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ABSTRACT 

The air quality system is a system characterised by non-linear, complex 

relationships. Among existing air pollutants, the ozone (O3), known as a secondary 

pollutant gas, involves the most complex chemical reactions in its formation, 

whereby a number of factors can affect its concentration level. To assess the ozone 

concentration in a region, a measurement method can be implemented, albeit only at 

certain points in the region. Thus, a more complicated task is to define the spatial 

distribution of the ozone level across the region, in which the deterministic air 

quality model is often used by the authority. Nevertheless, simulation by using a 

deterministic model typically needs high computational requirements due to the 

nonlinear nature of chemical reactions involved in the model formulation, which is 

also subject to uncertainties. In the context of ozone as an air pollutant, the 

determination of the background ozone level (BOL), independent from human 

activities, is also important as it could represent one of reliable references to human 

health risk assessment. The concept of BOL may be easily understood, but 

practically, it is hard to distinguish between natural and anthropogenic effects. Apart 

from existing approaches to the BOL determination, a new quantisation method is 

presented in this work, by evaluating the relationship of ozone versus nitric oxide 

(O3-NO) to estimate the BOL value, mainly by using night-time and early morning 

measurement data collected at the monitoring stations. 

In this thesis, to deal with the challenging problem of air pollutant profile estimation, 

a metamodel approach is suggested to adequately approximate intrinsically non-

linear and complex input-output relationships with significantly less computation. 

The intrinsic characteristics of the underlying physics are not assumed to be known, 

while the system’s input and output behaviours remain essential. A considerable 

number of metamodels approach have been proposed in the literature, e.g. splines, 

neural networks, kriging and support vector machine. Here, the radial basis function 

neural network (RBFNN) is concerned as it is known to offer good estimation 

performance on accuracy, robustness, versatility, sample size, efficiency, and 
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simplicity as compared to other stochastic approaches. The development 

requirements are that the proposed metamodels should be capable of estimating the 

ozone profiles and its background level temporally and spatially with reasonably 

good accuracies, subject to satisfying some statistical criteria. 

Academic contributions of this thesis include in a number of performance 

enhancements of the RBFNN algorithms. Generally, three difficulties involved in 

the network training, selection of radial basis centres, selection of the basis function 

variance (i.e. spread parameter), and training of network weights. The selection of 

those parameters is very crucial, as they directly affect the number of hidden 

neurons used and also the network overall performance. In this research, some 

improvements of the typical RBFNN algorithm (i.e. orthogonal least squares) are 

achieved. First, an adaptively-tuned spread parameter and a pruning algorithm to 

optimise the network’s size are proposed. Next, a new approach for training the 

RBFNN is presented, which involves the forward selection method for selecting the 

radial basis centres. Also, a method for training the network output weights is 

developed, including some suggestions for estimation of the best possible values of 

the network parameters by considering the cross-validation approach. For 

applications, results show that the combination of the proposed paradigm could offer 

a sub-optimal solution of metamodelling development in the generic sense (by 

avoiding the iteration process) for a faster computation, which is essential in air 

pollutant profile estimation. 
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Chapter 1                                                         

INTRODUCTION 

1.1. General introduction 

The issue of air quality continues as the main topic being debated and researched 

among policy makers and the public. Air pollution is a concern to many people as it 

directly influences the quality of human health, including respiratory problems, heart 

and lung diseases, and may even occasion premature death. Children are at greater 

risk as they are generally more active outdoors and their lungs are still developing, 

whilst elderly people are also sensitive to some types of air pollution. For example, 

in Australia, about two million Australians suffer from asthma, and hundreds of 

thousands of others are affected by respiratory disorders in which poor air quality is 

presumed to be the most important factor (as reported in DoEH, 2004). 

The change in the level of air quality arises from various emission sources, mainly 

industrial emissions such as from factories and power plants; mobile transportation 

such as cars, buses, trucks, planes and ships; and also biogenic sources such as 

bushfires, vegetation and windblown dust. These are illustrated in Fig. 1.1 (a–c). The 

quantity of pollutants released to the atmosphere and their removal could be affected 

by factors such as source strengths, sunlight, geography, moisture, clouds, rain, and 

weather patterns, locally and regionally.  

In New South Wales (NSW), Australia, the air quality assessment was being carried 

out by the Department of Environment and Climate Change NSW (DECC), and 

recently the responsibility has been taken over by the Office of Environment and 

Heritage NSW (OEH). In a special project, the “25-year Air Quality Management 
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Plan – Action for Air”, it was noted that some measures of air quality have been 

conducted in NSW since 1994; the study area mainly covered the urban area of the 

greater Sydney, Newcastle and Wollongong regions, known collectively as the 

Greater Metropolitan Region (GMR) (DECC, 2007a). The study involved air quality 

measurements at monitoring stations and computer simulations using airshed 

models, and the assessment of the pollutants’ precursor emission rates. From the ten 

year comprehensive emissions inventory from 1994 to 2004, the six most critical 

agents have been identified as sulphur dioxide (SO2), nitrogen oxide (NO2), carbon 

monoxide (CO), ground level ozone (O3), lead (Pb), and fine particles less than 10 

micrometres (PM10). Several significant impacts of these air pollutants on human 

health quality are summarised in Table 1.1 (DoEH, 2004). Of the six key air 

pollutants included under the National Environment Protection Measure for Ambient 

Air Quality (NEPM), only two remain as significant issues in NSW, the most 

important being surface ozone and to a lesser extent, fine particles. 

(a) (b) (c) 

Fig. 1.1 Air pollutant sources: (a) industrial emissions, (b) motor vehicles, and (c) natural sources. 

At the present time, the effort is mainly focused on reducing the surface ozone level 

where it exceeds the national standard (i.e. Air NEPM standard). Ozone (O3) is a 

secondary pollutant gas that is naturally produced in the earth’s atmosphere, a 

product of the chemical reaction between nitrogen oxides (NOx, NOx = NO + NO2) 

and volatile organic compounds (VOCs), with the existence of solar radiation (from 

sunlight), and also influenced by other factors, such as meteorological and 

topographical. The stratosphere ozone is very useful as it could shield humans from 

the harmful influences of the sun’s ultraviolet rays. However, exposure to the 

tropospheric ozone (also known as surface ozone or ground level ozone) may be 

harmful rather than beneficial to living organisms because it can damage living 

tissues and break down certain materials. 
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Table 1.1 Six basic pollutants found in Australia and their characteristics. 

POLLUTANT DESCRIPTION SOURCES EFFECTS 

Carbon 
monoxide (CO) 

Poisonous gas Produced when fuels 
containing carbon do 
not fully combust. 
Mainly produced by 
motor vehicles. 

Can affect mental function, 
alertness, and worsen 
cardiovascular diseases. 
Harmful even in low 
concentrations. 

Nitrogen 
dioxide (NO2) 

Highly reactive gas. 
Plays a major role in 
the formation of 
photochemical smog. 

Sourced from motor 
vehicles and industries 
(i.e. power plants). 

Increases respiratory illnesses 
during short term exposure. 
Lowers the resistance to 
respiratory infections during 
long term exposure. 

Ozone (O3) Highly reactive gas. 
Produced in the 
stratospheric ozone 
layer. 
Main chemical in 
photochemical smog. 

Formed as a chemical 
reaction when sunlight 
reacts with compounds 
from motor vehicles, 
refineries, and 
vegetation. 

It could significantly decrease 
lung function, increase 
respiratory symptoms, 
aggravate asthma, affect 
vegetation and building 
materials. 

Sulphur dioxide 
(SO2) 

Reactive gas Main sources: power 
plants, refineries and 
smelters. 

Irritates eyes, nose and throat. 
Aggravates asthma and 
bronchitis. Can cause lung 
damage. 

Lead (Pb) Metal Produced mainly by 
vehicles using leaded 
petrol. 

Can cause damage to nervous 
system, kidneys and 
reproductive organs. 

Fine particles In two size ranges: 
PM10 (inhalable 
particles) and PM2.5 

(respirable particles) 

Examples: Residues 
from motor vehicles, 
domestic wood heaters 
and bushfires. 

It is thought to increase 
respiratory symptoms, 
aggravate asthma, and cause 
premature death. 

1.2. Problem statement 

As major cities and their surrounding suburbs around the world swell with people, 

motor vehicles and industries, the number of cities with poor environmental quality 

continues to grow. There is an urgent need to address these issues by better 

understanding the connections between air pollution formation, human health, and 

emission control or urban management. The concentration of air pollutants can be 

attributed to many factors such as specific individual sources, source emission 

density, topography, and the state of the atmosphere, hence their formations 

generally involve very complex chemical reactions. Many possible tools have been 

used by the policy makers to manage air quality either by using direct measurement 

or simulation software. However, there is an increasing demand for better solutions 

involving faster simulations and more reliable results to allow effective decisions to 
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be made relating to air quality management. Due to air pollution trending upwards 

and exceeding standards, regulators in many countries are focusing on the ozone 

pollutant problem.  

Basically, ozone concentration could be easily measured by special instruments 

which are typically located at the monitoring stations, or in mobile measurement 

stations (see e.g. Elkamel et al., 2001). However, analysis at the fixed monitoring 

stations can only be assessed at the location of interest, which may limit the value of 

the information for the policy maker. To overcome this issue, one way is the use of 

mobile measurement stations that can be moved to other locations after some 

interval of time, rather than increasing the number of fixed monitoring sites to avoid 

expensive investment in instrumentation. However, this is generally difficult to be 

implemented, quite time-consuming and possibly inaccessible at most rural 

locations. To further extrapolate the results, a spatial distribution approach is another 

useful method to tackle this problem. Typically, deterministic dispersion models are 

used to handle the spatial estimation task (see e.g. Seigneur, 2001; Phillips & 

Finkelstein, 2006; Monteiro et al., 2007), however, they need a high level of 

expertise in their development, require longer time in execution, and the reliability 

of the outputs is also questionable. 

Hence, to reduce the computation burden for the spatial estimation task, more 

appropriate and reliable statistical techniques could be implemented. Several works 

have appeared in the literature related to this approach, for example, Duc et al. 

(2000) used a Kriging approach to study the spatial correlation of some pollutants 

over a long-distance network in Sydney, Australia. In this work, a metamodel 

approach will be proposed incorporating the simulation output of a photochemical 

dispersion model, namely “The Air Pollution Model and Chemical Transport Model 

(TAPM-CTM), in which the approach could reduce the computational cost by 

avoiding the modelling complexity and to improve the reliability of the 

approximation. 

A more difficult task than the ozone level estimation is the determination of the 

“background ozone level (BOL)” over a region, especially in urban areas. For 

instance, BOL can be defined as the level of ozone occurring in the troposphere 
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which is naturally-formed and free from anthropogenic influences (Duc & Azzi, 

2009). Accurate determination of the background ozone level requires a clean 

environment to be free from these anthropogenic influences, which is difficult to 

achieve in practice. Generally, the determination may be done in two ways; by 

measurement and modelling. The former method (typically incorporated in 

quantisation analysis) can only be implemented at remote sites (Donev et al., 2002; 

Oltmans et al., 2008), which are normally located in pristine area. Thus, this method 

is not possible for BOL determination in urban areas. A more generic technique is to 

use an air quality model (AQM) (e.g. US-EPA, 2006a), although most recent AQMs 

still having a high level of uncertainty in the prediction of the BOL because their 

estimation process is much influenced by the correctness of the biogenic emission 

data as input to the model. For this reasons, a neural network-based metamodel 

using ambient air quality data incorporating some quantisation approaches will be 

utilised in this work for BOL determination to simplify the solution and improve the 

reliability of the estimation. 

In terms of the methodology, metamodelling (also known as the ‘surrogate model’) 

is the technique for determination of simpler models from the complex models that 

involve less computation but adequately represent a good approximation for the non-

linear system behaviour. The exact, inner working of the simulation code is not 

assumed to be known, while the input-output behaviour is important. Substantial 

results from the existing works illustrate that using metamodels to locate an optimum 

solution is often sufficiently accurate in many applications requiring prediction, 

optimisation, verification and validation (Tunali & Batmaz, 2003). A number of 

metamodelling techniques exist such as polynomial regression, neural networks, 

Multivariate Adaptive Regression Splines (MARS), and Kriging. Nevertheless, there 

is no conclusion about which model is definitely superior to the others. However, 

insights have been gained through a number of recent studies, whereby Kriging and 

Radial Basis Function (RBF) models are intensively investigated (Fang et al., 2005). 

In general, Kriging models are more accurate for nonlinear problems, however, they 

are difficult to use due to the global optimisation process applied to identify the 

maximum likelihood estimators. On the other hand, polynomial models are easy to 

construct, but are less accurate. The RBF model, especially the multi-quadric and 
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Gaussian RBF, can interpolate sample points and is easy to construct, which results 

in a trade-off between Kriging and polynomials.  

To accomplish the modelling and estimation process for the air quality issues, a 

metamodelling approach based on a radial basis function neural network (RBFNN) 

will be used throughout the work. To overview, the RBFNN is a special type of feed-

forward neural network architecture which consists of an input layer, a hidden layer 

and an output layer. Several forms of radial basis functions are used in RBFNN, 

with Gaussian being probably the most popular because of its attractive 

mathematical properties of universal and best approximation, and its hill-like shape 

is easy to control with the variance parameter. In the RBFNN, three difficulties are 

involved in the training algorithm; the selection of the radial basis centres, the 

selection of the basis function radius (spread), and the training of network weights. 

These problems will be addressed in this work, which includes several 

improvements in the typical algorithm, a new algorithm for training the RBFNN and 

a new sampling method for a neural network based metamodel.  

1.3. Research objectives 

This research aims to provide a comprehensive analysis of: (1) to determine the 

background ozone level and its complicated relationship with other air pollutant 

factors such as nitrogen oxides (NOx), volatile organic compounds (VOCs), 

meteorological conditions and also terrain; (2) to develop a metamodel for the 

accurate prediction of ozone concentration and background ozone temporal and 

spatial distribution, under various perspectives and scenarios; and (3) to introduce 

several improvements in the neural network-based metamodel which includes the 

new training algorithm of RBFNN and the new sampling scheme for the input-

output data set. It is expected that the findings from this research can be used in the 

larger scale quantification and prediction of the emission sources, and some 

interpretations may be used as part of the reference to the policy maker for better air 

quality control and management. These research aims are elaborated further as 

follows: 
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 Determination of background ozone level: In this work, a non-

photochemical condition background ozone level will be considered, which 

will be derived from the ambient measurement data during night time and 

early morning time (e.g. from 7.00 pm to 7.00 am the next morning). It 

excludes the photochemical process that would occur during daytime as if 

only natural sources were present.  

 Metamodel development for ozone and background ozone: In this research, 

a neural network-based metamodel will be developed as a statistical 

approximation technique for the prediction of ozone and background ozone 

levels. RBFNN will be assigned as a system model, whereby the error 

between the metamodel output and the target output will be minimised. The 

idea is to design a network model for each measuring station and from this 

information, to construct a more generic model for application over the 

region of interest.  

 Improvements of the RBFNN metamodel processes: The RBFNN involves 

some difficulties in its training algorithm, which corresponds to its modelling 

performance based on some statistical performance indexes. This research 

will attempt to develop a new algorithm for the training process, which is 

expected to offer better performances than other techniques in some respects, 

by comparing with the actual value (i.e. ambient measured data for air 

quality), as well as with other available training methods. 

 Trend analysis and correlation: Statistical investigation will be conducted to 

reveal the ozone background trend, and subsequently to interpret the 

implication of this trend in setting the ozone goal target for emission 

reduction. 

1.4. Significance of the work and contributions 

The significance of the work and its expected contributions generally can be classed 

into two main groups: first, the contributions in respect to the application of the 

methodology in the air quality studies; and second, the improvement of the learning 
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algorithms in the scope of a neural network-based metamodel, the details being 

described as follows: 

A. Application of the methodology in the atmospheric studies 

i. Prediction of the air pollutant using metamodel 

The future prediction of the air pollutant’s temporal and spatial distribution 

(either short-term or long-term) is essential because its trend could initiate an 

authority for correcting or setting the right air management policy. 

Generally, air quality models (AQM) are used to deal with this nonlinear and 

complicated task. However, because of their complexity, their execution is 

quite time consuming, and may take several days or a week depending on the 

model used and the scale of the region under consideration. A metamodel 

approach featuring radial basis function neural network (RBFNN) is 

suggested to overcome this difficulty in which the function approximation is 

developed using input-output relationships, thus possibly avoiding the 

expensive computation of a complex chemical reaction in the AQM, 

especially when dealing with spatial estimation. Apart from inexpensive 

computation, RBFNN may provides more reliable results of the estimation 

and may offers better predictions of pollutant concentrations than those using 

the deterministic model, when compared to the measurement data collected 

at monitoring stations. 

ii. Determination of background ozone level 

The concept of background ozone is easily grasped but the challenging 

problem is how to define and distinguish what remains as natural and 

anthropogenic effects, which requires a ‘clean’ environment. However, a 

‘clean environment’ before anthropogenic changes is practically hard to find 

and determine when man has already changed the settings. The best available 

solution for this predicament is to measure the ozone concentration at 

pristine sites, combined with some statistical quantisation methods. 

Unfortunately, this approach cannot be implemented in highly urbanised 

areas such as in Sydney, Australia. Thus, in this work, a new generic 

approach will be introduced based on the ambient measurement of night-time 
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data for ozone and nitrogen oxides, which approach may be used to 

determine the background ozone in any location. As the quantisation process 

differs from other authors’ suggestions, this definition is specially labelled as 

‘night-time background ozone level’. 

iii. Correlation analysis of the metamodel prediction 

Analytical investigation of the metamodel prediction of the air pollutants are 

envisaged could refine the atmospheric interpretation of the relationship of 

ozone and their precursors (i.e. oxides of nitrogen and volatile organic 

compounds) and of the interaction of major sources contributing to ozone 

and other air pollutants. The integration strategy of the metamodel and the 

deterministic air quality model such as TAPM-CTM may increase the 

trustworthiness of the air quality predictions and their future trends, to assist 

the authority in formulating suitable policies for air quality control. 

B. Improvement of the metamodel process and its algorithms 

i. Improvement of the radial basis function neural network (RBFNN) 

learning algorithm 

Generally, the training processes of the RBFNN involve three difficulties; to 

find the best centres from its trial dataset, to set the appropriate values of the 

radius from its centres (i.e. the variance of the basis function), and to train 

the network’s weights between the inner and output layers. All these 

properties have inter-relationships with each other, thus to achieve the best 

training performance, a set of algorithms must consider these three factors. 

This work attempts to develop a new training algorithm for RBFNN that 

involves several elements as follows: to suggest some improvements in the 

typical algorithm which includes the adaptively-adjusted spread parameter 

based on steepest descent technique, and also the pruning algorithm; to 

introduce a supervised training algorithm for the selection of the basis 

centres based on a forward selection strategy by incorporating the regularised 

and the weighted least squares theory; and to suggest several approaches for 

optimally tuning the radial basis parameters including the least weighting 

factors, the regularisation parameter and the isotropic spread parameter. 
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ii. Improvement in the metamodel process 

In the development of the metamodel, three important stages are involved: 

preparing the data and choosing the modelling approach; parameter 

estimation and training; and model testing and validation. In neural network 

training, the preparation of a trial dataset is crucial as it will directly 

influence the metamodel performance. Thus, the appropriate data sampling 

strategy is necessary especially when dealing with a large dataset. In this 

work, a new sampling strategy will be introduced, based on the distance 

measure and the clustering process. For instance, the proposed strategy uses 

a distance weight function to measure the normalised distance for all the 

input-output data points, and followed by clustering to n numbers of 

sampling frequency by using k-means theory. The proposed strategy is 

benchmarked with some available techniques such as n-level Full Factorial 

Design and Latin Hypercube Design, and the results show that in certain 

conditions, it outperforms the rest in terms of several criteria, which are the 

performances indexes, the network size and the computation time. 

1.5. Thesis structure 

This thesis consists of nine chapters. Chapter 1 provides the background of the air 

pollution impacts and the importance of the air quality estimations and predictions. 

Next, the problem statement, the objectives of the thesis, and the significance of the 

work and contributions, are outlined. 

In Chapter 2, the literature review related to this research is presented. It begins with 

an overview of the available air quality modelling techniques in atmospheric studies, 

followed by the description of air pollutant measurements and predictions, including 

an explanation of the background ozone level theories. Next, this chapter describes 

the metamodelling approach which includes the variation of techniques in the 

literature and the sampling strategies. This is followed by a description of the radial 

basis function neural network metamodel including the various learning strategies 

and types of basis function.        
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Chapter 3 presents the process flow for constructing the metamodel specifically 

using the neural network approach, which consists of the data preparation, the model 

training, and the model testing and validation. A proposed data sampling scheme 

will be described which features the weighted and clustering design (WCD) method. 

The reliability of the method is identified by comparing several performance criteria 

with the available methods. 

Chapter 4 describes the radial basis function neural network paradigm and a typical 

training algorithm, followed by some proposed improvements which include a 

method for an adaptively-tuned spread parameter and a pruning algorithm to 

optimise the number of hidden neurons in the network. The significant 

improvements in its performance are evaluated using some test functions. 

Chapter 5 focuses on the proposed new training algorithm for the radial basis 

function neural network, featuring the generalisation network with regularised 

forward selection and weighted least-squares (GRFSWLS) for the basis centre 

selections, a method to train the network output weights, and some suggestions on 

the determination of the radial basis function neural network parameters. 

In Chapter 6, an overview of the applied domain will be described, followed by an 

explanation of some tools and measurement methods for the dataset collection in 

this work. The data collection involves several methods, including the measurement 

of the air pollutant at monitoring stations by using some special instruments, the 

collection of the emission rates dataset of the pollutant sources from the Emission 

Data Management System (EDMS), and the extraction of some input-output dataset 

from the air quality model.  

Chapter 7 covers the proposed approach in the determination of the background 

ozone level in which the methodology is generic for use in any considered location. 

Several quantisation methods regarding this approach are explained which are the 

non-photochemical background ozone level concept and a technique to determine 

the suitable time range for the night-time background ozone level. The effectiveness 

of each strategy will be validated and compared with other available approaches. 
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Chapter 8 discusses the metamodel application in the estimation of ozone and the 

background ozone level, temporally and spatially. Each part begins with the 

description of the data pre-processing which includes the selection of the suitable 

input-output variables and the data sampling, and followed by the metamodel 

function estimation, and model validation and testing. An analysis of its outputs 

performance and the future trend analysis related to the atmospheric field will be 

discussed. 

 
Finally, Chapter 9 presents the summary of the results drawn from this work, 

conclusion reached and the recommendations for future research. The last section 

comprises a bibliography and also appendices containing the program codes and 

relevant supporting documents. 
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Chapter 2                                            

LITERATURE REVIEW 

2.1. Introduction 

The primary goal of all air pollution control programs is to protect human health and 

the environment from adverse effects of air pollutants. Several guidelines and 

standards to achieve the air quality management (AQM) programs’ goal appear in 

several documents (e.g. EU, 1999, 2000, 2002; WHO, 2005; US-EPA, 2006b). Air 

quality may be classified easily by qualitative interpretation, for example ‘poor’ 

when pollutants cause (say) a decrease in visibility, and ‘good’ when the sky appears 

clear. However, qualitative assessments cannot be used to support regulatory 

programs designed to protect the environment. Therefore, a quantitative air quality 

assessment needs to be conducted, having in general three different approaches, 

namely, air quality monitoring, emissions inventory and assessment, and air quality 

modelling. Each has its usefulness, in terms of temporal and spatial aspects to the 

policy maker for the understanding of the nature of air pollution due to various 

sources in the urban setting. 

This chapter reviews the methodological approaches undertaken in the literature to 

the present time to provide a systematic assessment of AQM, an overview of the 

main air quality issue that will be addressed in this research which is ozone and 

background ozone levels, surveys on the variations of air quality models used in the 

literature in air quality study, a review of the metamodel approach which is the 

proposed alternative way for air quality estimation, and finally, a review of the radial 

basis function neural network technique as the metamodel’s approximation function.  
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2.2. Overview of air quality assessment 

2.2.1. Three approaches in air quality assessment 

2.2.1.1. Air quality monitoring 

One effective approach to assess air quality is through the development of an 

Ambient Air Monitoring Program. In general, air quality samples are collected for 

one or more of the following purposes (Godish, 2004; US-EPA, 2011a):  

 To judge compliance with ambient air quality standards; 

 To observe pollution trends (i.e. short-term and long-term) throughout the 

region (i.e. urban and non-urban areas); 

 To support the Air Quality Index (AQI) program; 

 To support emissions reduction programs; 

 To determine the effectiveness of emission control programs; 

 To support research efforts designed to determine potential associations 

between pollutant levels and adverse health and environmental effects. 

Due to the vastness of the atmosphere, it is not possible to evaluate each of the 

individual pollutants in the program. At the present time, the ‘pollutant criteria’ (or 

the six/or seven key pollutants) are chosen in most of the air quality monitoring 

programs worldwide (e.g. EU 1999, 2000, 2002; DECC, 2007a; US-EPA, 2011b). In 

general, pollutant concentrations are collected in the monitoring stations (e.g. Fig. 

2.1) whether in or on a sampling medium or in automated continuous systems, 

where they are drawn through a sensing device and concentrations are measured in 

real time.  

For example, in the United States, all air quality monitoring activities must use 

methodologies approved by the US-EPA as reference methods, namely as Federal 

Reference Methods (FRMs). A comparison of approved measurement methods for 

the criteria pollutants between United States and Australia are summarised in Table 

2.1. The details of each measurement method will not be described in this thesis 

(except for ozone and oxides of nitrogen in Chapter 6). 
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Fig. 2.1 An example of air quality monitoring station located in Sydney, Australia. (Photo courtesy of 
Department of Environment and Climate Change, DECC). 

Table 2.1 A comparison of air quality reference methods used in U.S. and Australia monitoring 
stations. 

Pollutant 
Reference method 

FRMs in U.S. (US-EPA, 2011c) Australia (DECC, 2007c) 

Sulphur dioxide Spectrophotometry fluorescent spectrophotometry 

Nitrogen dioxide Gas-phase chemiluminescence chemiluminescence 

Carbon monoxide Non-dispersive infrared photometry infrared spectrometry 

Ozone Chemiluminescence ultraviolet spectroscopy 

Total non-methane 
hydrocarbons 

Gas chromatography – FID N/A 

Fine particles – PM10 Performance-approved product tapered element oscillating 
microbalance (TEOM) Fine particles – PM2.5 Performance-approved product 

Lead Total Suspended Particulates (TSP) Total Suspended Particulates (TSP) 

Monitoring network requirements 

For success in satisfying the purposes of the monitoring program, the network 

should be designed to meet one of the following basic monitoring objectives:  

1. To determine the highest concentrations expected to occur in the area 

covered by the network;  

2. to determine the representative concentrations in areas of high population 

density; 

3. to determine the impact on ambient pollution levels of significant sources or 

source categories; and  

4. to determine the general background concentration levels. 
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These four objectives indicate the nature of the samples that the monitoring network 

will collect which must be representative of the spatial area being studied. Thus, in 

establishing the monitoring station sites, the spatial scales are typically used by the 

authority to make this decision. Basically, spatial scales are estimates of the sizes of 

areas around monitoring locations that experience similar pollutant concentrations. 

Spatial scale categories are: (1) microscale, ranges from a few metres to 100 m; (2) 

middle scale, ranges from 100 m to 0.5 km; (3) neighbourhood scale, ranges from 

0.5 to 4.0 km; (4) urban scale, ranges from 4 to 50 km; and (5) regional scale, ranges 

from tens to hundreds of kilometres. 

Basic references for spatial scale determination are given as follows: spatial scales 

for the highest concentration or source impact are micro-, middle, neighbourhood, 

and, less frequently, urban scales; spatial scales for high population densities are 

middle, neighbourhood, and urban; neighbourhood or regional scales are appropriate 

for background levels; and urban and regional scales are also appropriate for 

determination of pollutant transport in remote areas (Godish, 2004). 

Averaging periods 

The determination of the averaging time is dependent on the sampling durations 

required to collect samples, and the intended use of the data. For example, one-hour 

averages are used for short-term evaluation, while 24-hour averages are appropriate 

for long-term trends. Data from real-time monitoring instruments are able to provide 

hourly average concentrations or concentrations reflective of the needs of air quality 

standards (e.g. NAAQS, a standard used in United States; and NEPM, a standard 

used in Australia). For pollutants such as O3, where peak levels occur for a limited 

time period, one-hour and eight-hour averaging times are employed.  

2.2.1.2. Emission inventory and assessment 

An air emissions inventory is a detailed listing of pollutants discharged into the 

atmosphere by each source type during a given time period at a specific location. A 

complete inventory typically contains emission sources that correspond to all the 

regulated pollutants in air quality standards. Emission inventories are required in the 

air quality management process for the following reasons: 
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1. to help determine significant sources of air pollutants; 

2. to establish emission trends over time; 

3. to formulate emissions control policy; 

4. to comply with permitted requirements; 

5. to compile national annual emission inventories; and  

6. to provide a database for ambient air quality modelling. 

Several methods for calculating the emission inventories are available, which may 

include, but are not limited to: continuous monitoring to measure actual emissions; 

using stack sampling procedures for gases; extrapolating the results from short-term 

source emissions tests; and combining published emission factors with known 

activity levels. An emission factor may be used to estimate emissions when actual 

emission data is not available. In most cases, these factors are simply averages of all 

available data of acceptable quality, and are generally assumed to be representative 

of long-term averages for all facilities in the source category (US-EPA, 2011d). 

Typically, the inventory includes emissions derived from biogenic (i.e. natural) and 

anthropogenic (i.e. human) sources as outlined below (DECC, 2007b): 

 Biogenic (e.g. bushfires, trees and windborne dust); 

 Commercial businesses (e.g. quarries, service stations and smash repairers); 

 Domestic activities (e.g. house painting, lawn mowing and wood heaters); 

 Industrial premises (e.g. oil refineries, power stations and steelworks); 

 Off-road mobile (e.g. aircraft, railways and recreational boats); 

 On-road mobile (e.g. buses, cars and trucks). 

The pollutant emission sources can be categorised into three types: (1) criteria 

pollutant emissions (e.g. carbon monoxide (CO), lead, oxides of nitrogen (NOx), 

PM10, PM2.5, sulphur dioxide (SO2) and volatile organic compounds (VOCs)); (2) 

metal air toxics (e.g. antimony, arsenic, beryllium, chromium and nickel); and (3) 

organic air toxics (e.g. benzene, formaldehyde, polycyclic aromatic hydrocarbons 

(PAHs), toluene and xylenes). 
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Some guides for the preparation of emission inventories, which include purpose, 

process, methodology and the application of emission inventory investigations, 

appear in several documents, such as for example in Europe (as in EEA, 2009), in 

the U.S. (as in US-EPA, 2012), in Australia (as in DECC, 2007c), and in New 

Zealand (as in ME, 2001).  

2.2.1.3. Air quality modelling 

Due to the limitation of the resources and practical implementation, an alternative 

approach other than air quality monitoring is necessary to approximately estimate 

the distribution of the pollutants, temporally and spatially. Air quality (AQ) models 

(also known as air dispersion models) are tools that are capable of addressing the 

limitations in extent to which their use provides a relatively inexpensive and reliable 

means of determining compliance with air quality standards and the thus the extent 

of emissions reduction necessary to achieve the required standards. They are widely 

used by regulatory authorities as surveillance tools to assess the effect of emissions 

on ambient air quality.  

Generally, AQ models are mathematical descriptions of the atmospheric transport, 

diffusion, and chemical reactions of pollutants’ sources (Duc & Azzi, 2009). They 

consist of one or more mathematical formulae that include parameters that affect 

concentrations of pollutants at various distances downwind of emission sources. 

Typically, they operate on sets of input data that characterise the emissions, 

meteorology, and topography of a region and produce outputs that describe that 

basin’s air quality.  

AQ models can be classified in several ways, based for example, on short-term or 

long term models; according to chemical reactions; according to the type of 

coordinate system used; or whether the model is simple or advanced (Godish, 2004). 

Short-term models are used to calculate concentrations of pollutants over a few 

hours or days, which can be employed to predict worst case episode conditions and 

are used by regulatory agencies as a basis for control strategies. Long-term models 

are designed to predict seasonal or annual average concentrations, which may prove 
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useful in studying atmospheric deposition as well as potentially adverse health 

effects associated with pollutant exposures. 

Models can be described as simple or advanced based on assumptions used and the 

degree of sophistication with which important variables are treated. Advanced 

models have been developed for photochemical air pollution, dispersion in complex 

terrain, and long-range transport. Simpler models like the Gaussian are widely used 

to predict the impact of emissions of relatively non-reactive gas substances such as 

SO2 and CO, as well as particulate matter on air quality downwind of point sources. 

The background of the Gaussian model will be described further in this review as its 

theory will be utilised in this work (see Chapter 8). 

2.2.2. Air quality standards and air quality index 

Air quality standards 

In the United States, from the requirement of the Clean Air Act 1990, the US-EPA 

has to set National Ambient Air Quality Standards (NAAQS) for pollutants, which 

are considered harmful to public health and the environment. The Clean Air Act 

1990 identifies two types of national ambient air quality standards; primary and 

secondary standards (US-EPA, 2011e). Primary standards provide public health 

protection, including protecting the health of ‘sensitive’ populations such as 

asthmatics, children, and the elderly. Secondary standards provide public welfare 

protection, including protection against decreased visibility and damage to animals, 

crops, vegetation, and buildings. US-EPA has set National Ambient Air Quality 

Standards for six principal pollutants, which are called “criteria pollutants”.  

In Europe, the European Union air quality management organisations use Air 

Quality Limit Values (AQLVs) as their standard, while in Australia they use the 

National Environment and Protection Measures (NEPM), regulated in 1998, as the 

national air quality standards. In 2003 the NEPM was amended to include advisory 

reporting standards for particles as PM2.5 (NEPC, 2003). A comparison of three air 

quality standards for six criteria pollutants is shown in Table 2.2. Therein, to 

normalise the unit of measures for the standards, parts per million (ppm) by volume 
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and micrograms per cubic metre of air (µg/m3) are used. In general, there are some 

similarities on the set standards, with the EU standards showing the tightest 

concentration limits for most of the criteria pollutants.  

Table 2.2 Table comparing U.S., EU and Australia air quality standards for criteria pollutants. 

Pollutant 
Averaging 

period 
 Maximum concentration 
 U.S. EU Australia 

Carbon monoxide 1 hour  35.00 ppm NA NA 
8 hours  9.000 ppm 8.700 ppm 9.000 ppm 

Nitrogen dioxide 1 hour  0.100 ppm 0.098 ppm 0.120 ppm 
1 year  0.053 ppm 0.020 ppm 0.030 ppm 

Ozone 1 hour  0.120 ppm NA 0.100 ppm 
8 hours  0.075 ppm 0.061 ppm 0.080 ppm 

Sulphur dioxide 1 hour  0.075 ppm 0.133 ppm 0.200 ppm 
 1 day  NA 0.048 ppm 0.080 ppm 
 1 year  NA NA 0.020 ppm 

Lead 3 months  0.15 μg/m3 NA NA 
 1 year   NA 0.50 μg/m3 0.50 μg/m3 

PM PM10 1 day  150 μg/m3 50 μg/m3 50 μg/m3 
  1 year  NA 40 μg/m3 NA 

 PM2.5 1 day  35 μg/m3 NA 25 μg/m3 
  1 year  15 μg/m3 25 μg/m3 8 μg/m3 

 * NA = Not available; 1 ppm = 1000 ppb. 

Air quality index (AQI) 

AQI values are derived from air quality data readings, which allows for more 

meaningful comparison of pollutants affecting air quality. The index is derived using 

the following formula (i.e. based on the practice in Australia): 

 100
standardPollutant

readingdataPollutant
AQI pollutant . (2.1) 

In general, data readings are translated on to a linear scale based on relevant air 

quality standards to derive the AQI values for the hourly AQI and daily AQI. The 

maximum of individual pollutant indexes at a monitoring station is then taken as the 

overall index for that station. An index is then assigned to one of six colour-coded 

air quality categories as depicted in the diagram in Fig. 2.2. Therein, an AQI of 100 

corresponds to the relevant air quality standard for criteria pollutants. Hence, if the 

AQI is reported as Poor, Very Poor or Hazardous, it indicates that the determining 

pollutant levels have reached or exceeded the relevant standard or goal. 
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Fig. 2.2 Air quality categories based on the AQI values. 

2.2.3. Air quality model review 

The development of the mathematical model and prediction tools for air pollution 

started in the early 1970s and further research and application has growing 

extensively in the last two decades. From the beginning of the 21st century, more 

sophisticated approaches have been developed owing to advances in computer 

simulation. Some of the early surveys for the performance of air quality models 

were undertaken by Tesche (1983), Roth et al. (1989), Blanchard (1999) and 

Vardoulakis et al. (2003). As has been discussed in section (2.2.1.3), the air quality 

models can be classified in a few categories. In this review, we categorise the 

models in a more generic way based on their execution strategies, falling into two 

classes; deterministic models, and statistical models. 

2.2.3.1. Deterministic model 

This type of model is based on the physic laws and generally its structure is quite 

complex, thus its development requires detailed knowledge on a large number of 

chemical reactions and its mathematical equation. Several approaches appeared in 

the literature, which include the Eulerian (i.e. grid) model, Lagrangian (i.e. 

trajectory) model, and also the Gaussian based model.  

Eulerian model 

The Eulerian (grid) type model simulates the atmosphere for a certain region by 

dividing it into thousands of individual grid cells that are typically a few kilometres 

wide. The transport, diffusion, transformation, and deposition of pollutant emissions 

in each cell are described by a set of mathematical expressions in a fixed coordinate 

system, which normally involve partial differential equations. The model calculates 

the concentration of pollutants in each cell by considering the air dispersion effects 

in each cell, the combination of the pollutants upward and downward in the layers 

and the volume of emissions from pollutant sources in each cell. Therefore, due to 
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149 – 199  

Hazardous 
≥ 200  
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the huge number of interactions involved, this model is normally expensive to be 

maintained and run. Typical domain dimensions for different scale models are given 

in Table 2.3 (Srivastava & Rao, 2011). 

Table 2.3 Typical domain dimensions for different scale models. 

