
New optimization techniques for point feature

and general curve feature based SLAM

Minjie Liu

Submitted in fulfilment of the requirement for the degree of doctor of philosophy

Mechatronics and Intelligent Systems Group
Center for Autonomous Systems

The Faculty of Engineering and Information Technology

The University of Technology, Sydney

Student: : Minjie Liu

Supervisor : Dr Shoudong Huang
Co-Supervisor : Prof Gamini Dissanayake



Certificate

I, Minjie Liu, declare that this thesis titled, “New optimization techniques for point
feature and general curve feature based SLAM" and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:



Acknowledgements

I would like to express an enormous amount of gratitude to all the people who have
supported and encouraged me during the past three and a half years of my candidature.

Firstly I would like to thank my supervisors, Dr Shoudong Huang and Professor Gamini
Dissanayake for their invaluable guidance and supervision, and for providing me this
opportunity.

Thanks goes to Dr Heng Wang, Mr Liang Zhao, Dr, Zhan Wang, Dr Alen Alempijevic
and Mr Gibson Hu who have given useful information, suggestions, criticisms and helped
my research. I would also thank Lei Shi, Shifeng Wang, Shuai Yuan and Chuan Zhao for
their valued friendship.

Most importantly, I would like to thank my family. For my parents, thank you for your
love and care. Without their support and understanding this would not have been possi-
ble. For my lovely wife Chen Zheng, thank you for your love, support and encouragement
throughout all these years.



Contents

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Simultaneous Localization and Mapping 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Systems State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Motion and Observation Model . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Observation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Motion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Least Squares Formulation for Point Feature SLAM . . . . . . . . . . . . . 11
2.4.1 When odometry information is unavailable . . . . . . . . . . . . . . 11
2.4.2 When odometry information is available . . . . . . . . . . . . . . . 12

2.5 Least Squares Estimation Method . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Least squares problem . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Linear least squares . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.3 Nonlinear least squares . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 SLAM Algorithms Based on Least Squares . . . . . . . . . . . . . . . . . 17
2.6.1 Square root SAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Sparse bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.3 Submap based approach . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Curve Feature SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.1 Line feature SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4



Contents

2.7.2 SP-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7.3 B-Spline SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 A Semi-definite Relaxation Based Approach for Point Feature SLAM Prob-
lems 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Overview of the Proposed Approach . . . . . . . . . . . . . . . . . . . . . 29
3.3 New State Variables: cos(φri) and sin(φri) . . . . . . . . . . . . . . . . . 30
3.4 Approximating the Covariance Matrices to be Spherical . . . . . . . . . . 31
3.5 Transform the Proposed SLAM Formulation into QCQP . . . . . . . . . . 33

3.5.1 When odometry is unavailable . . . . . . . . . . . . . . . . . . . . 33
3.5.2 When odometry is available . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Apply SDR to Transfer the QCQP into Convex Optimization Problem . . 39
3.7 Obtain Feasible Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Evaluation for the Semi-definite Relaxation Based SLAM Approach 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Error covariance of the algorithm . . . . . . . . . . . . . . . . . . . 46
4.2.2 Value of objective function . . . . . . . . . . . . . . . . . . . . . . 46

4.3 SLAM Result Using Simulation Data . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Small scale simulation . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Larger scale simulation . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 SLAM Result Using Experimental Data . . . . . . . . . . . . . . . . . . . 51
4.4.1 Result for the Victoria Park dataset . . . . . . . . . . . . . . . . . 51
4.4.2 Result for the DLR-Spatial Cognition dataset . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Curve Feature Based SLAM 58
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Curve Feature SLAM Formulation . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Curve Feature SLAM When Laser Scanner Used . . . . . . . . . . . . . . 61

5



Contents

5.4 Special Properties of the Objective Function . . . . . . . . . . . . . . . . . 62
5.4.1 Discontinuity of the function . . . . . . . . . . . . . . . . . . . . . 63
5.4.2 Local minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 One Approach for the Proposed SLAM Formulation . . . . . . . . . . . . 66
5.5.1 Increasing the chance by relaxation . . . . . . . . . . . . . . . . . . 66
5.5.2 Theoretical measurement calculation for complex features . . . . . 66

5.6 Implementation Issues - Optimization for Two Scans . . . . . . . . . . . . 68
5.6.1 Limitations of the SLAM formulation and algorithm . . . . . . . . 68
5.6.2 Problem of relating two scans . . . . . . . . . . . . . . . . . . . . . 69
5.6.3 Approach for relating two scans . . . . . . . . . . . . . . . . . . . . 70
5.6.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Multi-scan SLAM Implementation . . . . . . . . . . . . . . . . . . . . . . 71
5.7.1 Multi-scan SLAM problem formulation . . . . . . . . . . . . . . . . 71
5.7.2 Results using Intel dataset . . . . . . . . . . . . . . . . . . . . . . . 74

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Convert Curve Feature SLAM to Point Feature SLAM 78
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 The New Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Curve length parameterizations . . . . . . . . . . . . . . . . . . . . 79
6.2.2 Covariance matrix derivation . . . . . . . . . . . . . . . . . . . . . 79

6.3 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 Pairing observation with state objects . . . . . . . . . . . . . . . . 82
6.3.2 Identify time sequence for new observations . . . . . . . . . . . . . 83
6.3.3 Spline fitting for new observations . . . . . . . . . . . . . . . . . . 84

6.4 Consistency of the Observation Model . . . . . . . . . . . . . . . . . . . . 85
6.4.1 Test method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.2 Estimate the “ground truth” of control points using noise free sim-

ulation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.3 Estimate the control points through noisy scan data . . . . . . . . 87
6.4.4 Estimate control points when “part of spline” is observed . . . . . . 87

6.5 SLAM Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5.1 SLAM result using simulation data . . . . . . . . . . . . . . . . . . 87
6.5.2 SLAM using real data . . . . . . . . . . . . . . . . . . . . . . . . . 89

6



Contents

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Conclusions and Future Work 97
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 Convex optimization based approach for point feature SLAM . . . 97
7.1.2 General curve feature SLAM formulation . . . . . . . . . . . . . . 98
7.1.3 Curve feature SLAM to point feature SLAM conversion . . . . . . 98

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2.1 Approximation ratio for the SDR based approach for SLAM problem 99
7.2.2 Reducing the computational complexity of the SDR approach . . 99
7.2.3 Extend the SDR based approach to other form of SLAM problem . 99

Bibliography 100

7



List of Tables

4.1 Value of Objective Function When Odometry Available . . . . . . . . . . . 51
4.2 Value of Objective Function When Odometry Unavailable . . . . . . . . . 51

8



List of Figures

2.1 The SLAM problem when odometry unavailable . . . . . . . . . . . . . . . 12
2.2 The SLAM problem when odometry available . . . . . . . . . . . . . . . . 13
2.3 An example of B-Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Results using small simulation data. . . . . . . . . . . . . . . . . . . . . . 49
4.3 Results using simulation data . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Comparison of the values of objective function for submaps of Victoria

park dataset. Solid line is from SDR; dashed line is from LS . . . . . . . . 52
4.5 Final results comparison using the Victoria Park dataset . . . . . . . . . . 53
4.6 Submap result comparison for the Victoria Park dataset . . . . . . . . . . 54
4.7 Comparison of the values of objective function for submaps of DLR-Spatial

Cognition dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Final results comparison using the DLR dataset. . . . . . . . . . . . . . . 55
4.9 Submap result comparison for the DLR-Spatial Cognition dataset . . . . . 57

5.1 Example 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Function plot of Example 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Explanation of the phenomenon . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Theoretical measurement calculation for B-Spline features. . . . . . . . . . 68
5.5 Align two far apart scans using the proposed method . . . . . . . . . . . . 72
5.6 Result for deriving relative pose from far apart scans . . . . . . . . . . . . 73
5.7 The result after applying least square smoothing . . . . . . . . . . . . . . 76
5.8 Multi step SLAM result using GA . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Data association process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 B-Spline extension process . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9



List of Figures

6.3 Estimate “ground truth” control points . . . . . . . . . . . . . . . . . . . . 88
6.4 Spline fitting with noisy data . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Spline fitting with noisy data when “part of spline” is observed . . . . . . 90
6.6 Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.7 Simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.8 Comparison of LS result with the SDR result for the simulation data . . . 93
6.9 SLAM result using the Intel dataset . . . . . . . . . . . . . . . . . . . . . 94
6.10 The location of the estimated control points . . . . . . . . . . . . . . . . . 95
6.11 Comparison of I-SLSJF result with the SDR result for the Intel data . . . 95

10



Abstract

This doctoral thesis deals with the feature based Simultaneous Localization and Mapping
(SLAM) problem. SLAM as defined in this thesis is the process of concurrently building
up a map of the environment and using this map to obtain improved estimates of the
location of the robot. In feature based SLAM, the robot relies on its ability to extract
useful navigation information from the data returned by its sensors. The robot typically
starts at an unknown location without priori knowledge of feature locations. From relative
observations of features and relative pose measurements, estimates of entire robot trajec-
tory and feature locations can be derived. Thus, the solution to SLAM problem enables
an autonomous vehicle navigates in a unknown environment autonomously. The advan-
tage of eliminating the need for artificial infrastructures or a priori topological knowledge
of the environment makes SLAM problem one of the hot research topics in the robotics
literature. Solution to the SLAM problem would be of inestimable value in a range of
applications such as exploration, surveillance, transportation, mining etc.

