A STUDY INTO THE EARTHQUAKE RESISTANCE OF CIRCULAR ADOBE BUILDINGS

by

Watcharin Jinwuth

A thesis submitted in fulfilment of the requirements

For the degree of

Doctor of Philosophy

Faculty of Design Architecture and Building

University Technology of Sydney

CERTIFICATE OF AUTHORSHIP/ ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

Watcharin Jinwuth

November 2012

ACKNOWLEDGMENTS

The thesis has not been completed without the support and encouragement of a number of people. In particular, I would like to thank;

- My supervisor, Prof. Bijan Samali, who provided the invaluable support, motivation and time throughout the process of the dynamic testing and writing this thesis.
- My ex-supervisor, Dr. Kevan Heathcote, for his tireless contributions to many aspects of this project and his understanding during difficult times, which have been greatly appreciated.
- My co-supervisor, Dr. Cynthia Wang, for her constant advice, proof-reading, critical comments and encouragement throughout the period of my research.
- My mudbrick helper: Peter Hickson, for his guidance, friendship and support.
- The Lapaloma hotel technician: Khemachat Phaensanit and his staff, for their support in relation to tilt table construction and testing.
- The Thai government for financial support for this research project.
- The University of Technology, Sydney (UTS) and the Faculty of Design Architecture and Building staff, especially Ann Hobson for her friendship and support.
- The UTS Engineering structures laboratory staff: Rami Haddad, David Hooper, Dave Dicker, Peter Brown, Ulrike Dackermann and Scott Graham, for their extensive and willing assistance in all aspects of the experimental testing.
- Hamidreza Valipour, for his willing assistance in FEM analysis and experimental testing.
- My family who provided continual support and love during the past four years.
- Ian, a primary proof-reader and his family for their hospitality and assistance during my time in Australia.
- Nuch, Wise and Ward for their enduring love, support and patience.

PUBLICATIONS

The following publications have been generated as part of this research project.

Conference papers

- Jinwuth, W., Samali, B., Heathcote, K. & Wang, C. 2010, 'A Study into the earthquake resistance of circular adobe buildings using static tilt tests', paper presented to the 2010 AEES Conference, Perth, 26-28 November.
- Samali, B., Jinwuth, W., Heathcote, K. & Wang, C. 2011, 'Seismic capacity comparison between square and circular plan adobe construction', paper presented to the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-12), Hong Kong, 26-28 January.

TABLE OF CONTENTS

CERTIFICATE OF AUTHORSHIP/ ORIGINALITYii
ACKNOWLEDGMENTSiii
PUBLICATIONSiv
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLESxx
ABSTRACTxxiii
Chapter 1 Introduction
1.1 Background to adobe construction1
1.2 Seismic vulnerability of adobe buildings
1.2.1 Distribution of adobe buildings in seismic areas
1.2.2 Historical earthquake damage to conventional adobe buildings
1.2.3 Factors affecting building damage11
1.3 Effect of shape on earthquake resistance
1.4 Aim of thesis
1.5 Scope of the study15
1.6 Limitations
1.7 Research methodology16
1.8 Thesis layout17
Chapter 2 Previous Researches into the Seismic Resistance of Earth Buildings19
2.1 Introduction
2.2 Adobe researches of the Catholic University of Peru
2.3 Static tilt tests of a tall cylindrical liquid storage tank
2.4 Tilt-table-testing of the FUNDASAL, El Salvador

2.5	Seism	ic strengthening of adobe-mud brick houses	33
2.6	Getty	Seismic Adobe Project, U.S.A.	40
2.7	Shake	table testing of scaled geogrid-reinforced adobe models	47
2.8	Adobe	e models testing of the University of Kassel, Germany	50
2.9	Adobe	e guidelines and manuals	52
	2.9.1	International Association for Earthquake Engineering (IAEE)	53
	2.9.2	The Australia Earth Building Handbook	56
	2.9.3	Earthquake Tips	59
	2.9.4	Earthquake-Resistant Construction of Adobe Buildings: A Tutorial.	61
2.10) Sumi	mary	64
Chapte	er 3 Se	eismic Performance of Adobe Buildings	66
3.1	Introd	uction	66
3.2	Earthq	uake Definition	66
3.3	Туріса	al damage patterns and failure mechanisms	68
3.4	Static	and Dynamic Analysis	74
	3.4.1	Static method	74
	3.4.2	Dynamic method	75
3.5	Seism	ic Design Code for Earth Building Regions	77
	3.5.1	Concept of seismic code	77
	3.5.2	The earthquake codes of case studies' regions	81
3.6	Summ	nary	87
Chapte	er4 Pe	erformance of Existing Circular Earthen Houses located in Seismic	
	Re	egions	88
4.1	Introd	uction	88
4.2	Hakka	a earth buildings in China	91
	4.2.1	Background	91

