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Abstract

Qualitative Spatial and Temporal Reasoning (QSTR) is a subfield of arti-
ficial intelligence that represents and reasons with spatial/temporal know-
ledge in a qualitative way. In the past three decades, researchers have
proposed dozens of relational models (known as qualitative calculi), in-
cluding, among others, Point Algebra (PA) and Interval Algebra (IA) for
temporal knowledge, Cardinal Relation Algebra (CRA) and Cardinal Di-
rection Calculus (CDC) for directional spatial knowledge, and the Region
Connection Calculus RCC-5/RCC-8 for topological spatial knowledge.
Relations are used in qualitative calculi for representing spatial/temporal
information (e.g. Germany is to the east of France) and constraints (e.g.
the to-be-established landfill should be disjoint from any lake).

The reasoning tasks in QSTR are formalised via the qualitative constraint
satisfaction problem (QCSP). As the central reasoning problem in QCSP,
the consistency problem (which decides the consistency of a number of
constraints in certain qualitative calculi) has been extensively investigated
in the literature. For PA, IA, CRA, and RCC-5/RCC-8, the consistency
problem can be solved by composition-based reasoning. For CDC, how-
ever, composition-based reasoning is incomplete, and the consistency prob-

lem in CDC remains challenging.

Previous works in QCSP assume that qualitative constraints only con-
cern completely unknown entities. Therefore, constraints about landmarks
(i.e., fixed entities) cannot be properly expressed. This has significantly

restricted the usefulness of QSTR in real-world applications.

The main contributions of this thesis are as follows.

(i) The composition-based method is one of the most important reason-

ing methods in QSTR. This thesis designs a semi-automatic algo-



(ii)

(111)

(iv)

v)

rithm for generating composition tables for general qualitative cal-
culi. This provides a partial answer to the challenge proposed by
Cohn in 1995.

Schockaert et al. (2008) extend the RCC models interpreted in Eu-
clidean topologies to the fuzzy context and show that composition-
based reasoning is sufficient to solve fuzzy QCSP, where 31 com-
position rules are used. This thesis first shows that only six of the
31 composition rules are necessary, and then introduces a method
which consistently fuzzifies any classical RCC models. This thesis
also proposes a polynomial algorithm for realizing solutions of con-

sistent fuzzy RCC constraints.

Composition-based reasoning is incomplete for solving QCSP over
the CDC. This thesis provides a cubic algorithm which for the first
time solves the consistency problem of complete basic CDC net-
works, and further shows that the problem becomes NP-complete
if the networks are allowed to be incomplete. This draws a sharp

boundary between the tractable and intractable subclasses of the CDC.

This thesis proposes a more general and more expressive QCSP frame

work, in which a variable is allowed to be a landmark (i.e., a fixed
object), or to be chosen among several landmarks. The computa-
tional complexity of the consistency problems in the new framework
is then investigated, covering all qualitative calculi mentioned above.
For basic networks, the consistency problem remains tractable for
Point Algebra, but becomes NP-complete for all the remaining qual-
itative calculi. A special case in which a variable is either a landmark

or is totally unknown has also been studied.

A qualitative network is minimal if it cannot be refined without chang-
ing its solution set. Unlike the assumptions in the literature, this
thesis shows that computing a solution of minimal networks is NP-
complete for (partially ordered) PA, CRA, IA, and RCC-5/RCC-8.
As a by-product, it has also been proved that determining the mini-

mality of networks in these qualitative calculi is NP-complete.
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