Conversion of Coral Sand to Calcium Phosphate as a Drug Delivery System for Bone Regeneration

by

Joshua Chou

BSc. Hons. (UTS)

The thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Physics and Advanced Materials, Faculty of Science, the University of Technology Sydney

April, 2011

Declaration

Candidate's Certificate

This is to certify that the work presented in this thesis was carried out by the candidate in the Faculty of Science at the University of Technology Sydney and has not been submitted to any other university or institution for a higher degree. This work contains no material written or published by any other person except where due reference has been made.

Joshua Chou Sydney, April 2011

Acknowledgements

I wish to express my deep sense of gratitude to Professor Besim Ben-Nissan and Dr. Stella Valenzuela from the Faculty of Science, the University of Technology Sydney, for their inspiring guidance, constant encouragement and support of my research work. I thank them very much for giving me the freedom to explore the realms of science and for sharing their wide knowledge and expertise. I very much appreciate the working environment they have provided to the group members, thereby leading to a highly productive atmosphere, where everyone understands their responsibilities and acts accordingly. I am deeply grateful to them for their support in times of difficulties, solving many problems and motivating me to progress ahead. In spite of their busy schedule, they have always made themselves available whenever I approached them and I sincerely thank them for being open and supportive to my suggestions. I am very grateful that they let me present the results of my research at both national and international conferences. From the Faculty of Science, I have had the privilege to work with several co-workers and I express my warmest thanks to all of them: Greg Heness PhD., Torsten Theis PhD., Julia Ting PhD., Barry Liu PhD., Norman Booth PhD. and Jerran Nadoo.

I express my thanks to all my family and friends for their support, friendship and love during the whole period of this work. Especially I would like to thank my parents, Joey and Jenny and my brother Jeremy, who always supported me and kept me motivated to finish my thesis

Finally, this thesis could not have been completed without constant encouragement, support and tender loving care, especially during difficult times, from my beloved Ellen, I love you.

> Joshua Chou Sydney, April 2011

Abstract

In this research, we have for the first time harnessed the architectural design of biospheres from coral beach sand, to capture and deliver the drug bisphosphonate alone, or in combination with antibiotics. Partnered with this we used lipid coatings to control drug elution by design. This is a study to utilise biomimetics for drug delivery using these marine structures. Importantly, release of the drug was sustained at physiologically relevant quantities for longer periods than those originating from other clinically practiced schemes such as, doping bone cements and oral administration. The simple concept of using natural structures directly for human therapeutics can yield enormous benefits to an increasingly ageing population. Currently researchers are striving to perfect the design and offload the pharmaceutical drugs at the site. There are many promising strategies including bio-inspired ones, but none using something as simple as coral beach sand with unique pore size, interconnectivity and architecture.

These calcium carbonate coral beach sand microspheres were converted to calcium phosphate and loaded with pharmaceutical drugs such as bisphosphonate. The drug bisphosphonate has an inherent affinity for calcium, and as the microspheres slowly degrade, the drug is released. Elution kinetics show sustained release of the adsorbed drug. This occurs for 21 days- long enough to influence early bone formation. Once the drug has been released, the spheres also safely dissipate. Drug functioning was positively determined by increased human osteoblast proliferation accompanied by osteoclast inhibition in direct association with bisphosphonate bio-spheres. The unique, complex topology and morphology enables the drug to be loaded and retained while the material is calcium phosphate and adsorbes the drug very efficiently.

In addition an antibiotic gentamicin was loaded at the same time to surmount the re-current problem of bacterial infections following bone and implant surgery. Biospheres therefore offer a more efficient and convenient alternative. Following complete drug release the vehicle degrades slowly in-situ. The elution kinetics can be further controlled by coating the spheres with lipid. In the future these can be incorporated with molecules that provide highly specific associations with a target tissue. Coral beach sand is plentiful and pre-designed to adsorb and release a variety of drugs, as indicated by this study. So far with this study we have shown this *in vitro*, but in principle this is applicable for any orthopaedic or maxillofacial drug of choice for bone repair and reconstruction. Biomimetics do not need to be complicated.