	4.2.2	Architectural and structural features	92
	4.2.3	Building performance in earthquake	99
4.3	Bhung	a houses in India	100
	4.3.1	Background	100
	4.3.2	Architectural and structure features	104
	4.3.3	Building performance in earthquake	104
4.4	Yomat	ta houses in Malawi	106
	4.4.1	Background	106
	4.4.2	Architectural and structural features	108
	4.4.3	Building performance in earthquakes	110
4.5	Summ	ary	112
Chapte	er 5 Si	imple Static Earthquake Design Method	114
5.1	Introdu	uction	114
5.2	Descri	ption of static design method	114
5.3	Relatio	onship between design loads and tilt table performance	117
	5.3.1	Maximum normal stress for design condition	117
	5.3.2	Maximum normal stress for models	119
	5.3.3	Hypothesis of the failure criteria as link between design and model	l
	behavi	ours	120
5.4	Theory	y of reduced model testing	121
5.5	Calcul	ations of static design loads of the existing circular adobe houses	123
5.6	Summ	ary	127
Chapte	er 6 Br	rick Fabrication and Material Property Tests	128
6.1	Introdu	uction	128
6.2	Brick f	fabrication	128
6.3	Materi	al property testing	132

	6.3.1	Specifications	132
	6.3.2	Testing method	135
	6.3.3	Results	137
6.4	Sum	mary	139
Chapte	er 7	Seismic Capacity Comparison between Square and Circular Pla	an Adobe
		Construction using Tilt-table Testing	140
7.1	Intro	duction	140
7.2	The r	relationship between the static design load and tilt table testing	141
7.3	Static	c tilt table	141
7.4	Speci	imen fabrication and specifications	144
7.5	Resu	Its of the specimens tested	146
7.6	Socia	al aspect of circular building	149
7.7	Sum	mary	153
Chapte	er 8 C	Capacity Estimation of Circular Adobe Buildings by Tilt-table Test	ing154
8.1	Intro	duction	154
8.2	The l	hypothesis of the typical failure mechanism	156
8.3	Speci	imen design and construction	157
8.4	Detai	il of experimental procedures of static test	
	8.4.1	Procedures of static tilt-table tests	160
	8.4.2	Specimen 1A	162
	8.4.3	Specimen 2A	164
	8.4.4	Specimen 3A	166
	8.4.5	Specimen 2B	168
	8.4.6	Specimen 3B	170
	8.4.7	Specimen 2C	172
	8.4.8	Specimen 3C	174

	8.4.9	Specimen 2D	.176
	8.4.10	Specimen 3D	.178
8.5	Compa	arative analysis of results from the static tests	180
	8.5.1	Effect of roof load	181
	8.5.2	Effect of wall height-to-thickness ratios	182
	8.5.3	Effect of wall height-to-diameter ratio	184
8.6	Analys	sis of crack patterns and failure mechanisms	186
8.7	Predict	ted performance of the tilt tests	187
	8.7.1	Prediction based on maximum normal stress	187
	8.7.2	Prediction based on overturning about toe	189
	8.7.3	Discussion of the proposed method	192
8.8	Summ	ary	194
Chapte	er 9 C	omparison between Predicted Performances of Tilt Table Test Speci	mens
	wi	th Performance on Shake Table	195
9.1	Introdu	uction	195
9.2	Brick	fabrication and material properties tests	197
	9.2.1	Brick fabrication	197
	9.2.2	Material properties tests	.198
9.3	Adobe	specimens construction	208
9.4	Static	pushover test	210
	9.4.1	Specimen description and test setup	210
	9.4.2	Testing procedure	212
	9.4.3	Experimental result and discussion	212
9.5	Shake	table testing	217
	9.5.1	UTS shake table	218
	9.5.2	Simulated earthquake motions	219