The critical problems for feature based SLAM implementations are as follows: 1) Be-
cause SLAM problems are high dimensional, nonlinear and non-convex, when solving
SLAM problems, robust optimization techniques are required. 2) When the environment
is complex and unstructured, appropriate parametrization method is required to represent
environments with minimum information loss. 3) As robot navigates in the environ-
ment, the information acquired by the onboard sensor increases. It is essential to develop
computationally tractable SLAM algorithms especially for general curve features.

This thesis presents the following contributions to feature based SLAM. First, a convex
optimization based approach for point feature SLAM problems is developed. Using the
proposed method, a unique solution can be obtained without any initial state estimates.
It will be shown that, the unique SDP solution obtained from the proposed method is very
close to the true solution to the SLAM problem. Second, a general curve feature based
SLAM formulation is presented. Instead of scattered points, in this formulation, the envi-



ronment is represented by a number of continuous curves. Using the new formulation, all
the available information from the sensor is utilized in the optimization process. Third,
method for converting curve feature to point feature is presented. Using the conversion
method, the curve feature SLAM problem can be transferred to point feature SLAM prob-
lem and can be solved by the convex optimization based approach.



1 Introduction

Reliable localization is the key concept of any autonomous robotic system. Autonomous
mobile robot localization in previously unexplored environments requires the robot to
incrementally construct a map of its surroundings and using this map to obtain improved
estimates of the location of the robot. This problem is called Simultaneous Localization
and Mapping (SLAM) problem.

One of the most popular approach to the SLAM problem is the feature based SLAM.
In feature based SLAM, features from the raw sensor measurements have been firstly
extracted and the raw measurements have been transferred to the relative robot-to-
feature observations. Estimation technique is then applied on this information and the
relative robot pose measurement to get the robot trajectory and the feature locations.

This thesis is concerned with the convex optimization based approach to feature based
SLAM. The major contributions of this thesis arise from the new formulation to the point
feature SLAM, on which convex optimization based approach can be applied. Because
the use of the convex optimization technique, unique solution can be obtained without
any initial state estimates. To utilize more information from raw sensor measurement,
a general curve feature based SLAM formulation is proposed. By introducing a new
observation model, curve features are transferred into point features and the proposed
convex optimization based approach can be used to solve curve feature based SLAM
problem.

1.1 Background and Motivation

Autonomous mobile robots play an important role in many areas of the modern society.
From service robots such as vacuum-cleaners and garden robots to industrial robots such
as Automated Guided Vehicle (AGV), robots effectively and efficiently performs human-
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1 Introduction

like, labor-intensive tasks. The success of deploying robots in modern society has led to
significant innovation in the research and development of robotic systems. As unmanned
vehicles allow often dangerous tasks to be performed from remote locations in a range
of application domains such as mining, defence and subsea exploration, mobile robotics
becomes one of the key research area in robotic systems.

There are several important facets of autonomous vehicles and one of them is reliable
localization. Over the past decades, robotics researchers have developed reliable solutions
to the problem of precision location estimation within known environments. Typically,
artificial infrastructures with known locations have been arranged in the environment
and location of the vehicle is computed by integrating information from sensors such as
sonar, lasers and radars mounted on the vehicle that observe the artificial infrastructures
with information from sensors that monitor the behavior of the vehicle, such as encoders
and inertial measurement units.

However, most of the time installed infrastructure at known locations is not available
and external sources of information such as GPS is not present. In contrast with the
localization problem, SLAM considers the problem which uses only relative measurements
to build up a map of the environment and at the same time to obtain improved estimates
of the location of the vehicle.

After the introduction of the SLAM problem, it soon became one of the most active
research areas in mobile robotics and many SLAM algorithms have been developed in
the past decade. Generally speaking, the SLAM problem is considered as a nonlinear
estimation/optimization problem. Solving such a problem is not a simple task. As robot
navigates in large and complicated environment, the amount of computational effort
required grows quickly.

Now, it is well recognized that SLAM problem has a sparse structure. This significantly
reduce the computational cost for solving this high dimensional nonlinear optimization
problem. As such, a number of efficient optimization based SLAM algorithms have
emerged in the last few years (e.g. [18][43] and the references therein).

Recent research in optimization based SLAM has demonstrated some surprising results.
It is evident from [29][63] that the pose SLAM problem can converge to the correct
solution most of the time even if it starts from a poor initial guess, provided that the
covariance matrix of the relative pose information is near spherical.

2



1 Introduction

Some recent work on feature based SLAM [33] also demonstrates a similar phenomenon.
A solution that is very close to the published results for the popular Victoria Park dataset
[30] can be obtained from a simple Gauss-Newton algorithm, using an odometry based
initial guess and setting all the covariance matrices to identity. More interestingly, even
with random initial guesses to the 6898 vehicle poses and the 299 feature positions, 80%
of the time the same result can be obtained, contrary to the obvious expectation that the
algorithm will converge to a local minimum. In case of the DLR-Spatial Cognition dataset
[44] which is another popular dataset used by SLAM researchers, the same strategy results
in a solution close to the ground truth if a zero vector is used as the initial guess while
in contrast a random initial guess leads to a local minimum.

The above phenomenon shows that SLAM optimization problem is a very special
nonlinear optimization problem and possibly it is close to a convex optimization problem.
Work reported in this thesis is motivated by this phenomenon and tried to explored the
hidden convexity of the SLAM problem. It is well known that any local minimum of a
convex optimization problem is the global minimum of the problem. Thus solving the
SLAM problem using convex optimization based method is potentially a robust strategy
for obtaining the true optimal solution to SLAM problem.

1.2 Contributions

This thesis focuses on the convex optimization based SLAM problem. The principal
contributions of this thesis arise from the new formulation of the SLAM problem which
explores hidden convex structure of the problem. The contributions made are:

• A convex optimization based approach to the point feature based SLAM. This
method first transfers the SLAM problem to a quadratically constrained quadratic
programming (QCQP) problem by using a new parametrization of the robot ori-
entation and some approximations on the structure of the uncertainty of measure-
ments. The resulting QCQP, which is not convex, is then relaxed using semi-definite
relaxation (SDR) to obtain a semi-definite programming (SDP) problem which is
convex. The unique solution to the SDP can be computed even when a suitable
initial guess is not available. Using computer simulation and experimental data, it
is shown that a candidate solution to the SLAM problem extracted from the unique
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1 Introduction

SDP solution is very close to the true solution to the SLAM problem.

• A new formulation for curve feature SLAM is proposed. In this formulation, the
environment is represented by a number of continuous curves. It has been observed
that, when using the new formulation, the objective function to be optimized be-
comes discontinuous and can not be solved by standard gradient based approaches.
It is proposed to solve this problem by using a Genetic Algorithm (GA) and Itera-
tive Closest Point (ICP) based approach. However, although this approach is able
to handle discontinuities, the computation cost involved is too high.

• A new observation model for B-Spline SLAM is proposed. Curve feature in the envi-
ronment are represented by B-Splines. Using the new observation model, the curve
feature SLAM problem can be transferred to point feature SLAM problem. This
enables more information from the raw sensor measurements to be utilized. Using
the new observation model, the proposed convex optimization based approach can
also be applied to B-Spline SLAM.

1.3 Publications

Following is a list of publications towards the work presented in this thesis:

• “A new observation model for B-Spline SLAM,” M. Liu, S. Huang and G. Dis-
sanayake. Australasian Conference on Robotics and Automation (ACRA), Sydney,
Australia, 2009.

• “Towards a consistent SLAM algorithm using B-Splines to represent environments,”
M. Liu, S. Huang, G. Dissanayake and S. Kodagoda, Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 2065-2070,
2010.

• “Feature based SLAM using laser sensor data with maximized information usage,”
M. Liu, S. Huang and G. Dissanayake, IEEE International Conference on Robotics
and Automation (ICRA), pp. 1811-1816, 2011.

• “A convex optimization based approach for point feature SLAM problems,” M.
Liu, H. Wang, S. Huang, and G. Dissanayake Submitted to IEEE Transactions on
Robotics 2011.
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• “A convex optimization based approach for pose SLAM problems,” M. Liu, S.
Huang, G. Dissanayake and H. Wang Accepted by IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) 2012.

1.4 Thesis Overview

The remainder of this thesis is organized as follows.

Chapter 2 reviews some of the existing approaches for SLAM problem. In particu-
lar, optimization based approaches for feature based SLAM are discussed. Some of the
existing feature representation methods are also presented.

Chapter 3 presents a convex optimization based approach to the SLAM problem. A
new representation for robot orientation is introduced such that the point feature SLAM
problem can be formulated as a quadratic constrained quadratic programming (QCQP)
optimization problem which can then be relaxed to a convex optimization problem.

Chapter 4 evaluates the proposed convex optimization approach for point feature
SLAM. A number of comparison methods such as consistency of the algorithm and value
of objection function are used. Results have shown that the results derived from the
proposed approach is very close to the results derived from least squares method.

Chapter 5 proposes a curve feature SLAM formulation. Using this formulation all the
raw measurements have been utilized in the objective function. However, it is observed
that the objective function for the new formulation is discontinuous. Because of this,
local optimization based approach can not be applied. Thus a Genetic Algorithm (GA)
based method is proposed.

Chapter 6 proposes a new observation model for B-Spline based SLAM. The use of B-
Splines allows environment to be represented without having to extract specific geometric
features such as lines or points. Using the new observation model, the curve feature based
SLAM problem has been transferred to point feature SLAM problem which can be solved
using both nonlinear least squares and the proposed convex optimization approach.