TABLE OF CONTENT

DECLA	RATIONI	
ACKNO	WLEDGEMENTS II	
ABSTR	ACT II	I
1 IN	FRODUCTION1	.7
1.1 I	NTRODUCTION TO THE RESEARCH1	8
1.2 N	AIN PREMISE2	20
1.3 (General Aims2	21
2 RE	VIEW OF THE LITERATURE2	2
2.1 H	BONE TISSUE ENGINEERING AND REGENERATION2	:3
2.2 H	BONE ANATOMY AND PHYSIOLOGY2	3
2.2	.1 Osteoblast and Bone Formation	24
2.2	.2 Osteoclast and Bone Resorption	25
2.2	.3 The Bone Remodelling Process2	27
2.2	.4 The Bone Healing Process	28
2.3 H	BIOMATERIALS2	29
2.3	.1 Classification of Biomaterials Based on Biological Interactions3	0
2.3	.2 Properties of Biomaterials	2
2.4 H	30NE SUBSTITUTE MATERIALS	4
2.4	.1 Calcium Phosphate	5
2.4	2 Hydroxyapatite	6
2.4	.3 Beta-Tricalcium Phosphate (β-TCP)	8
2.5 H	BIOMIMETICS	9
2.5	1 Natural Coral4	!]
2.5	2 Coralline Materials4	!2
2.5	.3 Kokubo's Simulated Body Fluids4	!3
2.6 I	DRUG DELIVERY SYSTEMS4	4
2.6	.1 Characteristics of Drug Delivery Systems4	!5
2.6	2 Problems Associated with Current Drug Carriers4	!6
2.6	<i>3</i> Parameters Defining Drug Release Kinetics4	!7
2.6	.4 Current Trends in Biomimetics	!8

2.7 Co	NCLU	DING REMARKS	49
3 PHYS	SICC	D-CHEMICAL CHARACTERISATION OF CORAL AN	D
CORALL	INE	MICROSPHERES	50
3.1 Сн.	ARAC	TERIZATION OF CORAL MICROSPHERES	51
3.1.1		roduction	
3.1.2	Equ	uipment and Procedures	51
3.1.3	_	sults and Discussions	
3.1.	.3.1	Fourier Transform Infrared Spectroscopy (FTIR)	54
3.1.	.3.2	Scanning Electron Microscopy	55
3.1.	.3.3	X-Ray Diffraction (XRD)	57
3.1.	.3.4	Differential Thermal Analysis/ Thermogravmetric Analysi	S
(D7	TA/T	GA)	58
3.1.	.3.5	Inductively Coupled Plasma- Mass Spectroscopy (ICP-MS	5)59
3.1.	.3.6	Porosity and Surface Area of Coral microspheres	59
3.1.4	Co	nclusion	60
3.2 Hy	DROT	THERMAL CONVERSION OF CORAL MICROSPHERES TO BETA-	
TRICALC	CIUM	PHOSPHATE (B-TCP)	61
3.2.1	Inti	roduction	61
3.2.2	Equ	uipment and Procedure	63
3.2.3	Res	sults and Discussion	65
3.2.	.3.1	Environmental Scanning Electron Microscopy (ESEM) An	nalysis
		65	
3.2.	.3.1	Microtomographic (Micro-CT) Analysis	68
3.2.	.3.2	Fourier Transform Infrared Spectroscopy (FTIR)	69
3.2.	.3.3	X-Ray Diffractometry (XRD)	70
3.2.	.3.4	Bioactivity of β -TCP Microspheres	71
3.2.	.3.5	Inductively Coupled Plasma- Mass Spectroscopy (ICP-MS	5)73
3.2.4	Co	nclusion	73
3.3 BIO	DEGI	RADATION OF BETA-TRICALCIUM PHOSPHATE MICROSPHERES	74
3.3.1	Inti	roduction	74
3.3.	.1.1	Effect of Strontium and Magnesium on Calcium Phosphate	e
Dis	solut	ion	75

