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ABSTRACT 
Structures are often mounted on layers of soil unless bedrock is very close to the 

ground surface. Based on the fact that seismic waves pass through kilometres of 

bedrock and usually less than 100 meters of soil, soil layers play a significant role in 

assigning the characteristics of the ground surface movement. When the ground is 

stiff enough, the dynamic response of the structure will not be influenced 

significantly by the soil properties during the earthquake, and the structure can be 

analysed under the fixed base condition. When the structure is resting on a flexible 

medium, the dynamic response of the structure will be different from the fixed base 

condition owing to the interaction between the soil and the structure. This difference 

in behaviour is because of the phenomenon, commonly referred to as soil-structure 

interaction (SSI), which if not taken into account in analysis and design properly; 

the accuracy in assessing the structural safety, facing earthquakes, could not be 

reliable. Performance-based engineering (PBE) is a technique for seismic evaluation 

and design using performance level prediction for safety and risk assessment. Soil-

structure interaction particularly for unbraced structures resting on relatively soft 

soils may significantly amplify the lateral displacements and inter-storey drifts. This 

amplification of lateral deformations may change the performance level of the 

building frames. Thus, a comprehensive dynamic analysis to evaluate the realistic 

performance level of a structure should consider effects of SSI in the model.

In this study, an enhanced numerical soil-structure model has been developed which 

treats the behaviour of soil and structure with equal rigor. Structural elements of the 

soil-structure model are capable of capturing both elastic and inelastic structural 

behaviour as well as structural geometric nonlinearity (large displacements) in dynamic 

analysis. Adopting direct method of analysis, the numerical model can perform fully 

nonlinear time history dynamic analysis to simulate realistic dynamic behaviour of 

soil and structure under seismic excitations accurately. Fully nonlinear method 

precisely follows any prescribed nonlinear constitutive relation and adopts hysteretic 

damping algorithm enabling strain-dependent modulus (G/Gmax - ) and damping 

functions (  - ) to be incorporated directly to capture the hysteresis curves and energy-

absorbing characteristics of the real soil. In order to avoid reflection of outward 

propagating waves back into the model, viscous boundaries comprising independent 

dashpots in the normal and shear directions are placed at the lateral boundaries of 
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the soil medium. In addition, the lateral boundaries of the main grid are coupled to 

the free-field grids at the sides of the model to simulate the free-field motion which 

would exist in the absence of the structure.  

The proposed numerical soil-structure model has been verified and validated by 

performing experimental shaking table tests at the UTS civil laboratories. For this 

purpose, a prototype soil-structure system including a building frame resting on a clayey 

soil has been selected and scaled with geometric scaling factor of 1:30. The soil-structure 

physical model consists of 15 storey steel structural model, synthetic clay mixture consists 

of kaolinite, bentonite, class F fly ash, lime, and water, and laminar soil container, 

designed and constructed to realistically simulate the free field conditions in shaking table 

tests. A series of shaking table tests were performed on the soil-structure physical 

model under the influence of four scaled earthquake acceleration records and the 

results, in terms of maximum structural lateral and vertical displacements, were 

measured and compared with the numerical predictions. Comparing the predicted 

and observed values, it is noted that the numerical predictions and laboratory 

measurements are in a good agreement. Therefore, the numerical soil-structure 

model can replicate the behaviour of the real soil-structure system with acceptable 

accuracy. 

In order to determine the elastic and inelastic structural response of regular mid-rise 

building frames under the influence of soil-structure interaction, three types of mid-

rise moment resisting building frames, including 5, 10, and 15 storey buildings are 

selected in conjunction with three soil types with the shear wave velocities less than 

600m/s, representing soil classes Ce (Vs=600m/s), De (Vs=320m/s), and Ee

(Vs=150m/s) according to Australian Standards, having three bedrock depths of 10, 

20, and 30 metres. The structural sections are designed after conducting nonlinear 

time history analysis, based on both elastic method, and inelastic procedure 

considering elastic-perfectly plastic behaviour of structural elements. The designed 

frame sections are modelled and analysed, employing Finite Difference Method 

adopting FLAC2D software under two different boundary conditions: (i) fixed base 

(no soil-structure interaction), and (ii) flexible base considering soil-structure 

interaction. Fully nonlinear dynamic analyses under the influence of four different 

earthquake records are conducted and the results in terms of lateral displacements, 

inter-storey drifts, and base shears for both mentioned boundary conditions are 
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obtained, compared, and discussed. According to the numerical and experimental 

investigations, conducted in this study, soil-structure interaction has significant 

effects on the elastic and inelastic seismic response and performance level of mid-

rise moment resisting building frames resting on soil classes De and Ee. Thus, the 

conventional elastic and inelastic design procedures excluding SSI may not be 

adequate to guarantee the structural safety of regular mid-rise moment resisting 

building frames resting on soft soil deposits.   

Based on the numerical results, a simplified design procedure is proposed in which 

inter-storey drifts under the influence of soil-structure interaction for each two 

adjacent stories can be determined and checked against the criterion of life safe 

performance level. This can be used to ensure the performance levels of the mid-rise 

moment resisting building frames under the influence of SSI remain in life safe 

level, and the seismic design is safe and reliable. Structural engineers and engineering 

companies could employ the proposed simplified design procedure for similar structures 

as a reliable and accurate method of considering SSI effects in the seismic design 

procedure instead of going through the whole numerical procedure which could be 

complicated and time consuming. 
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CHAPTER ONE 

 

1.  INTRODUCTION 

1.1 General 
The problem of soil-structure interaction in the seismic analysis and design of structures 

has become increasingly important, as it may be inevitable to build structures at 

locations with less favourable geotechnical conditions in seismically active regions. The 

28 December 1989 Newcastle (Australia) earthquake killed and injured over 150 people 

and damage bill was about $4 billion. Recently, a similar disaster hit Haiti on 12 

January 2010 causing over 200,000 deaths, and leaving over 3 million people homeless. 

The similarity of these two earthquakes is that both of them are intra-plate earthquakes 

occurring in the interior of a tectonic plate. In both cases, many mid-rise buildings 

(approximately 5-15 stories) were severely damaged. The scarcity of land compels 

engineers to construct major structures over soft deposits.  Therefore, there is a need to 

design structures safely but not costly against natural disasters such as earthquakes. 

Effects of dynamic soil-structure interaction under extreme loads due to strong 

earthquakes are significant for many classes of structures and must be included 

precisely in the design.  

Soil-structure interaction (SSI) includes a set of mechanisms accounting for the 

flexibility of the foundation support beneath a given structure resulting in altering the 

ground motion in the vicinity of the foundation compared to the free-field. It determines 

the actual loading experienced by the soil-structure system resulting from the free-field 

seismic ground motions. The seismic excitation experienced by structures is a function 

of the earthquake characteristics, travel path effects, local site effects, and soil-structure 

interaction effects. The result of the first three of these factors can be summarised as 

free-field ground motion. Structural response to the free-field motion is influenced by 

SSI. In particular, accelerations within the structure are affected by the flexibility of the 

foundation support and the difference between foundation support and free-field 

motions. Consequently, an accurate assessment of the inertial forces and displacements 

in structures requires a rational treatment of SSI effects. 
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1.2 Significant of Soil-Structure Interaction 
The seismic response of an engineering structure is influenced by the medium on 

which it is founded. On the solid rock, a fixed base structural response occurs which 

can be evaluated by subjecting the foundation to the free-field ground motion 

occurring in the absence of the structure. However, on a deformable soil, a feedback 

loop exists. In the other words, when the feedback loop exists, the structure responds 

to the dynamics of the soil, while the soil also responds to the dynamics of the 

structure. Structural response is then governed by the interplay between the 

characteristics of the soil, the structure and the input motion.

The Mexico City earthquake in 1985 (Gazetas and Mylonakis, 1998) and 

Christchurch-New Zealand earthquake in 2011 (Bray & Dashti, 2012) clearly 

illustrate the importance of local soil properties on the earthquake response of 

structures. These earthquakes demonstrated that the rock motions could be 

significantly amplified at the base of the structure. Therefore, there is a strong 

engineering motivation for a site-dependent dynamic response analysis for many 

foundations to determine the free-field earthquake motions.  

The determination of a realistic site-dependent free-field surface motion at the base 

of the structure can be the most important step in the earthquake resistant design of 

structures. For determining the seismic response of building structures, it is a 

common practice to assume the structure is fixed at the base. However, this is a 

gross assumption since flexibility of the foundation could be overlooked and 

underestimated in this case. This assumption is realistic only when the structure is 

founded on solid rock. The main concept of site response analysis is that the free 

field motion is dependent on the properties of the soil profile including stiffness of 

soil layers. The stiffness of the soil deposit can change the frequency content and 

amplitude of the ground motion. Likewise, on the path to the structure, wave 

properties might be changed due to the stiffness of the foundation. In general, the 

subsoil foundation response subjected to seismic ground motion has been dictated by 

the soil attributes, the soil conditions, and the characteristics of the earthquake. Wave 

propagation theory denotes that soil layers modify the attribute of the input seismic 

waves while passing through the soil, so that the acceleration record will be affected.  

Soil-structure interaction particularly for unbraced structures resting on relatively 

soft soils may significantly amplify the lateral displacements and inter-storey drifts. 
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Considering performance-base design approach, the amplification of lateral 

deformations due to SSI may noticeably change the performance level of the 

building frames. Consequently, the safety and integrity of the building would be 

endangered. 

National and international design codes e.g. Australian Standards (AS 1170.4-2007), 

International Building Code (IBC, 2012) and National Building Code of Canada 

(NBCC, 2010)  permit the use of alternate methods of design to those prescribed in 

their seismic requirements with the approval of regularity agency having due 

jurisdiction. The ground motions in seismic regions in Asia-Pacific such as New 

Zealand, Indonesia, and some parts of Australia will most probably govern the 

design of lateral resisting systems of buildings. As a result, there is a strong need to 

develop design tools to evaluate seismic response of structures considering the 

foundation flexibility and sub-soil conditions.   

In this study, numerical and experimental investigations are employed to study 

effects of dynamic soil-structure interaction on seismic response of regular mid-rise 

moment resisting building frames. To achieve this goal, an enhanced numerical soil- 

structure model is developed which has been verified by a series of experimental 

shaking table tests conducted at the University of Technology Sydney (UTS). 

Adopting the developed numerical soil-structure model, a comprehensive parametric 

study has been undertaken to determine elastic and inelastic responses of mid-rise 

moment resisting building frames under the influence of soil-structure interaction. 

Based on the results, a simplified procedure is proposed in which inter-storey drifts 

under the influence of soil-structure interaction for each two adjacent stories can be 

determined and checked against the seismic code requirements.  

1.3 Objectives and Scope of Study  
The main objective of this study is to propose a simplified but practical design 

procedure which enables structural engineers to consider detrimental effects of soil-

structure interaction in seismic design of regular mid-rise moment resisting building 

frames in order to ensure the design safety and reliability. The research work 

comprises four parts, (a) developing an enhanced numerical soil-structure model, (b) 

validation of the soil-structure model and experimental investigations using a series 

of laboratory shaking table tests, (c) conducting numerical parametric study utilising 
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the validated numerical soil-structure model, and (d) developing a simplified design 

procedure to predict the seismic response of mid-rise building frames under the 

influence of soil-structure interaction.  

The specific objectives to develop an enhanced soil-structure model in this study are 

as follows: 

 Simulating the complex nature of dynamic soil-structure interaction as 

accurate and realistic as possible.  

 Treating the dynamic behaviour of both soil and structure with equal rigor 

simultaneously.  

 Incorporating hysteretic damping algorithm in the dynamic analysis enabling 

strain-dependent modulus (G/Gmax - ) and damping functions (  - ) to be 

included directly in order to capture the hysteresis curves and energy-absorbing 

characteristics of the soil. 

 Determining elastic and inelastic structural response under the influence of 

soil-structure interaction rigorously. 

 Employing a Multi Degree of Freedom (MDOF) structure in order to determine 

inter-storey drifts directly to be used for investigating the performance levels of 

the building structures under the influence of dynamic soil-structure interaction. 

The main objectives of the experimental investigations are:  

 Investigating the significance of soil-structure interaction on the seismic 

response of building frames resting on a deep soil deposit using experimental 

shaking table tests.   

 Verifying the developed numerical soil-structure model as a qualified model 

which can be employed for further dynamic soil-structure interaction 

numerical investigations. 

 Designing and constructing the soil-structure model components including 

structural model, soil mix, and laminar soil container. 

 The key objectives of the numerical parametric study and developing a simplified 

design approach are: 
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 Studying, in depth, the seismic behaviour and response of regular mid-rise 

moment resiting building frames subjected to earthquake action embracing 

the influence of dynamic soil-structure interaction. 

 Acquiring better understanding of key parameters influencing soil-structure 

interaction under seismic loads. 

 Finding the detrimental effects of soil-structure interaction on seismic 

behaviour of regular mid-rise moment resisting building frames. 

 Examining the adequacy of conventional elastic and inelastic design 

procedures excluding SSI to guarantee the structural safety. 

 Proposing a simplified design procedure enabling structural engineers to 

determine seismic response of regular mid-rise moment resisting building 

frames under influence of soil-structure interaction utilising fixed base 

analysis results as well as other basic site and structural characteristics.  

 Capturing the detrimental effects of soil-structure interaction in the seismic 

design procedure of regular mid-rise moment resisting building frames to 

ensure the design safety and reliability. 

1.4 Organisation of the Thesis 
Following this introduction, Chapter 2 provides a comprehensive literature review of 

past research on the effects of soil-structure interaction on seismic behaviour of 

building frames, theoretical background, analytical and numerical methods, building 

codes recommendations, proposed relationships for considering soil-structure 

interaction in seismic design of building frames, and experimental shaking table test 

techniques for simulation of soil-structure interaction.  

Chapter 3 describes characteristics, theoretical concepts, and boundary conditions of 

the different components of the developed numerical soil-structure model. In 

addition, adopted methodology for dynamic soil-structure analysis considering soil 

nonlinear behaviour and hysteretic damping algorithm using backbone curves are 

discussed.  

Chapter 4 depicts adopted laboratory shaking table tests procedure for verifying the 

proposed numerical soil-structure model and investigating the seismic behaviour of 

the studied structural model under the influence of soil-structure interaction. 
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Furthermore, the scaling methodology and utilised scaling factors, design and 

construction of the soil-structure model components, instrumentations of the model 

as well as test preparations and set up are described. 

Chapter 5 presents a comprehensive parametric study on elastic and inelastic 

response of regular mid-rise moment resisting building frames under the influence of 

soil-structure interaction and discusses the results. In the numerical parametric 

study, height of the structure (h), bedrock depth (hs), and shear wave velocity of the 

subsoil (Vs) have been changed. Adopted characteristics of the employed structural 

frames, subsoils, and earthquake records as well as elastic and inelastic procedures 

for structural section design of the models are presented as well. 

Chapter 6 explains the developed empirical relationships, based on the results of the 

parametric study, and describes the proposed simplified design procedure for 

practical applications in order to consider the amplification of inter-storey drifts under 

the influence of soil-structure interaction in seismic design of mid-rise moment resisting 

building frames.  

Chapter 7 presents the conclusions of the current research and recommendations for 

further research, followed by References and Appendix A.   
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CHAPTER TWO 

 

2. LITERATURE REVIEW ON SOIL-STRUCTURE INTERACTION  

2.1 Background 
Soil-Structure Interaction (SSI) is an interdisciplinary field of endeavour. It lies at the 

intersection of soil and structural mechanics, soil and structural dynamics, earthquake 

engineering, geophysics and geomechanics, material science, computational and 

numerical methods, and other diverse technical disciplines. Its origins trace back to 

the late 19th century, evolving and maturing gradually in the ensuing decades and 

during the first half of the 20th century. SSI progressed rapidly in the second half 

stimulated mainly by the needs of the nuclear power and offshore industries, by the 

debut of powerful computers and simulation tools such as finite elements, and by the 

desire for improvements in seismic safety.   

The importance of soil-structure interaction both for static and dynamic loads has been 

well established and the related literature covers at least 30 years of computational and 

analytical approaches for solving soil–structure interaction problems. Since 1990s, great 

effort has been made for substituting the classical methods of design by the new ones 

based on the concept of performance-based seismic design. In addition, the necessity of 

estimating the vulnerability of existing structures and assessing reliable methods for 

their retrofit have greatly attracted the attention of engineering community in most 

seismic zones throughout the world.  

Several researchers (e.g. Iwan et al., 2000; Krawinkler et al., 2003; Galal and Naimi, 

2008; El Ganainy and El Naggar, 2009; Tabatabaiefar and Massumi, 2010; Tavakoli 

et al., 2011) studied structural behaviour of un-braced structures subjected to 

earthquake under the influence of soil-structure interaction. Various analytical 

formulations have been developed to solve complex practical problems assuming 

linear and elastic SSI (e.g. Stewart et al., 1999; Dutta et al., 2004; Khalil et al., 2007; 

Tabatabaiefar and Massumi, 2010; Maheshwari and Sarkar, 2011). However, effects 

of nonlinear behaviour of the supporting soil and inelastic seismic response of 

structures have not been fully addressed in the literature. In addition, during the recent 

decades, the importance of dynamic soil-structure interaction for several structures 
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founded on soft soils has been well recognised. Examples are given by Gazetas and 

Mylonakis (1998) including evidence that some structures founded on soft soils are 

vulnerable to SSI.  

According to available literature, generally when the shear wave velocity (average 

shear wave velocity) of the supporting soil is less than 600 m/s, the effects of soil-

structure interaction on the seismic response of structural systems, particularly for 

moment resisting building frames, are significant (e.g. Veletsos and Meek, 1974; 

Hosseinzadeh and Nateghi, 2004; Galal and Naimi, 2008). Wolf and Deeks (2004) 

summarised these effects as: (i) increase in the natural period and damping of the 

system, (ii) increase in the lateral displacements of the structure, and (iii) change in 

the base shear force depending on the frequency content of the input motion and 

dynamic characteristics of the soil and the structure. Thus, especially for ordinary 

building structures, which are the most vulnerable among the built environment, the 

necessity of a better insight into the physical phenomena involved in SSI problems has 

been recognised.  

2.2 Soil-Structure Interaction (SSI) 
Recent improvements in seismological source modelling, analysis of travel path 

effects, and characterisation of local site effects on the strong shaking, have led to 

significant advances in both simplified code-based and more advanced procedures for 

evaluating the seismic demand for structural design. However, a missing link has been 

an improved and empirically verified treatment of soil-structure interaction.  

The estimation of earthquake motions at the construction sites is the most important 

phase of design to retrofit the performance of the structures. When the structure resting 

on the hard rock is subjected to seismic loads of an earthquake, the high stiffness of the 

rock compels the rock motion to be very close to the free field motion. Structures 

founded on the rock are assumed to be fixed base structures for the structural analysis 

purposes. However, the same structure would respond differently when supported on 

the soft soil deposit rather than the hard rock. The inability of the foundation to conform 

to the deformations of the free field motion would cause the motion of the base of the 

structure to deviate from the free field motion. Obviously, the dynamic response of the 

structure itself would induce deformation of the supporting soil. The structural response 

of buildings subjected to dynamic loads is affected by the interaction between the 



9

structure and the supporting soil media. Dynamics of structures and dynamics of soil 

define time dependant behaviour of structures and soil under the influence of external 

loads. This process, in which the response of the soil influences the motion of the 

structure and response of the structure influences the motion of the soil, is referred to as 

Soil-Structure Interaction (SSI). 

For the structures resting on soft soils, the foundation motion is usually different from 

the free field motion, and a rocking component, caused by the support flexibility, is 

added. In addition to the rocking component, a part of the structural vibration energy 

transmits to the soil layer and can be dissipated due to the radiation damping resulting 

from the wave propagation and hysteresis damping of the soil materials. However, in 

classical methods for the rigid base structures, this energy dissipation has not been 

considered. 

Seismic analysis of buildings and other engineering structures is often based on the 

assumption that the foundation corresponds to a rigid half-space, which is subjected to 

a horizontal, unidirectional acceleration. Such a model constitutes an adequate 

representation of the physical situation in case of average size structures founded on 

sound rock. Under such conditions, it has been verified that the free field motion at the 

rock surface, i.e., the motion that would occur without the building, is barely 

influenced by building’s presence. The hypothesis loses its validity when the structure 

is founded on soft soil deposits, since the motion at the soil surface, without the 

building, may be significantly altered by the presence of the structure. Structure rested 

on soft soil, has its dynamic characteristics, namely the vibration modes and 

frequencies modified by the flexibility of the supports (Wolf and Deeks, 2004).  

2.2.1 Principles of Soil-Structure Interaction  
Wolf (1985) indicated that a simple analysis is adequate to demonstrate the important 

effects of soil-structure interaction. In case of considering a simple SDOF (single degree 

of freedom) system including a structure characterised by its mass (m), stiffness (k), and 

damping coefficient (c), resting on a rigid soil deposit, the natural frequency of the 

resulting fixed base system ( 0 ) depends only on the mass and stiffness of the structure 

and can be determined as:  
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Baker (1957), Vesic (1961), Kramrisch et al. (1961), Bowles (1996), and Brown 

(1977) conducted research on the basis of Winkler hypothesis due to its simplicity. 

Dutta and Roy (2002) realised that the basic limitation of Winkler hypothesis lies in 

the fact that it considers linear stress–strain behaviour of soil. The most serious 

demerit of Winkler model is the one pertaining to the independence of the springs. In 

addition, they pointed out that despite the simplicity and low computational cost of the 

Winkler idealisation, another fundamental problem is the determination of the 

stiffness of the associated elastic springs replacing the soil sub-domain. As a coupled 

problem, the value of the sub-grade reaction is not only dependent on the sub-grade 

but also on the parameters of the loaded area as well. However, the sub-grade reaction 

is the only parameter in Winkler idealisation. Therefore, great care should be 

practiced in determination of the sub-grade parameter.  

The mathematically and computationally attractive but physically inadequate Winkler 

hypothesis has attracted several attempts over time to develop modified models to 

overcome its shortcomings. Amongst many are Filonenko-borodich foundation model 

(Filonenko, 1940), Hetenyi’s foundation model (Hetenyi, 1946), Kerr foundation 

model (Kerr, 1967), and Beam-column analogy model (Horvath, 1993) in order to 

make it mathematically simpler and physically more realistic. New enhanced methods 

(e.g. Ter-Martirosyan, 1992; Hashiguchi and Okayasu, 2000) represent the rheological 

properties of the soil skeleton by combination of elastic, viscous, and plastic elements to 

consider nonlinear behaviour of the springs. 

Dutta and Roy (2002) recommended that Winkler hypothesis, despite its obvious 

limitations, yields reasonable performance and it is very easy to exercise. Thus, for 

practical purposes, this idealisation should, at least, be employed instead of carrying 

out an analysis with fixed base idealisation of structures. 

2.3.2 Lumped Parameter on Elastic Half-Space 
In this method, three translational and three rotational springs are attached along 

three reciprocally perpendicular axes and three rotational degrees of freedom about 

the same axes below each of the foundations of the structure.  In addition, dashpots 

are added to the system in order to consider soil damping of the system (Figure 2.5). 

In this method, the spring's stiffness is dependent on the frequency of the forcing 

function, especially when the foundation is long and resting on saturated clay. In 
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Wolf (1994) developed a series of cone model parameters, which have been widely 

used in practical applications. Foundation stiffness coefficients of the proposed cone 

model are similar to the stiffness parameters proposed by Gazetas (1991). The cone 

model parameters proposed by Wolf (1994) are summarised in Table 2.1. 

Table 2.1: The cone model properties proposed by Wolf (1994) 

Motion  Spring Stiffness  
Coefficient (k) 

 Viscous Damping  
Coefficient (c) 

Vertical 
  1/3 

4Ga / (1- ) 
.Vp .A 

  
 1/3<  1/2 .(2Vs).A 

   

Horizontal 8Ga / (2- ) .Vs .A 

Rocking 
  1/3  

 
8Ga3 / 3(1- ) 

.Vp .Ir 

 1/3<  1/2 .(2Vs).Ir 

In Table 2.1, A is the foundation area, Ir is the moment of inertia for rocking motion, 

G is the shear modulus of the soil,  is the Poisson’s ratio of the soil, Vs is the shear 

wave velocity of the soil, and  Vp is the compression wave velocity of the soil. 

Bowles (1996) describes that, in the Lumped Parameter method, the effect of 

frequency dependent soil-flexibility on the behaviour of overall structural system is 

higher than what is obtained from the frequency independent behaviour determined by 

Winkler model. The additional damping effect imparted by the soil to the overall 

system may also be conveniently accounted for in this method of analysis. However, 

he concluded that the accuracy of this method is not adequate for complex problems. 

Dutta and Roy (2002) elucidated that the effects of soil-structure interaction on the 

dynamic behaviour of structures may conveniently be analysed using the Lumped 

Parameter approach. However, resorting to the numerical modelling may be required 

for important structures where more rigorous analyses are necessary. 

Jahromi (2009) concluded that this method cannot deal accurately with geometric and 

material nonlinearity, hence modelling the nonlinear response of both soil and 

structure becomes complex for which more sophisticated modelling approaches would 
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be required. In addition, he mentioned that with the increasing availability of powerful 

computers and the wider applicability of numerical methods compared to analytical 

approaches, the use of the numerical methods has become a common means for 

modelling such complex interactive behaviour. 