Chapter 7 presents conclusions and provides directions for future research of the pro-
posed approach.
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2 Simultaneous Localization and
Mapping

2.1 Introduction

Since the introduction of the Simultaneous Localization and Mapping (SLAM) prob-
lem, the problem has attracted immense attention from the mobile robotics community.
When a mobile robot starts at an unknown location with no a priori knowledge of the
environment, solution to the SLAM problem enables the robot concurrently building a
map of the environment and using this map to obtain estimates of its location.

Probably the first approach to SLAM problem is the feature based SLAM introduced by
Smith, Self and Cheeseman [72][73] that built on previous work by Ayache and Faugeras
[3] and Chatila and Laumond [16]. In feature based SLAM approach, features have been
firstly extracted from the raw measurements returned from the onboard sensors. From
the relative robot-to-features observations and relative relative robot pose measurement
(also known as odometry information), the estimate of robot trajectory and the estimate
of feature locations can be computed.

Early work on feature based SLAM focuses on point-features [20]. When the point
feature SLAM problem has been first introduced, the Extended Kalman Filter (EKF)
has been proposed as the estimator. In EKF based SLAM approaches the information
gathered by the robot can be fused to yield bounded estimates [81] of robot and feature
locations in a recursive fashion.

After years of development for SLAM, there are many advancement for feature based
SLAM algorithms. Firstly, the point feature based SLAM problem has been formulated
as an optimization problem. Instead of estimating only the current robot pose as in
EKF, the optimization approach estimates the entire robot trajectory. Results show that
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2 Simultaneous Localization and Mapping

SLAM algorithms using optimization techniques can improve the consistency significantly
as Jacobians are re-evaluated over different times [19][36]. Secondly, the sparseness of the
information matrix in different point feature SLAM formulations is now well understood
and exploited thoroughly [1][19][35]. Hence the problem can be solved efficiently for
scenarios consisting of a few thousand of robot to feature observations. Further more,
more complex features have been used to represent the environment such that more
information can be utilized in the estimation process and more detailed description of
the environment can be achieved.

Different from the EKF and optimization based approach to the SLAM problem, an-
other popular SLAM approach is the particle filter based SLAM [56][26]. It uses a
Rao-Blackwellized particle filter to sample robot poses and track the position of a fixed
number of predetermined features using EKF (the feature positions are conditionally
independent given the robot poses). This method mitigates some of the challenges in
mapping at the expense of some challenges in feature selection and identification. For
particle filter based SLAM, the more the number of particles used, the less the extent of
the inconsistency.

Another mainstream SLAM approach is the pose SLAM (also known as Graph SLAM)
[29][48][63]. In pose SLAM, relative pose information between consecutive robot poses are
computed and then an optimization is performed to smooth the whole robot trajectory.

While all these approaches to the problem have their own particular strengths, this
thesis will mainly focus on the feature based SLAM problem using optimization tech-
niques.

This chapter briefly introduce some of the existing feature based SLAM algorithms
used for generating robot and feature position estimates based on observations taken
relative to the position of the robot for 2D case. Section 2.2 begins by introducing the
system states for least squares SLAM formulation. Section 2.3 describes the motion and
observation model used in point feature SLAM. Section 2.4 presents the point feature
SLAM algorithm using non-linear least squares as estimator. In Section 2.5, least squares
estimation method is discussed. Section 2.6 reviews some of the least squares based
algorithm for feature based SLAM. Section 2.7 discusses some of the complex feature
representation methods and Section 2.8 summarizes this chapter.

7
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2.2 Systems State

In feature based SLAM, the environment is represented by the absolute position of the
features. For example, in point feature based SLAM, the map is represented by a set of
points. Considering the 2D case, the j−th point feature Xfj is represented by its position

Xfj =

[
xfj
yfj

]
.

And the i−th robot pose Xri is represented by

Xri =

⎡
⎢⎣ xri

yri
φri

⎤
⎥⎦

where (xri , yri) is the absolute robot position and φri is the absolute robot orientation.
The initial robot pose has been set as the origin i.e. Xr0 = [0, 0, 0]T .

Suppose the robot moved p times and there are altogether N features have been ob-
served, the system state for nonlinear least squares point feature SLAM formulation
is

V = [XT
r1 , . . . , X

T
rp , X

T
f1 , . . . , X

T
fN

]T . (2.1)

2.3 The Motion and Observation Model

In feature based SLAM, measurements are in the relative coordinate system. In order to
get feature and robot pose estimate in global coordinate system, models are needed to
map between the sensed data (e.g. laser, cameras, odometry) and the states of interest
(e.g. robot poses, stationary feature poses). There are two models in feature based
SLAM, observation model and motion model. Using point feature SLAM as an example,
we discuss the two models in this section.

8
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2.3.1 Observation model

Suppose at robot pose i, the robot observes point feature Xfj and assume the robot-to-
feature observation is the relative position measurement of point feature fj with respect
to robot pose Xri

zij =

⎡
⎣ zxi

j

zyij

⎤
⎦ ,

the observation model can be written as

zij = Hzij (Xri , Xfj ) + σzij
(2.2)

where σzij
is the noise on the observation zij . It is assumed to be Gaussian with zero

mean and covariance matrix Pzij
. Hzij is the observation function given by

Hzij (Xri , Xfj ) =

[
cos(φri)(xfj − xri) + sin(φri)(yfj − yri)

− sin(φri)(xfj − xri) + cos(φri)(yfj − yri)

]

=

[
cos(φri) sin(φri)

− sin(φri) cos(φri)

][
xfj − xri
yfj − yri

]
. (2.3)

The Jacobian matrix of Hzij with respect to robot pose Xri is

∂Hzij

∂Xri

=

[
− cos(φri) − sin(φri) − sin(φri)(xfj − xri) + cos(φri)(yfj − yri)

sin(φri) − cos(φri) − cos(φri)(xfj − xri)− sin(φri)(yfj − yri)

]
(2.4)

and the Jacobian matrix of Hzij with respect to feature position Xfj is

∂Hzij

∂Xfj

=

[
cos(φri) sin(φri)

− sin(φri) cos(φri)

]
. (2.5)
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2.3.2 Motion model

Suppose the relative robot pose measurement (also known as odometry information) of
robot pose Xri+1 with respect to robot pose Xri is in the following form

oi =

⎡
⎢⎣ oxi

oyi
oφi

⎤
⎥⎦ , (2.6)

where (oxi , oyi) is the relative robot position measurement and oφi
is the relative robot

orientation measurement. The motion model is

oi = Hoi(Xri , Xri+1) + σoi . (2.7)

Here σoi is the noise on the odometry information oi. It is assumed to be Gaussian with
zero mean and covariance matrix Poi . Hoi(Xri , Xri+1) is the odometry function given by

Hoi(Xri , Xri+1) =

⎡
⎢⎣ cos(φri)(xri+1 − xri) + sin(φri)(yri+1 − yri)

− sin(φri)(xri+1 − xri) + cos(φri)(yri+1 − yri)

φri+1 − φri

⎤
⎥⎦ . (2.8)

The Jacobian matrix of Hoi(Xri , Xri+1) with respect to Xri is

∂Hoi

∂Xri

=

⎡
⎢⎣ − cos(φri) − sin(φri) − sin(φri)(xri+1 − xri) + cos(φri)(yri+1 − yri)

sin(φri) − cos(φri) − cos(φri)(xri+1 − xri)− sin(φri)(yri+1 − yri)

0 0 −1

⎤
⎥⎦
(2.9)

and the Jacobian matrix of Hoi(Xri , Xri+1) with respect to Xri+1 is

∂Hoi

∂Xri+1

=

⎡
⎢⎣ cos(φri) sin(φri) 0

− sin(φri) cos(φri) 0

0 0 1

⎤
⎥⎦ (2.10)

10
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2.4 Least Squares Formulation for Point Feature SLAM

Given the observation and motion models described in the previous section, the point
feature SLAM problem is to derive the system state which best fits all the available
information. This can be formulated as a least squares problem.

There are two scenarios for point feature SLAM: 1) odometry information is unavail-
able; 2) odometry is available. Suppose there are N point features f1, ..., fN that are
observed from a sequence of p+1 robot poses r0, r1, . . . , rp. Assuming that at robot pose
ri, the robot observes ki features out of total N features, the point feature SLAM least
squares formulation for these two scenarios are discussed.

2.4.1 When odometry information is unavailable

The point feature SLAM problem in this case aims to find the state vector V defined
in (2.1), which contains all the robot poses and feature locations to best fit all the
observations. This can be achieved by minimizing the following least squares objective
function:

Fz(V ) =

p∑
i=0

ki∑
j=1

(zij −Hzij (V ))TP−1
zij

(zij −Hzij (V )) (2.11)

Fig. 2.1 shows an example of the case when odometry information is unavailable with
N = 6 and p = 4.

Similar to D-SLAM [80], when odometry is unavailable, common features need to be
observed from different robot poses such that the robot poses can be estimated. When
the SLAM problem is formulated as the above least squares optimization problem, only
one instance when less than two previously seen features are observed is allowed (e.g.
pose r2 in Fig 2.1). If this condition is not satisfied, the information available is not
enough to uniquely determine the robot poses.
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Figure 2.1: The SLAM problem with 5 poses, 6 features and 14 observations (odometry
unavailable case).