3.3	.1.2	Stoichiometric and Non-Stoichiometric Dissolution Model	76
3.3	.1.3	Comparison of Different Dissolution Models	77
3.3.2	Eqi	vipment and Procedure	78
3.3.3	Res	sults and Discussion	79
3.3	.3.1	Dissolution Behaviour in Double Distilled Water	80
3.3	.3.2	Dissolution Behaviour in Tris-Buffer Solution	82
3.3	.3.3	Comparison of Dissolution Behaviours	83
3.3	.3.4	Surface Characterization of β -TCP Microsphere Degradation	on86
3.3.4	Cor	nclusions	88
4 EVAI	LUA	TION OF DRUG DELIVERY EFFICACY OF CORALLI	INE
SCAFFOI	LD F	OR BONE TISSUE ENGINEERING	89
4.1 Int	RODU	JCTION	90
4.1.1	The	e Use of Bisphosphonate for Promoting Bone Regeneration	90
4.1.2	Lip	osome Coatings	94
4.2 Equ	UIPMI	ENT AND PROCEDURE	96
4.3 Res	SULTS	S AND DISCUSSIONS	99
4.3.1	Bis	phosphonate Loading	99
4.3.2	Sur	face Characterization After Bisphosphonate Loading	100
4.3.3	Ide	ntifying the presence of bisphosphonate by EDS Analysis	102
4.3.4	X-r	ay photoelectron spectroscopy (XPS) chemical state analysis	<i>103</i>
4.3.5	Bis	phosphonate Release Profile	104
4.3.6	Lip	id Coating of β -TCP Microsphere	105
4.4 Co	NCLU	SION	106
5 BIOL	.OGI	ICAL EVALUATION OF CELL AND MICROSPHERE	
INTERAC	CTIO	NS	107
5.1 Int	RODU	JCTION	108
		ENT AND PROCEDURE	
		S AND DISCUSSION	
5.3.1	SaC	OS-2 Human Osteoblast Cell Proliferation	111
5.3.2	Exc	amination of SaOS-2 Cell Attachment by ESEM	112

5.3.3	Effect of Bisphosphonate on Human Monocytoid Cell	Line (U937)
Prolij	feration	
5.4 Co	NCLUSION	117
6 ANT	IBIOTIC LOADED MICROSPHERES INHIBIT BA	ACTERIAL
GROWTI	Н	
6.1 BA	CTERIAL INFECTIONS ASSOCIATED WITH IMPLANTS	119
6.1.1	Biofilm Formation	
6.1.2	Bacterial Infections in Biomaterials	
6.2 Eq	UIPMENT AND PROCEDURE	124
6.3 Re	sults and Discussion	
6.3.1	Gentamicin Loading	
6.3.2	Surface Analysis of Gentamicin Adhesion	
6.3.3	Effect of Dual Loaded Bisphosphonate and Gentamic	in Microspheres
on Hi	ıman Osteoblast Cell SaOS-2	
6.3.4	Antibacterial Efficacy Testing	
6.3.5	Time Delayed Antibacterial Efficacy Testing	
6.3.6	Bacterial Adherence Assay	
6.4 Co	NCLUSION	134
7 CON	CLUSIONS AND FUTURE DIRECTIONS	
7.1 Ke	Y ACHIEVEMENTS OF THIS RESEARCH	
7.2 Fu	TURE INVESTIGATIONS	
8 REF	ERENCES	

I. List of Figures

Figure 2.1 Chemical structure of hydroxyapatite, Ca ₁₀ (PO ₄) ₆ (OH) ₂ 37
Figure 2.2 Chemical structure of tricalciumphosphate, Ca ₃ (PO ₄) ₂ 39
Figure 3.1 FTIR spectra of unconverted coral sample showing peaks matching
those of calcium carbonate
Figure 3.2 (a) Low magnification SEM image of coral sand topography. (b) High
magnification SEM image of coral surface topography55
Figure 3.3 (a) Cross sectional images of the microspheres (b) Close up showing
direction of porous network shows that the coral sand has a uniform porous
network both connecting out from both the horizontal and vertical direction56
Figure 3.4 XRD result of the coral beach sand
Figure 3.5 DTA results showing dissociation of calcium carbonate of calcium
carbonate to calcium oxide and TGA results showing loss of mass from the coral.
Figure 3.6 ESEM micrograph of the after hydrothermal converted β -TCP
microsphere (a) lower magnification $(x100)$ and $(b)at$ a higher magnification
(x612)
Figure 3.7 ESEM micrograph at high magnification (a) focusing on the pore
distribution at the surface of the β -TCP microsphere and (b) average surface pore
size of 5µm67
Figure 3.8 Reconstructed microtomographic images of the β -TCP microsphere
showing (a) uniform distribution of the interconnecting pores and (b) different
levels of internal architecture68
Figure 3.9 FTIR spectra of after conversion coral sand sample showing Ca ₃ PO ₄
related vibrations
Figure 3.10 patterns showing after hydrothermal conversion peaks corresponding
to β -TCP (blue) and other phases such as HAp and calcium carbonate (red)70
Figure 3.11 EDS analysis showing the higher intensity of the calcium and
phosphate peaks of the precipitated β -TCP microsphere (yellow) compared with
normal non SBF treated β-TCP microsphere (red)71