2.3.3 Numerical Methods 
The advent of powerful computers has significantly changed computational aspects. 

As the scope of numerical methods has been wider than analytical methods, the use 

of finite element method (FEM) or finite difference method (FDM) has become 

more popular for studying complex and complicated interactive behaviour. Both 

methods produce a set of algebraic equations which may be identical for the two 

methods to be solved. According to Cundall (1976), it is pointless to argue about the 

relative merits of finite element or finite difference approaches as the resulting 

equations are the same. Finite element programs often combine the element matrices 

into a large global stiffness matrix, while this is not usually done with finite 

difference because it is relatively more efficient to regenerate the finite difference 

equations at each step. 

Most of the numerical methods (e.g. FDM and FEM) include extended form of 

matrix analysis based on variational approach, where the whole perpetual is divided 

into a finite number of elements connected at different nodal points. The general 

principles and use of finite element method and finite difference method is well 

documented and explained by Desai and Abel (1987).  

Another well known numerical method is boundary element method (BEM) which is 

based on boundary integral equations which presents an attractive computational 

framework especially for problems involving singularity and unbounded domains. A 

detailed literature on the formulation of the method and its applications in different 

fields is addressed in the book by Brebbia et al. (1984). The basic idea of this 

method is to formulate the equation of motion of the unbounded domain in the form 

of an integral equation instead of a differential equation. Finally, this integral 

equation is solved numerically. Katsikadelis (2002) indicated that boundary element 

method has been applied in various areas of engineering and science. However, for 

many complex problems boundary element method is significantly less efficient 

than finite element and finite difference methods. 
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by (Kramer, 1996), the superposition inherent to this approach requires an assumption 

of linear soil and structure behaviour. Varun (2010) described the three mentioned steps 

in the analysis as follows: 

Step 1:  Evaluation of a Foundation Input Motion (FIM), which is the motion that 

would occur on the base-slab if the structure and foundation had no mass.  

Step 2: Determination of the impedance function. The impedance function describes 

the stiffness and damping characteristics of foundation-soil system.  

Step 3: Dynamic analysis of the structure supported on a compliant base represented 

by the impedance function and subjected to a base excitation consisting of the FIM. 

Numerous numerical studies (e.g. Kutan and Elmas, 2001; Yang et al., 2008; Carbonari 

et al., 2012) have been carried out adopting substructure method in assessing the 

seismic response of structural systems considering soil-structure interaction. Chopra and 

Gutierres (1978) reported that the principal advantage of the substructure approach is its 

flexibility. As each step is independent of the others, the analyst can focus resources on 

the most significant aspects of the problem. However, according to Wolf (1998), as the 

method is based on the superposition principle, which is exact only for linear soil and 

structure behaviour, approximations of the soil nonlinearity by means of iterative wave 

propagation analyses, allow the superposition to be applied for moderately-nonlinear 

systems. Therefore, taking into account the exact nonlinearity of the subsoil in the 

dynamic analysis may not be easily achievable using this technique. Kutan and Elmas 

(2001) noted that much has to be done in investigating the performance of the model 

and the numerical procedures of substructure method as well as the various influence 

factors on the response of a soil-structure system. Moreover, the material damping of 

foundation media in the time domain needs to be improved. 

II). Direct method: In direct method, the soil and structure are simultaneously accounted 

for in the mathematical model and analysed in a single step. Typically, the soil is 

discretised with solid finite elements and the structure with finite beam elements. 

Principles of this method are described in Section 3.1. Several researchers (e.g. Desai et 

al., 1982; Mirhashemian et al., 2009; Tabatabaiefar and Massumi, 2010; Gouasmia1 

and Djeghaba, 2010) have studied dynamic response of soil-structure systems 

adopting direct method for modelling soil-structure interaction to achieve accurate and 

realistic analysis outcomes.  
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Carr (2008) believes that the advantage of this method in fact is its versatility to deal 

with complex geometries and material properties. However, data preparation and 

complexity of the modelling makes it difficult to implement it in every-day engineering 

practice. In addition, more advanced computer programs are required in this method. 

Since assumptions of superposition are not required, true and accurate nonlinear 

analyses are possible in this case (Borja et al., 1992). Therefore, direct method, which is 

more capable in modelling the complex nature of the soil-structure interaction in 

dynamic analysis, is employed in this study. 

2.4 Effects of Soil-Structure Interaction on Seismic Behaviour of Building 
Frames  

When SSI is taken into consideration, the ground motions imposed at the foundation 

of the structure are influenced by the soil properties, travel path, local site effects, and 

the geometry of the soil medium (Wolf and Deeks, 2004). The conventional design 

practice for seismic analysis assumes the building frames to be fixed at their bases. 

However, supporting soil medium allows movement due to natural ground flexibility. 

This may reduce the overall stiffness of the structural system and hence, may increase 

the natural periods of the system. Such influence of partial fixity of structures at the 

foundation level due to soil flexibility in turn alters the response. According to 

Veletsos and Meek (1974), compared with the counterpart fixed-base system, SSI has 

two basic effects on structural response: 

 The soil-structure system has an increased number of degrees of freedom and 

thus modified dynamic characteristics; and 

 A significant part of the vibration energy of the soil-structure system may be 

dissipated either by radiating waves, emanating from the vibrating foundation-

structure system back into the soil, or by hysteretic material damping in the soil.  

The result is that soil-structure system has longer natural period of vibration than the 

fixed-base counterpart. 

In addition, Veletsos and Meek (1974) elucidated that the role of the soil-structure 

interaction may look beneficial to the structural system under seismic loading since it 

lengthens the lateral fundamental period and leads to higher damping of the system; 

however, this conclusion is misleading. Gazetas and Mylonakis (1998) pointed out 

that in reality, supporting soil medium allows some movements due to its natural 
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flexibility. This may reduce the overall stiffness of the structural system and hence, 

may increase the natural periods of the system. Such influence of partial fixity of 

structures at the foundation level due to soil flexibility in turn alters the response. 

Indeed, case studies and post seismic observations (e.g. Kobayashi et al., 1986;   

Stewart and Seed, 1998; Gazetas and Mylonakis, 1998) suggest that the SSI can be 

detrimental and neglecting its influence could lead to unsafe design for both the 

superstructure and the foundation especially for structures founded on soft soil 

deposits. 

Several researchers (e.g. Veletsos and Prasad, 1989; Balendra and Heidebrecht, 1986) 

showed that soil-structure interaction effects are significant for medium and long 

period structures when the predominant site period is large. Recent recorded 

earthquake spectra demonstrate that SSI will become an important factor for the 

maximum acceleration occurring at a period greater than 1.0 second. If the 

fundamental period is lengthened due to SSI, it would increase the response rather 

than decreasing it, which goes against the conventional design spectra. 

Gazetas and Mylonakis (1998) reported three cases of earthquakes, namely, Bucharest 

1977, Mexico City 1985 and Kobe 1995, where SSI caused an increase in the seismic-

induced response of structures despite a possible increase in damping. They reported 

that Mexico earthquake was particularly destructive to l0-12 storey unbraced buildings 

founded on soft clay, whose period increased from about 1.0s (assumption of a fixed 

base structure) to nearly 2.0 s due to the SSI.  

Stewart and Seed (1998) carried out a comprehensive study including soil-structure 

interaction effects for 77 strong motion data sets at 57 actual building sites that 

encompass a wide range of structural and geotechnical conditions. The results of the 

investigation revealed that inertial SSI effects can be expressed by a fundamental 

natural period lengthening ratio and foundation damping factor, consequently 

fundamental natural period of the overall system and total damping will be increased 

by considering SSI effects.  In addition, their research indicated that the period 

lengthening for long-period structures (T > 2 s) with significant higher-mode 

responses, maybe negligible. They concluded that approaches proposed by Velestos 

and Meek (1974) to predict TT /~ can reliably predict the effect of inertial interaction 

but are limited to single degree of freedom (SDOF) oscillators. The relationship 
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between the natural period of soil-structure system (T~) and fixed-base structure (T) 

proposed by Veletsos and Meek (1974) is as follows: 

)
r
h

k
k

(
k
k

T
T~ x

x
2

2

11                                                                                                      (2.10)  

where, k  is the stiffness of the structure, xk  is the lateral stiffness of the subsoil 

foundation, k  is the  rocking stiffness of the subsoil foundation, r is the radius of the 

foundation base (equal to B/2 where B is the foundation width), and h is the height of 

the structure. Equation (2.10) denotes that by reducing the soil and foundation 

parameters such as k  and r or increasing the structural characteristics such as k and h, 

the natural period of soil-structure system (T~) increases. 

The objective of Stewart and Seed (1998) research concerns the elaboration of a 

simple procedure for taking into account the influence of the SSI in the determination 

of the fundamental frequency of buildings. Analyses conducted by Stewart and Seed 

(1998) for both one-storey and multi-storey buildings for various geotechnical 

conditions led to comprehensive charts that give the fundamental frequency of a wide 

range of buildings in terms of the relative soil-structure stiffness. Research results 

conducted by Kumar and Prakash (1998) denoted that the fundamental natural period of 

a soil-structure system reduces nonlinearly with the increase in the soil shear modulus. 

The effect of considering nonlinear behaviour of the soil on the natural period response 

of structures depends on the level of strains in the soils. The higher the strain in the soil, 

the greater is the effect of soil nonlinearity. Kumar and Prakash (1998) have utilised the 

above mentioned factors (natural period and damping) to derive flexible base 

fundamental-mode parameters, which are used in response based approaches for 

evaluating the base shear forces and deformations in structures. 

2.4.1 Effects of Shear Wave Velocity of Subsoil on Seismic Response 
Soil medium beneath the structure influences the seismic behaviour and response of 

the structure when an earthquake occurs. If the supporting soil is stiff enough, the 

response of the structure will not be much affected by the support condition. 

Therefore, the structure can be assumed as fixed-base. If the foundation soil is 

flexible, it affects the overall structural response, and consequently, soil-structure 

interaction effects are considerable. Veletsos and Meek (1974) concluded that 
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generally when shear wave velocity of the supporting soil is less than 600 m/sec, the 

effects of soil-structure interaction are significant. This conclusion has been broadly 

used by other researchers focusing on soil-structure interaction problems (e.g. Stewart 

et al., 1999; Hosseinzadeh and Nateghi, 2004; El Ganainy and El Naggar, 2009; 

Tabatabaiefar and Massumi, 2010). 

Galal and Naimi (2008) conducted a comprehensive numerical study on moment 

resisting building frames up to 20 stories under the influence of soil-structure 

interaction resting on site classes B, C, D, and E according to site classifications of 

International Building Code (IBC 2009). IBC2009 site subsoil classifications are 

presented in Table 2.2. 

Table 2.2: Site subsoil classifications according to IBC2009 

Site 
Class Soil profile name 

Soil shear wave 
velocity 

Vs 
(m/s) 

Soil undrained 
shear strength, 

Su 
(KPa) 

Standard 
Penetration 
Resistance 

N 

A Hard Rock 1500> Vs N/A N/A 
B Rock 750 < Vs < 1500 N/A N/A 
C Very dense soil 360 < Vs < 750 Su > 100 N > 50 
D Stiff soil profile 180 < Vs < 300 50 < Su < 100 15 < N < 50 
E Soft soil profile Vs < 180 Su < 50 N < 15 

Based on the mentioned results, when the supporting rock or very dense soil exists 

(site class A, B and C), the structure can be assumed as fixed base.  For the structures 

constructed on the other softer soils with shear wave velocity less than 600 m/sec 

comprising site class E, D and lower limit of C (360 m/s < Vs < 600 m/s), overall 

structural response might be affected by soil-structure interaction, while for the 

structures resting on site classes A, B, and upper limit of soil C (600 m/s < Vs < 750 

m/s), SSI effects on structural response would be negligible. Thus, in order to find 

reliable and accurate results, soil-structure interaction effects are needed to be taken 

into consideration in dynamic analysis of the structures resting on site class E, D and 

lower limit of C. 

2.4.2 Effect of SSI on Seismic Response of Braced Building Frames  
Stewart et al. (1999) performed two different simulations procedures to investigate 

behaviour of steel braced building frames resting on soft soil deposit with shear wave 

velocity of 190 m/s. SHAKE software was employed to validate the analytical 
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procedure. It was concluded that structural design based on fixed base assumption is 

more conservative for the laterally braced building frames. Thus, soil-structure 

interaction effects for the braced building frames are beneficial and can be ignored. 

Azarbakhti and Ashtiani (2008) conducted a comprehensive numerical analysis for a 

wide range of braced building frames with steel brace or shear wall lateral resisting 

systems in order to evaluate the effects of soil-structure interaction on the seismic 

structural seismic response. They concluded that considering influence of SSI in 

seismic design of laterally braced buildings provides a cost effective design since the 

sections required are smaller in size. 

It can be concluded that considering effects of soil-structure interaction in seismic 

design of the braced building frames will lead to more economic structural sections 

which means time, energy and cost saving. Therefore, assuming fixed base structure 

based on the conventional methods of structural analysis is deemed to be conservative 

and adequate to guarantee the structural safety.  

2.4.3 Effect of SSI on Seismic Response of Unbraced Building Frames  
Several studies (e.g. Sivakumaran and Balendra, 1994, Adam et al., 2005, Alavi and 

Krawinkler, 2004; Galal and Naimi, 2008; Massumi and Tabatabaiefar, 2008; 

Tavakoli et al., 2011) have reported that soil-structure interaction can increase the 

lateral deflections and corresponding inter-storey drifts of the structure, forcing the 

structure to behave in the inelastic range, leading to severe damage of the structure. 

Dutta et al. (2004) carried out a numerical study on low-rise unbraced buildings up to 

6 stories. They adopted Winkler method for modelling the soil medium, which its 

demerits in soil modelling was described in Section 2.3.1, using equivalent linear 

method for dynamic analysis of soil-structure interaction assuming elastic behaviour 

for the structure. In addition, all the employed soil parameters were assumed 

parameters rather than real soil parameters determined from actual geotechnical 

studies. Their results showed that, generally, for low-rise unbraced buildings, the 

lateral natural period is very small and may lie within the sharply increasing zone of 

response spectrum. Hence, an increase in lateral natural period due to the effect of 

soil-structure interaction may cause an increase in the spectral acceleration ordinate. 

Dutta et al. (2004) concluded that the effect of soil-structure interaction may play a 

significant role in increasing the seismic base shear of low-rise building frames. 
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However, seismic response generally decreases due to the influence of soil-structure 

interaction for medium to high rise buildings. 

Galal and Naimi (2008), El Ganainy and El Naggar (2009), and Tavakoli et al. 

(2011), in their numerical investigations, adopted Lumped Parameter approach, which 

as explained in Section 2.3.2, is not adequately accurate for rigorous analyses of soil-

structure interaction. Additionally, they utilised equivalent linear method for dynamic 

analysis assuming elastic behaviour for the structure, and assumed soil parameters 

which may not be completely reflecting the nature of the real soil.  

Galal and Naimi (2008) analysed 6 and 20 storey building frames resting on subsoil 

classes B (750 m/s < Vs < 1500 m/s), C (360 m/s < Vs < 750 m/s), D (180 m/s < Vs 

< 300 m/s), and E (Vs < 180 m/s) according to IBC2000. The results showed that the 

effects of SSI on the seismic performance of concrete moment resisting building 

frames up to 20 stories, resting on soft and medium soil types, are significant while 

those effects are negligible for stiff soils and rocks.  

El Ganainy and El Naggar (2009) studied seismic behaviour of steel moment resisting 

building frames resting on subsoil classes C (360 m/s < Vs < 750 m/s) and E (Vs < 

180 m/s) in accordance with IBC2000 under the influence of soil-structure interaction. 

They concluded that structural deformations of the buildings were substantially 

influenced by soil-structure interaction. Lateral deformations of the buildings with 

flexible bases, experienced considerable amplification ranging from 50% to about 

300% in comparison to the fixed bases for buildings founded on soil class E (Vs < 180 

m/s). 

Tavakoli et al. (2011) after conducting a comprehensive numerical study on moment 

resisting building frames elucidated that, in general, as the soil under the structure  becomes 

softer, SSI  influences lateral deflections, inter-storey drifts, base shear, period  of the 

structure, and the earthquake field effects more significantly. According to their results, 

the importance of soil-structure interaction could be neglected for moment resisting frames 

resting on rock or very stiff soil while considering SSI for structures supported on 

relatively soft soil is necessary. 

Nevertheless, all the above mentioned researchers (Dutta et al., 2004; Galal and 

Naimi, 2008; El Ganainy and El Naggar, 2009; and Tavakoli et al., 2011) carried out 

functional research regarding SSI effects on moment resisting building frames 
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 They only considered conventional elastic method for structural analysis which 

can only predict the performance levels implicitly, rather than utilising 

inelastic method that estimates the magnitude of inelastic deformations and 

distortions directly and accurately; 

 They adopted equivalent linear method (and not nonlinear method) for 

dynamic analysis of soil-structure interaction. Equivalent linear method has 

been in use for many years to calculate the wave propagation (and response 

spectra) in soil and rock at sites subjected to seismic excitation. This method 

does not capture directly any soil nonlinearity effects because it is based on 

linear behaviour during the solution process; strain-dependent modulus and 

damping functions are only taken into account in an average sense, in order to 

approximate some effects of nonlinearity (damping and material softening); 

and 

 They have adopted Winkler model or Lumped Parameter approach which, as 

described in Sections 2.3.1 and 2.3.2, cannot realistically capture the dynamic 

behaviour of the subsoil in the dynamic analysis of soil-structure interaction in 

comparison to numerical methods. 

Therefore, the results of the above mentioned numerical investigations on seismic 

behaviour of moment resisting building frames can be significantly improved. 

In general, considering the above mentioned studies and other available literature, 

soil-structure interaction, particularly for unbraced structures resting on relatively soft 

soils, creates large lateral displacements and inter-storey drifts which may change the 

performance level of the buildings.  

In this research, in order to conduct a rigorous, comprehensive, and more realistic 

investigation on seismic response of moment resisting building frames under the 

influence of soil-structure interaction and to achieve the most accurate outcomes, the 

following points are adopted: 

 Structural models, representing the range of mid-rise moment resisting frames, 

will be utilised in conjunction with various types of soil from stiff to soft 

having the properties extracted directly from actual geotechnical studies of 

some existing projects. Such data have merit over the assumed parameters 
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adopted by many researchers which may not be completely conforming to 

reality; 

 Numerical approach using direct method, which could  model the complex 

nature of the soil-structure interaction in dynamic analysis in a realistic way, 

will be employed; 

  Fully nonlinear method of analysis will be adopted in the numerical 

investigation which correctly represents the physics associated with the 

problem and follows any stress-strain relation in a realistic way. In this 

method, small strain shear modulus and damping degradation of soil with 

strain level can be captured in the modelling precisely; and 

 Inelastic structural analysis and P-Delta effects will be taken into account.   

2.5 Building Codes Recommendations 
Although some international seismic design codes investigated incorporation of 

simplified soil-structure interaction analysis methods, they acknowledge the need for 

site specific studies on soft soils subject to strong levels of shaking. Based on design 

codes, seismic analysis of structures resting on soft soil deposits requires a careful 

consideration of the site effect and soil-structure interaction. The site effect refers to 

the scattering and diffraction of the incident waves by the soil layers overlaying the 

bedrock which are reflected in the values of seismic design coefficients. Soil-

structure interaction refers to the relationship between the characteristics of both the 

structure and the soil stratum, and is usually presented by one of the following 

methods; 

 Modifying the dynamic properties of the structure; or 

 Modelling the subsoil with springs and dashpots (Lumped Parameter 

method). 

The 2003 NEHRP, Recommended Provisions for New Buildings and other 

Structures (BSSC, 2003), includes detailed procedure for incorporating the effects of 

soil-structure interaction in the determination of design earthquake forces and lateral 

deflections in the structure. Incorporating these effects has direct result on reducing 

the base shear applied to the structure, and consequently the lateral forces and 

overturning moments, while those effects can either increase or reduce the lateral 

deflections. The NEHRP guidelines for new buildings employ a force-based 
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specification of structural capacity and seismic demand. Seismic demand is 

represented by a base shear force that is proportional to the product of building mass 

and first mode spectral acceleration. Inertial interaction effects are accounted for 

through analysis of a period lengthening ratio and foundation damping factor which 

modify the base shear and lateral deflections. BSSC (2003) allows for up to 30% 

base shear reduction due to SSI, presenting modified base shear value  under the 

influence of soil-structure interaction (V~ ). The ratio of the modified base shear to 

the base shear of the fixed-base structure (V~ / V) as well as the structural height (h), 

and the rocking stiffness of the subsoil foundation ( k ) are employed by the code to 

determine the modified lateral deflections of the structure due to SSI. 

International Building Code 2012 (IBC, 2012) provides minimal design guidance for 

foundation construction in high risk seismic zones. An emphasis is placed on the 

capacity of the foundation to sustain the base shear and overturning moments 

transmitted from the superstructure, and adequacy of superstructure to foundation 

connections. Chapter 16 of the IBC (Structural Design) provides both response 

spectrum and time history analyses for earthquake design. However, there are no 

provisions to account for soil-structure interaction in either method. The current IBC 

provisions call for the use of the fundamental vibration period which depends on a 

building’s vibration period on a fixed base and a period lengthening ratio. The 

period lengthening ratio depends on the lateral stiffness and height of the building as 

well as horizontal, translational, and rotational stiffness of the soil, and is never less 

than one since flexibility always increases the period. Compared to the simple fixed-

base case, the modified system now takes into account a lengthened period and 

increased damping.  

The New Zealand structural design actions for Earthquake actions (NZS1170.5, 

2007), adopts a similar approach to IBC (2012) in which the period and the damping 

of the structure are modified to consider soil-structure interaction effects in seismic 

design of structures. 

For code-designed buildings based on the three above mentioned seismic design 

codes, it is deemed adequate to consider the site effects due to surface layering and 

inertial interaction effects on the fundamental mode of vibration which is expressed 
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by an increment in the fundamental period of the structures and a change in the 

associated damping.  

The 2010 National Building Code of Canada (NBCC, 2010), postulates that the 

effects of soil-structure interaction on the seismic response of most buildings are 

favourable, and thus ignoring it, is considered to be conservative. Therefore, the 

seismic provisions of the proposed NBCC (2010) recommend performing soil-

structure interaction analysis for unconventional structures only.  

Eurocode 8, Design of Structures for Earthquake Resistance (DIN EN 1998-5, 2010-

12), highlights that considering soil-structure effects on the seismic design of 

structures is only necessary for   

 Structures sensitive to P-  effects; 

 Massive or deep seated structures; 

 Slender tall structures; and   

 Structures supported on very soft soil (Vs< 100 m/s). 

For the mentioned structures, the code provides a design procedure, based on 

Lumped Parameter method, in which appropriate spring and dashpot coefficients are 

proposed for different subsoil conditions. 

AS1170.4 (2007), Earthquake Actions in Australia, does not address the soil-

structure interaction effects in seismic design of structures explicitly and 

consequently structural designers are not able to include those important effects in 

the analysis and design procedure using the mentioned standard. Therefore, as 

concluded in the previous section, seismic design of moment resisting building 

frames resting on relatively soft grounds could not be adequately safe due to 

amplification of lateral deflections and corresponding inter-storey drifts which 

possibly change the performance levels of the buildings.  

All the  reviewed seismic design codes permit the use of alternate methods of design 

to those prescribed in their seismic requirements with the approval of regularity 

agency having due jurisdiction. The ground motions in seismic regions such as New 

Zealand, Japan, China, Indonesia, and some parts of Australia will most probably 

govern the design of lateral resisting systems of building frames. Thus, well 

developed seismic design procedures to consider SSI effects in seismic design of 

building structures are highly required. 
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2.6 Relationships for Considering SSI Effects in Seismic Design  
Several researchers attempted to formulate the effects of the SSI on the seismic 

response of buildings. Veletsos and Meek (1974) proposed a simple criterion 

indicating when considering the effects of soil-structure interaction is necessary 

based on soil shear velocity, natural frequency of fixed base structure, and total 

height of the structure. The specific objectives of the mentioned contribution were to 

identify the parameters which best describe the interaction effects and evaluate these 

effects in order to define the conditions under which they are of sufficient 

importance to warrant consideration in design. 

In addition, Veletsos and Meek (1974) presented a basic equation to determine the ratio 

of the maximum lateral deflection of the structure in the soil-structure system ( ~ ) to 

the maximum lateral deflection of fixed base structure ( ) as follows: 

2)
f~
f(

~
                                                                                                                                                       (2.11)    

where,  

f~ =Natural frequency of soil-structure system; and  

f =Natural frequency of fixed base structure. 

In spite of the fact that the proposed equation has been extracted from a rigorous 

analytical procedure, it is not directly suitable for practical purposes. In order to 

determine the maximum lateral deflection of the structure in the soil-structure system 

( ~ ), the natural frequency of fixed base structure ( f ), the maximum lateral 

deflection of fixed-base structure ( ), and the natural frequency of soil-structure 

system ( f~ ) should be available. The first two parameters can be found directly from 

analysing the fixed base structure but the third one ( f~ ) can be determined only after 

undertaking full dynamic soil-structure interaction analysis and designing the 

structural sections. 