Model Typical domain scale Typical resolution 

Micro scale 200×200×100 (m) 5 m 

Mesoscale (urban) 100×100×5 (km) 2 km 

Regional 1000×1000×10 (km) 36 km 

Synoptic (continental) 3000×3000×20 (km) 80 km 

Global 6500×6500×20 (km) 4°×5° 

The U.S. Environmental Protection Agency (US-EPA), in EPA guidelines (US-EPA, 

1986) has suggested using the Urban Airshed Model (UAM) for ozone studies over 

urban areas. It is a grid-based model that uses a fixed Cartesian reference system 

within which to describe atmospheric dynamics. Some examples of applications of 

this model are reported by Whitten et al. (1986), and Chang and Rudy (1989). The 

Comprehensive Air-quality Model with extensions (CAMx) is a photochemical grid 

model developed in the late 1990s to treat urban and regional scale air quality 

problems using the one-atmosphere concept (Morris et al., 2000). The model is an 

ideal platform for extension to treat a variety of air quality issues including ozone, 

particulate matter (PM), visibility, acid deposition and air toxins. 

In 1998, the US-EPA released the first version of the Community Scaled Air Quality 

(CMAQ) model, and it has been used extensively to evaluate potential air quality 

policy management decisions in the U.S. (US-EPA, 2001; Byun & Schere, 2006). 

This model is also known as ‘Models-3’ as it consists of three models – a 

meteorological model, an emission model, and a chemical transport model – very 

useful for long-term trend analysis and reporting. Another popular model is GEOS-

CHEM which has been developed by a group of researchers at Harvard University. 

This model is a global 3-D model of atmospheric composition driven by assimilated 

meteorological observations from the Goddard Earth Observing System (GEOS) of 

the NASA Global Modeling and Assimilation Office. A number of researchers have 

applied this model in many atmospheric studies (e.g. Fusco & Logan, 2003; Liu et 

al. 2006; Nassar et al. 2009; Protonotariou et al. 2010).  
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In Australia, the development of air quality models is mostly carried out by the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO). The air 

pollution model and chemical transport model (TAPM-CTM) are commonly used 

gridded models in Australia for the air quality regulatory program (e.g. Luharrr & 

Hurley, 2003). It is a complex model featuring three-dimensional and prognostic 

meteorological elements incorporated by the chemical transport mechanisms. 

Lagrangian model 

The Lagrangian model approach is based on the calculation of wind trajectories and 

on the transportation of air parcels along these trajectories. In the source oriented 

models, the trajectories are calculated forward in time from the release of a 

pollutant-containing air parcel by a source until it reaches a receptor site. In a 

receptor oriented model, the trajectories are calculated backward in time from the 

arrival of an air parcel at a receptor of interest. Numerical treatment of both 

backward and forward trajectories is the same, and the choice of use of either 

method depends on the specifics of the case. The major disadvantage of the method 

is the assumption that wind speed and direction are constant throughout the Physical 

Boundary Layer. However, as compared to the Eulerian models, the Lagrangian 

model can save computational cost as they perform computations of chemical and 

photochemical reactions on a smaller number of moving cells instead of at each 

fixed grid cell of the Eulerian model. Versions of EMEP (European Monitoring and 

Evaluation Programme) are examples of the Lagrangian model.  

Gaussian models 

Gaussian models are among the oldest and most preferred of the models which have 

been used in the U.S. since the mid–1960s. They depend on the availability of 

realistic physical data of wind and diffusion. A large number and variety of current 

air transport models rely on the basic Gaussian equation. This approach can be 

especially suitable for non-reactive pollutants.  

The Gaussian model assumes that a plume travelling downwind will gradually 

expand and disperse. For example, Fig. 2.3 shows a stack emitting pollutants that are 

carried downwind (in the x direction). As the plume travels further downwind it 
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expands in both the y (crosswind) and z (vertical) direction. Due to dispersion in the 

y and z direction, the plume always has its highest concentration in the centre of the 

plume and the lowest concentrations at the edges of the plume. The Gaussian model 

assumes that these concentrations can be described by a normal distribution (i.e. 

using the Gaussian function), which is given as a bell-shaped curve. The size of the 

plume is characterised by the standard deviation of the concentrations in the plume. 

 
Fig. 2.3 Schematic representation of Gaussian plume model. 

Under stable atmospheric conditions or unlimited vertical mixing, ground-level 

concentrations can be calculated from equation (2.2) (Turner, 1970; Pasquill, 1976): 
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where:  C    =   ground level pollutant concentration (g/m3), 

  Q    =   emission rate (g/s), 

  y   =   standard deviation of pollutant concentration in y direction, 

  z   =   standard deviation of pollutant concentration in z direction, 

  u     =   wind speed (m/s), 

  y     =   distance in crosswind direction (m), 

  z     =   distance in vertical direction (m), and 

  H    =   effective stack height (m). 
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The values of y  and z  depend on how far the plume has travelled in the x 

direction. In other words, as the plume travels further downwind, the plume will 

grow in width and height. Values of y  and z  have been determined empirically 

by plume studies under previous environmental conditions. The values depend on 

many variables, and especially on the stability of the atmosphere. Stability classes 

are based on solar radiation, surface wind speed, and cloud cover, which are 

normally rated from A to F, where A is the least stable and F is the most stable of 

environments (as given in Table 2.4). An A stability would result in a plume that is 

widely dispersed in the y and z direction, thus resulting in lower average 

concentrations at any given distance. For instance, sigma values can be determined 

roughly from the Pasquill’s dispersion coefficient graphs, which include crosswind 

and vertical graph (Turner, 1970). 

Table 2.4 Atmospheric Stability classes (Turner, 1970). 

Wind speed at 10 m 
(m/s) 

Day  Night 
Strong Moderate Slight  > 4/8 Cloud < 3/8 Cloud 

< 2 A A-B B  E F 

2 – 3 A-B B C  D E 

3 – 5 B B-C C  D D 

> 6 C D D  D D 

Some examples of air pollution dispersion models (i.e. Gaussian dispersion models) 

in current use are listed as follows: 

 ADMS 4: Developed in the United Kingdom, 

(http://www.cerc.co.uk/environmental-software/ADMS-model.html) 

 AUSPLUME: Developed in Australia, 

(http://www.epa.vic.gov.au/air/epa/ausplume-pub391.asp) 

 CALPUFF: Developed in the United States, 

(http://www.src.com/calpuff/calpuff1.htm) 

 RIMPUFF: Developed in Denmark, 

(http://www.risoe.dtu.dk/business_relations/products_services/software/vea_

dispersion_models/rimpuff.aspx?sc_lang=en) 
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2.2.3.2. Statistical / Empirical model 

Various statistical models (also known as a ‘black box model’ or ‘empirical model’) 

may also be used for air pollution modelling, which have the advantage of simplicity 

in implementation. This model is based on establishing a relationship between 

historically observed air quality and the corresponding emissions. There are two 

main statistical models that are specially developed in air quality modelling: the 

linear roll back model and the receptor model.  

The linear rollback model is the simplest and easiest to use, which was originated 

with U.S. Clean Air Act 1990. The linear relationship is given as follows 

(CHNPWA, 1993): 

 
i

iii EkBC , (2.3) 

where:  iC   = future concentration at point i, 

 B    = background level of pollutant, 

 iE    = emission for point i, and 

 ik    = proportionally factor for point i. 

In the model, it is assumed that emissions outside the region of interest and natural 

sources, even inside the region, are usually included in this background term. The 

constant of proportionality ik , is determined over a historical time period when other 

values (i.e. iC , B  and iE ) are known. A flaw with this approach is that these 

equations are valid only for the prevailing conditions of sources and emission levels. 

If another source is introduced, all the proportionality factors may have to be 

recalculated. As such, these models may be acceptable for screening air control 

strategies. 

The receptor-oriented model is the apportionment of the contribution of each source, 

or group of sources, to the measured concentrations without considering the 

dispersion pattern of the pollutants. The starting point of the model is the observed 

ambient concentrations at receptors and it aims to apportion the observed 

concentrations among various source types based on the known chemical fractions 

of source emissions. Mathematically, the receptor model can be generally expressed 
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in terms of the contribution from n independent sources to p chemical species in m 

samples as follows: 

 



n

j
jkijik faC

1

, (2.4) 

where ikC  is the measured concentration of the kth species in the ith sample, ika  is 

the concentration from the jth source contributing to the ith sample, and jkf  is the kth 

species fraction from the jth source (Srivastava & Rao, 2011). 

Other statistical approaches are also used, perhaps the most typical being regression 

analysis. For example, Abdul-Wahab et al. (1996) presented the functional 

relationship between ozone level and various independent variables by using a 

stepwise multiple regression modelling procedure. The inputs and outputs of the 

analysis have been derived from the ambient measurement of air quality data to 

construct a linear input-output model from the dataset.  

In 1986, US-EPA used an Empirical Kinetic Modelling Approach (EKMA) to 

estimate the percentage of precursor reductions needed to reach the NAAQS 

requirement of ozone (US-EPA, 1986). It is a one-dimensional model which requires 

a VOC/NOx ratio as the input, derived at an upwind location during the peak ozone 

concentrations. Duc et al. (2000) used a Kriging approach to study the spatial 

correlation of SO2, NO, NO2 and O3 over a long-distance network in Sydney, 

Australia. This method used a variogram model, which considers the non-isotropic 

interpolation of the measurement from each monitoring station. They found that 

within a 30 km radius, this method showed a reasonable correlation for some air 

pollutants, but not likely for ozone due to the non-linearity and complicacy of its 

formation.  

Soft computing based on artificial intelligence (AI) can serve as an alternative in 

environmental science studies. In climate control, Trabelsi et al. (2007) implemented 

a fuzzy clustering technique to model air temperature and humidity inside a 

greenhouse to increase crop production. More recently, Fazel Zarandi et al. (2012) 

used the type-2 fuzzy logic theory to construct a model for the prediction of carbon 
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monoxide in Tehran, Iran. The application of fuzzy logic approach has also appeared 

in ozone studies (see e.g. Gomez et al., 2001; Heo & Kim, 2004; Mintz et al., 2005). 

In air quality research, neural networks have been successfully applied to model 

some air quality predictions, mainly in forecasting air pollutant concentrations. 

Wang et al. (2003b) used combined adaptive radial basis function networks with 

statistical characteristics to predict daily maximum ozone concentrations at selected 

areas. The approach presented good results with some limitation on the prediction in 

the rural areas. (See other examples of pollutants’ prediction using neural networks 

in Boznar et al., 1993; Sousa et al. 2005; Coman et al., 2008; Zainuddin & Pauline, 

2011). 

Furthermore, a neural network approach is also capable of expressing the source-

receptor relationship. Carnevale et al. (2009) used a neural network and a neuro-

fuzzy model to estimate the non-linear source-receptor relationship for ozone and 

PM10 concentrations. They utilised input-outputs from a deterministic model to 

develop the source-receptor models. The models produced accurate estimations as 

compared to the deterministic model, however they did not show any validation 

results with the actual sites’ measurement data, and thus the real accuracy became 

questionable. Pfeiffer et al. (2009) used diffusive sampling measurements and a 

neural network to calculate the average spatial distribution of NO2 pollutant in 

Cyprus. A pre-processing step is executed by embedding the measured pollutant 

level from the diffusive sampler, the wind information, the local emission sources 

and the population density. However, large numbers of the diffusive samplers are 

required to generate the correct spatial map of the pollutant (e.g. they used 270 

samplers at 270 sites). 

2.3. Review of ozone and background ozone level 

2.3.1. Ozone and its determination 

Definition 
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Ozone (O3) is a gas that is naturally produced and present in the earth’s atmosphere. 

Most of the ozone resides in the upper part of the atmosphere about 15 kms to 50 

kms from the earth’s surface, called the stratosphere, which contains 90% of the 

ozone layer. This type of ozone is very useful to earth’s inhabitants preventing 

harmful effects from the ultraviolet rays of the sun. The remaining 10% is called 

tropospheric ozone (also known as surface ozone), located between the earth’s 

surfaces and the stratosphere layer. Tropospheric ozone arises from several sources; 

a little contribution from the migration of stratospheric ozone, chemical reactions of 

the natural gases and mostly from reactions with human made pollutant gases. Some 

of the surface ozone is beneficial where it could help to remove pollutants from the 

atmosphere. In contrast, the excess of ozone exposure may yield harmful effects 

rather than benefits to the living organisms because of damage to living tissue, it 

may break down certain materials and might also contribute to the warming of the 

earth’s surface. The scientists call this the ‘bad ozone’ as it directly affects humans, 

animals and plants (Fahey, 2006). 

Ozone is a secondary pollutant that is formed from the photochemical reaction of 

nitrogen oxides, NOx gas (i.e. NOx is a combination of nitric oxide, NO gas, and 

nitrogen dioxide, NO2 gas), and volatile organic compounds (VOCs) in the presence 

of solar radiation. Mathematically it is represented in the following reaction: 

 3x OVOCsNO
radiationsolar 

  . (2.5) 

The emission may arise from natural (biogenic) sources and man-made sources. The 

NOx is produced naturally from biomass burning, lightning and fertilised soils, while 

it is artificially produced mainly from the combustion of fossil fuels, the major 

sources including motor vehicles and electricity generation stations. The VOCs in 

the atmosphere are produced by emissions from motor vehicle exhausts, the 

chemical and petroleum industries, and the use of solvents.  

Determinations 

It has been reported that surface ozone is the most important index substance of 

photochemical smog and one of the key pollutants that lower air quality (Seinfeld, 

1989). Thus, measurement, prediction and assessment of the ozone level are 
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important to the implementation of a long-term plan for improving community 

health. 

The process of ozone formation is complex and its investigation involves an 

understanding of the highly non-linear photochemical reactions, the sources of 

ozone precursor emissions, and the meteorological conditions conducive to ozone 

formation. The rate of production of ozone depends largely on the temperature and 

the ratio of the precursor pollutants (VOC:NOx). It has been determined that ozone 

concentrations are typically elevated during the warmer months, for example during 

summer and the beginning of autumn seasons (i.e., as reported for the Sydney 

basin). 

Some of the works focus on the temporal prediction of the future ozone 

concentrations and their trends. The assessment may be accomplished by using air 

quality models with either deterministic or statistical approaches. Several works on 

ozone prediction have been presented in the previous section (2.2.3). A more 

difficult task is to estimate the spatial distribution in the region of interest, where the 

results may offer a significant indication to the authority to manage the air quality, 

e.g. by considering the precursor emission reductions of ozone. It was suggested that 

to essentially reduce ozone concentrations in many urban and suburban areas, the 

control of NOx emissions will probably be necessary in addition to controlling the 

emission of VOCs. Many of the air quality models have determined that ozone is 

predicted to decrease in response to NOx reductions in most urban locations. 

2.3.2. Background ozone level and its determination 

Definitions 

The background ozone level is referred to as the ozone level that is biogenically 

formed, i.e. from natural processes free from anthropogenic influences (Duc & Azzi, 

2009), and which occur in the troposphere layer. Unfortunately, the accurate 

determination of the background ozone level is demanding as it requires a clean 

environment and free from these anthropogenic influences. The background ozone 

level is mostly from tropospheric natural sources but may also be of stratospheric 
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origin transported down to the surface. 

Another definition by US-EPA uses the Policy-Relevant Background (PRB) as the 

reference to the background ozone concentration (US-EPA, 2006a). The PRB 

referred to the concentration that would occur in the United States in the absence of 

anthropogenic emissions in continental North America (defined here as the United 

States, Canada, and Mexico). PRB concentrations include contributions from natural 

sources everywhere in the world and from anthropogenic sources outside these three 

countries. The estimated PRB ozone concentrations are shown to be dependent on 

the season, altitude and total surface ozone. In the 1996 ozone review, the EPA used 

4 pphm as the eight-hour daily maximum background ozone level in its health risk 

assessment evaluations.  

Using several techniques, Altshuller and Lefohn (1996) determined that the current 

ozone background at inland sites in the United States and Canada for the daylight 7-

hours (9.00 am to 3.59 pm) seasonal (April to October) average concentrations, 

usually lie within the range of 35±10 ppb. For coastal sites located in the northern 

hemisphere, the corresponding ozone concentrations are lower, occurring within the 

range of 30±5 ppb. These ranges suggest that the background ozone is somewhat 

dependent on a number of conditions such as the nature of upwind flow and terrain 

conditions, including deposition with respect to forest or agricultural areas.  

Determinations 

There have been many efforts to try to define the background ozone level. Clean 

pristine sites in rural or bushland areas, typically at the boundary of the evaluated 

region, have been cited as good sites to measure the background ozone. For 

example, Oltmans et al. (2008) measured ozone levels, which they indicated and 

used as background ozone, at some remote sites in California (such as Trinidad) 

where the airflow patterns from the Pacific Ocean are almost free of contamination 

from continental North America. Their measurement shows that the monthly 

background ozone fluctuates around 35 parts per billion (ppb) for the six-year period 

(2002–2007) with a maximum about 50 ppb and a minimum about 25 ppb (see also 

e.g. Matveev et al., 2002; Saitanis, 2003). That apart, upon reviewing the ozone 
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trend in Europe by measuring ozone at pristine sites, Monks (2003) has concluded 

that there is strong evidence that background ozone concentrations are increasing in 

western and northern Europe. 

Basically, direct measurement of ozone does not accurately indicate the background 

level, thus some quantisation approaches have to be incorporated. According to 

Parish et al. (2009), background ozone is used to qualitatively describe ozone (O3) 

mixing ratios measured at a given site in the absence of strong local effects. To 

quantify the background ozone for the North American west coast, they used marine 

air ozone as measured at coastal sites in which continental influences are removed 

by examining wind data, trajectory and tracers. In another method, to quantify the 

‘baseline ozone’ across the North American continent, Chan and Vet (2010) used 

ozone data measured at non-urban sites, principal component analysis to group sites 

forming specific geographic regions for baseline ozone, and backward air parcel 

trajectory clustering to result in six trajectory clusters of air parcels for each site. The 

baseline trajectory cluster was chosen as the one having the lowest 95th percentile 

ozone among the six clusters. According to them, the 95th value is predominately 

associated with long-range transport for remote locations, while lower percentile 

values are affected by dry deposition and NO scavenging.  

Recently, various software packages have been used for air quality models to 

estimate the background ozone level. For example, Fiore et al. (2003) used a three-

dimensional global model with chemistry (GEOS-CHEM) to assess the background 

ozone level in the United States. Their study has been included in the US-EPA 

report (US-EPA, 2006a). The estimated policy-relevant background (PRB) ozone 

concentrations are shown to be dependent on season and altitude with an estimated 

range of 30 to 50 ppb for typical summertime BOL of the total surface ozone 

concentration. However, the estimation performance by modelling is much 

dependent on the level of uncertainty of the software and the availability of accurate 

biogenic emission data. 
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2.4. Review of metamodelling techniques 

Metamodelling has been a major research field since the last decade, where the 

objectives are to obtain a simpler model from a complex model, to approximate the 

non-linear system behaviour, and to reduce the cost, time, and amount of effort 

required during a simulation. Some reviews for performance comparison of various 

metamodelling techniques have been presented (see e.g., Jin et al., 2001; Fang et al., 

2005). Substantial results from the existing works illustrate that using metamodels to 

locate an optimum solution is often sufficiently accurate in many applications 

requiring prediction, optimisation and validation (Tunali & Batmaz, 2003). 

2.4.1. Types of metamodel 

Metamodelling evolved from the classical Design of Experiments (DOE) theory, in 

which polynomial functions are used as response surfaces, or metamodels. This 

review will briefly survey some of the metamodelling techniques available recently, 

beginning with traditional response surface methodology (i.e. polynomial 

regression), followed by some alternative approaches. 

Polynomial regression (PR) metamodel 

Polynomial regression (PR) is also known as response surface methodology (RSM), 

however, since the ‘response surface’ term was also referred to as ‘metamodels’ in 

the earliest stages, the term polynomial regression is more often used. The PR 

method has been used since before the computer era, thus it is mathematically 

simple and typically consists of first to second order regression functions. It has 

been used effectively for over thirty years as metamodels with several applications 

shown by a number of researchers (e.g. Unal, et al., 1996; Chen et al., 1996; 

Simpson, et al., 1997; Xie et al., 2008) in designing complex engineering systems. 

For example, the second order PR can be expressed as: 
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where 


y is the approximation function at x , N  is the number of design variables, 

and o , i , ii  and ij  are the regression coefficients determined by the linear least 

square regression analysis.  

Due to its simplicity in implementation, and ease of understanding, PR is still used 

quite often in industry and academia. However, it has a drawback when applying it 

to model with highly nonlinear behaviours. To overcome this limitation, higher-

order polynomials can be used, but some instability conditions may arise (Barton, 

1992). 

Kriging metamodel (KG) 

The Kriging metamodel was invented by Georges Matheron in 1971 in the area of 

geostatistics and named after the South African geologist, Danie Krige (Gano et al., 

2006). Kriging is one of the global metamodels which has been widely used since 

the beginning of the computer era, and in general has been an accurate metamodel 

(e.g., Jin et al., 2001; Wang & Shan, 2007). It was first used in metamodelling by 

Currin et al. (1988) who termed ‘design and analysis of computer experiments’ 

(DACE). Kriging can be grouped into three classes; ordinary, universal and 

detrended Kriging. Detailed explanations about each category can be found in many 

sources (e.g., in Olea, 1999; Martin & Simpson, 2003).  

Kriging is an interpolative approximation method based on an exponentially 

weighted sum of the sample data. A Kriging model postulates a combination of a 

polynomial model and a stochastic process of the form (Simpson et al., 1998): 

 )()(
1

xZxfy
N

j
jj 





 , (2.7) 

where 


y  is the unknown function of interest, the summation function represents the 

polynomial function (i.e. similar as in polynomial regression) and )(xZ  the 

realisation of a stochastic process with mean zero variance 2  and non-zero 

covariance. The covariance matrix of )(xZ  is given by: 

   ),()(),( 2
jiji xxRxZxZCov  , (2.8) 
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where 2  is the process variance and R  is the correlation function. Kriging models 

are quite flexible as a variety of correlation functions can be chosen for building the 

model, however, the Gaussian correlation function proposed in (Sacks et al., 1989) 

is the most frequently used.  

The main drawback of the Kriging is that model construction can be very time-

consuming especially when dealing with the large sample data in order to determine 

the maximum likelihood estimates of the   parameters used to fit the model for the 

k-dimensional optimisation problem. Moreover, the correlation matrix can become 

singular if multiple sample points are spaced close to one another in particular 

designs. Fitting problems have been observed with some full-factorial designs and 

central composite designs when using kriging models (Meckesheimer, et al., 2000).  

Spline metamodel 

The spline approach is based on piecewise polynomial basis functions. If the 

continuity restrictions are applied to adjacent pieces, the piecewise polynomials are 

called ‘splines’. The ‘univariate’ spline metamodel can be formed as: 

  )()( xBcxf jj , (2.9) 

where the jB  are the quadratic or cubic piecewise polynomial basis functions and jc  

is the coefficient of the expansion. For the univariate case, the domain is divided 

into intervals [t1, t2), [t2, t3)...[tn-1, tn) whose endpoints are called ‘knots’ (Barton, 

1998). Two sets of spline basis functions are commonly used; the truncated power 

function basis and the B-spline basis (deBoor 1978). 

Recently, the ‘multivariate’ spline has been an active area of research. Typically the 

approximation uses a full factorial experiment design to estimate the spline 

coefficients of the metamodel, thus it requires expensive simulation. Some 

alternative models have been proposed, for example Friedman (1991) presented the 

Multivariate Adaptive Regression Spline (MARS), which uses a stepwise procedure 

to recursively partition the simulation input parameter space. The univariate product 

degree and the knot sequences are determined in a stepwise fashion based on a 

generalised cross validation (GCV) score method by Eubank (1988).  
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Neural networks metamodel 

Neural networks are networks of numerical processors, whose inputs and outputs are 

linked according to specific topologies. Thus, a neural network metamodel contains 

a combination of linear or nonlinear functions (embedded in the inner layer) of the 

argument vector x. Neural networks can be thought of as flexible parallel computing 

devices for producing responses that are complex functions of multivariate input 

information (Barton, 1998). They can approximate arbitrary smooth functions and 

can be fitted using noisy response values.  

Multi-layer perceptron (MLP) feed-forward network is typically used for function 

approximation due to its flexibility to approximate smooth functions with arbitrarily 

well, by providing sufficient nodes and layers. Radial basis function network is 

another popular class of feed-forward networks that incorporate radial basis 

functions as nodal functions and are capable of universal approximation with one 

hidden layer (Park & Sandberg, 1991). In contrast to the MLP network, the RBF 

network can be trained more rapidly (Moody & Darken, 1989). The RBF network 

approach will be described comprehensively in this thesis which includes some 

proposed training schemes to improve its performance, and will be applied in this 

work. 

2.4.2. Trade-offs between metamodels  

The trade-off between accuracy and computational expense as well as between local 

and global information must be considered when developing a simulation 

metamodel. Hence, current research into metamodelling has focused on improving 

its accuracy and computational speed. For example, the support vector regression 

(SVR) was introduced in Clarke, Griebsch and Simpson (2005) for improving the 

simulation time and accuracy, while the radial basis function was extended in Mullur 

& Messac (2006) to add more flexibility in its estimation. Several comparative 

studies of the performance between metamodels have been carried out by some 

authors, and their suggestions will be summarised here. 
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Jin et al. (2001) compared the performance of polynomial regression (PR), radial 

basis function (RBF), Kriging, and multivariate adaptive regression splines 

(MARS), under multiple modelling criteria. They found that RBF gave the most 

accurate results, was relatively efficient, and was the most robust. The RBF was 

found to perform relatively better for small and scarce sample sets. Furthermore, Jin 

et al. (2001) discovered that the Kriging metamodel performed quite well for large 

sample sets but degraded with a decreasing number of sample points. They also 

found that Kriging was particularly sensitive to noisy problems and performed 

poorly, and took significantly longer to calculate than other tested metamodels. 

Clarke et al. (2005) introduced Support Vector Regression (SVR) and presented 

comparative studies to PR, RBF, Kriging, and MARS. They found that SVR and 

Kriging performed similarly in terms of accuracy and robustness with SVR being 

slightly better. Contrary to Jin et al. (2001), Clarke et al. (2005) found that RBF gave 

the worst results for accuracy and was the second least robust. Clarke et al. (2005) 

referred to the study of performance by Jin et al. (2001), but noted that SVR’s 

efficiency was comparable to MARS which is worse than RBF and PR, but 

significantly better than Kriging. It is still unclear, however, what are the 

fundamental reasons for the SVR out-performing others. Clarke et al. (2005) were 

investigating the SVRs due to the contradictory nature of their results compared with 

other authors.  

Wang et al. (2006) compared RBF, Gaussian processes (GP) (i.e. Kriging is a type 

of GP), MARS, PR, and adaptive weighted least squares (AWLS). They found 

similar results to those shown by Jin et al. (2001) in which RBF and GP (i.e. 

Kriging) both produced accurate results, RBF was noted to be slightly better overall 

but GP performed better for noisy problems. From the standpoint of efficiency, GP 

were found to take significantly longer to calculate than the other four methods.  

Sathyanarayanamurty and Chinnam (2009) used two test functions to compare 

Kriging, RBF network, and Support Vector Machines (SVMs). The metamodels are 

then used for sensitivity analysis, using a Fourier Amplitude Sensitivity Test (FAST) 

and Sobol. In terms of accuracy, in the case of the sinusoidal test problem, RBF 

performed the best followed by Kriging and SVM for all the different sample sizes. 
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In another test problem, Kriging performed better than RBF and SVM for all the 

different sample sizes, and RBF performed better than SVM for the small dataset. 

However, SVM performed better than RBF for both medium and large datasets. 

Overall, they concluded that the Kriging technique is the preferred method for 

building metamodels in the context of Probabilistic Engineering Design. However, 

SVM and RBF methods might also prove to be effective when proper care is 

exercised in building the models to avoid issues of over-fitting.  

2.4.3. Sampling techniques 

Before executing the function approximation using a metamodel, it is important to 

select the design points in the domain which is generally termed as sampling, 

experimental design, or design of experiment (DOE). The aim of any sampling 

method is to effectively cover the design space and to gather the information of 

design space characteristics. These sets of independent design variable values from 

the data points are utilised to produce the values of dependent variables (i.e. 

response) in which this practice is known as computer experiments. Various 

sampling classes appeared in the literature such as the full factorial design technique, 

stratified random sampling and Latin Hypercube sampling (Forrester et al., 2008).  

Full factorial design 

The primitive experimental design involves the selection of few data points located 

at the bounds of the design space, and is called full factorial array. This is a physical 

trials method in which the effectiveness of using these points is very poor.  

When the computer era began, the experimentation became less costly and the space 

filling experimental designs started to be used. Full factorial design (FFD) is the 

simplest approach for this in which it is the most general and standard DOE used 

over the years for function approximation (Buragohain & Mahanta, 2008). In the 

approach, the bounds of all the design variables are firstly identified and then they 

are discretised into equal intervals within the design space. For example, for n-level 

FFD, a total of n points are selected for each design variable v, all equally spaced 

over the range. It means the number of design points will be nv, for which the 
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topology is illustrated in Fig. 2.4. This approach is also known as rectangular grid 

point sampling.  

  

(a) 3 level FFD  (i.e. nv=32=9 points) (b) n level FFD  (i.e. nv=n2 points) 

Fig. 2.4 Full factorial design for two-dimensional problem. 

Plain Monte Carlo 

Another space filling method called Plain Monte Carlo sampling involves using a 

random number generator to select the points to reduce the number of points in the 

trial set. While computationally becoming efficient, Monte Carlo sampling provides 

no robustness in finding a space filling set of points (Swiler et al., 2006). 

Latin Hypercube Design 

Latin Hypercube Design (LHD) is a more sophisticated sampling scheme and is 

continuously being researched, having been invented by McKay et al. (1979). 

Instead of equally spaced points in the allowable design space, the points are 

effectively scattered, spanning the whole domain.  

For the selection of n number of sample points, the range of each design variable is 

divided into the same number of non-overlapping regions based on the type of 

probability distribution function (PDF) specified, which can be either normal or 

uniform PDF. One segment is randomly chosen from each region to form each trial 

point, but note that this method offers no guarantee that the points will be a balanced 

set. An example of the scheme is shown in Fig. 2.5. A number of researchers 
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extended the McKay work such as optimal LHD (Park, 1991), inherited LHD 

(Wang, 2003), and hybrid LHD (Abdellatif et al., 2010). 

 

Fig. 2.5 An example of Latin hypercube design for two-dimensional problem with the number of 
sample points being 10. 

2.5. Review of radial basis function neural networks 

Over the last few years, the radial basis function neural networks (RBFNNs) have 

been explored and are being successfully applied across many problem domains that 

cover engineering, medicine, environment control and geology. They are capable of 

modelling extremely complex functions with large numbers of input and output 

variables. As well, the RBFNN paradigms are global, thus a single neural network 

could be developed to model the entire simulation response surface. This differs 

from polynomial regression metamodelling, where the regression surface is fitted to 

a locality, i.e. a subset of the response surface (Ma et al., 2008).  

2.5.1. RBFNN general function and its architecture 

The radial basis functions were first used to design Artificial Neural Networks in 

1988 by Broomhead and Lowe (1988). The RBFNN is motivated by the locally 

tuned response observed in biological neurons. The main architecture of the RBFNN 

consists of three layers: (i) an input layer; (ii) a single hidden layer; and (iii) an 

output layer; as depicted in Fig. 2.6. The outputs of the network implement the 

weighted sum from the hidden neuron. The input of the network is typically 

nonlinear, whereas the output from the network is linear. Each of the hidden neuron 
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implements a radial activated function, which is associated with its radial basis 

centre. RBFNNs have their origins in a method for performing exact interpolation of 

a set of data points in multi-dimensional space (Powell, 1987) in which the 

dimension of the hidden nodes is equal to the pattern of the inputs. 

The general output of the RBFNN with l  inputs, k  hidden units, and m outputs 

which respond to the input vector ni )(x  (i.e. n  is the number of training 

examples) is mathematically represented as: 

 mjcxwxfy
N

k
kjkj ,...2,1),,()(ˆ

1

 


 , (2.10) 

where j  is the output index, ).(  is a basis function, jkw  are weights in the output 

layer, N  is the number of neurons (and centres) in the hidden layer in which 

generally nN  , and n
kc  are the RBF centres in the input vector space. 

 

Fig. 2.6 A fundamental architecture of radial basis function neural network. 

Radial basis functions   are functions which take the form as follows: 

   ;),( cxcx  , (2.11) 

where .  is a vector norm, and   is a width (also known as scale, or spread) 

parameter. The value of the radial function depends only on the distance of the point 

x  from the centre point of the function c . The distance function cxr   is 

usually defined as the Euclidean norm (Haykin, 1994). There are three common 
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types of radial basis functions; the Gaussian, the multiquadratic, and the thin plate 

spline, which will be discussed in the next section. 

2.5.2. Type of basis functions 

The selection of radial basis function type is much dependent on the addressed 

problem in which each has unique characteristics that may make it more suitable for 

some problems. For example, Harpham and Dawson (2006) suggest that a thin-plate 

spline function is mostly used in time series modelling, whereas a Gaussian function 

is preferred with pattern classification problems. 

Gaussian function 

Gaussian is probably the most popular function because it has attractive 

mathematical properties of universal and best approximation, and is more flexible to 

be adjusted in terms of function position and shape. The Gaussian function is said to 

be locally responsive as the value of the function decays quickly to zero as it moves 

further from the centre, c  (Orr, 1996). The behaviour of one dimensional Gaussian 

function with width parameter, 1  and the centre, 0c  is shown in Fig. 2.7. The 

approximations using Gaussian functions are highly dependent on the value of  , 

which needs to be determined. The Gaussian function with a distance function 

cxr   is given in the following equation: 

 









2

2

exp)(


 r
r . (2.12) 

Multiquadratic function 

Multiquadratics are globally responsive in which their value does not decay to zero 

as the distance from the centre c , increases (Orr, 1996). Its shape is shown in 

comparison with the Gaussian function in Fig. 2.7, with the same c  and   

parameters. Franke (1982) found that approximations using multiquadratic functions 

are less sensitive to the value of the width parameter  . The multiquadratic function 

is mathematically represented as follows: 

 22)(   rr . (2.13) 
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The inverse multiquadratic function was also tested by some authors, which is given 

by the equation: 

 
22

1
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





r
r . (2.14) 

 
Fig. 2.7 A comparison of one-dimensional Gaussian, multiquadratic and inverse multiquadratic 

functions with 0c  and 1 . 

Thin plate spline function 

The thin plate spline is the two-dimensional analogue of the cubic spline in one 

dimension. It is the fundamental solution to the biharmonic equation 0)( 22  , 

which physically represents a surface which passes through a given set of data points 

with the minimum amount of ‘bending energy’; a highly desirable property for 

smooth surfaces. It has the form as follows: 

 )(log)( 2 rrr  . (2.15) 

The thin plate spline function is a commonly used function for two dimensional 

regressions due mainly to its physical interpretation. Another advantage is that there 

is no width parameter which needs to be found.  
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Fig. 2.8 A one-dimensional thin plate spline function with 0c . 

2.5.3. Learning strategies 

2.5.3.1. General review 

One solution to train the network is by exact interpolation (e.g. Powell, 1987). The 

approach is relatively easier than others; however in practice it is definitely not 

efficient. First, the interpolating function has to pass through every data point, which 

is usually noisy, thus leading to over-fitting and thereby poor generalisation. Second, 

for a large data set, as the number of hidden neurons is equal to the number of data 

points, the mapping function can be very expensive to be computed. Broomhead and 

Lowe (1988) showed that the exact interpolation is not a good strategy because of its 

poor generalisation. Considering this problem, Broomhead and Lowe removed the 

restriction of the exact interpolation function and designed a two-layer network 

structure where RBFs are used as computation units in the hidden layer. This model 

gives a smoother fit to the data using a reduced number of basis functions which 

depends on the complexity of the mapping function.  

Poggio and Girosi (1988) considered a traditional regularisation technique to train 

the RBF network. The regularisation solution was able to decrease the high 

computational complexity required for finding an exact solution when the sample 
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size is very large. In the approach, the number of hidden units is fixed a priori, and a 

subset of the input data points is used as the centre of the hidden units. Each 

independent variable of the problem is associated with a network input unit. The 

target function is measured using a cost function, and the gradient descent algorithm 

is used to train suitable values for the weights of the underlying function. However, 

output weights need to be properly initialised before the gradient algorithm is run. 

 

Moody and Darken (1989) compared two types of training algorithms, a fully 

supervised method and a hybrid method combining the supervised method with a 

self-organising method. They concluded that the hybrid algorithm worked much 

better and executed faster than the fully supervised one. In the hybrid algorithm, 

they used the k-means clustering algorithm to estimate the centres of the basis 

functions. The width values of those basis functions are computed using ‘P nearest-

neighbour’ heuristics and the output weights are estimated by the Least Mean 

Squares algorithm. 

Tao (1993) remarked two potential problems associated with the k-means clustering 

algorithm. One is that there is still an element of chance in finding the right hidden 

unit centres. As well, clustering does not guarantee good results in the case of 

function approximation because clustering is probability oriented and two input 

patterns close to each other do not necessarily have similar outputs. To overcome 

these issues, Chen et al. (1991) developed a systematic and popular method of 

forward selection called Orthogonal Least Square (OLS) to choose the RBF hidden 

unit centres. A more detailed description of the algorithm will appear in Chapter 4. 

After those earlier inventions of the RBFNN algorithm, a number of authors tried to 

introduce various approaches to improve the network performance or to speed up the 

computation, including the use of computational intelligence. For example, Chng et 

al. (1996) have extended the OLS algorithm by Chen et al. (1991) for model 

selection to include an adaptive procedure to modify the selected node’s parameters. 

The results showed that adaptive OLS could find better subset models than OLS; 

however, it requires an iteration process by means of gradient descent. Wang et al. 

(2002) presented a δ-nearest-neighbour cluster algorithm, which combined the k-

nearest neighbour algorithm with fuzzy c-mean algorithm for the selection of RBF 
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centres. Their simulation results confirmed that the δ-nearest-neighbour algorithm is 

an applicable and effective algorithm for forward networks. 