2.4.2 When odometry information is available

The point feature SLAM problem in this case is to use the odomety and observation
information to estimate all the robot poses and all the feature positions. This can be
achieved by minimizing the least squares objective function:

Fz(V ) + Fo(V ) =

p∑
i=0

ki∑
j=1

(zij −Hzi
j (V ))TP−1

zi
j
(zij −Hzi

j (V ))

+

p−1∑
i=0

(oi −Hoi(V ))TP−1
oi (oi −Hoi(V ))

(2.12)

Fig. 2.2 shows an example of this scenario with N = 3 and p = 4. When odometry
is available, the information is always enough to determine the variables no matter how
many features are observed at each time step.

12



2 Simultaneous Localization and Mapping

Figure 2.2: The SLAM problem with 5 poses, 3 features and 5 observations (odometry
available case).

2.5 Least Squares Estimation Method

When formulating feature based SLAM as a least squares optimization problem, the
SLAM problem can be solved by least squares technique. The least squares technique is
a frequently used approach to solving over-determined or inexactly specified systems of
equations in an approximate sense. Instead of solving the equations exactly, least squares
aims to minimize the sum of the squares of the residuals.

This section briefly reviews the least squares estimation method. Firstly, the linear
least squares method is described and then the two popular non-linear least squares
methods (Gauss-Newton and Levenberg-Marquardt) are discussed.
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2.5.1 Least squares problem

In a general least squares problem, the objective is to adjust the variables of a model
function to best fit a data set. Assuming there are m observations

Z = [Z1, Z2, . . . , Zm]T

and the model function has the form of

Fi(V ), i = 1, . . . ,m

least squares aims to find
V = [V1, V2, . . . , Vn], n < m

which minimizes the following objective function

m∑
i=1

‖Fi(V )− Zi‖2 (2.13)

Depending on the problem, the model function can be in various forms.

2.5.2 Linear least squares

Consider a multi-dimensional case and the model function comprises a linear combination
of the parameter i.e.

Fi(V ) =

n∑
j=1

Yi,jVj (2.14)

where
Yi,j , i = 1, . . . ,m, j = 1, . . . , n

are known coefficients. Least squares problem (2.13) becomes minimizing

m∑
i=1

‖
n∑

j=1

Yi,jVj − Zi‖2 (2.15)
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Rewrite (2.15) in matrix form

min
V

‖Y V − Z‖2 (2.16)

where

Y =

⎡
⎢⎢⎣

Y11 . . . Y1n
...

. . .
...

Ym1 . . . Ymn

⎤
⎥⎥⎦ , V =

⎡
⎢⎢⎣

V1

...
Vn

⎤
⎥⎥⎦ and Z =

⎡
⎢⎢⎣

Z1

...
Zm

⎤
⎥⎥⎦

expanding the above expression, (2.16) becomes

||Z − Y V ||2 = (Z − Y V )T (Z − Y V )

= ZTZ − ZTY V − V TY TZ + V TY TY V. (2.17)

The objective can then be achieved by finding V that makes the following Jacobian
function to 0

d

dV
(ZTZ − ZTY V − V TY TZ + V TY TY V ) = 0. (2.18)

The solution for this is

V = (Y TY )−1Y TZ. (2.19)

2.5.3 Nonlinear least squares

In the nonlinear least squares case, the model function is nonlinear in terms of the
parameter V . Unlike the linear least squares case, there is no closed-form solution.
Therefore, the principle for the non-linear least squares estimation is to use numerical
method to find the solution iteratively. Here, two of the most commonly used nonlinear
least squares techniques are introduced.

Gauss-Newton method

Gauss-Newton is an algorithm to solve unconstrained least squares problem. In Gauss-
Newton method, the nonlinear system F (V ) is represented by its Taylor expansion
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F (V ) = F (V0) +
F ′(V0)

1!
(V − V0) +

(V − V0)
TF ′′(V0)(V − V0)

2!
+ . . . (2.20)

and is approximated by

F (V ) ≈ F (V0) +
F ′(V0)

1!
(V − V0). (2.21)

When V is near V0 the minimization problem can be approximated by

||Z − F (V0) + F ′(V0)V0 − F ′(V0)V ||2. (2.22)

From (2.19), given an initial value V0, the one step improved approximate solution for
nonlinear least squares problem is

V1 = (F ′(V0)
TF ′(V0))

−1F ′(V0)
T [Z − F (V0) + F ′(V0)V0]. (2.23)

Levenberg-Marquardt method

Similar to the Gauss-Newton method, the Levenberg-Marquardt method is another
method for solving non-linear least squares problems. Levenberg-Marquardt method
calculates an increment ΔV which minimizes the objective function. Similar to (2.21),
in Levenberg-Marquardt method F (V ) is approximated by

F (V ) ≈ F (V0) +
F ′(V0)

1!
ΔV (2.24)

where

ΔV = V − V0 (2.25)

and (2.13) is approximated by

||Z − F (V0)− F ′(V0)ΔV ||2. (2.26)
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Thus, the objective is to find ΔV to minimize (2.26). Define

ξ = Z − F (V0),

the objective can be achieved by the following equation

(F ′(V0))
TF ′(V0)ΔV = (F ′(V0))

T ξ. (2.27)

Notice that (2.27) is equivalent to (2.23) in Gauss-Newton.

Different from Gauss-Newton, in Levenberg-Marquardt a damping version of (2.27) is
introduced

((F ′(V0))
TF ′(V0) + λI)ΔV = (F ′(V0))

T ξ. (2.28)

where λ is a non-negative damping factor. This update rule is used as follows. At a
large distance from the function minimum, large λ value is utilized to provide steady and
convergent progress toward the solution. As the solution approaches the minimum, λ is
adaptively decreased to reduce the influence of gradient descent. An efficient updating
strategy for the selecting the damping factor has been described in [59].

2.6 SLAM Algorithms Based on Least Squares

Recently, there are a number of algorithms emerged to reduce the computational cost for
least square based SLAM utilizing the special structure of the problem. In this section,
we provide a brief review on some of the algorithms.

2.6.1 Square root SAM

In Square Root Smoothing and Mapping (SAM) [19], the point feature SLAM nonlinear
least squares formulation is solved by using the QR matrix factorization. Comparing with
the nonlinear least squares method (2.23), SAM avoids calculating F ′(V0)

TF ′(V0) which
reduces the computation cost significantly.
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Letting
b = F (V0)− Z − F ′(V0)V0,

(2.22) can be written as

||F ′(V0)V − b||2 (2.29)

Suppose the QR factorization of matrix F ′(V0) is

F ′(V0) = Q

[
R

0

]
(2.30)

where R is a upper triangular matrix and Q is a orthogonal matrix. Applying the
factorization, (2.29) can be written as

||F ′(V0)V − b||2 = ||Q
[

R

0

]
V − b||2. (2.31)

Multiply the above expression by QT , the objective function can be written as

||QTQ

[
R

0

]
V −QT b||2 (2.32)

Since Q is an orthogonal matrix (2.32) can be simplified as

||
[

R

0

]
V −QT b||2. (2.33)

Define [d, e]T = QT b, (2.32) becomes

‖
[

R

0

]
V −

[
d

e

]
‖2= ||RV − d||2 + ||e||2. (2.34)

Since ||e||2 is a constant value, and R is a upper triangular matrix, solution to (2.22) can
be derived by solving the following linear equation

RV = d. (2.35)
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Because R is a upper triangular matrix, V can be solved by back substitution.

2.6.2 Sparse bundle adjustment

Sparse Bundle Adjustment (SBA) is another popular method for solving the point feature
SLAM problem in vision [76][1][17]. This method is based on the Levenberg-Marquardt
method.

In SBA, the information matrix (F ′(V0))
TF ′(V0) still need to be evaluated. Let

H(V0) = (F ′(V0))
TF ′(V0)

and since the order for V is robot poses first and features second, H(V0) can be partitioned
as

H(V0) =

[
H(V0)rr H(V0)rf

H(V0)fr H(V0)ff

]
(2.36)

and F ′(V0) can be partitioned as

F ′(V0) =
[
F ′(V0)r F ′(V0)f

]T
. (2.37)

From (2.36) and (2.37), (2.27) can be rewritten as[
H(V0)rr H(V0)rf

H(V0)fr H(V0)ff

][
Δr

Δf

]
=

[
F ′(V0)rξr

F ′(V0)fξf

]
. (2.38)

When multiplying (2.38) by the block matrix[
I −H(V0)rrH(V0)

−1
ff

0 I

]
(2.39)
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(2.38) becomes

[
H(V0)rr −H(V0)rfH(V0)

−1
ff H(V0)fr 0

H(V0)fr H(V0)ff

] [
Δr

Δf

]

=

[
F ′(V0)rξr −H(V0)rrH(V0)

−1
ff F

′(V0)fξf

F ′(V0)fξf

]
. (2.40)

Thus, the pose updating vector Δr can be first calculated using

(H(V0)rr −H(V0)rfH(V0)
−1
ffH(V0)fr)Δr = F ′(V0)rξr −H(V0)rrH(V0)

−1
ff F

′(V0)fξf

(2.41)

and Δf can be computed by back substituting

H(V0)frΔr +H(V0)ffΔf = F ′(V0)fξf (2.42)

Generally speaking, the number of features in feature based SLAM problem is signifi-
cantly larger than the number of robot poses. Thus, by calculating the pose updating
vector Δr first and back substituting Δr to get Δf , the computation cost can be signif-
icantly reduced.

