Determining Seismic Response of Mid-rise Building Frames Considering Dynamic Soil-Structure Interaction

By

Seyed Hamid Reza Tabatabaiefar

A thesis submitted in fulfilment of the requirement for the degree of **Doctor of Philosophy**

Faculty of Engineering and Information Technology University of Technology Sydney (UTS)

December 2012

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Seyed Hamid Reza Tabatabaiefar

Sydney, December 2012

ABSTRACT

Structures are often mounted on layers of soil unless bedrock is very close to the ground surface. Based on the fact that seismic waves pass through kilometres of bedrock and usually less than 100 meters of soil, soil layers play a significant role in assigning the characteristics of the ground surface movement. When the ground is stiff enough, the dynamic response of the structure will not be influenced significantly by the soil properties during the earthquake, and the structure can be analysed under the fixed base condition. When the structure is resting on a flexible medium, the dynamic response of the structure will be different from the fixed base condition owing to the interaction between the soil and the structure. This difference in behaviour is because of the phenomenon, commonly referred to as soil-structure interaction (SSI), which if not taken into account in analysis and design properly; the accuracy in assessing the structural safety, facing earthquakes, could not be reliable. Performance-based engineering (PBE) is a technique for seismic evaluation and design using performance level prediction for safety and risk assessment. Soilstructure interaction particularly for unbraced structures resting on relatively soft soils may significantly amplify the lateral displacements and inter-storey drifts. This amplification of lateral deformations may change the performance level of the building frames. Thus, a comprehensive dynamic analysis to evaluate the realistic performance level of a structure should consider effects of SSI in the model.

In this study, an enhanced numerical soil-structure model has been developed which treats the behaviour of soil and structure with equal rigor. Structural elements of the soil-structure model are capable of capturing both elastic and inelastic structural behaviour as well as structural geometric nonlinearity (large displacements) in dynamic analysis. Adopting direct method of analysis, the numerical model can perform fully nonlinear time history dynamic analysis to simulate realistic dynamic behaviour of soil and structure under seismic excitations accurately. Fully nonlinear method precisely follows any prescribed nonlinear constitutive relation and adopts hysteretic damping algorithm enabling strain-dependent modulus ($G/G_{max} - \gamma$) and damping functions ($\xi - \gamma$) to be incorporated directly to capture the hysteresis curves and energy-absorbing characteristics of the real soil. In order to avoid reflection of outward propagating waves back into the model, viscous boundaries comprising independent dashpots in the normal and shear directions are placed at the lateral boundaries of

the soil medium. In addition, the lateral boundaries of the main grid are coupled to the free-field grids at the sides of the model to simulate the free-field motion which would exist in the absence of the structure.

The proposed numerical soil-structure model has been verified and validated by performing experimental shaking table tests at the UTS civil laboratories. For this purpose, a prototype soil-structure system including a building frame resting on a clayey soil has been selected and scaled with geometric scaling factor of 1:30. The soil-structure physical model consists of 15 storey steel structural model, synthetic clay mixture consists of kaolinite, bentonite, class F fly ash, lime, and water, and laminar soil container, designed and constructed to realistically simulate the free field conditions in shaking table tests. A series of shaking table tests were performed on the soil-structure physical model under the influence of four scaled earthquake acceleration records and the results, in terms of maximum structural lateral and vertical displacements, were measured and compared with the numerical predictions. Comparing the predicted and observed values, it is noted that the numerical predictions and laboratory measurements are in a good agreement. Therefore, the numerical soil-structure model can replicate the behaviour of the real soil-structure system with acceptable accuracy.

In order to determine the elastic and inelastic structural response of regular mid-rise building frames under the influence of soil-structure interaction, three types of midrise moment resisting building frames, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600m/s, representing soil classes C_e (V_s =600m/s), D_e (Vs=320m/s), and E_e (Vs=150m/s) according to Australian Standards, having three bedrock depths of 10, 20, and 30 metres. The structural sections are designed after conducting nonlinear time history analysis, based on both elastic method, and inelastic procedure considering elastic-perfectly plastic behaviour of structural elements. The designed frame sections are modelled and analysed, employing Finite Difference Method adopting FLAC2D software under two different boundary conditions: (i) fixed base (no soil-structure interaction), and (ii) flexible base considering soil-structure interaction. Fully nonlinear dynamic analyses under the influence of four different earthquake records are conducted and the results in terms of lateral displacements, inter-storey drifts, and base shears for both mentioned boundary conditions are obtained, compared, and discussed. According to the numerical and experimental investigations, conducted in this study, soil-structure interaction has significant effects on the elastic and inelastic seismic response and performance level of midrise moment resisting building frames resting on soil classes D_e and E_e . Thus, the conventional elastic and inelastic design procedures excluding SSI may not be adequate to guarantee the structural safety of regular mid-rise moment resisting building frames resting on soft soil deposits.