Sarimveis et al. (2004) proposed a method to produce a dynamic RBFNN model 

based on a specially designed genetic algorithm (GA), which is used to auto-

configure the structure of the networks and obtain the model parameters. The use of 

GA in the training algorithm has also appeared in Chang et al., (2009) in which they 

used the combination of the OLS algorithm, the GA and the LSE method to (i) 

directly identify the structure of the RBFNN, (ii) search the position of the centres 

and the width of RBFs, and (iii) identify the linear weights of the output layer. They 

claimed that the time-consuming search problem is effectively solved and the 

resulting networks may provide better performance. 

From the above reviews, it can be summarised that for a Gaussian function based 

RBFNN, the training algorithm should involve the three main parameters to be 

learned, in order to minimise a suitable cost function. These parameters are listed as 

follows: 

1. Centres of basis function: The centres of basis functions kc  are determined as 

part of training process, rather than being constrained to be located at each input 

data point. The number of basis functions N, is typically much less than the 

number of input data n. 

2. Width of basis function: The training process may adapt the width parameter  

for each of the basis functions, instead of assigning the same width parameter   

to all the basis functions. 

3. The output weights: The weights between the hidden layer and the output layer 

ikw  are relatively easy to be determined as compared to other parameters. Some 

of the other approaches include a gradient descent algorithm, regression 

method, and singular value decomposition (SVD).  

In terms of the training strategies, they can be grouped into two classes; fully-

supervised training, and two-stage training. For the latter, the first stage involves the 

determination of radial basis centres and widths, and the following stage is to 
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determine the weights to the output units. The weights selection in two-stage 

training can be divided into unsupervised and supervised training.  

2.5.3.2. Fully-supervised training 

Supervised training may lead to optimal estimation of the centres and widths, 

however, there are a number of drawbacks with this scheme. First, this approach is 

typically involved with the gradient descent method, which is a non-linear 

optimisation technique and thus is computationally expensive. Due to this problem, 

this method has not attracted many researchers to explore it further. Another 

drawback is that the learning rates   should be selected carefully to avoid local 

minima and to achieve acceptable convergence rate and error. 

By using gradient descent, the required parameters are iteratively updated to fulfil a 

certain cost function. For an illustration, consider the sum-of squares error cost 

function given by: 
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where )(i
nt  is the target value of output unit i  when the network is presented with 

input vector nx . If Gaussian basis functions are used to minimise the cost function in 

(2.17), the updated equations as appeared in (Ghosh et al., 1992) are given as 

follows: 
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where 1 , 2 , and 3  are the learning rates. The simultaneous updating of the three 

sets of parameters in the above equations may be suitable for non-stationary 

environments or online settings (Howlett & Jain, 2001). 

2.5.3.3. Two-stage training 

If the static maps are considered rather than non-stationary environments, the 

decoupling process, namely the two-stage training procedures, may offer a very 

attractive alternative, which is involves: 

(i) First, the use of unsupervised methods to determine the basis function 

centres and widths. These are particularly useful in situations where labelled 

data is in short supply, but there is plenty of unlabelled data (i.e. inputs 

without target outputs). 

(ii)  Second, the determination of output layer weights that are connected to all 

the basis functions using centres and widths from step (i). It can be a 

supervised or unsupervised technique. 

Both sub-problems allow for very efficient batch mode solutions. Furthermore, for 

many situations, this technique leads to little loss in the quality of the final solution 

as compared to the optimal solution. In fact, given finite training data and 

computational resources, it often provide better solutions than those obtained by 

attempting to simultaneously determine all three sets of parameters. 

Stage 1: Unsupervised training of basis function centres and widths 

A few existing approaches are described as follows: 

(i) Fixed centres selected at random: This is the simplest and quickest approach 

in which centres kc  are selected as fixed N points randomly from n data points. 

This choice is sensitive to how representative are the selected data points of the 

overall population. One approach is to use the equal and fixed widths at an 

appropriate size for the distribution of data points in which for a large training 

data set this method provides reasonable results. It was suggested that the 

widths parameter be given as (Howlett & Jain, 2001): 
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where md  is the maximum distance between chosen centres. 

(ii) Clustering algorithm: Using clustering techniques provides an improved 

approach which more accurately reflects the distribution of the data points. A 

variety of clustering techniques can be used. Supposed we need to partition N 

data points nx  into K  clusters and find the corresponding cluster centres. The K

-mean algorithm seeks to partition the data points to K  subsets jS  by 

minimising the sum of squares clustering function: 
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where j  is the geometric mean of the data points in the subset jS , given by: 
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One method for finding these clusters is by using the batch version. First, the 

data points are randomly assigned to K  subsets. The centres for each of the 

subsets are then computed. The data points are then reassigned to the cluster 

whose centre is nearest. The procedure is repeated till there are no further 

changes in the grouping. 

(iii) Width determination: The basis function widths can either be chosen to be the 

same for all nodes or they can be different from each other. For the first case, 

the common width can be set at some multiple of average distance between the 

basis centres. This multiple represents the smoothness of the function, small 

widths leading to less smooth functions. In the second case, each centre’s width 

is set to a multiple typically one and one-half times to twice the average 

distance to the L nearest neighbours (Howlett & Jain, 2001). The widths can 

also be adjusted optimally using equation (2.20), but it is not a popular one due 

to its computational cost.       

Stage 2: Training the output weights 

The output weights can be obtained by either supervised or unsupervised methods. 
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(i) Unsupervised method: Once the centre and widths are determined, they are 

kept fixed for the second stage of training during which the hidden output 

weights are learned. Since the second stage involves just a single layer of 

weight ikw , they can easily be found analytically by solving a set of linear 

equations. Usually, this can be done quickly without the need for iterative 

weight updates such as gradient descent learning. Generally, the desired 

network output D is always written in matrix form as WΦD T , where Φ  is 

the radial basis function matrix and W is the output weight matrix. Using a least 

square solution, the weight matrix W can be found by using the pseudo inverse 

of matrix  as given in the following equation: 

   ΦDAor    W    ΦDΦΦW -1-1T  , (2.24) 

where  is called the variance matrix. Thus, in practice, to avoid the 

possible problems due to ill-conditioning of the matrix Φ , singular value 

decomposition (SVD) is usually considered to solve the equation, rather than a 

regression method.   

(ii) Supervised method: The weights of the output layer can also be trained by a 

supervised learning method like the back-propagation (BP) algorithm. One 

example is to use the learning equation as in equation (2.18). 

2.5.4. Regularised and generalised RBFNN 

Regularised RBFNN 

Regularisation is a powerful technique to stabilise certain solutions, by adding a 

penalty functional to the original cost function so as to bias the solution towards 

more desirable solutions, e.g. smoothness constraints on the input-output mapping, 

and make an ill-posed problem into a well-posed one. Regularisation theory was first 

introduced by Tikhonov (1973). A variety of penalties are studied in Friedman 

(1994). For RBFNNs, a popular choice for the modified cost function is the summed 

squared error (SSE). Consider for a single output unit, SSE is given by: 

   



N

k
k

n

i

ii wλxytSSE
1

2

1

2)()( )( , (2.25) 

Φ

TΦΦA 



2. Literature Review 51 
 

 
 

where n  is the number of training samples,  is the number of hidden units,  is 

the regularisation parameter and kw  is the regularisation weight. This function is 

associated with the ridge regression in which the network function becomes 

smoother when the  is increased. Therefore, the optimal weight matrix in equation 

(2.24) now becomes: 

 , (2.26) 

where NI  is the identity matrix and A now becomes . The estimated 

regularisation parameter  can be chosen by the generalised cross-validation 

(GCV), which involves an iterative formula such as given in the following equation, 

where P is the projection matrix (Orr, 1996): 

 . (2.27) 

Generalised RBFNN 

Generalisation is a simplified version of the regularisation strategy for RBFNN. The 

solution computed by the regularisation network can be said to be an optimal 

solution. However, the generalisation will not achieve the optimality of the 

regularisation but would solve the ill-conditioned matrix in the solution. Besides, it 

does not require expensive computation (i.e. iteration process) because its penalty 

values (i.e. the bias weights) can be learned quickly using regression at the same 

time for the determination of the output layer weights. 

The framework of the generalised radial-basis function neural network (GRBFNN) 

is shown in Fig. 2.9. In this network, a bias (i.e. data-independent variable) is 

applied to the output unit. In order to do that, one of the linear weights in the output 

layer of the network is set equal to a bias and the associated radial basis function is 

treated as a constant equal to +1 (Haykin, 1994). The bias is added to compensate 

for the difference between the average value over the data set of basis functions and 

the corresponding values of the targets (Howlett & Jain, 2001). By applying this 

bias, the RBFNN mapping formula in equation (2.10) becomes 
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where 0  is the bias constant (i.e. =1), and  is the bias weight.  

 

Fig. 2.9 A generalised radial basis function neural network. 

2.6. Chapter conclusion 

This chapter has reviewed some of approaches that are commonly being practised by 

the regulation authorities for managing air quality. There are three important 

strategies involving the air quality monitoring; the pollutants’ emission inventory 

and assessment, and air quality modelling. The former is the most effective and 

accurate in the assessment process, however, its results can only be used in the 

region of interest. Therefore, the modelling approach is used because it can add 

benefit in many ways, such as through its ability to estimate the pollutants’ spatial 

distribution, and can be used in the emission reduction program. In this work, the 

first and the second methods will be utilised for the purpose of data set collection, 

whereby the statistical modelling approach which features radial basis function 

neural network metamodelling, will be focussed in the third method. 

The next reviews focus on the air quality issue that will be addressed in this research 

which is ozone and background ozone level (BOL). Several definitions and 
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determination approaches have been surveyed. In general, the measurement methods 

with some quantisation methods have been used widely in the determination of 

BOL; however, the approach is nearly impossible to be implemented in highly 

urbanised areas. For this reason, we will propose an applicable method to overcome 

this limitation. 

This chapter also discussed the available methods in metamodelling such as 

Polynomial Regression, Kriging, Splines, Support Vector Regression and Neural 

Networks, and the trade-offs of those metamodels are then comparatively reviewed. 

Generally, some researchers suggested that the radial basis function approach has 

some unique advantages as compared with other. In the last review, the fundamental 

theory of radial basis function neural network (RBFNN) has been explained, and 

some available learning strategies were also reviewed thoroughly.    
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Chapter 3 

BUILDING A NEURAL NETWORK-BASED 

METAMODEL 

3.1. Introduction 

This chapter will deal with the development of a neural network as the metamodel 

that will implemented throughout this research. The reason behind the selection of a 

neural network among the other techniques (as discussed in Chapter 2) is that it is 

much more flexible in functional form and is therefore better suited for complex or 

nonlinear functions that are not easily approximated by low order polynomials. The 

radial basis function is chosen as the neural network framework due to its 

advantages such as simplicity, robustness, rapid computation and also reasonable 

performance (Moody & Darken, 1989; Jin et al., 2001; Wang et al., 2006). 

In the last section of this chapter, a new method for the experimental design (i.e. a 

part of modelling process) will be described. This method is specifically efficient for 

a neural network-based metamodel and may be implemented in other metamodelling 

approaches as well as other kinds of statistical modelling. Some numerical analysis 

using non-linear complex functions will be presented to evaluate its performance. 

3.2. The metamodelling process 

The fundamental objective of a metamodel is to attempt to learn the mapping of 

output )(xfy   that exists in a black box (i.e. typically a physical system, or 

computer experiment to be estimated) that converts the input vector x into a scalar 
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output y. The generic methodology is to collect a set of output values 

)()2()1( ,...,, nyyyy   that result from a set of input vectors )((2)(1) x,...,x,xx n  and 

find the best approximation ŷ  for the black box mapping )(xf , based on these 

known observations (see illustration in Fig. 3.1). 

 

Fig. 3.1 A metamodel map between k input variables and an output, with n number of patterns.  

Metamodelling can be defined as a process of building a model of a model 

(Meckesheimer et al., 2002). This process involves the choice of an experimental 

design (i.e. sampling process), a metamodel type and its functional form of fitting, 

and a validation strategy to assess the accuracy of the metamodel. As the metamodel 

class has been specified as a neural network, the metamodel construction now 

involves three key stages, which include data preparation and sampling, the training 

process, and also validation and testing (evaluation).  

3.2.1. Data preparation and sampling 

Initially, before proceeding with other processes in neural network-based 

metamodelling, a proper preparation of the training data set is essential as it will 

directly influence the complexity of the developed model as well as the output 

performance. The choice of relevant design variables and the selection of the most 

appropriate data points have to be done systematically rather than as a random 

process. Here, three suggested steps will be described which include the 

determination of variable importance, the data set division, and the data set 

sampling. 

3.2.1.1. Variable importance 

In metamodelling, the cost or performance metric of a process is defined by a k-

vector of design variables kDx   in which we shall refer to D as the design 
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space or design domain. The problems of characterising degrees of importance for a 

large number of input (or design) variables is a common issue since the elimination 

of unimportant inputs leads to a simplification of the problem and often a more 

accurate model or solution. The importance may be easily determined if the input-

output of the system is known from the previous experience or from the source-

receptor relationship, but there are usually not easy in most cases. 

Several comparative studies have appeared in the literature in this field. For 

example, Sung (1998) compared three different methods for ranking input 

importance: sensitivity analysis (SA), fuzzy curves (FC), and change of mean square 

error (COM); and analysed their effectiveness. They found that the FC method is 

valuable in building networks of high accuracy, followed by COM and SA. 

However, FC may be incomplete or even unavailable in many situations. Olden et 

al. (2004) demonstrated nine methods for interpreting the variable importance, and 

they concluded that the connection weights (CW) method outperformed the rest, 

while Garson’s important measure equation (introduced in Garson, 1991) showed 

the worst performance. See also other available methods such as the regression 

model (Yi & Prybutok, 1996), and principle component analysis PCA (Lu et al., 

2004).  

Here, two possible methods will be highlighted as follows: 

(i) Connection weights method (CW): The connection weight method (Olden et 

al., 2004) sums the product of the weight of the connection from the input 

neuron to the hidden neurons with the weight of the connection from the hidden 

neurons to the output neurons for all input parameters. The larger the sum of 

connection weights, the greater the importance of the parameter that is 

associated with this input neuron. The relative importance of the input 

parameter i is determined through the following formula: 
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where )Imp(i  is the relative importance of parameter i , n  is the total number of 

hidden nodes,  x  is the index number of hidden node, )( xihCW  is the 

connectivity weight between input parameter i  and hidden node x , and )( xhoCW  
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is the connectivity weight between hidden node x  and the output node. In the 

case of RBFNN, the complexity of the function is reduced as the connectivity 

weights between input and hidden layer are always equal to unity. 

(ii) Change of MSE (COM): This method evaluates the variable significance by 

measuring the change of mean square error (MSE) when that input is deleted 

from the neural network (Sung, 1998). The MSE is defined as: 
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where kpt  and kpo  are the desired output and the calculated output, respectively, 

of the kth output neuron for the pth pattern; K is the total number of output nodes 

and P is the total number of patterns. In the COM method, we retrain the neural 

network with N-1 inputs each time after an input is deleted and observe the 

change, where N is the number of original input parameters. Based on the net 

change in MSE, we can rank the importance of input variables in several 

different ways based on different arguments. For example, we can rank the 

inputs whose deletion causes the largest change in MSE as the most important 

since the error is most sensitive to these inputs.   

3.2.1.2. Data sampling 

Once the significant variables have been confirmed, the data set needs to be 

sampled, especially when dealing with a large data set. Sampling of design space is 

a separate process which must be done effectively. Several possible techniques have 

been discussed in section (2.4.3) in Chapter 2. A new sampling strategy will also be 

introduced in the last section of this chapter. 

3.2.1.3. Data set classification 

The data set is normally partitioned into three subsets: training set, validation set, 

and test set. The selection of a number in each set is an issue for which no generic 

methodology is available. However, the common choices in the literature are the 

combination of 70%, 20% and 10%, or the combination of 50%, 25% and 25%, for 

training, validation and testing sub-sets, respectively. In the multilayer perceptron 

(MLP) network, the validation process is embedded in the training process, and the 
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division of the data set for training and validation is normally performed 

automatically at random. However, in the standard RBFNN algorithm only two 

processes exist; training and testing, from which the validation process is omitted. 

The purpose of each subset is described as follows: 

Training set: It is used for computing the gradient and updating the network 

weights and biases.  

Validation set: The validation process is part of the optimisation strategy. The error 

of the validation set is monitored during the training process. The validation error 

normally decreases during the initial phase of training, as does the training set error. 

However, when the network begins to overfit the data, the error on the validation set 

typically begins to rise, and the training should be stopped.  

Test set: This data is not primarily used during training stage, and is used to confirm 

the actual predictive performance of the network. 

3.2.2. Model training 

The model training requires a set of input-output vectors or training pairs which is 

obtained in the previous stage. Later this data is collectively used to train the 

network. The overview of the basic learning strategies using radial basis function 

neural network (RBFNN) has been discussed in section (2.5). More details, 

explanation and elaboration of the RBFNN algorithm, will be covered 

comprehensively in Chapters 4 and 5.  

In the training loop process, it is necessary to consider a cross-validation method to 

validate the correctness of the current trained network, and probably call an early 

halt before it reaches the prescribed goal. The most frequently used cross-validation 

method is the leave-k-out cross-validation method (Martin & Simpson, 2003; 

Simpson et al., 2004; Kleijen, 2005), which may provide a reasonable assessment of 

the validity of the metamodel. The basic procedure involves leaving k points out of 

the sample set, then rebuilding the metamodel with n-k points, where n is the 

number of sample points. The new metamodel results are compared to the exact 

function evaluations from the k points which were left out, using a root mean 

squares error (RMSE) function. This step is repeated, and the RMSE from all steps 
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are averaged to give the final validity measurement. The value k is suggested to be 

either nk 1.0  or nk   for kriging and 1k  is suggested for the polynomial 

regression (PR) and radial basis function (RBF) (Meckesheimer et al., 2002). Leave-

k-out cross-validation is represented in the following equation: 
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3.2.3. Model testing (validation) 

After network training, it is essential to test the model by evaluating it using a set of 

inputs and comparing it with corresponding outputs. The validation method 

evaluates the accuracy of the metamodel in order to ensure that the metamodel 

reflects the actual network. This practice is crucial to knowing to what extent the 

approximation of the network can be trusted. Hence, some statistical criteria are 

required, normally referred to as performance indexes. However, these performance 

measures are only useful for development and comparative purposes, not for in-the-

loop processing of validity (as does cross-validation). 

In this work, four indexes will be used to measure the residual errors, including the 

root mean square error (RMSE), the mean absolute error (MAE) and the 

determination coefficient (R2), given respectively as 
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where iP and iO  are the predicted (estimated) and observed (actual) values, and 

O represents the observation mean. A higher accuracy of the metamodel is shown 

by smaller values of RMSE and MAE, and larger value of R2. In addition, we also 
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investigate the index of agreement 2d , a measure expressing the degree to which 

predictions are error-free (Gadner & Dorling, 2000): 
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Other indexes may also be used such as the relative average absolute error (RAAE) 

and relative maximum absolute error (RMAE) (Jin et al., 2001). 

3.3. Metamodel management 

The management of the metamodel process is essential to search for the best 

possible or optimal solution of metamodelling. The management strategy should aim 

to effectively use the data sampling process, and to include a validation method to 

assess the fitted metamodel, in which it is typically implemented in the iteration 

loop. 

One approach is by using a sequential modelling process, as outlined in the 

flowchart given in Fig. 3.2. Here, we assume that the pre-modelling process, such as 

the selection of a suitable metamodel as a function approximation and the variable 

importance, has been confirmed, providing a readily available dataset to be used in 

the modelling, namely a design space, S. One starts with a data set, },{ YXS  

consisting of N  input-output pairs ),( ii yx , for Ni  , . . . ,1  where iy  is the model 

output response at the design input sample point ix , and N  is the total number of 

disciplinary model samples. To begin the modelling process, an initial dataset should 

be first constructed by the space filling experimental design (i.e. DOE), where the 

sampling point number is M  from the complete numbers of data set N . Next, the 

sampled data MS  is grouped uniformly or randomly into q  group, thus we have 

} , . . . ,,{ 21 qM SSSS  . Each group of the sampled dataset is added in every iteration 

and used to fit the metamodel, until it meets the accuracy goal in the validation 

process. By using this strategy, the best possible solution is restricted to the sampled 
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dataset MS  in which it is most likely that there are some other good potential points 

that may be chosen, which were excluded in MS . 

 

Fig. 3.2 A metamodelling flowchart by sequential sampling process. 

In this work, we proposed a more reliable strategy by utilising the maximum 

potential of the sampling dataset to fit the metamodel. The process flow is illustrated 

in Fig. 3.3 in which the specific metamodel (i.e. RBFNN) is included in the diagram. 

The design space NS  is sampled from several possible groups of the dataset using 

DOE, by increasing the number of data points for each group, e.g. NSS 05.01  , 

NSS 10.02  , NSS 15.03   and Nj nSS  , where j  is the maximum number of the 

sampled group and 1n . Each dataset will be evaluated to build the metamodel in 

every iteration from the minimum to the maximum number of sampled data points, 

and the process ended when it meets the required performance in the validation 

stage. By doing this, a possible best solution may be found with a minimal number 

of sampled data points, which could reduce the simulation time as well as to avoid 
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the use of exhaustive sampled data that may overfit the neural network construction. 

The construction of neural network model involves the tuning process of the model 

parameters such as the selection of basis centres and the training of the output 

weights. A cross validation (CV) method can be used in the loop to improve the 

generalisation of the metamodel, which may stop the model training earlier. 

 

Fig. 3.3 The proposed metamodelling flowchart. 

3.4. A new sampling scheme for a NN based metamodel 

3.4.1. Introduction 

In this work, a new method for the DOE is introduced, which uses a distance weight 

function to measure the normalised distance for all the input-output data points, and 

followed by clustering it to n numbers of sampling points by using a k-means 

algorithm, which will be referred to as the weighted clustering design (WCD) 

scheme. A radial basis function neural network (RBFNN) metamodel approach is 
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then used to evaluate the performance of the proposed DOE using a nonlinear and 

high-dimensional mathematical function. A comparison study is also included to 

analyse the performance of the introduced sampling technique with other available 

methods such as the n-level full fractional design (FFD) method and Latin 

hypercube design (LHD) method. The results show that the proposed method 

produces an improved performance in the estimation as compared to one without the 

implementation of DOE, and in many cases, it outperforms the network developed 

from other sampling designs of the same size. 

3.4.2. Methodology 

In the neural network based metamodelling, the dataset is normally divided into two 

groups, one for the training (trial) and another one for the testing. If we have a set of 

input-output training datasets denoted by x and y, a mapping solution is given as 

follows: 

  mixfyx iii ,...,2,1)( )()()(  , (3.8) 

where m is the maximum number of data points. For the case of one design objective 

and n number of input design variables, the inputs and outputs are given as in the 

following equations, 

  njmixxxxxxX i
jjj

i ,..,1,,..,1),..,,;....;,...,, )()2()1()(
1

)2(
1

)1(
1     

and 

  miyyyY i ,...,2,1,...,, )()2()1(  . (3.9) 

For a three-dimensional problem, the distribution of four data points is illustrated in 

Fig. 3.4. Each data point has its own unique weight by measuring the distance 

weight factors from a common reference point c. By using the Euclidean distance 

measure, the distance between point p1 and c is mathematically written as: 

       
 

2/12

33
1

22
12

11
11 )()()()()()(),( xcxpxcxpxcxpcpd , (3.10) 

or generally, the weight for all data points of the n-dimensional problem is given as 

follows: 
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The weights could represent the distinct patterns between each data point, and some 

neighbouring points may have a similar weight that could be clustered as a group 

and one point taken as a candidate.  

 

Fig. 3.4 A distribution of data points in three-dimensional space. 

To generalise the solution, the pairs of the input and output data points are combined 

so as to become the design space S in this evaluation, which is given as: 

  YXS ; . (3.12) 

Hence, the dimension of the distance measure for one targeted output has now 

become (n+1)×m. The solution in (3.11) can be simplified further if we set a 

common reference centre at the zero coordinate by first normalising the design space 

S to the minimum of -1 and to a maximum of 1, given as: 

   mnS  )1(1,1' , (3.13) 

as shown in Fig. 3.4. And now solution in (3.11) becomes: 

  
2/1

1

1

2)ˆ()( 
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

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n
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ii xppd , (3.14) 

where jx̂  is the normalised value of the design space S which has been incorporated 

by the output variable. 

A list of distance weight values which is given by: 

 

1x̂  

2x̂  2p  

),,( 3211 xxxp  

3p  

4p  

),,( 321 xxxc  

1  

0  
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  midddD i ,...,2,1|,..., 21  , (3.15) 

is then sorted and clustered by using an available clustering algorithm. In this work, 

a well-known k-means algorithm based on Voronoi iteration (MacKay, 2003) is 

used due to its fast computation especially for the one-dimension case. It uses a two-

phase iterative algorithm to minimie the sum of point-to-centroid distances, summed 

over-all k clusters.  There are several methods to choose the initial k-means points. 

In this evaluation, we replicate them randomly, which in typical will results in a 

solution that is a global minimum (Hamerly & Elkan, 2002). The maximum number 

of cluster k corresponds to the number data points that will be sampled. The 

determination of appropriate k value for this scheme is demonstrated throughout this 

work.  

3.4.3. Test function 

To evaluate the effectiveness of the proposed approach, a high dimensional and 

nonlinear mathematical test problem is employed, namely Problem 100 from Hock–

Schittkowski (Meckesheimer et al., 2002). The Hock–Schittkowski Problem 100 is a 

test problem consisting of seven variables, one objective, and four constraints. In 

this analysis, we consider only the objective function without those constraints. 

However, we specify the design domain for this function where the function is given 

as follows:  
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, (3.16) 

where 1010  ix . To prepare a full large dataset, a series of input-output data 

points are randomly generated (e.g. using ‘randn’ code in Matlab) within the design 

space in which the maximum number of data points is set to 4000.  

Different sample sizes and a fitting design method which involves weighted 

clustering design (WCD), n-level full factorial design (n-FFD) and Latin Hypercube 

design (LHD), will be evaluated. Some of the performance measures, the size of the 

RBFNN metamodel and the total execution time for the simulations will also be 

noted. The full program codes to run this simulation are listed in Appendix A (-1, -2 

and -3). 
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3.4.4. Numerical analysis 

By using three experimental design methods, the prepared datasets are sampled at 

different sample sizes, N. Each set of the sampled data is then mapped using the 

RBFNN metamodel by setting the spread parameter as 4 and the prescribed MSE 

goal as 0.001 for all the tests. A special RBFNN with a supervised learning process 

for the selection of basis centres is used in this evaluation (Wahid et al., 2012). A 

more detailed description of the algorithm will be discussed in Chapter 5. 

Table 3.1 shows the results for three types of analysis which involve the 

performance indexes, the number of hidden neurons used to construct the neural 

network and also the total simulation time. For the proposed sampling scheme, the 

performance based on 2R  and 2d is increased with the increment to the N value, 

which approaches unity for the possible best performance.  

Table 3.1 Metamodel comparison results for the test function.  

No. 
Design 
name 

Configuration 
Sample 
size, N 

% 
of N 

Performance measure 
Network 

size 
Simulation 

time (s) 

RMSE MAE R2 d2   

1. WCD  400 10 1.79E06 1.23E06 0.443 0.861 298 42 

2.   600 15 1.09E06 7.39E05 0.793 0.948 329 57 

3.   1000 25 4.84E05 3.39E05 0.960 0.990 330 93 

4.   1400 35 4.18E05 2.98E05 0.971 0.993 333 126 

5.   1800 45 3.69E05 2.68E05 0.976 0.994 333 173 

6.   2200 55 3.46E05 2.58E05 0.980 0.995 337 250 

7.   2800 70 3.14E05 2.32E05 0.983 0.996 341 389 

8.   3400 85 3.26E05 2.40E05 0.982 0.995 342 495 

9. n-FFD [2 3 2 3 2 3 2] 432 11 1.37E06 9.75E05 0.672 0.918 330 43 

10.  [2 3 2 3 2 3 3] 648 16 1.38E06 9.75E05 0.672 0.918 330 43 

11.  [2 3 3 2 3 3 3] 972 24 4.66E05 3.27E05 0.962 0.991 351 99 

12.  [2 3 3 3 3 3 3] 1458 36 3.70E05 2.66E05 0.976 0.994 349 143 

13.  [2 3 3 3 3 3 4] 1944 49 3.31E05 2.43E05 0.981 0.995 347 233 

14.  [3 3 3 3 3 3 3] 2187 55 3.23E05 2.37E05 0.982 0.996 352  279 

15.  [3 3 3 3 3 3 4] 2916 73 2.99E05 2.21E05 0.985 0.996 344 467 

16. LHD with 
‘maximin’ 
criterion 

400 10 2.00E06 1.34E06 0.304 0.826 305 42 

17.  600 15 1.18E06 7.67E05 0.757 0.939 330 55 

18.  1000 25 5.74E05 3.93E05 0.943 0.986 334 89 

19.   1400 35 5.02E05 3.38E05 0.956 0.989 334 127 

20.   1800 45 3.89E05 2.74E05 0.974 0.994 335 191 

21.   2200 55 3.75E05 2.70E05 0.976 0.994 337 281 

22.   2800 70 3.01E05 2.20E05 0.984 0.996 332 390 

23.   3400 85 2.96E05 2.16E05 0.985 0.996 336 501 

Note: Nfull=4000,  =4, MSE=0.001  
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However, to compromise between the performance and the complexity of the 

approximate model, for a large dataset, it is suggested that the N number may be 

selected at between 25% to 30% of the full dataset as there is no significant 

improvement in the performance when N is more than this range of values (i.e. 

reaches the saturation region), see Fig. 3.5 to Fig. 3.8. As can be seen from the 

figures, the saturation point given by 2R  and 2d  is located at about 25% of the full 

dataset, whereas the point given by RMSE and MAE is at 30% of the full dataset. 

The resultant RMSE and the MAE values appear high, though they are relatively 

small (about ±4% errors) as compared to the maximum output value for the test 

problem.  

 

Fig. 3.5 The R2 performance index against the sample number (in percentages). 
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Fig. 3.6 The RMSE performance index against the sample number (in percentages). 

 

Fig. 3.7 The d2 performance index against the sample number (in percentages). 
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Fig. 3.8 The MAE performance index against the sample number (in percentages). 

Next, the other two design methods are executed by using the same metamodel 

configurations. For the n-FFD method, each design variable is assigned a different 

number of levels so as to generate the different sampling sizes. For example, the [2 3 

3 2 3 3 3] configuration of seven variables will give 972 sampling point locations, 

which are the product of the number of levels for each dimension. This design 

approach is affected in a uniform fashion by means of a rectangular grid of points. 

For the LHD technique, a ‘maximin’ metric which was introduced by Johnson et al. 

(1990) is considered in this study. This approach yields a randomised sampling plan, 

whose projections on to the axes are uniformly spread. 

As compared to the n-FFD, at the same sample size, the proposed scheme (i.e. 

WCD) shows a great improvement in the size of constructed neural network, and 

produces nearly similar performance on the error indications. In the other 

comparison, the LHD requires a similar network size as the WCD, however poor in 

terms of the performance measure. Thus, in general, by compromising between the 

computational cost (i.e. execution time and the network size) and the performance of 

the model, the WCD method offers a better sampling solution.  
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The comparisons of the training evolution for different sampling numbers are 

illustrated in Fig. 3.9 (a–d). Therein, at the lower sampling numbers, the training 

performances in which the datasets are sampled by the WCD method reach the MSE 

goal of 0.001 faster than the benchmarked approaches. At the higher sampling 

numbers (more than 50% of the full dataset), the WCD and LHD have similar 

achievement in terms of the number of hidden neurons used; however, WCD obtains 

better performance indexes than LHD. An example of the estimated output for the 

case when the sample size is 30% of the full dataset is shown in Fig. 3.10. In the 

figure, the constructed metamodel is able to accurately approximate the true values 

at most of the points, except for the lower parts (i.e. less than zero level). 

 
(a) 

 
 

(b) 
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(c) 

 
 

(d) 

 
Fig. 3.9 The comparison of the training performance between three sampling methods, with several 

sample sizes. 

0 50 100 150 200 250 300 350

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Epoch, k

M
ea

n 
sq

ua
re

d 
er

ro
r 

(M
S

E
)

 

 

MSE-WCD55
MSE-FFD55
MSE-LHD55

N = 55% * N
full

0 50 100 150 200 250 300 350

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Epoch, k

M
ea

n 
sq

ua
re

d 
er

ro
r 

(M
S

E
)

 

 

MSE-WCD70
MSE-FFD73
MSE-LHD70

N = 70% * N
full



3. Building a Neural Network-Based Metamodel 72 
 

 
 

 

Fig. 3.10 The estimation output for 100 test data of problem 1 using N=1000 (i.e. case no. 3 in Table 
3.1). 

3.4.5. Discussion 

A new method for the sampling design for a neural network metamodel has been 

presented. The validity and reliability of the proposed definition has been evaluated 

in several ways. By using the radial basis function neural network metamodel, the 

performance of the proposed approach was compared with two well-known 

sampling design strategies; the n-level full factorial design and the Latin hypercube 

design. A known non-linear test function, namely, The Hock–Schittkowski Problem 

100 was used in the evaluation to validate the effectiveness of the proposed scheme. 

From this evaluation, for sampling a large dataset (typically more than 3000 design 

points), it has been determined that an appropriate sample number can be chosen 

between 25% to 30% of the full dataset as there are no significant improvements in 

the performance if more data is used. It is also noted that the proposed sampling 

method outperforms the other two evaluated methods in terms of several criteria, 

which are the performances indexes, the network size and the simulation time, in the 

tested function.  
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3.5. Chapter conclusion 

This chapter covered the process involved in the metamodel development, which has 

focused on a neural network-based metamodel. The process includes data 

preparation and sampling, training process, and also validation and testing 

(evaluation) to assess the accuracy of a metamodel. Besides, the importance of some 

management strategies in executing the metamodel was also described. A reliable 

strategy has been presented, utilising the maximum potential of the sampling dataset 

to fit the metamodel. In the last section, a new method for the sampling scheme was 

introduced in which numerical analysis using a non-linear complex function was 

presented to evaluate the effectiveness of the proposed method. A significant 

improvement in the metamodel performance was found when using the weighted 

clustering design (WCD) for sampling the training dataset, as compared to 

benchmarked methods; the Latin hypercube design (LHD) and the n-level full 

factorial design (n-FFD).  
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Chapter 4                                                                  

ORTHOGONAL LEAST SQUARES 

ALGORITHM  

4.1. Introduction 

In Chapter 2, a comprehensive review of the learning strategies of radial basis 

function neural network (RBFNN) has been discussed. Although RBFNNs have 

been proven to be able to model highly nonlinear data, their performance very much 

depends on the distribution of the centres. The strong point of RBFNN is that the 

input space can be clustered, and the centres are chosen in such a way that the radial 

basis function will have an effect only on certain regions of the input space (Jang et 

al., 1997). Consequently, RBFNN with clustering strategy reduces the “curse of 

dimensionality” problem that may reduce the over-fitting problem. However, when 

using a clustering method, a major concern is how to select the suitable set of RBF 

centres with the aim of reducing the network complexity as well as maintaining an 

adequate level of accuracy.  

In this chapter, we will discuss a systematic method for the RBFNN learning 

algorithm in which the benchmark approach will be based on the Orthogonal Least 

Squares (OLS) method that was introduced by Chen et al. (1991). This is a well-

known learning method and it has become a standard algorithm in the Matlab 

software toolbox. As well, some efforts will be demonstrated to improve the 

performance of the learning algorithm. First, an algorithm to optimally tune the 

spread parameter will be presented. Then, a method to prune the networks during the 

learning process will be introduced as well. 
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4.2. Orthogonal Least Squares (OLS) learning 
algorithm 

The Orthogonal Least Squares (OLS) learning algorithm is a forward selection 

technique that computes the RBF centres or the significant terms from the input data 

(Lee & Billings, 2002), and the corresponding weights can be estimated in a very 

efficient manner. The minimisation of the cost function in the selection of a centre 

from input data is based on the computation of an error reduction ratio (ERR). The 

centres are chosen to maximise the ERR. 

Recalling the RBFNN function from equations (2.10), (2.11) and (2.29) in Chapter 

2, the Gaussian based RBFNN for i  inputs and m  outputs can be defined as: 
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where nx   is the input vector, j  is the output index, 
2

.  denotes the Euclidean 

norm, jkw  are weights in the output layer, N  is the number of hidden neurons (and 

centres), n
kc  are the RBF centres in the input vector space,   is the spread 

parameter, and jb  is the bias of the network for each output.   

The selection of centres in equation (4.1) can be estimated using a linear regression 

analysis (i.e. least squares method) if we have: 
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where )(td  is the desired output, kp  represents as regressors which are functions of 

)(tx , k  are parameters to be estimated, and )(te  is an error signal included in the 

modelling. Rewriting (4.2) in matrix form, for 1t  to N , yields: 

  θPD , (4.3) 

where 

   TNddD )(,...),1( , (4.4) 

   T
M ,...,1θ  , (4.5) 
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   TNee )(,...),1( , and (4.6) 

 





















)()()(

)2()2()2(

)1()1()1(

21

21

21

NpNpNp

ppp

ppp

P

M

M

M









. (4.7) 

An orthogonal decomposition of P  is of the form: 

 TQP , (4.8) 

where Q  is an MM  upper unit triangular matrix given as: 
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and T  is a MN   matrix in which the orthogonal columns satisfy: 
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with the element i
T

ii tth   for Mi 1 . 

The classical Gram–Schmidt (CGS) procedure computes Q one column at a time 

and orthogonalises P  as follows: at the k-th stage, make the k-th column orthogonal 

to each of the 1k  previously orthogonalised columns and repeat the operations for 

Mk ,,2  . The computational procedure is represented as: 
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where .,.  denotes the inner product that is k
T

iki ptpt , . 
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From equation (4.8) we have 1 PQT , and rearranging equation (4.3) yields: 

    TgQPQD ))(( θ1 , (4.12) 

and the linear least squares estimate of g  is given by: 
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T
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Next, the estimated weight θ̂  can be determined through the back substitution of 

gQ θ . 