2.6.3 Submap based approach

Different with the batch methods which estimates the entire set of robot poses and
features in the environment described in Section 2.6.1 and Section 2.6.2, another common
approach to reduce the computational cost is the submap [21][11][24][61][35][66] based
approach.

The basic idea of submap method is to first build a sequence of small sized local
submaps and then combine the local submaps into a large-scale global map. In the map
joining process, the state of the local submap is first transferred into the global coordinate
frame and added into the global map state, common features presented in both the local
and global maps are identified and then an estimator such as EKF or non-linear least
squares is used to enforce the constraints.

Note that a key advantage of submap based approach is that it significantly reduces
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the frequency of global map update. In addition to reducing the computational cost,
submap based techniques may also improve the consistency of the globally estimated
map [5] compared with EKF based approaches.

2.7 Curve Feature SLAM

While a lot of researchers in the field of feature based SLAM focus their research on
reducing the computational cost, a group of researchers aim to improve the representation
of the environment.

Although using point features is adequate in some scenarios, there are situations when
relying solely on this representation becomes less appropriate. When the environment
does not have sufficient structure to robustly extract point features e.g. in an under-
ground mine environment [51], the information provided may not be enough for point
feature SLAM. Furthermore, when point feature is used, only a small fraction of infor-
mation available from popular sensors, such as laser range finders, is exploited. Much
of the data that do not correspond to the expected features are discarded. Because of
this, a number of algorithms which use more complex geometric primitives to represent
the environment have emerged. We discuss some of the popular feature representation
methods in this section. All these method assumes the segmentation process has already
been completed.

2.7.1 Line feature SLAM

When line features are used in SLAM problem, one popular choice is to represent the
line feature using the following form [45] [25]

ρ− x cos(α)− y sin(α) = 0 (2.43)

where ρ is its distance from the origin and α ∈ (−π, π] is the direction of the normal
passing through the origin. Suppose at robot pose Vri the robot observes n points
((x1, y1), . . . , (xn, yn)) that corresponding to a line feature Vf , the parameters of the line
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Vf = [α, ρ]T can be derived by minimizing the following cost function

n∑
i=1

(ρ− xi cos(α)− yi sin(α))
2 (2.44)

The above cost function can be minimized using the following parameters [25]

α∗ =
1

2
arctan

−2Sxy

Sy2 − Sx2

ρ∗ = x̄ cos(α∗) + ȳ sin(α∗) (2.45)

where

x̄ =
1

n

n∑
k=1

xk, ȳ =
1

n

n∑
k=1

yk

Sx2 =
n∑

k=1

(xk − x̄)2, Sy2 =
n∑

k=1

(yk − ȳ)2

Sxy =

n∑
k=1

(xi − x̄)(yi − ȳ). (2.46)

The Jacobian matrix of Vf with respect to point [xk, yk]
T is

Cf =

[
Cf (1, 1) Cf (1, 2)

Cf (2, 1) Cf (2, 2)

]
(2.47)

where

Cf (1, 1) =
cos(α∗)

n
− x̄ sin(α∗)Cf (2, 1) + ȳ cos(α∗)Cf (2, 1)

Cf (1, 2) =
sin(α∗)

n
− x̄ sin(α∗)Cf (2, 2) + ȳ cos(α∗)Cf (2, 2)

Cf (2, 1) =
(ȳ − yk)(Sy2 − Sx2 + 2Sxy(x̄− xk))

(Sy2 − Sx2) + 4S2
xy

Cf (2, 2) =
(x̄− xk)(Sy2 − Sx2 − 2Sxy(ȳ − yk))

(Sy2 − Sx2) + 4S2
xy

(2.48)

Using the line parameters described above, line feature based SLAM problem can be
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formulated.

2.7.2 SP-model

In SP model based SLAM [14], each geometric element has been associated with a refer-
ence coordinate system. Suppose an uncertain geometric feature is E, the location of the
feature in SP-model based SLAM is described by the location vector xWE = [x, y, φ]T

which is the location of the feature coordinate system with respect to the global coordi-
nate system W .

The estimation of the location of a geometric element is denoted by x̂WE , and the
estimation error is represented locally by the differential location vector dE relative to
the reference attached to the element. Thus, the true location of the element is

xWE = x̂WE ⊕ dE (2.49)

where ⊗ represents the composition of rotation and translation. Because a geometric
element may contain symmetries, a null value is assigned to the corresponding degrees
of freedom in dE , because they do not represent an effective location error. From the
effective elements in dE , a perturbation vector pE is formed which represents the effective
location error. The relation between the pE and dE can be expressed by

dE = BT
EpE pE = BEdE (2.50)

where BE is a row selection matrix.

Using the parameters described above, SP-model based SLAM problem can be formu-
lated.

2.7.3 B-Spline SLAM

In [64], Pedraza et al. developed the BS-SLAM where B-Splines are used to represent
the environment.
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A B-Spline curve of order k, is defined as

s(t) =

n∑
i=0

xiβi,k(t) (2.51)

where xi (i = 0, ..., n) are the 2D control points, βi,k(t) are the normalized B-Spline basis
functions of order k defined over the knot vector T = [ε0, ..., εn+k]. A common form for
clamped knot vector [65] for an order k spline is:

T = [0, ..., 0︸ ︷︷ ︸
k

, εk, ..., εn, 1, ...., 1︸ ︷︷ ︸
k

] (2.52)

with 0 ≤ εk ≤ ... ≤ εn ≤ 1.

The basis functions βi,k(t) are governed by the Cox-de Boor recursion formulas [65].

βi,k(t) = { 1, if εi ≤ t ≤ εi+1

0, otherwise
(2.53)

and for k > 1

βi,k(t) =
t− εi

εi+k−1 − εi
βi,k−1(t) +

εi+k − t

εi+k − εi+1
βi+1,k−1(t) (2.54)

where t is the “time" parameter representing which point of the spline is corresponding
to. An example of a clamped spline with order 4 is shown in Fig. 2.3.

B-splines exhibit many interesting mathematical and geometrical properties. Some of
them are enumerated here.

Affine invariance property

Any affine transformation of a B-Spline can be achieved simply by applying the trans-
formation to its control points. This results in efficient transformation of a B-Spline.
This property makes the transformation of B-Splines SLAM problem into point feature
SLAM problem possible.
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Figure 2.3: An example of B-Spline with order 4. The knot vector for this spline is
[0,0,0,0,0.125,0.25,...0.75,0.875,1,1,1,1]. The control points are shown in red
circle.

Approximating property

Another appeal of B-Spline curves is their ability for approximating noise-contaminated
data. Using approximation techniques, the data points can be represented in the state
vector.

One of the most common approximating technique is the parameterized spline fitting.
In the parametrization process, for each data point

dj = [pj , qj ]
T , j = [1, ...,m]

a time parameter value tj is assigned, for the whole set of data points a time parameter
sequence rv = [t1, ..., tm] is formed. With a fixed time parameter sequence, the spline
fitting problem becomes a minimization problem:

min
V

m∑
j=0

‖
n∑

i=0

xiβi,k(tj)− dj ‖2 (2.55)
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where V = [x0, ..., xn]
T and xi(i = 0, ..., n) are the control points. Define the positions

of the raw data point as a matrix:

M =

[
p1 · · · pm

q1 · · · qm

]T

. (2.56)

The least squares solution for (2.55) is:

V = [BTB]−1BTM = ΦM (2.57)

where
Φ = [BTB]−1BT (2.58)

and B is the collocation matrix:

B =

⎡
⎢⎢⎣

β0,k(t1) · · · βn,k(t1)
...

. . .
...

β0,k(tm) · · · βn,k(tm)

⎤
⎥⎥⎦ . (2.59)

Differentiable property

Another important property of B-Spline is that B-Splines are differentiable. The deriva-
tive of a order k basis function βi,k(t) can be derived as

∂βi,k(t)

∂t
=

k − 1

εi+k−1 − εi
βi,k−1(t)− k − 1

εi+k − εi+1
βi+1,k−1(t). (2.60)

Hence the derivative of a B-spline of order k is

ds(t)

dt
= (k − 1)

n∑
i=0

xi − xi−1

ξi+k−1 − ξi
βi,k−1(t). (2.61)

In [64], B-Splines are represented by control points in the state vector and EKF is applied
to solve the B-Spline based SLAM problem.

26



2 Simultaneous Localization and Mapping

2.8 Summary

This chapter presents a brief review of some of the existing feature based SLAM algo-
rithm. It begins with introducing the point feature SLAM optimization formulation.
Typically, this optimization is solved by the least squares technique. In particular, two
popular least squares estimation techniques (Gauss-Newton and Levenberg-Marquardt)
are introduced. Algorithms (SAM and SBA) which reduces the computational cost of
these two least square techniques are also reviewed. Some other complex feature repre-
sentation methods (line features, SP model and B-Splines) are also briefly covered in this
chapter.
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3 A Semi-definite Relaxation Based
Approach for Point Feature SLAM
Problems

3.1 Introduction

This chapter presents a convex optimization based approach for solving point feature
based simultaneous localization and mapping (SLAM) problems. It is demonstrated that,
when covariance matrix is spherical, using a new representation for robot orientation, the
point feature SLAM problem can be formulated as a quadratically constrained quadratic
programming (QCQP) problem. The QCQP problem can then be relaxed to obtain a
semi-definite programming (SDP) problem. As SDP is a convex optimization problem,
a unique solution can be obtained without initial state estimates. This solution is then
used to construct a candidate solution to the SLAM problem.