Based on the numerical results, a simplified design procedure is proposed in which inter-storey drifts under the influence of soil-structure interaction for each two adjacent stories can be determined and checked against the criterion of life safe performance level. This can be used to ensure the performance levels of the mid-rise moment resisting building frames under the influence of SSI remain in life safe level, and the seismic design is safe and reliable. Structural engineers and engineering companies could employ the proposed simplified design procedure for similar structures as a reliable and accurate method of considering SSI effects in the seismic design procedure instead of going through the whole numerical procedure which could be complicated and time consuming.

ACKNOWLEDGMENT

This PhD project could not have been possible without the assistance, understanding, and guidance rendered by numerous people throughout the project. The author would very much like to express his appreciation and gratitude to his principal supervisor, Dr. Behzad Fatahi, for his limitless support, tireless contributions, and guidance throughout this work. The author would also like to very much thank his co-supervisor, Professor Bijan Samali, for his invaluable advice and unfailing assistance throughout the years.

Furthermore, the author would like to thank staff of the UTS Structures Laboratory, Rami Haddad, David Dicker, David Hooper, and Laurence Stonard for their extensive assistance in conducting the experimental works. Special thanks go to Peter Brown, for his remarkable help in all technical matters concerning experimental shaking table tests.

Warm thanks to my friends and colleagues for sharing their time and friendship with the author and rendered precious help. Special thanks to Aslan Sadeghi Hokmabadi (PhD candidate at UTS) for his collaboration and kind assistance during the experimental phase of the project. Aslan and I conducted the experimental part of this research together to be used in our theses. The author also feels a deep sense of gratitude to all the academic and non-academic staff in the Faculty of Engineering and Information Technology for the help rendered.

Words are not enough to thank my family for the support they have given me during this long and sometimes difficult journey. The author would very much like to express his love and gratitude to his mother and father for their love and support, and for instilling in me the value of learning and providing me outstanding opportunities to do so throughout my life. Without their endless help, I would not be able to achieve and enjoy these successes.

LIST OF REFEREED PUBLICATIONS BASED ON THIS RESEARCH

Journal Articles

- Tabatabaiefar, H.R., Fatahi, B. & Samali, B. 2012, 'Seismic Behaviour of Building Frames Considering Dynamic Soil-Structure Interaction', *International Journal of Geomechanics*, ASCE, doi:10.1061/ (ASCE) GM.1943-5622.0000231 (Accepted on June 5, 2012).
- Tabatabaiefar, H.R., Fatahi, B. & Samali, B. 2012, 'Idealisation of Soil-Structure System to Determine Inelastic Seismic Response of Mid-Rise Building Frames', *Soil Dynamics and Earthquake Engineering*, Elsevier Ltd (Accepted on March 24, 2012).
- Tabatabaiefar, H.R., Fatahi, B. & Samali, B. 2012, 'Finite Difference Modelling of Soil-Structure Interaction for Seismic Design of Moment Resisting Building Frames', *Australian Geomechanis Journal*, vol. 47, no. 3, pp.113-120.
- Tabatabaiefar, H.R., Fatahi, B. & Samali, B. 2012, 'An Empirical Relationship to Determine Lateral Seismic Response of Mid-Rise Building Frames under Influence of Soil-Structure Interaction', *The Structural Design of Tall and Special Buildings*, DOI: 10.1002/tal.1058, Wiley-Blackwell (Accepted on August 9, 2012).
- Tabatabaiefar, H.R., Fatahi, B. & Samali, B. 2012, 'Lateral Seismic Response of Mid-Rise Building Frames under Influence of Dynamic Soil-Structure Interaction', *Structural Engineering and Mechanics*, Techno Press (Accepted on November 30, 2012).

Peer-reviewed Conference Papers

 Tabatabaiefar, H.R., Fatahi, B. & Samali, B. 2012, 'Inelastic Lateral Seismic Response of Building Frames under Influence of Bedrock Depth Variations Incorporating Soil-Structure Interaction', *The 22nd Australasian Conference on the Mechanics of Structures and Materials, Materials to Structures : Advancement through Innovation (ACMSM22)*, 11-14 December 2012, Sydney, Australia, pp. 587-592.

