syllabus debate,
advocated that participants need explicit agreement on
terminology, so they can “clearly and succinctly express
what they had tried to say, previously, using plain
English”. We believe that most syllabus debates would
benefit from scholarly analysis of the debate itself.

19

1.1 Prior study of student conceptions of Unix
In an earlier paper, the authors conducted a
phenomenographic study of conceptions of Unix among
students attending the authors’ university (Doyle and
Lister, 2006). In that study, we noted that students
compartmentalized their appreciation of Unix. For
example:
“… students appear to see the superior security of Unix
as an “accidental” property of Unix, not a consequence
of the architecture of Unix. Perhaps, as we collect more
interview transcripts, we will see students who do
articulate such a connection. On the other hand, perhaps
such a connection is not currently being articulated by
the teachers”.
In this paper, we present a new phenomenographic study,
which is similar to that prior study, but in this study we
examine academic teachers’ conceptions of Unix. We
also study the teachers’ understandings of the purpose of
teaching Unix in contemporary computing degrees. This
study addresses the above speculation from the earlier
study, that perhaps students are not making certain
connections in their conception of Unix because those
connections are not commonly being articulated by their
teachers

1.2 Phenomenography
Phenomenography is a qualitative research technique
which looks at the different ways people perceive,
conceptualise, approach or understand a phenomenon.
(Ackerlind, 2005). Usually, phenomenographic data
consists of interview transcripts. The data is analysed to
identify the qualitatively different ways in which the
phenomenon is conceived. These different ways of
knowing are referred to as the Categories of Description.
The interrelationships between the categories define what
is known as the outcome space. This space is often linear.
That is, there is a single aspect that varies qualitatively
across the categories. In such a linear space, the
categories often form a hierarchy, with higher categories
being more sophisticated conceptions that subsume the
lower conceptions.
Phenomenography is widely used as an education
research technique. It has been used to analyse student’s
conceptions of various academic disciplines such as
Music (Reid, 1997), Physics (Booth and Ingerman, 2002)
and Statistics (Reid and Petocz, 2003). It has also been
used to analyse academic’s approaches to teaching (Bruce
& Gerber, 1995, Trigwell & Prosser, 1997, Trigwell,
2000).
Within computing, phenomenography has been used to
analyse student’s conceptions of TCP/IP (Berglund,
2005), Object Oriented Information System Development
(Box and Lister, 2005), Learning to Program (Booth,
1992, Booth, 2001, Bruce et al., 2004, Stoodley et al.,
2004, Eckerdal & Thun, 2005), and Information Systems
(Cope, 2003). Phenomenography has also been used to
analyse approaches to teaching computing topics in
general (Lister et al., 2007) and the teaching of Data
Structures (Lister et al., 2004).

2 Method

2.1 Interviewee Background
We interviewed nine academics in the Faculty of IT at the
authors’ university. The faculty consists of three
departments. These are Information Systems, Software
Engineering and Computer Systems. In order to obtain as
broad a sample of views as possible, our interviewees
were drawn from all three departments. Two came from
Information Systems, five from Software Engineering
and two from Computer Systems. A number of other
academics were approached, but declined to be
interviewed. Of the nine academics interviewed, three
made moderate to extensive use of Unix in the courses
they taught. Of the remaining six interviewees, four used
it occasionally and the remaining two never used Unix at
all in their teaching. All academics interviewed had some
Unix experience either as undergraduates, postgraduates,
in industry or in teaching. In some cases the exposure had
occurred some time ago. For example, one interviewee
had used the “vi” editor and some Unix commands to
teach Cobol Programming over 20 years ago.

