Qualitative Constraint Satisfaction Problems: Algorithms, Computational Complexity, and Extended Framework

Weiming Liu

Faculty of Engineering and Information Technology
University of Technology, Sydney

A thesis submitted for the degree of

Doctor of Philosophy

March 2013

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Acknowledgements

I would like to thank all the people who have supported this research work over the past three years. My special thanks are due to my supervisor, A/Prof. Sanjiang Li for his extraordinary and valuable guidance, support and encouragement throughout my PhD candidature. I am very grateful to the three reviewers of my thesis: Prof. Anthony G. Cohn, Prof. Christian Freska, and Prof. Abdul Sattar, for their valuable remarks and suggestions about the thesis. My thanks also belong to Sue Felix, for her excellent editing work. I am grateful to Prof. Shengsheng Wang and all the students and staff in QCIS at the University of Technology, Sydney, with whom I had interesting and inspiring discussions. Last but not least, I want to thank my parents and my wife for their constant and unwavering support over all these years.

Contents

Contents				
Li	st of l	Figures		vii
No	omen	clature		ix
1	Intr	oductio	on	1
	1.1	Appro	aches for Spatial and Temporal Information	1
	1.2	Reason	ning in a Qualitative Way	4
	1.3	Overvi	iew of This Thesis	7
2	Con	cepts aı	nd Notations	9
	2.1	Prelim	ninaries	9
		2.1.1	Relations	9
		2.1.2	Boolean Algebra	10
		2.1.3	Topology	11
	2.2	CSP a	nd SAT	13
	2.3	Qualit	ative Calculi	14
		2.3.1	Point Algebras	16
		2.3.2	Interval Algebra	17
		2.3.3	Cardinal Relation Algebra and Rectangle Algebra	18
		2.3.4	Region Connection Calculus	19
		2.3.5	Cardinal Direction Calculus	22
	2.4	Reason	ning with qualitative calculi	24
		2.4.1	Weak Composition	24

CONTENTS

		2.4.2	The Consistency Problem	26
		2.4.3	Strongest Implied Relation and Minimal Labeling Problem	31
	2.5	Solution	on construction for RCC-5/RCC-8 networks	32
	2.6	Chapte	er Summary	34
3	Con	nputing	Composition Tables Semi-Automatically	35
	3.1	Introdu	uction	35
	3.2	A Ran	dom Method for Computing CT	36
	3.3	Experi	mental Results	41
		3.3.1	The Interval Algebra and the INDU Calculus	41
		3.3.2	The Oriented Point Relation Algebra	43
	3.4	Chapte	er Summary	48
4	Intr	oducing	g Fuzziness to RCC	49
	4.1	Introdu	uction	49
	4.2	Fuzzy	Set Theory and Fuzzy Regions	52
	4.3	Standa	ard Fuzzy RCC Models	53
	4.4	The Co	onsistency Problem	58
	4.5	A Poly	nomial Realisation Algorithm	62
	4.6	Proof	for Theorem 4.3	69
	4.7	Appro	ximation	75
	4.8	Chapte	er Summary	78
5	Rea	soning i	in the Cardinal Direction Calculus	81
	5.1	Introdu	uction	81
	5.2	CDC a	and Projective Interval Relations	83
	5.3	Maxin	nal Canonical Solutions of CDC Networks	89
		5.3.1	Regular Solutions	91
		5.3.2	Meet-Free Solution	93
		5.3.3	Canonical Solutions	96
		5.3.4	Maximal Canonical Solution	97
	5.4	A Cub	ic Algorithm for CSPSAT $_{ ext{CDC}}(\mathcal{B}_{ ext{CDC}})$	100
		5.4.1	An Intuitive $O(n^4)$ Algorithm	101
		542	Improvement to Cubic Time Complexity	104

	5.5	Define	Relations outside the CD	C	106
	5.6	Consis	ency Checking of Incom	plete Networks of Basic CDC Con-	
		straint			110
		5.6.1	CDC Constraints Related	l to Propositional Variables	111
		5.6.2	CDC Constraints Related	I to Clauses	116
	5.7	The Ca	rdinal Direction Calculus	over Disconnected Regions CDC_d	125
		5.7.1	Cubic Algorithm for csps	ат $(\mathcal{B}_{\mathbf{CDC}_d})$	125
		5.7.2	NP-hardness for cspsat(A	$eta_{ ext{CDC}_d}^{lpha})$	128
	5.8	Chapte	r Summary		130
<u> </u>	Lan	d m a ulva	and Dastricted Domains		131
6	6.1		and Restricted Domains		
	6.2				131 132
			•	Results	132
	6.3	6.3.1			135
		6.3.2	•		133
		6.3.3			
			•	a	140
	6.1	6.3.4			146
	6.4	_		CC8	147
		6.4.1		verlay computation	148
		6.4.2		o RCC-5	154
			·	sufficient conditions	154
			• •	oof for Theorem 6.4	158
			_	andmarks to finite domains in RCC-5	161
		6.4.3	C	RCC-8	162
			6.4.3.1 The NP-hardne	ess	162
			6.4.3.2 A nondetermin	istic algorithm	166
			6.4.3.3 RCC-8 model	based on strong connectedness	175
	6.5	Chapte	r Summary		177
7	Solv	ing Mir	imal Constraint Networ	ks	178
	7.1	_			178
	7.2		naries		179

