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ABSTRACT  

Bone mineral density (BMD) measured by dual energy x-ray absorptiometry (DXA) 

is often used in the clinical diagnosis of bone disorders such as osteoporosis. 

However, several studies have shown that measuring BMD alone does not provide 

sufficient discrimination between individuals with and without increased fracture 

risk. In fact, bone quality is affected also by the bone micro-architecture and material 

properties. The development of imaging techniques, particularly computed 

tomography (CT) and magnetic resonance (MR) imaging, allowed the generation of 

three-dimensional (3D) images for the morphological analysis of trabecular bone. 

Furthermore, the 3D image data can be the source of finite element (FE) models. FE 

analysis of such data represents a means to assess the mechanical response virtually. 

Whole-body CT and MRI scanners are able to provide three-dimensional images in 

vivo of human femoral and spinal sites but compared to µCT and µMR, have poorer 

resolution and lower signal-to-noise ratio. As a result of the low resolution, a 

significant partial volume effect is expected to affect the reconstructed images 

primarily by blurring the interface between bone and soft tissue. Thus, the 

implications of such limitations on the FE assessment of mechanical properties 

should be investigated. 

The main goal of this study was to assess the capability of whole-body low 

resolution MRI-based finite element model for the prediction of trabecular bone 

mechanical properties. The apparent elastic modulus and the displacement field were 

assessed and compared to a high resolution MR model. The effect of image voxel 
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size on these properties was examined using µMR images acquired with different 

resolutions.  

The estimated mechanical properties of two trabecular bone samples (A and B), as 

assessed by whole-body MRI-based FE analysis, were compared with the 

corresponding measurements obtained from the validated µMRI-based FE analysis. 

It was found that increasing the voxel size from 30 µm to 200 µm raised the apparent 

elastic modulus by up to 13% and 21% for bone samples A and B, respectively. For 

whole-body MR, with voxel size of 260 µm, the overestimate rose to 24% for both 

bone samples. However, the apparent tissue elastic modulus stayed within the range 

(722- 1207) MPa, and (777 – 1228) MPa for bone samples A and B, respectively, 

imaged with high resolution µMR. The variations in the apparent elastic modulus 

appear to correlate with differences in the bone volume fraction, which varied 

between 0.44 and 0.68. FE analysis of load levels in the elastic range indicated that 

the more computationally costly geometric non-linear analysis did not improve the 

results significantly. Hence, a linear elastic FE analysis was deemed to be 

sufficiently accurate at low load levels.  

In addition to estimating the apparent elastic modulus, FE analysis can produce a 

displacement field that represents the response to applied compression at every point 

in the trabecular bone. The results show that increasing the voxel size leads to a 

systematic overestimation of the mean displacement compared to the reference 

values. However, the mean norm displacement estimated from whole-body MR 

(0.64 mm) in the direction of the applied compression force falls within the range 

obtained from high resolution µMR (0.64 ± 0.13 mm). The results also suggest that 

the information provided by displacement field values may be statistically 
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uncorrelated with the apparent elastic modulus and hence serve as an additional 

source of parameterization of the mechanical response of trabecular bone.  

The application of whole-body MRI to trabecular bone analysis is expected to be 

affected not only by resolution but also by other effects arising from the low strength 

of the steady magnetic field, the large imaging volume, and motion artefacts. 

Nevertheless, both the estimated apparent elastic modulus and displacement field are 

compatible with those obtained from µMR of comparable resolution.       

Within the limit of this study the predictions of FE analysis derived from whole-

body MR are within the range of predictions based on high resolution µMR, 

indicating a potential suitability of MR for assessment of bone strength.   
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