As a result, Equation (2.11) cannot be individually utilised as empirical relationship 

for determining seismic response of structures under the influence of soil-structure 

interaction. However, it could be adopted as a basic relationship for further 

developments. 
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Khalil et al. (2007), based on their analytical study, presented a criterion which was 

expressed in terms of soil shear wave velocity (Vs), foundation area (A), flexural 

rigidity of the building columns including inertial moment (Ic), modulus of elasticity 

(Ec), storey height (H), number of stories (Ns), and spans in both transversal and 

longitudinal directions (Nbt, Nbl), as follows: 

75.0
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K                                                               (2.12)  

where, Kss is soil-structure relative rigidity and  is the soil density.  

Khalil et al. (2007) conducted equivalent linear analyses adopting Lumped Parameters 

method for considering soil-structure interaction effects on elastic seismic behaviour of 

multi-storey buildings including 1, 3, 5, 7, and 10 storey moment resisting building 

frames resting on subsoils with various shear wave velocities between 98 m/s and 300 

m/s. Based on their study, consideration the soil-structure interaction in a dynamic 

analysis is essential only when the following criterion exists: 

50.1)( ssKLog                                                                                                           (2.13)  

In the above mentioned case ignoring the SSI effects could lead to significant 

misestimation of the seismic response while for higher values, the SSI effects could 

be neglected. Although the proposed criterion looks comprehensive, practical 

engineers can use it only after designing the structural sections and the foundation as 

the relationship comprises foundation area (A) and the flexural rigidity of the 

building columns such as inertial moment (Ic) and modulus of elasticity (Ec). In this 

case, the user of the criterion is unable to distinguish whether or not considering SSI 

effect in seismic design of the structure is necessary before finishing the first loop of 

design process. In addition, the proposed criterion only indicates the necessity of 

considering soil-structure interaction in seismic design and cannot determine seismic 

response of the structures. On the other hand, the above mentioned study has been 

based on equivalent linear analysis and Lumped Parameters method for idealisation of 

the subsoil and disadvantages and demerits of using those approaches have been 

described in Section 2.4.3. Practising engineers and engineering companies tend to use 

reliable and accurate procedures rather than modelling the complex problems 

themselves and spending hours and hours to solve. On the other hand, as discussed in 

Section 2.5, most of the national and international seismic design codes either ignore the 
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soil-structure interaction effects or do not explicitly address all the detrimental 

influences of SSI in the seismic design. As a result, there is a strong need to develop a 

simplified but accurate procedure to consider detrimental effects of soil-structure 

interaction in seismic design of building structures.

 In order to respond to this need, in this study, a simplified relationship will be 

developed assisting designers to determine elastic and inelastic lateral deflections of 

regular mid-rise moment resisting building frames under the influence of soil-structure 

interaction utilising analysis results of fixed base structure as well as other basic site and 

structural characteristics such as height of the structure, bedrock depth, and shear wave 

velocity of the subsoil.  

2.7 Shaking Table Experimental Tests     
In this study, adopted numerical approach for dynamic analysis of soil-structure 

interaction will be verified using shaking table test results conducted at the University of 

Technology Sydney (UTS) and the effects of soil-structure interaction on seismic 

response of moment resisting building frames will be monitored and investigated. 

Shaking table test is an experimental technique used in earthquake engineering to 

simulate ground motions. Since the emergence of shaking tables in the 1920s, large 

number of earthquake model tests have been performed. Shaking table tests have been 

considered as 1g modelling, in which the gravity acceleration of the model and prototype 

are always the same. Shaking table test is relatively cheap and easy to model complex 

prototypes, although there is a lack of accuracy due to 1g manner (e.g. low confining 

pressure of model affects test results especially in sandy soils). It should be noted that, in 

centrifuge tests by increasing the gravity force via rotating the model, it is possible to 

accurately model the soil stress- strain condition as exists in prototype. In comparison, 

although centrifuge test models the stress-strain conditions accurately, it is difficult to build 

complex prototypes, and due to small size of the model, fewer instruments can be installed 

(Jakrapiyanun, 2002). 

The geotechnical model cannot be directly mounted on shake table because of the 

requirements of confinement. To model the soil in shaking table tests, a container is 

required to hold the soil in place. In literature, this container is called Soil Container, 

Soil Tank, or Shear Stack. During the past few decades, several researchers have 

carried out shaking table tests on soil-structure systems using various types of soil 
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containers and structural models as summarised in Table 2.3. 

Table 2.3: Past performed shaking table tests on soil-structure systems using various types of 
soil containers 

Container 
type References Comments 

Rigid 

Gohl and Finn ( 1987) 

Yan and Byrne (1989) 

Valsangkar et al. (1991) 

Zen et al. (1992) 

Sato et al. (1995) 

Bathurst et al. (2007) 

Soo Ha et al. (2011) 

Adopted structural model: Hollow 
aluminium tubing, hollow aluminium 
piles, and retaining wall 

Adopted soil model: Dry Ottawa sand, 
saturated sand, saturated sand mixed with 
treated soil 
 

Flexible 

Stanton et al. (1998) 

Richards et al. (1990) 

Kanatani et al. (1995) 

Meymand (1998) 

Maugeri et al. (2000) 

Lu et al. (2004) 

Moss et al. (2010) 

Adopted structural model: Steel piles only, 
wooden shallow foundation, and 
aluminium piles with SDOF (single 
Degree of Freedom) steel structure 

Adopted soil model: Dry sand, saturated 
sand,  and reconstituted clayey soil  
 

Laminar 

Jafarzadeh and Yanagisawa (1995) 

Taylor et al. (1995) 

Ishimura et al. (1992) 

Taylor (1997) 

Tao et al. (1998) 

Endo and Komanobe (1995) 

Jakrapiyanun (2002) 

Prasad et al. (2004) 

Pitilakis et al. (2008) 

Chau et al.  (2009) 

Tang et al. (2009) 

Turan et al. (2009) 

Chen et al. (2010) 

Lee et al. (2012) 

Adopted structural model: Steel piles only, 
concrete piles only, SDOF (single Degree 
of Freedom) steel structure on shallow 
foundation, and SDOF (single Degree of 
Freedom) steel structure on concrete piles 

Adopted soil model: Dry sand, moist 
sand, poorly graded river sand, and 
saturated sand 
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In many of past experiments, the structure model on top of the soil has not been taken 

into consideration at all. Some of the tests were only performed on the soil inside the 

container (e.g. Sato et al., 1995; Kanatani et al., 1995; Taylor, 1997; Prasad et al., 

2004; Lee et al 2012) in order to investigate dynamic behaviour of the soil under the 

influence of earthquake loads, while some others were undertaken on soil-foundation 

system to observe the dynamic interaction of shallow or pile foundation with the 

underlying soil (e.g. Stanton et al., 1998; Tao et al., 1998; Richards et al., 1990). In 

some of the past mentioned experiments, the structural model has been considered but 

simplified to SDOF (single Degree of Freedom) oscillator (e.g. Meymand, 1998; 

Ishimura et al., 1992; Jakrapiyanun, 2002; Lu et al., 2004; Pitilakis et al., 2008; Chau 

et al., 2009) so as to model and investigate dynamic soil-structure interaction. 

However, by simplifying the structural model, the behaviour of the soil-structure 

system may not be completely conforming to reality. Thus, in this study, the adopted 

structural model will simulate most of the structural properties of the real prototype 

building such as frequency of vibrations, number of stories, and mass. Therefore, this 

experiment will be a unique experimental shaking table test which considers the 

structural model in the soil-structure system precisely. As a result, realistic seismic 

response of a multi-storey frame could be determined experimentally and compared 

with the numerical modelling results. 

Soil containers can be categorised into three main categorise, namely, rigid, flexible, 

and laminar containers. Rigid containers are the simplest type consisting of no 

moving parts. According to Jakrapiyanun (2002), studying earth retaining structures 

such as retaining walls, bridge abutments, and quay walls seems to be appropriate on 

rigid wall containers as the soil on one side of the earth retaining structure is lower 

than the other side. Therefore, the soil on the shallower depth is less restricted. The 

main drawback to rigid containers is distorting the free field boundary conditions. 

This occurs because firstly the rigid walls cannot move along with soil, and secondly 

there are excessive energy reflections from their boundaries. In order to provide the 

free field conditions in this type of container, an extremely large container is 

required which is not feasible in most cases. Another option to reduce the reflecting 

energy is to attach energy absorbing layers to the container walls. Steedman and 

Zeng (1991) concluded that only one third of incident waves could reflect from these 

kinds of absorbent boundaries. Despite the fact that using absorbent boundaries 
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Many researchers (e.g. Gazetas, 1982; Taylor et al., 1995; Pitilakis et al., 2008; Tang et 

al., 2009) concluded that laminar soil containers are the most advanced and efficient 

type of the soil containers. Based on the conclusions made by the above mentioned 

researchers, the merits of adopting laminar soil containers in shaking table tests over the 

other types of soil containers are as follows: 

 Well designed laminar soil containers can better model the free field conditions 

in comparison with rigid and flexible containers as the lateral deformations in 

laminar soil containers are almost identical to the free field movements; 

 Uniform lateral motion exists in each horizontal plane;  

 Lateral motion of the entire depth follows the sinusal shape which represents 

authentic conditions of the free field ground motion; and 

 Most of the recent experimental shaking table tests over the past 10 years (e.g. 

Jakrapiyanun, 2002; Prasad et al., 2004; Pitilakis et al., 2008; Chau et al. , 2009; 

Tang et al., 2009; Turan et al., 2009; Chen et al., 2010; Lee et al., 2012) have 

been carried out using laminar soil containers due its accuracy in modelling the 

realistic site conditions.  

With respect to the above mentioned merits of using laminar soil containers over the 

other types of containers (flexible and rigid soil containers) and in order to perform 

rigorous and reliable experimental shaking table tests, a laminar soil container will 

be employed in this study. 

2.8 Summary   
In this chapter, a comprehensive literature review has been conducted regarding the 

effects of soil-structure interaction on the seismic behaviour of building frames and 

relationships for considering soil-structure interaction effects in seismic design. 

According to the available literature, soil-structure interaction, particularly for 

unbraced structures resting on soft soils, creates large lateral displacements and inter-

storey drifts which may change the performance level of the buildings. Consequently, 

the safety and integrity of the unbraced building frames would be endangered. 

Based on the available literature, the past researchers performed functional research 

studies in the field of soil-structure interaction. However, conventional elastic method 

for structural analysis, which can only predict the performance levels implicitly, was 
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the structural analysis technique utilised in the past numerical investigations instead of 

exploiting inelastic method that determines the magnitude of inelastic deformations 

and distortions directly and accurately. In addition, the past studies have been 

conducted based on the equivalent linear method which only takes into account the 

strain-dependent modulus and damping of the subsoil in an average sense, in order to 

approximate some effects of nonlinearity. Besides, the past studies have been carried 

out adopting Winkler model or Lumped Parameter approach which are both unable to 

determine accurate results to realistically depict the dynamic behaviour of the subsoil 

in the dynamic analysis of soil-structure interaction in comparison to numerical 

methods. As a result, the outcomes of the past numerical investigations and research 

studies on seismic behaviour of moment resisting building frames can be significantly 

improved. 

In this research, in order to perform a comprehensive and realistic investigation on the 

seismic response of moment resisting building frames under the influence of soil-

structure interaction, numerical approach using direct method, which could 

realistically simulate the complex nature of the soil-structure interaction in dynamic 

analysis, will be utilised. Fully nonlinear method of analysis will be adopted in order 

to correctly capture the physics associated with dynamic soil-structure interaction 

problem and to follow the stress-strain relations as required. Moreover, inelastic 

structural analysis and P-Delta effects will be taken into consideration in order to 

conduct rigorous dynamic analyses and attain the most accurate outcomes. Besides, 

structural models, representing the range of mid-rise moment resisting frames, will be 

selected in conjunction with various soil types from stiff to soft having the properties 

extracted directly from actual geotechnical studies of some existing projects to ensure 

the input soil data are completely conforming to reality. Adopted numerical model for 

dynamic analysis of soil-structure interaction will be verified and validated using 

shaking table tests and the effects of soil-structure interaction on seismic response of 

moment resisting building frames will be monitored and investigated. Unlike past 

shaking table experiments which were performed without the structure or employed 

simplified SDOF (single Degree of Freedom) oscillators, in this study, the adopted 

structural model will simulate most of the structural properties of the real prototype 

building such as frequency of vibrations, number of stories, and mass. Therefore, 

this experiment will be a unique experimental shaking table test considering the 
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structural model in the soil-structure system precisely. As a result, realistic seismic 

response of a multi-storey frame from the experiments could be determined and 

compared with the numerical modelling results. In addition, in order to perform 

rigorous and reliable experimental tests, a laminar soil container, which is an 

appropriate soil container for shaking table tests (its lateral movements in the dynamic 

tests are almost identical to the free field movements in reality), will be employed. 

As AS1170.4 (2007), Earthquake Actions in Australia, does not address the soil-

structure interaction effects in seismic design of structures explicitly and most of the 

renown international seismic design codes (e.g. NZS1170.5, 2007; IBC, 2012; 

NBCC, 2010) underestimate detrimental effects of soil-structure interaction such as 

amplification of lateral deflections and corresponding inter-storey drifts and their 

impact on performance levels of the building, well developed and simplified seismic 

design procedures to consider those detrimental effects of soil-structure interaction in 

the seismic design of building structures are strongly required. 

In order to respond to this need, in this study, empirical relationships will be 

developed enabling designers to determine elastic and inelastic lateral deflections of 

mid-rise moment resisting building frames, similar to the adopted structures in this 

study, under the influence of soil-structure interaction utilising analysis results of 

fixed base structure as well as other basic site and structural characteristics. Design 

engineers may replace the complex and time consuming numerical procedures to 

determine the actual response of moment resisting building frames under the influence 

of SSI with the proposed relationships. 
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damping, and stiffness matrices of the structure, respectively. It is more appropriate to 

use the incremental form of Equation (3.1) when plasticity is included, and then the 

matrix [K] should be the tangential matrix and }{ gu  is the earthquake induced 

acceleration at the level of the bedrock. An incremental equation is a form of equation 

that requires satisfaction of equilibrium at the end of the iteration. Further details about 

the form and application of incremental equation have been provided by Wolf (1998). 

For example, if only the horizontal acceleration is considered, then 

{m}=[1,0,1,0,....1,0]T. {Fv} is the force vector corresponding to the viscous boundaries. 

It is nonzero only when there is difference between the motion on the near side of the 

artificial boundary and the motion in the free field (Wolf, 1998). 

3.2 Finite Difference Software, FLAC2D  
The use of direct method requires a computer program that can treat the behaviour of both 

soil and structure with equal rigor simultaneously (Kramer, 1996). Thus, finite difference 

software, FLAC2D V6.0, is utilised to model the soil-structure system and to solve the 

equations for the complex geometries and boundary conditions.  

FLAC2D (Fast Lagrangian Analysis of Continua) is a two-dimensional explicit finite 

difference program for engineering mechanics computations. This program can simulate 

behaviour of different types of structures and materials by elements which can be adjusted 

to fit the geometry of the model. Each element behaves according to a prescribed 

constitutive model in response to the applied forces or boundary restraints. The program 

offers a wide range of capabilities to solve complex problems in mechanics such as inelastic 

analysis including plastic moment and simulation of hinges for structural systems. 

The Finite Difference Method (FDM) is one the earliest numerical modelling techniques 

that has been employed for the solution of differential equations using initial values and 

boundary conditions. In FDM, every change of function in the set of equations is directly 

replaced by an algebraic written terms of the field variables at distinct points in space (Desai 

and Christian, 1977). In contrast, the Finite Element Method (FEM) has a central 

requirement that the field quantities (stress, displacement) vary right through each element 

in a prescribed fashion, using specific functions controlled by defined parameters. The 

formulation involves the adjustment of these parameters to minimise the error or energy 

equations.  
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the composite element is symmetric, for symmetric loading. If one pair of triangles 

becomes badly distorted (e.g., if the area of one triangle becomes much smaller than the 

area of its companion), then the corresponding quadrilateral is not used; only nodal 

forces from the other (more reasonably shaped) quadrilateral are adopted. If both 

overlaid sets of triangles are badly distorted, an error message will be issued. 

The finite difference equations for the triangular elements (Figure 3.9) are extracted 

from the generalised form of Gauss’ divergence theorem (Malvern, 1969) as follows: 

   dA
x
fdsfn

A
i

s i                                                                                                                                                                                                                                                                                                    (3.4) 

where, 
s

is the integral around the boundary of a closed surface, ni is the unit normal 

to the surface (s), f is a scalar, vector or tensor (for soil modelling it is a vector), xi are 

position vectors, ds is an incremental arc length; and 
A

 is the integral over the surface 

area (A). 

The average value of the gradient of f over the area A can be calculated as: 

dA
x
f

Ax
f

A
ii

1
                                                                                                                                                                                                                                                                                                            (3.5) 

By substitution of Equation (3.5) into Equation (3.4), 

dsfn
Ax

f
s i

i

1
                                                                                                                                                                                                                                                                                                    (3.6) 

 For a triangular sub-element, the finite difference form of Equation (3.6) becomes: 

snf
Ax

f
i

i

1
                                                                                                                                                                                                                                                                         (3.7) 

where, s is the length of a side of the triangle, and the summation occurs over the three 

sides of the triangle and the value of < f > is taken to be the average over the sides. 

In dynamic formulation, “real” masses are used at grid points rather than the fictitious 

masses used to improve convergence speed when a static solution is required. Each 

triangular subzone contributes one-third of its mass (computed from zone density and 

area) to each of the three associated grid points. The final grid point mass is then 

divided by two in the case of a quadrilateral zone that contains two overlays.  
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3.5.1 Soil Elements Constitutive Model and Parameters  
The explicit Lagrangian scheme and the mixed-discretization zoning technique 

exploited in FLAC2D enables users to adopt rigorous geotechnical constitutive models. 

Two dimensional plane-strain soil quadrilateral elements behave in accordance with a 

prescribed linear or nonlinear constitutive model in response to applied loads and 

boundary conditions. 

Nonlinear Mohr-Coulomb model has been adopted, in this study, as the soil constitutive 

model, in the soil-structure model in order to simulate nonlinear behaviour of the soil 

medium under seismic loading. The adopted Mohr-Coulomb model is a nonlinear 

elastic-perfectly plastic model that has been employed by many researchers (e.g. 

Conniff and Kiousis, 2007; Rayhani and EL Naggar, 2008) for modelling dynamic soil-

structure interaction to simulate soil behaviour under seismic loads in soil-structure 

systems. Despite the linear elastic behaviour of conventional Mohr-Coulomb model, 

variation of shear modulus with shear strain is considered in this study as explained in 

Section 3.5.3. 

Mohr-Coulomb model, in FLAC2D, is explicated in terms of effective stresses based on 

plane-strain conditions. The failure envelope for this model corresponds to a Mohr-

Coulomb criterion (shear yield function) with tension cut off (tensile yield function).  

Soil parameters required to be defined for soil elements in conjunction with the Mohr-

Coulomb material are as follows: 

  : Friction angle (deg) 

 C : Cohesion (Pa) 

 G : Shear modulus (Pa) 

 K : Bulk modulus (Pa) 

  : Mass density (kg/m3) 

Table 4.4 in Section 4.5 presents values of the utilised soil parameters in soil-structure 

model for different soil types. 

3.5.2 Soil Damping   
According to Roesset et al. (1973), “The most troublesome aspect of analysing soil-

structure interaction is defining damping in the system in a useful, meaningful way”. In 

a homogeneous linear elastic material, stress waves travel indefinitely without change in 
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the amplitude. This type of behaviour cannot occur in real conditions. The amplitudes of 

stress waves in real materials, such as soil, attenuate with distance. This attenuation can 

be attributed to two sources of energy dissipation, one which involves the material 

through which the waves travel and the other the geometry of the wave propagation 

problem. However, for specific soils and structures, the operative mechanisms by which 

the energy is dissipated are not understood sufficiently to allow them to be explicitly 

modelled. As a result, the effects of the various energy loss mechanisms are usually 

lumped together and represented by some convenient damping mechanism.  

As explained by Das (1983), the most commonly used mechanism for representing energy 

dissipation is viscous damping which assumes the existence of dissipative forces that are a 

function of particle velocity. However, for most soils and structures, energy is dissipated 

hysteretically by yielding or plastic straining of the material. 

The type of damping described above is called material damping (intrinsic damping), 

because the material absorbs the energy of travel during wave propagation. The 

reduction in energy per unit volume causes the amplitude of the wave to decrease with 

increasing displacement. However, a different type of damping (reduction in energy per 

unit volume) can be observed occurring when the energy of the wave is spread over a 

very large area and thus it dissipates quickly. This type of damping is usually referred to 

as radiation damping (geometric damping). 

Material damping refers to a collection of multiple atomic-level actions, such as 

interface friction and internal hysteresis, which results in an overall, observable effect. 

In real materials, part of the elastic energy of a travelling wave is always converted to 

heat. The conversion is accompanied by decrease in the amplitude of the wave. Viscous 

damping, by virtue of its mathematical convenience, is often used to present this 

dissipation of elastic energy. For the purposes of viscoelastic wave propagation, shear 

behaviour of soils are usually modelled by the stress-strain relationship as follows: 

t
G                                                                                       (3.8) 

where,  is the shear stress,  is the shear strain, G is the shear modulus, and  is the 

viscosity of the material. Thus, the shear stress is the summation of an elastic part 

(proportional to strain, ) and a viscous part (proportional to strain rate,
t

). 
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Each of these properties depend on the amplitude of the strain for which the hysteresis 

loop is determined, and therefore both shear modulus and damping factor must be 

determined as functions of the induced shear strain in the supporting soil. 

Two important characteristics of the shape of hysteresis loop are the inclination and the 

breadth.  The inclination of the loop depends on the stiffness of the soil, which can be 

described at any point during the loading process by the tangent shear modulus. 

Obviously, tangent shear modulus varies throughout a cycle of loading, but its average 

value over the entire loop can be approximated by secant shear modulus G as follows: 

c

cG                                                                                               (3.10) 

where, c and c are the shear stress and shear strain amplitudes at a defined point, 

respectively. Thus, G describes the general inclination of the hysteresis loop. The breath 

of the hysteresis loop is related to the area, which can be described by the damping ratio 

 as follows: 

22
1

4 c

loop

S

D

G
A

W
W                                                                                                    (3.11)  

where, WD  is the dissipated energy in one hysteresis loop,�WS�the maximum strain 

energy, and Aloop the area of the hysteresis loop.  

The parameters G and  are often referred to as equivalent linear material parameters.  

For certain types of ground response analysis, these are adopted directly to describe the 

soil behaviour while for nonlinear analysis (hysteretic method) the actual path of the 

hysteresis loop is required.  

As shown in Figure 3.11, the secant shear modulus of the soil element varies with 

cyclic shear strain amplitude. At low strain amplitudes, the secant shear modulus is 

high, but it decreases as the shear strain amplitude increases. The locus of points 

corresponding to the tips of hysteresis loops of various cyclic strain amplitudes is 

called backbone (or skeleton) curve and its slope at the origin represents the largest 

value of the shear modulus, Gmax. At greater cyclic strain amplitudes, the modulus 

ratio G/Gmax drops to values of less than 1. Thus, characterisation of the stiffness of 

the soil element requires consideration of both Gmax and the manner in which the 

modulus ratio varies with the cyclic shear strain amplitude. 
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3.5.4 Backbone Curves for Cohesive Soils  
Large number of studies (Hardin, 1978; Anderson, 1976; Vucetic and Dobry, 1991; 

Sun et al., 1998) dealing with relationship between shear modulus ratio (G/Gmax) and 

damping ratio with cyclic shear strain (backbone curves) in cohesive soils have been 

carried out. Sun et al. (1998) represented backbone curves recommended for practical 

use in seismic site-response evaluations and microzonation. In those curves, relations 

between G/Gmax versus cyclic shear strain (Figure 3.12) and damping ratio versus 

cyclic shear strain (Figure 3.13) for cohesive soils are illustrated. 

 
Figure 3.12: Relations between G/Gmax versus cyclic shear strain for cohesive soils                 

(after Sun et al., 1998) 

 
Figure 3.13: Relations between damping versus cyclic shear strain for cohesive soils                 

(after Sun et al., 1998) 
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Zhang et al. (2005) modified the above mentioned curves based on geologic ages for three 

categories of soils including Quaternary, Tertiaty and Saprolite soils. Vucetic and Dobry 

(1991) conducted a study on number of available cyclic loading results and concluded that 

the soil plasticity index (PI) controls the location of the backbone curves for a wide variety 

of cohesive soils. Sun et al. (1998) backbone curves, employed in this study, take into 

account the effects of soil plasticity in an average sense, covering common range of soil 

plasticity indices for cohesive soils. The proposed backbone curves by Sun et al. (1998) can 

be good representative for soils with Plasticity Indices between 10 to 20, fitting the PI 

values of the utilised soils in this study (Table 5.3). 

