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ABSTRACT 

Agriculture consumes maximum water of up to 70% of the total fresh water withdrawn 

in the world for consumptive purposes. Rapid population growth is further driving fresh 

water demand and putting tremendous stress on limited fresh water resources. This 

increasing demand can only be met by improving the current water use efficiency and 

by creating new water sources. Desalination could therefore play a significant role in 

creating a new water source by using unlimited saline water sources. However, current 

desalination technologies are energy intensive and energy has a significant impact on 

climate change. If low cost desalination technologies were made available, their impact 

on agriculture sector would be significant for many water stressed regions of the world.  

Recently, forward osmosis (FO) has been recognised as one of the most promising low 

energy processes for desalination. The FO process is based on the principle of natural 

osmotic process driven by the concentration gradient and not by hydraulic pressure like 

the reverse osmosis (RO) process and hence requires significantly lower energy. In the 

FO process, a concentrated draw solution (DS) extracts fresh water from the saline 

water using special membranes. The issue of membrane fouling in FO process is less 

challenging than the RO process where fouling constitutes a major operating issue. 

However, the lack of a suitable DS has limited the application of FO desalination for 

potable water. The separation of draw solutes from the diluted DS after desalination 

requires additional post-treatment processes that still consume energy, making FO 

uncompetitive with the already established RO desalination technology.   

The FO process offers novelty for those applications where the complete separation of 

draw solutes is not necessary and where the final diluted DS can be used directly if the 

presence of draw solutes adds value to the end use. Fertiliser drawn forward osmosis 

(FDFO) desalination for fertigation is therefore proposed based on this concept. When 

fertilisers are used as the draw solutes in the FDFO desalination process, the diluted 

fertiliser solution after desalination can be directly applied for fertigation because 

fertilisers are essential for plants. This concept avoids the need for an additional post-

treatment process for the separation and recovery of draw solutes. The objective of this 

study is therefore to investigate the performance of the FDFO desalination process for 

fertigation, identify its limitations and investigate options to overcome these limitations. 

The study has been presented in eleven chapters that include a definition of the detailed 
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concept and an assessment of the performance of eleven selected fertilisers as the DS 

under various conditions, through both simulation and bench-scale experiments.  

The energy required for FDFO for direct fertigation was estimated to be less than 0.24 

kW/m
3
 of fertigation water, which is comparatively lower than the most efficient 

current desalination technologies. As such, FDFO can also be easily powered using 

renewable energy sources, such as solar and wind. Since fertilisers are extensively used 

for agriculture, FDFO desalination does not create additional environmental issues 

related to fertiliser usage. In fact, FDFO desalination could add more value to irrigation 

water, thereby providing opportunities for improving the efficiency of water and 

fertiliser uses. FDFO desalination can be operated at very high feed recovery rates: 

higher than 80% using a feed of seawater quality. However, FDFO desalination has its 

own process limitation. Based on the principles of natural osmosis, the net movement of 

water across the membrane towards the DS cannot theoretically extend beyond osmotic 

equilibrium, which in turn is limited by the total dissolved solids (TDS) content of the 

feed solution (FS). Therefore, it is not possible to achieve a concentration of the diluted 

DS that is lower than the equivalent concentration of the FS without external influence. 

Based on the models for osmotic equilibrium, the water extraction capacities of eleven 

selected fertiliser DS were calculated for FS, simulated for different ranges of TDS. The 

water extraction capacities of the fertilisers were observed to depend on the molecular 

weight and osmotic pressure of the draw solutes, as well as on feed concentration. 

Based on the water extraction capacity, the expected fertiliser nutrient concentrations in 

the final FDFO product water was estimated in terms of nitrogen phosphorous 

potassium (NPK) concentrations. The expected final nutrient concentrations for 

simulated brackish water (BW) feed (TDS 5,000–35,000 mg/L) failed to meet 

acceptable NPK concentrations for direct fertigation of crops. Hence, achieving 

acceptable nutrient concentrations for direct fertigation will be a major challenge for the 

FDFO desalination process. The rest of the study therefore focussed on investigating 

processes and options that would help reduce the nutrient concentrations in the final 

FDFO product so that the final FDFO product water could be used for direct fertigation.  

Before the experimental investigation on the FDFO desalination, the influence of major 

parameters on the performance of FO desalination process was investigated. The 
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thermodynamic properties of the DS play a more influential role on water flux than the 

thermodynamic properties of the FS at higher temperature. Although water flux 

comparable to the RO desalination process was obtained by increasing the fertiliser DS 

concentrations, the internal concentration polarisation effects played a significant role in 

the performance of the FDFO desalination process. It was observed that any soluble 

fertilisers with osmotic pressure in excess of the FS can draw water in FO process; 

however, only eleven different chemical fertilisers commonly used for agriculture 

worldwide were selected and their performances studied. The performance of the 

fertiliser solutions as DS were assessed in terms of water flux, reverse draw solute flux, 

water extraction capacity and nutrient concentrations in the final product water. 

Blended fertilisers as the DS were able to achieved significantly lower NPK 

concentrations by FDFO desalination than the straight/single fertiliser as DS. However, 

it was observed that blending fertilisers generally resulted in a slightly reduced bulk 

osmotic pressure and water flux compared to the sum of the osmotic pressures and 

water fluxes of the two individual fertilisers when used as DS alone. An integrated 

FDFO-NF desalination process was investigated to reduce the nutrient concentrations in 

the final product water. Nanofiltration (NF) as pre-treatment or post-treatment was 

found to be effective in reducing the final NPK concentrations to acceptable limits for 

direct fertigation although it required second NF pass, especially when monovalent 

fertiliser was used as the DS or when a high TDS feed was used. NF as post-treatment 

was more advantageous in terms of both nutrient reduction and energy consumption 

because high quality, diluted DS was used as feed. 

Finally, this study has recommended a pilot test of the integrated FDFO-NF desalination 

process in the Murray-Darling basin. Recommendations for further investigations on 

reducing nutrient concentrations include pressure assisted FDFO desalination and the 

concept of using osmotic fillers as the DS with fertilisers. The study also recommended 

evaluating the potential for fertiliser drawn pressure retarded osmosis (FD-PRO) 

desalination for simultaneous desalination and power generation, and for self-powering 

the FO desalination process. The other recommendations include a study on membrane 

fouling and scaling issues for FDFO desalination operated at high recovery rates, boron 

rejection and, finally, a life cycle analysis of the FDFO desalination process. 
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