9	9.5.3	Scaling of the input time histories	220
9	9.5.4	Predicted results for the dynamic shake tests	
9	9.5.5	Test setup and instrumentation	230
9	9.5.6	Testing procedure	232
9	9.5.7	Testing and results of specimen 1A	234
9	9.5.8	Testing and results of specimen 3D with openings	237
9.6 \$	Summa	ary	241
Chapter	10 A	pplication of Design Methodology	242
10.1	Introd	luction	242
10.2	Evalu	ation of an existing building	243
10.3	Sumn	nary	247
Chapter	11 C	Conclusions and Recommendations for Further Research	248
11.1	Concl	lusions	248
11.2	Recor	nmendation for further research	250
Referen	ces		252
Appendi	ices		260

LIST OF FIGURES

Figure 1.1: Taos Pueblo's Mud Villages (built ca. 1000 A.D.)(McHenry 1985)2
Figure 1.2: Traditional adobe brick fabrication (Keefe 2005)
Figure 1.3: Construction of a circular adobe house for a homeless project in Thailand
Figure 1.4: A typical circular adobe house for homeless people in Thailand4
Figure 1.5: Breakdown of earthquake-related fatalities in the 20 th century
(Coburn 1993)5
Figure 1.6: World maps of earthen architecture (a) and seismic hazard risk areas(b) from www.terracruda.com (De Sensi 2003)7
Figure 1.7: Earthquake damage to adobe houses Peru-Aug 16, 2007 (Jean Luis Arce /Reuters)
Figure 1.8: Collapsed Adobe structures by Bam Earthquake Jan 14, 2004 (World Housing Encyclopedia)
Figure 1.9: Losses in the 2001 earthquake in Bhuj, India © Randolph Langenbach, 2007
Figure 1.10: The quake-safe circular Adobe houses in India (swissinfo.ch)14
Figure 2.1: Seismic Performance of an Unreinforced and a Strengthened Adobe Building in PUCP
Figure 2.2: Lateral load deformation of static test of unreinforced and reinforced adobe wall's panels in PUCP (Blondet, Garcia & Loaiza 2003)
Figure 2.3: Adobe research at PUCP in 1979
Figure 2.4: Dynamic test of adobe model with cane reinforcement in PUCP25
Figure 2.5: View of the tilt test facilities (Clough & Niwa 1979)26
Figure 2.6: Resultant Forces on Inclined Cylinder (Clough & Niwa 1979)27
Figure 2.7: The plan of the tilt table (Clough & Niwa 1979)28
Figure 2.8: The elevations of the tilt table (Clough & Niwa 1979)28

Figure 2.9: Deflected shapes of the model tanks with different base conditions (Clough
& Niwa 1979)29
Figure 2.10: Basic concept of the static tilt testing (Pena & Lopez 2007)30
Figure 2.11: Tilt table with 40 degrees for maximum angle (Pena & Lopez 2007)31
Figure 2.12: The collapsed of the front wall of traditional adobe house when tilting reach 14 degree (Pena & Lopez 2007)
Figure 2.13: Commencement of cracking of reinforcement house in the side wall at 30 degrees and cracking in the front and rear walls at 34 degrees (Pena & Lopez 2007)
Figure 2.14: Specimen configuration and dimensions of u-shaped wall unit (Dowling 2006)
Figure 2.15: Vertical corner cracking of unreinforced u-shaped adobe wall testing at UTS, Sydney (Dowling 2006)
Figure 2.16: Preparation of reinforced u-shaped adobe wall unit at UTS (Dowling 2006)
Figure 2.17: Detail reinforcement of model adobe house at UTS (Dowling 2006)
Figure 2.18: Damaged model adobe house retrofitted with string, bamboo, wire and timber ring beam at UTS (Dowling 2006)
Figure 2.19: Model house 4 (a) and model house 7 (b) prior to testing (E. Leroy Tolles 2000)
Figure 2.20: Model house 10 (a) and model house 11 (b) configuration (E. Leroy Tolles 2000)
Figure 2.21: East wall of Model house 4 (a) after test level X and east wall of model house 7 (b) after test level X(2) (E. Leroy Tolles 2000)43
Figure 2.22: West wall of Model house 6 (a) after test level VIII and west wall of model house 8 (b) after test level X (E. Leroy Tolles 2000)43
Figure 2.23: Out-of-plane failure of Model house 10 (a) after test level VIII and north wall of model house 11 (b) after test level VIII (E. Leroy Tolles 2000)