CONTENTS

	7.3	The Pa	artially Ordered Point Algebras and RCC-8	182	
	7.4	Cardin	nal Relation Algebra and Interval Algebra	187	
	7.5	Chapte	er Summary	191	
8	S Conclusion				
	8.1	Thesis	Contributions	192	
	8.2	Future	Directions	193	
		8.2.1	Reasoning with Point-based directional qualitative calculi	193	
		8.2.2	Spatial planning	195	
Re	eferen	ices		197	

List of Figures

2.1	Illustrations of (a) a closed set (b) a disconnected region (c) a con-	
	nected region with a hole (d) a simple region (e) a convex region	12
2.2	Illustration of the basic relations in RCC-5 / RCC-8	22
2.3	(a) A bounded region b and its 9-tiles; (b) a pair of regions (a, b)	23
3.1	Two o-points A , B with the \mathcal{OPRA}_2 relation $2 \leq \frac{1}{5}$	43
4.1	Illustration of the construction procedure of network $\{\lambda_{12}^{\mathbf{C}} = 1, \lambda_{12}^{\mathbf{O}} = 1, \lambda_{12}^{\mathbf{O}}$	
	$0.8, \lambda_{12}^{\mathbf{P}} = 0.6, \lambda_{21}^{\mathbf{P}} = 0.4, \lambda_{11}^{\mathbf{N}} = 0.8, \lambda_{12}^{\mathbf{N}} = 0.4, \lambda_{21}^{\mathbf{N}} = 0, \lambda_{22}^{\mathbf{N}} = 0.6$. The	
	white region stands for \mathbf{a}_1 , and the shaded region stands for \mathbf{a}_2	79
5.1	A complete basic CDC network and its projective IA basic networks .	88
5.2	A pixel p and a digital region a with two pieces	91
5.3	Illustration of regularisation	92
5.4	Illustration of meet-freeing	94
5.5	Transform a regular solution (a) into a digital one (b)	96
5.6	Canonical interval solutions (a) and the maximal canonical solution (b)	100
5.7	Flowchart of the main algorithm	101
5.8	Illustrations of the symmetric ULC relation: (a) an instance (a,b) of	
	the ULC relation; (b) an instance (r_1, r_2) of the rectangle relation $s \otimes fi$;	
	(c) an instance (r_3, r_4) of the rectangle relation $si \otimes f$	107
5.9	Illustrations of relations defined by CDC networks (a) $\Gamma_{s\otimes f}$, (b) $\Gamma_{o\otimes f}$,	
	(c) $\Gamma_{\text{o}\otimes\text{fi}}$, and (d) $\Gamma_{\text{o}\otimes\text{eq}}$	108
5.10	Illustration of a solution $\{a,b,c\}$ of Γ_{\parallel} , where c corresponds to the	
	auxiliary variable w	109

5.11	Illustrations for a solution of Γ , where a, b are rectangles, and c_1, c_2	
	are the shaded region in (a) and (b) respectively.	110
5.12	Illustrations of spatial variables in $\{f_p, f_{\neg p}, f_p^0, u_p, u_{\neg p}\}$: (a) the frame	
	spatial variables f_p , $f_{\neg p}$, f_p^0 ; (b) a solution of Γ_p where u_p is horizontally	
	instantiated; (c) a solution of Γ_p where u_p is vertically instantiated	112
5.13	Possible positions for the lower right corner points of u_p (a) and $u_{\neg p}$	
	(b) (c)	113
5.14	Illustration of a solution of Γ_V	115
5.15	Positions of $w_0^c, w_{rs}^c, w_{st}^c, w_1^c, \dots$	116
	Illustrations of the situations in which (a) the gap condition is satisfied,	
	and (b) the gap condition is violated	118
5.17	Configurations of $w_0^c, w_{rs}^c, w_{st}^c, w_1^c$ for clause $c = p_r \vee \neg p_s \vee p_t$	119
	Possible configurations of u_r and $u_{\neg s}$: (a) u_r is horizontally instantiated;	
	(b) u_r is vertically instantiated; (c) $u_{\neg s}$ is horizontally instantiated; (d)	
	$u_{\neg s}$ is vertically instantiated	120
5.19	Illustration of solution for Γ_c : (a) regions $w_0^c, w_{rs}^c, w_{st}^c, w_1^c$ and v_c ; (b)	
	regions $u_r, u_{\neg r}, u_s, u_{\neg s}, u_t, u_{\neg t}$	123
6.1	Overview of the configuration of all spatial variables in CRA, where	
	we assume $p_i \in Var(c_j)$	141
6.2	Illustrations of the domains of (a) v_i , (b) $u_{j,s}$, (c) (d) $d_{i,j}$, where $l_{j,s} = p_i$	
	in (c) and $l_{j,s} = \neg p_i$ in (d)	142
6.3	History Court for the desire of (a) V and (b) V	
6.4	Illustrations for the domain of (a) X_j and (b) Y_j	143
0.4	An example of subdivision	143149
6.5		
	An example of subdivision	149
6.5	An example of subdivision	149 153
6.5 6.6	An example of subdivision	149 153 163
6.56.66.7	An example of subdivision	149 153 163 164
6.56.66.76.86.9	An example of subdivision	149 153 163 164 164
6.56.66.76.86.9	An example of subdivision	149 153 163 164 164 165
6.5 6.6 6.7 6.8 6.9 6.10 6.11	An example of subdivision	149 153 163 164 164 165