Although the new formulation is an approximation to the least squares SLAM for-
mulation, it has been proved that, when all the measurements contain no noise, the
semi-definite relaxation (SDR) result is the optimal solution to the point feature SLAM
least squares formulation. It will also be shown in the next chapter using computer sim-
ulations and experimental data that, the candidate solution obtained is very close to the
true SLAM solution obtained through nonlinear least squares.

The chapter is organized as follows. Section 3.2 provides an overview of the proposed
approach. Section 3.3 proposes a new state representation which simplifies the measure-
ment equation. Section 3.4 analyzes why the objective function does not contain product
of the state variables when the covariance matrix is spherical and proposes a covariance
matrix approximation method. Section 3.5 describe how the transformation of SLAM
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problem to QCQP is achieved. Sections 3.6 and 3.7 briefly review the SDR technique,
illustrate how the QCQP is converted to a SDP and discuss how to extract a candidate
solution to original SLAM problem from the SDP result. Finally, Section 3.8 summarizes
the chapter.

3.2 Overview of the Proposed Approach

This chapter proposes the SDR based approach to solve the SLAM problems. The major
steps in the proposed approach are given in Algorithm 3.1. The details of each step are
provided in the following sections.

Algorithm 3.1: SDR based approach for point feature based SLAM

Given a data association already completed dataset.

Step 1: Introducing new state variables (Section 3.3).
Step 2: Approximating the covariance matrices to be spherical

and reformulate the SLAM problem (Section 3.4).
Step 3: Transform the proposed SLAM formulations into

QCQP (Section 3.5).
Step 4: Convert the QCQP problem into SDP using the

SDR technique and solve the SDP using convex
optimization techniques (Section 3.6).

Step 5: From SDP result, construct a candidate solution to
the SLAM problem. Refine the candidate solution to
obtain the optimal solution if necessary (Section 3.7).
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3.3 New State Variables: cos(φri) and sin(φri)

In the least squares SLAM formulation, the orientation component of the robot pose
ri is represented by φri . One limitation of this representation is that, the observation
function (2.3) and function of odometry (2.8) involve cos(φri) and sin(φri). This makes
the observation and odometry functions nonlinear.

Here, it is proposed to represent the robot orientation using two variables cri = cos(φri)

and sri = sin(φri). Hence the robot pose is represented by

X̃ri =
[
xri , yri , cri , sri

]T
and the new state representation is

Ṽ = [X̃T
r1 , . . . , X̃

T
rp , X

T
f1 , . . . , X

T
fN

]T .

Using the new state representation, unlike (2.3) and (2.8), the functions of observation
and odometry can be written as

H̃zij (Ṽ ) =

[
cri(xfj − xri) + sri(yfj − yri)

−sri(xfj − xri) + cri(yfj − yri)

]
(3.1)

H̃ õx,yi (Ṽ ) =

[
cri(xri+1 − xri) + sri(yri+1 − yri)

−sri(xri+1 − xri) + cri(yri+1 − yri)

]
(3.2)

H̃ õφi (Ṽ ) =

[
cricri+1 + srisri+1

−sricri+1 + crisri+1

]
(3.3)

H̃ õi(Ṽ ) =

[
H̃ õx,yi (Ṽ )

H̃ õφi (Ṽ )

]
. (3.4)

Clearly, (3.1)-(3.4) are bilinear functions of the state variables. Of course, the following
quadratic constraints are needed:

c2ri + s2ri = 1, i = 1, . . . , p. (3.5)

At this point, the new state variable representation does not simplify the SLAM problem
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much as (3.1)-(3.4) still contains product of the state variables which makes the objec-
tive function biquadratic and the optimization problem hard to solve. However, when
applying some approximations, the objective function will become quadratic as shown
below in Section 3.4.

3.4 Approximating the Covariance Matrices to be Spherical

In [33] and [67] it has been observed that, when covariance matrices are spherical the
objective function does not contain product of the state variables. Hence the objective
function becomes quadratic. Define

δ =

[
xfj − xri
yfj − yri

]
(3.6)

� =

[
xri+1 − xri
yri+1 − yri

]
(3.7)

Θ =

[
cri+1

sri+1

]
(3.8)

R =

[
cri −sri
sri cri

]
, (3.9)

then (3.1), (3.2) and (3.3) can be written as

H̃zij (Ṽ ) = RT δ (3.10)

H̃ õx,yi (Ṽ ) = RT� (3.11)

H̃ õφi (Ṽ ) = RTΘ. (3.12)

Consider a single feature observation zij with spherical covariance matrix

P̃zij
= diag[λzij

, λzij
] = λzij

I, λzij
> 0 (3.13)
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one term of the objective function in (2.11) related to zij is

(zij − H̃zij (Ṽ ))T P̃−1
zij

(zij − H̃zij (Ṽ ))

= (zij −RT δ)T P̃−1
zij

(zij −RT δ)

= [RT (Rzij − δ)]T P̃−1
zij

[RT (Rzij − δ)]

= (Rzij − δ)TRP̃−1
zij

RT (Rzij − δ). (3.14)

From (3.13) we can have

RP̃−1
zij

RT = P̃−1
zij

=
1

λzij

I (3.15)

and (3.14) now becomes
1

λzij

(Rzij − δ)T (Rzij − δ). (3.16)

Since zij is the actual observation, (Rzij − δ) is linear in terms of the variables
xfj , yfj , xri , yri , cri , sri , thus (3.16) is a quadratic function.

Similarly, when odometry is available, consider the relative robot position measurement
with spherical covariance matrix

P̃õx,yi
= diag[λõx,yi

, λõx,yi
] = λõx,yi

I, λõx,yi
> 0. (3.17)

One term of the objective function in (2.12) related to the translation part of the odom-
etry is

(õx,yi − H̃ õx,yi (Ṽ ))T P̃−1
õx,yi

(õx,yi − H̃ õx,yi (Ṽ ))

= (õx,yi −RT�)T P̃−1
õx,yi

(õx,yi −RT�)

=
1

λõx,yi

(Rõx,yi −�)T (Rõx,yi −�) (3.18)

which is also a quadratic function. The true covariance matrices Pzij
and Poi may not be

spherical. We propose to use the following to approximate these matrices.

λzij
= max(Pzij

(1, 1), Pzij
(2, 2)),

λõx,yi
= max(Poi(1, 1), Poi(2, 2)).

(3.19)
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3.5 Transform the Proposed SLAM Formulation into QCQP

3.5.1 When odometry is unavailable

The proposed SLAM problem for this case is

min

p∑
i=0

ki∑
j=1

(zij − H̃zij (Ṽ ))T P̃−1
zij

(zij − H̃zij (Ṽ ))

s.t. c2ri + s2ri = 1, i = 1, . . . , p (3.20)

From (3.1) and (3.16), the minimization problem (3.20) can be rewritten as

min

p∑
i=0

ki∑
j=1

1

λzij

[(zxi
j
cri − zyij

sri − xfj + xri)
2

+ (zxi
j
sri + zyij

cri − yfj + yri)
2]

s.t. c2ri + s2ri = 1, i = 1, . . . , p (3.21)

In (3.21), when i > 0, (zxi
j
cri − zyij

sri − xfj + xri)
2 + (zxi

j
sri + zyij

cri − yfj + yri)
2 can be

rewritten in quadratic form in terms of state vector Ṽ

Ṽ TT T
zi,fj

Qj,iTzi,fj Ṽ (3.22)

where

Qj,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 zxi
j

−zyi
j

−1 0

0 1 zyi
j

zxi
j

0 −1

zxi
j

zyi
j

z2
xi
j
+ z2

yi
j

0 −zxi
j

−zyi
j

−zyi
j

zxi
j

0 z2
xi
j
+ z2

yi
j

zyi
j

−zxi
j

−1 0 −zxi
j

zyi
j

1 0

0 −1 −zyi
j

−zxi
j

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.23)
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Tzi,fj is a selection matrix to select i-th robot pose and j-th feature from the state vector
Ṽ , i.e.,

Tzi,fj Ṽ = [xri , yri , cri , sri , xfj , yfj ]
T .

In (3.21), when i = 0, we have xri = 0, yri = 0, cri = 1, sri = 0, thus

ki∑
j=1

1

λzij

[(zxi
j
cri − zyij

sri − xfj + xri)
2 + (zxi

j
sri + zyij

cri − yfj + yri)
2]

becomes

k0∑
j=1

1

λz0j

[(zx0
j
− xfj )

2 + (zy0j
− yfj )

2] (3.24)

which is

k0∑
j=1

1

λz0j

(Ṽ TT T
z0,fj

Qj,0Tz0,fj Ṽ + aTj,0Tz0,fj Ṽ + bj,0) (3.25)

where Qj,0 =

[
1 0

0 1

]
, aj,0 =

[−2zx0
j

−2zy0j

]
, Tz0,fj Ṽ =

[
xfj
yfj

]
and bj,0 = (zx0

j
)2 + (zy0j

)2. It can

be observed that, in (3.25), the linear terms are related to the observations made from
the first pose, while the quadratic terms are related to the observations from the other
poses. Similarly, the constraints in (3.21) can also be written as

Ṽ TT T
ci,siTci,si Ṽ = 1, i = 1, . . . , p (3.26)

where Tci,si is a selection matrix such that cri , sri are selected from Ṽ , i.e.,

Tci,si Ṽ =
[
cri sri

]T (3.27)
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Define

Q̃0 =

p∑
i=0

ki∑
j=1

1

λzij

T T
zi,fj

Qj,iTzi,fj

ãT0 =

k0∑
j=1

1

λz0j

aTj,0Tz0,fj

b̃0 =

k0∑
j=1

1

λz0j

bj,0

Q̃i = T T
ci,siTci,si

Then (3.21) becomes

min Ṽ T Q̃0Ṽ + ãT0 Ṽ + b̃0

s.t. Ṽ T Q̃iṼ = 1, i = 1, . . . , p (3.28)

which is in standard QCQP form [2]. It can be notices that Q̃0 is only related to the
robot to feature measurement and the translation part of the relative pose measurement.
The Q̃i part is only related to the orientation part of the relative pose measurement.
Note that Q̃0 and Q̃i are all sparse matrices.