Figure 2.24: U-shaped adobe wall configuration (Tipler et al. 2010)48
Figure 2.25: Tilt testing of the U-shaped adobe wall (Tipler et al. 2010)48
Figure 2.26: Tilt testing of the U-shaped adobe wall (Tipler et al. 2010)49
Figure 2.27: Simulation of seismic shocks (Minke 2000)50
Figure 2.28: Earthquake resistant of earthen buildings in circular shape (left) and square shape (right)(Minke 2001)
Figure 2.29: Field strength test of soil (a) and adobe block (b) (IAEE 1986)55
Figure 2.30: Ribbon test (Walker & Standards Australia 2002)
Figure 2.31: Sedimentation test (Walker & Standards Australia 2002)56
Figure 2.32: Roll Test (CTAR/COPASA,2002 cited in Blondet, M. & Brzev 2003)62
Figure 2.33: Configuration of opening guideline (RESESCO, 1997 from WHE)63
Figure 3.1: Types of Fault (NICEE 2002a)67
Figure 3.2: Earthquake-induced inertia force of masonry houses (Source: IITK- Earthquake Tips)
Figure 3.3: Definition of In-plane and Out-of-plane walls.(Source: City University, London)
Figure 3.4: In-plane crack pattern
Figure 3.5: Inclined cracking in the wall in Pinarkaya (Source: GFZ-German Research Centre for Geosciences)
Figure 3.6: Out-of-plane flexural crack pattern71
Figure 3.7: Cracking and separation of walls in 1997 Jabalpur Earthquake (Source: World housing Encyclopedia, reports # 23)
Figure 3.8: In-plane failure pattern
Figure 3.9: In-plane shear failure – San Giuliano (Marrow) (Source: Conservationtech.com)
Figure 3.10: Various types of failure in adobe structures under seismic excitations
(GINELL & Tolles (n.d.))73

Figure 3.11: Seismic zoning map of peak ground acceleration (PGA) of China (RP =
475 years; PE = 10%/50 years) (GB 18306 – 2001 – A1)82
Figure 3.12: Seismic effective coefficient curve of GB50011-2001 (IISEE 2002)83
Figure 3.13: Seismic zoning map of India (IS 1893:2002) (Source: The Institute of Seismological Research (ISR))
Figure 3.14: Seismic hazard map of Africa (Source: GSHAP-Global Seismic Hazard Assessment Project)
Figure 4.1: Seismic Hazard map of Asia (Source: Global Seismic Hazard Assessment Program, Switzerland)
Figure 4.2: Seismic Hazard map of the Western Hemisphere (left) and Europe, Africa
and the Middle East (right) (Source: Global Seismic Hazard Assessment
Program, Switzerland)
Figure 4.3: Seismic intensity zoning map in China
Figure 4.4: The map shows the location of Hongkeng village
Figure 4.5: The view of Hongkeng village where the most earth buildings are located
Figure 4.6: The Zhencheng Buidling was built in 1912 is the biggest circular earthen
form at Hongkeng village (Source: www.painaima.com)95
Figure 4.7: Ground floor plan of the circular earthen form96
Figure 4.8: The 2nd- 4th floor plans of the circular earthen form96
Figure 4.9: The roof plans of the circular earthen form97
Figure 4.10: The cross section of the circular earthen form97
Figure 4.11: The wooden frame supported the inner earthen wall (Prof. Sunny Cai, 2008)
Figure 4.12: Earthen wall with small openings (Prof. Sunny Cai, 2008)98
Figure 4.13: Seismic zoning map of Gujarat (Source: The Institute of Seismological Research (ISR))
Figure 4.14: Map of district of Kutch of Gujarat State (India)101

Figure 4.15: Typical circular earthen hut of Kutch district (Amir January 2005)101
Figure 4.16: Plan of the circular typical building102
Figure 4.17: Section of the circular house103
Figure 4.18: Light roof structure of Bhunga house103
Figure 4.19: Bhunga houses in India104
Figure 4.20: Seismic hazard map of Africa107
Figure 4.21: A traditional Yomata with thatched roof108
Figure 4.22: Typical Yomata buildings109
Figure 4.23: The typical plan of Yomata house
Figure 4.24: The typical roof structure of Yamata house110
Figure 4.25: The typical section of Yamata house110
Figure 5.1: Horizontal design earthquake loads for single story building118
Figure 5.2: Shear forces of circular adobe building118
Figure 5.3: Shear forces on circular adobe model at failure angle119
Figure 5.5: Comparison between the seismic zoning maps produced by China
Earthquake Administration (CEA) (right) and that produced by the Global
Eismic Hazard Assessment Program (GSHAP) (left)
rely on the global seismic hazard map124
Figure 6.1: Mixing of mud for adobe bricks
Figure 6.2: Making adobe bricks by mould
Figure 6.3: (a)Drying of adobe bricks; (b) Stacked adobe bricks130
Figure 6.4: Sedimentation test
Figure 6.5: The sequence of construction for adobe compression prisms
Figure 6.6: Compression machine at NU135
Figure 6.7: Compression test with specimen C1
Figure 6.8: Types of failure pattern of compression prisms (specimen C3 & C5)137