LIST OF FIGURES

7.1	Passing the relation between x_i and y_i to that between $w_{j,k}$ and $w_{j,k+1}$. 183
7.2	Constraints between variables in V_0 in the scenario, where $\{big_i, small_i\}$ =
	$\{x_i, y_i\}$
7.3	Overview of the configuration of $(V_{\phi}, \Gamma_{\phi})$
7.4	Passing the relation between x_i and y_i to that between $c_{j,k}$ and $d_{j,k}$,
	assuming x_i NW y_i

Abstract

Qualitative Spatial and Temporal Reasoning (QSTR) is a subfield of artificial intelligence that represents and reasons with spatial/temporal knowledge in a qualitative way. In the past three decades, researchers have proposed dozens of relational models (known as qualitative calculi), including, among others, Point Algebra (PA) and Interval Algebra (IA) for temporal knowledge, Cardinal Relation Algebra (CRA) and Cardinal Direction Calculus (CDC) for directional spatial knowledge, and the Region Connection Calculus RCC-5/RCC-8 for topological spatial knowledge. *Relations* are used in qualitative calculi for representing spatial/temporal information (e.g. Germany is to the east of France) and constraints (e.g. the to-be-established landfill should be disjoint from any lake).

The reasoning tasks in QSTR are formalised via the *qualitative constraint* satisfaction problem (QCSP). As the central reasoning problem in QCSP, the *consistency problem* (which decides the consistency of a number of constraints in certain qualitative calculi) has been extensively investigated in the literature. For PA, IA, CRA, and RCC-5/RCC-8, the consistency problem can be solved by composition-based reasoning. For CDC, however, composition-based reasoning is incomplete, and the consistency problem in CDC remains challenging.

Previous works in QCSP assume that qualitative constraints only concern completely unknown entities. Therefore, constraints about *landmarks* (i.e., fixed entities) cannot be properly expressed. This has significantly restricted the usefulness of QSTR in real-world applications.

The main contributions of this thesis are as follows.

(i) The composition-based method is one of the most important reasoning methods in QSTR. This thesis designs a semi-automatic algo-

- rithm for generating composition tables for general qualitative calculi. This provides a partial answer to the challenge proposed by Cohn in 1995.
- (ii) Schockaert et al. (2008) extend the RCC models interpreted in Euclidean topologies to the fuzzy context and show that composition-based reasoning is sufficient to solve fuzzy QCSP, where 31 composition rules are used. This thesis first shows that only six of the 31 composition rules are necessary, and then introduces a method which consistently fuzzifies any classical RCC models. This thesis also proposes a polynomial algorithm for realizing solutions of consistent fuzzy RCC constraints.
- (iii) Composition-based reasoning is incomplete for solving QCSP over the CDC. This thesis provides a cubic algorithm which for the first time solves the consistency problem of complete basic CDC networks, and further shows that the problem becomes NP-complete if the networks are allowed to be incomplete. This draws a sharp boundary between the tractable and intractable subclasses of the CDC.
- (iv) This thesis proposes a more general and more expressive QCSP framework, in which a variable is allowed to be a landmark (i.e., a fixed object), or to be chosen among several landmarks. The computational complexity of the consistency problems in the new framework is then investigated, covering all qualitative calculi mentioned above. For basic networks, the consistency problem remains tractable for Point Algebra, but becomes NP-complete for all the remaining qualitative calculi. A special case in which a variable is either a landmark or is totally unknown has also been studied.
- (v) A qualitative network is *minimal* if it cannot be refined without changing its solution set. Unlike the assumptions in the literature, this thesis shows that computing a solution of minimal networks is NP-complete for (partially ordered) PA, CRA, IA, and RCC-5/RCC-8. As a by-product, it has also been proved that determining the minimality of networks in these qualitative calculi is NP-complete.