- Hokmabadi, A.S., Fatahi, B., Tabatabaiefar, H.R. & Samali, B. 2012, 'Effects of Soil-Pile-Structure Interaction on Seismic Response of Moment Resisting Buildings on Soft Soil', *Proceedings of The Third International Conference on New Developments in Soil Mechanics and Geotechnical Engineering*, Near East University, pp. 337-384.
- Fatahi, B., Tabatabaiefar, H.R., Hokmabadi, A.S. & Samali, B. 2012, 'Significance of Bedrock Depth in Dynamic Soil-Structure Interaction Analysis for Moment Resisting Frames', *Proceedings of the Second International Conference on Performance-based Design in Earthquake Geotechnical Engineering*, Associazione Geotecnica Italiana, pp. 1396-1406.
- Tabatabaiefar, H.R., Fatahi, B. & Samali, B. 2012, 'Effects of Soil Dynamic Properties and Bedrock Depth on Seismic Response of Building Frames Incorporation Soil-Structure Interaction', *Proceedings of the 5th Asia-Pacific Conference on Unsaturated Soils Theory and Practice*, pp. 597-603.
- 10. Tabatabaiefar, H.R., Fatahi, B. & Samali, B. 2011, 'Effects of Dynamic Soil-Structure Interaction on Performance Level of Moment Resisting Buildings Resting on Different Types of Soil', *Proceedings of the 2011 Pacific Conference on Earthquake Engineering (PCEE)*, New Zealand Society for Earthquake Engineering Inc, pp. 1-8.
- 11. Samali, B., Fatahi, B. & Tabatabaiefar, H.R. 2011, 'Seismic behaviour of Concrete Moment Resisting Buildings on Soft Soil Considering Soil-Structure Interaction', *Proceedings of the 21st Australasian Conference on the Mechanics of Structures and Materials (ACMSM21)*, pp. 407-412.
- 12. Fatahi, B., Tabatabaiefar, H.R. & Samali, B. 2011, 'Performance Based Assessment of Dynamic Soil-Structure Interaction Effects on Seismic Response of Building Frame', *Proceedings of Georisk 2011 - Geotechnical Risk Assessment & Management* (*Geotechnical Special Publication No. 224*), American Society of Civil Engineers (ASCE), pp. 344-351.
- 13. Tabatabaiefar, H.R. Samali, B., & Fatahi, B. 2010, 'Effects of Dynamic Soil-Structure Interaction on Inelastic Behaviour of Mid-Rise Moment Resisting Buildings on Soft Soils', *Proceedings of the Australian Earthquake Engineering Society 2010 Conference*, Australian Earthquake Engineering Society, pp. 1-11.

- 14. Fatahi, B., Tabatabaiefar, H.R. & Samali, B. 2010, 'Influence of Soil Characteristics on Seismic Response of Mid-Rise Moment Resisting Buildings Considering Soil-Structure Interaction', *Proceedings of the 2010 Symposium on Seismic Engineering Design for Management of Geohazards*, Australian Geomechanics Society, pp. 67-74.
- 15. Tabatabaiefar, H.R. Samali, B., & Fatahi, B. 2010, 'Seismic Behaviour of Steel Moment Resisting Buildings on Soft Soil Considering Soil-Structure Interaction', *Proceedings of the 14 European Conference on Earthquake Engineering 2010*, Macedonian Association for Earthquake Engineering (MAEE), pp.1720-1727.

TABLE OF CONTENTS

1. I	NTR	ODUCTION	1
1.1	Gen	neral	1
1.2	Sign	nificant of Soil-Structure Interaction	2
1.3	Obj	ectives and Scope of Study	3
1.4	Org	anisation of the Thesis	5
2. L	LITEF	RATURE REVIEW ON SOIL-STRUCTURE INTERACTION	7
2.1	Bac	kground	7
2.2	Soil	I-Structure Interaction (SSI)	8
2	.2.1	Principles of Soil-Structure Interaction	9
2.3	Moo	delling Soil Medium for Soil-Structure Interaction Analysis	13
2	.3.1	Winkler Model (Spring Model)	. 13
2	.3.2	Lumped Parameter on Elastic Half-Space	. 14
2	.3.3	Numerical Methods	. 17
2.4	Effe	ects of Soil-Structure Interaction on Seismic Behaviour of Building Frames	.20
2	.4.1	Effects of Shear Wave Velocity of Subsoil on Seismic Response	22
2	.4.2	Effect of SSI on Seismic Response of Braced Building Frames	. 23
2	.4.3	Effect of SSI on Seismic Response of Unbraced Building Frames	. 24
2.5	Bui	lding Codes Recommendations	27
2.6	Rela	ationships for Considering SSI Effects in Seismic Design	30
2.7	Sha	king Table Experimental Tests	32
2.8	Sun	nmary	37
3. N	JUMI	ERICAL SIMULATION OF SOIL-STRUCTURE INTERACTION	40
3.1	Soil	I-Structure System in Direct Method	40
3.2	Fini	ite Difference Software, FLAC2D	41
3.3	Nur	nerical Idealisation of Soil-Structure System	42
3.4	Stru	ictural Elements	43
3	.4.1	Beam Structural Elements Geometric and Mechanical Properties	44