2.2 Interview Structure
Following standard phenomenographic procedures, the
interviews were semi-structured and used the following
question set. This had been prepared prior to the
interviews.
1. Tell me about your experience with Unix.
2. What does the word "Unix" mean you to you?
3. In what ways are Unix and Microsoft Windows

different?
4. In what ways are Unix and Microsoft Windows the

same?
5. Is there any task for which you'd prefer to use Unix

over Microsoft Windows?
6. Does Unix have any role in the subject you teach? If

so, what is that role?
7 (a). What do you think is the role of Unix in an

undergraduate IT degree?
7 (b). What do you think is the role of Unix in an

undergraduate Computer Science degree?
7 (c). What do you think is the role of Unix in a

postgraduate IT degree?
8. What do you think is the role of Unix in computing in

general?
9. What do you think is the the role of an operating

system, whether it be Unix, Windows, or any other
operating system?

10: What do you understand by the Unix term "process"?
11: What do you understand by the term "file system"?
12: What type of tasks would you prefer to use command

line for instead of a GUI?
13: What do you understand by the term "script"?
14. In what ways are scripting languages and application

level programming languages different?
15. In what ways are scripting languages and application

level programming languages the same?

20

16. What do you understand by the term "pipe"?
As part of the semi-structured interview process, the
interviewer often asked follow-up questions immediately
after individual prepared questions. This was done to
illuminate interesting issues arising from the answers to
the prepared questions. Approximately 70% of the
questions were follow-up questions.

2.3 Analysis Technique
The data was analysed using standard phenomenographic
techniques. In terms of the categorisation of
phenomenographic approaches by Ackerlind (2005) our
analysis used the following approach:
(1) We considered excerpts from transcripts.
(2) The first author analysed the data initially.
(3) The two authors then analysed the data jointly. This

analysis focussed on attempting to resolve the initial
independent interpretation of the first author and
possible other interpretations of the data.

(4) The structure of the analysis was driven by the data,
but obviously the authors were influenced by their
previous phenomenographic study of student
conceptions of Unix.

(5) The focus was on pragmatic validity. That is, the aim
of the analysis was to provide insight into the
teaching and learning of Unix

3 Results Part 1: Conceptions of Unix

3.1 Overview
Among the transcripts of the nine academics interviewed,
we identified the following conceptions of Unix:

1. Unix as a command line interface.
This first conception consisted of two sub-categories:

(a) An unrelated set of commands that is hard to
learn and use.

(b) A more powerful alternative to the Windows
graphical user interface (GUI).

Two other conceptions of Unix identified were:
2. Unix as a tool for solving certain problems
3. Unix as a resource

These conceptions are discussed in greater detail in the
following subsections.

3.2 Unix as a Command Line Interface
As summarised above, interviewees who manifested this
conception of Unix tended to display one of two
positions, discussed below.

3.2.1 An unrelated set of commands that is
hard to learn and use

The following excerpts from teachers’ transcripts
illustrate this first position:
“….but a command line interface which is the thing that
really I think of first when I think of Unix, is just
intolerable, it’s something completely artificial and
arbitrary. It's not even as useful as learning ancient
Greek…. “ (A5)

“…Yes, well it also means a real pain in the neck
operating system. It uses a command language. It's really
annoying to use. It's really obscure. … The kind of way
that it only gives you feedback if anything goes wrong, so
you are never quite sure that anything happened.” (A9)

3.2.2 A more powerful alternative to the
Windows graphical user interface (GUI)

The second position views a command line interface as
being closer to the underlying machine, and hence the
command line interface has powers unavailable to a GUI:
“[The machine is] ... accessible in the sense that you
when you use it, you can get to it, you can drill down to
the lowest level [of the machine] if you want to” (A2)
“[Unix is] an operating system that you interact with at a
command line level rather than a GUI. You interact with
[the computer] more directly than using something like
windows which has a GUI on top of it.” (A3)
The above two interviewees were aware of the existence
of Graphical User Interfaces for Unix, such as X
windows, but these interviewees had a conception of
Unix as a very effective operating system because it
could be used at the command line level.