The sum squared errors cost function is given by: 

  TJ  , (4.14) 

By using (4.12) and (4.13), the cost function can be re-written as: 
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The error reduction ratio (ERR) due to each additional it  can be defined as: 
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. (4.16) 

Based on the iERR , a simple and effective forward-selection procedure can be 

derived for choosing the RBF centres. This can be considered as finding a subset of 

significant regressors. The regressor selection procedure by using the CGS method 

is summarised as follows: 

 At the first step (i.e. )1k , for Mi 1 , compute: 
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Find 
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 At the k-th step where 2k , compute: 
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Find 
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 The procedure is continued until the Ms-th step when:  

 


sM

j
jERR

1

1 ,  (4.21) 

where 10    is the desired tolerance. 

For practical implementation in MATLAB code, the ip  in the first step is set as an 

orthogonal and diagonal matrix of P  (Demuth et al., 2009), which is given by: 

 ))*),(( c
T xxdistradbasP  , (4.22) 

where x is the input space vector, radbas  is the radial basis function, ).(dist  is the 

Euclidean distance function, and c  is the spread parameter. To improve the 

sensitivity of the radial basis function, the authors suggested that the spread value is 

given by 8326.0/'cc    in which 'c  is the user-defined spread parameter. This 

gives radial basis functions that cross 0.5 at weighted inputs of  /  spread. To 

terminate the learning process, Demuth et al. (2009) use the set mean-squared-error 

(MSE) goal, rather than use equation (4.21). 



4. Orthogonal Least Squares Algorithm 79 
 

 
 

The OLS strategy is a systematic and effective way of selecting centres as compared 

to random selection, but it is possibly a suboptimal solution (Sherstinsky & Picard, 

1996). The minimal network structure may not be found for a given accuracy since 

the centres or the significant terms are selected based on a local optimisation. 

Previously chosen terms could affect the selection of subsequent terms as the ERR 

varied with the order in which the significant terms were orthogonalised into the 

orthogonal equation. On the other hand, the accuracy of constructed network is still 

dependent on the spread parameter value that affects the variance of each hidden 

neuron in which it is typically selected as a constant sp . In the next section, a 

potential method will be introduced to adaptively tune the spread parameter to 

possibly find the optimal parameters of basis functions. 

4.3. Some improvements of OLS algorithm 

4.3.1. Adaptively-tuned spread parameter 

4.3.1.1. Introduction 

In MATLAB, the spread parameter  , is quite often set manually by trial and error. 

There still remains a question as to whether the results obtained are at the optimum 

point for various spread constants. As mentioned in Demuth et al. (2009), it was 

suggested that   should be large enough so that neurons respond strongly to the 

overlapping region of the input space. Also, it must be selected at greater than 0.1 of 

the interval between inputs, and less than 2 of the distance between the leftmost and 

rightmost inputs. But it is still unclear with which spread parameter one should start, 

especially for beginner users. Thus, it may be interesting to tune for some optimal 

value of   (Poshal & Ganesan, 2008).  

4.3.1.2. Methodology 

There are two possible implementations to learn the optimal value of the spread 

parameter. The first method is by using the fully supervised method to train the 

optimal points of RBFNN’s weights, centres and spreads, the update equations 

having been discussed in Chapter 2 (see equations (2.28)–(2.20)). In this approach, 
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the gradients of the update equations are computed by minimising the sum of 

squared errors (SSE) as the cost function. The simultaneous calculation of the three 

equations incurs a significant computation cost.  

Another possible approach is by computing the gradient using the slope information 

by taking the change of a cost function against the change of a variable to be 

learned, from their current and previous values. Here, the root-mean-squared-error 

(RMSE) is used as the cost function to train the spread value for every hidden 

neuron, the OLS algorithm is used to trains its centres, and the output weights are 

learned by the inversed linear regression (Wahid et al., 2010a). This idea can be 

illustrated here by testing a simple quasi-sinusoidal function. The n-dimensional 

quasi-sinusoidal function is generally defined as (Giunta & Watson, 1998): 

  



n

i
ii xxxf

1

2 )15/16(sin)15/16sin(3.0)(  , (4.22) 

where 7.0 , 1i  for a one-dimensional problem, and  2,1ix . The initial 

sample set is constructed by using eight randomly distributed points. By using the 

OLS algorithm in MATLAB and varying the spread parameter values, it is observed 

that the produced cost function (i.e. RMSE) decays until reaching a certain minimum 

point. This minimum point is considered as the optimal point of spread parameter, as 

shown in Fig. 4.1.  
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Fig. 4.1 RMSE value versus the spread parameter with various neuron numbers from a case study. 

This illustration prompts the suggestion that an optimal value for the spread 

parameter is a function of RMSE at the minimum global point. Motivated by this 

idea, we propose to use the gradient criteria to adjust   till the first derivative of 

RMSE approaches zero, i.e. 

 0
)(








 RMSE
. (4.23) 

From a given initial value 0 , the optimal point can be achieved by an optimisation 

technique such as steepest descent, Newton’s method, and the Marquardt method. It 

has been determined by many experiments that the 0  must be chosen between 0.1 

and 10 in order to obtain the best convergence. In this development, we choose the 

steepest descent (Jacob, 1988) technique for simplicity, which method appears to be 

the best unconstrained minimisation technique (Rao, 2009). However, owing the fact 

that the steepest descent direction is a local property, it may fall into the local 

minimum rather than the global minimum. The procedure can be written as: 

   )()( oldnew , (4.24) 

where   is the spread parameter,   is the step size (or learning rate) and   is the 

gradient as derived in (4.23). Commonly, the following criteria can be used to 

terminate the iterative process. 

In order to terminate the iterative process, the following criteria can be used:  

i. when the change in function value and two consecutive iterations are small, i.e.: 

 1
)(

)()( 


old

oldnew

RMSE

RMSERMSE
, (4.25) 

ii. or, when the component of the gradient of the function is small, i.e.: 

 2



RMSE

, (4.26) 

iii. or, when the change in design vector in two consecutive iterations is small: 
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 3)()(   oldnew , (4.27) 

where 1 , 2 , and 3  are the suitable threshold points. Here, the first termination 

criterion is utilised because it shows better performance as compared to the rest. 

The whole picture of the proposed algorithm is illustrated in the flowchart depicted 

in Fig. 4.2. Therein, from the training dataset (i.e. input dataset p , and target 

dataset t), the process starts by initialising the error goal (eg) and the initial value of 

the spread parameter ( 0 ). By using the OLS algorithm, an RBF centre is selected, 

and the output weights and RMSE are computed. The optimal   for first neuron is 

obtained by the steepest descent method until it reaches the termination point  . If 

the first neuron is unable to meet the set error goal (eg), it will proceed to the next 

iteration where the new neuron is added. The new optimal   will be calculated and 

the process continues until it meets the required accuracy, or will stop when the 

maximum number of neurons, which is equal to the number of inputs is reached. 

The advantageous feature here is that the best performance is determined at every 

neuron, instead of using a fixed spread value in the standard RBFNN. The Matlab 

codes (m-codes) for the improved OLS algorithm are given in the Appendix B-1. 
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Fig. 4.2 RBFNN with adaptively tuned spread parameter algorithm flowchart. 
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4.3.2. A pruning algorithm for RBFNN 

4.3.2.1. Introduction 

In most of the developed RBFNN algorithms, the created hidden units will never be 

removed. This leads the network to produce some hidden units which are initially 

active but those end up contributing little to the network output. Thus, an appropriate 

method to prune the network is necessary in which inactive hidden units can be 

detected and removed during learning to produce a less wasteful network. 

Liu et al. (1999) proposed a variable neural network based on the variable grid 

approach. The network selects the centres from the node set N of the variable grid. 

When the network needs some new basis functions, a new higher order subgrid is 

appended to the grid, and the new centres are chosen from the newly created 

subgrid. Similarly, if the network needs to be reduced, the highest order subgrid is 

deleted from the grid, and the associated centres are removed. In another paper, 

Mekki et al. (2006) applied a variable neural network of RBFNN for adaptive 

control of a nonlinear system, which combines a growth algorithm inspired from the 

adaptive diffuse element method with a pruning algorithm introduced by Fabri and 

Kadirkamanathan (1996). Basically, this approach also uses a grid based method in 

the selection of the hidden unit with a slightly different approach, and two criteria 

with their thresholds are used to assess the activeness of the current hidden units and 

remove them if necessary. 

From the idea of the above papers, a new potential pruning method applied in the 

OLS learning algorithm will be introduced here. The method is simple to be 

implemented and requires only one criterion for its decision (Wahid et al., 2010a).  

4.3.2.2. Methodology 

For 1m  and ni )(x , where n  is the number of training examples, the equation 

for RBFNN output in (4.1) can be rewritten in matrix form as: 

  TWF , (4.28) 

where 
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  )()1( ,..., nffF  , (4.29) 

   T
kwwW ,...,1 , and (4.30) 
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Each radial basis of the hidden units from 1  to k  has its own strength of 

contribution to the build network. The energy could be assessed by computing the 

mean value of n numbers of radial basis output (i.e. RBF output of each training 

pattern) for each hidden neuron, as expressed in the following equation: 

 ,,,2,1,
1

1

)( ki
n

n

j

j
ii  



 , (4.32) 

where   is the hidden layer output, i is the neuron number, and j  is the pattern 

number. It is followed by normalising those mean outputs between 0 and 1, which 

resulted in a normalised i  output, as given in the following equation: 

 kis i
i ...3,2,1,

(max)





. (4.33) 

When the is value is less than a certain threshold, s during the training process, the 

ith hidden node could be removed. To incorporate the method into the OLS with the 

adaptive spread algorithm (in Fig. 4.2), additional steps are added between the 

adaptive spread termination criteria and the MSE goal, which is shown in Fig. 4.3. 

Please refer to the pruning algorithm codes in Appendix B-2.   
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Fig. 4.3 RBFNN with an additional pruning algorithm. 

4.3.3. Numerical analysis 

To evaluate the performance of both proposed approaches, a nonlinear test function 

which was used in Chapter 3 will be utilised again here, namely the Problem 100 of 

Hock–Schittkowski. The WCD sampling method is used to prepare an appropriate 

sampling dataset for the purpose of this evaluation. Several types of simulations will 

be considered which involve the standard OLS algorithm, a combination of OLS 

with adaptively tuned spread parameter, and a combination of those three 

algorithms. Some of the performance measures, the size of RBFNN metamodel and 

the total execution time for the simulations will also be noted. 

4.3.3.1. The OLS performance 

First, the performance of the training process using the OLS algorithm is evaluated 

for the purpose of comparison. One thousand data points that have been sampled 

from 4000 points of the full dataset are involved in the analysis. The best 

achievement of this algorithm is basically dependent on the predefined values of the 

error goal and the spread parameter. Using the test problem, the performance of the 

algorithm is tested by varying the MSE goal values at a constant spread parameter of 

1.0, which are shown in Fig. 4.4 (a–d).  
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It is general understood that the performance of the algorithm increased by setting a 

higher accuracy target, which also causes an increment in size of the network (i.e. 

given by the number of hidden neurons used). The lowest typical value used is 0.001 

in which over-fitting problems always occur if the value is below that. However, for 

many cases, the error goal of 0.001 does not always produce an optimal solution as it 

may build unnecessary additional hidden units that could degrade its performance, 

thus a higher value may be chosen. Another possible solution is by developing an 

algorithm that can make an early stop decision, for example, by adding a cross 

validation step in the loop.  

In another test, we look at the effect of changing the spread parameter ( ) on 

performance. The   used here is called as an ‘isotropic  ’ which means the same 

value of   is used for two purposes as follows: 

i. To prepare a finite set of matrix P in equation (4.22) for the selection of radial 

basis centres using OLS algorithm. To avoid confusion, we note it as c  in this 

assessment. 

ii. To produce the radial basis function for each hidden neuron during the training 

stage. The spread parameter is noted here as  . 

The results of testing several spread parameters with a constant MSE goal of 0.001 

for the OLS algorithm is listed in Table 4.1. From the table, the optimum solution is 

found when the   is set to 6.0. The network apparently converges very quickly 

when   equals 0.1, but it produces the worst value in the performance measure. At 

a higher   value, the performance increases such that the optimum performance 

with a smaller network size occurs at   equals 6.0. When the   is set to more than 

about 10, the network in which huge numbers of hidden neurons are used would not 

converge well. It should be keep in mind that the situation is not the same for a 

different test problem, hence a suitable mechanism is necessary to determine the 

appropriate value of isotropic   or the optimal value of   for each hidden unit.  
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Table 4.1 The performance of OLS using different spread parameters (i.e. c  ). 

Spread parameter R2 Epochs 

0.1 0.013 246 
0.5 0.761 462 
1.0 0.882 357 
2.0 0.939 299 
4.0 0.939 284 
6.0 0.943 279 
8.0 0.947 283 

10.0 0.950 280 
11.0 0.941 718 

4.3.3.2. The OLS with adaptive tuned spread parameter 

There are two parameters that have to be determined in the proposed tuning 

algorithm for the spread parameters ( ), which are the termination threshold   and 

the learning rate   for the gradient descent. These parameters must be generic in 

offering a reliable result for training of any test function. For a demonstration, a 

similar test function as that used in the previous section is used to test the effect of 

the threshold,  , values (in equation 4.25) to the accuracy of   determination 

where the results are depicted in Fig. 4.5 (a–d). In this evaluation, for simplicity, a 

fixed value for the learning rate   is used in the iteration process. More effective 

ways may be implemented by varying values of   in every loop of iteration to speed 

up the computation.   

In Fig. 4.5, the spread parameters are varied during the training process, and it is 

found that a lesser number of hidden units are produced when a smaller threshold 

value is used. The threshold values as in Fig. 4.5 (c) and (d) produce similar neuron 

numbers as those produced by the standard OLS algorithm. However, the results in 

(d) involve extremely expensive computation time, thus the threshold value of 

00001.0  (i.e. in (c)) is chosen so as to compromise between the performance and 

the computational cost. It is also observed that the mean values of the   are 

increased with the reduction of the threshold value, but it does not much affect 

network performance. More comprehensive results of the evaluation for different 

c  values (spread parameter for centres selection) are shown in Table 4.2. 
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Table 4.2 The performance of improved OLS using different σc parameters (MSE goal=0.001). 

σc Threshold,   σmin σmax σmean Epochs, k R2 Time (s) 
1.0 1e-3 0.556 2.379 1.665 296 0.926 67 

 1e-4 0.714 3.175 2.056 296 0.928 199 
 1e-5 0.714 4.460 2.592 296 0.928 763 
 1e-6 0.494 6.384 3.360 296 0.926 3576 

2.0 1e-3 1.018 3.463 2.139 287 0.937 132 
 1e-4 0.983 3.888 2.716 287 0.939 455 
 1e-5 0.986 5.315 3.522 287 0.940 1254 
 1e-6 0.488 7.417 4.609 287 0.940 6627 

4.0 1e-3 0.960 4.670 2.193 283 0.941 123 
 1e-4 0.960 4.670 2.193 283 0.941 107 
 1e-5 0.507 7.624 3.882 281 0.938 2184 
 1e-6 0.507 10.240 5.196 281 0.938 9168 

6.0 1e-3 0.960 6.000 2.423 281 0.948 144 
 1e-4 0.626 6.000 3.155 280 0.943 542 
 1e-5 0.611 7.408 4.201 279 0.943 2085 
 1e-6 0.605 9.742 5.731 279 0.943 > 2 hr 

8.0 1e-3 -4.968 8.000 2.355 284 0.946 136 
 1e-4 -6.447 8.000 3.030 283 0.946 585 
 1e-5 -8.541 8.055 4.109 283 0.946 2157 
 1e-6 Simulation more than two hours 

11.0 1e-3 1.500 11.000 2.351 283 0.946 135 
 1e-4 1.131 11.000 3.051 282 0.944 569 
 1e-5 1.560 11.000 4.115 282 0.944 2009 
 1e-6 Simulation more than two hours 

From Table 4.2, it is clear that the training performance is increased with an 

increment in the c  value. The optimal solution appears when 0.6c  and the 

threshold 00001.0 . In the previous discussion of the OLS analysis, the network 

seems over-fitted when 11c  is used, however, with the improved algorithm, this 

limitation is compensated, however, the network size enlarged and the network 

performance deteriorated when the c  value is increased.  

Some comparisons of the training performance between standard OLS and the 

improved OLS algorithm are illustrated in Fig. 4.6 (a–d). From this comparison, it is 

shown that the improved algorithm outperforms the regular OLS in terms of the 

network size, especially when a lower c  value is utilised. An identical performance 

appears when 0.6c . On the other hand, the proposed improvement also has the 

advantage of yielding a reasonable performance even when the optimum c  value is 

unknown. It is also pointed out that instead of tuning the   values, an optimal c  

value also needs to be determined to achieve a lesser number of hidden neurons.  
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4.3.3.3. The OLS with adaptive spread and pruning algorithm 

In this evaluation, a combined algorithm of OLS, adaptive spread and pruning 

method is considered. In the algorithm, an appropriate threshold of s  needs to be 

determined by running several experiments and considering several test functions. 

For the execution, in every epoch, the strength of the node (i.e. radial basis output of 

the node) is evaluated by using equations (4.32) and (4.33). If the is  value is more 

than the threshold s , the normal iteration is continued by adding a new neuron. If 

the is  value falls below the threshold, the particular neuron is excluded and the 

number of excluded neuron n , is increased (i.e. )1nn  in which the initial value 

of n  was set to zero.  

Table 4.3 The comparison of training performance using three methods, at different σc values and 
MSE goals.  

σc MSE goal 
OLS OLS + ASP* OLS + ASP + PR** 

Neurons  R2 Neurons R2 Neurons R2 

1.0 0.010 88 0.735 41 0.789 41 0.790 
 0.005 234 0.740 227 0.761 230 0.763 
 0.001 357 0.882 296 0.929 297 0.931 

2.0 0.010 50 0.776 41 0.789 38 0.789 
 0.005 232 0.753 227 0.761 231 0.765 
 0.001 299 0.939 287 0.940 287 0.940 

4.0 0.010 40 0.789 40 0.789 38 0.789 
 0.005 231 0.754 231 0.754 243 0.768 
 0.001 284 0.939 281 0.938 319 0.967 

6.0 0.010 41 0.792 41 0.792 43 0.947 
 0.005 231 0.771 231 0.771 255 0.791 

 0.001 279 0.943 279 0.943 321 0.952 

* ASP = adaptive spread parameter, ** PR = pruning algorithm 

By using the same test problem, a comparison of the training performance using 

three approaches is shown in Table 4.3. Several c  and MSE goal values are used in 

the testing. It can be learnt that the combination of OLS and the adaptive spread 

algorithm will reduce the size of the network while maintaining a similar 

performance to OLS (or better in some cases). In general, the addition of the pruning 

algorithm will tend to increase the number of neurons, however, it will yield 

improved results in terms of the performance index. As referred to in Table 4.3, the 

2R  values of the third approach (i.e. OLS + ASP + PR) are better than the rest of 
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approaches, for all the cases. In some cases of a higher MSE goal (e.g. 0.01), this 

approach also appeared to yield smaller network sizes. 

4.4. Chapter conclusion 

This chapter introduced two improvements in the RBFNN algorithm based on the 

orthogonal least squares (OLS) approach. Initially, the steps of OLS implementation 

have been highlighted for the purpose of deriving the proposed algorithms. Next, an 

algorithm to adaptively tune the spread parameter ( ) was explained. Instead of 

using a constant   for the entire training process, the   of each hidden neuron is 

updated by using the gradient descent method. The root mean squared error (RMSE) 

is used as the cost function and the slope of the change of a cost function against the 

change of   is used in the adaptation rather than taking the derivation of the cost 

function, so as to quicken the computation. From a numerical evaluation, the 

proposed algorithm will tend to offer smaller network sizes whilst maintaining the 

performance of the developed metamodel. 

The second improvement involves the introduction of a pruning algorithm to 

optimise the number of hidden neurons in the network. The idea is to exclude the 

hidden neurons as they make little contribution in the development of the network. 

From an analytical standpoint, the algorithm improves the network’s performance 

based on the performance index, and it is able to reduce the number of hidden unit 

especially when a lesser accuracy of the error goals is required.  
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Chapter 5                                                                     

PARAMETER DETERMINATION FOR 

RBFNN LEARNING ALGORITHM 

5.1. Introduction 

In the radial basis function neural network (RBFNN), three difficulties are involved 

in the training algorithm: (i) the selection of the radial basis centres; (ii) the selection 

of the basis function radius (spread); and (iii) the learning of network weights. The 

choice of network centres is crucial, as it will affect the size of the network and also 

part of its overall performance. Several methods have appeared in the literature, 

which can be grouped as random, unsupervised and supervised selection. The former 

method was first introduced by Broomhead and Lowe (1988), employing the subset 

of the input training data as the centres which are selected at random. This strategy 

could be executed quickly, however, it may require excessive centres that cause 

over-fitting. In another method, the centres are obtained from unsupervised learning 

via the clustering process such as the k-means algorithm, (see e.g. Ukyan & Gzelis, 

1997; Lin et al., 2009), or by using the genetic algorithm and fuzzy logic (see e.g. 

Zhao & Huang, 2002; Wang et al., 2002). These methods are widely used and 

researched, however they only considered the input training features without 

evaluating the output error of the network. 

A more systematic approach is by employing supervised selection, also known as 

the forward selection. The most popular method was introduced by Chen et al. 

(1991) who utilised the orthogonal least square (OLS) algorithm, which was 

explained in Chapter 4. Another strategy of forward selection was presented by Orr 

(1993), which uses the information of the hidden neuron output from a previous 
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iteration. It uses the subset forward selection by implementing ridge regression 

analysis. 

In this chapter, we will introduce an approach in the selection of basis centres in 

which the idea is partially adopted from the forward selection method by Orr (1993) 

in conjunction with the generalised least squares (GLS) theory, which affords an 

advantage in dealing with noisy data or when the variances of the observation are 

unequal. A special case of GLS called weighted least squares (WLS) will be 

implemented here. Furthermore, the advantage of the Gram matrix, P (Demuth et al., 

2009) as appeared in equation (4.21) will be utilised here during the learning 

process. An improved method to train the network output weights will then be 

described. Next, appropriate ways to estimate several parameters in RBFNN 

including the least squares weighting factor H, the regularisation parameter  , and 

the spread parameter  , will also be presented. Finally, the implementation steps for 

the proposed algorithms will be summarised.  

5.2. A forward selection method for centres 
determination 

5.2.1. Using regularised least squares to form a cost 
function 

The regularised least squares method is basically a form of multi-objective least 

squares that incorporate the weighting factors for each objective function. Its general 

formulation (Mead & Renaut, 2009), which responds to the input matrix A, can take 

the form as follows: 

   zb
z

WzzFWbAzzJz
2

0

2
min)(ˆ  , (5.1) 

where the first objective term corresponds to the original cost function due to the 

residual error between the estimated output, Az, and the desired output, b , the 

second objective term is a regularisation solution that represents the approximated 

noise out of the system, z  is a least squares solution, 0z  is a reference solution, and 

A and F are the inputs of each objective function. The weighting factor bW  is 
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related to the variance of the observation output, whereas the weighting factor zW  is 

correlated to the regularisation parameter. If considering the generalised Tikhonov 

Regularisation (Tikhonov, 1973), matrix zW  is generally replaced by NI , where   

is an unknown regularisation parameter and NIF
  in which it is necessarily not of 

full rank (Mead & Renaut, 2009). When 0z  is assumed to be zero, the cost function 

J  can be rewritten as: 

  .min)(
22

zIWbAzzJ Nb
z

 . (5.2) 

5.2.2. Solution for the regularised and weighted least 
squares 

In the ordinary least squares (OLS) estimation procedure, it is always assumed that 

all observations of input-output   n
i

ii
1

)()( b,a   are equally important in estimating the 

model parameters. However, this is not the case in many real problems in which it 

may be that some observation are known to be less reliable than others, or the 

converse. Thus, all observations have unequal variance where the form of the 

equality is known. A better estimate than OLS can be obtained using weighted least 

squares (WLS), also called generalised least squares (GLS). The idea is to assign to 

each observation a weight that reflects the uncertainty of the measurement.  

The incorporation of the bW  matrix coefficient in equation (5.2) represents the 

weighted least squares in the form of a cost function. In the equation, if we set 

1bW  and 0 , the solution is called the OLS; if we set only 0 , the solution is 

called the WLS; and if we set only 1bW , the solution is called the ridge regression 

(i.e. regularised LS). Ridge regression is a solution invented by Tikhonov (1973) to 

regularise mathematical problems from ill-posed conditions. Typically, there is not 

enough information available in the trained problems, hence necessary extra 

information through the regularisation method could be supplied. For the regularised 

and weighted least squares solution in equation (5.2), the estimated ẑ  can be 

obtained by taking the first derivative of J  equal to zero (i.e. 0/)(  zzJ ), in which 

the derivation is shown in the following equations: 
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 (5.3) 

where bW  is a diagonal matrix of the weighting coefficient with iii wW  , and it is 

symmetrical. In general, the weight coefficient iw assigned to the ith observation, 

will be a function of the variance of the observation, denoted 2  (Bates & Watts, 

1988). 

5.2.3. Formulation of the error function 

Generally, to apply supervised learning, the analysis may be started with a simple 

linear model with a scalar output, given by: 

  



m

j
jj pwf

1

)x()x( , (5.4) 

where p  is the linear combination of a function vector, and w  is the coefficient of 

the linear combination in which we refer to p  and w  here as functions of the hidden 

units and weights, respectively, in the context of neural networks. If the p  function 

(e.g. radial basis) can change during the learning process, then the model becomes 

nonlinear. 

If the training set is   n
i

ii y 1
)()( ,x   where ni )(x  is the input vector, by using the 

regularised and weighted least squares, the sum of squared errors  , is given by: 
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 (5.5) 

where   m
ij 1  is the weight penalty or regularisation parameter, and 0ih  defines 

the relative importance of observation   n
i

ii y 1
)()( ,x   which is affected by its 

individual variance. In matrix form, equation (5.4) can be re-written as: 
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   PWwpwpwpF TT
n

TT  21 . (5.6) 

By using the pseudo-inverse method, we have the solution of the least squares 

approach as derived in equation (5.3), which is now given by 

  yHPIHPPW T-
m

T 1 , hence equation (5.6) can be further represented as: 

   yHPPAyHPΛHPPPF T-T-T 11  , (5.7) 

where y  is the matrix of the desired output, ΛHPPA T   is the variance matrix, 

and Λ  is a diagonal matrix of the regularisation parameters. The cost function in 

(5.5) can be re-written in the matrix form as: 

  

    
      
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 
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

 (5.8) 

where HPPAIQ T-
n

1  is the projection matrix, and tr is the trace function which 

computes the sum of the elements in the main diagonal. The matrix L can be 

derived further as: 

 

 
 
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
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
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 (5.9) 

Substituting equation (5.9) into (5.8), the error function can be simplified as, 

 
  

 .

22

HQyytr

yQ-QQHytrε
T

T




 (5.10) 

5.2.4. Forward selection with regularised and weighted 
least squares 

Now, we will look into the derivation of a forward selection algorithm, which is 

incorporated by the regularised and weighted least squares that were discussed 

earlier, in the context of the radial basis function neural network (RBFNN). The 

implementation of only the weighted least squares theory in the selection of radial 
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basis function centres has been demonstrated in Wahid et al. (2011), and the results 

will not be presented here. 

Recalling the RBFNN function from equations (2.10) and (2.11) in Chapter 2, the 

general form of RBFNN for l  inputs and m outputs can be defined as: 

   mjcwfy
N

k
kjkj ,...2,1,x)x(ˆ

1
2

(i)(i)  


 , (5.11) 

where n(i)x  is the input vector, j  is the output index,    is a basis function, 

2
.  denotes the Euclidean norm, jkw  are weights in the output layer, N  is the 

number of hidden neurons (and centres) in which generally nN  , and n
kc   are 

the RBF centres in the input vector space. In matrix notation, equation (5.11) can 

also be written as: 

 WF T , (5.12) 

where F  is the matrix of the network output with mn  dimension, Φ
 
is the matrix 

of hidden nodes with nN 
 
dimension,  TjkwW   is a network weight matrix with 

mN   dimension, and n
 
is the number of dataset samples. 

By using equation (5.3) with the notations and dimensions used for the RBFNN 

problem in (5.12), the RBF network weight can be computed by the following 

equation: 

   HDIHW N
T

rbfn 
1ˆ  , (5.13) 

where D  is the matrix of the desired output with mn  dimension and H  is a 

diagonal matrix of the least square weighting factors which is given as follows: 
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11

,   with ni 1 . (5.14) 

From (5.13), the network weight at the k -th iteration can be trained using the 

following equation: 
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where kA  is the variance matrix, and the network weight at the )1( k -th iteration 

can be formed as: 
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If the network is grown by adding a new hidden neuron k , the matrix of the hidden 

neuron thus acquires an extra row given by  TT
kkk ,1  . Hence the variance 

matrix k
T

kkkk IHA   in (5.15) can now be formed as: 

 

  

,
1

11

1

1111

1
1

















































kk
T

k
T

kk
T

k

kkkk

kk
T

k
T

kk
T

k

kkkk
T

kkk

kk
T

kkT
k

k
k

HH

HA

HH

HIH

IHA










 (5.17) 

and the inverse matrix of (5.17) is given by: 
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Here, we are concerned with a direct relationship between kA  and 1kA  matrices, 

thus only the first matrix entry in (5.18) is taken into account in which 11A

   1

11

1

1







  T
kk

T
kkkkkk

T
kk HHHA  . Thus, we now have:  
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111 
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   , (5.19) 

or it can be written as: 
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1111 
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By using the small rank adjustment (Horn & Johnson, 1985), if we have the 

following matrix equation:
 

XRYAA 01  , it will result in 
1

0
111

0
1

0
1

0
1

1 YA)RXX(YAAAA   . 

Thus, from equation (5.20) we obtain: 
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where kkkk Hq 1 , and T
kk

T
k

T
k Hq 1  .   

Substituting (5.15) into (5.12), at the k -th iteration, the RBF network output over 

the training set is given by: 

 DHAWF kkk
T

kk
T

kk  1 . (5.22) 

Now, we can estimate the sum of squared error k  at the k -th iteration by utilising 

equation (5.10), as given by: 
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where  

 kkk
T

knk HAIQ  1 . (5.24) 

is a projection matrix, nI  is the identity matrix with the dimension of nn  and tr  is 

the trace function which computes the sum of the elements in the main diagonal. 

Using equation (5.21), matrix kQ  can be re-written as follows: 
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Substituting matrix kΦ , T
kΦ  and 1 kk HH , where 11A  is used for 1

kA , yields: 
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knk HAIQ , in which the denominator part (i.e. 

kkkk
T

k HQHλ  1 ) always returns a scalar number. Thus, by implementing 

equation (5.23) the error can be calculated as follows: 
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This also means that we can minimise the error by maximising kM  given by: 
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Accordingly, the selection of the network centre can be made by taking the vector 

number from a finite set (i.e. iterated evaluation of different vectors k ) of possible 

centres corresponding to the maximum value of kM . However, this procedure may 

again cause the ill-computation which hinders the advantage of RBFNN training. To 

avoid the iteration process as well as the over-fitting problem, one solution is to 

choose a smaller number of centres than the dimension of the input space 

(Broomhead & Lowe, 1988). Thus, we suggest that the set of possible centres can be 

assessed by the Gram matrix P, as appeared in Demuth et al. (2009) in which it is a 

symmetrical and orthogonal matrix of all the possible radial basis outputs of given 

training data for the case of exact interpolation, as given in equation (4.21). Thus 

equation (5.28) can be rewritten as: 
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, (5.29) 

where ).(sum  returns the sum of the values for each matrix column, and K is an 

array of all ones (i.e. 1) with k1  dimension. In equation (5.31), the kM  value is 

dependent of the projection matrix 1kQ , and the chosen regularisation parameter  , 

whereas the P matrix is fixed for each loop of the additional hidden neuron. 

However, the multiplications with the orthogonal matrix P in the denominator will 

require a huge amount of memory for computation. Thus, equation (5.29) can be re-

written as follows to give the same meaning, but faster calculation: 
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5.3. Training the network output weights 

Once a centre has been selected, the hidden layer output (i.e. the RBF output) for 

each neuron can now be computed, e.g. for Gaussian based RBF, 

)2/exp(
2

kkk cx   . Basically, the output weights at the k -th hidden neuron 

can be trained directly using equation (5.15). It should be remembered that we have 

introduced the least square weighting factors kH , which is included in the pseudo 

inverse of matrix kA  in (5.15), hence the network output needs to be re-scaled back 

to certain gains. To do this systematically and to follow a standard configuration of 

the neural networks layout, a generalised method (Haykin, 1994) is implemented 

here. 

Basically, generalisation is a simplified version of the regularisation strategy for 

RBFNN by giving the penalty values via the bias weights. The framework of the 

generalisation network for a regularised radial-basis function neural network has 

been discussed in Chapter 2 as shown in Fig. 2.9. Therein, one of the linear weights 

in the output layer of the network is set equal to a bias and the associated node 0 , is 

treated as a constant equal to +1. The bias is added to compensate for the difference 

between the average value over the data set of basis functions and the corresponding 

values of the targets. By applying this bias, the network weights formula in (5.15) 

becomes: 
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biasnet

kkk
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kkkk
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

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where  

  TT
kk  ,'  (5.32) 

in which   is an array of values (i.e. 1) with 1n  dimension, and kI  is an identity 

matrix with )1()1(  NN  dimension, which produces a series of network weights 

that correspond to the hidden neurons and bias weights that correspond to the 
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independent neuron (i.e. a bias node). The network output in (5.11) is now 

mathematically represented as: 

   mjwHcwfy j

N

k
kkkkkjkj ,...2,1with,,,, x,)x(ˆ 00

1

(i)  


 . (5.33) 

5.4. Selection of H, λ and σ parameters 

5.4.1. Estimation of the H parameter 

In general, the least squares weighting coefficient ih  assigned to the i -th 

observation, will be a function of the variance of this observation, denoted 2 . If 

information on the noise structure of the measurements d  in equation (5.23) is 

available, a straightforward weighting scheme is to take the inverse of dC , the error 

covariance for d , but other schemes such as iterative method could also be used. 

Hence, for a coloured noise, the i -th diagonal component weight factor of d  is 

defined as:  

   121   didi Ch  . (5.34) 

In this work, for simplicity, we only consider the covariance of the white noise in 

which it has a common variance in the components of d , thus the least squares 

weight matrix is defined as: 

   nd IH
12 

  . (5.35) 

5.4.2. Optimal selection of λ using cross-validation  

In the Gaussian based radial basis function, the spread k  of the k -th basis function 

is typically identical for all input dimensions. The performance of the regularised 

radial basis function neural network is strongly dependent on the suitable choice of 

the spread parameter k , and the proper selection of the regularisation parameter  , 

for a given spread parameter. 
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Several approaches have been presented in the literature to compute the optimal 

value of the regularisation parameter * , including generalised cross-validation, 

GCV (Golub et al., 1979), leave-one-out cross-validation, LOOCV (Golub et al., 

1996; Shahsavand, 2009), unbiased predictive risk estimator, UPRE (Vogel, 2002), 

and 2  Newton based algorithm (Mead & Renaut, 2009). Here, a modified 

generalised cross-validation to incorporate the least squares weighting factors will 

be used. 

The equation in (5.22) can be rewritten as:  

 DSF Hk , , (5.36) 

where kkk
T

kH HAS  1
, . The GCV formula in the context of the RBFNN 

problem in this work, which is incorporated by the LS weighting factors, is given as: 
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where iih  is the least squares weighting factor at the i -th observation. Equation 

(5.37) can be represented in matrix form as: 
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 (5.38) 

where the matrix kQ  is similar to that defined in equation (5.24). With a few steps of 

derivation as follows, this equation can finally be simplified as in equation (5.39): 
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By using a set of possible   values, i.e.   0maxmin    , the optimal *  is the 

minimum point of ),( HGCV .  

The process can be executed at each k-th step, however, the computation will 

becomes very tedious if higher decimal values of   are considered. Thus, the Gram 

matrix P  is used to replace the matrix k  in equation (5.24) in which the average 

  is approximated from the exact interpolation case. 

5.4.3. Estimation of the spread parameter, σ 

The spread parameter , in the RBFNN is often set manually by trial and error. 

Thus, it may be interesting to tune for some optimal value of . It can either be 

chosen to be the same for all nodes (i.e. isotropic spread) or it can be different from 

each other. It has been suggested that in the determination of , for example, the 

common width can be a set of some multiple of average distance between the basis 

centres (Orr, 1996; Howlett & Jain, 2001). The variance may also be adjusted 

optimally using iteration methods (Ghosh et al., 1992; Wahid et al., 2010b), but it 

often involves an expensive computation. Moreover, few problems like multiple 

minima, minimum local point and no convergence point may arise, that may lead to 

wrong decisions on the selected  values. For many situations, the first technique 
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(i.e. common variance) leads to little loss in the quality of the final solution as 

compared to the optimal solution, and if chosen properly it may provide better 

performance.  

In this work, we prefer to use the first technique, i.e. a common (or an isotropic) 

spread parameter for the network. It is suggested that the range of the possible 

spread parameter lies between the negative and the positive values of the standard 

deviation of its average distance between the basis centres, given by: 

   0:  distd  . (5.40) 

where d  is the mean of the distance between input points and dist  is the one-

standard deviation from the mean value. If the input vector 
nli )(x , where l is the 

input number and n is the number of dataset sample, the distance function between 

each data point can take form as follows: 

 )x,x()xx,( TT distd  . (5.41) 

where dist is an Euclidean distance function (available in Matlab) which produces 

an orthogonal matrix of distance values at upper and lower triangular, and diagonal 

values of zero. Next, the average and the standard deviation values of (5.41) are 

computed, and the spread parameter range can be obtained from (5.40). Now a trial 

and error may be used, however, we have narrow down the complexity of the 

problem from infinity values to a possible range of  values. Note that the selected 

value of  must not only goodly fit the trial data, but the constructed model from 

using this value must also capable to avoid the over-fitting when using the validation 

or testing data, especially when a higher accuracy (i.e. lower error goal value) is set. 

Thus, this selection may reach an optimal point if a validation test can be made 

available in the learning loop via the cross-validation strategy. 

5.5. Implementation of the proposed algorithm 

The overall proposed network scheme is depicted in Fig. 5.1, wherein the network 

centre, kc  at the k -th loop is a function of kM . The implementation of the suggested 

algorithms are summarised in following steps: 
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For the first node (k=1) 

1. Set 00  , 1kQ  as the identity matrix with nn  dimension, and find the 

suitable value of spread parameter  ., using equations (5.40) and (5.41). 