Figure 7.1: Conceptual scheme of the static testing
Figure 7.2: Tilt table configuration and dimensions
Figure 7.3: Construction of the tilt table
Figure 7.4: Tilt testing of a square adobe model143
Figure 7.5: Square and circular specimens' configurations and dimensions145
Figure 7.6: Tilting the square specimen and first crack appearing at 20 degrees146
Figure 7.7: The failure modes of the square specimen when tilted further146
Figure 7.8: Tilting the circular specimen and first crack appearing at 29 degrees147
Figure 7.9: The failure modes of the circular specimens when tilted further147
Figure 7.10: The performance of functional areas in circular adobe houses151
Figure 7.11: Circular-adobe-wall construction152
Figure 8.1: Conceptual failure pattern of a circular adobe model in static testing156
Figure 8.2: Typical specimen configuration157
Figure 8.3: Construction of a circular adobe specimen159
Figure 8.4: The wooden roof cover with bracing160
Figure 8.5: Roof and sand bags installation161
Figure 8.6: Tilting the specimen until cracking and subsequent failure161
Figure 8.7: Reading the result of failure angle161
Figure 8.8: Specimen 1A prior to testing162
Figure 8.9: Testing sequence of specimen 1A163
Figure 8.10: Specimen 2A prior to testing164
Figure 8.11: Testing sequence of specimen 2A165
Figure 8.12: Specimen 3A prior to testing166
Figure 8.13: Testing sequence of specimen 3A167
Figure 8.14: Specimen 2B prior to testing
Figure 8.15: Testing sequence of specimen 2B

Figure 9.8: The typical stress-strain curve of the adobe prisms (specimen D1)206
Figure 9.9: Specimen 1A and 3D (with openings): configuration and dimensions208
Figure 9.10: Three circular adobe models under construction at UTS209
Figure 9.11: Completed three specimens and drying
Figure 9.12: The pushover test setup of the specimen 1A210
Figure 9.13: The curve push-plate
Figure 9.14: Instrument locations for the pushover test
Figure 9.15: Specimen 1A prior to the pushover testing
Figure 9.16: Failure crack patterns at the southwest side wall
Figure 9.17: Failure crack patterns at the southeast side wall
Figure 9.18: Displacement graph of the pushover-testing result
Figure 9.19: Damages sequence of the specimen from the static pushover testing215
Figure 9.20: UTS shake table
Figure 9.21: The acceleration time history of 1940 El-Centro earthquake with Peak
Ground Acceleration of 0.35g registering 7.1 magnitude220
Figure 9.22: Simulation of the specimen 1A using FEM
Figure 9.23: Test set up for the impact hammer testing
Figure 9.24: Impact hammer hit
Figure 9.25: Modal Analysis of the circular model
Figure 9.26: Instrumentation locations and direction of motion
Figure 9.27: LVDT displacement transducer and accelerometer at the north wall
(specimen 1A and 3D)231
Figure 9.28: Instrumentation locations of the specimen 3D with openings231
Figure 9.29: Specimen 1A and 3D: instrumented and ready for testing
Figure 9.30: Specimen 1A after simulation S13235
Figure 9.31: Specimen 1A after simulation S14 and its damage at the SE wall235

Figure 9.33: Specimen 3D: damage from simulation S14238
Figure 9.34: Failure analysis of the specimen 3D with openings
Figure 10.1: Failure analysis of the existing circular adobe house
Figure A-1: The acceleration time history of 1940 El-Centro earthquake with Peak Ground Acceleration of 0.35g
Figure A-2: The acceleration time history of 1994 Northridge earthquake with Peak Ground Acceleration of 0.88g
Figure A-3: The acceleration time history of 1995 Kobe earthquake with Peak Ground Acceleration of 0.84g
Figure A-4: The acceleration time history of 2001 El Salvador earthquake with Peak Ground Acceleration of 0.74g
Figure A-5: Failure analysis of specimen 3D with openings
Figure A-6: Failure mode of the Bhunga house