Figure 3.12 β -TCP microspheres immersed in SBF solution for 7 days showing
precipitation of calcium phosphate phase throughout the surface and in between
the pores
Figure 3.13 Release of calcium ions from β -TCP microspheres immersed in
double distilled-deionized water over 20 days
Figure 3.14 Changes in pH with respect to time of β -TCP microspheres
immersed in double distilled-deionized water
Figure 3.15 Release of calcium ions from β -TCP microspheres immersed in tris-
buffer solution over 20 days
Figure 3.16 Changes in pH with respect to time of β -TCP microspheres
immersed in tris-buffer solution
Figure 3.17 Comparison of calcium ions released in distilled water (red) and tris
buffer (blue) solution
Figure 3.18 SEM micrograph of β -TCP microspheres (a) immersed in distilled
water for 3 months and revealing larger pores as a result of the dissolution process
(b)
Figure 3.19 SEM micrograph of β -TCP microspheres immersed in tris-buffer
solution for 3 months showing a slower surface degradation compared with
distilled water
Figure 4.1 The basic chemical structure and difference classes of bisphosphonate
based on different R1 and R2 side groups (Bell and Johnson, 1997)92
Figure 4.2 SEM micrograph showing pure bisphosphonate powder having a long
platelet structure
Figure 4.3 ESEM image showing bisphosphonate adsorb to surface of β -TCP
microspheres aligned as platelets at (a) lower magnification and at (b) higher
magnification
Figure 4.4 SEM image showing a) bisphosphonate adsorption all the way to the
central core of the β -TCP microsphere and b) higher magnification of the pores
from the core of the microsphere101
Figure 4.5 EDS image of (a) β -TCP microsphere and (b) bisphosphonate powder
on surface of microsphere102

Figure 4.6 XPS chemical spectra showing identifying the nitrogen (N 1S) band
contributing from the bisphosphonate at 400eV103
Figure 4.7 Coupled release profiles of bisphosphonate (mg released) and
microspheres ($n=3$). The close correlation shows that shell degradation is an
important mechanism for bisphosphonate release. It also shows the slow gradual
cumulative release of bisphosphonate for 21 days104
Figure 4.8 Demonstration of liposome coated β -TCP microsphere with
fluorescent dye and its degradation over time. Lipid was stained with rhodamine
and the strength of the dye was imaged at (A) 3, (B) 13, (C) 22 and (D) 72 days
immersed in solution105
Figure 5.1 Osteoblast cell proliferation for 3 and 7 days showing an increase of
cell numbers when exposed to bisphopshonate loaded β -TCP microsphere 111
Figure 5.2 Light microscope image of SaOS-2 osteoblast cell showing the
elongated structure of the cells after 3 days of seeding
Figure 5.3 ESEM image of SaOS-2 cell after 3 days of seeding on β -TCP
microsphere112
Figure 5.4 ESEM image showing attachment of SaOS-2 cell to the surface of the
bisphosphonate incorporated β -TCP microsphere as indicated by the white arrow.
Figure 5.5 Demonstration of functional activity of bisphosphonate from β -TCP
microsphere upon macrophages at 3 and 7 days. Inhibition of U937 proliferation
by bisphosphonate loaded shells is significant compared to cells cultured in their
absence. Interestingly inhibition is also affected by the shells themselves (n=6).
Figure 6.1 SEM image of pure gentamicin sulphate powder in its natural state.126
Figure 6.2 SEM image of gentamicin crystals incorporated onto the β –TCP
microsphere as indicated by white arrows at (a) low magnification and (b) at
higher magnification127
Figure 6.3 Human osteoblast (SaOS-2) growth responses to bisphosphonate and