3.5.5 Backbone Curves for Cohesionless Soils  
Studies carried out by Hardin and Drnevich (1972) and Seed and Idriss (1969) have shown 

that, while factors such as grain size distribution, degree of saturation, void ratio, lateral earth 

pressure coefficient, angle of internal friction, and number of stress cycles may have minor 

effects on the damping ratios of sandy and gravely soils, the main factors affecting the 

damping ratio are the strain level induced in soil and the soil effective confining pressure. 

Seed et al. (1986) represented backbone curves for a wide variety of cohesionless soils as 

illustrated in Figures 3.14 and 3.15. Seed et al. (1986) concluded that damping ratio for gravel 

is very similar to damping ratio for sand. However, the variation pattern of shear modulus 

ratio with shear strain shown in Figure 3.14 is generally representative of most sands, but the 

curve for gravel is a little flatter than the curve for sand. In this study, the average curves 

(solid lines in Figures 3.14 and 3.15) recommended by Seed et al. (1986) for (G/Gmax - ) and 

(  - ), ignoring the influence of confining pressure for simplicity, have been adopted. 

 
Figure 3.14: Relations between G/Gmax and cyclic shear strain for cohesionless soils (after Seed 

et al., 1986) 
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min

3
4

10
z

GK
kk ns                                                                                                      (3.12) 

where, K and G are bulk and shear modulus of neighbouring zone, respectively, and 

minz is the smallest width of an adjoining zone in the normal direction. This is a 

simplifying assumption that has been only used for interface modelling. Since there is no 

large slip between the soil and foundation, this assumption does not influence the 

numerical results. The principles and validity of this simplifying assumption have been 

described by Cundall and Hart (1992). Table 5.5 in Section 5.5 presents employed 

normal and shear spring stiffness values for interface elements of the soil-structure 

model for different utilised soil types. 

The adopted numerical model in this study employs contact logic which is described by 

Cundall and Hart (1992) for either side of the interface. The code keeps a list of the grid 

points (i,j) that lie on each side of any particular surface. Each point is taken in turn and 

checked for contact with its closest neighbouring point on the opposite side of the 

interface. During each time-step, the velocity ( iu ) of each grid point is calculated. The 

incremental displacement for any given time-step is: 

ii uu                                                                                                                  (3.13) 

The incremental relative displacement vector at the contact point is resolved into the 

normal and shear directions, and total normal and shear forces are determined by 

LukFF )t.t(
nn

)t(
n

)tt(
n

50                                                                                                                       (3.14) 

LukFF tt
ss

t
s

tt
s

)5.0()()(                                                                                                              (3.15) 

where,  

ks   = Shear spring stiffness; 
kn   = Normal spring stiffness; 
L      = Effective contact length; 
Fs      = Total shear force; 
Fn     = Total normal force; 
us      = Incremental relative displacement vector in shear direction; 
un     = Incremental relative displacement vector in normal direction; and 

t    = Time-step. 
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In static analyses, preliminary boundaries can be realistically situated at some distance 

from the centre of the structure. In dynamic problems, however, such boundary 

conditions could cause the reflection of outward propagating waves back into the model 

and do not allow the necessary energy radiation. To avoid reflective waves produced by 

the soil lateral boundaries, Roesset and Ettouney (1977), after a comprehensive study on 

the performance of different types of soil boundary conditions for dynamic problems, 

proposed an alternative as the best solution to the problem and introduced quiet 

(viscous) boundaries. 

3.7.1.1 Quiet (Viscous) Boundaries 
For lateral boundaries of the soil medium, quiet boundaries (viscous boundaries), 

proposed and developed by Lysmer and Kuhlemeyer (1969), are utilised in this study. 

The proposed method is based on utilisation of independent dashpots in the normal and 

shear directions at the model boundaries. The dashpots provide viscous normal and 

shear tractions given by: 

nPn CT ..                                                                                                                    (3.16)   

sss vCT ..                                                                                                                                      (3.17)   

where, Tn and Ts are normal and shear tractions at the model boundaries 

respectively, vn and vs are the normal and shear components of the velocity at the 

boundary, respectively,  is the material density, and Cp and Cs are the p-wave and 

s-wave velocities, respectively. 

3.7.1.2 Free-Field Boundaries 
Numerical analysis of the seismic response of surface structures requires the 

discretisation of a region of the material adjacent to the foundation. The seismic 

input is normally represented by plane waves propagating upward through the 

underlying material. Ground responses that are not influenced by the presence of 

structures are referred to as free-field motions (Kramer, 1996). In the current 

numerical model, the boundary conditions at the sides of the model account for the 

free-field motion which would exist in the absence of the structure. Free-field 

boundaries have been simulated using a developed technique in FLAC, involving the 

execution of a one-dimensional free-field calculation in parallel with the main-grid 
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ff
yv     = y- velocity of the grid point in the free-field grid; 

ff
xx     = mean horizontal free-field stress at the grid point; and 

ff
xy     = mean free-field shear stress at the grid point. 

Thus, plane waves propagating upward undergo no distortion at the boundary 

because the free-field grid supplies conditions identical to those in an infinite model. 

It should be noted that if the main grid is uniform, and there is no surface structure, 

the lateral dashpots are not exercised because the free-field grid executes the same 

motion as the main grid.  

3.7.2 Bedrock Boundary Condition 
There are two possible boundary conditions for simulating the bedrock in a numerical soil-

structure model; (i) rigid boundary in which preliminary boundary condition is assigned to 

the base, and (ii) compliant boundary in which quiet boundary (viscous boundary) is 

specified along the base of the numerical model.  Kocak and Mengi (2000) showed that 

adopting complaint boundary condition for the bedrock, the effect of the upward-

propagating wave train between the bedrock and the soil surface cannot be considered in the 

dynamic analysis as the entire reflected waves from the surface will be absorbed by the 

viscous dashpots at the base of the model, while this effect can be captured using rigid 

boundary condition for the bedrock. Therefore, they concluded that the rigid boundary 

condition is more appropriate and realistic boundary condition for simulation of the bedrock 

in dynamic soil-structure analysis. Dutta and Roy (2002), in their critical review on the soil-

structure interaction idealisation, concluded the same. In addition, in numerical analyses 

conducted by other researchers (e.g. Zheng and Takeda, 1995; Koutromanos et al., 2009), 

boundary condition for the bedrock is assumed to be rigid. With respect to the mentioned 

previous studies, the simplifying but satisfactory assumption of rigid bedrock boundary 

condition is adopted in the soil-structure numerical model in this study. In addition, the 

earthquake acceleration records are directly applied to the grid points along the rigid base of 

the soil medium mesh in the present study. It should be noted that according to Pitilakis and 

Terzi (2011), rigid boundary assumption for simulation of the bedrock in soil-structure 

interaction analysis may not be appropriate when the impedance contrast between the 

bedrock and the soil medium is substantially high. 

3.7.3 Distance between Soil Boundaries  
Rayhani and Naggar (2008), after undertaking comprehensive numerical modelling 
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and centrifuge model tests, concluded that the horizontal distance of the soil lateral 

boundaries should be at least five times the width of the structure in order to avoid 

reflection of outward propagating waves back into the model. They also recommended 

30 metres as the maximum bedrock depth in the numerical analysis as the most 

amplification occurs within the first 30 metres of the soil profile, which is in 

agreement with most of modern seismic codes (e.g. ATC-40, 1996; BSSC, 2003). 

Those seismic codes evaluate local site effects just based on the properties of the top 

30 meters of the soil profile. Thus, in this study, the horizontal distance of the soil 

lateral boundaries is assumed to be 60 metres (five times the width of the structure 

which is 12 metres) and the maximum bedrock depth is 30 metres.  

3.8 Dynamic Analysis of Soil-Structure Systems  
Several attempts have been made in recent years in the development of numerical 

procedures for assessing the response of supporting soil medium under seismic loading 

conditions. Successful application of these methods for determining ground seismic 

response is vitally dependent on the incorporation of the soil properties in the analyses. 

As a result, substantial effort has been made toward the determination of soil attributes 

to be used in the numerical procedures. 

3.8.1 Numerical Procedures for Dynamic Analysis of Soil-Structure Systems 
There are two main numerical procedures for dynamic analysis of soil-structure systems 

under seismic loads; (i) equivalent-linear method, and (ii) fully nonlinear method. The 

traditional standard practice for dynamic analysis of soil-structure systems has been 

based on equivalent-linear method. The fully nonlinear analysis has not been applied as 

often in practical design due to its complexity. However, practical applications of fully 

nonlinear analysis have increased in the last decade, as more emphasis is placed on 

reliable predictions in dynamic analysis of complex soil-structure systems (Byrne et al., 

2006). Details of these two methods are explained below.   

3.8.1.1 Equivalent Linear Method 
The equivalent linear method has been in use for many years to calculate the wave 

propagation (and response spectra) in soil and rock at sites subjected to seismic 

excitation. In equivalent-linear method, a linear analysis is carried out with some 

assumed initial values for damping ratio and shear modulus in various regions of the 

model. Then the maximum cyclic shear strain is recorded for each element and used to 
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determine the new values for damping and modulus, referring to the backbone curves 

relating damping ratio and secant modulus to the amplitude of the shear strain. Some 

empirical scaling factors are usually utilised when relating these strains to the model 

strains. The new values of damping ratio and shear modulus are then used in the next 

stage of the numerical analysis. The whole process is repeated several times, until there 

is no further change in the properties and the structural response. At this stage, “strain-

compatible” values of damping and modulus are recorded, and the simulation using 

these values is deemed to be the best possible prediction of the real behaviour. Rayleigh 

damping may be used in this method to simulate energy losses in the soil-structure 

system when subjected to a dynamic loading. Seed and Idriss (1969) described that 

equivalent-linear method employs linear properties for each element, which remain 

constant under the influence of seismic excitations. Those values, as explained, are 

estimated from the mean level of dynamic motion.  

Other characteristics of equivalent-linear method are as follows (Seed and Idriss, 1969 

and Itasca, 2008): 

 The interference and mixing phenomena taking place between different 

frequency components in a nonlinear material are missing from an equivalent-

linear analysis. 

 The method does not directly provide information on irreversible displacements 

and the permanent changes. 

 In the case where both shear and compression waves are propagated through a 

site, the equivalent-linear method typically treats these motions independently. 

 Equivalent linear methods cannot be formulated in terms of effective stresses to 

allow the generation and dissipation of pore pressures during and following 

earthquake shaking. 

3.8.1.2 Fully Nonlinear Method 
Fully nonlinear method, adopted in this study, is capable to model nonlinearity in dynamic 

analysis of soil-structure systems precisely and follows any prescribed nonlinear 

constitutive relation. In addition, structural geometric nonlinearity (large displacements) can 

be accommodated precisely in this method. During the solution process, structural materials 

could behave as isotropic, linearly elastic materials with no failure limit for elastic analysis, 

or as elasto-plastic materials with specified limiting plastic moment for inelastic structural 
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analysis to simulate elastic-perfectly plastic behaviour. For the dynamic analysis, the 

damping of the system in the numerical simulation should be reproduced in magnitude and 

form, simulating the energy losses in the natural system subjected to the dynamic loading. 

In soil and rock, natural damping is mainly hysteretic (Gemant and Jackson 1937, and 

Wegel and Walther 1935). In this study, constant damping has been introduced for the rigid 

base structure and for simplicity, energy dissipation from the foundation has been ignored. 

Energy dissipation has been considered for dynamic analysis of soil-structure interaction in 

this study using hysteretic damping algorithm which is incorporated in this numerical 

solution allowing the strain-dependent modulus and damping functions to be incorporated 

directly into the numerical simulation. 

Other characteristics of fully nonlinear method are as follows (Byrne et al., 2006 and 

Itasca, 2008): 

 Nonlinear material law, interference and combination of different frequency 

components can be considered simultaneously. 

 Irreversible displacements and other permanent changes can be modelled as 

required. 

 Both shear and compression waves are propagated together in a single 

simulation, and the material responds to the combined effect of both 

components. For strong motions, the coupling effects can be very significant. 

For example, normal stresses may be reduced dynamically, thus causing the 

shearing strength to be reduced in a frictional material. 

 The formulation for the nonlinear material behaviour can be incorporated in 

terms of effective stresses. Consequently, the generation and dissipation of pore 

pressures during and following shaking can be modelled. 

3.8.1.3 Fully Nonlinear Method vs. Equivalent Linear Method 
Byrne et al. (2006) and Beaty and Byrne (2001) reviewed the above mentioned 

methods and discussed the benefits of the fully nonlinear numerical method over the 

equivalent-linear method for different practical applications. The equivalent-linear 

method is not appropriate to be used in dynamic soil-structure interaction analysis as 

it does not directly capture any nonlinearity effects due to linear solution process. In 

addition, strain-dependent modulus and damping functions are only taken into 

account in an average sense, in order to approximate some effects of nonlinearity.  
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Byrne et al. (2006) concluded that the most appropriate method for dynamic analysis 

of soil-structure system is fully nonlinear method. The method correctly represents 

the physics associated with the problem and follows any stress-strain relation in a 

realistic way. In this method, small strain shear modulus and damping degradation 

of soil with strain level can be captured precisely in the modelling. Considering the 

mentioned priorities and capabilities of the fully nonlinear method for the dynamic 

analysis of soil-structure systems, this method is employed in the dynamic analysis 

of soil-structure system in this study in order to attain rigorous and more reliable 

results. 

3.8.2 Hysteretic Damping Formulation and Implementation 
Modulus degradation curves imply nonlinear stress-strain curves. In case of an ideal soil 

in which the stress depends only on the strain (not on the number of cycles, or time), an 

incremental constitutive relation from the degradation curve can be described by the 

strain-dependent normalised secant modulus (Ms) as follows: 

sM                                                                                                                            (3.20) 

where,  is the normalised shear stress and  is the shear strain. 

The normalised tangent modulus, Mt , is then obtained as: 

d
dMM

d
dM s

st                                                                                              (3.21) 

The incremental shear modulus in a nonlinear simulation is then given by G  Mt, where, 

G is the secant shear modulus described in Equation (3.10). 

The formulation described above is implemented in FLAC by modifying the strain rate 

calculation. Therefore, the mean strain rate tensor (averaged over all subzones) is 

calculated prior to any calls are made to constitutive model functions. At this stage, the 

hysteretic logic is invoked, returning a modulus multiplier which is passed to any called 

constitutive model. The model then uses the multiplier Mt to adjust the apparent value of 

tangent shear modulus of the full zone. 

Three built-in tangent modulus functions are available in FLAC to implement hysteretic 

damping by representing the variation of the shear modulus reduction factor (G/Gmax) 

and damping ratio ( ) with cyclic strain ( ) as follows: 



66

1. Default Model: The default hysteresis model is developed by the S-shaped curve 

of modulus versus logarithm of cyclic strain, representing a cubic equation, with 

zero slopes at both low and high strains. Thus, the secant modulus (Ms) can be 

calculated as: 

      )23(2 ssM s                                                                                               (3.22) 

     where, 

      
12

2

LL
LLs                                                                                                             (3.23) 

       and  L is the logarithmic strain, 

      )(10LogL                                                                                                         (3.24) 

The model is defined by two parameters, L1 and L2, which are the extreme values of 

logarithmic strain. 

2. Sigmoidal Models: These curves are monotonic within the defined range, and have 

the required asymptotic behaviour. Thus, the functions are well-suited to the 

purpose of representing modulus degradation curves. These two types of sigmoidal 

models (Sig3 includes a, b, and x0 and Sig4 consists of a, b, x0 and y0 parameters) are 

defined as follows: 

Sig3 Model 

)/)(exp(1 0 bxL
aM s                                                                                      (3.25) 

Sig4 Model 

)/)(exp(1 0
0 bxL

ayM s                                                                            (3.26) 

3. Hardin/Drnevich Models: The model presented by Hardin and Drnevich (1972), 

known as Hardin model which is defined by Hardin/Drnevich constant ( ref)  as 

follows: 

ref
sM

/1
1

                                                                                                   (3.27) 
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Any of the above mentioned models generate backbone curves presented in Sections 

3.5.4 and 3.5.5 for sand (Seed et al., 1986) and clay (Sun et al., 1998) adopting the 

required numerical fitting parameters summarised in Table 3.1. 

Table 3.1: Numerical fitting parameters in FLAC for modulus degradation modelling 

Data Set Default Sig 3 Sig 4 Hardin 

Sand 
L1=-3.325 

L2=0.823 

a=1.014 

b=-0.4792 

x0=-1.249 

a=0.9762 

b=-0.4393 

x0=-1.285 

y0=0.03154 

ref=0.06 

Clay 
L1=-3.156 

L2=1.904 

a=1.017 

b=-0.587 

x0=-0.633 

a=0.922 

b=-0.481 

x0=-0.745 

y0=0.0823 

ref=0.234 

 

3.9 Summary 
In this study, a numerical soil-structure model is developed in direct method using state 

of the art capabilities of FLAC2D to simulate complex nature of dynamic soil-structure 

interaction as accurate and realistic as possible.  

The soil-structure model employs beam structural elements to model beams, columns 

and foundation slabs. During analysis process, structural material could behave as an 

isotropic, linearly elastic material with no failure limit for elastic structural analysis or 

as an elastic-perfectly plastic material with specified limiting plastic moment for 

inelastic structural analysis. Therefore, both elastic and plastic (inelastic) structural 

behaviour can be captured by the model in dynamic analysis. In addition, structural 

geometric nonlinearity (large displacements) has been accommodated in dynamic 

analysis. 

Two dimensional plane-strain grids composed of quadrilateral elements are utilised to 

model the soil medium. Nonlinear behaviour of the soil medium has been captured 

using backbone curves of shear modulus ratio versus shear strain (G/Gmax - ) and 

damping ratio versus shear strain (  - ) adopting Mohr-Coulomb constitutive model. 
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Employing the backbone curves for simulating nonlinear behaviour of the soil, in this 

study, fully nonlinear method for analysis of dynamic soil- structure interaction has 

been employed in order to attain rigorous and reliable results. Fully nonlinear method is 

capable to precisely model nonlinearity in dynamic analysis of soil-structure systems 

and follow any prescribed nonlinear constitutive relation. Small strain shear modulus 

and damping degradation of soil with strain level can be considered in the modelling 

precisely.  

Interface elements represented by normal and shear springs between soil and structure 

are exploited to simulate frictional contact between two planes contacting each other, 

with the interface shear strength defined by the Mohr-Coulomb failure criterion. In 

order to avoid reflection of outward propagating waves back into the model, quiet 

(viscous) boundaries comprising independent dashpots in the normal and shear 

directions are placed at the lateral boundaries of the soil medium. The lateral boundaries 

of the main grid are coupled to the free-field grids by viscous dashpots of quiet 

boundaries at the sides of the model to simulate the free-field motion which would exist 

in the absence of the structure. Horizontal distance of the soil lateral boundaries 

assumed to be 60 metres and maximum bedrock depth is 30 metres. Rigid boundary 

condition is assigned to the bedrock. 

The new developed model is a novel and enhanced numerical soil-structure model as it 

is capable of capturing structural plasticity (inelastic behaviour) and soil nonlinearity, 

treating the behaviour of both soil and structure with equal rigor simultaneously. 

Besides, adopting direct method, which perfectly simulates complex geometries and 

material properties in numerical methods, the model can perform fully nonlinear time 

history dynamic analysis to simulate realistic dynamic behaviour of soil and structure 

under seismic excitations as accurate and realistic as possible. In addition, as the model 

employs a Multi Degree of Freedom (MDOF) structure, inter-storey drifts can be 

determined and utilised for investigating the performance levels of the building 

structures under the influence of dynamic soil-structure interaction. 
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CHAPTER FOUR 

 

4. EXPERIMANTAL STUDY AND VERIFICATION  

4.1 General 
Full-scale field tests or scale model tests are essential to study soil-structure system 

behaviour during earthquakes. Such tests are also required to validate numerical or 

analytical models. Full-scale field experiments have the advantage of considering realistic 

site conditions; whereas, the use of scale models on shaking table offers the advantage of 

simulating complex systems under controlled conditions, and the opportunity to gain insight 

into the fundamental mechanisms operating in these systems.  

In many circumstances, the scale models on shaking table may afford a more economical 

option than the corresponding full-scale tests. The practice of conducting parametric studies 

with scale models can be used to augment areas where case histories and prototype tests 

provide only sparse data. In addition to qualitative interpretation, scale model test results are 

often used as calibration benchmarks for analytical methods, or to make quantitative 

predictions of the prototype response. For such applications, it is necessary to have a set of 

scaling relations which can relate the observations and predictions. 

In this chapter, the developed novel and enhanced numerical soil-structure model, described 

in Chapter 3, is validated and verified by performing shaking table tests to the scale soil-

structure model. The dynamic simulation has been carried out on the shaking table located 

in the civil laboratory of the University of Technology, Sydney (UTS). It should be noted 

that the UTS shaking table has a uni-axial configuration, allowing for one-dimensional 

input motions. Table 4.1 summarises the UTS shaking table characteristics. 

Table 4.1: UTS shaking table specifications 

Size of the Table  3m x 3 m  

Maximum Payload  10 tonnes  

Overturning Moment  100 kN-m  

Maximum Displacement  ±100 mm  

Maximum Velocity  ±550 mm/sec  

Maximum Acceleration  ±2.5g (no load) or ±0.9g (full load)  

Testing Frequency  0.1 – 50 Hz  
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Krawinkler (1981) explained that scale models meet the requirements of similitude to the 

prototype to differing degrees, and researchers may apply nomenclature such as “true”, 

“adequate”, or “distorted” to the model. A true model fulfils all similitude requirements. 

An adequate model correctly scales the primary features of the problem, with secondary 

influences allowed to deviate while the prediction equation is not significantly affected. 

Distorted models refer to those cases in which deviation from similitude requirements 

distorts the prediction equation, or where compensating distortions in other dimensionless 

products are introduced to preserve the prediction equation. 

In addition, Moncarz and Krawinkler (1981) elucidated that in 1-g scale modelling, 

where,  is density, E is modulus of elasticity, a is acceleration, and g is gravitational 

acceleration, the dimensionless product a/g (Froude’s number) must be kept equal to 

unity implying that the ratio of model to prototype specific stiffness (E/ ) is equal to 

the geometric scaling factor . This is known as “Cauchy condition” which can also 

be stated in terms of shear wave velocity as follows:  

mS

pS

V
V

)(
)(

                                                                                                             (4.1)    

where, subscripts p and m stand for prototype, and model, respectively, and Vs is shear 

wave velocity. 

In addition, Moncarz and Krawinkler (1981) showed that satisfying the Cauchy 

condition is a necessary requirement for simultaneous replication of restoring forces, 

inertial forces, and gravitational forces in a dynamic system.  

Iai (1989) derived a comprehensive set of scaling relations for a soil-structure system 

under dynamic loading and defined the entire problem in terms of geometric, density, 

and strain scaling factors. This method relates the geometric ( ) and density ( p ) 

scaling factors, and then derives the strain scaling factor ( ) from shear wave 

velocity tests on both the model and prototype soil, as presented in Equation (4.2). 

2)
)(
)(

(
mS

pS

V
V

                                                                                                     (4.2)    
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Meymand (1998) and Moss et al (2010) explained that no governing equation can be 

written describing the entire soil-structure system, nor can dimensional analysis or 

similitude theory be directly applied to this complex system to achieve “true” model 

similarity. The viable scale modelling approach for application of scale model 

similitude therefore consists of identifying and successfully modelling the primary 

forces and processes in the system, while suppressing secondary effects, thereby 

yielding an “adequate” model. 

Several researchers (e.g. Meymand, 1998; Turan et al., 2009, Moss et al., 2010) pointed 

out that in order to achieve an adequate model for dynamic soil-structure interaction 

simulation in shaking table tests, Cauchy condition (Equation 4.1), should be satisfied. 

In addition, the strain scaling factor ( ) should be kept equal to one. It should be 

noted that when Cauchy condition is satisfied, obviously, the result of substituting the 

value of (Vs)p /(Vs)m from Equation (4.1) into Equation (4.2) is equal to one. 

The objective of the scale modelling procedure for this test program is to achieve 

“dynamic similarity”, where model and prototype experience homologous forces. 

For this purpose, adopted methodology by Meymand (1998) is the framework for 

scale model similitude in this study. According to this approach, three principal test 

conditions establish many of the scaling parameters. The first condition is that 

testing is conducted in a 1-g environment, which defines model and prototype 

accelerations to be equal. Secondly, a model with similar density to the prototype is 

desired, fixing another component of the scaling relations. Thirdly, the test medium 

is primarily composed of saturated clayey soil, whose undrained stress-strain 

response is independent of confining pressure, thereby simplifying the constitutive 

scaling requirements. In addition to the three principal test conditions, Meymand 

(1998) pointed out that the natural frequency of the prototype should be scaled by an 

appropriate scaling relation. 

By defining scaling conditions for density and acceleration, the mass, length, and 

time scale factors can all be expressed in terms of the geometric scaling factor ( ), 

and a complete set of dimensionally correct scaling relations (ratio of prototype to 

model) can be derived for all variables being studied. The scaling relations for the 

variables contributing to the primary modes of system response are shown in Table 

4.2 (Meymand, 1998; Turan et al., 2009; Moss et al., 2010; Sulaeman, 2010; Lee et 

al., 2012). 
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Table 4.2: Scaling relations in terms of geometric scaling factor ( )  

Mass Density 1 Acceleration 1 Length  

Force 3 Shear Wave Velocity 1/2 Stress  

Stiffness 2 Time 1/2 Strain 1 

Modulus  Frequency -1/2 EI 5 

In Table 4.2, the shear wave velocity scaling factor ((Vs)p/(Vs)m) is equal to          
2/1 . Therefore, Cauchy condition (Equation 4.1) is met in the scaling relations. In 

addition, strain scaling factor ( ), which can be determined by substituting the 

value of (Vs)p/(Vs)m from Equation (4.1) into Equation (4.2), is kept equal to one. 