2. Compute the H  matrix using equation (5.35). 

3. Compute kM  from equation (5.30), and find the maximum value and its vector 

number. 

4. Select the centre from the training dataset n(i)x  for the  chosen vector 

number in step (3). 

5. Compute the radial basis output k , using the selected centre. 

6. Set the possible values of  , and minimise the GCV formula in (5.39) to find 

the optimal value of the generalisation parameter * . 

7. Calculate the new value of kQ  using equation (5.24), which will be used in the 

next iteration. 

8. Determine the network output weight kW , using  regularised least squares 

incorporated by the generalisation network (using ‘\’ operation for faster linear 

inversion process in Matlab software). 

9. Compute the mean square error (MSE) and terminate the process if the MSE is 

less than the prescribed goal. 

 

For the following nodes (k>1) 

1. Set the matrix 1kQ  as kQ  value which was computed in the previous node. 

2. Repeat steps (2) - (9) when k = 1, excluding the step in number (6). 

The Matlab codes implementation is listed in the Appendix C-1. 
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5.6. Chapter conclusion 

A new method for training the radial basis function neural network (RBFNN) 

training has been successfully developed, which features the selected RBFNN 

centres using the regularised forward selection with weighted least squares, a 

generalised and regularised method for training the network weights, a reliable 

approximation method to define the least squares weighting factor, and an optimal 

method to tune the regularisation parameter using a generalised cross-validation 

approach. The effectiveness of the proposed method will be evaluated by application 

in air pollutant estimation, which will be covered in Chapter 8. Accordingly, the 

performance of several criteria including the performance indexes, the number of 

hidden neurons and the simulation time will be compared with other available 

training methods for RBFNN, such as the orthogonal least squares (OLS) and the 

forward selection (FS).   
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Chapter 6                                                            

COLLECTION METHODS FOR SYDNEY 

BASIN AIR QUALITY DATA 

6.1. Introduction 

To further assess the effectiveness of the proposed methodologies described in the 

previous chapters, they will be applied in several practical problems mainly related 

to air pollutant estimations. The methods are expected to provide alternative 

approaches to the current practices used by the environment regulatory agencies, and 

furthermore the incorporation of the proposed techniques with the technique 

typically used may offer improved outcomes.  

In this work, numerous data sets will be used from three different sources: 

chronological data sets which include the air pollutant concentrations and 

meteorological data, which are collected at the monitoring stations at various sites 

scattered in the applied domain; the pollutant emissions inventory data which is 

typically managed by the local regulatory authorities (e.g. Department of 

Environment in New South Wales); and input-output data that could be extracted 

from the simulations of deterministic air quality model(s).  

Basically, these three different stage approaches are the main keys used by the 

authorities in conducting air quality assessment. Each has its own usefulness to the 

policy maker in understanding the nature of air pollution attributable to various 

sources in the urban setting, in terms of both temporal and spatial aspects. The brief 

description of each type of data source will be discussed in this chapter to give a 

better understanding of how the data is collected and used in the several 

applications, which will be covered in the next following chapters.  
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6.2. The application domain: Sydney basin 

6.2.1. New South Wales Greater Metropolitan Region  

The Office of Environment and Heritage (OEH), New South Wales operates a 

comprehensive air quality monitoring network throughout the state, focused on the 

three main population centres: greater Sydney, the Lower Hunter (north of Sydney) 

and the Illawarra (south of Sydney), known collectively as the Greater Metropolitan 

Region (GMR), as depicted in Fig. 6.1. As a result of the Metropolitan Air Quality 

Study (MAQS), which was initiated in 1992, the number of monitoring stations was 

significantly increased as well as the number of air pollutants and meteorological 

parameters to be measured (DECC, 2007a).  

 
Fig. 6.1 Greater Metropolitan Region in New South Wales (NSW), Australia and its monitoring sites. 

(Map source: DECC, 2007a) 
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Sydney basin 

This work will focus on the Sydney basin as the applied domain. The Sydney basin 

is the largest population centre in New South Wales (NSW), and its basin is bounded 

by elevated terrain to the north, west and south. Generally, the Sydney basin area 

can be divided into four main regions; East, North West, West and South West 

based on the geographical population settlement pattern. The basin currently has 14 

monitoring stations scattered throughout the region, as depicted in Fig. 6.1.  

The meteorology in the basin follows a general pattern. In the morning after sunrise, 

an onshore sea breeze flows from the east and north-east across Sydney toward the 

south-west causing an elevated level of ozone in the south-west and west of Sydney 

in the afternoon (Hart et al. 2006). In the evening and night-time, a drainage flow of 

cold air from the mountains in the west is directed to the coastal east and from the 

south-west to the north. It has been known that the chemical transport of nitrogen 

oxides (NOx) and ozone also occur between the three regions, from the lower Hunter 

to the Sydney basin and from the Sydney basin to the Illawarra. 

Lower Hunter and Illawarra basin 

The lower Hunter basin has been determined as the second most populated region in 

NSW. The lower Hunter region is defined as that part of the Hunter River valley 

where it opens out to the coastal plain. It is bounded to the east by the coast and 

inland by higher terrain. It is separated from the upper Hunter River valley by a rise 

in the valley floor north-west of Maitland.  

The Illawarra is the next largest population centre in NSW. The region is located on 

a thin coastal strip with a steep escarpment to the west. The width of the coastal strip 

increases from north to south until the strip terminates in a ridge of hills running 

from the escarpment to the sea. As the significant topographic feature, the 

escarpment has a major influence on meteorology and hence on air quality in the 

region. The Illawarra region lies only 80 km to the south of the Sydney region, and 

pollutants can be transported between the two, particularly from Sydney to the 

Illawarra. Most ozone events in the Illawarra occur as a result of local emissions 

combined with pollution transported from other regions. 
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The measurement stations in the Lower Hunter and the Illawarra regions are shown 

in Fig. 6.1. The details about the exact location of each monitoring station in New 

South Wales for the three main regions, are listed in Appendix D-1. 

6.3. Data sets from the measurements 

6.3.1. Air pollutants measurement 

All the air pollutants as well as the meteorological data measurements are effected at 

the monitoring stations scattered in the region (see an example of a station in Fig. 

2.1). Each monitoring station is designed according to a standard set-up similar to 

that shown in Fig. 6.2. Air quality monitoring devices are housed in or on a portable 

shed generally of dimensions 4.8m × 2.4m. All of the monitoring stations are made 

of aluminium cladding over a steel frame, and have one or two doors, an air 

conditioner and no windows. They are insulated throughout with 50mm rigid foam. 

 

 
(a) (b) 

(c) (d) (e) 

Fig. 6.2 (a) Typical monitoring station layout; (b) some air pollutants analysers in the instrument 
rack; (c) TEOM, devices for measuring fine particles; (d) internal view of TEOM device; and                

(e) data acquisition software for collecting the measurements data. (Photos courtesy of OEH, NSW) 

Door 

NEPH 
(Nephelometer) 

Instrument 
rack 
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Roof equipment 
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HVS: High volume sampler

TEOM: Tapered element oscillating microbalance



6.  Collection Methods for Sydney Basin Air Quality Data 116 
 

 
 

The five pollutants to be measured under the 1998 national standards in Australia 

(i.e. National Environment Protection Measure – NEPM) are ozone, carbon 

monoxide, sulphur dioxide, nitrogen dioxide and air particles. These pollutants are 

generally measured in part per billion (ppb) units on an hourly basis. The following 

section briefly outlines the sampling methods used by the Environment Protection 

Agencies (EPA) and industry in their monitoring programs, being based on the 

Australian Standards for ambient air monitoring. However, for the purpose of this 

work, only two types of pollutant measurements will be described: ozone and oxides 

of nitrogen. The instrumentation used for other air pollutants can be found in 

Appendix D-2. 

6.3.2. Instrumentation and its operation 

Ozone (O3) measurement 

The measurement technique for ozone is based on the ultraviolet spectroscopy 

principle. In principle, ozone (O3) molecules absorb UV light at a wavelength of 254 

nm, and the degree to which the UV light is absorbed is directly related to the ozone 

concentration as described by the Beer-Lambert Law given as follows: 

 KLC

o

e
I

I  , (6.1) 

where: 

 K  = molecular absorption coefficient (in cm-1); 

 L  = length of cell (in cm); 

 C  = ozone concentration (in parts per million, ppm); 

 I   = UV light intensity of sample with ozone (sample gas); 

 Io = UV light intensity of sample without ozone (reference gas). 

For general operation, first, sample air is drawn into a cell where a beam of 

ultraviolet light is passed through it to an ultraviolet detector. Some of the light is 

absorbed by ozone in the sample, the amount being proportional to the number of 

molecules present. The decrease in intensity between the transmitted light and that 

of the source is used to determine the ozone concentration in the sample (AS 

3580.6.1, 2011). There are several approved ozone analysers operating with the 
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same principle used by the Australian EPA, such as Monitor Labs Model 8810, 

Thermo Environmental Instruments Model TE49C, and Ecotech Ozone Monitor 

Model 9810 which were recently used at some sites, and shown in Fig. 6.3.  

 

   

(a) (b) (c) 

Fig. 6.3 Examples of ozone analyser models used by EPA: (a) ML8810, (b) TE49C, and (c) EC9810. 

An example of the model flow schematic for TE49C is illustrated in Fig. 6.4 (TEC, 

2003). As referred to in the diagram, the sample is split into two gas streams. One 

gas stream flows through an ozone scrubber to become the reference gas (Io). The 

reference gas then flows to the reference solenoid valve. The sample gas (I) flows 

directly to the sample solenoid valve. The solenoid valves alternate the reference and 

sample gas streams between cells A and B every 10 seconds. When cell A contains 

reference gas, cell B contains sample gas and vice versa.  

 
Fig. 6.4 Ozone analyser flow schematic for model TE49C. 
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The UV light intensities of each cell are measured by detectors A and B. When the 

solenoid valves switch the reference and sample gas streams to opposite cells, the 

light intensities are ignored for several seconds to allow the cells to be flushed. The 

device calculates the averaged ozone concentrations as measured by both detectors.  

Oxides of nitrogen (NO, NO2 and NOx) measurement 

The measurement technique of oxides of nitrogen is based on the 

chemiluminescence principle. According to this principle, the nitric oxide (NO) and 

ozone (O3) react to produce a characteristic luminescence with the intensity linearly 

proportional to the NO concentration. Infrared light emission results when 

electronically excited nitrogen dioxide (NO2) molecules decay to lower energy 

states, specifically for the following reaction: 

 hυONOONO 223  . (6.2) 

Thermo Environmental Instruments Model TE42C and Ecotech Model 9841 are 

examples of approved oxides of nitrogen analysers used by the Australian EPA. For 

operation, sample air is drawn into a reaction chamber where NO in the sample 

reacts with a stream of O3 produced by an ultraviolet lamp in dried air. The reaction 

produces light in the wavelength range 600 nm to 3000 nm. The light is detected by 

a photomultiplier tube (PMT), where the intensity is proportional to the 

concentration of NO. The concentration of total nitrogen oxides (NOx) is measured 

in a separate sample stream. They are first reduced to NO oxide using a selective 

converter and its concentration determined as above. The concentration of nitrogen 

dioxide NO2 reported is assumed to be the difference between NOx and NO (AS 

3580.5.1, 2011). A model flow schematic for TE42C is illustrated in Fig. 6.5 (TEC, 

2004). 
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Fig. 6.5 Oxides of nitrogen analyser flow schematic for model TE42C. 

6.3.3. Calibration of instrumentation 

All measurement data is carefully recorded at the monitoring stations and post-

processed to be trusted as reliable data sets. Hence, all instruments for capturing 

particulate air samples and gas analyser equipment are subject to frequent calibration 

and consistency checks. Generally, two types of calibration are carried out, as 

follows: 

1. Online calibration: Recently, most of the gas analyser instruments were 

equipped with the capability of undertaking the auto-calibration process, 

mainly to correct the measured pollutant data, for example using ‘background 

corrections’. Typically, zero calibration and full scale calibration are 

automatically performed every day in the early morning following midnight.   

The background correction is determined during zero calibration. The 

pollutant background is the amount of signal read by the analyser while 

sampling zero air. Before the analyser sets the pollutant reading to zero, it 

stores the value as the air pollutant background correction. 

2. Offline calibration: This is a more accurate approach to calibration where the 

analyser itself is calibrated by comparing it with a standard, typically using a 
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special calibration instrument (see e.g. Fig. 6.6), and normally done offline in 

the designated calibration room.  

Some gas analyser equipment can be used as a self-calibrator with few 

modifications from its standard operation. For example, the Model TE49C can 

be modified to operate as a calibration photometer for ozone by removing the 

ozone scrubber (as in Fig. 6.4) and plumbing zero air into the common port of 

the ozone-free solenoid valve (Model 49C Instruction Manual, 2004). 

(a) (b) (c) 

Fig. 6.6 (a) devices to produce pollutants gas standards; (b) a device to keep the ozone gas standard; 
(c) a multi-gas calibrator used in the instrument calibration. (Photos courtesy of OEH, NSW) 

6.4. Data sets from the emissions inventory database 

6.4.1. Air emissions inventory in New South Wales 

The Office of Environment and Heritage (OEH) (formerly known as Department of 

Environment and Climate Change NSW – DECC) has conducted the air emissions 

inventory project, in which the study area covers 57,330 km2 of the Greater 

Metropolitan Region (GMR) in New South Wales (NSW). It has been determined 

that approximately 76% of the NSW population resides in the GMR. This project 

commenced in 2004 and took nearly three years to complete. 

The air emissions inventory includes emissions from biogenic (i.e. natural) and 

anthropogenic (i.e. human derived) sources, the details of which were described in 

Chapter 2 (section 2.2.1.2). During the inventory project, a number of surveys were 

conducted to obtain activity data from industry groups, government departments and 

other service providers. Air emissions have been estimated by combining activity 
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data with emission factors which are dependent on industrial and commercial 

sources (DECC, 2007d). 

The emissions have been assigned to map coordinates for each 1 km by 1 km grid 

cell for biogenic, domestic-commercial, off-road mobile and on-road mobile area 

sources. Emissions are then calculated for months, weekdays/weekend days and 

hours using factors derived from the activity data. The base year of the inventory 

represents activities that took place in the 2003 calendar year and emission 

projection factors have been developed for every year from 2004 to 2031 using the 

methodologies published by US-EPA, which is given in the following equation 

(DECC, 2008): 

 nj,j,2003i,nj,i, PFEE  , (6.3) 

where: 

nj,i,E    = Emission of substance i from source type j for year n (tonnes/year), 

j,2003i,E = Emission of substance i from source type j for the base year 2003 

(tonnes/year), and  

nj,PF    = Emission projection factor for source type j for year n. 

6.4.2. Air emissions inventory database system 

The Emissions Data Management System (EDMS v1.0) is the air emissions 

inventory database that links to individual source-specific databases comprising all 

the data necessary to service policy and technical related queries (DECC, 2008). The 

EDMS uses the Microsoft®
 SQL Server 2005™ relational database management 

system which is a comprehensive, integrated data management and analysis software 

package. The splash screen of the database system is shown in Fig. 6.7 (a).  

Generally, the EDMS has the same function as other inventory systems in other 

countries providing a database for air quality models, to provide emissions 

modelling to test policy scenarios, and to chart and report emissions by air pollutant, 

by source or region. The main form of the EDMS, where users can choose which 

type of functions they would like to perform, is shown in Fig. 6.7 (b). 
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(a) 
 

(b) 

Fig. 6.7 (a) EDMS splash screen; (b) the main form where a user can choose the function to be 
performed. 

In this work, the EDMS is mainly used to export the emissions data to the air quality 

modelling software. It is quite tedious to directly use the emissions data from EDMS 

because this system will normally generate the separate data, based on the type of 

emission sources which are the point source, area source and motor vehicle source, 

rather than the total summation of the grid data. Therefore, a further pre-processing 

step is necessary to produce the hourly emissions data by grid coordinates, where 

this task could be performed by the air quality models. An example of the EDMS 

output for the area source (i.e. with the output filename as ‘aems.in’) is depicted in 

Fig. 6.8. 

 
Fig. 6.8 EDMS output file structure for a TAPM-CTM area source emission file. 
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The EDMS is capable of producing a variety of emission input files for a selection 

of air quality models, including the California Puff Transport Model (CALPUFF), 

The Air Pollution Model (TAPM), CIT Airshed Photochemical Model, and 

Chemical Transport Model (CTM). For this work, the CTM feature is used to 

generate emissions input files for the TAPM-CTM model, a photochemical air 

quality model that is developed in Australia and used widely by the policy makers. 

A layout for this feature is illustrated in Fig. 6.9 where some information needs to be 

provided before generating the files such as grid dimensions that are to be modelled, 

a day to model, emission files that are to be generated, and the photochemical 

scheme to be used for the outputs. Two photochemical schemes can be chosen in the 

system: the Lurmann, Carter and Coyner (LCC) mechanism, and the Carbon Bond 

IV (CBIV) mechanism (Bawden et al., 2004). 

Fig. 6.9 Creating emissions files for TAPM-CTM model. 



6.  Collection Methods for Sydney Basin Air Quality Data 124 
 

 
 

6.5. Data sets from the air quality model: TAPM–CTM 

6.5.1. Overview of TAPM-CTM model 

The Air Pollution Model with Chemical Transport Model (TAPM–CTM) is a three-

dimensional prognostic meteorological and air pollution model, which has been 

developed since 1997 by the Commonwealth Scientific and Industrial Research 

Organization (CSIRO), in Australia, for use in air quality studies on a local, regional 

or inter-regional scale (Hurley, 2008). It was originally developed as TAPM, using a 

Generic Reaction Set (GRS) photochemical mechanism (Azzi et al., 1992). 

Recently, a modified version of TAPM called TAPM–CTM was developed to 

include the LCC and carbon bond IV photochemical mechanism as well as the GRS 

photochemical component, and was released in 2008. The Chemical Transport 

Model (CTM) features are mostly adopted from the CIT model (McRae et al., 1992).  

Due to the limitation of the measurement data in which there are only certain points 

available in the domain, some input-output data for training the metamodel needs to 

be extracted from the TAPM-CTM simulation outputs. By doing this, a more 

generalised solution in the modelling process, using a metamodel approach, is 

expected to be achieved. More details on what parameters are necessary to be used 

from the TAPM–CTM will be discussed in Chapter 8 (metamodel application). 

Three important processes are involved in executing the complete simulation using 

the TAPM–CTM model as shown in Fig. 6.10, and briefly described as follows: 

1. The preparation of emissions data using the EDMS system (as discussed in 

the previous section). 

2. Air quality modelling using TAPM–CTM: Three main input files are used, 

which are emission files from the EDMS, topographical information of the 

terrain heights, and synoptic data which is multi-layer meteorological data in 

grid form and typically consists of temperature, wind direction and wind speed 

data. In Australia, the topographical information can be obtained from the 

Australia National Mapping Agency (AUSLIG), while the synoptic data can be 

made available from the Bureau of Meteorology in NSW. Fig. 6.11 shows the 

main graphical user interface (GUI) for TAPM–CTM software.  
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3. Visualisation of the simulation output: Air quality, emissions and 

meteorological data from TAPM–CTM can be displayed using a GUI-driven 

display system such as CTM Data Display System (CTM–DDS).  

The TAPM–CTM also involves the pre-processing stage in which the three different 

emission sources are first merged to become one emission output in the form of 

grids and hourly basis data. This type of emission data could serve as one type of 

data set for this work.  

 

Fig. 6.11 Main GUI of the TAPM software. 
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6.5.2. Data display system for the air quality model 

The CTM Data Display System (CTM–DDS) is a GUI-driven display system that is 

specially designed to view the TAPM–CTM output file (i.e. NetCDF data packet in 

*.nc format) as shown in Fig. 6.12, as well as to provide some other types of output. 

The display system may be accessed from the ‘Analyse Output’ menu of the TAPM–

CTM GUI, or alternatively by double-clicking on the relevant NetCDF file.  

CTM–DDS generates two-dimensional animations of pollutant, emissions and 

meteorological fields. The CTM–DDS can also be used to generate time series plots 

of observed and modelled meteorological and air pollutant parameters, such data 

being used to verify the performance of TAPM–CTM. In addition, the system is also 

able to generate pollutants, emissions, terrain heights and meteorological outputs in 

(*.csv) format, thus it could be used as part of the input-output data sets for this 

work, with several refinements that will be discussed later in Chapter 8. A more 

detailed explanation on how to run the TAPM–CTM model and the CTM–DDS 

software is described in Cope and Lee (2009).  

 

Fig. 6.12 Air pollutant level of NO2 at 4:00pm as displayed by CTM–DDS system. 
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6.6. Chapter conclusion 

This chapter has provided some explanations of the tools and methods for collecting 

the data sets for this work. An overview of the applied domain, the Sydney basin in 

New South Wales, Australia, was first described.  

There are three different methods used for preparing the data sets: 1) by measuring 

the air pollutants at the monitoring sites located at various locations across the 

region, using some special instruments – this would be the most accurate and 

reliable method that could be used as the reference data set, although this data is 

only valid adjacent to the monitoring sites; 2) by using the emissions data for the 

sources of pollutants from the Emission Data Management System (EDMS) – this 

type of data is useful as inputs in the modelling process; and 3) by using special air 

quality modelling software (i.e. TAPM–CTM in this work) to generate some 

important information about the input-output from its simulation of outputs – these 

data sets have the capacity to model the spatial distribution problem and could 

generate some of the information that cannot be covered by the measurement 

method, although this type of data is less accurate and necessary refinements or 

calibrations of the data need to be considered. 

From some of the explanations about the data collection methods in this chapter, it is 

expected that the following discussions in Chapters 7 and 8 may be more readily 

understood.  
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Chapter 7                                         

BACKGROUND OZONE LEVEL 

DETERMINATION IN THE SYDNEY BASIN 

7.1. Introduction 

As discussed in the literature review in Chapter 2, background ozone level (BOL), in 

the context of the photochemical smog process, is defined as the ozone level that is 

formed by purely natural processes. The concept is easily understood but the 

problem remains how to determine the BOL and distinguish between natural and 

anthropogenic effects.  

BOL is important as it sets the reference level against which anthropogenic impacts 

can be ascertained by the measured ozone level in a particular area. It provides the 

basis for human health risk assessment estimates and also determines whether policy 

expectations are realistic about the levels to which hourly average ozone 

concentrations can be lowered as a result of emission reduction requirements. Health 

risks are known to be associated with the ozone concentration in excess of the 

allowable background concentration. Furthermore, long-term exposure to 

background ozone levels can also affect plant growth (Diaz-de-Quijano et al. 2009). 

Clean pristine sites in rural or bushland areas have been cited as suitable locations to 

measure the level of background ozone. Several works of BOL determination at 

remote sites have been reviewed, however, this approach is rather unlikely to be 

implemented at all locations especially in the metropolitan area, e.g. in the Sydney 

basin, Australia. On the other hand, the determination of BOL by an air quality 

model (AQ) could cover a wider region, but is difficult to prepare. The reliability of 
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its estimation is much dependent on the correctness of the biogenic emissions data as 

the inputs of the model.  

In this work, we present several approaches for determination of the BOL, which are 

based on the ambient measurement data. The proposed methods are generic, which 

may be used to determine the background level at any part of the globe and in any 

season without relying on data obtained at remote sites. From the definition of BOL, 

this work will assess its concentration in the Sydney basin from ambient air quality 

data measured at several monitoring stations. As it has been recognised that the 

background ozone level in urban areas is changing over the years, our objective is to 

derive a temporal profile of BOL in the region. 

7.2. The night-time BOL determination 

7.2.1. Theoretical background 

The US EPA has defined Policy-Relevant Background (PRB) ozone concentrations 

used for the purposes of informing decisions about National Ambient Air Quality 

Standards, as ozone concentrations that would occur in the absence of anthropogenic 

emissions, including contributions from natural sources everywhere in the world and 

from anthropogenic sources outside continental North America (US, Canada, and 

Mexico). According to US EPA (2006), ‘contributions to PRB ozone include 

photochemical actions involving natural emissions of VOCs, NOX, and CO as well 

as the long-range transport of ozone and its precursors from outside North America 

and the stratospheric-tropospheric exchange of ozone, whereby natural sources of 

ozone precursors are mainly biogenic emissions, wildfires and lightning.  

Abiding strictly by the definition of PRB, it is difficult to determine the PRB ozone 

level by using measurements obtained at various background “pristine” sites, and 

only a chemical transport model would be suitable to estimate the range of PRB 

values. Hence, a measurement approach combined with analytical modelling 

methods may provide a more tractable way to determine the background ozone level 

(Gadner & Dorling, 2000; Vingarzan, 2004).  
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7.2.2. Methodology 

Policy relevant background ozone (PRB), as defined by US-EPA, which excludes 

ozone formation contributed from outside the continent is rather difficult, or 

impossible, to measure and can only be determined by modelling. In this work, we 

are concerned with assessing BOL in a practical way considering the night-time 

non-photochemical condition. Here, ambient air quality measurements are used to 

estimate the background ozone concentration, taking into account local site 

conditions.  

The background ozone level in a local (e.g. in the Sydney basin) or regional area is 

defined as the ozone level which would be measured if there were no ozone 

precursor anthropogenic source emissions within that area. This definition helps in 

our understanding of background ozone, its local, regional and global evaluation, 

and in the determination of its concentration and temporal profile, which can be 

useful to the policy maker. Notably, the proposed background ozone definition can 

also allow for BOL estimation by using a modelling method only or in combination 

with observations at remote clean sites. There are a number of estimated background 

ozone levels of interest, which can be calculated (one-hour daily maximum, eight-

hour daily maximum and the daily mean) using the hourly ambient air quality data at 

the stations, summer being the period of most interest during the year.  

Night-time non-photochemical background ozone is defined as the average of 

ambient measurements of hourly ozone values from night time to early morning (i.e. 

from 7.00 pm to 8.00 am the next morning), when there is no nitric oxide present for 

at least two hours consecutively (Duc et al., 2012). This prevents the reaction of 

ozone with nitric oxide (i.e. NO scavenging of ozone). This definition of night-time 

background ozone allows for excluding the photochemical process that would occur 

during daytime, in which both natural and anthropogenic sources are present. Thus, 

it includes the case of no ozone loss due to scavenging (NO=0) as if only a natural 

precursor but no anthropogenic sources were present in the local area. Here nitrogen 

oxide is assumed to be a surrogate for the presence of anthropogenic sources and 

ozone deposition loss is not accounted for. This night-time background ozone can 

generally include ozone formed from precursor emission from natural and 
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anthropogenic sources inside and outside the area. From our understanding of 

Sydney’s meteorology, residual ozone formed during the day is mostly carried off-

shore by westerly winds and drainage flow from the mountains during night-time to 

the early morning. Hence it is expected that the night-time background ozone does 

not contain much ozone formed previously in the area.  

7.2.3. Case study: Analysis of night-time BOL in Sydney  

7.2.3.1. Night-time BOL statistical results 

From the proposed night-time background ozone definition and data collected at a 

number of different monitoring sites in the Sydney region, a statistical summary of 

the background ozone concentration is given in Table 7.1, where the 1st quartile, 

median (2nd quartile), 3rd quartile and statistical mean are shown for each station. 

These stations are mostly urban sites (excepting Vineyard and Richmond, both 

located in semi-rural or suburban areas), where ozone concentration data were being 

collected over the period of 1998 to 2005. It is noted that the statistical properties of 

BOL distributions were different between regions and within regions, and that BOL 

in the East and North West of Sydney in general was higher than in the West and 

South West of Sydney. A possible reason for this is that during night-time and early 

morning, North West Sydney is downwind from the South West due to the southerly 

flow and Eastern Sydney is downwind from the easterly drainage flow from the 

mountains in the west of the Sydney basin. 

Table 7.1 Statistics of non-photochemical night-time BOL at monitoring sites in the Sydney basin. 

Region Site Period 1st Qtr. 
(ppb) 

Median 
(ppb) 

3rd Qtr. 
(ppb) 

Mean 
(ppb) 

Sydney East 
(urban) 

Woolooware 01/01/1998 to 30/08/2004 16 21 25 21 
Rozelle 01/07/1998 to 17/11/2005 13 18 22 18 
Randwick 01/01/1998 to 18/11/2005 17 21 26 21.4 
Earlwood 01/02/1998 to 17/11/2005 15 19 23 19.2 
Lindfield 01/01/1998 to 11/02/2005 12 17 22 17.2 

North West 
(semi-rural/ 
suburban) 

Vineyard 01/01/1998 to 18/11/2005 12 17 23 18 
Richmond 01/01/1998 to 17/11/2005 12 17 23 18 

South West 
(suburban) 

Bringelly 01/01/1998 to 18/11/2005 10 17 25 17.7 
Liverpool 01/01/1998 to 17/11/2005 12 19 25 18.8 

Sydney 
West 
(urban) 

Westmead 01/01/1998 to 06/08/2004 11 15 20 16 
St Marys 01/01/1998 to 18/11/2005 11 17 22 17.2 
Lidcombe 01/01/1998 to 01/05/2002 11 16 22 16.9 
Blacktown 01/07/1998 to 03/06/2004 12 16 21 17.2 
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7.2.3.2. Night-time BOL temporal trend 

In theory, excluding all anthropogenic sources in the region and Australia wide, the 

average background ozone level in Sydney should be stable with respect to time. It 

is however possible that not only the emission of precursors outside the Sydney 

region, but also global emissions outside Australia could also influence the level of 

background ozone over time. It is therefore beneficial to study the BOL change in 

the Sydney region, as derived from ozone measurements at various monitoring sites, 

in the temporal domain. 

The trend of the night-time background ozone can be found, using night-time hourly 

ozone monitoring data collected from the period 1998 to 2005 at various monitoring 

stations in the Sydney basin. To analyse all hourly ozone data, the linear regression 

method was used with ozone as an affine function of nitrogen oxide and the BOL is 

derived when the NO concentration is zero. Fig. 7.1 shows an example of the results 

for the St Marys site, a suburban site in the west of Sydney. It reveals an increasing 

trend with an increasing rate in the ozone concentration of 3.2±0.3 ppb (standard 

error is 0.3 ppb) over the 1998 to 2005 period (or 0.43±0.04 ppb per year) with a 

zero probability (p-value) obtained for the null hypothesis of the slope and an 

intercept of 15.6±0.2 ppb in the linear regression trend line, as shown in Fig. 7.1.  

Considering the level of oxidant, which consists of ozone (O3) and nitrogen dioxide 

(NO2), a similar upward trend can be observed in Fig. 7.2 with an increase of 

4.6±0.3 ppb over the same period and intercept of 20.1±0.2 ppb in the linear 

regression trend line. Again the p-value is zero for the slope, and the oxidant 

concentration exhibits an average increase of 0.66±0.04 ppb per year.  

The same trend is found in our analysis for all other sites in the Sydney basin, except 

at Lidcombe where the monitoring site was discontinued in mid-2002 and was 

replaced by a nearby station, a few streets away in Chullora. With a possible 

extension of data points up to 2005 using data collected at Chullora, a similar 

temporal profile could be obtained at Lidcombe in comparison to other stations.  
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7.2.3.3. Discussion 

As summer is the time when photochemistry is most active, only ozone data during 

that time of the year, rather than for the whole year, are used to determine BOL 

(Fiore et al., 2002). Indeed, our results show that there is not much difference in the 

trend lines from using summer data only, and using all year data. 

The Sydney background ozone trend is similar to the trend in US and Europe. 

Indeed, Jaffe and Ray (2007) have reported similarly of the ozone trend at 11 remote 

rural sites in north and western US (including Alaska), in which seven sites showed 

a statistically significant increase in ozone with an annual increase of 0.26 ppb on 

average. These sites are considered ‘pristine’ background ozone sites. Temperature 

changes can account for only part of the trend, and the authors explained these 

trends as possibly arising from increasing regional emissions, changes in the 

distribution of emissions, increasing biomass burning or increasing global 

background ozone, and especially due to rapid growth in emissions within North 

East Asia. In the same context, Simmonds et al. (2004) showed an increasing trend 

in background ozone observations at Mace Head on the west coast of Ireland from 

1987 to 2003 with an average of 0.49±0.19 ppb per year. They concluded that there 

has been at least one major perturbation of the ozone trend during the 1998–1999 

timeframe that was associated with global biomass burning coupled to an intense El 

Nino event in 1997. 

7.3. The daytime BOL determination 

7.3.1. Methodology 

It is recognised that a better way for determination of background ozone level should 

include also the daytime photochemical process when only natural sources are 

present locally. For this, the regression and extrapolation method proposed in Clapp 

and Jenkin (2001), can be used to estimate the daytime background ozone.  

The method involves the use of regression analysis to find the linear relationship 

between oxidant (including ozone and nitrogen dioxide, O3+NO2) and nitrogen 
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oxides (NOx=NO+NO2), using measurement data at various sites in the analysed 

domain. As suggested by Clapp and Jenkin (2001), this oxidant level at a given 

location is made up of NOx-independent and NOx-dependent contributions. The 

NOx-independent contribution is the intercept, which equals the daytime background 

oxidant level, while the slope of the regression line represents the NOx-dependent 

contribution or the level of primary pollution from the local sources.  

This approach of using the regression line to find the BOL is also similar to that of 

Altshuller and Lefohn (1996) but instead of using the relationship between ozone 

and peroxyacetyl nitrate (PAN) as well as ozone versus the total reactive nitrogen 

species (NOy) or ozone versus (NOy -NOx), we use the relationship between oxidant 

(ozone+nitrogen dioxide) versus NOx as outlined by Clapp and Jenkin (2001). The 

reason is that most ambient monitoring stations do not measure PAN or NOy and 

this situation is the case in the Sydney basin. 

7.3.2. Case study: Analysis of daytime BOL in Sydney  

7.3.2.1. Analysis of local background oxidant level 

The analysis has covered the eight-year period from 1998 to 2005, collected in the 

Sydney region during the photochemistry-active summer in the southern 

hemisphere. The results obtained from the measurements, observed locally or 

regionally, can be extrapolated to find the derived background ozone at the local 

sites.  

Using data for the summer 1998 period at monitoring sites in the Sydney basin, the 

plots of daylight average (O3+NO2) versus NOx are shown in Fig. 7.3 for Blacktown, 

Bringelly, St Marys and Richmond, respectively. Most of these sites are considered 

urban except for Richmond, which is located in a semi-rural area. A linear 

regression line can be fitted to the corresponding data as shown but some variance 

can be expected. This is explained by a major variation in the regional contributions 

resulting from frequent elevated levels of ozone during the summer period. Two 

separate regression lines can be fitted to the ‘ozone non-episode’ and ‘ozone 

episode’ days (Clapp and Jenkin, 2001). Here, the episode day is defined as a day 
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when one or more stations in the Sydney basin have an ozone level greater than 80 

parts per billion (ppb). The daytime background level for ‘non-episode’ and 

‘episode’ days can be obtained from the intercepts of the regression lines. 

As shown in Fig. 7.3, various slopes of the regression lines for the episode and non-

episode daytime oxidant level appear at most of the sites. If the slopes are similar, 

e.g. at Bringelly site, it is suggested that the local contribution of nitrogen oxides to 

the oxidant level (NOx-dependent) is the same at that site during episode and non-

episode days. Thus, only the daytime background level (NOx-independent) is 

different with a higher concentration value being obtained for episode days. The 

derived background oxidant levels at the four sites in the Sydney West, as presented 

in Fig. 7.3, range from 27 to 46 ppb for episode days and from 15 to 27 ppb for non-

episode days. Notably, the results are coincident with those derived by Clapp and 

Jenkin (2001), using ambient air quality data measured at rural and urban sites in the 

UK. Their background values for oxidant level for non-episode days are about 35 

ppb and about 55 ppb for episode days (Clapp and Jenkin, 2001). These values can 

be comparable with BOL of about 35 ppb of air entering the west coast of the US as 

reported by Oltmans et al. (2008).  

Contrary to the findings using ambient data measured at Sydney West sites, the 

overall analysis for East Sydney sites, such as Randwick and Rozelle, does not show 

a distinct relation between oxidant (O3 and NO2) and nitrogen oxides (NOX) and the 

scatter around the regression lines appears to be relatively large. Under the photo-

stationary assumption for photochemical reactions, a linear relationship between 

oxidant and nitrogen oxide levels is generally expected. This means the ideal photo-

stationary state of smog reaction rarely occurs in the East Sydney area. 

 

 

 

 

 
 



7.  Background Ozone Level Determination in The Sydney Basin 139 
 

 
 

F
ig. 7.3 D

aytim
e oxidant level versus N

O
X

 in S
ydney W

est in 1998: broken lines for episode, and solid lines for non-episode days. 

 



7.  Background Ozone Level Determination in The Sydney Basin 140 
 

 
 

Similar analysis was conducted with the 1999 summer data, covering three different 

regions in the Sydney basin, i.e. western, eastern and central Sydney. The daytime 

background levels of oxidant for non-episode and episode days obtained from the 

intercepts of the regression lines are summarised in Table 7.2, where the local 

oxidant contributions are illustrated by the rate of change in background oxidant 

level with respect to the NOX concentration (slope). On average, the derived 

background oxidant for the Sydney area is about 16 ppb for non-episode days and 

about 4 ppb higher for the episode days. Generally, the daytime background ozone 

level was more consistent during the non-episode days because it has a small change 

between 10 ppb to 20 ppb, while for episode days the level varies from 11 ppb to 37 

ppb. However, only a few sites such as St Marys, Bargo, Randwick and Liverpool 

display a clear relationship for the local contribution of the oxidant level (NOx-

dependent) in this year, as the slopes for regression lines between non-episode and 

episodes days are similar. This implies that the local oxidant level depended on the 

local activities and pollution emissions, thus its trends varied from site to site and 

also between episode and non-episode days. It is also noted that the NOx-dependent 

contribution apparently existed at the semi-rural inland sites such as Vineyard, 

Richmond and Bringelly (with higher value slopes). The reason was probably due to 

the long range transportation of the ozone produced due to emission from the 

industrial activities and vehicle transports in the coastal area to these inland sites. 

Table 7.2 Comparison between episode and non-episode background oxidant levels at Sydney basin 
sites in 1999. 