3.5.2 When odometry is available

Unlike the relative translation part, the orientation part of the relative pose constraint
can not be approximated directly. This is because when deriving the covariance matrix
for new relative robot orientation õφi using the formula

C̃
õφi

=
∂õφi

∂oφi,j
C
oφi
(
∂õφi

∂oφi
)T (3.29)

where C
oφi

is the uncertainty for the original relative robot orientation oφi . The covariance

matrix C̃
õφi,j

becomes singular.

Therefore, we therefore propose to treat the relative robot orientation as constraints.
Suppose the relative robot orientation is within 99% confidence interval, the bound for
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relative robot orientation can be written as [oφi −3σφi
, oφi +3σφi

] where σφi
is approximated

by:
σφi

=
√

Poi(3, 3) (3.30)

The bound for cri and sri can be then derived as

ocuφi
≥ cri+1cri + sri+1sri ≥ oclφi

osuφi
≥ sri+1cri − cri+1sri ≥ oslφi

(3.31)

where

ocuφi
= max{cos(φ) : φ ∈ [oφi

− 3σφi
, oφi

+ 3σφi
]}

oclφi
= min{cos(φ) : φ ∈ [oφi

− 3σφi
, oφi

+ 3σφi
]}

osuφi
= max{sin(φ) : φ ∈ [oφi

− 3σφi
, oφi

+ 3σφi
]}

oslφi
= min{sin(φ) : φ ∈ [oφi

− 3σφi
, oφi

+ 3σφi
]} (3.32)

Here we restrict the error in orientation to be within 3-sigma bound, so we choose the
lower/upper bound of cri and sri this way.

After the reformulation and approximation explained in Section 3.4, the proposed
SLAM problem for odometry available case can be written as:

min

p∑
i=0

ki∑
j=1

(zij − H̃zij (Ṽ ))T P̃−1
zij

(zij − H̃zij (Ṽ ))

+

p−1∑
i=0

(õx,yi − H̃ õx,yi (Ṽ ))T P̃−1
õx,yi

(õx,yi − H̃ õx,yi (Ṽ ))

s.t. (cri)
2 + (sri)

2 = 1, i = 1, . . . , p

ocuφi
≥ cri+1cri + sri+1sri ≥ oclφi

, i = 0, . . . , p− 1

osuφi
≥ sri+1cri − cri+1sri ≥ oslφi

, i = 0, . . . , p− 1 (3.33)

Similar to the odometry unavailable case, the minimization problem can be formulated
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as

min

p∑
i=0

ki∑
j=1

1

λzij

[(zxi
j
cri − zyij

sri − xfj + xri)
2

+ (zxi
j
sri + zyij

cri − yfj + yri)
2]

+

p−1∑
i=0

1

λõx,yi

[(oxicri − oyisri − xri+1 + xri)
2

+ (oxisri + oyicri − yri+1 + yri)
2]

s.t. (cri)
2 + (sri)

2 = 1, i = 1, . . . , p

ocuφi
≥ cri+1cri + sri+1sri ≥ oclφi

, i = 0, . . . , p− 1

osuφi
≥ sri+1cri − crisri−1 ≥ oslφi

, i = 0, . . . , p− 1 (3.34)

and (3.34) can be converted into the following problem

min

p∑
i=0

ki∑
j=1

1

λzij

Ṽ TT T
zi,fj

Qj,iTzi,fj Ṽ +

p−1∑
i=0

1

λõx,yi

Ṽ TT T
oiQoiToi Ṽ

+

k0∑
j=1

1

λz0j

(aTj,0Tz0,fj Ṽ + bj,0) +
1

λõx,y0

((a10)
TTo0 Ṽ + b10)

s.t. Ṽ TT T
ci,siTci,si Ṽ = 1, i = 1, . . . , p

ocuφi
≥ Ṽ TT T

ci+1
Tci Ṽ + Ṽ TT T

si+1
Tsi Ṽ ≥ oclφi

,

i = 0, . . . , p− 1

osuφi
≥ Ṽ TT T

si+1
Tci Ṽ − Ṽ TT T

ci+1
Tsi Ṽ ≥ oslφi

,

i = 0, . . . , p− 1 (3.35)

where for i 
= 0, Qj,i is the same as defined in (3.23) and

Qoi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 oxi −oyi −1 0

0 1 oyi oxi 0 −1

oxi oyi o2xi
+ o2yi 0 −oxi −oyi

−oyi oxi 0 o2xi
+ o2yi oyi −oxi

−1 0 −oxi oyi 1 0

0 −1 −oyi −oxi 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.36)
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Toi , Tzi,fj , Tci,si , Tci+1 , Tci , Tsi+1 , Tsi are selection matrices of appropriate dimensions
such that

Toi Ṽ =
[
xri yri cri sri xri+1 yri+1

]T
Tzi,fj Ṽ =

[
xri yri cri sri xfj yfj

]T
Tci,si Ṽ =

[
cri sri

]T
Tci+1 Ṽ = cri+1

Tci Ṽ = cri

Tsi+1 Ṽ = sri+1

Tsi Ṽ = sri . (3.37)

When i = 0,

Qj,0 = Qo0 =

[
1 0

0 1

]
,

Tz0,fj Ṽ =
[
xfj yfj

]T
,

To0 Ṽ =
[
xr1 yr1

]T
,

aj,0 =
[
−2zx0

j
−2zy0j

]T
,

bj,0 = (zx0
j
)2 + (zy0j

)2,

a10 =
[
−2ox0

1
−2oy01

]T
,

b10 = (ox0
1
)2 + (oy01 )

2. (3.38)
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Define

Q̂0 =

p∑
i=0

ki∑
j=1

1

λzij

T T
zi,fj

Qj,iTzi,fj +

p−1∑
i=0

1

λõx,yi

(T T
oiQoiToi)

Q̃i = T T
ci,siTci,si

Q̂ci = T T
ci+1

Tci + T T
si+1

Tsi

Q̂si = T T
si+1

Tci − T T
ci+1

Tsi

âT0 =

k0∑
j=1

1

λz0j

aTj,0Tz0,fj +
1

λõx,y0

(a10)
TTo0

b̂0 =

k0∑
j=1

1

λz0j

bj,0 +
1

λõx,y0

b10

Then (3.33) becomes

min Ṽ T Q̂0Ṽ + âT0 Ṽ + b̂0

s.t. Ṽ T Q̃iṼ = 1, i = 1, . . . , p

ocuφi
≥ Ṽ T Q̂ciṼ ≥ oclφi

, i = 0, . . . , p− 1

osuφi
≥ Ṽ T Q̂siṼ ≥ oslφi

, i = 0, . . . , p− 1 (3.39)

which is in standard QCQP form. Again, in (3.39), Q̂0, Q̃i, Q̂ci and Q̂si are sparse
matrices.

3.6 Apply SDR to Transfer the QCQP into Convex

Optimization Problem

From Section 3.5 the SLAM problems (3.20) and (3.33) have been transformed into
standard QCQP (3.28) and (3.39). In this section, we show how to apply SDR technique
[50] [2] on standard QCQP.
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Consider a QCQP of the standard form [2]

min Ṽ TQ0Ṽ + aT0 Ṽ + b0

s.t. Ṽ TQiṼ + aTi Ṽ ≤ bi, i ∈ I
Ṽ TQiṼ + aTi Ṽ = bi, i ∈ E (3.40)

where I is the set of indices of inequality constraints, E is the set of indices of equality
constraints and I ∪ E = {1, . . . ,m}. The matrices Qi are assumed to be symmetric.
Because

Ṽ TQṼ = Tr(Ṽ TQṼ ) = Tr(QṼ Ṽ T ), (3.41)

problem (3.40) is equivalent to

min Tr(Q0Ṽ Ṽ T ) + aT0 Ṽ + b0

s.t. T r(QiṼ Ṽ T ) + aTi Ṽ ≤ bi, i ∈ I
Tr(QiṼ Ṽ T ) + aTi Ṽ = bi, i ∈ E (3.42)

Define a new variable X = Ṽ Ṽ T , (3.42) can be written as:

min Tr(Q0X) + aT0 Ṽ + b0

s.t. T r(QiX) + aTi Ṽ ≤ bi, i ∈ I
Tr(QiX) + aTi Ṽ = bi, i ∈ E
X − Ṽ Ṽ T = 0. (3.43)

In (3.43), the only difficult constraint is the last constraint X − Ṽ Ṽ T = 0, which is
non-convex (the objective function and all other constraints in (3.43) are linear thus
convex). Therefore SDR relaxes this problem into a convex problem by replacing the
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last constraint with a (convex) positive semi-definite constraint X − Ṽ Ṽ T � 0:

min Tr(Q0X) + aT0 Ṽ + b0

s.t. T r(QiX) + aTi Ṽ ≤ bi, i ∈ I
Tr(QiX) + aTi Ṽ = bi, i ∈ E
X − Ṽ Ṽ T � 0 (3.44)

Since X − Ṽ Ṽ T � 0 is equivalent to X̃ =

[
1 Ṽ T

Ṽ X

]
� 0, (3.44) may be alternatively

written in the form

min Tr(Q̌0X̃)

s.t. T r(Q̌iX̃) ≤ 0, i ∈ I
Tr(Q̌iX̃) = 0, i ∈ E
X̃ � 0 (3.45)

where Q̌i =

[
−bi aTi /2

ai/2 Qi

]
, Q̌0 =

[
b0 aT0 /2

a0/2 Q0

]
.