3.3 Unix as a tool for solving certain problems
Several academics saw Unix as possessing attributes that
made it a useful tool for solving problems. These
academics sometimes illustrated the power of Unix by
describing why they chose Unix to solve problems within
their own teaching. For example:
“The software that I have written for taking student
submissions and stuff has probably been a lot easier to
write, its command line driven, but it's probably been a
lot easier to write than it would be if I had written it
under some windows environment. … from a systems
administration point of view very well, [Windows is] very
awkward, whereas Unix is a lot more straightforward.
There are still things I've had to find out with Unix which
has frustrated me at times because I've had to figure my
way around them, but I suspect I would have had a lot
more trouble if I had to try and do this stuff under
windows.” (A1)

3.4 Unix as a resource
The conceptions of Unix that we have described up to this
point have been technical in their orientation. A non-
technical but common conception is Unix as a resource.
This conception focuses on useful properties of Unix that
can be appreciated without necessarily having a strong
technical background in Unix ! a management
perspective. Such properties are: robustness, speed,
security, server hosting capability, networkability and
cost (the last at least for open source versions).
[Unix] has a better reputation for security and
performance.” (A4)
“[Unix] … for me it means reliability.” (A6)
 “Well, if you think about Linux, and people want to save
a bit of money, maybe it's got a role in organisations that
don't want to spend a huge amount of money on their
software.... (A5)

21

3.5 Conceptions of Unix: The Outcome Space
In the previous three subsections we have described four
categories in which the interviewees conceived of Unix.
We will now look at how these categories relate to each
other, to form an Outcome Space.
Three of the categories are technical in their orientation
and form a hierarchical relationship. Among these three
hierarchical categories, the lowest is the conception of
Unix as a weakly or totally unrelated set of commands.
Above that conception is the conception of Unix as a
powerful command line interface which is available as an
alternative to GUIs. The higher of these two conceptions
differs from the lower because the higher category
introduces a more unified view of the commands, as the
command line interface is seen as offering better access
than a GUI to the underlying machine.
The third and highest conception in this hierarchy is the
conception of Unix as a tool for solving certain problems.
In this highest conception, the degree of relatedness
between the Unix commands is so great, the conception is
of a single, unified tool kit. In this highest category, the
focus has shifted away from the command line interface
itself, to the problems that can be solved with the
command line interface.
This hierarchy of three technical conceptions can be
interpreted in terms of the SOLO taxonomy (Biggs &
Collis, 1982). The type of interviewee response that
illustrates the lowest conception is a unistructural
response. The type of interviewee response that illustrates
the intermediate conception is a multistructural response,
while the highest conception manifested in a relational
response.
At this stage of the project, with the interview data
currently available to us, the fourth and non-technical
category ! Unix as a resource ! cannot be related to the
hierarchy formed by the three technical categories.

4 Results Part 2: Why Teach Unix?
All nine interviewees thought that learning Unix should
be compulsory, at least for Computer Science students.
Seven of the nine thought Unix should also be a
compulsory part of an IT degree. In our interview script,
we did not explicitly pursue the issue of just how detailed
a treatment of Unix should be taught in such degrees.
The reasons cited for teaching Unix fell into two broad
classes.

! Practical
! Pedagogical

The difference between these two categories is that the
practical category focuses upon the computing
environment in which the student will eventually work,
whereas the pedagogical category focuses upon the
student, and the intellectual development of the student.
These understandings are not mutually exclusive, and
interviewees frequently manifested both understandings.
Each understanding is described in greater detail in the
following two subsections.