3.4.2	Local Systems and Sign Conventions of Beam Structural Element	45
3.5 Soil	Elements	46
3.5.1	Soil Elements Constitutive Model and Parameters	49
3.5.2	Soil Damping	49
3.5.3	Soil Shear Modulus	52
3.5.4	Backbone Curves for Cohesive Soils	54
3.5.5	Backbone Curves for Cohesionless Soils	55
3.6 Inter	rface Elements	56
3.7 Bou	ndary Conditions	58
3.7.1	Lateral Boundary Conditions	58
3.7.2	Bedrock Boundary Condition	61
3.7.3	Distance between Soil Boundaries	61
3.8 Dyn	amic Analysis of Soil-Structure Systems	62
3.8.1	Numerical Procedures for Dynamic Analysis of Soil-Structure Systems	62
3.8.2	Hysteretic Damping Formulation and Implementation	65
3.9 Sum	nmary	67
4. EXPE	RIMANTAL STUDY AND VERIFICATION	69
4.1 Gen	eral	69
4.2 Prot	otype Characteristics	70
4.3 Scal	ing Factors for Shaking Table Testing	70
4.3.1	Adopted Geometric Scaling Factor	73
4.4 Stru	ctural Model Design and Construction	75
4.4.1	Characteristics of Structural Model	75
4.4.2	Design of Structural Model	76
4.4.3	Construction of Structural Model	78
4.5 Soil	Container Design and Construction	79
4.5.1	Characteristics of Laminar Soil Container	79
4.5.2	Design of Laminar Soil Container	80
4.5.3	Construction of Laminar Soil Container	84
4.6 Soil	Mix Design	86

4.6.1	Characteristics of Soil Model	86
4.6.2	Development of Soil Mix	88
4.6.3	Properties of the Selected Soil Mix	
4.7 Sca	ling of Adopted Earthquake Acceleration Records	95
4.8 Inst	rumentation and Data Acquisition System	97
4.9 Sha	king Table Tests on Fixed Base Structural Model	99
4.9.1	Shaking Table Tests Procedure	100
4.9.2	Determining Structural Damping Ratio	101
4.9.3	Fixed base Model Test Results	101
4.10 Sha	king Table Tests on Soil-Structure Model	
4.10.1	Test Preparations and Setup	104
4.10.2	Shaking Table Tests on Flexible Base Model	107
4.10.3	Flexible Base Model Test Results	108
4.11 Ver	ification of Numerical Models Using Shaking Table Test Results	110
4.12 Sun	nmary	117
5. NUM	ERICAL PARAMETRIC STUDY	119
5.1 Intr	oduction	119
5.2 Cha	racteristics of Adopted Structure Models	120
5.3 Nor	llinear Time-History Dynamic Analysis	120
5.3.1	Geometric Nonlinearity and P-Delta Effects in Time-History Analysis	121
5.3.2	Utilised Ground Motions in Time History Analyses	123
5.4 Geo	technical Characteristics of employed Subsoils	124
5.5 Util	ised Soil and Interface Parameters in FLAC Soil-Structure Model	125
5.6 Stru	actural Section Design of the Models Using SAP2000	127
5.6.1	Elastic Structural Design of the Models	128
5.6.2	Inelastic Structural Design of the Models	131
5.7 Det	ermining Seismic Response of the Models Considering Dynamic Soil	 -
Stru	cture Interaction	134
5.8 Res	ults and Discussions	135
5.8.2	Base Shear	154