Thus, as mentioned earlier, both requirements for achieving an adequate model for 

dynamic soil-structure interaction simulation in shaking table tests are satisfied. The 

application of the scaling relations and development of the soil-structure model 

components will be discussed in the following sections. 

4.3.1 Adopted Geometric Scaling Factor 
Adopting an appropriate geometric scaling factor ( ) is one of the important steps in 

scale modelling on shaking table. Although small scale models could save cost, the 

precision of the results could be substantially reduced. Therefore, to attain the largest 

achievable scale model which represents the most accurate results possible, geometric 

scaling factor ( ) has been selected with respect to the following limitations of the 

UTS uni-axial shaking table as the design criteria: 

 Size of the table : 3m 3 m 

 Maximum payload : 10,000 kg 

 Overturning moment : 100 kN-m 

Table 4.3 compares the characteristics of the scale model shown in Figure 4.2 for 

different scaling factors. In this table, the related weight is just accounted for soil 

inside the tank excluding weights of the container and structure. As previously 

mentioned, a model with similar density to the prototype is desired satisfying dynamic 

similarity. As a result, soil unit weight in the model and prototype should be the same 

and equal to 14.40 kN/m3. In addition, the ratio between width and length of the soil 
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container is another variable to be considered. According to the previously designed 

containers (e.g Gazetas, 1982; Taylor, 1997; Pitilakis et al., 2008; Chau et al., 2009), 

ratio of 2:3 between width and length of the soil container is deemed to be the most 

appropriate ratio. Thus, this ratio has been adopted in this study.  

Table 4.3:  Dimensional characteristics of scale model considering different scaling factors 

Geometric 
Scale 
factor 

B  
(m) 

L  
(m) 

W  
(m) 

D  
(m) 

H  
(m) 

D +H  
(m) 

Volume 
(m3) 

Weight 
(kg) 

Overturning 
Moment 
 (kN.m) 

1:1 12 60 36 30 45 75 64800 0.95E+8 1.40E+10 

1:10 1.20 6 3.60 3 4.50 7.50 64.80 95256 1400 

1:20 0.60 2.40 1.80 1.50 2.25 3.75 8.10 11907 89.50 

1:30 0.40 2 1.20 1 1.50 2.50 2.40 3528 17.30 

1:40 0.30 1.50 0.90 0.75 1.12 1.87 1.01 1488 5.60 

1:50 0.24 1.20 0.72 0.60 0.90 1.50 0.51 762 2.30 

1:100 0.12 0.60 0.36 0.30 0.45 0.75 0.06 95 0.15 

*For definition of variables refer to Figure 4.2 

 
Figure 4.2: Scale model of soil structure interaction problem  

Referring to Tables 4.1 and 4.3, with respect to the design criteria, scaling factor of 1:30 

provides the largest achievable scale model with rational scales, maximum payload, and 

overturning moment which meet the facility limitations. Thus, geometric scaling factor ( ) 

of 1:30 is adopted for experimental shaking table tests on the scale model in this study. 

B

L =5B

D

H

W =3B
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4.4 Structural Model Design and Construction 

4.4.1 Characteristics of Structural Model 
Employing geometric scaling factor of 1:30 according to Table 4.3, height (H), length 

(L), and width (W) of the structural model are determined to be, 1.50 m, 0.40 m, and 

0.40 m, respectively (Figure 4.3).  

 
Figure 4.3: Structural model dimensions 

Referring to Meymand (1998) principal test conditions, explained in Section 4.3, in 

order to achieve dynamic similarity, in addition to geometric dimensions, the natural 

frequency of the prototype should be scaled by an appropriate scaling relation and the 

density of the model and the prototype should be equal. In this way, prototype 

structure may be modelled more accurately in shaking table tests. The mentioned two 

parameters play key roles in the scaling process, and scaling them deemed to be 

adequate. In addition, steel structural model is constructible and adjustable to the test 

environment, while concrete structural model could not be constructed with the 

required dimensions and dynamic properties. Therefore, the concrete structure 

prototype was scaled into a steel structure model, by scaling the natural frequency and 

the density of the prototype.  

According to Table 4.2, the scaling relationship between natural frequency of the 

model ( mf ) and natural frequency of the prototype ( pf ) is: 

480.52/1

p

m

f
f

                                                                                                   (4.3) 

As mentioned in Section 4.2, natural frequency of the prototype structure is pf = 0.384 

Hz. Therefore, the required natural frequency of the structural model ( mf ) can be 
determined as follows: 

L=0.4m

H=1.5m

W=0.4m
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11.2384.0480.5480.5 pm ff  Hz                                                                                 

The determined natural frequency of the model is conforming with the approximated 

value of average frequency of the building equal to 2.95 Hz, calculated by Equation 

6.2(7) of AS 1170.4-2007. 

Scaling relationship between density of the model ( m ) and density of the prototype  

( p ), based on Table 4.2, is: 

 pm
p

m 1                                                                                                  (4.4)  

Density of the prototype structure ( p ) can be determined as follows: 

441
41245

000953,
V
m

p

p
p kg/m3                                                                       (4.5) 

where, mp is the mass of the prototype structure and Vp is the volume of the prototype 
structure. 

Substituting the density of the prototype structure ( p ) from Equation (4.5) into 

Equation (4.4), the mass of the structural model (mm) can be estimated as:  

mmm Vm 441 kg/m3  (1.50 m 0.40 m 0.40 m) =106 kg                           (4.6) 

where, Vm is the volume of the structural model. 

4.4.2 Design of Structural Model 
Based on the discussion in Section 4.4.1, the required characteristics of the structural 

model is summarised in Table 4.4. 

Table 4.4: Characteristics of the structural model 
 

Total Height 
(m) 

Total Length 
(m) 

Total Width 
(m) 

Natural Frequency 
(Hz) 

Total Mass 
(kg) 

1.50 0.40 0.40 2.11 106 

Knowing the required characteristics of the structural model, its 3D numerical model 

has been built in SAP2000 software using two dimensional shell elements to model 

columns and floors as shown in Figure 4.4. The numerical model consists of fifteen 

horizontal steel plates as the floors and four vertical steel plates as the columns. Steel 

plate grade 250, according to AS/NZS 3678-2011 (Structural Steel), with the 

minimum yield stress of 280 MPa and minimum tensile strength of 410 MPa, has been 

adopted in the design. The thickness of the steel plates have been determined in design 
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to Prasad et al. (2004), the final length (L*), width (W*), and depth (D*) of the laminar 

soil container are estimated to be 2.10m, 1.30m, and 1.10m, respectively (Figure 4.9).  

 

Figure 4.9: Adopted laminar soil container dimensions 

In terms of choosing the materials to built the soil container, according to the previous 

conducted research works (e.g. Ishimura et al., 1992; Taylor, 1997; Jakrapiyanun, 

2002; Pitilakis et al., 2008; Chau et al., 2009), aluminium frames and rubber layers 

were employed in an alternating pattern. Therefore, the laminar soil container consists 

of a rectangular laminar box made of aluminium rectangular hollow section frames 

separated by rubber layers. The aluminium frames provide lateral confinement of the 

soil, while the rubber layers allow the container to deform in a shear beam manner. 

4.5.2 Design of Laminar Soil Container 
Taylor et al. (1995) stated that the mass and stiffness characteristics of the soil 

container should be carefully chosen so that the container’s natural frequency and 

mode shapes in horizontal shear are compatible with those of the contained soil.  

The primary aims of the design are to ensure that the soil mass controls the overall 

dynamic response of the soil-container system, and the soil mass is subjected to the 

simple shear boundary conditions that exist in the idealised prototype system. In this 

system, horizontal soil strata overlaying rigid bedrock and the lateral boundaries are at 

infinity. When subjected to horizontal bedrock movements, the soil responds like a 

shear beam as horizontal shear waves propagate vertically, leading to a sinusoidal 

lateral displacement profile. 

L* =2.10m

D*=1.10m

W*=1.30m
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According to Table 4.2, scaling factor between shear wave velocity of the soil model 

(Vs)m and shear wave velocity of the prototype soil (Vs)p can be expressed as follows: 

182.0
)(
)( 2/1

ps

ms

V
V

                                                                                               (4.7) 

Knowing that the shear wave velocity of the prototype soil (Vs)p is 200 m/s from 

Section 4.2, the shear wave velocity of the soil model (Vs)m can be determined from 

Equation  (4.7): 

smVV psms /4.36200182.0)(182.0)(  

According to Kramer (1996), natural frequency of the subsoil (fs) can be calculated 

from the following relationship: 

s

s
s H

V
f

4
                                                                                                                    (4.8)  

where, Vs is the shear wave velocity of the subsoil and Hs is the bedrock depth. 

Thus, the natural frequency of the soil model (fm) can be determined by substituting 

the values of the shear wave velocity (Vs)m and bedrock depth (Hs)m of the soil model 

equal to 36.4 m/s and 1 m, respectively, in Equation (4.8): 

Hz
H
V

f
ms

ms
m 1.9

14
4.36

)(4
)(            

With respect to the required dimensions of the soil container, a numerical 3D model 

of the laminar soil container has been built in SAP2000 software using one 

dimensional frame elements to model aluminium rectangular hollow section frames 

and two dimensional shell elements to model rubber layers as shown in Figure 4.10. 

The numerical model comprises ten aluminium rings and nine rubber layers.  

Afterwards, the mass and stiffness characteristics of the soil container have been 

designed in a way that the container and soil model natural frequencies match. For this 

purpose, size and mechanical properties of the aluminium rectangular hollow section 

frames and rubber layers were determined in design process after several cycles of trial 

and error in a way that the natural frequency of the model soil (fm=9.1 Hz) with the 

natural frequency of the laminar soil container match together. 
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These parameters are discrete and nonlinear, and are functions of the loading rate, the 

number of cycles, and strain reversals. When the unit weight of the soil model is considered 

to be equal to the unit weight of the prototype soil, as explained in Section 4.3, then one 

scaling condition can be determined. Meymand (1998) explained that “the nonlinear stress-

strain and modulus degradation and damping curves are not directly modelled from a 

prototype case, but rather the method of implied prototypes is used to consider whether the 

scale model properties for these parameters are reasonable. This leaves shear modulus (or 

shear wave velocity) as the principal soil modelling criterion”.  Shear modulus (or shear 

wave velocity) has been considered as the principal soil modelling criterion by several other 

studies (e.g. Turan et al., 2009; Sulaeman, 2010; Lee et al., 2012) as well. 

As explained in Section 4.5.2, with respect to the value of the shear wave velocity of 

the prototype soil (Vs)p equal to 200 m/s, the required shear wave velocity of the soil 

model (Vs)m was determined from Equation (4.7). Therefore, in order to achieve 

dynamic similarity, the soil model should have the shear wave velocity (Vs)m and unit 

weight ( s )m of 36.4 m/s and 14.4 kN/m3, respectively. 

Meymand (1998), Turan et al. (2009), and Moss et al. (2010) adopted synthetic clay 

mixture reporting that a reconstituted soil would not be able to satisfy the competing 

scale modelling criterion of shear wave velocity with enough bearing capacity for 

the foundation in shaking table tests while synthetic clay mix provides adequate 

undrained shear strength to mobilise the required shallow foundation bearing 

capacity underneath the structural model meeting the scale modelling criterion of 

shear wave velocity. If the underneath soil does not provide enough bearing capacity 

for the structural model foundation, the underneath soil may experience failure or 

excessive settlements while testing process is being undertaken. In addition, 

Meymand (1998) and Moss et al. (2010) pointed out that employing a reconstituted 

soil is deemed impractical in shaking table tests due to the large size of the test 

container and the very long time that would be required for consolidation in a 1-g 

environment.  

Thus, in this study, a synthetic clay mixture, which meets the contending scale 

modelling criterion of shear wave velocity with adequate bearing capacity for the 

foundation, was adopted as the soil medium for the shaking table testing process. 
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4.6.2 Development of Soil Mix   
In order to develop the synthetic clay mixture, in this study, the following materials were 

used: 

 Q38 kaolinite clay;  

 ActiveBond 23 bentonite;  

 Class F fly ash;  

 Lime;  and 

 Water. 
Q38 kaolinite clay is a dry milled kaolin China clay of a white-cream colour. 

Kaolinite is formed by the breakdown of feldspar, which is induced by water and 

carbon dioxide and is often formed by the alteration of aluminium silicate minerals 

in a warm and humid environment (Craig, 2000; Murray, 1999). The kaolinite 

samples had an average liquid limit and plastic limit of 50% and 30%, respectively.  

ActiveBond 23 bentonite is a pure form of bentonite, which is plastic, impermeable, 

having a high absorbing and swelling capacity and is high viscous when suspended 

in water (Churchman, 2000). The bentonite samples acquired average liquid limit 

and plastic limit of 340% and 55%, respectively.  

The burning of hard, old anthracite and bituminous coal typically produces Class F 

fly ash. This fly ash is pozzolanic in nature, and contains less than 20% lime (CaO). 

Possessing pozzolanic properties, the glassy silica and alumina of Class F fly ash 

requires a cementing agent, such as Portland cement, quicklime, or hydrated lime, 

with the presence of water in order to react and produce cementitious compounds 

(Siddique, 2002). 

Combination of (4 class F fly ash): (1 quick lime) was utilised in the mix. According 

to Wartman (1996), this combination acts as a chemically reactive material when 

mixed with the kaolinite-bentonite clay. The chemical reactivity is attributed to the 

high calcium oxide content of the fly ash. When mixed with the clay, the 

combination causes rapid cation exchange to occur on the clay minerals leading to a 

substantial reduction in plasticity. The cation exchange causes the double layer 

around the clay mineral to shrink resulting in an increase in stiffness and by 

association, shear wave velocity. Figure 4.20, shows the different dry components of the 

soil mix in three different containers.  
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explained below. It should be noted that the proposed soil mix (Mix C) acquires the 

properties of cemented soil that can be found in nature or treated soil. According to 

Horpibulsuk et al. (2010), behaviour of cemented soils can be very similar to over 

consolidated soils. Thus, shear modulus degradation and damping of the adopted soil mix 

may be similar to over consolidated soils as represented in Figures 3.14 and 3.15.  

4.6.3 Properties of the Selected Soil Mix   
As mentioned in Section 4.6.2, the shear wave velocity of Mix C on the second day of 

the cure age matches the targeted value of the soil shear wave velocity. If the soil 

density during the same cure age is equal to prototype soil density, both criteria to 

achieve dynamic similarity between the model and the prototype soil are met. 

Therefore, Mix C has been reproduced at the UTS soils laboratory and the standard 

method of soil particle density determination was performed on the second day of the 

cure age according to AS 1289.3.5.1-2006 (Methods of testing soils for engineering 

purposes). Accordingly, soil density in the second day of the cure age ( s ) was 

determined to be 1450 kg/m3 which is almost equal to the prototype soil density (1470 

kg/m3). Thus, shear wave velocity and soil density values of Mix C on the second day of the 

cure age satisfy the mentioned dynamic similarity requirements. In addition, as mentioned 

earlier, the soil model undrained shear strength is supposed to be adequate to satisfy the 

required shallow foundation bearing capacity underneath the structural model.  In order to 

check the undrained shear capacity, three cylindrical test specimens of size D=100 mm and 

h=200 mm were taken and sealed (Figure 4.27a) from Mix C with the mixing and moulding 

process described in Section 4.6.2. Then, on the second day of the samples cure age, 

Unconfined Compression tests (UC) were performed on the three soil specimens in 

accordance with AS5101.4-2008 (Method 4: unconfined compressive strength of 

compacted materials) in order to determine soil shear strength. Figure 4.27b depicts a failed 

specimen after undertaking the test.  The average undrained shear strength (Cu) of Mix C on 

the second day of the cure age, resulting from three examined specimens, was 1.57 kPa. 

According to the carried out foundation calculations, by adopting this value of undrained 

shear strength, the soil mix will provide enough bearing capacity with acceptable factor of 

safety under the structural model on the second day of the cure age to avoid any failure or 

excessive settlement underneath the structure (qult = 5.14 Cu, FoS > 2.0). Eventually, the 

selected soil mix (Mix C) on the second day of the cure age is expected to have the 

properties summarised in Table 4.6. 
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Therefore, for scaling the earthquake records, it is required to reduce the time steps of 

the original records by a factor of 5.48. As a result, the original time steps of Kobe, 

Northridge, and El Centro earthquake acceleration records were shifted from 0.02 to 

0.00365, while for Hachinohe earthquake record, the original time steps of 0.01 shifted 

to 0.001825. The scaled acceleration records of the four adopted earthquakes are 

illustrated in Figures 4.28 to 4.31.  

 
 Figure 4.28: Kobe earthquake (1995); (a) original record; (b) scaled record 

 
Figure 4.29: Northridge earthquake (1994); (a) original record; (b) scaled record 
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Figure 4.30: El Centro earthquake (1940); (a) original record; (b) scaled record 

 
Figure 4.31: Hachinohe earthquake (1968); (a) original record; (b) scaled record 

 

4.8 Instrumentation and Data Acquisition System  

Two different classes of measuring instruments were utilised in the current shaking 

table test programme, namely, displacement transducers (Figure 4.32a) and 

accelerometers (Figure 4.32b) in order to measure structural deformations and 

accelerations, respectively.  
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sweep holding a specified acceleration constant at the base of the structure. For the 

current Sin Sweep test, frequency of the shaking table has increased from 0.1 Hz to 

50 Hz. The first resonance between the shaking table and structural model 

frequencies showed the fundamental natural frequency of the model. The test was 

repeated three times to ensure the determined natural frequency is adequately 

accurate. The resulting natural frequency of the constructed structural model 

obtained from sin sweep test results was 2.19 Hz which is in a very good agreement 

with the desired natural frequency of structural model (Table 4.4). Therefore, the 

constructed structural model, with the natural frequency ( mf ) of 2.19 Hz and the total 

mass ( mm ) of 104 kg, possesses the required characteristics as summarised in Table 

4.4, to meet the dynamic similarity criteria.  

After ensuring adequacy of the structural model characteristics, shaking table tests 

were performed by applying scaled earthquake acceleration records of Kobe, 1995 

(Figure 4.28b), Northridge, 1994 (Figure 4.29b), El Centro, 1940 (Figure 4.30b), and 

Hachinohe, 1968 (Figure 4.31b) to the fixed base structural model.  

4.9.2 Determining Structural Damping Ratio   
The estimated value of the structural damping ratio of the constructed structural 

model has been determined from the free vibration lateral displacement records of 

the structural model using the following Taylor series expansion (Roy et al., 2006):  

...
!

)m(m
!n

)m(e
U
U

n

n
m

mn

n

2
22121

2

1

2                                      (4.9) 

where,  is the structural damping ratio and Un and Un+m  are two positive peaks of the 

free vibration response of the structure which are m cycles apart. 

Substituting the values of Un and Un+m for the two positive peaks of the free vibration 

lateral displacement records in Equation (4.9), which are 10 cycles apart, and repeating 

the whole process several times, the estimated structural damping ratio ( ) is 1.1%. 

4.9.3 Fixed base Model Test Results 
The results of the performed shaking table tests under the influence of four scaled 

earthquake acceleration records in terms of maximum lateral deflections are 

determined and presented in Figures 4.35 to 4.38. In determination of the lateral 

deflections, the movement of the shaking table has been subtracted from storey 
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movements. Therefore, all the records are in comparison to the base movements. It 

should be noted that for the sake of accuracy and consistency, the recorded 

displacements using displacement transducers, verified against the calculated 

displacements from accelerometer records, are presented.  

 

Figure 4.35: Recorded maximum lateral deflections of fixed base 15 storey structural model under 
the influence of scaled Kobe (1995) earthquake  

Figure 4.36: Recorded maximum lateral deflections of fixed base 15 storey structural model under 
the influence of scaled Northridge (1994) earthquake  
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Figure 4.37: Recorded maximum lateral deflections of fixed base 15 storey structural model under 
the influence of scaled El Centro (1940) earthquake  

 

Figure 4.38: Recorded maximum lateral deflections of fixed base 15 storey structural model under 
the influence of scaled Hachinohe (1968) earthquake  

4.10 Shaking Table Tests on Soil-Structure Model 

The ultimate purpose of this phase of the shaking table tests, as the main phase of the 

experimental investigations, is to verify and validate the new developed numerical soil-

structure model, described in Chapter 3, by carrying out shaking table tests on the scale 

soil-structure model of the soil-structure system prototype, discussed in Section 4.1. 
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structural model, previously was determined to be 2.19 Hz. Afterwards, shaking table tests 

were undertaken by applying scaled earthquake acceleration records of Kobe, 1995 (Figure 

4.28b), Northridge, 1994 (Figure 4.29b), El-Centro, 1940 (Figure 4.30b), and Hachinohe, 

1968 (Figure 4.31b) to the flexible base model, with the final setup as shown in Figure 4.44. 

4.10.3 Flexible Base Model Test Results 
The results of the carried out shaking table tests under the influence of four scaled 

earthquake acceleration records in terms of the maximum lateral deflections of various 

storey of the structure are illustrated in Figures 4.45 to 4.48. Figure 4.49 illustrates an 

example of experimental time-history displacement results for fixed base and flexible 

base models under the influence of Kobe earthquake (1995). In addition, the maximum 

vertical displacements of the base plate have been obtained from the vertical 

displacement transducers installed at the level of the base plate for each earthquake 

record, respectively, and summarised in Table 4.7. It should be noted that the lateral 

deflections of the structural model under the influence of two different earthquakes with 

the same magnitude such as Kobe (1995) and Northridge (1994) could be totally 

different (as shown in Figures 4.45 and 4.46 due to the difference in the spectral 

displacement response (Sd). Base on the response spectra of Northridge (1994) and 

Kobe (1995) earthquakes, for the same value of the natural period of the system, the 

spectral displacement response (Sd) of Northridge (1994) is more than Kobe (1995). 

Thus, the lateral structural deflections under the influence of Northridge (1994) are 

larger than the lateral displacements under the influence of Kobe (1995). 

 
Figure 4.45: Recorded maximum lateral deflections of flexible base model under the influence of 

scaled Kobe (1995) earthquake 
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Figure 4.46: Recorded maximum lateral deflections of flexible base model under the influence of 

scaled Northridge (1994) earthquake  

 
Figure 4.47: Recorded maximum lateral deflections of flexible base model under the influence of 

scaled El Centro (1940) earthquake  

 
Figure 4.48: Recorded maximum lateral deflections of flexible base model under the influence of 

scaled Hachinohe (1968) earthquake 
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Figure 4.49: Sample experimental time-history displacement results for fixed base and flexible 

base models under the influence of Kobe earthquake (1995) at level 15 

Table 4.7: Maximum vertical displacements of the base plate 

Scaled Earthquake 
Acceleration Record 

Maximum Vertical 
Displacement 

Rocking Angle of the 
Foundation 

Kobe (1995) 2.54 mm 0.58º 

Northridge (1994) 1.32 mm 0.30º

El-Centro (1940) 1.98 mm 0.45º

Hachinohe (1968) 1.47 mm 0.33º

4.11 Verification of Numerical Models Using Shaking Table Test Results 

As explained earlier, the main goal of undertaking shaking table tests, in this study, is to 

validate the novel and enhanced numerical soil-structure model, developed in Chapter 3, 

by comparing the numerical and experimental results. Verification of the numerical soil-

structure model has been carried out in two stages. The numerical model of the 

constructed structural model, shown in Figure 4.8, was built in FLAC2D using 

dimensions of the physical model. After building the geometry of the structural model, 

the required structural parameters including cross-sectional area of the beams (Ab), 

moment of inertia of the beams (Ib), cross-sectional area of the columns (Ac), moment of 

inertia of the columns (Ic), cross-sectional area of the foundation slab (As), moment of 

inertia of the foundation slab (Is), modulus of elasticity of steel (E), density ( ), and 

structural damping ratio ( ), summarised in Table 4.8, were extracted from the 

construction detail drawings and specifications and adopted in the numerical simulation 

of the structure in FLAC2D. Figure 4.50 illustrates the created model that numerically 
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As reported in Section 4.10.4, ten cylindrical soil specimens of size D=50 mm and 

h=100 mm were successively taken from the soil mix, during the soil mixing 

process. In order to adopt the most accurate soil parameters in simulation of the 

physical soil-structure model (Figure 4.44), shear wave velocity (Vs) and soil density 

( ) of the samples in the second day of curing were determined by performing 

bender element and density tests on the UTS soils laboratory. The average results of 

the ten specimens indicated that the values of shear wave velocity (Vs) and soil 

density ( ) were 35.5 m/s and 1450 kg/m3, respectively. These results have been in 

very good agreement and conformity to the initial laboratory test results, 

summarised in Table 4.6. The adopted soil properties in the numerical simulation of 

the flexible base model consist of shear strength (Su), shear wave velocity (Vs), low 

strain shear modulus (Gmax), bulk modulus (K), and density ( ), summarised in Table 

4.9. 