4.1 Practical Reasons
In this category, the understanding of the purpose of
teaching Unix is that it is an essential skill for computing
professionals:
“Certainly I think that as a graduate student, if the
company took them out and stuck them in front of a Unix
terminal, the students should be able to go ‘OK, I'm not
terrified of this...’ " (A1)
”So I guess, at least if students have enough of a flavour
of it so they don't get out there and say ‘Oh! What’s
Unix?’ when they went to a Unix shop, because that
would make them look a bit silly. And I guess the other
thing is... [any organization] has to have a main
operating system that they use if it happens to be Unix
in the place that they work in then they probably should
know about it.“ (A9)
The fact that Unix is used widely on the internet was
given as a more specific reason why Unix should be
taught. For example:
 “If they are going to understand the internet and a lot of
the internet functionality works, they will need to
understand how Unix works. To understand a lot of the
hardware, everything from routers to switches to hubs
that makes the internet operational, they will need an
appreciation of the kind of programming that needs to be
done, the kind of operating systems that are tailored,
some of them based on Unix variations that are installed
on those systems.” (A9)

4.2 Pedagogical Reasons
Unix, it is argued in this conception, expands the
student’s horizons. Unix is seen as an alternative model to
Microsoft Windows, with which the students are more
familiar. The interviewees were not necessarily hostile
towards Microsoft Windows or GUIs in general, but they
argued for breadth in student education:
”I think they also need to have diversity in operating
systems … [so that] … they don't think the world just
consists of windows. That there are other operating
systems” (A2)
”… I wouldn't see Unix as the primary vehicle for
teaching, but for developing a deeper understanding of
what they are doing at that level of Graphical User
Interface, and then they see the result of that under the
hood. It’s important to create that understanding, - how
computers work, what's happening in there …” (A7)
”I suppose there are two issues. One would be as a kind
of example or historical kind of thing to say this has been
a very influential type of operating system and these are
what some of the features are and this is why it's so
popular at the feature level, and these are where its'
shortcomings are, that other people might want to add
things in.” (A9)

4.2.1 Knowing “what’s under the hood”
One interviewee expressed the view that computer
science graduates, but perhaps not IT graduates, should
have an appreciation of the internals of Unix:
“In a CS degree I think the role of Unix is still major, and
it would be very important to talk about the architecture
of Unix ... a famous book [see Bach, 1986] describes

22

everything that happens inside Unix, the Unix kernel, how
it works, why it uses certain data structures, how does it
pass those data structures in an efficient manner, how
does it schedule processes …. In a Computer Science
degree I think this would be a major role. In Information
Technology sort of degree you would have to consider
that students might like to use it, not necessarily
understand it.” (A4)
Another interviewee took the importance of “knowing
what’s under the hood” even further:
“[Open source software] gives students the opportunity to
be exposed to a lot more software at the code level ...
whereas they are unlikely to look at the code of
proprietary [software].” (A3)
We list this open source argument here, under
pedagogical reasons, because this particular argument for
open source does not rest upon the software being free,
but on the educational opportunities that flow from
having access to source code.

5 Discussion

5.1 Sample Size
Inevitably, a good portion of the readers will be troubled
by the small sample size for this phenomenographic study
(i.e. nine academics).
Phenomenography is a qualitative research method, not a
quantitative method. From the data presented, it would
not be appropriate to speculate upon the popularity
among academics of any of the above categories. To
make such conclusions would require significantly more
data and a different research method. The aim of
phenomenographic research is merely to capture the full
spectrum of diversity, not quantify it.
While small sample sizes may be compatible with some
qualitative methods, in the study presented in this paper
we do not claim that nine interview transcripts is
sufficient for final conclusions to be drawn. It is possible
to perform a preliminary phenomenographic analysis with
only nine interviewees, and we present our results as
preliminary. We make no claim to have identified, at this
stage, the full spectrum of diversity in academics’
conceptions of Unix. However, while interviewing more
subjects may elaborate upon our preliminary analysis, we
are confident that further data will not invalidate this
preliminary study. That is, interviewing more academics
will probably add more categories, add further structure
to the outcome space, and perhaps refine the category
definitions, but collecting more interviews is unlikely to
completely invalidate the categories and outcome space
as we have identified it in this paper. Having collected a
subset of the data we will eventually collect, we believe
our existing analysis captures a subspace of the outcome
space we will eventually construct.
One strong reason for having confidence in this
preliminary analysis is that the results are compatible
with our earlier phenomenographic analysis of student
conceptions of Unix. We compare the results of these two
studies in the next subsection.