Region Site Non-episode  Episode  

Background level (ppb) Slope Background level (ppb) Slope 

West Blacktown 15 0.65 16 1.95 
 Bringelly 16 0.95 14 2.25 
 St Marys 21 0.40 37 0.70 
 Richmond 18 0.75 11 3.70 
 Bargo 13 0.45 32 0.60 
 Vineyard 17 1.15 17 3.10 
Eastern Randwick 16 0.40 21 0.65 
 Rozelle 10 0.40 13 0.85 
 Earlwood 13 0.35 17 0.80 
 Woolooware 16 0.50 17 1.15 
Central Lidcombe 16 0.40 23 1.25 
 Westmead 13 0.40 13 1.40 
 Liverpool 16 0.50 28 0.70 
 Lindfield 18 0.30 18 2.10 
 Average 15.5 0.54 19.8 1.51 
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Table 7.3 shows the derived results for background oxidant levels in the year 2000. 

On average, the non-episode level was 3 ppb higher than the previous year. 

However, there was not much change in the level for episode days. Furthermore, the 

local contributions also followed similar trends as in year 1999 but with slightly 

higher values. A clear oxidant-NOX relationship between episode and non-episode 

days can be observed at St Marys and Bargo (in West Sydney), Randwick, Earlwood 

and Woolooware (in East Sydney), and Liverpool (in central Sydney). Nevertheless, 

the results for these three years 1998–2000 show that the ideal photo-stationary state 

cannot be achieved at every site due to some variation in the local contributions, 

especially during episode days. 

Table 7.3 Comparison between episode and non-episode background oxidant levels at Sydney basin 
sites in 2000. 

Region Site Non-episode  Episode  

Background level (ppb) Slope Background level (ppb) Slope 

West Blacktown 18 0.65 17 1.85 
 Bringelly 16 1.45 15 2.25 
 St Marys 22 0.40 37 0.75 
 Richmond 21 0.85 10 3.80 
 Bargo 21 0.85 32 0.65 
 Vineyard 22 0.45 18 3.10 
Eastern Randwick 20 0.50 21 0.60 
 Rozelle 18 0.40 13 0.85 
 Earlwood 18 0.50 17 0.85 
 Woolooware 15 1.15 17 1.10 
Central Lidcombe 19 0.45 22 1.30 
 Westmead 16 0.60 13 1.40 
 Liverpool 21 0.35 28 0.65 
 Lindfield 19 0.40 18 2.10 
 Average 19.0 0.64 19.9 1.52 

In the subsequent five-year analysis from 2001 to 2005, we focus on the NOX-

independent contributions. From Table 7.4, the upward tendency of the daytime 

background oxidant level generally occurred for the non-episode days, except for 

Westmead and Lindfield (in the central part of Sydney). For the episode days, there 

were some sites that showed an upward trend such as Bringelly, Bargo and 

Vineyard, all located in the west of Sydney, and which are consistent with the 

findings stated above. However, the background oxidant level at some other sites 

was observed to vary irregularly for each year. 
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7.3.2.2. Background oxidant level temporal trend 

The overall trend of the background oxidant level for non-episode days at a number 

of monitoring sites in the Sydney basin for the period from 1998 to 2005 is shown in 

Fig. 7.4. Therein, an upward trend can be seen almost all sites excepting Richmond, 

where a higher value of the average concentration is observed in the beginning year 

of the period under investigation. The average trend shown in Fig. 7.4 is computed 

by considering the values from several monitoring sites in Sydney during the 

corresponding year of the period.  

 
Fig. 7.4 Daytime background oxidant trend for non-episode days at several Sydney sites from 1998 to 

2005. 

On average, the same upward trend appears for the episode days, as can be seen in 

Fig. 7.5. However, some sites show no clear trend for the daytime background levels 

of oxidant (e.g. Randwick and Rozelle in Eastern Sydney), in which the 

concentration values were fluctuating year by year. It implies that the estimation of 

BOL by using the Clapp-Jenkin (C-J) method is more suitable for analysis during 

non-episode days rather than episode days. In addition, the regression analysis is 

more comprehensive by using data of the oxidants and nitrogen oxides for the entire 

basin rather than considering the individual regression analysis for each site.  
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Fig. 7.5 Daytime background oxidant trend for episode days at several Sydney sites from 1998 to 

2005. 

7.3.2.3. Discussion 

The overall comparison for the defined background ozone level for 1998–2005 data 

(e.g. the St Marys site) using several methods is now summarised in Table 7.5. It is 

clear that methods 2 and 3 show similar levels of the night-time and daytime 

background oxidant, however, higher values occurred in 2004 and 2005 using the C-

J method. This partially confirms the validity of our proposed approach for the 

determination of background ozone level. Furthermore, the annual BOL increase (in 

ppb/yr) by using the C-J linear trend line is slightly higher whereas a consistent 

trend is observed by the proposed methods 1 and 2. As shown, an offset of about 5 

ppb exists consistently between the night-time background ozone and the night-time 

oxidant (O3+NO2) to account for the nitrogen dioxide concentration.  

On a larger scale, the upward trend may be explained as due to the increasing global 

emission of ozone precursors, especially in North Asia in recent years. The link 

between a local BOL and a continental source of emission has been suggested in 

Derwent et al. (2008), who used a global chemical transport model, STOCHEM, to 

show that NOx emission pulses emitted in one continent (e.g., North America or 

Asia) can generate surface ozone in another (e.g. Europe) via the transport of 

precursors and ozone into the troposphere and then the mixing down of the air above 
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to the surface level. On a continental scale, Oltmans et al. (2006) recorded a slight 

increase in surface ozone per year at some (but not all) locations of the world and 

they also emphasised the importance of the relative contribution of the stratosphere 

to tropospheric ozone. Notably, the upward trend reported in this paper for the local 

BOL in Sydney is also in line with the results obtained by Jaffe and Ray (2007) in 

the US and by Simmonds et al. (2004) in Europe. 

Table 7.5 Background ozone level determination (in ppb) at St Marys using several methods. 

 
Methods 1998 1999 2000 2001 2002 2003 2004 2005 

Trend 

(ppb/yr)

1 Night-time background ozone (daily 

average night-time when NO=0) 

15.6 16.0 16.5 16.9 17.3 17.8 18.2 18.6 +0.43 

2 Night-time background oxidant (daily 

average night-time when NO=0) 

20.1 20.8 21.4 22.1 22.7 23.4 24.1 24.7 +0.66 

3 Daytime background oxidant for non-

episode days (by C-J method) 

20.0 21.0 22.0 22.0 24.0 23.0 39.0 38.0 +2.63 

4 Daytime background oxidant for 

episode days (by C-J method) 

27.0 37.0 37.0 22.0 19.0 33.0 53.0 57.0 +3.27 

7.4. Quantisation methods to refine the night-time BOL 
definition 

7.4.1. A method to deal with unavailable pollutant data 

As described previously, the proposed method for the night-time BOL determination 

was based on the relationship between ozone, and nitric oxide measured data. The 

condition of ‘no nitric oxide present for at least two hours consecutively’ is rather 

difficult to be made available especially in the daytime, as the photochemical effects 

were dominant during day time. Therefore, we only considered the evening and the 

early morning ozone data (i.e. from 7.00 pm to 8.00 am the next morning) for the 

background ozone level, in which the anthropogenic effect can be minimised. 

Unfortunately, there still exists some hourly night-time data where the background 

ozone cannot be determined in which NO=0 is not present. Thus, we replaced that 

missing data by the linear regression of the previous and subsequent measured 

values at the station. This can be done by taking the local correlation of the ozone 
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concentration and the NO data, O3:NO (Wahid et al., 2010a). The intercept of the 

linear regression line from this correlation indicates the background ozone level at 

the particular missing point, which could be approximated as the ozone 

concentration when NO is equal to zero. Fig. 7.6 shows an example of the O3:NO 

correlation at an absence point, in which we take the data two hours before the 

absence point and two hours after, for that regression. This procedure was repeated 

for every missing point for the entire data. The intercept value is commonly given by 

the following equation, 

 
     

 22

2









xxn

xyxxy
b , (7.1) 

where in this case, b is the estimated background ozone level (in ppb) at the missing 

point, y  is the ozone concentration (in ppb), x  is the NO concentration (in ppb), 

and n  is the number of data used for the linear regression. 

 
Fig. 7.6 Correlation of O3 and NO to estimate the background ozone level at an absence point. 

To verify the reliability of the approach, 25 data points were sampled for pollutant 

levels at two monitoring stations in Sydney and compared, as shown in Table 7.6. 

This data is consecutive hourly data taken at a specified time (i.e. from 7.00 pm to 

8.00 am the next morning). As can be seen from the table, we are unable to obtain 

zero NO data at every hour to fulfil the proposed BOL definition. By using the 

described method as summarised in equation (7.1), the estimated BOL when zero 
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NO is not available can be calculated. Generally, the calculated BOLs show higher 

values than the measured ozone data, but interestingly, there are not many changes 

in the level when zero NO is present (shown in bold values in Table 7.6). This 

partially confirms the reliability of the proposed solution.   

Table 7.6 Comparison of pollutant concentrations and the estimated BOL at two sites in Sydney. 

Data 
no. 

Randwick site Vineyard site 

NO NOx O3 BOL NO NOx O3 BOL 

1 0.0 0.0 27.1 24.9 0.0 4.3 13.8 13.0 

2 0.0 0.0 27.5 27.0 0.0 3.4 13.3 11.8 

3 0.2 0.2 27.2 27.2 0.0 5.9 10.9 11.7 

4 0.1 1.1 26.2 26.9 1.1 9.0 7.2 10.7 

5 0.5 2.5 25.7 26.1 5.8 15.0 8.5 14.9 

6 2.0 4.5 25.4 25.9 5.9 14.9 12.5 18.7 

7 0.0 2.6 25.0 25.6 0.0 2.4 24.5 22.2 

8 0.0 1.8 26.5 25.6 0.0 4.0 20.9 20.0 

9 0.0 2.6 25.3 25.6 0.0 3.7 21.1 20.7 

10 0.0 2.3 25.4 24.4 0.5 10.4 12.3 17.2 

11 1.0 9.4 17.7 20.5 0.2 12.2 8.6 12.6 

12 0.6 13.5 6.7 18.6 2.3 19.0 2.3 9.0 

13 5.5 22.6 1.2 11.3 9.2 25.2 0.7 6.4 

14 5.3 21.8 1.0 3.3 8.6 23.6 0.3 2.4 

15 10.6 23.6 0.8 0.9 11.2 24.7 0.4 0.1 

16 27.9 41.9 1.3 -0.7 13.6 25.8 0.3 -0.5 

17 65.2 79.8 1.9 8.8 25.0 36.9 1.0 0.2 

18 127.9 145.5 11.6 17.2 41.8 57.3 2.5 15.5 

19 4.0 7.5 25.0 22.3 25.4 41.3 7.8 20.5 

20 0.2 3.4 23.9 24.1 0.0 3.6 22.7 20.1 

21 0.0 3.5 23.4 24.0 0.0 3.8 20.8 18.8 

22 0.0 2.5 23.9 24.3 0.0 5.7 17.2 17.4 

23 0.0 1.7 24.9 24.3 0.3 7.5 14.4 14.9 

24 0.0 1.3 25.1 24.7 0.0 9.8 9.0 11.8 

25 0.3 2.0 24.2 24.6 0.0 7.3 12.5 10.9 

* Note: All concentrations in part per billion (ppb) units. 

7.4.2. Night-time BOL based on O3-NOx relationship 

In Duc et al. (2012), from the ambient measurement data, the stipulation of no 

nitrogen dioxide present, that is for at least two hours consecutively to ensure no 

ozone reaction with nitrogen oxides, is rather unlikely in an urban area. As the zero 

concentrations of nitric oxide and nitrogen dioxide (i.e. [NO]=0, [NO2]=0) are 
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difficult to obtain via measurements, it would be hard to determine accurately the 

non-photochemical night-time BOL. Motivated by this idea, we will refine the 

definition by Duc et al. (2012) to be more generic, such that it could be used 

globally without the presence of zero NO or NO2 data, by incorporating the idea of 

Clapp and Jenkin (2001). 

7.4.2.1. Methodology 

Fig. 7.7 shows the linear relationships of the mixing ratio of NO+NO2+O3 with NOx 

during night-time by using the regression analysis. From the idea proposed by Clapp 

and Jenkin (2001), the NOx–independent and NOx–dependent contribution appears 

in the plot. The linear equation is given as follows: 

     cm  xx3 NONOO , (7.2) 

where m is the slope value which depends on the NOx local contribution and c is the 

intercept value. At the intercept point, [NOx]=0, we can consider this intercept as the 

average daily non-photochemical night-time BOL because we only use the night-

time data to develop the regression profile which predominantly excludes the 

photochemical effect. The variation of hourly BOL is much dependent on the NOx 

concentration from local anthropogenic contributions that still exist from the 

daytime.  

 
Fig. 7.7 Daily average of non-photochemical night-time BOL shown by intercept of the linear 

regression line. 
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To simplify the procedure, we can also get the daily BOL value by plotting the 

oxidant profile against NOx data and finding the intercept value from the regression 

analysis, as depicted in Fig. 7.8. Next, the hourly BOL can be determined by 

extrapolating the main curve from the daily average trend to the respective hourly 

data and getting their intercept values, as illustrated therein. The results for the 

application of the proposed methodology are as appeared in Wahid et al. (2011). 

 
Fig. 7.8 Hourly average of non-photochemical night-time BOL shown by the intercept of the dashed 

lines. 

7.4.2.2. Validity of the proposed method 

To verify the proposed method for BOL determination, we test the consistency with 

several techniques using monitoring site data. First, we try to determine the BOL 

based on daily mean ozone concentration data collected during summer 2003 at a 

semi-pristine site in Bargo located in the south-west of Sydney which may be 

considered as a clean site. Fig. 7.9 shows the difference of the BOL obtained from 

the proposed method and the mean 24-hour ozone concentration (i.e. including the 

daytime ozone) measured for about one month. As can be seen, the levels are similar 

on most of the evaluated days. Some differences exist on the event days, which are 

expected due to the site being not a completely clean site. We assume that some high 

ozone concentration during the daytime is also affected by the photochemical ozone 

which is transported to this area instead of its natural processes. The average 
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7.4.3. A generic method to determine the duration time 
for night-time BOL 

Duc et al. (2012) used ambient measurements to estimate the non-photochemical 

BOL by taking the mean value of night-time and early morning hourly ozone 

concentrations (i.e. from 7.00 pm to 8.00 am the next morning), when nitric oxide 

(NO) is empirically considered as being absent, assuming the photochemical 

processes occur only during daytime. However, the duration time from the definition 

is too specific and depending on different locations as well as seasons. The aim of 

this work is to estimate the start- and end-time of a day period in which the ozone 

concentration can be used for the determination of BOL. The suggested method can 

be used to determine the background level at any part of the globe and in any season 

without relying on data obtained at remote sites (Wahid et al., 2011). 

7.4.3.1. Methodology 

For the case study, the investigation is based on the ambient measurement data 

collected at various monitoring stations across the Sydney basin in Australia. By 

analysing the diurnal distribution of the ozone concentration (O3, in ppb), nitrogen 

oxide concentration (NOx=NO+NO2, in ppb) and hourly temperature (in °C), we 

found a pattern which can be illustrated in Fig. 7.11. The figure shows the mixing 

ratio of O3 and NOx concentrations against the hourly time at the Bringelly station, 

located in the West of Sydney by using two months’ data in summer 2003. Two 

profiles representing each pollutant are plotted by using a higher-order polynomial 

line via the least square values for every hour. From the figure, we can see that the 

ozone starts to form in the morning and will increase with temperature. During that 

time, the NOx concentration decreases, as contributing to the ozone formulation, and 

will rise again in the evening. It is suggested the two intersections of O3 and NOx 

concentration profiles in the morning and evening are the limits in the day period to 

be used for the determination of the non-photochemical night-time BOL. This is 

meant to exclude the photochemical part contributing to the ozone concentration, 

present during the daytime due to photochemical reactions, which is mainly caused 

by anthropogenic emissions.  
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Fig. 7.11 Diurnal distributions of O3 and NOx at the Bringelly site during summer 2003. 

The patterns and the corresponding intersection points seem to be different for every 

site and season. Fig. 7.12 shows the pollutants’ mixing ratio during the winter 

season at the same site, wherein the period for the ozone production appears to be 

shorter during daytime. Thus the time interval to be considered for BOL in winter is 

longer than in other seasons.  

 
Fig. 7.12 Diurnal distributions of O3 and NOx at the Bringelly site during winter 2003. 
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For the purposes of generalisation, we could repeat the same method by considering 

data from every site in the region to obtain the average points. The start- and end-

times by using the above method at various sites in Sydney are listed in Table 7.7. 

From here, the BOL definition for the Sydney basin can be determined by 

considering ozone concentration data from 9.00 pm to 8.00 am the next morning (i.e. 

as summer is the period of interest). It shows that the start-time begins later than that 

specified by the empirical definition (Duc et al., 2012), i.e. 7.00 pm. 

Table 7.7 The suggested start (evening time) and end (next morning time) to determine the non-
photochemical night-time BOL. 

Site Start time End time Site Start time End time 

Bargo 9.00 pm 8.00 am Randwick 7.00 pm 7.00 am 
Bringelly 10.00 pm 8.00 am Richmond 10.00 pm 7.00 am 
Earlwood 8.00 pm 10.00 am Rozelle 9.00 pm 9.00 am 
Liverpool 8.00 pm 11.00 am St Marys 8.00 pm 8.00 am 
Oakdale 10.00 pm 7.00 am Vineyard 10.00 pm 8.00 am 

Average for Sydney basin 9.00 pm 8.00 am    

Hence, we can form a generic function for the period of interest for BOL definition, 

which probably can be used globally at various geographical locations and in 

different seasons, as given in the following equation: 

  )'O(),'NO(' 32x1 ffintervalt  , (7.3) 

where interval is the function to find the two intersection points of the higher order 

polynomial lines of 1f  and 2f , NOx’ is the mixing ratio of the NOx component, and 

O3’ is the mixing ratio of the O3 component for the season under consideration. 

7.5. Chapter conclusion 

This chapter has presented some refinements of the BOL definition and presented 

measurement-based methods to determine the night-time and daytime background 

ozone levels. The night-time BOL is defined as the average of ambient 

measurements of hourly ozone values from night-time to early morning when nitric 

oxide (NO) is not present for at least two hours consecutively. Ambient air quality 

data collected at monitoring sites in the Sydney basin is used to derive the local BOL 

and to investigate the BOL trend over the years. The night-time BOL results have 
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been compared with a method to estimate the background oxidant concentration 

introduced by Clapp and Jenkin (2001).  

The night-time BOL as defined and derived in this work is shown to be suitable for 

the Sydney basin. From several analyses, there is a clear upward trend in 

background ozone concentration at nearly all the Sydney monitoring sites. For other 

regions, such as the Lower Hunter in the north and Illawarra to the south of the 

Sydney basin, the BOL and their trends can be determined and the results may be 

different from those of Sydney as the BOL (and hence its trend) is dependent on a 

number of conditions such as the meteorological flow, pollution sources and terrain 

conditions in those regions.  

Moreover, several refinements of the BOL quantisation methods were also presented 

involving a method to deal with unavailable zero nitric oxide (NO) data in the 

determination of the proposed BOL, an alternative method to define night-time BOL 

using the O3-NOx relationship, and a method to determine the duration time for 

night-time BOL. Notably, the approaches are generic in determining BOL according 

to the period of interest for non-photochemical activities, hence it may be applied at 

any location and in any season. 
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Chapter 8                                           

METAMODEL APPLICATION IN AIR 

QUALITY MODELLING 

8.1. Introduction 

The proposed methodological approaches have been described comprehensively in 

Chapter 3 to Chapter 6, while a significant problem to be addressed has been 

explained and elaborated in detail in Chapter 7. This chapter will discuss several 

possible practical problems to be addressed in the atmospheric studies using the 

neural network based metamodel approach, for which the theories and algorithms 

were considered in previous chapters.  

Ozone is known as a secondary pollutant gas; its formation is extremely complicated 

and non-linear as compared to other air pollutants. A special measurement could be 

used to assess its current level, however, more difficult tasks are to make a future 

prediction of its levels temporally and to estimate the distribution of its 

concentration spatially. Deterministic air quality (AQ) models are always used by 

the policy maker to deal with this type of problem, however, a simulation by an AQ 

model is quite tedious because of the nonlinear nature of some particular chemical 

reactions involved in the model formulation, which is also subjected to some 

uncertainties. In this chapter, the metamodel method will be presented to assist the 

AQ models or other air quality assessment methods in order to improve the 

reliability of its estimation and to build a computationally effective model, 

particularly for the case of ozone and its background level. As the conceptual 

framework of the approach is generic, the proposed implementation can be extended 

for the estimation of other air pollutants in the temporal and spatial domains.   
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8.2. Short-term temporal prediction model of BOL 

The idea in the metamodelling approach is that we can design a model network for 

short-term prediction of the background ozone level (BOL) for each measuring 

station in the analysed domain. In a similar attempt, the one hour ahead prediction 

model of BOL at selected sites, namely Blacktown, Lidcombe and St. Marys, has 

been presented in Wahid et al. (2010a). However, the methodology is much 

dependent on a limited number of input parameters, namely time, NO, NO2 and O3 

concentrations. To obtain a more comprehensive model, other parameters especially 

the meteorological data should be taken into consideration, as it has a direct effect 

on the level of background ozone.  

An extended analysis will be presented here that includes the incorporation of some 

meteorological data, the hourly prediction for 24 hours ahead, and the performance 

comparison between the OLS algorithm and the improved OLS algorithm in the 

applied problem. The addition of the two parameters is expected to improve the 

performance of the prediction as compared to the previous attempt. 

8.2.1. Model development 

A proper selection of the input and output characteristic is essential in order to make 

the RBFNN learn with a fast convergence. Typically, more input data is better so as 

to make the model more comprehensive and the interpretation more convincing. In 

this work, six input parameters are used (i.e. including the addition of two 

meteorological parameters from the previous work), namely the hourly time 

information, the nitric oxide (NO) concentration, the nitrogen dioxide (NO2) 

concentration, the ozone (O3) concentration, the wind speed (WSP) and the ambient 

temperature (TEMP) as measured at the monitoring stations. The wind direction 

(WDR) is not considered here as it will not allow significant performance 

improvement unless it is used for constructing the spatial model.  

As described in Chapter 7, the absence of NO indicates that there is no scavenging 

of ozone by NO to produce NO2 and hence no photochemical reaction is occurring. 

However, the availability of zero NO cannot be obtained at every hour, especially at 
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the urban sites. Therefore, we use the local time regression analysis (as appeared in 

section 7.4.1) to replace the missing data in order to define the BOL at that particular 

hour. Since we intend to predict the BOL, we use the defined BOL from the 

measured data at some interval time as the target output for training the model. The 

size of the interval depends on the prediction horizon. For short-term prediction, one 

hour to twenty four hours are adopted as the interval times for this evaluation. The 

data for seven hours of specific interest are selected as the outputs to analyse the 

performance of the methodology. The input-output of the model is illustrated in Fig. 

8.1. 

 
Fig. 8.1 Inputs and outputs of RBFNN model for short-term prediction of BOL. 

The entire inputs and targets have to be normalised (e.g. for a minimum of zero to a 

maximum of unity, by using mapminmax function in MATLAB), in order to make 

them contribute with the same influence to the RBFNN. This also allows the 

Gaussian activation function to squash all incoming data and to make the execution 

faster. Furthermore, we should only consider ‘interesting data’, which means that the 

data patterns contain as many possible different significant input and output 

situations. Thus, if there is too much similar data we can remove a part of it and 

accept only the more interesting data. Once everything is ready for the training set, 

we can execute to train the network by using the RFBNN metamodel approach, i.e. a 

method as proposed in Chapter 4 will be used in this evaluation.  

The test set should follow the same manner as with the training set, i.e. the time 

interval for the test is the same as the time interval used for the training set. Once the 

learning process is finished and the accuracy by some test sets is satisfactory, the 

network can be used for the prediction of other available data, at the same site. 

The codes for running the metamodel construction are listed in Appendix E-1. 
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8.2.2. Analysis and discussion 

In this analysis, we used the data recorded in the year of 2001, at two monitoring 

stations in the Sydney basin, namely at Blacktown and Randwick. By using an 

improved RBFNN method that featured an adaptively tuned spread parameter (as 

discussed in Chapter 4), we initialise the training process by setting the initial spread 

parameter and prescribed error goal. After several epochs, the network is constructed 

once having met the set goal. The model setting for both analysed sites are 

summarised in Table 8.1. The network will then be tested with the sample testing 

data for the monitoring stations. 

Table 8.1 The RBFNN model setting for short-term prediction of BOL. 

Model setting Constructed model Dataset 

Site Initial   MSE goal 
Hidden 

neurons no. 
Activation 
function 

Training 
data points 

Testing 
data points 

Blacktown 0.1 0.014 20 Gaussian 248 100 
Vineyard 0.1 0.012 17 Gaussian 202 100 

8.2.2.1. Prediction results 

Blacktown is considered a suburban site that is located in the west of Greater 

Sydney. By using the constructed model, the results of prediction on the testing set 

are shown in Fig. 8.2 (a–f). As can be seen, most of the values have shown 

reasonable results for lesser prediction horizon, where it follows the pattern of the 

actual values derived from ambient measurements. However, the performance of the 

model based on the R2 index deteriorates towards the twenty-four-hour horizon, as 

expected and which is depicted in the figure. The performance for the twenty-four-

hour prediction horizon could be improved further by using a cascaded model 

structure, for example as presented by Coman et al. (2008) for the prediction of 

ozone concentration, but the methodology is quite tedious as it requires more sub-

models to predict for each hour.   

Notably, it is quite difficult to obtain the non-photochemical condition at every hour, 

thus information of the background ozone level during that hour cannot be obtained. 

By using this model, the background ozone still can be predicted for events as in 

past hours under the non-photochemical conditions. Therefore, it is envisaged that 

the model could be used on-line for continuous prediction of the BOLs. 
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The same routine was applied for Vineyard, a site located in the north-west region of 

Sydney. The example of prediction results for one-hour and six-hours ahead are 

depicted in Fig. 8.3, showing better results than the Blacktown model where only a 

few points were different from the values derived from measurements, probably due 

to more non-photochemical data being available during the training stages. Overall, 

the Vineyard model gives better performance for lesser prediction horizons but the 

performance decreases drastically towards the higher prediction hours (e.g. for 

eighteen-hours and twenty-four-hours). 

(a) 

 

(b) 

 
Fig. 8.3 Short-term prediction results of BOL at Vineyard for: a) 1-hour; b) 6-hour, respectively. 
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8.2.2.2. Performance analysis and discussion 

This section aims to evaluate the performance of the models for different prediction 

horizons in a twenty-four hour period, and to compare the performance of the model 

which is constructed by an improved RBFNN featuring the orthogonal least squares 

algorithm with adaptively tuned spread parameters (i.e. OLS-ASP). Fig. 8.4 and Fig. 

8.5 show the performance of the models to predict the BOL for different horizons at 

the Vineyard and Blacktown sites, respectively. As can be seen from the figures, 

some good results can be shown for the less than six-hour prediction horizons (i.e. 

give higher values of R2 and lower values of mean absolute error, MAE, index) but 

the performance of the model degrades towards the twenty-four hour prediction 

horizon.  

In a typical scenario, an exponential trend line of performance is expected for this 

type of evaluation. However, in this case the worst performances appeared in the six 

to eighteen-hour prediction horizon). This occurs because most of the prediction 

horizons in the middle fell in the daylight hours in which the BOL cannot be defined 

correctly from the measurement data, thus affecting the model performance during 

the training process.  

We have presented a new metamodel using an adaptive radial basis function neural 

network for predicting the hourly background ozone level with reasonable accuracy. 

The results obtained indicate the promising application of the proposed method in 

the short-term analysis of background ozone levels and emission impact assessments 

for air quality modelling.  
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8.3. Long-term estimated model of BOL 

The idea in our metamodelling approach here is slightly different when compared to 

the short-term prediction, described in the previous section. For the short-term 

prediction, we were trying to predict the pollutant levels at certain horizons in which 

we used a 24 hour time-frame. In this work, we are analysing the effect of some 

factors (i.e. time, pollutant data and meteorological data) on the level of background 

ozone (Wahid et al., 2010b). It is expected that a generic model for BOL could be 

constructed in which it can be used for estimating the long-term trend of the BOL. In 

this study, our scope is to model a network to predict the BOL at several urban sites 

in Sydney, from which the results may be extended to the whole region by 

constructing a generic model that considers the entire monitoring stations’ data in 

the domain. 

8.3.1. Model development 

In this work, we analysed several input variables including pollutants data and the 

related meteorological data, to look into their variation effect on the accuracy of the 

constructed model. The pollutants data include the concentrations of ozone (O3), 

nitrogen oxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO), sulphur 

dioxide (SO2), volatile organic compounds (VOC), particulate matter of size <10μm 

(PM10), and size <25μm (PM25). Other meteorological data included the wind speed 

(WSP), wind direction (WDR), and the air temperature (TEMP). In addition, the 

time information was also considered as an input variable. 

The background ozone level has been set as the target output of the network. From 

the several definitions of BOL in Chapter 7, the non-photochemical night-time BOL 

is considered. Fiore et al. (2002) suggested that the estimation could be more 

accurate if the correlations with reactive nitrogen oxides (NOY) are taken into 

consideration. It implies that a component of the background ozone is produced 

from natural precursor sources, which include NOX emissions from soil and 

lightning, and hydrocarbon emissions from vegetation. However, according to the 

specified definition of BOL, it is typically difficult to obtain data that contains zero 

NO in which the BOL cannot be determined. Thus we replaced that missing data by 
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the linear regression of the previous and subsequent measured values at the station, 

which method was discussed in section 7.4.1. 

8.3.2. Analysis and discussion 

We used the hourly data collected by the Department of Environment, Climate 

Change and Water (DECCW), New South Wales. The data used in this study 

covered a period of five months from November 2000 to March 2001, at three sites 

in the Sydney region namely Randwick, Blacktown and Vineyard (Wahid et al., 

2010b). Two of the sites’ results will be presented here, and an extended work to 

construct a more generic model for all sites will be covered in the next following 

section.    

Case A: Randwick station 

The Randwick site is located in the east region of Sydney (within a 5 km radius from 

the Sydney CBD). As reported in (Duc & Azzi, 2009), this urban site was recorded 

as having the highest average level of non-photochemical background ozone in the 

east region for the years 1998 to 2005.  

Five simulations of different combinations of inputs as shown in Table 8.2 have 

been performed using an RBFNN metamodel. The first simulation was performed 

using the time information, the photochemical concentration and the ozone 

measurements. For the next three sets, we added to the first set the meteorological 

information that includes the air temperature, the wind speed and the wind direction 

with three different combinations. For the entire simulations, we initialised the 

training process by setting the initial spread parameter to be 0.1 and the error goal to 

be 0.005. After several epochs that depended on the inputs data used, the network 

was constructed once the set goal had been met.  

A suitable compromise between the network size and the selected variable inputs in 

the background ozone estimation showed that the best results in terms of the 

coefficient and index of agreement are obtained by using the inputs in the set 

number 3 as depicted in Table 8.2. The network size is 17, which means that 17 
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radial basis functions exist in the hidden layer of the network. The network size is 

increasing gradually with the number of input variables, according to the growing 

complexity of the training process. Furthermore, it can be learnt that the wind speed 

and wind direction much affect the accuracy of the constructed model. We expected 

that the temperature would influence the performance, but the results did not support 

that, as shown in the set number 4. This is probably due to a small variation of the 

recorded temperature level, hence affecting the convergence in only a minor way.  

Table 8.2 Performance indexes on the test set for the simulation performed by different combination 
of inputs (at Randwick site). 

Set Inputs RMSE MAE R2 d2 
Network 

size 

1 Time, NO, NO2, 03 4.878 3.560 0.464 0.866 11 
2 Time, NO, NO2, 03, Temp 5.244 3.949 0.381 0.845 15 
3 Time, NO, NO2, 03, WSP, WDR 4.850 3.635 0.471 0.868 17 
4 Time, NO, NO2, 03, Temp, WSP, WDR 6.069 4.859 0.171 0.793 21 
5 Time, NO, NO2, 03, Temp, WSP, WDR, PM10, SO2 5.677 4.444 0.275 0.819 27 

 

An example of approximation on the testing set from the best results is shown in 

Fig. 8.6. As we can observe from the figure, most of the values have revealed 

acceptable results, in which the predicted values using the metamodel follow the 

pattern of the expected BOL values derived from ambient measurements. As 

observed from the graph, the predicted values vary from 6.5 ppb to 47 ppb, 

demonstrating an increasing trend in the three months at the rate of about 0.002 

ppb/hour using the linear fit line.  

Case B: Blacktown station 

Blacktown, which is an urban site located at the Sydney West region, was 

investigated. This station was also showing the highest average background ozone 

level in this region from the years 1998 to 2004 (Duc & Azzi, 2009). The same 

procedure explained previously for Randwick site was also applied to the Blacktown 

station. Five combination sets of input variables were used, with the addition of 

carbon monoxide as the pollutant agent. During the training process, we set the 

initial spread to be 0.1 and the error goal to be 0.006.  
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By referring to Table 8.3, the best combination with the highest accuracy is given by 

the inputs in the set number 4. Again, meteorological parameters are determined to 

be dominant in influencing the model performance. Unfortunately, the produced 

errors as derived by the RMSE and MAE are slightly higher than was generated by 

the Randwick model. Furthermore, the correlation given as a determination 

coefficient R2 was also low. The deviation in performance may be due to only a 

small number of non-photochemical conditions that were obtained from the dataset 

while most of the background ozone level data has been determined by using the 

linear regression method. An example of prediction results is depicted in Fig. 8.7. 

The predicted background ozone level data was found to be between 4 ppb to a 

maximum of 40 ppb, with a decreasing trend of 0.003 ppb/hour in a three month 

period.  

Table 8.3 Performance indices on the test set for the simulation performed by different combination 
of inputs (at Blacktown site). 

Set Inputs RMSE MAE R2 d2 
Network 

size 

1 Time, NO, NO2, 03 11.241 7.483 0.223 0.806 7 
2 Time, NO, NO2, 03, Temp 11.163 7.365 0.234 0.808 11 
3 Time, NO, NO2, 03, WSP, WDR 11.590 7.917 0.174 0.793 13 
4 Time, NO, NO2, 03, Temp, WSP, WDR 11.025 7.479 0.252 0.813 22 

5 Time, NO, NO2, 03, Temp, WSP, WDR, PM10, SO2, CO 11.727 7.876 0.154 0.789 32 

8.3.3. Extended model for long-term estimation of BOL 

8.3.3.1. Model input-output 

For the determination of BOL, several combinations of the input variables have been 

investigated in Wahid et al. (2010b) as discussed in the previous section, which 

showed that time information, pollutant precursor data, ozone data and 

meteorological data have a major influence on the model performance. However, 

each site was separately treated with a different model for the network training and 

validation. In this work, we will construct a generic model that covers several sites 

in the region, which may be used to interpolate and extrapolate the values for other 

sites not appearing in the training data set. To achieve such a model, we have to 

develop an appropriate training technique that can be mixed between the sites.  
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For the training dataset, we use the following variables as the inputs: the x and y 

coordinate locations as the site’s identifier, the NO concentration, the NO2 

concentration, the O3 concentration, the ambient temperature (TEMP), the wind 

direction (WDR), and the wind speed (WSP). To generalise the solution, the hour 

information will be excluded from the inputs because a further analysis has shown 

that the model performance could be slightly improved without it in the new model 

structure. The suggestion of the new model structure and its analysis appeared in 

Wahid et al. (2011). 

The considered input datasets are the hourly data at the specified time period of 

interest for the BOL determination which has been described in section 7.4.3. 

Furthermore, the BOL defined in section 7.4.1 is used as the target output of the 

network. As usual, all input-output variables are normalised using their minimum 

and maximum values so that they are in the same range of the radial basis function 

used. After the learning process by RBFNN (i.e., an OLS method explained in 

Chapter 4) is finished and the accuracy obtained with some test sets is satisfactory, 

the network can be used for predictive purposes with other available data for the 

following years. The proposed model input-output is depicted in Fig. 8.8, and the 

codes for building the model appear in Appendix E-2. 

 

Fig. 8.8 A generic metamodel structure to estimate the BOL in the evaluated domain. 
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8.3.3.2. Results and analysis 

For the BOL model development, the hourly data of the pollutant concentrations and 

meteorological data which have been carefully recorded at 10 monitoring stations in 

the Sydney region are utilised. The data covers six years from 2005 to 2010 in which 

summer is chosen as the season of interest. For the Sydney region, the hourly data 

from 8.00 pm to 8.00 am the next morning is used for the determination of 

background ozone level.  

Two groups of data were prepared, which were for training and testing purposes. For 

the training data set, the input and target data for the summer of 2005 was adopted 

from every site, whereas the remaining summer data from 2006 to 2010 were used 

as the testing data sets. The training dataset consisted of 6327 data points and by 

using a proposed experimental design method presented in Chapter 3 (i.e. Wahid et 

al., 2012), the dataset was sampled to 35% of the full data set. By using RBFNN 

with an initial setting of 0.6 for the spread parameter and 0.002 for the MSE goal, 

the model is constructed with 55 hidden neurons. 

Fig. 8.9 and Fig. 8.10 show two examples of the reliability of the model to estimate 

the BOL, with pleasing results. Therein, the solid lines show the expected BOL 

derived by the measured data, and the broken lines represent the estimated values 

using the RBFNN metamodel. Fig. 8.9 illustrates the estimation results for St Marys, 

a site located in the west of the Sydney region. Therein is revealed a decreasing 

trend with a decreasing rate in the BOL of 3.1±0.2 ppb (standard error is 0.23 ppb) 

over the 2006 to 2010 period (or 0.62±0.04 ppb per year) and an intercept of 

11.0±0.2 ppb in the linear regression trend line. The enlarged figures for the two 

periods show the capability of the metamodel to estimate the true values of the BOL 

at most of the points, with the R2 value of 0.577 which presents an improved model 

performance from the previous attempt. By using the same constructed model, 

another site namely Bringelly was also evaluated, as depicted in Fig. 8.10. A similar 

decreasing trend of the regression line is also shown for this site.   
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The yearly BOL mean values for the period of six years from 2005 to 2010 at all 

monitoring sites in Sydney are summarised in Table 8.4. Most of these sites are 

considered as urban except for Richmond, which is located in a semi-rural area. The 

table shows decreasing trends at most of the sites from 2005 to 2008, but their levels 

rise again from 2008 to 2010. A clearer illustration of the trends is shown in Fig. 