In addition, normal spring stiffness (kn) and shear spring stiffness (ks) for the 

interface elements of the flexible base model were calculated based on Equation 

3.12 of Chapter 3 and the values are reported in Table 4.9. 

Table 4.9: Adopted soil parameters in numerical simulation of flexible base model 

Parameters Su 
(kPa) 

Vs 
(m/s) 

Gmax 
(kPa) 

K 
(kPa) 

 
(kg/m3) 

kn 
(kPa/m)

 
ks 

(kPa/m)

Values 1.57 35.5 1830 90760 1450 3.7E7 3.7E7 

After creating fixed base and flexible base numerical models in FLAC2D (Figures 4.50 

and 4.51), fully nonlinear time history dynamic analyses, described in Section 3.8.4.2, 

were carried out on both fixed base and flexible base models under the influence of four 

scaled earthquake acceleration records including Kobe, 1995 (Figure 4.28b), 

Northridge, 1994 (Figure 4.29b), El-Centro, 1940 (Figure 4.30b), and Hachinohe, 1968 

(Figure 4.31b). Geometric nonlinearity of the structures, capturing P-Delta effects, has 

been accommodated by specifying large-strain solution mode in FLAC2D software in 

the structural analyses of fixed base and flexible base models. In addition, running the 

analysis in large strain mode reduces the analysis time and increases the accuracy of the 

analysis in determination of the deformations. The built-in tangent-modulus function 



113

model presented by Hardin and Drnevich (1972) for clay (Table 3.1), with the value of 

ref = 0.234, was adopted in the dynamic analysis of flexible base model to take into 

account hysteretic damping in the analyses. In this way, nonlinear behaviour of the 

subsoil has been considered in the dynamic analysis.  

Afterwards, the numerical results of the fully nonlinear time history dynamic 

analyses under the influence of the four mentioned scaled earthquake acceleration 

records in terms of the maximum lateral deflections and the maximum vertical 

displacements of the base plate were determined for both fixed base and flexible 

base models from FLAC2D displacement history records for each scaled earthquake.  

Then, derived results of the numerical fixed base and flexible base models were 

compared with the experimental results of the shaking table tests, performed on the 

fixed base model (Figures 4.35 to 4.38) and the flexible base model (Figures 4.45 to 

4.48).  

The numerical predictions and experimental values of the maximum lateral 

displacements of the fixed base and the flexible base models are presented and 

compared in Figures 4.52 to 4.55. Average values of the numerical predictions and 

experimental values of the maximum lateral displacements of fixed base and flexible 

base models were determined and compared in Figure 4.56. In addition, the 

predicted and measured vertical displacements of the base plate are summarised and 

compared in Table 4.10. 

 
Figure 4.52: Numerical and experimental maximum lateral displacements of fixed base and 

flexible base models under the influence of scaled Kobe (1995) earthquake 
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Figure 4.53: Numerical and experimental maximum lateral displacements of fixed base and 
flexible base models under the influence of scaled Northridge (1994) earthquake 

 
Figure 4.54: Numerical and experimental maximum lateral displacements of fixed base and 

flexible base models under the influence of scaled El Centro (1940) earthquake 

 
Figure 4.55: Numerical and experimental maximum lateral displacements of fixed base and 

flexible base models under the influence of scaled Hachinohe (1968) earthquake 
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Comparing the predicted and observed values of the maximum lateral displacements of 

fixed base and flexible base models under the influence of the four mentioned scaled 

earthquake acceleration records (Figures 4.52 to 4.55), the accuracy of the numerical 

fixed base and flexible base model is examined. Accordingly, it becomes apparent that 

the trend and the values of the numerical seismic response, predicted by the fixed base 

numerical model as well as the new developed numerical soil-structure model, are in a 

good agreement and consistent with the experimental shaking table test results. 

 
Figure 4.56: Average values of the numerical predictions and experimental values of the 

maximum lateral displacements of fixed base and flexible base models 

Based on the experimental average values of maximum lateral deflections of fixed base and 

flexible base models (Figure 4.56), lateral deflections of flexible base models have 

increased by 55% in comparison to fixed base model. According to Kramer (1996), relative 

lateral structural displacements under the influence of soil-structure interaction consist of 

rocking component and distortion component. Any change in the displacements is an 

outcome of changes in these components. In this particular case, considering the maximum 

foundation rotation values summarised in Table 4.10 and maximum lateral displacements 

reported in Figure 4.56, it is noted that approximately 55% of the maximum lateral 

deflections of the flexible base model (Figure 4.56) were due to the rocking component, 

while 45% took place due to the distortion component. For example, under the influence of 

Northridge (1994) earthquake, maximum lateral deflection at the top of the fixed base 

model was measured to be 25.3 mm due to distortion component, while maximum lateral 

deflection at the top of the flexible base model was 40.6 mm which 22.5 mm of that value 

was due to rocking component and 18.1 mm took place due to distortion component. 
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Table 4.10: Numerical and experimental maximum vertical displacements and rotations  

 Maximum Vertical 
Displacement

Maximum Foundation 
Rotation 

Scaled 
Earthquake 

Numerical 
Prediction 

Experimental 
Measurement 

Numerical 
Prediction 

Experimental 
Measurement 

Kobe 2.33 mm 2.54 mm 0.54º 0.58º 

Northridge 1.22 mm 1.32 mm 0.28º 0.30º

El-Centro 1.85 mm 1.98 mm 0.42º 0.45º

Hachinohe 1.40 mm 1.47 mm 0.32º 0.33º

As shown in Figure 4.57, due to amplification of the experimental average values of 

maximum lateral deflections of fixed base and flexible base models (Figure 4.56), 

performance level of the structural model may change significantly from life safe to 

near collapse level. Such a considerable change in the performance level of the 

model is extremely dangerous and safety threatening. Thus, in the examined 

experimental investigation, dynamic soil-structure interaction has profound effects 

on seismic response of the structural model resting on relatively soft soil.  

 

Figure 4.57: Average experimental inter-storey drifts of fixed base and flexible base models 

Reviewing the average maximum lateral deflections (Figure 4.56) and maximum 

vertical displacements and rotations (Table 4.10), it becomes apparent that the 

numerical predictions and laboratory measurements are in a good agreement (less 

than 10% difference). Therefore, the numerical soil-structure model can replicate the 

behaviour of real soil-structure system with acceptable accuracy.  
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The observed discrepancy between the numerical predictions and laboratory 

observations could be due to the variation of soil properties such as shear wave 

velocity and shear modulus with depth occurring during mixing and placement 

process. In addition, energy absorption at the bolted connection of the base in the 

physical laboratory model which cannot be captured by rigid base assumption of the 

numerical model may be another reason for the observed discrepancy. 

4.12 Summary  

In this Chapter, a prototype soil-structure system including a building frame 45 m high 

and 12 m wide resting on a clayey soil with shear wave velocity of 200 m/s and unit 

weight of 14.40 kN/m3 has been selected and scaled using geometric scaling factor of 

1:30. The building frame was modelled with a 15 storey steel structural model, 1.50 m in 

height and 0.40 m in width while for modelling soil medium, a synthetic clay mixture 

consisting of kaolinite, bentonite, class F fly ash, lime, and water was adopted after 

conducting required tests such as bender element tests and Unconfined Compression tests 

(UC) to determine the shear wave velocity and the shear strength of the soil, respectively. 

The selected soil model was placed into a laminar soil container, designed and 

constructed to realistically simulate the free field conditions in shaking table tests. After 

placing the soil mix into the laminar soil container and elapsing two days of cure 

age, the 15 storey structural model was lifted up and located on top of the soil surface 

in the laminar soil container and the set up was instrumented to monitor the structural 

performance. 

Afterwards, shaking table tests were performed on fixed base model (structure 

directly mounted on the shaking table) and flexible base model (soil-structure 

model) by applying scaled earthquake acceleration records of Kobe (1995), 

Northridge (1994), El Centro (1940), and Hachinohe (1968). The results of the 

carried out shaking table tests under the influence of four scaled earthquake 

acceleration records in terms of lateral displacements were measured and compared. 

Based on the experimental average values of maximum lateral deflections of fixed 

base and flexible base models, lateral deflections of the flexible base model have 

noticeably increased in comparison to the fixed base model. As a result, 

performance level of the structural model may change extensively from life safe to 

near collapse level which is very dangerous and safety threatening. Thus, dynamic 
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soil-structure interaction plays a significant role in seismic behaviour of examined 

building frame resting on relatively soft soils.  

Then, fixed base and soil-structure numerical models were created in FLAC2D and 

fully nonlinear time history dynamic analyses under the influence of four mentioned 

scaled earthquakes were carried out to the numerical models. The predicted results 

in terms of maximum lateral deflections and maximum vertical displacements were 

obtained. The predicted results from numerical models were compared with the 

experimental results of the shaking table tests. Evidently, the numerical predictions 

and laboratory measurements are in a good agreement. Thus, the numerical soil-

structure model can replicate the behaviour of real soil-structure system with 

acceptable accuracy. It is concluded that the proposed numerical soil-structure 

model is a valid and qualified method of simulation with sufficient accuracy which 

can be employed for further numerical dynamic soil-structure interaction 

investigations.  
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CHAPTER FIVE 

 

5. NUMERICAL PARAMETRIC STUDY  

5.1 Introduction 

Performance-based engineering (PBE) is a technique for seismic evaluation and design 

using performance level prediction for safety and risk assessment. Over the past few 

years, application of performance-based seismic design concepts has been promoted and 

developed. The development of this approach has been a natural outgrowth of the 

evaluation and upgrade process for existing buildings. Performance objectives are 

expressed as an acceptable level of damage, typically categorised as one of several 

performance levels. Performance levels describe the state of structures after being 

subjected to a certain hazard level and are classified as: fully operational, operational, life 

safe, near collapse, or collapse (Vision 2000, 1995; FEMA 273, 1997). Overall lateral 

deflection, ductility demand, and inter-storey drifts are the most commonly used damage 

parameters. The above mentioned five qualitative performance levels are related to the 

corresponding quantitative maximum inter-storey drifts of: 0·2%, 0·5%, 1·5%, 2·5%, and 

>2·5%, respectively. 

Practising civil engineers usually use inelastic analysis methods for the seismic evaluation 

and design of existing and new buildings. The main objective of inelastic seismic analysis is 

to estimate more precise prediction of the expected behaviour of the structure against 

probable future earthquakes. Since structural damage implies inelastic behaviour, traditional 

design and analysis procedures based on elastic method can only predict the performance 

level implicitly. By contrast, the objective of inelastic method is to estimate the magnitude 

of inelastic deformations and distortions directly and accurately (ATC-40, 1996). In this 

research, fully nonlinear time history dynamic analysis is carried out based on elastic and 

inelastic analysis and design procedures. As a result, the main differences between 

structural response predictions from two methods for mid-rise moment resisting frames 

under the influence of soil-structure interaction can be elucidated. In this chapter, a 

comprehensive parametric study on elastic and inelastic response of regular mid-rise 

moment resisting building frames under the influence of soil-structure interaction is 

conduced. To achieve this goal, three types of mid-rise moment resisting building frames, 

including 5, 10, and 15 storey buildings are selected in conjunction with three soil types 
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with the shear wave velocities less than 600m/s, representing soil classes Ce, De, and Ee  

according to Australian Standards, having three bedrock depths of 10, 20, and 30 metres. 

5.2 Characteristics of Adopted Structure Models 
According to Chandler et al. (2010), “Mid-rise buildings are aggregation of dwelling 

buildings ranging from 5 to 15 stories”. With respect to this definition, in order to cover 

this range, three structural models consisting of 5, 10, and 15 story models, representing 

conventional types of regular mid-rise reinforced concrete moment resiting building 

frames have been selected in this study as per specifications summarised in Table 5.1. It 

can be noted that, the selected span width conforms to architectural norms and 

construction practices of the conventional buildings in mega cities. 

Table 5.1: Dimensional characteristics of the studied frames 
 

Reference 
Name 
(Code) 

Number 
of 

Stories 

Number 
of 

Bays 

Story 
Height 

(m) 

Bay 
Width 

(m) 

Total 
Height 

(m) 

Total 
Width 

(m) 

Spacing of 
the frames 

into the page 
 (m)

S5 5 3 3 4 15 12 4 
S10 10 3 3 4 30 12   

12 

4 
S15 15 3 3 4 45 4 

For the structural concrete utilised in this analysis and design, specified compressive 

strength ( cf ) and mass density ( ) are assumed to be 32MPa and 2400 kg/m3, 

respectively. The modulus of elasticity of concrete (E) was calculated according to 

clause 3.1.2.a of AS3600:2009 (Australian Standard for Concrete Structures) as follows: 

)043.0()( 5.1
cfE    (5.1)

 where,  unit of E is in MPa, unit of   is in  kg/m3, and unit of cf is in MPa.  

5.3 Nonlinear Time-History Dynamic Analysis  
Nonlinear time-history dynamic analysis is carried out in this study in order to determine 

elastic and inelastic dynamic response of structure models. Time-history analysis is a 

step-by-step analysis of the dynamic response of a structure to a specified loading that 

varies with time. The dynamic equilibrium equations to be solved can be presented as: 

)()()()( trtKutuCtuM                                                                                                  (5.2) 

where, M, C, and K are the mass, damping  and stiffness matrices, respectively; )(tu , 

)(tu , and )(tu are the displacements, velocities and accelerations of the structure, 
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respectively, and r(t) is the applied load to the structure. Where the applied load 

includes ground acceleration, the displacements, velocities, and accelerations are 

relative to this ground motion. It should be noted that any number of time-history load 

cases can be defined in this procedure. 

In nonlinear time-history analysis, the stiffness, damping, and load all depend upon the 

displacements, velocities, and time. This requires an iterative solution to the equations 

of motion. The nonlinear analysis internally solves the equations of motion at each 

output time step and at each load function time step, just as for linear analysis. In 

addition, a maximum sub step size smaller than the output time step is specified in order 

to reduce the amount of nonlinear iteration. In addition, the non-linear properties of the 

structure are considered as part of a time domain analysis. This approach is the most 

rigorous, and is required by some building codes for appropriate design (e.g. ATC-40, 

1996; BSSC, 2003).  

5.3.1 Geometric Nonlinearity and P-Delta Effects in Time-History Analysis 
When the load acting on a structure and the resulting deflections are small enough, the 

load-deflection relationship for the structure is linear. This permits the numerical 

software form the equilibrium equations using the original (undeformed) geometry of 

the structure. Strictly speaking, the equilibrium equations should actually refer to the 

geometry of the deformed structure. When a structure undergoes geometric nonlinearity 

(in particular, large strains and rotations), the common linear engineering stress and 

strain measures no longer apply, and the equilibrium equations must be written for the 

deformed geometry. 

As all equilibrium equations are written in the deformed configuration of the structure, 

this may require a large amount of iteration; Newton-Raphson iterations are usually 

most effective. Although large displacement and large rotation effects are modelled, all 

strains are assumed to be small. This means that if the position or orientation of an 

element changes during the analysis, the effect on the structure in the analysis accounts 

for P-Delta. 

The P-Delta effect refers specifically to the nonlinear geometric effect of a large tensile 

or compressive direct stress upon transverse bending and shear behaviour. A 

compressive stress tends to make a structural member more flexible in transverse 

bending and shear, whereas a tensile stress tends to stiffen the member against 
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relatively constant P-Delta effects in buildings or the tension-stiffening effects in 

cable structures into a series of superposable linear analyses. 

FLAC2D software has a specific mode called “Large Strain mode” to capture 

structural geometric nonlinearities in dynamic analysis. Running nonlinear time-

history analysis in large-strain mode enables the FLAC2D model to capture 

structural geometric nonlinearity and P-Delta effects accurately by updating the 

structural matrix. Thus, in order to take the mentioned effects into account, all the 

structural dynamic analyses in this study have been performed in large-strain mode. 

5.3.2 Utilised Ground Motions in Time History Analyses 

In order to perform a comprehensive investigation on seismic response of structure 

models, two near field earthquake acceleration records including Kobe, 1995 (Figure 

5.2) and Northridge, 1994 (Figure 5.3) and two far field earthquake acceleration records 

comprising El-Centro, 1940 (Figure 5.4) and Hachinohe, 1968 (Figure 5.5) are selected 

and utilised in time-history analysis. These earthquakes have been chosen by the 

International Association for Structural Control and Monitoring for benchmark seismic 

studies (Karamodin and Kazemi, 2008).  

 
Figure 5.2: Near field acceleration record of Kobe earthquake (1995) 

 

Figure 5.3: Near field acceleration record of Northridge earthquake (1994) 
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Figure 5.4: Far field acceleration record of El-Centro earthquake (1940) 

 

Figure 5.5: Far field acceleration record of Hachinohe earthquake (1968) 

The characteristics of the earthquake ground motions are summarised in Table 5.2. 

Table 5.2: Utilised Earthquake ground motions  

Earthquake Country Year PGA 
(g) 

Mw 
(R) 

T (S) 
Duration Type 

Hypocentral 
Distance 

(km) 
Reference 

Northridge USA 1994 0.843 6.7 30.0 Near field 9.2 PEER (2012) 

Kobe Japan 1995 0.833 6.8 56.0 Near field 7.4 PEER (2012) 

El Centro USA 1940 0.349 6.9 56.5 Far field 15.69 PEER (2012) 

Hachinohe Japan 1968 0.229 7.5 36.0 Far field 14.1 PEER (2012) 

5.4 Geotechnical Characteristics of employed Subsoils  
When shear wave velocity of the supporting soil is less than 600 m/s, effects of dynamic 

soil-structure interaction on seismic response of structural systems, particularly for 

moment resisting building frames, are significant (e.g. Veletsos and Meek 1974; Galal 

and Naimi 2008). Thus, in this research, three soil types with the shear wave velocity 

less that 600m/s comprising one cohesionless and two cohesive soils, representing 

classes Ce, De and Ee, according to AS 1170.4 have been utilised. Characteristics of the 

utilised soils are shown in Table 5.3. The subsoil properties have been extracted from 
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actual in-situ and laboratory tests (Rahvar 2005, 2006a, 2006b). Therefore, these 

parameters have merit over the assumed parameters which may not be completely 

conforming to reality. It is assumed that water table is below the bedrock level. 

Table 5.3: Geotechnical characteristics of the adopted soils in this study 

Soil Type 
(AS1170) 

Shear 
wave 

velocity 
Vs (m/s) 

Unified 
classification 

(USCS) 

Maximum 
shear 

modulus 
Gmax (kPa)

Poisson’s  
Ratio 

Soil 
density 

(kg/m3)

c  
(kPa) 

 
(degree) 

Plastic 
Index 
(PI) 

Reference 

Ce 600 GM 623,409 0.28 1730 5 40 - Rahvar 
(2005) 

De 320 CL 177,304 0.39 1730 20 19 20 Rahvar 
(2006a) 

Ee 150 CL 33,100 0.40 1470 20 12 15 Rahvar 
(2006b)

 

5.5 Utilised Soil and Interface Parameters in FLAC Soil-Structure Model 
The shear wave velocity values, shown in Table 5.3, have been obtained from down-

hole test, which is a low strain in-situ test. This test generates a cyclic shear strain of 

about 10-4 percent where the resulting shear modulus is called Gmax. In the event of an 

earthquake, the cyclic shear strain amplitude increases and the shear strain modulus and 

damping ratio which both vary with the cyclic shear strain amplitude, change relatively. 

Damping and tangent module are selected to be appropriate to the level of excitation at 

each point in time and space which is called hysteretic damping algorithm. 

As mentioned earlier, fully nonlinear method adopts hysteretic damping algorithm 

which captures the hysteresis curves and energy-absorbing characteristics of the real 

soil. Small strain shear modulus and damping degradation of the soil with strain level 

can be considered in the modelling precisely. In the soil-structure model, the built-in 

tangent modulus function presented by Hardin and Drnevich (1972), known as Hardin 

model is employed as the model provides  reliable fits to backbone curves represented 

by Seed et al. (1986)  for sand and Sun et al. (1998)  for clay in order to implement 

hysteretic damping to the model (Figures 5.6 and 5.7). Adopted model in FLAC2D 

generates backbone curves represented by Seed et al. (1986)  for sand and Sun et al. 

(1998)  for clay, adopting ref  = 0.06 (Figure 5.6) and ref = 0.234 (Figure 5.7) for 

sand and clay as numerical fitting parameters, respectively. Further details of the 

method to simulate the backbone curves have been explained in Section 3.8.2 

(Chapter 3). 
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dynamic, linear, nonlinear, elastic, and inelastic analyses of structural systems. 

Advanced analytical techniques allow for step-by-step large deformation analysis, 

dynamic seismic analysis, Eigen and Ritz analyses based on stiffness of nonlinear 

cases, material nonlinear analysis, multi-layered nonlinear shell element, buckling 

analysis, progressive collapse analysis, energy methods for drift control, velocity-

dependent dampers, base isolators, support plasticity and nonlinear segmental 

construction analysis. Nonlinear analyses can be static or time history, with options 

for direct integration nonlinear time history dynamic analysis. Furthermore, 

SAP2000 features powerful and completely integrated modules for design of both 

steel and reinforced concrete structures following most major design codes (e.g. ACI 

318 and AS3600). The program provides the user with options to create, modify, 

analyse and design structural models, all from within the same user interface. In 

addition, the program is capable of performing initial member sizing and design 

optimisation. In this progress, the checks are made for each user specified (or 

program defaulted) load combination and at several user controlled stations along 

the length of the element. Maximum demand/capacity ratios are then reported and 

used for design optimisation. These features make SAP2000 the state of the art in 

structural analysis program (Computers and Structures, Inc., 2009). The following 

general steps are required to analyse and design a structure using SAP2000: 

i. Create or modify a model that numerically defines the geometry, properties, and 

loading; 

ii. Perform an analysis of the model; 

iii. Review the results of the analysis; 

iv. Perform, check, and optimise the design of the structure. 

This is usually an iterative process that may involve several cycles of the above 

sequence of steps.  

5.6.1 Elastic Structural Design of the Models 
SAP2000 provides options to design different types of moment resisting frames as 

required for regular and seismic designs. For regular design, the frame should be 

identified as Ordinary. For Seismic design, the frame has to be identified as either 

Intermediate (moderately ductile) or Special (fully ductile) moment resisting frame. 

For elastic structural design of the building models, the structural type of three models 

consisting of 5, 10, and 15 storey frames assumed to be intermediate moment-resiting 
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frames (moderately ductile) with the following factors for the elastic analysis according 

to AS 1170.4 (Earthquake action in Australia): 

Structural Ductility Factor ( ) = 3.0 

Performance Factor (Sp) = 0.67  

The structural models are simulated in SAP2000 to reflect the geometries and properties 

of models S5 (5 storey), S10 (10 storey), and S15 (15 storey) as described in Section 5.2. 

Then gravity loads including permanent (dead) and imposed (live) actions are determined 

and applied to the structural models, in accordance with AS/NZS1170.1-2002 

(Permanent, imposed and other actions). The values of permanent action (dead load) and 

imposed action (live load) are determined as uniform distributed loads over the floors 

according to AS/NZS1170.1-2002, considering the spacing of the frames being 4 metres 

as reported below: 

Permanent Action (G) = 6 kPa 

Imposed Action (Q) = 2 kPa 

Then, nonlinear time-history dynamic analyses under the influence of four earthquake 

ground motions shown in Figures 5.2 to 5.5 and Table 5.2 are performed on S5, S10, 

and S15 models. In the dynamic analyses, geometric nonlinearity and P-Delta effects 

are considered according to AS3600-2009. In addition, cracked sections for the 

reinforced concrete sections are taken into consideration by multiplying cracked section 

coefficients by stiffness values of the structural members (EI) according to ACI318-

2002. Based on this standard, cracked section coefficients are 0.35 and 0.7 for beams 

and columns, respectively. 

After finalising the dynamic analyses, concrete sections of three models (S5, S10, 

and S15) were designed according to AS3600-2009 (Australian Standard for 

Concrete Structures). The following design load combinations are considered for 

concrete design of the structural members subjected to Permanent (G), Imposed (Q), 

and Earthquake (Eu) actions according to AS/NZS1170.0-2002 (Australian Standard 

for structural design actions): 

 Load Combination 1= 1.35G 

 Load Combination 2= 1.2 G+1.5Q 

 Load Combination 3=G+0.4Q±Eu 
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In the concrete design procedure, capacity of each structural member against the 

maximum factored axial force and bending moments obtained from each load 

combination results in capacity ratio giving an indication of the stress condition of a 

structural member with respect to the capacity of the member. In this design, 

capacity ratio of the structural members has been in the range of 0.85 to 0.95 (all 

less than 1.0). In addition, shear capacity of the designed members are checked 

according to Section 8.2 of AS3600-2009 (Australian Standard for Concrete 

Structures). 

After strength design of the structural sections, inter-storey drifts of the models are 

checked in a way that performance levels of the designed models stay in life safe level 

by limiting the maximum inter-storey drifts to 1.5% of the storey height for each level. 