5.2 Relationship to prior study of students
In both this study of teachers and the authors’ previous
study of students (Doyle and Lister, 2006), interviewees
clearly articulated the same category “Unix as a
resource”. Also, both sets of interviewees articulated a
linear hierarchical set of technical conceptions. Both of
these hierarchies contained three conceptions of Unix.
However, while the actual categories within the two
hierarchies are similar, the categories are not identical.
Table 1 summarises and compares the linear hierarchical
set of technical conceptions from the two studies. The
remainder of this section compares these conceptions in
detail.

Sophistication Teachers Students

 A professional
computing

environment

A tool for solving certain problems

A more powerful
alternative to the
Windows GUI

High

Low

An unrelated set of commands

Table 1: A comparison of the linear, hierarchical
technical conceptions of Unix, for the teachers in this
study and the students from the prior study

The bottom and least sophisticated conception of Unix is
the same for both teachers and students ! Unix as an
unrelated set of commands.

In the teachers’ conceptions of Unix, the intermediate
category (a more powerful alternative to the Windows
GUI) is not apparent in the transcripts of the student
interviews. We suspect this is because this academic
conception rests on the notion of an underlying machine,
but the students (who are in their first year of study)
know very little about the underlying machine.
Both teachers and students share the next level in the
hierarchy (Unix as a tool for solving certain problems),
but that is the highest category for the academics,
whereas the students show another conception, Unix as a
professional computing environment. We have, for this
paper, tentatively placed it as a higher category, but at
this time we do not understand this category well. Some
students transcript excerpts that we placed in this
category are:

“I think Unix and Linux is more powerful. It's
more professional than Microsoft … I discovered a
new world of computing in Unix.” (S01)

“I am a systems administrator, and I used to use
Microsoft based, and we have, you know, so many
problems, with Microsoft, if you are a system
administrator. Unix now, opens, I think a new track
for me, to deal with system administration using
Unix, and now I am planning to study Unix systems
administration next semester, because I would like to
be a Unix systems administrator. Because I like …

23

[Unix] … so much. I think it's powerful, and will
develop my future career in systems administrator.”
(S03)

It may be that these students are articulating what is really
the same conception as the top academic category, but
they express it this way because are focussed on their
chosen future in industry.
While there may be some difference in the categories and
outcome space identified in the two studies, the results
are very similar. This is not surprising. The academics
and students interviewed are all from the same university.
Therefore, the student conceptions reflect those of their
teachers.

5.2.1 Unix as a resource
As part of that prior study of students, the authors wrote
the following:
“At this stage of the project, it appears that students do
not connect the category “Unix as a resource” to the
other three categories. For example, the students appear
to see the superior security of Unix as an “accidental”
property of Unix, not a consequence of the architecture of
Unix. Perhaps, as we collect more interview transcripts,
we will see students who do articulate such a connection.
On the other hand, perhaps such a connection is not
currently being articulated by the teachers”.
In our interviews with academics, with only one
exception, the academics did not articulate such a
connection to us. It seems likely, therefore, that these
teachers also do not articulate such a connection to their
students.

5.3 Validity and Reliability
As with all phenomenographic studies, the categories that
we have inferred from our data are probably not the only
categories that can be inferred from the data. However, if
we presented both our interview transcripts and our
categories of description to other phenomenographers,
they should agree that our categories of description can
be inferred from our data. This is known as
communicative validity (Ackerlind 2006)
The reason why alternate sets of categories are possible is
that the categories identified in any phenomenographic
study are to some extent dependent on the intent of the
phenomenographer. Our intent is to facilitate debate on
the teaching of Unix, and we chose our categories
accordingly. In formal terms, our aim is to produce
results which exhibit pragmatic validity (Ackerlind
2006). Our research aim is to provide insights that may be
used in the design of courses on Unix, and we believe the
results we have presented fulfil the criteria for pragmatic
validity.