8.11. It was expected that the increasing trend would continue for the following 

years (after 2010) but with a lower increasing rate, to be confirmed with the 

availability of the measurement data. 

Table 8.4 Yearly night-time BOL mean values at various sites around Sydney from 2005 to 2010. 

2005 2006 2007 2008 2009 2010 

Bringelly 12.1 11.5 9.6 6.3 7.2 9.6 
Chullora 13.1 11.2 8.4 7.5 8.3 7.9 
Earlwood 14.1 13.5 8.8 8.8 10.0 7.7 
Liverpool 12.2 11.5 8.2 8.1 8.0 6.8 
Oakdale 21.0 19.0 15.3 13.5 16.0 19.9 
Randwick 18.3 17.9 14.8 14.8 12.4 17.7 
Richmond 14.1 13.2 9.5 8.5 12.7 7.0 
Rozelle 15.2 13.2 10.1 8.9 9.2 14.3 
St Marys 12.7 10.4 8.0 6.4 8.0 8.9 
Vineyard 15.2 10.4 8.5 9.4 9.6 8.3 
Mean 14.8 13.18 10.12 9.22 10.14 10.81 

Using a regression analysis, Duc et al. (2012) reported that there was an increasing 

trend of the background ozone level in Sydney from 1998 to 2005. In another 

evaluation by Wahid et al. (2011) using metamodel estimation, an upward tendency 

was found at each site in Sydney from 2003 to 2005 which was also in line with the 

results reported in (Duc et al., 2012). In the report, it was also shown that the 

patterns start to decrease after 2005 until 2008 which is similar to the analysis shown 

here. The only difference is that the BOL defined in Wahid et al. (2011) used zero 

nitrogen oxides (i.e. NOx=0), while this work uses zero nitric oxides (i.e. NO=0) in 

its determination, which will result in about 3 ppb difference in the background 

ozone levels (i.e. the later method gives slightly lower values). 
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The second approach proposes a more generic regional model for estimating the 

BOL using an RBFNN metamodel, which can be used for each monitoring site in 

the domain under consideration. Coordinate location of the sites, nitrogen oxides and 

meteorological data are used as the input, while night-time background ozone was 

used as the target output. The results obtained indicate the promising application of 

the proposed method in predicting the long-term BOL with fair accuracy. 

(a) 

 

(b) 

Fig. 8.12 Comparison between night-time BOL estimated by the metamodel and the expected values 
derived by the measured data at two sites that were not used in the training data set, namely 

Macarthur and Bargo. 
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8.4. A metamodel approach for air pollutant spatial 
estimation 

Continuous measurements of the air pollutant concentrations at monitoring stations 

serve as a reliable basis for formulating air quality regulations. Their availability are 

however limited only to the location of interest. In most situations, the spatial 

distribution beyond these locations still remains uncertain as it is highly influenced 

by other factors such as emission sources, meteorological effects, dispersion 

conditions and topography. To overcome this issue, a larger number of monitoring 

stations could be installed, but it would involve a high investment cost. An 

alternative solution is via the use of a deterministic air quality model, which is 

mostly adopted by regulatory authorities for prediction in the temporal and spatial 

domain as well as for policy scenario development. Nevertheless, the results 

obtained from a model are subject to some uncertainties and they generally require 

significant computation time.  

In this work, a meta-modelling approach based on neural network evaluation is 

proposed to improve the estimate of the spatial distribution of the pollutant 

concentrations. From a dispersion model, it is suggested that the spatially-distributed 

pollutant levels (i.e. ozone, in this study) across a region under consideration is a 

function of the grid coordinates, topographical information, solar radiation and the 

pollutant’s precursor emission. Initially, for training the model, the input-output 

relationship is extracted from a photochemical dispersion model called The Air 

Pollution Model and Chemical Transport Model (TAPM–CTM). The proposed 

metamodel is then applied to estimate the ozone concentrations in the Sydney basin, 

Australia. Once executed, apart from the advantage of inexpensive computation, it 

provides more reliable results of the estimation and offers better predictions of 

ozone concentrations than those by using the TAPM–CTM model alone when 

compared to the measurement data collected at monitoring stations.  

8.4.1. Model development for ozone distribution 

8.4.1.1. Input-output parameters of the model  

The neural network model could be considered a black box for mapping the best 

relationship between the inputs and the outputs of the dataset without knowing the 
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underlying physics of the system. In this work, an improved RBFNN is proposed for 

the modelling where suitable input parameters should be selected to get the best 

possible network configuration. To this end, we utilise specific ambient 

measurement data and also input-output data from the deterministic air quality 

model (DAQM), to train the RBFNN. In this work, we adopt a specialised DAQM 

model known as the TAPM–CTM. 

Since ozone is the pollutant to be considered in this work, the most related input 

parameters for training the model are the ozone precursors, the x-y coordinates, the 

topography information and the solar radiation levels. Basically, there are two 

important classes of precursors involved in the formation of ozone, namely volatile 

organic compounds (VOCs) and NOx. However, VOCs are apparently very difficult 

to measure, hence the VOC data is fully based on the emission rate data extracted 

from the emission inventory system, whereby the NOx data could be enhanced by 

incorporating its measurement data collected at the monitoring stations. 

The x-y coordinates represent the cell locations (in km) in x and y directions, which 

normally form a group of 2 km×2 km domain cells. By using statistical modelling, 

the coordinate information is adequate for quick interpolation of measurements 

between the monitoring stations, but it is not quite accurate, especially for a large 

distance between sites. To improve the estimation, topography information is added, 

consisting of the height information above sea level (in metres) at each domain cell.  

Here, ambient temperature data is used to represent, at each cell, the solar radiation 

level, which basically is a good variable indicator proxy for the formation of ozone 

and has a strong correlation to the ozone concentration. Generally, a temperature 

dataset could be made available from a local meteorological institution such as the 

Bureau of Meteorology for the Sydney region. The lowest layer data (about 20 m 

above the sea level) will be considered. These datasets need to be post-processed as 

daily maximum temperatures, taken from the daylight hourly temperature, as to 

represent the activeness of the daily ozone production.  

The network output consists of daily averaged eight-hour maximums of the ozone 

concentration (in parts per billion, ppb), which are extracted from the DAQM 
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simulation output. The eight-hour average is selected here in this work as a 

demonstration of the approach. The four-hour or one-hour data can be analysed 

similarly. As for the ozone predictions, the simulation is only run for the months of 

the summer season (e.g. December, January and February, in Australia), during 

which the formation of ozone is most intense. To correlate with the actual 

measurement data, this dataset will be calibrated using regression by analysing the 

correlation ratio between DAQM output and actual concentration data at all 

available monitoring sites, for each recorded day. This correlation ratio will then be 

multiplied for the entire cell parameters in the simulated domain. For illustration, the 

topology of the model network is shown in Fig. 8.13.  

8.4.1.2. NOx emission distribution  

Generally, the amount of the daily NOx emission (in kg/day) taken from the 

emission inventory does not change much for each day, except there is a small 

difference between the weekdays and the weekend days. Thus, the daily emission 

can be assumed to be identical over time at one location, however, they are 

apparently different between each domain cell. To make the significant variations of 

daily emissions for the purpose of neural network training, the actual measured NOx 

concentration at monitoring stations (typically in pphm) will be converted to an 

emission rate, distributed to the entire domain and added to the original emission 

data. This can be done by assuming the emission source is at ground level and thus, 

the produced concentration is contaminated at the ground level and using the basic 

Gaussian dispersion model developed by Pasquill (1976) as appeared in equation 

(2.1) in Chapter 2, which can be simplified as follows:  

 
u

Q
zyxC

zy2
),,(  , (8.1) 

where C  is the pollutant’s concentration (in μg/m3) at distance x  downwind from 

the source (in meters), Q is the emission rate (in g/sec), u  is the average wind 

speed (in m/sec), y  and z  are the dispersion coefficient respectively in y - and z

-direction. Here, the plume is always assumed to follow the wind direction in x - 

direction, thus the distance y  in crosswind direction and the distance z  in vertical 

direction can be approximated as zero.  
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As described in the literature review in section 2.2 (Chapter 2), the values of y  and 

z  can be determined roughly from the dispersion coefficient graphs, or more 

accurately determined by the following equations (Cooper & Alley, 2011):  

 894.0axy  , and (8.2) 

 fcxd
z  , (8.3) 

where values of a , c , d  and f  can be obtained by curve-fitting, depending on the 

atmosphere’s stability condition in which the values are summarised in Table 8.5. 

Note that the measurement unit, in pphm, for pollutant concentration is consistently 

converted to μg/m3 using the molecular mass of NO and NO2 at 25°C and 1 atm. 

Table 8.5 The coefficient values for calculating the y  and y . 

Stability Sigma-y Sigma-z 

  if x<1 km if x>1 km 
 a c d f c d f 

A 213 440.8 1.041 9.27 459.7 2.094 -9.6 
B 156 106.6 1.149 3.3 108.2 1.098 2.0 
C 104 61.0 0.911 0 61.0 0.911 0 
D 68 33.2 0.725 -1.7 44.5 0.516 -13.0 
E 50.5 22.8 0.678 -1.3 55.4 0.305 -34.0 
F 34 14.35 0.740 -0.35 62.6 0.180 -48.6 

The calculated emission rate at the stations will then be assumed to be coarsely 

distributed to other cells. The emission rates at these cells are estimated by 

considering the nearest distance to the station, adjusted by the wind direction factor. 

Finally, the calculated distributed NOx emission will be added to the gridded 

emission rate from the inventory database.  

8.4.1.3. Training and verification of the model  

To start the modelling process, first we need to define the frame area for the 

simulation. The border of the domain is selected about 30 km distant from the outer-

most monitoring stations for a reasonable correlation. For the network training 

purpose, the entire domain will be divided to groups of 6 km×6 km grid cells for the 

input dataset from these groups to be able to represent the behaviour of the whole 

frame. This choice reduces the number of datasets to be trained. The dataset will be 
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trained by using an RBFNN with the appropriate selection of spread parameter )( , 

least squares weighting matrix ( H ), regularisation parameter ( ) and prescribed 

error goal, i.e. mean squared error ( MSE ). 

In the validation stage, the denser input-output dataset (i.e. smaller cell size, for e.g. 

2 km×2 km) from the same simulation is used to confirm the correctness of the 

trained model. The developed model will be tested with other datasets which have 

not been used in the training stage to predict the spatial distribution of ozone 

concentration, and the results are compared with the measured ozone level collected 

at the continuous monitoring sites. 

8.4.2. Study case: results and analysis 

8.4.2.1. The application domain 

The methodology has been applied to the Sydney basin in New South Wales, 

Australia. The basin currently has 14 monitoring stations scattered throughout the 

Sydney metropolitan region, from the coastal area in the East to the edge of the Blue 

Mountain in the North West and in the West. Most of the measuring sites are located 

in the urban area except for some locations, which can be considered as suburban in 

the greater West, and a semi-rural area in the North West.  

The whole Sydney basin covers an area of about 24,242 km2. For the station 

location, in order to obtain reasonable prediction results using the proposed 

methodology, the selected domain begins from 246 km to 384 km easting and from 

6207 km to 6305 km northing, by using the Australian map grid (AMG) coordinates.  

8.4.2.2. Neural network model implementation 

The model development is based on the ambient measurement of pollutant data, 

meteorological data and primary or precursor pollutant emission sources data for the 

year 2004, considered as the base year for this study. For preparing the output 

dataset, a few simulations for the summer days in 2004 are performed by using the 

TAPM–CTM model. As the regulatory agency, the NSW Office of Environment and 

Heritage (formerly known as Department of Environment and Climate Change) is 
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mostly interested in the prediction of peak ozone scenarios, for which only episode 

days are chosen for the simulation in this study. The spatial distributions of eight-

hour maximum average of the ozone level are extracted from those simulations for 

the smallest grid cell (i.e. 2 km×2 km).  

It is noted that there are some differences in the ozone level as predicted by the 

TAPM–CTM model, compared to the actual measurement data at the monitoring 

stations. Most of the TAPM–CTM predicted outputs are under-predicted, especially 

during the episode days. Moreover, their correlation is usually nonlinear and 

different for each day. To correct the under-prediction and improve the correlation 

between the model output and the measurement data, the modelled ozone datasets 

need to be calibrated, e.g. by using the regression analysis via comparison of the 

actual and the simulated data at all the monitoring stations to determine the 

correlation ratio between them. For example, Fig. 8.14 shows a correlation of daily 

eight-hour maximum average of ozone for a day in summer. A regression line is 

drawn by setting the intercept point at zero. Therein, the correlation ratio is 

determined as 1.326, i.e. all the daily ozone distribution data from TAPM–CTM 

output are multiplied with this ratio. This is assuming that the spatial distributions of 

the pollutant are in general predicted correctly enough by the deterministic model, 

but need to be further compensated due to the under-predict or over-predict 

situations. The aim here is to form a dataset that is close to the actual data for the 

whole domain, based on the available correlation ratio at all monitoring stations, i.e. 

by a regression technique.  

For the NOx input dataset, the measured concentration data for the same days as the 

TAPM–CTM simulations will be utilised to compute the variation of the NOx 

emission rate. The hourly NO and NO2 concentration for each day will be converted 

to the emission rate according to their molecular mass values and average wind 

speeds. The downwind distance is estimated accordingly to cover the 2 km×2 km 

grid cells, and the other coefficients are set based on the environment stability 

conditions using the Pasquill Table (i.e. Table 2.4, in Chapter 2). The calculated 

hourly emission rate will be summed to obtain the daily emission rate of NOx at 

every monitoring station. The emission values for other cells in the domain will be 

approximated in accordance with the nearest distance to the station at which the 
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wind direction and the cell-station direction make the smallest angle. Within a 

certain radius from the stations, pollutant concentrations are assumed to be similar 

and hence the same emission rate level is expected. On the other hand, the gridded 

inventory emission rate data for NOx is extracted from the TAPM–CTM pre-

processing outputs. Finally, both types of emission (i.e. inventory and calculated) for 

each cell are added to form distributed daily NOx emissions (in kg/day).  

 
Fig. 8.14 Regression analysis for determination of the correlation ratio between simulated and 

observed ozone level at a monitoring site. 

Fig. 8.15 shows a comparison of the daily distribution before and after the 

summation for a summer day in 2004, where the daily emission is concentrated 

mostly in the Sydney metropolitan area. Obviously, this area has a high population 

concentration and also dense road networks, as well as a large number of industrial 

activities. The high emissions also appeared along the roadways from North to 

South, and to the West. Fig. 8.15 (b) shows that the emissions are more scattered in 

the domain, while it is not distributed well in the East area because there is no 

measurement data in that area (i.e. the Tasman Sea). 
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(a)  

(b) 

Fig. 8.15 Daily NOx distribution for a day in summer: (a) post-process by TAPM-CTM from the 
emission inventory, (b) added with the calculated emission. 

The rest of the input dataset (i.e. coordinate, height from sea level and temperature) 

could also be extracted from the TAPM–CTM model which uses synoptic data 

collected by the Australian Bureau of Meteorology. Using the proposed algorithms 

for training the RBFNN metamodel as was discussed in Chapter 5, the optimal 

parameters for the model have been determined as: the spread parameter 1.0 , 

the regularisation parameter 0.1 , and the least squares weighting constant 
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03.34iih . By setting the MSE goal to 0.005, the model network was created by 

having a total of 168 hidden neurons from 2448 (i.e. n ) training samples, in just 

about six minutes of the simulation time. Notably, with the TAPM–CTM simulation, 

it will require about one whole day to complete a similar task. 

8.4.2.3. Model performance 

To validate the trained model, denser datasets (from the same simulation days in the 

training stage), which involve 21000 data patterns consisting of data collected from 

January to February 2004, are used. The performance of the validation phase is 

shown in the scatter plot of Fig. 8.16. It consists of 3500 data points, corresponding 

to 3500 cells, each 2 km×2 km over the whole domain (i.e. 70 cells to the East × 50 

cells to the North). The plot represents a correlation between the prediction results 

by using the constructed RBFNN model against the target outputs in the dataset. As 

depicted, most of the scatter points are located close to the bisecting line for every 

data point with the determination coefficient 2R  of 0.96, which can be considered 

an acceptable performance.  

 
Fig. 8.16 Scatter plot to illustrate the performance of validation phase. 
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The spatial distribution, obtained by using the RBFNN and TAPM–CTM models, is 

shown in Fig. 8.17. The results of two episode days are presented, wherein both 

models generate similar patterns of the spatial lines but with different ranges of 

concentrations. For the first day, the higher levels are concentrated in the West area 

from North to South with a range from 19 to 90 ppb for the RBFNN, and from 8 to 

62 ppb for the TAPM model. On the second day, the high concentration is scattered 

about the whole domain in which the peak levels appear mostly in West towards the 

South West area. However, the RBFNN output gives a maximum level of 113 ppb 

while the maximum level by TAPM is only 72 ppb, which exhibits an under-

prediction. This uncertainty is confirmed by comparing those levels with actual data 

collected at the monitoring points.  

From these spatial distribution results, it can be observed that most of the high ozone 

levels always appeared, especially during the episode days, in the West of Sydney, 

which consists of suburban and semi-rural areas. This is the general pattern of ozone 

occurrence in the Sydney basin which is consistent with the meteorological 

condition of the West and South West being downwind of the sea breeze during the 

day. In the morning after sunlight, an off-shore sea breeze flows from the East and 

North East across Sydney towards the South West causing an elevated level of 

ozone in the South West and West of Sydney during the afternoon.  

However, the most important issue is the number of excessive observations recorded 

(i.e. more than 80 ppb for an eight-hour maximum average standard), which could 

have an adverse impact on human health as well as on the vegetation. This situation 

rises due to the increase of the ozone level caused by the accumulation of ozone 

formed previously in the East of Sydney, which is the transported to the West and 

South West areas. 
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8.4.2.4. Performance comparison 

To assess the reliability of the models, five days of simulation results of the spatial 

distribution are compared with the actual measurement data at 10 monitoring 

stations for each day. Fig. 8.18 shows the scatter plots of the models versus the 

actual data, whereby each plot consists of 50 data points (i.e. 5 days × 10 monitoring 

stations). Five episode ozone days in a summer season are selected in the analysis. 

As can be seen from the first figure, most data points are located close to the 

bisecting lines, and all lie in between the upper-half section line and lower-half 

section line. This is an improvement as compared to the TAPM estimations in which 

most of the TAPM values show an under-prediction of results, as presented in Fig. 

8.18(a).  

In terms of 2R  values, the RBFNN yields 0.7658 while the TAPM yields 0.3521, 

which can be claimed as another advantage of the proposed approach. However, this 

indicative value shows that further improvement in the approach needs to be carried 

out, as there are some estimation points that do not achieve the actual measurement 

value. This is probably due to the preparation of the output dataset (for training the 

model) which is much dependent on the regression analysis to correlate with the 

actual measurement data, and on other uncertainty arising from the TAPM–CTM 

simulation outputs. 

In another analysis, the performance of the proposed RBFNN’s training scheme (i.e. 

a generalisation network with regularised forward selection and weighted least 

squares, GRFSWLS), as proposed in Chapter 5, is compared with two available 

RBFNN algorithms, i.e. the orthogonal least square (OLS) by Chen et al. (1991), 

and the forward selection (FS) by Orr (1996). By using a common   value of 0.1 

which has been determined as the best isotropic spread parameter, the comparison of 

the training evolution for different mean squared error (MSE) goals is illustrated in 

Fig. 8.19. It is shown that the proposed algorithm outperforms the other two 

approaches at almost every error goal, in terms of the number of hidden neurons 

used and the total simulation times.  
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(a) 

 

(b) 

Fig. 8.18 Performance comparison between RBFNN and TAPM–CTM predictions for eight-hour 
maximum average of ozone at 10 sites in the Sydney basin. 

Table 8.6 shows the comparison of the models’ performances in terms of the 

determination coefficient (R2) index, which is used to determine the accuracy of each 

method for the addressed problem. From the table, it is found that for each error 

threshold, smaller network sizes are used and higher R2 values are always obtained 

by GRFSWLS as compared to the rest of the methods. It has been determined that 

the lowest possible error goal is 0.005, as the network tends to be over-fitted when 
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lower values are selected. It is also learnt that the optimal value of the regularisation 

parameter  , can be selected more easily by incorporating the least squares 

weighting matrix H , as the FS method is required to fine tune the   (to several 

decimal places, e.g. 0.0001) in order to obtain its optimal value, hence will result in 

a slower computation (e.g. 1000 times slower). This situation can be illustrated in 

Fig. 8.20, where the   value is found as 0.1 when using one decimal place, whereas 

the optimal value can only be obtained using four decimal places which is found as 

0.0299. It implies that the proposed method has a higher sensitivity in the solution to 

the regularisation problem. 

 
Fig. 8.19 The comparison of the training performance between GRFSWLS, OLS and FS methods. 

Table 8.6 Comparison of the training performance between three methods for different MSE goals. 

MSE 
GRFSWLS OLS FS 

Neurons 
no. 

R2 Neurons 
no. 

R2 Neurons 
no. 

R2 

0.0100 31 0.673 64 0.678 29 0.667 
0.0090 42 0.700 80 0.703 40 0.670 
0.0080 58 0.733 97 0.727 59 0.729 
0.0070 75 0.767 124 0.757 82 0.766 
0.0060 111 0.793 150 0.781 113 0.792 
0.0050 168 0.818 211 0.805 189 0.819 
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Fig. 8.20 The results of using higher decimal places for finding the regularisation parameter value in 
the FS method. 

8.4.3. Discussion 

This work has presented a neural network metamodel approach to effectively 

estimate the spatial distribution of daily ozone concentrations with adequately fast 

computation time. The model approximates the nonlinear relationship between the 

NOx emission, ambient temperature, location coordinates and topography, 

considered as the inputs, and the eight-hour maximum average of ozone 

concentration as the output. For the distribution of the NOx emission, the emission 

rate is derived from the measured concentration by using the Gaussian dispersion 

model, and then added to the emission rate obtained from the emission inventory 

data.  

In the training stage, target output data for ozone distribution is extracted from a 

deterministic air quality model and calibrated to correlate with the actual data from 

the monitoring stations by using regression analysis. Here, data from the 

deterministic model and the actual measurements are combined to construct the 
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neural network model to enhance its training performance. Moreover, the proposed 

approach features the selection RBFNN centres using the regularised forward 

selection with weighted least squares, offering some performance improvement over 

the orthogonal least squares and the forward selection methods in terms of a smaller 

number of hidden neurons used and better estimation results. The methodology is 

then applied to air pollutant data collected from the monitoring stations in the 

Sydney basin. The results obtained indicate a promising application of the proposed 

method in the estimation of ozone concentration with a reasonable accuracy. 

Compared with the TAPM–CTM model, the proposed method yields higher 

performance, in which most of the estimated values are closer to the measurement 

data, while experiencing faster computation.  

8.5. Chapter conclusion 

In this chapter, three applications of the RBFNN metamodel in the atmospheric 

environment field have been presented. In the first attempt, the metamodel has been 

used to construct a model for predicting the hourly background ozone level up to 

twenty-four hours ahead. Several air pollutants and meteorological components have 

been chosen as the input parameters, being the NO concentration, the NO2 

concentration, the O3 concentration, the wind speed and ambient temperature. The 

night-time BOL has been used as the output in which a local regression method was 

used to define its level. It has been observed that the developed model offered an 

acceptable accuracy when predicting lower hours until a six hour horizon, and the 

performance decreased when considering prediction horizons up to twenty-four 

hours. 

In another application, the metamodel was employed to build a model for estimating 

the BOL in an attempt to analyse the long-term trend of its levels. Several 

combinations of the input variables were used to investigate their effect on the 

performance of the built model. It has been determined that the photochemical data 

incorporated by the meteorological data dominantly affected the model performance, 

while other pollutant agents such as SO2, CO and PM10 did not influence 

performance to any significant degree. The next attempt introduced a more generic 

model for BOL estimation which could estimate its levels at each monitoring station 
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with acceptable results, as well as could roughly follow the pattern of BOL profiles 

for the case of other monitoring sites which are not included in the training stage. 

Hence the developed model has the potential to be extended for spatial estimation of 

the background ozone level in a region.   

The next work presented a method to effectively estimate the spatial distribution of 

daily ozone concentrations with fair accuracy and adequately fast computation time. 

The NOx emission data for each day was varied by adding the actual emission rate 

extracted from the emission database system (i.e. their values were typically similar 

for each day), to the emission rate which is derived from the measured concentration 

by using the Gaussian dispersion model. The target output data was extracted from 

the TAPM–CTM model and calibrated to correlate with the actual data from the 

monitoring stations by using regression analysis. Once the method was applied to 

the Sydney domain, the results showed promise in application to the spatial 

estimation of ozone concentration with acceptable accuracy. Hence, it has been 

shown that a combination of the deterministic approach (e.g. TAPM–CTM model) 

and a neural network will offer better estimates of the spatial distribution of an air 

pollutant (e.g. ozone) concentration rather than only using the dispersion model as 

currently applied by most regulatory agencies. 
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Chapter 9                                           

CONCLUSION AND FUTURE WORK 

9.1. Conclusion 

This thesis has described in detail the advantageous use of the metamodel approach 

in several applications in atmospheric studies, particularly for measuring ozone 

pollution and its background level. In the early chapters following the literature 

review, the proposed methodology was elaborated, starting with the processes 

involved in the building of a metamodel based on the radial basis function neural 

network (RBFNN), which includes data preparation and sampling, the training 

process, and also validation and testing. Due to the importance of the sampling 

process, a new potential method for the design of experiment (DOE) was 

investigated. The new strategy was a weighted clustering design (WCD), which was 

based on distance measures and the clustering process. Several numerical analyses 

using non-linear functions were demonstrated, and the obtained results showed that 

the proposed sampling method outperformed the other two evaluated methods (i.e. 

LHD and n-FFD) with respect to several criteria, which included the performance 

indexes, the network size and the simulation time. It has also been learnt that the 

sampling number can be selected at about 30% of the full dataset as there is no 

significant improvement in the performance if more data is used. 

Next, two improvements of the RBFNN algorithm based on orthogonal least squares 

(OLS) methodology was introduced. The first improvement featured the OLS 

algorithm with adaptively tuned spread parameter ( ) in which the   of each 

hidden neuron was updated by using the steepest (gradient) descent method for the 

entire training process. From a numerical investigation viewpoint, the proposed 

algorithm offered a lesser number of hidden neurons whilst maintaining the 
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performance of the metamodel. The optimality of the networks could be improved 

further by using variable learning rates or other optimisation approaches such as the 

conjugate-gradient, Newton’s and Marquardt method. In the second improvement, a 

pruning algorithm was introduced to exclude the hidden neurons making little 

contribution to the development of the network. Once executed, the algorithm was 

able to reduce the hidden number of units, especially when higher error goals were 

used as well as slightly improving the network’s performance.  

Furthermore, a new approach to training the RBFNN involving several algorithms 

was presented. The first attempt was to introduce a supervised training algorithm for 

the selection of the basis centres based on a forward selection strategy. A special 

case of generalised least squares (GLS) called the weighted least squares was 

implemented, which affords an advantage when the variances of the observations are 

unequal. A regularisation method was also considered to deal with the ill-condition 

problem. Other efforts included a method to train the network output weights and 

suggestions for the selection of the RBFNN model parameters. The combination of 

the proposed approaches, namely a generalisation network with regularised forward 

selection and weighted least squares (GRFSWLS), offer some performance 

improvement over the two benchmarked methods in terms of the total training time, 

the number of hidden neurons used and the estimation results in the applied problem 

as compared with the measurement data. 

The concept of background ozone is easily understood, however the problem is how 

to distinguish between natural and anthropogenic effects, which requires 

measurement in a “clean” environment. The available best solution for this is by 

measuring the ozone concentration at pristine sites but it is unfortunately nearly 

impossible to be implemented in highly urbanised areas. This work introduced a 

generic method to determine background ozone levels using ambient measurement 

of night-time data for ozone and nitrogen oxides incorporated by some other related 

factors, which were specially named as the “night-time background ozone level”. It 

was defined as the average of ambient measurements of hourly ozone values from 

night-time to early morning (e.g. from 8.00 pm to 8.00 am the next morning) when 

nitric oxide (NO) is not present for at least 2 hours consecutively. In addition, 

extension work also involved the exploration of some quantisation techniques to 
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deal with unavailable ambient measurement data using regression analysis, and to 

introduce a method to determine the duration time for night-time BOL. The 

proposed approaches here are shown to be suitable for Sydney basin, and as the 

concept is generic in determining BOL according to the period of interest for non-

photochemical activities, it could be performed in other regions in the world and in 

any season of interest. 

In this work, the neural network based metamodel was then been used as a statistical 

approximation technique to construct several models particularly for the prediction 

of ozone and its background ozone level, temporally and spatially, and on either a 

short-term or long-term scale. The idea was to design a network model for each 

measuring station and from this information, to construct a more generic model for 

application over the region of interest. Several air pollutants and meteorological 

components have been identified as strongly influencing the model’s performance, 

namely the NO concentration, the NO2 concentration, the O3 concentration, the wind 

speed, the wind direction, the ambient temperature, the time information and 

coordinates of the locations. Suitable combinations of those inputs have been 

determined for each of the applied problems. A more demanding problem is to 

estimate the spatial distribution of air pollutants (e.g. ozone) levels across the region. 

The deterministic air quality model is often used for this task, but it has some 

shortcomings in terms of its computation time and reliability. This work has shown 

that the proposed metamodel approach in combination with the deterministic 

approach has provided better estimates of the spatial distribution of ozone 

concentrations with fast computation, rather than just using only the deterministic 

model when compared to the sites’ measurement data. Complementary to the often 

expensive direct measurement or numerical modelling approach in air quality 

predictions, simpler statistical techniques including the neural network based 

metamodel in this work, have shown their advantages on the accuracy (i.e. better 

estimate results), complexity handling (i.e. significant reduction of requirements for 

computational resources and prior knowledge) and robustness (i.e. its capability of 

estimating the varying levels of ozone and background ozone from year to year), as 

have been demonstrated and validated thoroughly in chapters 7 and 8.   Moreover, 

the proposed approach may increase the trustworthiness of the air quality predictions 
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and its future trends, thus assisting regulatory authorities in making suitable policy 

decisions related to air quality. 

From the analytical investigation undertaken in the Sydney region, it reveals that the 

trend of ozone as well as the background ozone level varies greatly from year to year 

according to the analysis for the period from 1998 to 2010. It has been found that a 

great upward trend in background ozone concentration was evident from 1998 to 

2005, with a slightly down trend occurring from 2005 to 2008, and with the trend 

slowly increasing again at a lower rate of increase from 2008 onward. The variation 

of the trends was related to varying weather conditions and the level of the ozone 

precursor. The implication of this background ozone trend is believed to be 

important for the regulatory authorities in many countries in setting the ozone goal 

and target for emission reduction, as it may be not possible to act independently in 

the local and regional context without a coordinated action on a global scale to also 

reduce the emissions of precursors. If the ozone standard is lowered it would mean 

that the efforts and policy measures for reduction of excessive readings in the 

Sydney region are less effective. Indeed, it would be more difficult to keep the 

ozone level within the maximum threshold in terms of human health risk and plant 

growth concerns. 

9.2. Direction for future work 

To enhance the findings of this research, several suggestions are suggested for future 

work to be carried out, and are listed as follows: 

i. The performance of the metamodel for the spatial estimation of ozone may be 

improved further by considering other factors such as the population 

distribution and the roads network. The metamodel performance was also much 

dependent on the target outputs of the training process, which are extracted 

from the deterministic air quality model. In this work, the TAPM–CTM model 

has been used, however many underestimated points exist especially during the 

episode days which significantly affected the performance of the constructed 

metamodel. Therefore, the performance could be compared to alternative 

models such as the AUSPLUME and CMAQ models. 
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ii. As the concept of the proposed approach in this thesis is generic in the spatial 

estimation of air pollutants (i.e. ozone in this work), it has a high potential to be 

extended to other air pollutants such as sulphur dioxide (SO2), carbon 

monoxide (CO), nitrogen dioxide (NO2) and fine particles. For example, for the 

NO2 pollutant, these input parameters could be considered: x-y location 

coordinates, terrain information, and emission rates for nitrogen oxides (NOx); 

while for fine particles less than 10 micrometer (PM10) pollutant, these input 

variables may be used: x-y location coordinates, terrain information, and 

emission rates for nitrogen oxides (NOx), ammonia (NH3), sulphur oxides 

(SOx), VOCs, and primary PM10. 

iii. The construction of the metamodel requires the Matlab neural network toolbox 

and involves several complicated steps, which may give difficulty to the 

regulatory agencies in implementing the proposed methodology. To avoid this 

trouble, a suitable user interface (UI) or standalone toolbox should be 

developed so that its operation is not reliant on the Matlab software. 

iv. Other regions in Australia as well as in other countries could be considered in 

the future evaluation, for example in South-East Asia region, to study the air 

pollutant transportation profiles between inland areas. As the presented 

methods developed in this work are generic in the temporal and spatial 

predictions of air pollutant (i.e. ozone in this work), they can be applicable for 

air quality modelling for different regions of Australia and expected to achieve 

similar modelling performance. The detail steps on how to run the modelling 

processes have been explained clearly, hence, there are easy to be followed, 

especially for those who have some fundamental knowledge in neural 

networks. 
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APPENDICES  

Appendix A: Matlab codes for three DOE methods. 