	5.8.3 Lateral Deflections and Inter-storey Drifts	
5.9	Summary	157
6.	SIMPLIFIED DESIGN PROCEDURE FOR PRACTICAL APPLICA	TIONS 159
6.1	Introduction	159
6.2	Developing Initial Form of the Empirical Relationship	
6.3	Proposed Simplified Design Procedure	
6.4	Worked Example	167
6.5	Summary	
7.	CONCLUSIONS AND RECOMMENDATIONS	171
7.1	Conclusions	171
7.2	Recommendations and Future Works	175
RE	FERENCES	176
AP	PENDIX A	

LIST OF FIGURES

Figure 2.1: Coupled dynamic model of structure and soil for horizontal and rocking
motions proposed by Wolf (1985)
Figure 2.2: Equivalent one-degree-of-freedom system presented by Wolf (1985) 11
Figure 2.3: Redundant coupled dynamic model of structure with zero rotation of mass
and of soil for norizontal and rocking motions (woll, 1985)12
Figure 2.4: Winkler foundation model
Figure 2.5: Soil modelling in Lumped Parameter method15
Figure 2.6: Modelling soil medium using numerical methods; (a) 2D model; (b) 3D model
Figure 2.7: Flexible cylindrical soil container (Meymand, 1998)
Figure 2.8: Laminar soil container developed by Taylor (1997)
Figure 3.1: Soil-structure system in direct method
Figure 3.2: Soil-structure model simulated in FLAC2D
Figure 3.3: Components of the soil-structure model
Figure 3.4: Modelling structural elements using beam structural elements
Figure 3.5: General beam structural element cross-section in y-z plane (after Itasca, 2008)
Figure 3.6: Coordinate system of beam structural elements (after Itasca, 2008)45
Figure 3.7: Sign convention for forces and moments of beam elements (after Itasca, 2008)
Figure 3.8: Two dimensional plane-strain soil grids consisting of quadrilateral elements
Figure 3.9: (a) Overlaid quadrilateral elements used in soil-structure model; (b) typical
triangular element with velocity vectors; (c) nodal force vector (after Malvern, 1969).47
Figure 3.10: Wave amplitude dissipation in soil medium
Figure 3.11: Hysteretic stress-strain relationships at different strain amplitudes

Figure 3.12: Relations between G/G_{max} versus cyclic shear strain for cohesive soils (after Sun et al. 1998) 54
Figure 3.13: Relations between damping versus cyclic shear strain for cohesive soils (after Sun et al., 1998)
Figure 3.14: Relations between G/G_{max} and cyclic shear strain for cohesionless soils
(after Seed et al., 1986)
Figure 3.15: Relations between damping ratio and cyclic shear strain for cohesionless
soils (after Seed et al, 1986)
Figure 3.16: Interface elements including normal (k_n) and shear (k_s) springs
Figure 3.17: Boundary conditions for soil-structure model
Figure 3.18: Preliminary lateral boundary condition for soil medium (after Chopra and
Gutierres, 1978)
Figure 3.19: Simulating lateral boundary conditions for soil-structure model
Figure 4.1: Dimensional characteristics of the prototype
Figure 4.2: Scale model of soil structure interaction problem
Figure 4.3: Structural model dimensions
Figure 4.4: 3D numerical model of the structural model in SAP200077
Figure 4.5: Construction detail drawings of the structural model77
Figure 4.6: Cut and drilled steel plates by the UTS engineering workshop78
Figure 4.7: Assembling process of the structural model78
Figure 4.8: Completed structural model
Figure 4.9: Adopted laminar soil container dimensions
Figure 4.10: 3D numerical model of the laminar soil container in SAP2000
Figure 4.11: Laminar soil container general plan
Figure 4.12: Construction detail drawing of the hardwood timber base plate
Figure 4.13: Construction detail drawing of the aluminium base frame
Figure 4.14: Construction detail drawing of the connections