Inter-storey drifts for each two adjacent stories can be determined according to AS 

1170.4 as follows: 

hSdddrift pieei /)]/()[( )1( (5.3)

where, d(i+1)e is deflection at the i+1 level determined by elastic analysis, die is 

deflection at the i level determined by elastic analysis,  is Structural Ductility Factor, 

Sp is Performance Factor, and h is the storey height.  

Considering 3 metres storey height, and adopted values for  and Sp, the following form 

of Equation (5.3) is utilised as a criterion to keep performance levels of the designed 

structure models in life safe level: 

%5.13000/)]67.0/3()[( )1( ieei dddrift (5.4) 

where, d(i+1)e  and die  are measured in mm. Therefore, the final form of the equation 

could be written as follows:

mmdd ieei 10)( )1( (5.5)

Eventually, concrete section design for models S5, S10, and S15 is finalised in a 

way that the maximum elastic inter-storey drifts in all the models are less than 10 

mm. In the final selection of the beam and column sections, constructability and 

norms have been considered. Figure 5.8 summarises the concrete sections designed 

for the adopted frames based on elastic structural design method. 
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As a summary, the following aspects have been incorporated in the elastic and inelastic 

dynamic time-history analyses in this study: 

 Nonlinear behaviour of the subsoil is considered adopting Hardin model to 

implement backbone curves represented by Seed et al. (1986)  for coarse 

grained soils and Sun et al. (1998) for fine grained soils in the fully nonlinear 

dynamic analyses (Section 5.4)  

 Geometric nonlinearity of the structures capturing P-Delta effects is 

accommodated by specifying large-strain solution mode in FLAC software. 

 Cracked sections for the reinforced concrete sections are taken into account by 

multiplying moment of inertial of the uncracked sections (Ig) by cracked section 

coefficients (0.35Ig for beams and 0.70Ig for columns) according to Section 

10.11.1 of ACI318.2002.   

Presented earthquake ground motions in Table 5.2 including Kobe, 1995 (Figure 

5.2) and Northridge, 1994 (Figure 5.3) El-Centro, 1940 (Figure 5.4) and Hachinohe, 

1968 (Figure 5.5) were applied to both systems. In the case of modelling soil and 

structure simultaneously using direct method (flexible base model), the earthquake 

records are applied to the combination of soil and structure directly at the bedrock 

level, while for modelling the structure as the fixed base (without soil), the 

earthquake records are applied to the fixed base of the structural models. 

As discussed in Section 3.7.3, in this study, the horizontal distance of the soil lateral 

boundaries is assumed to be 60 metres (five times the width of the structure which is 

12 metres) and the maximum bedrock depth is 30 metres. In order to observe the 

effects of bedrock depth variations on seismic response of the studied structural 

models, the above mentioned procedure is carried out for structural models resting 

on soil classes Ce, De and Ee with bedrock depths of 10 m, 20 m, and 30 m. 

5.8 Results and Discussions 
The results of elastic and inelastic analyses in terms of base shears, lateral deflections, 

and inter-storey drifts under the influence of four earthquake ground motions including 

Kobe, 1995 (Figure 5.2) and Northridge, 1994 (Figure 5.3) El-Centro, 1940 (Figure 5.4) 

and Hachinohe, 1968 (Figure 5.5) are derived from FLAC2D history records for fixed 

base and flexible base models resting on three different soil types, having three bedrock 

depths of 10 m, 20 m, and 30 m. The mentioned results are presented in Appendix A.  
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In order to have a comprehensive comparison between the results and illustrate a 

clear conclusion about the effects of structural height variations, subsoil stiffness, 

and bedrock depth variations on elastic and inelastic seismic response of moment 

resisting frames under the influence of dynamic soil-structure interaction, average 

values of the elastic and inelastic base shears, maximum lateral deflections, and 

inter-storey drifts under the influence of four mentioned earthquake records (Table 

5.2) are determined and compared. 

To ease the discussion of the obtained results, in this study, the structures which are 

analysed and designed based on elastic procedure are named “elastic analysis case”. 

The term of “inelastic analysis case” is used to refer to the structures analysed and 

designed according to inelastic method.  

Average base shear ratios of flexible base models (V~ ) to fixed base models (V) for 

elastic and inelastic analysis cases under the applied earthquakes are summarised in 

Tables 5.5 and 5.6 and average values of maximum elastic and inelastic lateral 

deflection ratios of flexible base models to fixed base models ( /~ ) at the top of the 

structure models under the applied earthquakes are tabulated in Tables 5.7 and 5.8, 

respectively. Elastic inter-storey drifts (Figures 5.16 to 5.19) are determined from the 

corresponding average values of elastic storey deflections (Figures 5.12 to 5.15) for 

each two adjacent stories using Equation (5.3) while inelastic inter-storey drifts 

(Figures 5.24 to 5.27) are calculated from the corresponding average values of 

inelastic storey deflections (Figures 5.20 to 5.23) for each two adjacent stories based 

on Equation (5.7).  

Table 5.5: Elastic base shear ratios of flexible base to fixed base models (V~ /V)  

Soil 
Classification Soil Class Ce Soil Class De Soil Class Ee 

Bedrock 
Depth 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

Model S5 0.94 0.98 1.00 0.76 0.93 0.99 0.55 0.77 0.98 

Model S10 0.92 0.93 1.00 0.62 0.83 0.99 0.43 0.61 0.95 

Model S15 0.92 0.95 0.99 0.58 0.72 0.98 0.33 0.53 0.83 

Note : V~ base shear of flexible base model; V = base shear of fixed base model 
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Table 5.6: Inelastic base shear ratios of flexible base to fixed base models (V~ /V)  

Soil 
Classification Soil Class Ce Soil Class De Soil Class Ee 

Bedrock 
Depth 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

Model S5 0.98 1.00 1.00 0.79 0.95 1.0 0.62 0.84 0.99 

Model S10 0.95 1.00 1.00 0.76 0.88 1.0 0.52 0.68 0.97 

Model S15 0.95 0.99 1.00 0.71 0.80 0.94 0.42 0.56 0.88 

Note : V~ base shear of flexible base model; V = base shear of fixed base model 

Table 5.7: Maximum elastic lateral deflection ratios of flexible base models to fixed base 
models ( /~ )  

Soil 
Classification Soil Class Ce Soil Class De Soil Class Ee 

Bedrock 
Depth 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

Model S5 1.01 1.01 1.00 1.03 1.01 1.01 1.11 1.07 1.04 

Model S10 1.03 1.02 1.01 1.10 1.06 1.03 1.40 1.27 1.14 

Model S15 1.07 1.04 1.02 1.19 1.13 1.07 1.89 1.60 1.30 
~:Note maximum lateral deflection of flexible base model;  = maximum lateral deflection  of fixed 

base model 

Table 5.8: Maximum inelastic lateral deflection ratios of flexible base models to fixed base 
models ( /~ )  

Soil 
Classification Soil Class Ce Soil Class De Soil Class Ee 

Bedrock 
Depth 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

H=30 
(m) 

H=20 
(m) 

H=10 
(m) 

Model S5 1.00 1.00 1.00 1.02 1.00 1.00 1.07 1.05 1.02 

Model S10 1.02 1.01 1.00 1.07 1.05 1.03 1.31 1.21 1.11 

Model S15 1.04 1.03 1.01 1.15 1.10 1.05 1.67 1.45 1.23 
~:Note maximum lateral deflection of flexible base model;  = maximum lateral deflection of fixed 

base model  
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(a) 

 
(b) 

 
(c) 

Figure 5.12: Elastic storey deflections of the adopted structural models resting on soil classes Ce, 
De, and Ee with bedrock depth of 30 metres; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 
(b) 

 
(c) 

Figure 5.13: Elastic storey deflections of the adopted structural models resting on soil class Ce 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.14: Elastic storey deflections of the adopted structural models resting on soil class De 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 

(c) 

Figure 5.15: Elastic storey deflections of the adopted structural models resting on soil class Ee 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.16: Elastic inter-storey drifts of the adopted structural models resting on soil class Ce, De, 
and Ee with bedrock depth of 30 metres; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 
(b) 

 
(c) 

Figure 5.17: Elastic inter-storey drifts of the adopted structural models resting on soil class Ce with 
variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.18: Elastic inter-storey drifts of the adopted structural models resting on soil class De 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.19: Elastic inter-storey drifts of the adopted structural models resting on soil class Ee with 
variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.20: Inelastic storey deflections of the adopted structural models resting on soil classes Ce, 
De, and Ee with bedrock depth of 30 metres; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.21: Inelastic storey deflections of the adopted structural models resting on soil class Ce 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 

(c) 

Figure 5.22: Inelastic storey deflections of the adopted structural models resting on soil class De 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.23: Inelastic storey deflections of the adopted structural models resting on soil class Ee 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.24: Inelastic inter-storey drifts of the adopted structural models resting on soil classes Ce, 
De, and Ee with bedrock depth of 30 metres; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.25: Inelastic inter-storey drifts of the adopted structural models resting on soil class Ce 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.26: Inelastic inter-storey drifts of the adopted structural models resting on soil class De 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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(a) 

 

(b) 

 
(c) 

Figure 5.27: Inelastic inter-storey drifts of the adopted structural models resting on soil class Ee 
with variable bedrock depths; (a) model S5; (b) model S10; (c) model S15 
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5.8.2   Base Shear  

According to base shear ratios of flexible base models (V~ ) to fixed base models (V) for 

elastic and inelastic cases, summarised in Tables 5.6 and 5.7, it is observed that the 

base shear ratios (V~ /V) in all the studied models are less than one for both elastic and 

inelastic analysis cases. However, these ratios are fairly higher and closer to unity for 

inelastic analysis case in comparison with elastic analysis case. Thus, base shear of the 

structures modelled with soil as flexible base are always less than base shear of structures 

modelled as fixed base. These results have good conformity to Section 5.6.2 of BSSC 

(2003) regulations as in this section reduction of base shear due to SSI is predicted. In 

general, by decreasing shear wave velocity (Vs) and shear modulus (Gmax), base shear of 

flexible base models decrease relatively. 

Considering the effects of SSI, the spectral acceleration decreases considerably due to 

lengthening of the natural period. As a result, such increase in the natural period 

substantially changes the response spectral acceleration (Sa). This concept has been 

numerically investigated and proved in this study. In the case of adopted mid-rise moment 

resisting building frames resting on soft soil deposits, natural period lies in the long period 

region of the acceleration response spectrum curve due to the natural period lengthening for 

the studied structural models. Evidently, the spectral acceleration response (Sa) tends to 

decrease, leading to the reduction of the base shears of the flexible models in comparison to 

the fixed base models. In addition, it is observed that, by decreasing the bedrock depths 

from 30 m to 10 m, the base shear ratios (V~ /V) increase. This ratio is very close to unity 

for the models on soil class Ce, nevertheless, by reducing the shear wave velocity (Vs) and 

shear modulus (Gmax) of the subsoil in soil classes De and Ee, and increasing bedrock depths 

for both elastic and inelastic analysis cases, the base shear ratio (V~ /V) decreases. This ratio 

is slightly higher in inelastic analysis cases in comparison with elastic analysis cases. In 

inelastic case, as the lateral distortions are more than elastic case due to appearing plastic 

hinges within the structure. Therefore, more shear stress will be accommodated between the 

structural levels leading to more base shear. Thus, base shear ratios for inelastic analysis 

cases are always more than base shear ratios of elastic analysis cases.   

5.8.3 Lateral Deflections and Inter-storey Drifts 

Comparing the maximum lateral deflection ratios ( /~ ) for elastic analysis case (Table 

5.8) and inelastic analysis case (Table 5.9) as well as storey deflections and inter-storey 

drifts of fixed base and flexible base models resting on soil classes Ce, De, and Ee 
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with bedrock depth of 30m for elastic analysis case (Figures 5.12 and 5.16) and 

inelastic analysis case (Figures 5.20 and 5.24) respectively, it becomes apparent that 

elastic lateral deflections and corresponding inter-storey drifts of flexible base 

models resting on soil class Ce have increased only by 1%, 3%, and 7% in 

comparison with fixed base S5, S10, and S15 models, respectively. For inelastic 

analysis case, lateral deflections and corresponding inter-storey drifts of flexible 

base models resting on the same soil class have been amplified by 2% and 4% in 

comparison with fixed-base models for models S10 and S15, respectively, while 

model S5 experiences insignificant changes in the lateral deflections and inter-storey 

drifts. Overall, inter-storey drifts of the flexible base models resting on soil class Ce 

do not differ much from that of the fixed-base model for both analysis cases. Thus, 

performance level of studied mid-rise moment resisting building frames resting on 

soil class Ce remains in life safe level and soil-structure interaction effects can be 

neglected in both elastic and inelastic analysis cases. However, lateral deflections 

and inter-storey drifts of flexible base models resting on soil class De increase by 

3%, 10%, and 19% in elastic case and 2%, 7%, and 15% in inelastic case, 

respectively, in comparison with fixed base S5, S10, and S15 models. Those 

increments, for models S10 and S15 are potentially safety threatening as they may 

change the performance level of the mentioned building frames from life safe to near 

collapse. 

For the models on soil class Ee (Vs=150m/s), lateral deflections and inter-storey drifts 

of flexible base models have increased by 11%, 40%, and 89% in elastic case and 7%, 

31%, and 67% in inelastic case in comparison with fixed base S5, S10, and S15 

models, respectively. Performance levels of S10 and S15 models change from life safe 

to near collapse level as shown in Figures 5.11 to 5.12 for elastic case and Figures 

5.22 to 5.23 for inelastic case. Such a significant change in the inter-storey drifts and 

subsequently performance levels of 10 and 15 storey models resting on soil class Ee is 

absolutely dangerous and safety threatening for both elastic and inelastic analysis 

cases. Thus, it can be concluded that as shear wave velocity (Vs) and shear modulus 

(Gmax) of the subsoil decrease, the maximum lateral deflections and consequently, the 

corresponding inter-storey-drifts of mid-rise moment resisting building frames 

increase significantly. 

It can be noted that by decreasing the shear wave velocity and consequently stiffness of the 
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subsoil, the difference between the vibration period of the flexible and the fixed base 

models increase for both elastic and inelastic analysis cases. Thus, the effects of soil-

structure interaction for soil classes De and Ee (particularly Ee) are quite significant. 

However, the vibration periods of fixed base and flexible base models for relatively rigid 

grounds such as soil class Ce are very similar. Thus, the effects of soil-structure interaction 

are negligible. Taking SSI effects into account, the spectral displacement (Sd), increases 

considerably due to lengthening of the natural period. Therefore, such increase in the 

natural period dominantly alters the response of the building frames under the seismic 

excitation. The above mentioned concept has been investigated and proved in this study.  In 

the case of adopted mid-rise moment resisting building frames resting on soft soil deposits, 

natural period lies in the long period region of the response spectrum curve due to the 

natural period lengthening for such systems.  Hence, the displacement response (Sd) tends to 

increase, and eventually performance level of the structures may change from life safe to 

near collapse or total collapse.  

Generally, by decreasing the dynamic properties of the subsoil such as shear wave 

velocity and shear modulus, base shear ratios decrease while lateral deflections and 

inter-storey drifts of the moment resisting building frames increase relatively. In 

brief, the conventional elastic and inelastic design procedure excluding SSI is not 

adequate to guarantee the structural safety for moment resisting building frames 

resting on soil classes De and Ee.  

Observing the effects of bedrock depth variations on the maximum lateral deflection 

ratios (Tables 5.8 and 5.9), elastic storey deflections (Figures 5.13 to 5.15) and 

corresponding inter-storey drifts (Figures 5.17 to 5.19) of the models resting on soil 

classes Ce, De, and Ee as well as inelastic storey deflections (Figures 5.21 to 5.23) and 

corresponding inter-storey drifts (Figures 5.25 to 5.27) of the models resting on soil 

classes Ce, De, and Ee, respectively, it is evident that as the bedrock depth varies from 

30m to 10 m, the increments in the lateral deflections and corresponding inter-storey 

drifts of flexible base models resting on soil class Ce reduces for both elastic and inelastic 

analysis cases. For the models resting on soil class De, it is observed that elastic and 

inelastic lateral deflections and corresponding inter-storey drifts of models S5, S10, and 

S15 with 10 m of soil depth underneath as well as models S5 and S10 with 20m bedrock 

depth do not differ much from fixed base models. Thus, the amplification of lateral 

deflections and inter-storey drifts due to SSI effects for those models are negligible while 
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for model S15 with 20m bedrock depth, lateral deflections and inter-storey drifts 

noticeably increase in comparison with fixed base model. Distinctly, for models S10 and 

S15 resting on soil class Ee the maximum lateral deflections and inter-storey drifts of 

flexible base models in comparison with fixed base models increase substantially in both 

elastic and inelastic analysis cases. Obviously, performance level of these building frames 

may change from life safe to near collapse when SSI is considered in the analysis, which 

is dangerous and safety threatening. 

It is noticeable that by increasing the bedrock depth, the natural period of the subsoil 

increases and consequently the difference between the period of vibration in two cases 

(i.e. structures modelled on flexible soils and structures modelled as fixed base) increase. 

Thus, the effects of dynamic soil-structure interaction for deeper bedrock depths are more 

considerable. In the case of deeper bedrock, natural period lies in the long period region 

of the response spectrum curve due to the natural period lengthening for such systems.  

Consequently, the displacement response tends to increase and the performance level of 

the structures may be changed from life safe to near collapse or even total collapse. From 

the above observations, it can be concluded that considering soil-structure interaction 

effects in seismic design of mid-rise moment resisting building frames resting on soil 

classes De and Ee is essential, particularly for: 

 10 storey building frames or higher resting on more than 20 metres of soil class 

De; and 

 Building frames higher than 5 storey resting on soil class Ee irrespective of the 

bedrock depth. 

Thus, the conventional elastic and inelastic design procedures excluding SSI may not be 

adequate to guarantee the structural safety of mid rise moment resisting building frames 

resting on soft soil deposits. 

5.9 Summary 
In this chapter, in order to have a comprehensive comparison between the results and 

draw a clear conclusion about the effects of structural height, subsoil stiffness, and 

bedrock depth on elastic and inelastic seismic response of regular mid-rise moment 

resisting building frames under the influence of soil-structure interaction, numerical 

investigations have been performed utilising 5, 10, and 15 storey structural models 

resting on soil classes Ce (Vs=600m/s), De (Vs=320m/s), and Ee (Vs=150m/s), having 
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three bedrock depths of 10 m, 20 m, and 30 m. The structural sections of the structural 

models have been designed based on both elastic method, and inelastic procedure 

considering elastic-perfectly plastic behaviour of structural elements. 

According to the results, it is observed that base shear of the structures modelled with soil as 

flexible base are generally less than the base shear of the structures modelled as fixed base 

for both elastic and inelastic cases. In addition, it is observed that lateral deflections and 

corresponding inter-storey drifts of flexible base models resting on soil class Ce do not 

differ much from fixed base models for both elastic and inelastic analysis cases. Thus, 

performance level of regular mid-rise moment resisting building frames resting on soil class 

Ce remains in life safe level and soil-structure interaction effects are insignificant in both 

elastic and inelastic analysis cases. However, lateral deflections and inter-storey drifts of 

flexible base models resting on soil classes De and Ee (in particular for 10 storey building 

frames or higher resting on more than 20 metres of soil class De and building frames higher 

than 5 storey resting on soil class Ee irrespective of the bedrock depth) significantly increase 

in comparison with fixed base models. In general, as shear wave velocity (Vs) and shear 

modulus (Gmax) of the subsoil decrease or bedrock depth (hs) increases, the base shear of 

flexible base models in comparison with fixed base models decrease while lateral 

deflections and consequently, corresponding inter-storey drifts increase relatively. The 

amplification of lateral deflections and corresponding inter-storey drifts is more significant 

in elastic analysis case, with the range of amplification factors ranging from 1.01 to 1.89, in 

comparison to inelastic analysis case, with the amplification factors ranging from 1.00 to 

1.67. 

The amplification of the lateral deflections and corresponding inter-storey drifts of 

flexible base models resting on soil classes De and Ee can change the performance 

level of the structures from life safe to near collapse or total collapse which is 

absolutely dangerous and safety threatening for both elastic and inelastic analysis 

cases. As a result, soil-structure interaction has considerable effects on the elastic 

and inelastic seismic response of regular mid-rise moment resisting building frames 

resting on soil classes De and Ee. It can be concluded that the conventional elastic 

and inelastic design procedures excluding SSI may not be adequate to guarantee the 

structural safety of mid-rise moment resisting building frames resting on soft soil 

deposits. Evidently, while conducting full soil-structure interaction analysis, effects 

of soil thickness and shear wave velocity should be carefully considered. 
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CHAPTER SIX 

 

6. SIMPLIFIED DESIGN PROCEDURE FOR PRACTICAL 

APPLICATIONS 

6.1 Introduction 
As discussed in details in the previous chapter, considering soil-structure interaction 

effects in seismic design of mid-rise moment resisting building frames resting on soil 

classes De and Ee, is essential, particularly for 10 storey building frames or higher resting 

on more than 20 metres of soil class De and building frames higher than 5 storey resting 

on soil class Ee irrespective of the bedrock depth. Thus the conventional elastic and 

inelastic design procedures excluding SSI may not be adequate to guarantee the 

structural safety of mid-rise moment resisting building frames resting on soft soil 

deposits. It was also recommended to practising engineers and engineering companies 

working in regions located in high earthquake risk zones, to consider dynamic soil-

structure interaction effects in the analysis and design of mid-rise moment resisting 

building frames resting on soft soils to ensure safety of the design. 

With respect to what has been concluded above, this question may immediately arise as 

to is it necessary for design engineers to follow the entire numerical procedure, 

described in this study, to determine the actual response of building frames under the 

influence of SSI?  It is obvious that going through the whole numerical procedure could 

be complicated and time consuming. On the other hand, practising engineers and 

engineering companies tend to use simple but accurate procedures rather than modelling 

the complex problems which could be time consuming. As a result, there is a strong 

need to develop a simplified but accurate procedure for practical purposes in order to 

evaluate seismic response of building structures considering detrimental effects of soil-

structure interaction. 

In order to respond to this need, in this chapter, an empirical relationship, based on the 

results of parametric study reported in Chapter 5, is developed enabling designers to 

determine lateral deflections of the building frames under the influence of soil-structure 

interaction utilising fixed base results as well as other basic site and structural 

characteristics.  
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As elucidated in Chapter 5, base shear of the structures modelled with soil as flexible 

base are less than the base shear of structures modelled as fixed base. Therefore, base 

shear reduction due to SSI is deemed to be conservative and could be ignored in the 

design procedure contributing to safer design. However, lateral deflection amplification 

due to SSI has detrimental effects on performance and safety of building frames and 

must be taken into account in any design procedure. 

6.2 Developing Initial Form of the Empirical Relationship 
In order to present an empirical relationship to determine the elastic and inelastic lateral 

deflection amplifications due to SSI with respect to other basic site and structural 

characteristics, a relationship between /~  and system parameters employed in this 

study (Chapter 5) is required to be developed.  

Veletsos and Meek (1974) presented the following basic equation for ( /~ ): 

2)~(
~

f
f

                                                                                                                                                         (6.1) 

where,  

~
=Maximum lateral deflection of the structure in soil-structure system;  

= Maximum lateral deflection of fixed base structure; 

f~ =Natural frequency of soil-structure system; and  

f =Natural frequency of fixed base structure. 

In addition, BSSC (2003) expressed the ratio of the natural frequency of the soil-structure 

system ( f~ ) to the natural frequency of the fixed base structure ( f ) by the following 

expression: 
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where,  

k=Stiffness of the structure;  

xk = Lateral stiffness of the subsoil foundation; 
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k = Rocking stiffness of the subsoil foundation; 

r = Radius of the foundation base (equal to B/2 where B is foundation width); and 

h= Height of the structure. 

The ratio of the natural frequency of the fixed base structure ( f ) to the natural frequency 

of the soil-structure system ( f~ ) in Equation (6.1) can be substituted from Equation (6.2) 

as follows: 
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kh

k
k

x

                                                                                                                                    (6.3)   

According to Wolf (1994), the values of lateral stiffness ( xk ) and rocking stiffness ( k ) 

of the subsoil foundation can be determined using the following equations: 

2
8Grk x                                                                                                                                                     (6.4) 

)1(3
8 \3Grk                                                                                                                                                                                  (6.5) 

where,  

=Poisson’s ratio of the subsoil; and  

G = Shear modulus of the subsoil which is related to the soil density ( ) and shear wave 

velocity of the subsoil (Vs) using: 

2
sVG                                                                                                                                                                                   (6.6)  

By replacing shear modulus (G) in Equations (6.4) and (6.5) by Equation (6.6) below are 

obtained: 

2
8 2rVk s

x                                                                                                                                                   (6.7) 

)1(3
8 \32rVk s                                                                                                                                                                                (6.8) 

Substituting the values of lateral stiffness ( xk ) and rocking stiffness ( k ) into Equation 

(6.3) leads to Equation (6.9): 
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With respect to Equation (6.9), the initial form of the simplified relationship 

between ( /~ ) and site and structural characteristics can be assumed as: 
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where, h  is the height of the structure, B is the foundation width, is the soil density, Vs 

is the shear wave velocity of the subsoil, Estr is the modulus of elasticity of the structural 

material, and,  and  are model parameters. 