Figure 6.4 SEM image of β –TCP microsphere incorporated with bisphosphonate
and gentamicin showing (a) the attachment of a human osteoblast cell and (b) at
higher magnification the multiple attachment point over multiple pores129
Figure 6.5 Bacterial growth curve showing the inhibition on the growth of S.
aureus when exposed to β –TCP microsphere incorporated with bisphosphonate
and gentamicin
Figure 6.6 Time delayed S. aureus growth curve revealing after 30 mins the
bacteria is inhibited from growing from the gentamicin released from the β -TCP
microspheres
Figure 6.7 Gentamicin release profile calculated from time-delayed antibacterial
experiment
Figure 6.8 Adhesion of S. aureus to microspheres loaded with gentamicin,
gentamicin and bisphosphonate and microspheres as control

II. List of Tables

Table 2.1 Classifications of biomaterials	Error! Bookmark not defined.
Table 3.1 Trace element results from the coral sa	nd59
Table 3.2 Chemical composition for simulated be	ody fluid (SBF) solution64
Table 3.3 ICP-MS results showing chemical com	positions of the after conversion
β-TCP microspheres	73

III. Publications

Book Chapter

1. B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, **J. Chou** and A. Bendavid. Synthesis of Hydroxyapatite Nanocoatings by Sol-Gel Method for Clinical Applications, In Biological and Biomedical Coatings Handbook, CRC Press, Editor, S. Zhang, Taylor and Francis publishers. (In press, April 2011).

Full Papers in Peer-Reviewed Journals

- 1. **J. Chou**, B. Ben-Nissan, D.W. Green, S.M. Valenzuela, L. Kohan. (2011). Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of micro-spherical shells from coral beach sand, Advanced Engineering Materials, 1: 1-2,93–99
- 2. **J.Chou**, D.W. Green and B. Ben-Nissan. (2010) New Slow Drug Delivery Materials and Systems for Biomedical Applications, Materials Australia, Sept, 43:3, 38-41
- 3. J. Chou, B. Ben-Nissan, P. Doble, C. Austin. (2010). Trace Elemental Imaging for Biomaterials by Laser Ablation Inductively Coupled Plasma-Mass Spectroscopy (LA-ICP-MS), Journal of Tissue Engineering and Regenerative Medicine (Accepted)
- 4. **J.Chou** and B. Ben-Nissan. (2009). Characterization of Slow Drug Delivery Microspheres for Bone Regeneration. In Bioceramics 22, Edited by Sukyoung Kim, 555-558.
- 5. **J.Chou**, R.Shimmon and B.Ben-Nissan (2009). Bisphosphonate determination using 1H-NMR spectroscopy for biomedical applications, Journal of Tissue Engineering and Regenerative Medicine, 3: 92-96
- 6. **J.Chou**, B.Ben-Nissan, A.H. Choi, R.Wuhrer, and D.Green (2007). Conversion of Coral Sand to Calcium Phosphate for biomedical application, Journal of Australia Ceramic Society, 43 [1], 44-48
- K.Lewis, A.Choi, J.Chou and B. Ben-Nissan (2007). Nanoceramics in Medical Application, Materials Australia, Vol. 40, No.3, May/June 2007, 32-34

Full Papers in Conference Proceedings and Presentations

- 1. J. Chou, B. Ben-Nissan, and R. Shimmons. Bioinspired processing & laser ablation ICP-MS imaging of calcium phosphate microsphere. 10th International Conference on Ceramic Processing Science. May 2008. Oral Presentation
- 2. J. Chou, B. Ben-Nissan. Structure and characterization of coral sand and its conversion to calcium phosphate. 1st Asia Biomaterial Congress ABMC. December 2007. Poster
- 3. **J. Chou**, B. Ben-Nissan. Conversion of coral sand to calcium phosphate for biomedical applications. Materials & Austceram. July 2007. Oral Presentation
- J. Chou, B. Ben-Nissan, R. Wuhrer. Conversion of coral sand for biomedical applications. 19th International Symposium on Ceramics in Medicine/ International Society for Ceramics in Medicine (ISCM). October 2006. Oral Presentation