Figure 4.15: Cutting and drilling aluminium sections at the UTS structures laboratory 84
Figure 4.16: (a) Cut and drilled aluminium sections; (b) ready to use welded rectangular
aluminium frames
Figure 4.17: (a) Construction of timber base plate at the structures laboratory; (b)
drilling required holes on the timber base plate
Figure 4.18: (a) Bolted connection between the base plate and base frame; (b) soil
container walls consisting of glued aluminium frames and rubbers
Figure 4.19: Laminar soil container view after completion of the walls
Figure 4.20: Different dry components of the soil mix
Figure 4.21: (a) Soil mix cylindrical test specimen; (b) placing the mixtures into the
mould with palette knives
Figure 4.22: Bender element piezoelectric transducers
Figure 4.23: Master control box of bender element system
Figure 4.24: Soil specimen placed between bender elements
Figure 4.25: PC running bender element control software
Figure 4.26: Shear wave velocities versus cure age for the examined mixes
Figure 4.27: (a) Sealed soil Mix C cylindrical test specimen of size $D=100$ mm and
h=200 mm; (b) failed soil specimen after performing Unconfined Compression test95
Figure 4.28: Kobe earthquake (1995); (a) original record; (b) scaled record96
Figure 4.29: Northridge earthquake (1994); (a) original record; (b) scaled record96
Figure 4.30: El Centro earthquake (1940); (a) original record; (b) scaled record
Figure 4.31: Hachinohe earthquake (1968); (a) original record; (b) scaled record97
Figure 4.32: Utilised measuring instruments in the shaking table tests; (a) displacement
transducer; (b) accelerometer
Figure 4.33: Fixed base structural model secured on the UTS shaking table
Figure 4.34: Final arrangement of the measuring instruments
Figure 4.35: Recorded maximum lateral deflections of fixed base 15 storey structural
model under the influence of scaled Kobe (1995) earthquake102

Figure 4.36: Recorded maximum lateral deflections of fixed base 15 storey structural model under the influence of scaled Northridge (1994) earthquake
Figure 4.37: Recorded maximum lateral deflections of fixed base 15 storey structural model under the influence of scaled El Centro (1940) earthquake
Figure 4.38: Recorded maximum lateral deflections of fixed base 15 storey structural model under the influence of scaled Hachinohe (1968) earthquake
Figure 4.39: Various components of the secured laminar soil container on the shaking table
Figure 4.40: (a) Placing the mix components and mixer near the shaking table; (b)
producing and placing the soil mix into the soil container105
Figure 4.41: Finished surface of the level soil inside the soil container106
Figure 4.42: (a) Placing the structural model on top of the soil mix; (b) final arrangement of the level structural model on top of the soil
Figure 4.43: (a) Installing the displacement transducers on the structural model; (b) vertical displacement transducer installed at the level of the base plate107
Figure 4.44: Final setup of the measuring instruments of the soil-structure model 107
Figure 4.45: Recorded maximum lateral deflections of flexible base model under the influence of scaled Kobe (1995) earthquake
Figure 4.46: Recorded maximum lateral deflections of flexible base model under the influence of scaled Northridge (1994) earthquake
Figure 4.47: Recorded maximum lateral deflections of flexible base model under the influence of scaled El Centro (1940) earthquake
Figure 4.48: Recorded maximum lateral deflections of flexible base model under the influence of scaled Hachinohe (1968) earthquake
Figure 4.49: Experimental time-history displacement results for fixed base and flexible base models under the influence of Kobe earthquake (1995)110
Figure 4.50: Simulated numerical fixed base model in FLAC2D111
Figure 4.51: Simulated numerical flexible base model in FLAC2D

Figure 4.52: Numerical and experimental maximum lateral displacements of fixed base
and flexible base models under the influence of scaled Kobe (1995) earthquake113
Figure 4.53: Numerical and experimental maximum lateral displacements of fixed base
and flexible base models under the influence of scaled Northridge (1994) earthquake114
Figure 4.54: Numerical and experimental maximum lateral displacements of fixed base and flexible base models under the influence of scaled El Centro (1940) earthquake 114
Figure 4.55: Numerical and experimental maximum lateral displacements of fixed base
and flexible base models under the influence of scaled Hachinohe (1968) earthquake114
Figure 4.56: Average values of the numerical predictions and experimental values of the
maximum lateral displacements of fixed base and flexible base models
Figure 4.57: Average experimental inter-storey drifts of fixed base and flexible base
models
Figure 5.1: Configurations of the cantilever beam: (a) original configuration: (b)
deformed configuration
F: 50 N G 11 1 (1005) 102
Figure 5.2: Near field acceleration record of Kobe earthquake (1995)
Figure 5.3: Near field acceleration record of Northridge earthquake (1994)123
Figure 5.4: Far field acceleration record of El-Centro earthquake (1940)124
Figure 5.5: Far field acceleration record of Hachinohe earthquake (1968)124
Figure 5.6: Adopted fitting curves for clay in this study; (a) Relations between G/G_{max}
versus shear strain; (b) Relations between material damping ratio versus shear strain126
Figure 5.7: Adopted fitting curves for sand in this study; (a) Relations between G/G_{max}
versus cyclic shear strain; (b) Relations between material damping ratio versus cyclic
shear strain
Figure 5.8: Concrete sections designed for the adopted frames based on elastic design
method: (a) 5 storey model (S5): (b) 10 storey model (S10): (c) 15 storey model (S15) 131
$\frac{1}{1000} = \frac{1}{1000} = 1$
Figure 5.9: Elastic-perfectly plastic behaviour of structural elements
Figure 5.10: Concrete sections designed for the adopted frames based on inelastic design
method; (a) 5 storey model (S5); (b) 10 storey model (S10); (c) 15 storey model (S15) 133
Figure 5.11: Numerical Models; (a) fixed base model; (b) flexible base model