5.4 Relation between Conceptions of Unix and
the purpose of teaching it

It is reasonable to expect that there is a relationship
between how academics’ conceive of Unix, and how they
understand the reasons for teaching it. For example, it
seems reasonable that an academic who tends to see Unix
as an unrelated set of commands might also be drawn to
pragmatic understandings of why it should be taught, and
not drawn to believe that students need to understand

“what’s under the hood”. This may be the case, and
further research may confirm that hypothesis, but at this
time there is insufficient data to confirm or refute such a
conjecture.

6 Conclusion
In this study of why Unix is taught, two broad categories
of reasons were identified from interviews with
academics – practical and pedagogical. Given the small
sample size (even by the standards of phenomenographic
research) we present these finding as preliminary. In
future work, we will be continuing the same form of
phenomenographic analysis with a larger and more
diverse pool of interviewees. Furthermore, some of these
interviewees will be systems programmers and other
people who use Unix in their employment. If
circumstances permit, we may also interview academics
at other institutions. By interviewing a larger and more
diverse set of people, we hope to capture a rich picture of
peoples’ conceptions of Unix, and the reasons why it
should be taught.
Beyond unix, this paper demonstrates how
phenomenography can be used as a tool for syllabus
design in general. It can be used to define various
positions, before debating the pros and cons of the
positions. Meetings that debate the design of new
degrees are highly charged emotionally. Academics who
are not inclined to join such a difficult debate can be
encouraged to articulate their position as part of an early,
non-confrontational, data gathering phenomenographic
study. Beginning with a phenomenographic study may
therefore lead to a more inclusive and comprehensive
approach to syllabus design in general.

References
"kerlind, G. (2005) Variation and commonality in

phenomenographic research methods. Higher Education
Research & Development. 24(4): 321-334.

Astrachan, O., Bruce, K., Koffman, E., Kölling, M.,
Reges, S. (2005) “Resolved: Objects Early Has Failed”.
SIGCSE'05, February 23-27, 2005, St. Louis, Missouri,
USA.

Bach, M. J. (1986) The Design of the UNIX Operating
System. Englewood Cliffs, NJ: Prentice-Hall. ISBN:
0132017997.

Berglund, A. (2005) Learning computer systems in a
distributed project course: The what, why, how and
where. Acta Universitatis Upsaliensis, Uppsala
Dissertations from the Faculty of Science and
Technology 62. ISBN 91-554-6187-5.

Biggs, J. B. & Collis, K. F. Evaluating the quality of
learning: The SOLO taxonomy (Structure of the
Observed Learning Outcome). New York, Academic
Press, 1982.

Booth, S. (1992). Learning to program: A
phenomenographic perspective. PhD thesis, University
of Gothenberg, Sweden.

Booth, S. (2001) Learning to Program as Entering the
Datalogical Culture: a Phenomenographic Exploration.
In 9th European Conference for Research on Learning
and Instruction (EARLI), Fribourg, Switzerland.

24

Booth, S. and Ingerman, A. (2002) Making sense of
Physics in the first year of study. Learning and
Instruction 12: 493-507

Box, I., & Lister, R. (2005). Variation in students'
conceptions of object-oriented information system
development. In O. Vasilecas, A. Caplinskas, W.
Wojtkowski, W. G. Wojtkowski, J. Zupancic & S.
Wrycza (Eds.), Information systems development:
Advances in theory, practice and education.
Proceedings of 13th international conference on
information systems development (ISD 2004) Vilnius,
Lithuania, September 9–11 2004 (pp. 439–451):
Springer.