On the other hand, as Veletsos and Meek (1974) relationship is based on elastic half space 

theory, the effect of bedrock depth variation was not captured by their relationship. As 

described in Section 5.8.3, by increasing the bedrock depth, lateral deflections of soil-

structure system (flexible base model) increase, relatively. Thus, ( /~ ) can be presented 

as: 

)/(
~

Bhf s (6.11)

where, hs is the bedrock depth.  

Thus, by comparing Equations (6.10) and (6.11), the initial form of the simplified 

empirical relationship, relating ( /~ ) to site and structural characteristics may have the 

following form: 
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  (6.12) 

where, , , and  are model parameters. 

6.3 Proposed Simplified Design Procedure 
In order to find the model parameters in Equation (6.12), for both elastic and 

inelastic analysis cases, the lateral deflection ratio ( /~ ), corresponding to three 

different types of soils (Ce, De, and Ee), having three bedrock depths of 10, 20, and 30 

metres, summarised in Tables 5.7 and 5.8, were employed.  
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Then, two correlations were developed using regression analysis in order to find the 

best fit between Equation (6.12) and the numerical data summarised in Tables 5.7 and 

5.8 for elastic and inelastic analyses, respectively. 

For elastic analysis case, the model parameters for the best developed correlation in 

regression analysis with coefficient of determination 2R =0.99, are: 

0 , 1 and 33800   

Figure 6.1 presents the results of regression analysis to find the best fit to the numerical 

predictions for elastic analysis case. 

 
Figure 6.1: Results of regression analysis to find the best fit to the numerical predictions of 

maximum lateral deflections for elastic analysis case  

Similar procedure has been followed for inelastic analysis case. Accordingly, the model 

parameters for the best correlation in regression analysis with coefficient of 

determination R2=0.98 are as follows: 
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Figure 6.2 presents the results of regression analysis to find the best fit to the numerical 

predictions for inelastic analysis case. 

 
Figure 6.2: Results of regression analysis to find the best fit to the numerical predictions of 

maximum lateral deflections for inelastic analysis case 

Thus Equations (6.12) can be simplified in a general form as shown in Equation (6.13): 
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where,  is Analysis Type Factor ( 33800  for elastic analysis and 44700  for 
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from the relationship. In order to adopt the relationship in practical engineering 

problems, Equation (6.13) is required to include storey deflections to enable design 

engineers to determine inter-storey drifts and check the performance levels of the 

structures. Thus, lateral storey deflections for each level of the structure under influence 

of SSI ( id~ ) as well as lateral storey deflections for each level of the structure for the 

fixed base structure ( id ) are obtained from the numerical results of elastic and inelastic 

analysis cases. Then, regression analyses have been performed to find the best fit 

between the numerical predictions of ( id~ / id ) and the right hand side of Equation (6.13) 

for elastic and inelastic analysis cases, respectively. 
                                                

 

Figures 6.3 and 6.4 present the results of regression analyses to find the best fit to the 

numerical predictions of lateral storey deflections for elastic and inelastic analysis cases, 

respectively.  

 Figure 6.3: Results of regression analysis to find the best fit to the numerical predictions 
of lateral storey deflections for elastic analysis case 
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Figure 6.4: Results of regression analysis to find the best fit to the numerical predictions of lateral 

storey deflections for inelastic analysis case 

According to the presented results, the best correlations in regression analyses with 

coefficient of determination 2R =0.96, adopting 33800  and 44700  for elastic 

and inelastic analysis cases, respectively, are similar to the best fits of maximum lateral 

deflections.  

As a result, in order to determine the lateral storey deflections under the influence of 

SSI, Equation (6.14) can be presented:    
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where, id~  is the lateral storey deflection at (i) level under the influence of SSI and id  is 

the lateral storey deflection at (i) level for the fixed base structure (without SSI effects). 

For practical purposes, the maximum lateral deflections for each storey under the influence 

of SSI can be extracted from Equation (6.14). Then, inter-storey drifts under the influence 

of soil-structure interaction for each two adjacent stories can be determined and checked 

against the limiting value of 1.5% for life safe performance level. Thus, detrimental effects 

of soil-structure interaction may be more accurately taken into account in the seismic design 

of mid-rise moment resisting building frames to ensure the design is safe and reliable. The 

simplified procedure described in this section can be employed for practical purposes by 
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structural engineers and engineering companies, as a reliable and accurate method of 

considering SSI effect in the seismic design procedure. It should be noted that the proposed 

simplified design procedure can only be used in seismic design of regular mid-rise moment 

resisting building frames resting on shallow foundations with no embedment depth. This 

design procedure does not cover irregular and high-rise buildings as well as building 

structures resting on pile foundations. In addition, as Sun et al. (1998) backbone curves 

have been employed in this study, which take into account the effects of soil plasticity in an 

average sense. It should be noted that parameters such as relative density, Plasticity Index, 

and confining pressure can influence the soil shear wave velocity and shear modulus 

degradation curve. Thus, further research on effects of Plasticity Index and confining 

pressure variation on seismic response of regular mid-rise building frames would be helpful. 

6.4 Worked Example 
In order to use Equation (6.14) for practical purposes, structural engineers should first 

determine the maximum lateral deflections for each level ( id ) from dynamic analysis of 

the fixed based model. Then, by having id  values for each level and determining the site 

and structural characteristics including the shear wave velocity of the subsoil (Vs), the 

bedrock depth (hs), the height of the structure (h), the foundation width (B), the soil density 

( ), the modulus of elasticity of the structural material (Estr), and appropriate analysis type 

factor ( ), the lateral storey deflections for each level under the influence of SSI ( id~ ) can be 

estimated from Equation (6.14).  

In this section, as a worked example of using the proposed simplified design procedure, a 

15 storey intermediate moment resisting building frame 45 m high and 12 m wide (h=45 

m and B=12 m) with structural ductility factor ( ) of 3 and performance factor (Sp) of 0.67 

has been selected and modelled in FLAC2D adopting soil density ( ) of 1470 kg/m3 and 

modulus of elasticity of the structural material (Estr) of 28600 MPa. Dynamic analysis is 

performed on the fixed base model adopting conventional elastic analysis procedure 

( =33800), applying Northridge, 1994 (Figure 5.3) earthquake ground motion. The 

results of dynamic analysis in terms of maximum lateral deflections for each storey 

are derived from FLAC2D history record and presented in Figures 6.5 and 6.6 as the 

fixed base results. The fixed base results represent the lateral storey deflections at 

level i for the fixed base structure ( id ) in Equation (6.14). Having id  values for each 

storey as well as the height of the structure (h), the foundation width (B), the soil density 
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( ), the modulus of elasticity of the structural material (Estr), and analysis type factor ( ), 

the lateral storey deflection at level i under the influence of SSI ( id~ ) are determined for 

each storey using Equation (6.14) for the following cases: 

 Variable shear wave velocities for the subsoil adopting soil classes Ce, De, and Ee  

(Figure 6.5) assuming the bedrock depth of 30 m; and 

 Variable bedrock depths including hs=10 m, 20 m, and 30 m adopting shear wave 

velocity of the subsoil equal to 150 m/s (Figure 6.6). 

Figures 6.5 and 6.6 illustrate the calculated lateral storey deflections at each level 

under the influence of SSI ( id~ ), obtained from Equation (6.14) for two mentioned cases.  

 
Figure 6.5: Determined lateral storey deflections at each level for 15 storey building resting on soil 

classes Ce, De, and Ee 

Figure 6.6: Determined lateral storey deflections at each level for 15 storey building resting on soil 
class Ee with variable bedrock depths 
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Having the lateral storey deflections, the corresponding inter-storey drifts under the 

influence of soil-structure interaction for each two adjacent stories have been 

determined (Figures 6.7 and 6.8) using Equation (5.3) in Chapter 5. It is now possible to 

check the inter-storey drifts of the building frame against the limiting value of 1.5% for 

life safe performance level.  

 

Figure 6.7: Inter-storey drifts for 15 storey building resting on soil classes Ce, De, and Ee 

 

Figure 6.8: Inter-storey drifts for 15 storey building resting on soil class Ee with variable bedrock 
depths 

Inter-storey drifts, shown in Figures 6.7 and 6.8, clearly illustrate that by reducing 

the shear wave velocity of the subsoil or increasing the bedrock depth, performance 

level of the 15 storey moment resisting building frame changes from life safe to near 

collapse level when SSI is considered in the analysis, which is dangerous and safety 

threatening.  
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In addition, comparing the calculated inter-storey drifts (Figures 6.7 and 6.8) with the 

results of numerical analyses (Figures 5.16c and 5.19c), it is noted that numerical and 

calculated results are in a good agreement. Therefore, the proposed simplified 

method can reproduce the results of numerical analysis with acceptable accuracy. 

Using the proposed simplified method, it can be ensured that performance levels of 

the mid-rise moment resisting building frames under the influence of SSI remain in 

life safe level, and the seismic design is safe and reliable.  

6.5 Summary  
In this chapter, in order to consider the amplification of lateral deflections and 

corresponding inter-storey drifts under the influence of soil-structure interaction in 

seismic design of regular mid-rise moment resisting building frames, a simplified 

design procedure has been proposed. The proposed design procedure enables structural 

engineers to extract the maximum lateral deflections for each storey under the 

influence of SSI from Equation (6.14) in this chapter by having the lateral storey 

deflections at (i) level for the fixed base structure ( id ), the shear wave velocity of the 

subsoil (Vs), the bedrock depth (hs), the storey height (h), the foundation width (B), the 

soil density ( ), the modulus of elasticity of the structural material (Estr), and analysis 

type factor ( ) for elastic or inelastic structural analysis. Then, inter-storey drifts under 

the influence of soil-structure interaction for each two adjacent stories can be 

determined and checked against the limiting value of 1.5% for life safe performance 

level. Thus, detrimental effects of soil-structure interaction can be captured more 

precisely in the seismic design procedure of regular mid-rise moment resisting building 

frames to ensure the design safety and reliability. The proposed simplified procedure 

can be employed for practical purposes by structural engineers and engineering 

companies, as a reliable and accurate method of considering SSI effect in the 

seismic design procedure. The proposed simplified design procedure can only be 

employed in seismic design of regular mid-rise moment resisting building frames resting 

on shallow foundations with no embedment depth and does not cover irregular and high-

rise buildings as well as building structures resting on pile foundations. 
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CHAPTER SEVEN 

 

7. CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 
The importance of SSI both for static and dynamic loads has been well established 

and the related literature covers at least 30 years of computational and analytical 

approaches to solve soil–structure interaction problems. Since 1990s, great effort has 

been made for substituting the classical methods of design by the new ones based on 

the concept of performance-based seismic design. Furthermore, the necessity of 

estimating the vulnerability of existing structures and assessing reliable methods for 

their retrofit have greatly attracted the attention of engineering community in most 

seismic zones throughout the world. Furthermore, the ground motions in seismic 

regions in Asia-Pacific such as New Zealand, Indonesia, and some parts of Australia 

will most probably govern the design of lateral resisting systems of the buildings. 

Thus, there is a strong need to develop design tools to evaluate seismic response of 

structures considering the foundation flexibility and subsoil conditions.   

In this thesis, an enhanced numerical soil-structure model has been developed and 

proposed to capture structural plasticity and soil nonlinearity simultaneously, 

treating the behaviour of soil and structure with equal rigor. The soil-structure model 

employs beam structural elements to model beams, columns and foundation slabs. The 

structural elements are capable of capturing both elastic and inelastic structural 

behaviour as well as structural geometric nonlinearity (large displacements) in dynamic 

analysis. The soil medium consists of two dimensional plane-strain quadrilateral 

elements. Nonlinear behaviour of the soil medium has been captured using backbone 

curves of shear modulus ratio versus shear strain (G/Gmax - ) and damping ratio versus 

shear strain (  - ) adopting Mohr-Coulomb constitutive model. Adopting direct 

method of analysis, the numerical model can perform fully nonlinear time history 

dynamic analysis to simulate realistic dynamic behaviour of soil and structure under 

seismic excitations accurately. Fully nonlinear method precisely follows any 

prescribed nonlinear constitutive relation and adopts hysteretic damping algorithm 

enabling strain-dependent modulus (G/Gmax - ) and damping functions (  - ) to be 
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incorporated directly in the analysis to capture the hysteresis curves and energy-

absorbing characteristics of real soil. Interface elements represented by normal and 

shear springs between soil and structure are utilised to simulate frictional contact 

between two planes contacting each other, with the interface shear strength defined 

by the Mohr-Coulomb failure criterion. In order to avoid reflection of outward 

propagating waves back into the model, quiet (viscous) boundaries comprising 

independent dashpots in the normal and shear directions are placed at the lateral 

boundaries of the soil medium. The lateral boundaries of the main grid are coupled 

to the free-field grids by viscous dashpots of quiet boundaries at the sides of the 

model to simulate the free-field motion which would exist in the absence of the 

structure. Horizontal distance of the soil lateral boundaries assumed to be 60 metres 

and the maximum bedrock depth is 30 metres. Rigid boundary condition is assigned 

to the bedrock. Since the adopted numerical soil-structure model is a Multi Degree 

of Freedom (MDOF) structure, inter-storey drifts can be estimated and employed to 

investigate the performance levels of the building structures under the influence of 

dynamic soil-structure interaction. 

In the experimental investigation, performed in the UTS civil laboratories, a soil-

structure model has been employed with geometric scaling factor of 1:30. Unlike 

past shaking table experiments which were performed without the structure or 

employed simplified SDOF (single Degree of Freedom) oscillators, the adopted soil-

structure model is a Multi Degree of Freedom (MDOF) structure simulating most of 

the structural properties of the real prototype building such as frequency of 

vibrations, number of stories, and mass. Therefore, this experiment is a unique 

experimental shaking table test considering the structural model in the soil-structure 

system precisely. The adopted soil model is a clay mixture consisting of kaolinite, 

bentonite, class F fly ash, lime, and water with its properties extracted after 

conducting the required tests such as bender element tests and Unconfined 

Compression tests (UC) to determine the shear wave velocity and the shear strength 

of the soil, respectively. In addition, in order to perform rigorous and reliable 

experimental tests, laminar soil container, which is an advanced and suitable soil 

container for shaking table tests and its lateral movements in the dynamic tests are 

almost identical to the free field movements in reality, was employed. Experimental 

shaking table tests were performed on the soil-structure model under the influence of 



173

four scaled earthquake acceleration records and the results were measured. Then, the 

maximum structural lateral and vertical displacements predicted by the numerical 

soil-structure model were determined and compared with the experimental results. 

Comparing the predicted and observed values of lateral and vertical structural 

displacements, it is understood that the numerical predictions and laboratory 

measurements are in a good agreement. Therefore, the numerical soil-structure 

model can replicate the behaviour of real soil-structure system with acceptable 

accuracy. Thus, it is concluded that the proposed numerical soil-structure model is a 

valid and qualified method of simulation with sufficient accuracy which can be 

employed for further dynamic soil-structure interaction numerical investigations. In 

addition, according to the experimental results, it is noted that the lateral deflections 

of flexible base model have evidently amplified in comparison to the fixed base 

model. As a result, performance level of the structural model may change 

extensively (e.g. from life safe to near collapse level), which may be extremely 

dangerous and safety threatening. Thus, it is experimentally observed that dynamic 

soil-structure interaction plays a significant role in seismic behaviour of moment 

resisting building frame resting on relatively soft soils.  

In order to have a clear and comprehensible conclusion regarding the effects of 

structural height, subsoil stiffness, and bedrock depth on elastic and inelastic seismic 

response of regular mid-rise moment resisting building frames under the influence of 

SSI, a comprehensive numerical investigation has been conducted. In this study, 5 

10, and 15 storey structural models resting on soil classes Ce (Vs=600m/s), De 

(Vs=320m/s), and Ee (Vs=150m/s), having three bedrock depths of 10 m, 20 m, and 

30 m were adopted. According to the results, it is observed that the base shear of the 

structures modelled with soil as flexible base are generally less than the base shear 

of the structures modelled as fixed base for both elastic and inelastic cases. In 

addition, it is realised that the lateral deflections and corresponding inter-storey 

drifts of flexible base models resting on soil class Ce do not differ much from fixed 

base models for both elastic and inelastic analysis cases. Thus, performance level of 

regular mid-rise moment resisting building frames resting on soil class Ce remains in 

life safe level and soil-structure interaction effects are insignificant in both elastic 

and inelastic analysis cases. However, lateral deflections and inter-storey drifts of 

flexible base models resting on soil classes De and Ee (in particular for 10 storey 
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building frames or higher resting on more than 20 metres of soil class De and 

building frames higher than 5 storey resting on soil class Ee irrespective of the 

bedrock depth) extensively increase in comparison with fixed base models. In 

general, as shear wave velocity (Vs) and shear modulus (Gmax) of the subsoil 

decrease or bedrock depth (hs) increases, the base shear of flexible base models in 

comparison with fixed base models decrease, while lateral deflections and 

corresponding inter-storey drifts increase relatively. The amplification of the lateral 

deflections and corresponding inter-storey drifts of flexible base models resting on 

soil classes De and Ee can change the performance level of the structures from life 

safe to near collapse or total collapse which is absolutely dangerous and safety 

threatening for both elastic and inelastic analysis cases. As a result, soil-structure 

interaction has significant effects on elastic and inelastic seismic responses of 

regular mid-rise moment resisting building frames resting on soil classes De and Ee. 

It can be concluded that the conventional elastic and inelastic design procedures 

excluding SSI may not be adequate to guarantee the structural safety of regular mid-

rise moment resisting building frames resting on soft soil deposits.  

Based on the numerical investigation results, a simplified design procedure has been 

proposed in this thesis. The simplified design procedure determines amplification of 

lateral deflections and corresponding inter-storey drifts under the influence of soil-

structure interaction in seismic design of regular mid-rise moment resisting building 

frames. Based on the proposed simplified design procedure, the maximum lateral 

deflections for each storey under the influence of SSI can be extracted from 

Equation (6.14) in Chapter 6 of this thesis. Then, inter-storey drifts under the 

influence of soil-structure interaction for each two adjacent stories can be 

determined and checked against the limiting value of 1.5% for life safe performance 

level. As a result, detrimental effects of soil-structure interaction can be captured 

more precisely in the seismic design procedure of regular mid-rise moment resisting 

building frames to ensure the design safety and reliability. The proposed simplified 

procedure can be employed for practical purposes by structural engineers and 

engineering companies, as a reliable and accurate method of considering SSI effect 

in the seismic design procedure. 
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7.2 Recommendations and Future Works 

Since the purpose of this research work was to focus on determining the seismic 

response of regular mid-rise moment resisting building frames resting on various 

soil types, further numerical and experimental studies and some refinements are 

recommended to make this research work more comprehensive for practical 

applications. Future research work may be carried out in the following areas: 

1. Conduct the numerical and experimental investigations, adopted in this study, 

to determine seismic response of regular high-rise moment resisting building 

frames resting on various soil types under the influence of SSI. In this way, 

the proposed simplified design procedure covers wider range of seismic 

problems in engineering practice.  

2. Extend the numerical model as well as physical shaking table model to 

consider pile foundations underneath including floating piles and end bearing 

piles with different section properties and arrangements. In this case, 

determining seismic response of structures resting on very soft soils 

(Vs<150m/s) under the influence of SSI would be achievable and the 

boundaries of the proposed simplified procedure could be extended. 

3. Extend the numerical model to consider the structural elements as solid 

elements. As a result, the structural member connections can be simulated 

and the effects of SSI on seismic design of different types of structural 

connections can be investigated. 

4. Perform the numerical parametric study, presented in this thesis, to determine 

the effects of structural material strength variation on seismic design of 

building frames under the influence of SSI. Therefore, a wider range of 

construction materials e.g. structural steel, timber, composite, and pre-

stressed concrete can be taken into consideration in the numerical 

investigations. 

5. Carry out the numerical parametric study to determine the effects of 

foundation embedment depth, layered soils, Plasticity Index and confining 

pressure variation on seismic response of building frames considering SSI. 

Thus, broader range of soil and foundation characteristics can be examined 

and investigated in the numerical parametric study. 
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APPENDIX A 

Elastic and inelastic analyses results under the influence of Northridge 

(1994), Kobe (1995), El-Centro (1940), and Hachinohe (1968) 

earthquake ground motions 
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Figure A.1: Elastic storey deflections of model S5 resting on soil classes Ce, De, and Ee with bedrock depth 
of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.2: Elastic inter-storey drifts of model S5 resting on soil classes Ce, De, and Ee with bedrock depth 
of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.3: Elastic storey deflections of model S10 resting on soil classes Ce, De, and Ee with bedrock depth 
of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.4: Elastic inter-storey drifts of model S10 resting on soil classes Ce, De, and Ee with bedrock depth 
of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.5: Elastic storey deflections of model S15 resting on soil classes Ce, De, and Ee with bedrock depth 
of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.6: Elastic inter-storey drifts of model S15 resting on soil classes Ce, De, and Ee with bedrock depth 
of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.7: Elastic storey deflections of model S5 resting on soil class Ce with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.8: Elastic inter-storey drifts of model S5 resting on soil class Ce with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.9: Elastic storey deflections of model S10 resting on soil class Ce with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.10: Elastic inter-storey drifts of model S10 resting on soil class Ce with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.11: Elastic storey deflections of model S15 resting on soil class Ce with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.12: Elastic inter-storey drifts of model S15 resting on soil class Ce with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.13: Elastic storey deflections of model S5 resting on soil class De with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.14: Elastic inter-storey drifts of model S5 resting on soil class De with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.15: Elastic storey deflections of model S10 resting on soil class De with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.16: Elastic inter-storey drifts of model S10 resting on soil class De with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.17: Elastic storey deflections of model S15 resting on soil class De with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.18: Elastic inter-storey drifts of model S15 resting on soil class De with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.19: Elastic storey deflections of model S5 resting on soil class Ee with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.20: Elastic inter-storey drifts of model S5 resting on soil class Ee with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.21: Elastic storey deflections of model S10 resting on soil class Ee with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.22: Elastic inter-storey drifts of model S10 resting on soil class Ee with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.23: Elastic storey deflections of model S15 resting on soil class Ee with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.24: Elastic inter-storey drifts of model S15 resting on soil class Ee with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.25: Inelastic storey deflections of model S5 resting on soil classes Ce, De, and Ee with bedrock 
depth of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.26: Inelastic inter-storey drifts of model S5 resting on soil classes Ce, De, and Ee with bedrock 
depth of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.27: Inelastic storey deflections of model S10 resting on soil classes Ce, De, and Ee with bedrock 
depth of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.28: Inelastic inter-storey drifts of model S10 resting on soil classes Ce, De, and Ee with bedrock 
depth of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.29: Inelastic storey deflections of model S15 resting on soil classes Ce, De, and Ee with bedrock 
depth of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.30: Inelastic inter-storey drifts of model S15 resting on soil classes Ce, De, and Ee with bedrock 
depth of 30 metres; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.31: Inelastic storey deflections of model S5 resting on soil class Ce with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.32: Inelastic inter-storey drifts of model S5 resting on soil class Ce with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.33: Inelastic storey deflections of model S10 resting on soil class Ce with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.34: Inelastic inter-storey drifts of model S10 resting on soil class Ce with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.35: Inelastic storey deflections of model S15 resting on soil class Ce with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.36: Elastic inter-storey drifts of model S15 resting on soil class Ce with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.37: Inelastic storey deflections of model S5 resting on soil class De with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.38: Elastic inter-storey drifts of model S5 resting on soil class De with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.39: Inelastic storey deflections of model S10 resting on soil class De with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.40: Inelastic inter-storey drifts of model S10 resting on soil class De with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.41: Inelastic storey deflections of model S15 resting on soil class De with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 200 400 600 800 1000
St

or
ey

 N
um

be
r

Maximum LateralDeflection (mm)

Fixed base

Bedrock Depth=10m

Bedrock Depth=20m

Bedrock Depth=30m

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 200 400 600 800 1000

St
or

ey
 N

um
be

r

Maximum Lateral Deflection (mm)

Fixed base

Bedrock Depth=10m

Bedrock Depth=20m

Bedrock Depth=30m

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 200 400 600 800 1000

St
or

ey
 N

um
be

r

Maximum Lateral Deflection (mm)

Fixed base

Bedrock Depth=10m

Bedrock Depth=20m

Bedrock Depth=30m

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 200 400 600 800 1000

St
or

ey
 N

um
be

r

Maximum Lateral Deflection (mm)

Fixed base

Bedrock Depth=10m

Bedrock Depth=20m

Bedrock Depth=30m



232

 
  

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure A.42: Inelastic inter-storey drifts of model S15 resting on soil class De with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.43: Inelastic storey deflections of model S5 resting on soil class Ee with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.44: Inelastic inter-storey drifts of model S5 resting on soil class Ee with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.45: Inelastic storey deflections of model S10 resting on soil class Ee with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.46: Elastic inter-storey drifts of model S10 resting on soil class Ee with variable bedrock depths; 
(a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.47: Inelastic storey deflections of model S15 resting on soil class Ee with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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Figure A.48: Inelastic inter-storey drifts of model S15 resting on soil class Ee with variable bedrock 
depths; (a) Northridge (1994); (b) Kobe (1995); (c) El-Centro (1940); (d) Hachinohe (1968) 
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