Figure 5.12: Elastic storey deflections of the adopted structural models resting on soil
classes C_e , D_e , and E_e with bedrock depth of 30 metres; (a) model S5; (b) model S10; (c)
model S15
Figure 5.13: Elastic storey deflections of the adopted structural models resting on soil
class C_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15139
Figure 5.14: Elastic storey deflections of the adopted structural models resting on soil
class D_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15140
Figure 5.15: Elastic storey deflections of the adopted structural models resting on soil
class E_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 141
Figure 5.16: Elastic inter-storey drifts of the adopted structural models resting on soil
class C_e , D_e , and E_e with bedrock depth of 30 metres; (a) model S5; (b) model S10; (c)
model S15
Figure 5.17: Elastic inter-storey drifts of the adopted structural models resting on soil
class C_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15143
Figure 5.18: Elastic inter-storey drifts of the adopted structural models resting on soil
class D_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15144
Figure 5.19: Elastic inter-storey drifts of the adopted structural models resting on soil
class E_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 145
Figure 5.20: Inelastic storey deflections of the adopted structural models resting on soil
classes C_e , D_e , and E_e with bedrock depth of 30 metres; (a) model S5; (b) model S10; (c)
model S15146
Figure 5.21: Inelastic storey deflections of the adopted structural models resting on soil
class C_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15147
Figure 5.22: Inelastic storey deflections of the adopted structural models resting on soil
class D_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15148
Figure 5.23: Inelastic storey deflections of the adopted structural models resting on soil
class E_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 149
Figure 5.24: Inelastic inter-storey drifts of the adopted structural models resting on soil
classes C_e , D_e , and E_e with bedrock depth of 30 metres; (a) model S5; (b) model S10; (c)
model \$15

Figure 5.25: Inelastic inter-storey drifts of the adopted structural models resting on soil
class C_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15151
Figure 5.26: Inelastic inter-storey drifts of the adopted structural models resting on soil
class D_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15152
Figure 5.27: Inelastic inter-storey drifts of the adopted structural models resting on soil
class E_e with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 153
Figure 6.1: Results of regression analysis to find the best fit to the numerical predictions
of maximum lateral deflections for elastic analysis case163
Figure 6.2: Results of regression analysis to find the best fit to the numerical predictions
of maximum lateral deflections for inelastic analysis case164
Figure 6.3: Results of regression analysis to find the best fit to the numerical predictions
of lateral storey deflections for elastic analysis case
Figure 6.4: Results of regression analysis to find the best fit to the numerical predictions
of lateral storey deflections for inelastic analysis case
Figure 6.5: Determined lateral storey deflections at each level for 15 storey building
resting on soil classes C _e , D _e , and E _e
Figure 6.6: Determined lateral storey deflections at each level for 15 storey building
resting on soil class E _e with variable bedrock depths
Figure 6.7: Inter-storey drifts for 15 storey building resting on soil classes C_e , De, and E_e
Figure 6.8: Inter-storey drifts for 15 storey building resting on soil class E_e with variable
bedrock depths

LIST OF TABLES

Table 2.1: The cone model properties proposed by Wolf (1994) 16
Table 2.2: Site subsoil classifications according to IBC2009
Table 2.3: Past performed shaking table tests on soil-structure systems using various
types of soil containers
Table 3.1: Numerical fitting parameters in FLAC for modulus degradation modelling 67
Table 4.1: UTS shaking table specifications
Table 4.2: Scaling relations in terms of geometric scaling factor (λ)
Table 4.3: Dimensional characteristics of scale model considering different scaling
factors
Table 4.4: Characteristics of the structural model 76
Table 4.5: Proportion of different components for the examined mixtures
Table 4.6: Properties of the selected soil mix on the second day of cure age
Table 4.7: Maximum vertical displacements of the base plate 110
Table 4.8: Adopted parameters for numerical simulation of the structural model111
Table 4.9: Adopted soil parameters in numerical simulation of flexible base model112
Table 4.10: Numerical and experimental maximum vertical displacements and rotations
Table 5.1: Dimensional characteristics of the studied frames
Table 5.2: Utilised Earthquake ground motions 124
Table 5.3: Geotechnical characteristics of the adopted soils in this study
Table 5.4: Utilised soil interface parameters
Table 5.5: Elastic base shear ratios of flexible base to fixed base models (\tilde{V} /V)136
Table 5.6: Inelastic base shear ratios of flexible base to fixed base models (\tilde{V} /V)137
Table 5.7: Maximum elastic lateral deflection ratios of flexible base models to fixed
base models $(\tilde{\delta}/\delta)$