A-1 Matlab codes for Weighted Clustering Design (WCD) sampling 

method. 

function [] = Model_sampling_WCD_iteration() 
% Data sampling using the Weighted Clustering Design (WCD) method 
% --------------------------------------------------------------- 
%  
% The input-output data have to be provided (i.e. large data to be 

sampled) 
% e.g.: 'Test_7d' file contains of TESTIN and TESTOUT, which 

considered as large dataset 
 
clear all;  
clc; 
  
dataname='Test_7d'; 
% dataname='Test_5d_ozone'; 
  
    disp(' '); 
    disp('Data sampling in process.  This may take a while, please 

wait...'); 
    disp(' '); 
    load(dataname); 
  
perc = 0.25;        % percentage number of data points to be sampled 
n_iter = 1;         % the number of data points' group (e.g. 3 days 
= 3 groups) 
u = 1;              % the first number of a group data points 
v = 4000;           % maximum number of a group data points 
max_n = v; 
INPUT = []; 
OUTPUT = []; 
  
for q = 1:n_iter 
    q 
    INPUTFULL = TESTIN(u:v,:); 
    OUTPUTFULL = TESTOUT(u:v,:);     
    DATA = [INPUTFULL,OUTPUTFULL]; 
    [pn,ps] = mapminmax(DATA',-1,1); 
    pn = pn'; 
    [a b] = size(pn); 
     
    c = zeros(b,1); 
    d = dist(pn,c); 
    [S SI] = sort(d,'ascend'); 
    n = round(perc*length(S)); 
    T = kmeans(S,n); 
    used = []; 
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    for k=1:n 
        R = find(T==k); 
        RR = R(1,1); 
        pick = SI(RR,1); 
        used = [used pick']; 
    end 
     
    used = used'; 
    INPUTq = INPUTFULL(used,:)'; 
    OUTPUTq = OUTPUTFULL(used,:)'; 
    INPUT = [INPUT,INPUTq]; 
    OUTPUT = [OUTPUT,OUTPUTq]; 
    u = u + max_n; 
    v = v + max_n; 
end 
INPUT = INPUT'; 
OUTPUT = OUTPUT'; 
  
% Scatter plot of the sampled data 
    figure; 
    scatter3(pn(:,1),pn(:,2),pn(:,3),100,T,'filled'); 
    figure; 
    scatter3(pn(:,3),pn(:,4),pn(:,5),100,T,'filled'); 
    figure; 
    scatter3(INPUT(:,3),INPUT(:,4),INPUT(:,5),100); 
save result_DOE; 

 

A-2 Matlab codes for Latin Hypercube Design (LHD) sampling 

method. 

function [] = Model_sampling_LHD_iteration() 
% Data sampling using the n-level Latin Hypercube Design (LHD 
% ----------------------------------------------------------- 
% 
% The input-output data have to be provided (i.e. large data to be 

sampled) 
% e.g.: 'Test_7d' file contains of TESTIN and TESTOUT, which 

considered as large dataset 
 
clear all;  
clc; 
  
dataname='Test_7d'; 
%dataname='Test_5d_ozone'; 
  
disp(' '); 
disp('Data sampling in process.  This may take a while, please 
wait...'); 
disp(' '); 
load(dataname); 
  
perc = 0.85;        % percentage number of data points to be sampled 
n_iter = 1;         % the number of data points' group (e.g. 3 days 

= 3 groups) 
nvar_LHD = 7;       % the number of design variables 



Appendices 217 

 
 

u = 1;              % the first number of a group data points 
v = 4000;           % maximum number of a domain data points 
max_n = v; 
INPUT = []; 
OUTPUT = []; 
  
for q = 1:n_iter 
    q 
    INPUTFULL = TESTIN(u:v,:); 
    OUTPUTFULL = TESTOUT(u:v,:); 
    DATA = INPUTFULL; 
    [pn,ps] = mapminmax(DATA,0,1); 
    [a b] = size(pn); 
     
    % FFD sampling points 
    % ------------------- 
    n = round(perc*a); 
    dLH = lhsdesign(n,nvar_LHD,'criterion','maximin'); 
  
    % Compute distances between all possible pairs of points 
    % ------------------------------------------------------ 
    J = dist(pn,dLH');  
    [Jmin I] = min(J(:,1)); 
    [m n] = size(J); 
  
    Index = I; 
    for i=2:n 
        [Jmin I] = sort(J(:,i),'ascend'); 
        for k=1:m  
            %[Jmin I] = sort(J(:,i),'ascend');    %  
            pick_I = I(k,1); 
            if pick_I~=Index, break  
            end 
        end 
        Index = [Index pick_I]; 
    end 
  
    used1 = Index'; 
    used = unique(used1,'first'); 
    INPUTq = INPUTFULL(used,:)'; 
    OUTPUTq = OUTPUTFULL(used,:)'; 
    %save result_DOE; 
    INPUT = [INPUT,INPUTq]; 
    OUTPUT = [OUTPUT,OUTPUTq]; 
    u = u + max_n; 
    v = v + max_n; 
end 
INPUT = INPUT'; 
OUTPUT = OUTPUT'; 
  
save result_DOE;  
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A-3 Matlab codes for n-level Full Factorial Design (n-FFD) 

sampling method. 

function [] = Model_sampling_FFD_iteration() 
% Data sampling using n-level full factorial design (FFD) 
% ------------------------------------------------------- 
%  
% The input-output data have to be provided (i.e. large data to be 

sampled) 
% e.g.: 'Test_7d' file contains of TESTIN and TESTOUT, which 

considered as large dataset 
% The sampling number defined by the combination of n-level in 'dFF' 
% function 
 
clear all;  
clc; 
  
dataname='Test_7d'; 
%dataname='Test_5d_ozone'; 
  
disp(' '); 
disp('Data sampling in process.  This may take a while, please 
wait...'); 
disp(' '); 
load(dataname); 
  
n_iter = 1;         % the number of data points' group (e.g. 3 days 
= 3 groups) 
u = 1;              % the first number of a group data points 
v = 4000;           % maximum number of a domain data points 
max_n = v; 
INPUT = []; 
OUTPUT = []; 
  
for q = 1:n_iter 
    q 
    INPUTFULL = TESTIN(u:v,:); 
    OUTPUTFULL = TESTOUT(u:v,:); 
    DATA = INPUTFULL; 
    [pn,ps] = mapminmax(DATA,0,1); 
     
    % FFD sampling points 
    % ------------------- 
    dFF = fullfactorial([3 3 3 3 3 3 4],1); %for Test1_7 variables 
    % dFF = fullfactorial([4 4 4 4 5],1); %for Test2_5 

variables_ozone 
  
    % Compute distances between all possible pairs of points 
    % ------------------------------------------------------ 
    J = dist(pn,dFF');  
    [Jmin I] = min(J(:,1)); 
    [m n] = size(J); 
  
    Index = I; 
    for i=2:n 
        [Jmin I] = sort(J(:,i),'ascend'); 
        for k=1:m  
            %[Jmin I] = sort(J(:,i),'ascend');    %  
            pick_I = I(k,1); 
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            if pick_I~=Index, break  
            end 
        end 
        Index = [Index pick_I]; 
    end 
  
    used1 = Index'; 
    used = unique(used1,'first'); 
    INPUTq = INPUTFULL(used,:)'; 
    OUTPUTq = OUTPUTFULL(used,:)'; 
    %save result_DOE; 
    INPUT = [INPUT,INPUTq]; 
    OUTPUT = [OUTPUT,OUTPUTq]; 
    u = u + max_n; 
    v = v + max_n; 
end 
INPUT = INPUT'; 
OUTPUT = OUTPUT'; 
  
save result_DOE; 
  
function X=fullfactorial(q, Edges) 
% Generates a full factorial sampling plan in the unit cube 
% 
%Inputs: 
% q – k – vector containing the number of points along each 
% dimension 
% Edges – if Edges=1 the points will be equally spaced from 
% edge to edge (default), otherwise they will be in 
% the centres of n=q(1)? q(2)? _ _ _ q(k) bins filling 
% the unit cube. 
% 
% Output: 
% X – full factorial sampling plan 
if nargin < 2, Edges=1; end 
if min(q) < 2 
    error('You_must_have_at_least_two_points_per_dimension.'); 
end 
% Total number of points in the sampling plan 
n=prod(q); 
% Number of dimensions 
k=length(q); 
%Pre–allocate memory for the sampling plan 
X=zeros(n,k); 
%Additional phantom element 
q(k+1)=1; 
for j=1:k 
    if Edges==1 
        one_d_slice =(0:1/(q(j)-1):1); 
    else 
        one_d_slice =(1/q(j)/2:1/q(j):1); 
    end 
    column=[]; 
    while length(column) <n 
        for l=1:q(j) 
            column=[column; ones(prod(q(j+1:k)),1)* one_d_slice(l)]; 
        end 
    end 
    X(:,j)=column; 
end   
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A-4 Codes to generate large data points from a known function 

% Codes to generate large data points from a known function, y 
% ------------------------------------------------------------ 
%  
% All variables have the same constraint (i.e. range) 
  
clear all; 
clc; 
  
hi = 10;        % low range 
lo = -10;       % high range 
nr = 4000;      % the number of data points to generated 
nvar = 7;       % the number of tyhe design variables 
vari = 0.001;   % the variance of the data 
  
inp = lo+(hi-lo)*rand(nvar,nr); 
x1 = inp(1,:); x2 = inp(2,:); x3 = inp(3,:); x4 = inp(4,:); x5 = 
inp(5,:); x6 = inp(6,:); x7 = inp(7,:); 
  
s = length(x1); 
n = ones(1,s); 
y = (x1-10*n).^2 + 5*(x2-12*n).^2 + x3.^4 + 3*(x4-11*n).^2 + 
10*x5.^6 + 7*x6.^2 + x7.^4 - 4*x6.*x7 - 10*x6 - 8*x7; 
%y = (x1-10*n).^2 + 5*(x2-12*n).^2; 
yd = y + sqrt(0.001).*randn(1,s); 
  
figure; 
plot(x7,y,x7,yd,'o','MarkerFaceColor',[0 0 0]); 
% figure; 
% plot(x,y,INPUT30,OUTPUT30,'o','MarkerFaceColor',[0 0 0]); 
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Appendix B: Matlab codes for some improvement of 
OLS algorithm 

B-1 Codes for RBFNN with adaptively tuned spread parameter 

function [net,tr]=newrb3b_sp3(p,t,goal,spread,mn,df,sp1) 
%NEWRB Design a radial basis network (with adaptively tuned spread 
(sp) 
%----------------------------------------------------------------- 
% 
%    [net,tr] = newrb(P,T,GOAL,SPREAD,MN,DF,SP1) 
% 
%  Description 
% 
%    Radial basis networks can be used to approximate 
%    functions.  NEWRB adds neurons to the hidden 
%    layer of a radial basis network until it meets 
%    the specified mean squared error goal. 
% 
%   NEWRB(P,T,GOAL,SPREAD,MN,DF) takes these arguments, 
%     P      - RxQ matrix of Q input vectors. 
%     T      - SxQ matrix of Q target class vectors. 
%     GOAL   - Mean squared error goal, default = 0.0. 
%     SPREAD - Spread to build the P matrix 
%     MN     - Maximum number of neurons, default is Q. 
%     DF     - Number of neurons to add between displays,default=25. 
%     SP1    - Initial spread parameter for the gradient descent 
% 
% Copyright 1992-2007 The MathWorks, Inc. 
% Modified by Herman Wahid, June, 2012 
  
if nargin < 2, error('NNET:Arguments','Not enough input arguments'), 
end 
  
% Defaults 
if nargin < 3, goal = 0; end 
if nargin < 4, spread = 1; end 
if nargin < 6, df = 10; end 
if nargin < 7, sp1 = 1; end 
  
% Format 
if isa(p,'cell'), p = cell2mat(p); end 
if isa(t,'cell'), t = cell2mat(t); end 
  
% Error checks 
if (~isa(p,'double')) | (~isreal(p)) | (length(p) == 0) 
  error('NNET:Arguments','Inputs are not a non-empty real matrix.') 
end 
if (~isa(t,'double')) | (~isreal(t)) | (length(t) == 0) 
  error('NNET:Arguments','Targets are not a non-empty real matrix.') 
end 
if (size(p,2) ~= size(t,2)) 
  error('NNET:Arguments','Inputs and Targets have different numbers 
of columns.') 
end 
if (~isa(goal,'double')) | ~isreal(goal) | any(size(goal) ~= 1) | 
(goal < 0) 
  error('NNET:Arguments','Performance goal is not a positive or zero 
real value.') 
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end 
if (~isa(spread,'double')) | ~isreal(spread) | any(size(spread) ~= 
1) | (spread < 0) 
  error('NNET:Arguments','Spread is not a positive or zero real 
value.') 
end 
if (~isa(df,'double')) | ~isreal(df) | any(size(df) ~= 1) | (df < 1) 
| (round(df) ~= df) 
  error('NNET:Arguments','Display frequency is not a positive 
integer.') 
end 
  
% More defaults 
Q = size(p,2); 
if nargin < 5, mn = Q; end 
  
% More error checking 
if (~isa(mn,'double')) | ~isreal(mn) | any(size(mn) ~= 1) | (mn < 1) 
| (round(mn) ~= mn) 
  error('NNET:Arguments','Maximum neurons is not a positive 
integer.') 
end 
  
  
% Dimensions 
R = size(p,1); 
S2 = size(t,1); 
  
% Architecture 
net = network(1,2,[1;1],[1; 0],[0 0;1 0],[0 1]); 
  
% Simulation 
net.inputs{1}.size = R; 
net.layers{1}.size = 0; 
net.inputWeights{1,1}.weightFcn = 'dist'; 
net.layers{1}.netInputFcn = 'netprod'; 
net.layers{1}.transferFcn = 'radbas'; 
net.layers{2}.size = S2; 
net.outputs{2}.exampleOutput = t; 
  
% Performance 
net.performFcn = 'mse'; 
  
% Design Weights and Bias Values 
warn1 = warning('off','MATLAB:rankDeficientMatrix'); 
warn2 = warning('off','MATLAB:nearlySingularMatrix'); 
[w1,b1,w2,b2,tr] = designrb(p,t,goal,spread,mn,df,sp1); 
warning(warn1.state,warn1.identifier); 
warning(warn2.state,warn2.identifier); 
  
net.layers{1}.size = length(b1); 
net.b{1} = b1; 
net.iw{1,1} = w1; 
net.b{2} = b2; 
net.lw{2,1} = w2; 
  
%====================================================== 
function [w1,b1,w2,b2,tr] = designrb(p,t,eg,sp,mn,df,sp1) 
  
[r,q] = size(p); 
[s2,q] = size(t); 
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b = sqrt(-log(.5))/sp; 
%sp1 = 0.1; 
SP = []; 
SP = [SP sp]; 
MSEALL = []; 
  
% RADIAL BASIS LAYER OUTPUTS 
P = radbas(dist(p',p)*b); 
PP = sum(P.*P)'; 
d = t'; 
dd = sum(d.*d)'; 
  
% CALCULATE "ERRORS" ASSOCIATED WITH VECTORS 
e = ((P' * d)' .^ 2) ./ (dd * PP'); 
  
% PICK VECTOR WITH MOST "ERROR" 
pick = findLargeColumn(e); 
used = []; 
left = 1:q; 
W = P(:,pick); 
P(:,pick) = []; PP(pick,:) = []; 
e(:,pick) = []; 
used = [used left(pick)]; 
left(pick) = []; 
  
% CALCULATE ACTUAL ERROR 
b = sqrt(-log(.5))/sp1; 
w1 = p(:,used)'; 
a1 = radbas(dist(w1,p)*b); 
[w2,b2] = solvelin2(a1,t); 
a2 = w2*a1 + b2*ones(1,q); 
MSE = mse(t-a2); 
MSEALL = [MSEALL MSE]; 
RMSE0 = sqrt(MSE); 
  
% Start 
tr = newtr(mn,'perf'); 
tr.perf(1) = mse(t-repmat(mean(t,2),1,q)); 
tr.perf(2) = MSE; 
if isfinite(df) 
    fprintf('NEWRB, neurons = 0, MSE = %g\n',tr.perf(1)); 
    fprintf('NEWRB, neurons = 1, MSE = %g\n',tr.perf(2)); 
    fprintf('NEWRB, neurons = 1, SP = %g\n',sp); 
end 
flag_stop = 0; 
  
iterations = min(mn,q); 
%sp1=sp; 
for k = 2:iterations 
   
  % CALCULATE "ERRORS" ASSOCIATED WITH VECTORS 
  wj = W(:,k-1); 
  a = wj' * P / (wj'*wj); 
  P = P - wj * a; 
  PP = sum(P.*P)'; 
  e = ((P' * d)' .^ 2) ./ (dd * PP'); 
  
  % PICK VECTOR WITH MOST "ERROR" 
  pick = findLargeColumn(e); 
  W1 = [W, P(:,pick)]; 
  P(:,pick) = []; PP(pick,:) = []; 
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  e(:,pick) = []; 
  used = [used left(pick)]; 
  left(pick) = []; 
   
  %b = sqrt(-log(.5))/sp; 
  % CALCULATE ACTUAL ERROR 
  w1 = p(:,used)'; 
%   a1 = radbas(dist(w1,p)*b); 
%   [w2,b2] = solvelin2(a1,t); 
%   a2 = w2*a1 + b2*ones(1,q); 
%   MSE = mse(t-a2); 
   
  % FIND OPTIMAL SPREAD 
  % ------------------- 
  %RMSE0 = sqrt(MSE); 
  spz = sp1 + 0.5*sp1; 
  sp0 = sp1; 
  kk = 1; 
  while kk>0 && kk<1000 
  b = sqrt(-log(.5))/spz; 
  w1 = p(:,used)'; 
  a1 = radbas(dist(w1,p)*b); 
  [w2,b2] = solvelin2(a1,t); 
  a2 = w2*a1 + b2*ones(1,q); 
  MSE = mse(t-a2); 
  RMSE1=sqrt(MSE); 
   
  step = 30; 
  M = 1e-5;      % Threshold value to terminate gradient descent 
  z = (spz-sp0); 
  %if z==0, break, end 
  gradrmse=(RMSE1-RMSE0)/z; 
  %graddiff=(gradrmse-gradrmse0); 
  ratio=abs((RMSE1-RMSE0)/RMSE0); 
    if ratio>=M 
        RMSE0=RMSE1;                %abs(z) 
        sp0=spz; 
        %gradrmse0=gradrmse; 
        spz=spz-step*gradrmse; 
        kk=kk+1; 
        elseif ratio>=0 && ratio<M ||isnan(ratio) 
            break; 
    end 
  kk;   
  end 
  W=W1; 
  SP = [SP spz]; 
  MSEALL = [MSEALL MSE]; 
  % --------------------- 
   
  % PROGRESS 
  tr.perf(k+1) = MSE; 
   
  % DISPLAY 
  if isfinite(df) & (~rem(k,df)) 
    fprintf('NEWRB, neurons = %g, MSE = %g\n',k,MSE); 
    fprintf('NEWRB, neurons = %g, SP = %g\n',k,spz); 
    %flag_stop=plotperf(tr,eg,'NEWRB',k); 
  end 
   
  % STOP CONDITION 
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  if (MSE < eg), break, end 
  if (flag_stop), break, end 
end 

[S1,R] = size(w1); 
b1 = ones(S1,1)*b; 

% Finish 
tr = cliptr(tr,k); 

save work; 

%====================================================== 

function i = findLargeColumn(m) 

replace = find(isnan(m)); 
m(replace) = zeros(size(replace)); 

m = sum(m .^ 2,1); 
i = find(m == max(m)); 
i = i(1); 

%====================================================== 

function [w,b] = solvelin2(p,t) 

if nargout <= 1 
  w= t/p; 
else 
  [pr,pc] = size(p); 
  x = t/[p; ones(1,pc)]; 
  w = x(:,1:pr); 
  b = x(:,pr+1); 
end 

%====================================================== 

B-2 Pruning algorithm codes (additional codes of Appendix B-1)

  % CHECK THE STRENGTH OF THE NODE 
  y = mean((a1)'); 
  yy = y(:,k-n); 
  yyy = yy/max(y); 
  Y = [Y yyy]; 
  if yyy >= 0.8; 
     [w2,b2] = solvelin2(a1,t); 
     a2 = w2*a1 + b2*ones(1,q); 
     MSE = mse(t-a2); 
  else 

used(:,k-n)=[]; 
n = n + 1; 

  end 
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Appendix C: The proposed algorithm codes for RBFNN 

C-1 RBFNN with GRFSWLS strategy 

function [net,tr]=newrbfs6dddd(p,t,goal,spread,mn,df,lamb) 
% NEWRB Design a radial basis network 
% ----------------------------------------------------------------- 
% Regularised and weighted least squares forward selection (RWLSFS) 
% + regularised network weights + fine-tuned GCV 
% 
%  Synopsis 
% 
%    [net,tr] = newrb(P,T,GOAL,SPREAD,MN,DF,LAMB0) 
% 
%  Description 
% 
%    Radial basis networks can be used to approximate 
%    functions.  NEWRB adds neurons to the hidden 
%    layer of a radial basis network until it meets 
%    the specified mean squared error goal. 
% 
%   NEWRB(P,T,GOAL,SPREAD,MN,DF) takes these arguments, 
%     P      - RxQ matrix of Q input vectors. 
%     T      - SxQ matrix of Q target class vectors. 
%     GOAL   - Mean squared error goal, default = 0.0. 
%     SPREAD - Spread of radial basis functions, default = 1.0. 
%     MN     - Maximum number of neurons, default is Q. 
%     DF     - Number of neurons to add between displays, default = 
25. 
%   and returns a new radial basis network. 
%     LAMB0  - Initial regularisation parameter value 
% 
% Copyright 1992-2007 The MathWorks, Inc. 
% Modified by Herman Wahid, August, 2012 
  
if nargin < 2, error('NNET:Arguments','Not enough input arguments'), 
end 
  
% Defaults 
if nargin < 3, goal = 0; end 
if nargin < 4, spread = 1; end 
if nargin < 6, df = 25; end 
if nargin < 7, lamb = 0; end 
  
% Format 
if isa(p,'cell'), p = cell2mat(p); end 
if isa(t,'cell'), t = cell2mat(t); end 
  
% Error checks 
if (~isa(p,'double')) | (~isreal(p)) | (length(p) == 0) 
  error('NNET:Arguments','Inputs are not a non-empty real matrix.') 
end 
if (~isa(t,'double')) | (~isreal(t)) | (length(t) == 0) 
  error('NNET:Arguments','Targets are not a non-empty real matrix.') 
end 
if (size(p,2) ~= size(t,2)) 
  error('NNET:Arguments','Inputs and Targets have different numbers 
of columns.') 
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end 
if (~isa(goal,'double')) | ~isreal(goal) | any(size(goal) ~= 1) | 
(goal < 0) 
  error('NNET:Arguments','Performance goal is not a positive or zero 
real value.') 
end 
if (~isa(spread,'double')) | ~isreal(spread) | any(size(spread) ~= 
1) | (spread < 0) 
  error('NNET:Arguments','Spread is not a positive or zero real 
value.') 
end 
if (~isa(df,'double')) | ~isreal(df) | any(size(df) ~= 1) | (df < 1) 
| (round(df) ~= df) 
  error('NNET:Arguments','Display frequency is not a positive 
integer.') 
end 
  
% More defaults 
Q = size(p,2); 
if nargin < 5, mn = Q; end 
  
% More error checking 
if (~isa(mn,'double')) | ~isreal(mn) | any(size(mn) ~= 1) | (mn < 1) 
| (round(mn) ~= mn) 
  error('NNET:Arguments','Maximum neurons is not a positive 
integer.') 
end 
  
  
% Dimensions 
R = size(p,1); 
S2 = size(t,1); 
  
% Architecture 
net = network(1,2,[1;1],[1; 0],[0 0;1 0],[0 1]); 
  
% Simulation 
net.inputs{1}.size = R; 
net.layers{1}.size = 0; 
net.inputWeights{1,1}.weightFcn = 'dist'; 
net.layers{1}.netInputFcn = 'netprod'; 
net.layers{1}.transferFcn = 'radbas'; 
net.layers{2}.size = S2; 
net.outputs{2}.exampleOutput = t; 
  
% Performance 
net.performFcn = 'mse'; 
  
% Design Weights and Bias Values 
warn1 = warning('off','MATLAB:rankDeficientMatrix'); 
warn2 = warning('off','MATLAB:nearlySingularMatrix'); 
[w1,b1,w2,b2,tr] = designrb(p,t,goal,spread,mn,df,lamb); 
warning(warn1.state,warn1.identifier); 
warning(warn2.state,warn2.identifier); 
  
net.layers{1}.size = length(b1); 
net.b{1} = b1; 
net.iw{1,1} = w1; 
net.b{2} = b2; 
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net.lw{2,1} = w2; 
  
% ======================================================= 
% FORWARD SELECTION (k=1) 
% ======================================================= 
function [w1,b1,w2,b2,tr] = designrb(p,t,eg,sp,mn,df,lamb) 
  
% THE SPREAD PARAMETER 
DIST = (dist(p',p)).^2; 
MDIST = mean(DIST(:)); 
STDIST = std(DIST(:),1)*1.1; 
spmin = MDIST - STDIST; 
spmax = MDIST + STDIST; 
num_dig = 1; 
sp = round(spmin*(10^num_dig))/(10^num_dig); 
  
% THE INITIAL SETTING 
[r,q] = size(p); 
[s2,q] = size(t); 
MSEALL = []; 
b = 1/(2*sp); 
P = radbas(dist(p',p)*b);                                
used = []; 
I = eye(q,q); 
  
% THE LEAST SQUARES WEIGTHING FACTORS (H MATRIX) 
d = t'; 
h1 = var(d(:)); 
h2=1/h1;  
%H = h2*I; 
H = h2; 
  
% RBF CENTRE SELECTION 
Q1 = I;                                                                        
Pt = P; 
z1 = ((t*H*Q1*P).^2); 
z2 = lamb*ones(1,q); 
z3 = sum(Pt)*H*Q1*P; 
W = z1./(z2+z3);%  
[W1 IX] = sort(W,'descend');                                                    
pick = IX(1,1);             % Pick vector with maximum W1 
used = [used pick];         % Used vector number for RBF centre                 
                                                         
% THE RBF OUTPUT 
w1 = p(:,used)'; 
a1 = radbas(dist(w1,p)*b); 
a1t = a1'; 
  
% GENERALISED CROSS-VALIDATION TO FIND OPTIMAL 'LAMBDA' 
lamb_min = 0.; 
res = 0.1; 
lamb_max = 1; 
fprintf('Lambda selection, Resolution = integer number...\n'); 
[lamb,lamb_min,lamb_max,res] = 
solvegcv(P,Pt,H,t,lamb_min,lamb_max,res); %res=1 
fprintf('Lambda selection, Resolution = one decimal place...\n'); 
[lamb,lamb_min,lamb_max,res] = 
solvegcv(P,Pt,H,t,lamb_min,lamb_max,res); %res=0.1 
% fprintf('Lambda selection, Resolution = two decimal places...\n'); 
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% [lamb,lamb_min,lamb_max,res] = 
solvegcv(P,Pt,H,t,lamb_min,lamb_max,res); %res=0.01 
% fprintf('Lambda selection, Resolution = three decimal places'); 
% [lamb,lamb_min,lamb_max,res] = 
solvegcv(P,Pt,H,t,lamb_min,lamb_max,res); %res=0.001 
% fprintf('Lambda selection, Resolution = four decimal places'); 
% [lamb,lamb_min,lamb_max,res] = 
solvegcv(P,Pt,H,t,lamb_min,lamb_max,res); %res=0.0001 
% if lamb == lamb_min, lamb=0;end 
% LAMB = [LAMB lamb]; 

% THE PROJECTION MATRIX 
A1 = a1*H*a1t + lamb;
A1in = A1\eye(size(A1));
Q1 = I - a1t*A1in*a1*H; 
% Q1 = I - a1t*(A1\a1)*H; 
% Q1 = I - (a1t/A1)*a1*H; 

% THE NETWORK OUTPUT 
[w2,b2] = solvelin3(a1,t,H,lamb); 
a2 = w2*a1 + b2*ones(1,q); 
%a2 = w2*a1; 

% NETWORK PERFORMANCE 
MSE = mse(t-a2); 
MSEALL = [MSEALL MSE]; 
SSE = sse(t-a2); 
tr = newtr(mn,'perf'); 
tr.perf(1) = mse(t-repmat(mean(t,2),1,q)); 
tr.perf(2) = MSE; 
if isfinite(df) 
  fprintf('NEWRB, neurons = 0, MSE = %g\n',tr.perf(1)); 
  fprintf('NEWRB, neurons = %g, MSE = %g\n',1,MSE); 
end 
flag_stop = 0; 

% ======================================================= 
% FORWARD SELECTION (k>1) 
% ======================================================= 
iterations = min(mn,q); 
for k = 2:iterations 

  % RBF CENTRE SELECTION 
  z1 = ((t*H*Q1*P).^2); 
  z2 = lamb*ones(1,q); 
  z3 = sum(Pt)*H*Q1*P; 
  W = z1./(z2+z3);% 
  [W1 IX] = sort(W,'descend');

  for kk = 1:q
pick = IX(1,kk); % Pick vector with maximum W1
if pick~=used, break, end 

  end 
  used = [used pick]; % Used vector number for RBF centre

  % THE RBF OUTPUT 
  w1 = p(:,used)'; 
  a1 = radbas(dist(w1,p)*b); 
  a1t = a1'; 



Appendices 230 

 
 

   
  % THE PROJECTION MATRIX 
  A1 = a1*H*a1t + lamb*eye(k);                                            
  A1in = A1\eye(size(A1));                                  
  Q1 = I - a1t*A1in*a1*H; 
   
  % THE NETWORK OUTPUT 
  [w2,b2] = solvelin3(a1,t,H,lamb); 
  a2 = w2*a1 + b2*ones(1,q); 
   
  % NETWORK PERFORMANCE 
  MSE = mse(t-a2); 
  SSE = sse(t-a2); 
  MSEALL = [MSEALL MSE]; 
   
  tr.perf(k+1) = MSE; 
   
  % DISPLAY 
  if isfinite(df) & (~rem(k,df)) 
    fprintf('NEWRB, neurons = %g, MSE = %g\n',k,MSE); 
    %flag_stop=plotperf(tr,eg,'NEWRB',k); 
  end 
   
  % CHECK ERROR 
  if (MSE < eg), break, end 
  if (flag_stop), break, end 
  
end 
  
[S1,R] = size(w1); 
b1 = ones(S1,1)*b; 
  
% Finish 
tr = cliptr(tr,k);  
save work; 
  
% ======================================================= 
function [w,b] = solvelin3(p,t,H,lamb) 
  
%H = 1; 
%lamb = 0; 
pt = p'; 
t1 = t'; 
[pr,pc] = size(pt); 
p1 = [pt,ones(pr,1)]; 
p1t = p1'; 
x = [H*pt,H*ones(pr,1); lamb*eye(pc),zeros(pc,1)]\[H*t1; 
zeros(pc,1)]; 
%x = [H*p1,H*ones(pr,1); lamb*eye(pc+1)]\[H*t1; ones(pc+1,1)]; 
%x = (p2t*H*p2 + lamb*eye(pc+1))\(p2t*H*t1); 
%x = (p1t*H*p1 + diag(lamb,pc))\(p1t*H*t1); 
w = x(1:pc,:); w = w'; 
b = x(pc+1,:); b = b'; 
  
% ======================================================= 
function [lamb,lamb_min,lamb_max,res] = 
solvegcv(P,Pt,H,t,lamb_min,lamb_max,res) 
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GCV = []; 
[r,q] = size(P); 
I = eye(q); 
lambd = lamb_min:res:lamb_max; 
for m = 1:length(lambd) 
    m; 
    A1 = P*H*Pt + lambd(1,m)*eye(r);                                           
    A1in = A1\eye(size(A1));                                  
    Q1 = I - Pt*A1in*P*H; 
    Q1t = Q1'; 
    v1 = q*t*Q1t*H*Q1*t'; 
    v2 = (trace(Q1)).^2; 
    gcv = v1/v2; 
    GCV = [GCV gcv]; 
end 
[pickl p_i] = min(GCV); 
lamb = lambd(1,p_i) 
ratio = 0.5; 
res = res*0.1; 
if lamb<=1, lamb_min = 0; 
else lamb_min = lamb - (ratio*res*lamb*10); end 
if lamb_min<0,lamb_min=0;end 
lamb_max = lamb + (ratio*res*lamb*10); 
%save work2; 
  
% ========================================================= 
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Appendix D: Related documents for the data collection 
methods 

D-1 Coordinate locations of the monitoring stations in NSW, 

Australia 

Remarks:  
1. Source of document: Air quality monitoring procedural guide (Issue No. 6), 

Department of Environment, NSW, Australia. 
2. The active monitoring stations in the Sydney region are highlighted in yellow 

colour. 
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D-2 Typical instrument used in the monitoring stations in NSW

Source of document:  Air quality monitoring procedural guide (Issue No. 6), 
Department of Environment, NSW, Australia. 
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Appendix E: Codes for RBFNN metamodel application 

E-1 Metamodel codes for hourly prediction of BOL 

% Hourly prediction of background ozone level (BOL) for 24 hour 
ahead at Blacktown 

% ------------------------------------------------------------- 
% 
% DATA: BLACKTOWN_NEW6ee = HR,NO,NO2,O3,TEMP, WSP; 7 outputs 
% RBFNN setting: mse=0.014,sp=0.6(OLS) -->  

mse=0.014,sp_initial=0.1(OLS-ASP) 
  
clear all; 
clc; 
load BLACKTOWN_NEW6ee; 
  
[pn,ps] = mapminmax(INPUT',0,1); 
[tn,ts] = mapminmax(OUTPUT',0,1); 
[testn,tests] = mapminmax(TESTIN',0,1); 
  
net=newrb3b_sp3(pn,tn,0.014,0.1,100,1);     % RBFNN with adaptively 

tune SP 
y=sim(net,testn); 
yy = mapminmax('reverse',y,ts); 
  
% 1 HOUR 
obs=TESTOUT(:,1)'; est=yy(1,:); mobs = mean(obs); [nz,ntv] = 
size(obs); 
RMSE_1=sqrt(mse(est-obs)); 
MAE_1=mae(est-obs) 
R2_1 = 1 - ( sum( (obs-est).^2 ) / sum( (obs-mobs).^2 ) ) 
d2_1 = 1-(sum((obs-est).^2)/sum((abs(obs-mobs)+abs(obs-mobs)).^2)); 
  
i=1:1:length(est); 
figure; 
plot(i,est,i,obs); 
  
% 2 HOURS 
obs=TESTOUT(:,2)'; est=yy(2,:); mobs = mean(obs); [nz,ntv] = 
size(obs); 
RMSE_2=sqrt(mse(est-obs)); 
MAE_2=mae(est-obs) 
R2_2 = 1 - ( sum( (obs-est).^2 ) / sum( (obs-mobs).^2 ) ) 
d2_2 = 1-(sum((obs-est).^2)/sum((abs(obs-mobs)+abs(obs-mobs)).^2)); 
  
i=1:1:length(est); 
figure; 
plot(i,est,i,obs); 
  
% 3 HOURS 
obs=TESTOUT(:,3)'; est=yy(3,:); mobs = mean(obs); [nz,ntv] = 
size(obs); 
RMSE_3=sqrt(mse(est-obs)); 
MAE_3=mae(est-obs) 
R2_3 = 1 - ( sum( (obs-est).^2 ) / sum( (obs-mobs).^2 ) ) 
d2_3 = 1-(sum((obs-est).^2)/sum((abs(obs-mobs)+abs(obs-mobs)).^2)); 
  
i=1:1:length(est); 
figure; 
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plot(i,est,i,obs); 
  
% 6 HOURS 
obs=TESTOUT(:,4)'; est=yy(4,:); mobs = mean(obs); [nz,ntv] = 
size(obs); 
RMSE_6=sqrt(mse(est-obs)); 
MAE_6=mae(est-obs) 
R2_6 = 1 - ( sum( (obs-est).^2 ) / sum( (obs-mobs).^2 ) ) 
d2_6 = 1-(sum((obs-est).^2)/sum((abs(obs-mobs)+abs(obs-mobs)).^2)); 
  
i=1:1:length(est); 
figure; 
plot(i,est,i,obs); 
  
% 12 HOURS 
obs=TESTOUT(:,5)'; est=yy(5,:); mobs = mean(obs); [nz,ntv] = 
size(obs); 
RMSE_12=sqrt(mse(est-obs)); 
MAE_12=mae(est-obs) 
R2_12 = 1 - ( sum( (obs-est).^2 ) / sum( (obs-mobs).^2 ) ) 
d2_12 = 1-(sum((obs-est).^2)/sum((abs(obs-mobs)+abs(obs-mobs)).^2)); 
  
i=1:1:length(est); 
figure; 
plot(i,est,i,obs); 
  
% 18 HOURS 
obs=TESTOUT(:,6)'; est=yy(6,:); mobs = mean(obs); [nz,ntv] = 
size(obs); 
RMSE_18=sqrt(mse(est-obs)); 
MAE_18=mae(est-obs) 
R2_18 = 1 - ( sum( (obs-est).^2 ) / sum( (obs-mobs).^2 ) ) 
d2_18 = 1-(sum((obs-est).^2)/sum((abs(obs-mobs)+abs(obs-mobs)).^2)); 
  
i=1:1:length(est); 
figure; 
plot(i,est,i,obs); 
  
% 24 HOURS 
obs=TESTOUT(:,7)'; est=yy(7,:); mobs = mean(obs); [nz,ntv] = 
size(obs); 
RMSE_24=sqrt(mse(est-obs)); 
MAE_24=mae(est-obs) 
R2_24 = 1 - ( sum( (obs-est).^2 ) / sum( (obs-mobs).^2 ) ) 
d2_24 = 1-(sum((obs-est).^2)/sum((abs(obs-mobs)+abs(obs-mobs)).^2)); 
  
i=1:1:length(est); 
figure; 
plot(i,est,i,obs); 
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E-2 A generic modelling codes for the estimation of BOL 

% RBFNN metamodel estimation of background ozone level (BOL): 
Generic model 

% ------------------------------------------------------------------ 
% 
% RBFNN setting: mse=0.002,sp=0.6(OLS) 
% INPUTS: X,Y,NO,NO2,O3,TEMP,WSP,WDR 
% OUTPUT: Background ozone level (BOL) 
  
clear all;  
clc; 
load NEW_ALL2; 
  
[pn,ps] = mapminmax(INPUT',0,1); 
[tn,ts] = mapminmax(OUTPUT',0,1); 
[testn,tests] = mapminmax(TESTIN',0,1); 
  
l=min(min(pn)); 
net=newrb1(pn,tn,0.002,0.6,1000,1); % --> R2=0.5766(STM),n=55 
%net=newrb3b_sp3(pn,tn,0.002,0.1,1000,1,1);  
y=sim(net,testn); 
yy = mapminmax('reverse',y,ts); 
  
obs=TESTOUT'; 
est=yy; 
mobs = mean(obs); 
[nz,ntv] = size(obs); 
RMSE=sqrt(mse(yy-TESTOUT')) 
MAE=mae(yy-TESTOUT') 
R2 = 1 - ( sum( (obs-est).^2 ) / sum( (obs-mobs).^2 ) ) 
d = 1-(sum((obs-est).^2)/sum((abs(obs-mobs)+abs(obs-mobs)).^2)) 
%Average=mean(yy) 
%[cfun,rmse] = fit(yy-TESTOUT') 
  
i=1:1:length(yy); 
figure; 
plot(i,yy',i,TESTOUT); 

E-3 The m-codes for the spatial estimation of ozone concentration 

function [] = Model_spatial2() 
% Spatial estimation of ozone concentration 
% ----------------------------------------- 
% 
% newrbfs (FSWLS algorithm) 
%% Modelling 
  
clear all;  
clc; 
f=input('Simulation option: 1=Train new metamodel, 2=Use previous 
modelling :'); 
dataname='Day2004h_NOx3_WDR_06km_domain2.mat'; 
%dataname='Day2004i_VOC_06km_domain2.mat'; 
  
tic; 
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if f==1 
    disp(' '); 
    disp('Modelling in process.  This may take a while, please 
wait...'); 
    disp(' '); 
    load(dataname); 
    %Normalise 
    [pn,ps] = mapminmax(INPUT',0,1); 
    [tn,ts] = mapminmax(OUTPUT',0,1); 
    [testn,tests] = mapminmax(TESTIN',0,1); 
     
    l=min(min(pn)); 
    net=newrb1(pn,tn,0.004,0.1,500,1);              % OLS algorithm 
    %net=newrbfs2aaa(pn,tn,0.005,0.1,400,1,1);      % FSWLS 
algorithm  
    % {newrbfs(input,target,goal,sp,maxsize,plotinterval,alfa)} 
    y=sim(net,testn); 
    yy = mapminmax('reverse',y,ts); 
    yyy=yy'; 
    save metamodel; 
     
elseif f==2 
    load metamodel net ts; 
    load(dataname); 
    [testn,tests] = mapminmax(TESTIN',0,1); 
    y=sim(net,testn); 
    yy = mapminmax('reverse',y,ts); 
    yyy=yy'; 
end 
%save result; 
%% Hourly - individual plot 
  
figure; 
actual=TESTOUT(:,1); 
model=yy(1,:); 
i=1:1:length(actual); 
plot(i,model','--m',i,actual,'b'); 
legend('predicted','actual'); 
xlabel('Day','FontSize',12) 
ylabel('Background ozone level(ppb)','FontSize',12) 
%title('Predicted ozone concentration for 4 hour maximum average') 
  
disp(' '); 
disp('Performance indexes: 1 hour average'); 
obs=actual'; 
est=model; 
mobs = mean(obs); 
[nz,ntv] = size(obs); 
RMSE_2=sqrt(mse(yy-TESTOUT')) 
MAE_2=mae(yy-TESTOUT') 
R2_2 = 1 - ( sum( (obs-est).^2 ) / sum( (obs-mobs).^2 ) ) 
d_2 = 1-(sum((obs-est).^2)/sum((abs(obs-mobs)+abs(obs-mobs)).^2)) 
  
model=model'; 
  
toc 
  
% % Spatial plot 
%  
% tx = 246:2:384; 
% ty = 6207:2:6345; 
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% [XI,YI] = meshgrid(tx,ty); 
% ZII = model'; % actual' or model' 
% ZIII = reshape(ZII, size(XI')); 
% ZI = ZIII'; 
%  
% % figure; 
% % [C,h]=contour(XI,YI,ZI,5); 
% % clabel(C,h,'LabelSpacing',300) 
%  
% figure; 
% pcolor(XI,YI,ZI); 
% %caxis([0 0.1]); 
% caxis auto; 
% shading('flat'); 
% %clabel(C,h,'LabelSpacing',400) 
% colorbar; 
% save result; 
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