 Bruce, C. and Gerber, R. (1995) Towards university
lecturers’ conceptions of student learning. Higher
Education, 29, 443-458

Bruce, C, Buckingham, L, Hynd, J, McMahon, C,
Roggenkamp, M, and Stoodley, I. (2004) Ways of
Experiencing the Act of Learning to Program: A
Phenomenographic Study of Introductory Programming
Students at University. J. of Information Technology
Education, 3: 143-159. http://jite.org/documents/
Vol3/v3p143-160-121.pdf [accessed May 2005]

Bruce, K. (2005) Controversy on how to teach CS 1: a
discussion on the SIGCSE-members mailing list. ACM
SIGCSE Bulletin. Volume 37, Issue 2 (June 2005) 111-
117.

Cope, C. (2002) Seeking Meaning: The Educationally
Critical Aspect of Learning About Information Systems,
Proceedings of the Informing Science + IT Education
Conference,Cork,Ireland.http://proceedings.informingsc
ience.org/IS2002Proceedings/papers/cope190seeki.pdf
[accessed Apr. 2006]

Doyle, B. and Lister, R. (2006) A Preliminary
Phenomenographic Study Concerning Student
Experiences of Unix. Proceedings of the 19th Annual
Conference of the NACCQ. Wellington NZ 7th-10th July
2006 pp 73-78

A. Eckerdal, A. & Thun, M. (2005) Novice Java
Programmers' Conceptions of "Object" and "Class", and
Variation Theory. Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in
Computer Science Education, pp. 89-93.

Kutay, C. and Lister, R. (2006) Up Close and
Pedagogical: Computing Academics Talk about

Teaching. Conferences in Research in Practice in
Information Technology, 52.

Lewis, T., and Smith, W. (2005) The Computer Science
Debate: It’s a Matter Perspective. SIGCSE Bulletin.
Volume 37, Issue 2 (June 2005) 80-84.

 Lister, R., Box, I., Morrison, B., Tenenberg, J.,
Westbrook, S. (2004) The Dimensions of Variation in
the Teaching of Data Structures. 9th Annual Conference
on Innovation and Technology in Computer Science
Education (ITiCSE), Leeds, UK, 28-30 June. pp. 92-96.

Lister, R., Berglund, A., Box, I., Cope, C., Pears, A.,
Avram, C., Bower, M., Carbone, A., Davey, B., de
Raadt, M., Doyle, B., Fitzgerald, S., Mannila, L., Kutay,
C., Peltomäki, M., Sheard, J., Simon, Sutton, K.,
Traynor, D., Tutty, J., Anne Venables, A. (2007)
Differing Ways that Computing Academics Understand
Teaching. Conferences in Research in Practice in
Information Technology, 66.

McCauley, R. (2004) Thinking about our teaching. ACM
SIGCSE Bulletin, Vol. 36, Issue 2 (June), 18-19

Reges, S. (2006) Back to Basics in CS1 and CS2.
Proceedings of the 37th Technical Symposium on
Computer Science Education (SIGCSE 2006). Houston,
Texas, USA. pp. 293-297.

Reid, A. (1997), The Meaning of Music and the
Understanding of Teaching and Learning in the
Instrumental Lesson, in Proceedings of the Third
Triennial ESCOM Conference, ed. A. Gabrielsson,
Uppsala, Sweden: European Society for the Cognitive
Sciences of Music, 3, 200-205.

Reid, A. and Petocz, P. (2003) Completing the Circle:
Researchers of Practice in Statistics Education.
Mathematics Education Research J., 15(3): 288-300.

Stoodley, I. Christie, R. and Bruce, C. (2004) Masters
Students' Experiences of Learning to Program: An
Empirical Model. Proceedings of QualIT2004:
International Conference on Qualitative Research.
http://sky.fit.qut.edu.au/~bruce/pub/papers/QualIT2004-
Bruce.pdf [accessed October 2006]

Trigwell, K. (2000) Phenomenography: Discernment and
Variation http://www.learning.ox.ac.uk/files/Phenom_
ISL_paper.pdf [accessed Mar. 2006]

Trigwell, K. and Prosser, M.(1997), Towards an
Understanding of Individual Acts of Teaching and
Learning (1997) Higher Education Research and
Development, 16(2): 241-252.

25