Table 5.8: Maximum inelastic lateral deflection ratios of flexible base models to fixed	
base models $(\tilde{\delta} / \delta)$	

LIST OF NOTATIONS

- A foundation area
- *B* foundation width
- *c* damping coefficient of the structure
- C cohesion
- [C] damping matrix
- C_h horizontal damping coefficient of the subsoil
- C_r rocking damping coefficient of the subsoil
- *E* modulus of elasticity
- E_{str} modulus of elasticity of the structural material
- f natural frequency of fixed base structure
- \tilde{f} natural frequency of soil-structure system
- f_c' specified compressive strength
- f_m natural frequency of the model
- f_p natural frequency of the prototype
- F_s total shear force
- F_n total normal force
- F_x unbalanced forces in x direction from the free-field grid
- F_y unbalanced forces in y direction from the free-field grid
- $\{F_v\}$ force vector
- G shear modulus of the soil
- G_{max} largest value of the shear modulus
- *h* height of the structure
- h_s bedrock depth
- $h\theta$ lateral displacement at the top of the structure due to rotation of the base
- *I*_c flexural rigidity of the building columns
- I_r moment of inertia for rocking motion
- *k* stiffness of the structure
- k_s shear spring stiffness
- k_n normal spring stiffness
- *K* bulk modulus
- [K] stiffness matrix
- K_h horizontal stiffness coefficient of the subsoil

- K_r rocking stiffness coefficient of the subsoil
- K_{ss} soil-structure relative rigidity
- k_x lateral stiffness of the subsoil foundation
- k_{θ} rocking stiffness of the subsoil foundation
- *L* effective contact length
- *m* mass of the structure
- [M] mass matrix
- M_p plastic moment capacity
- $N_{\rm s}$ number of stories
- *r* radius of the foundation base
- S_p performance factor
- S_u soil shear strength
- *T* natural period of fixed-base structure
- \tilde{T} natural period of soil-structure system
- T_n normal traction at the model boundaries
- T_s shear traction at the model boundaries
- *u* lateral displacement at the top of the structure due to structural distortion
- u_n incremental relative displacement vector in normal direction
- u_s incremental relative displacement vector in shear direction
- u_0 lateral displacement at the top of structure due to translation of the base
- u_0^t total displacement of the base
- u^g horizontal seismic excitation
- \tilde{u}^{g} effective input motion
- {*u*} nodal displacement
- $\{\dot{u}\}$ nodal velocity
- $\{\ddot{u}\}$ nodal acceleration
- V base shear of fixed base structure
- \tilde{V} base shear of the structure in soil-structure system
- V_p compression wave velocity of the soil
- V_s shear wave velocity of the soil
- W_D dissipated energy in one hysteresis loop
- W_S ###maximum strain energy
- γ shear strain

- γ_{ref} numerical fitting parameter
- δ maximum lateral deflection of fixed base structure
- $\widetilde{\delta}$ maximum lateral deflection of the structure in soil-structure system
- Δt time-step
- ΔS_y mean vertical zone size at boundary grid point
- η material viscosity
- θ foundation rotation
- λ analysis type factor
- μ structural ductility factor
- υ Poisson's ratio of the soil
- v_x^m x-velocity of the grid point in the main grid
- v_y^m y-velocity of the grid point in the main grid
- v_x^{ff} x-velocity of the grid point in the free-field grid
- v_y^{ff} y-velocity of the grid point in the free-field grid
- ξ equivalent viscous damping ratio
- $\tilde{\xi}$ effective damping ratio
- ξ_{g} hysteretic material damping of the soil
- ρ soil density
- σ_y yield stress
- $\sigma^{\rm ff}_{\rm xx}$ mean horizontal free-field stress at the grid point
- σ^{ff}_{xy} mean free-field shear stress at the grid point
- ϕ friction angle
- $\widetilde{\omega}$ effective natural frequency
- ω_s natural frequency of the fixed base structure