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ABSTRACT 

 

The increase in human activities, such as the burning of fossil fuels, has elevated the 

concentration of atmospheric carbon dioxide and warmed the planet through the 

greenhouse effect. In addition, approximately 30% of the CO2 produced by human 

activities has dissolved into the oceans, lowering pH and reducing the abundance, and 

hence the availability, of carbonate ions (CO3
2-), which are essential for calcium 

carbonate deposition. Of great concern is the impact to photosynthetic marine calcifiers, 

elevated CO2 and temperature is expected to have a negative impact on the health and 

survivorship of calcifying marine organisms.  

This thesis explores the effects of elevated CO2 and temperature on the 

microenvironment, photosynthetic efficiency, calcification and biomechanical properties 

in important sediment producers on coral reefs. The reef-building and sediment-

dwelling organisms, Halimeda and symbiont-bearing foraminifera are prominent, co-

existing taxa in shallow coral reefs and play a vital role in tropical and subtropical 

ecosystems as producers of sediment and habitats and food sources for other marine 

organisms. However, there is limited evidence of the effects of ocean warming and 

acidification in these two keystone species. Irradiance alone was not found to influence 

photosynthetic efficiency, photoprotective mechanisms and calcification in Halimeda 

macroloba, Halimeda cylindracea and Halimeda opuntia (Chapter 2). There is also 

limited knowledge of foraminiferal biology on coral reefs, especially the symbiotic 

relationship between the protest host and algal symbionts. Marginopora vertebralis, the 

dominant tropical foraminifera, shows phototactic behavior, which is a unique 

mechanism for ensuring symbionts experience an ideal light environment. The diurnal 

photosynthetic responses of in hospite symbiont photosynthesis was linked to host 

movement and aided in preventing photoinhibition and bleaching by moving away from 

over-saturating irradiance, to more optimal light fields (Chapter 3).  

With this greater understanding of Halimeda and foraminiferan biology and 
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photosynthesis, the impacts of ocean warming and acidification on photosynthesis and 

calcification were then tested (Chapter 4, 5 and 6). Impacts of ocean acidification and 

warming were investigated through exposure to a combination of four temperature (28, 

30, 32, 34°C) and four pCO2 levels (380, 600, 1000, 2000 μatm; equivalent to future 

climate change scenarios for the current and the years 2065, 2100 and 2200 and 

simulating the IPCC A1F1 predictions) (Chapter 4). Elevated CO2 and temperature 

caused a decline in photosynthetic efficiency (FV/FM), calcification and growth in all 

species. After five weeks at 34°C under all CO2 levels, all species died. The elevated 

CO2 and temperature greatly affect the CaCO3 crystal formation with reductions in 

density and width. M. vertebralis experienced the greatest inhibition to crystal 

formation, suggesting that this high Mg-calcite depositing species is more sensitive to 

lower pH and higher temperature than aragonite-forming Halimeda species. Exposure to 

elevated temperature alone or reduced pH alone decreased photosynthesis and 

calcification in these species. However, there was a strong synergistic effect of elevated 

temperature and reduced pH, with dramatic reductions in photosynthesis and 

calcification in all three species. This study suggested that the elevated temperature of 

32°C and the pCO2 concentration of 1000 μatm are the upper limit for survival of these 

species art our site of collection (Heron Island on the Great Barrier Reef, Australia). 

Microsensors enabled the detection of O2 surrounding specimens at high spatial and 

temporal resolutions and revealed a 70-80% in decrease in O2 production under elevated 

CO2 and temperature (1200 μatm 32°C) in Halimeda (Chapter 5) and foraminifera 

(Chapter 6). The results from O2 microprofiles support the photosynthetic pigment and 

chlorophyll fluorescence data, showing decreasing O2 production with declining 

chlorophyll a and b concentrations and a decrease in photosynthetic efficiency under 

ocean acidification and/or temperature stress. This revealed that photosynthesis and 

calcification are closely coupled with reductions in photosynthetic efficiency leading to 

reductions in calcification. 

Reductions in carbonate availability reduced calcification and that can lead to weakened 

calcified structures. Elevations in water temperature is expected to augment this 
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weakening, resulting in decreased mechanical integrity and increased susceptibility to 

storm- and herbivory-induced mortality in Halimeda sp. The morphological and 

biomechanical properties in H. macroloba and H. cylindracea at different wave 

exposures were then investigated in their natural reef habitats (Chapter 7). The results 

showed that both species have morphological (e.g. blade surface area, holdfast volume) 

and biomechanical (e.g. force required to uproot, force required to break thalli) 

adaptations to different levels of hydrodynamic exposure. The mechanical integrity and 

skeletal mineralogy of Halimeda was then investigated in response to future climate 

change scenarios (Chapter 7). The biomechanical properties (shear strength and punch 

strength) significantly declined in the more heavily calcified H. cylindracea at 32ºC and 

1000 μatm, whereas were variable in less heavily calcified H. macroloba, indicating 

different responses between Halimeda species. An increase in less-soluble low Mg-

calcite was observed under elevated CO2 conditions. Significant changes in Mg:Ca and 

Sr:Ca ratios under elevated CO2 and temperature conditions suggested that calcification 

was affected at the ionic level. It is concluded that Halimeda is biomechanically 

sensitive to elevated temperature and more acidic oceans and may lead to increasing 

susceptibility to herbivory and higher risk of thallus breakage or removal from the 

substrate.  

Experimental results throughout the thesis revealed that ocean acidification and 

warming have negative impacts on photosynthetic efficiency, productivity, calcification 

and mechanical integrity, which is likely to lead to increased mortality in these species 

under a changing climate. A loss of these calcifying keystone species will have a 

dramatic impact on carbonate accumulation, sediment turnover, and coral reef 

community and habitat structure. 