LIST OF TABLES

Table 1.1: Major earthquakes in regions where adobe buildings are located
Table 2.1: U-shaped adobe wall units testing at UTS: specifications and results (Dowling 2006)
Table 2.1: (continued) U-shaped adobe wall units testing at UTS: specifications and results (Dowling 2006)
Table 2.2: Simulated seismic motions for GSAP testing
Table 2.3: Specifications and results of adobe model testing at GSAP (E. Leroy Tolles 2000)
Table 2.3 (continued): Specifications and results of adobe model testing at GSAP (E. Leroy Tolles 2000)
Table 2.4: Earthquake scale factors of the research at University of Auckland
Table 2.5: Recommendation from IAEE guidelines (1986)
Table 2.6: Recommendations from the Australia Earth Building Handbook (Walker &Standards Australia 2002)
Table 3.1: Selection of method of seismic analysis (Dowrick 1977)
Table 3.2: Design characteristic period of ground motion
Table 4.1: History of post-earthquakes in Malawi 106
Table 4.2: Comparison of the existing adobe houses' configuration
Table 5.1: Values for specific shape factors
Table 5.2: Similitude requirements (Moncarz & Krawinkler 1981)
Table 5.3: Comparison parameters of the existing circular adobe buildings
Table 5.4: Comparison of the horizontal forces of three case studies' buildings126
Table 6.1: Specifications of compression prisms
Table 6.2: Results from compression tests of adobe prisms
Table 7.1: Comparison of specifications between square and circular models

Table 7.2: Results of the square specimen subjected to static tilt testing
Table 7.3: Results of the circular specimen subjected to static tilt testing
Table 8.1: Small Scale Adobe Models: specifications
Table 8.2: Results of the tilt-table testing of the nine circular adobe models
Table 8.3: The comparative results of varying roof loads
Table 8.4: The comparative results of wall height-to-thicknesses ratio
Table 8.5: The comparative results of wall height-to-diameter ratio
Table 8.6: Results of the static tilt testing based on maximum normal stress
Table 8.7: Predicted angles using the mean value of the maximum normal stress188
Table 8.8: Results of the prediction based on overturning about toe
Table 9.1: Adobe prisms specifications for compressive strength testing
Table 9.2: The results of compressive strength of tested prisms
Table 9.3: Comparisons of the compressive strength of adobe bricks
Table 9.4: UTS shake table specifications
Table 9.5: Earthquake records for the shake testing
Table 9.6: Comparison of the prototype and small-scale parameters 222
Table 9.7: Comparisons of the building period's formulas from a various earthquake
codes
Table 9.8: Values of the fundamental natural of frequencies and scale-differences between prototypes and scale models
Table 9.9: Specimens 1A and 3D: natural frequencies and damping ratios
Table 9.10: Testing sequence of the shake table testing for each simulation
Table 9.11: Classification of damage to buildings (IAEE 1986)
Table 9.12 Specimen 1A: testing sequence and summary of observations
Table 9.13 Specimen 3D: testing sequence and summary of observations
Table 10.1: Summarization of the specification of Bhunga house 243
Table 10.2: Ranges of PGA for Modified Mercalli Intensities (Wald et al. 1999)245

ABSTRACT

Unreinforced adobe or mud-brick structures have in the past suffered severe damage from seismic forces and have caused a vast number of deaths. However, a number of adobe buildings located in seismic regions have performed well under several seismic events. Most of these traditional buildings are symmetrical in shapes which have significant bearing on the performance of the buildings during strong earthquakes. Most existing circular adobe houses have performed well in withstanding earthquakes even though some did not have any additional ductile reinforcements.

This thesis presents a series of tilt table tests conducted to study the performance of unreinforced circular adobe buildings subjected to earthquake forces. Nine small-scale models (1:3 scale) of adobe structures were built with a variety of configurations and roof loads. The adobe house models were subjected to a constant acceleration when tilted on a tilt-up table. The lateral component of the models weight was used as a parameter to quantify the maximum seismic force for each model. The results then developed a methodology for designing circular adobe buildings to resist earthquakes in specific seismic zones and for specific site conditions.

A static pushover test and two shake table tests were also conducted in order to evaluate the reliability of the predictive model from the tilt table tests. The research outcomes give simple and effective solutions for construction of new adobe buildings located in seismic hazard areas. It can also be applied to evaluate existing circular adobe buildings for their seismic resistance which can assist in predicting the likely outcome in the event of an earthquake.

Keywords: Adobe construction, mud-brick, earthquake resistance, circular building, tilt table test, static pushover test, shake table test.