Unique solution X̃∗ to (3.45) can then be obtained using SDP packages such as SeDumi
[75] and DSDP [9].

Remark 3.1. It should be noted that, when Ṽ ∗ and X∗ of the SDP solution X̃∗

satisfies X∗−Ṽ ∗Ṽ ∗T = 0, the SDP solution is the optimal solution to the QCQP problem
(3.40). However, Ṽ ∗ and X∗ from the SDP solution X̃∗ may not satisfy X∗− Ṽ ∗Ṽ ∗T = 0.
Whenever X∗ 
= Ṽ ∗Ṽ ∗T , Ṽ ∗ may not be a feasible solution to the QCQP problem (3.40)
as the constraints in (3.40) may not hold.

3.7 Obtain Feasible Solution

In previous sections, we have converted the SLAM problem into QCQP form and applied
SDR technique to the QCQP problem such that unique solution X̃∗ to the relaxed convex
optimization problem can be derived. As Ṽ ∗ from the SDP result X̃∗ may not be a feasible
solution to the QCQP problem, now we discuss how to get a candidate solution to SLAM
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problem (2.11) or (2.12).

In general, deriving a feasible solution to QCQP from the SDP solution is non-trivial
and problem dependant [50]. However, for the SLAM problem, the process of finding
a candidate solution is relatively easy. In the proposed SLAM formulations, since the
constraints (3.31) are introduced due to the orientation part of the odometry, the violation
of these constraints only means that the solution contradicts the odometry information.
Thus, the only constraint of concern are

c2ri + s2ri = 1, i = 1, . . . , p. (3.46)

Therefore, any state vector Ṽ which satisfies (3.46) is a candidate solution. One simple
and intuitive way to get a candidate solution from Ṽ ∗ is to normalize the angular part
of Ṽ ∗. Suppose the SDP solution is:

Ṽ ∗ = [x∗r1 , y
∗
r1 , c

∗
r1 , s

∗
r1 , . . . , x

∗
rp , y

∗
rp , c

∗
rp , s

∗
rp , x

∗
f1 , y

∗
f1 , . . . , x

∗
fN

, y∗fN ]
T ,

the angular part of the state vector can be normalized to get a candidate solution

Ṽ f =[x∗r1 , y
∗
r1 ,

c∗r1√
(c∗r1)

2 + (s∗r1)
2
,

s∗r1√
(c∗r1)

2 + (s∗r1)
2
, . . . , x∗rp , y

∗
rp ,

c∗rp√
(c∗rp)2 + (s∗rp)2

,
s∗rp√

(c∗rp)2 + (s∗rp)2
, x∗f1 , y

∗
f1 , . . . , x

∗
fN

, y∗fN ]
T .

Or, using the state vector in the least squares SLAM formulation, the candidate solution
is

V f = [x∗r1 , y
∗
r1 , φ

∗
r1 , . . . , x

∗
rp , y

∗
rp , φ

∗
rp , x

∗
f1
, y∗f1 , . . . , x

∗
fN

, y∗fN ]
T . (3.47)

where

φ∗
ri = atan2(s∗ri , c

∗
ri), i = 1, . . . , p. (3.48)

The key question now is how close the candidate solution derived from this method
to the optimal solution to the least squares SLAM problem. In [74] it has been proved
that, for sensor network localization problem, when the problem is uniquely localizable
[74], SDR solution is exactly the global optimal solution to the original problem.
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Theorem 3.1: For the point feature SLAM problem (2.11) or (2.12), suppose all the
measurements are accurate (no sensor noise), then the SDR result (3.47) is the optimal
solution to the original SLAM problem (2.11) or (2.12).

Proof. Since all the measurements are accurate, the optimal solution to the least squares
SLAM problem is the one that can achieve zero value in objective function and the
covariance matrices and constraints will not affect the result. Thus, when all the mea-
surements are accurate, the QCQP problem ((3.28) or (3.39)) is equivalent to the least
squares SLAM problem ((2.11) or (2.12)).

When all the measurements are accurate, suppose ϑ is the optimal solution to the
QCQP problem (3.40) (which is standard form of (3.28) or (3.39)), ϑ will make the value
of objective function for the QCQP problem exactly zero. Because the objective function
in QCQP problem only contain square terms, any Ṽ 
= ϑ will result in a greater value of
objective function in (3.40) i.e.

Ṽ TQ0Ṽ + aT0 Ṽ + b0 > 0.

From the semi-definite constraint of the SDP problem X − Ṽ Ṽ T � 0, we can have:

Tr(Q0X) + aT0 Ṽ + b0 ≥ Tr(Q0Ṽ Ṽ T ) + aT0 Ṽ + b0. (3.49)

Therefore, when Ṽ 
= ϑ

Tr(Q0X) + aT0 Ṽ + b0 ≥ Ṽ TQ0Ṽ + aT0 Ṽ + b0 > 0. (3.50)

However, as the objective function in SDP problem (3.45) is the same as the objective
function in QCQP problem (3.40), the objective function value for SDP solution X̃∗

should be zero. Therefore Ṽ ∗ from the SDP solution X̃∗ has to be equal to ϑ.

This proves that the SDR result V f in (3.47) is the optimal solution to least squares
SLAM problem when all the measurements are accurate. However, in reality, measure-
ments always contain noise and the candidate solution from the SDR result is only an
approximate solution to the SLAM problem. Whenever optimal solution to the SLAM
problem is desired, one can use the candidate solution as an initial guess and solve the
least squares SLAM problem using local optimization approaches. Since the candidate
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solution is close to the optimal solution as will be shown in Chapter 4, the local opti-
mization algorithms such as Gauss-Newton can converge to the global optimal solution
within a few iterations.

3.8 Summary

This chapter has proposed a convex optimization based approach for point feature SLAM
problem. Through a new representation for the robot orientation and appropriate approx-
imation for the covariance matrix, the point feature SLAM problem can be formulated as
a QCQP problem. When applying SDR technique, the non-convex QCQP problem can
be relaxed into SDP problem, which is a convex optimization problem. Unique solution
to the SDP problem can be obtained without any initial state estimates. Unlike tradi-
tional LS method which does not guaranteed converge to global minimum, the proposed
method only has one global minimum. As the proposed method convert LS problem into
a convex optimization problem, the relaxed SLAM problem can be solved in polynomial
time. Although the proposed method only solves the relaxed SLAM problem, it will be
shown in the next chapter that, result from the proposed approach is very close to global
minimum.
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4 Evaluation for the Semi-definite
Relaxation Based SLAM Approach

4.1 Introduction

In Chapter 3, a SDR based approach is proposed and unique solution can be obtained. It
also has been shown in Chapter 3 that, when the measurement and odometry information
is accurate, the candidate solution obtained from this approach is the optimal solution
to the original least square problem. However, in reality, measurements always contain
noise. It is necessary to evaluate the performance of the SDR based approach when noise
presents. This chapter is designated to fulfil this task.

To evaluate the proposed SDR approach, two types of evaluation approaches are
adopted: 1. evaluation using error covariance; 2. evaluation using value of objective
function. Using the computer simulation and experimental result, it will be shown in
this chapter that the SDR result is close to the optimal result obtained from the non-
linear least squares.

The chapter is organized as follows. Section 4.2 describes the evaluation method used.
Section 4.3 evaluates the SDR approach using simulation data. Section 4.4 evaluates the
SDR approach using experimental data. Section 4.5 summarizes this chapter.

For all the experiments, SeDumi [75] is used as the SDP solver. Local optimization
techniques are NOT applied to refine the candidate solution obtained through SDR in
order to compare the candidate solution with the optimal solution.
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4.2 Evaluation Methods

Because the proposed SDR based approach relaxes the least squares SLAM problem to
a convex problem, the state estimate obtained from the proposed SDR approach does
not contain any uncertainty information. Thus, direct comparison such as Normalized
Estimation Error Squared (NEES) and 2 sigma confidence check may not be suitable for
our case. Therefore, to compare the candidate solutions with the optimal solution to the
least squares pose only SLAM problem, we adopt two types of evaluation approaches.

4.2.1 Error covariance of the algorithm

Although the SDR result does not provide the uncertainty of the estimate, the covariance
matrix of estimation error of the algorithm can still be estimated [23] using Monte Carlo
simulations. Let VT be the ground truth of the state vector to be estimated. Let r be
the number of Monte Carlo runs. For any particular estimation algorithm, let Vl be the
estimate from the l−th run. Then the mean of all estimates of the algorithm can be
obtained by

eMC =
1

r

r∑
l=1

Vl (4.1)

and the covariance of the estimate error of the algorithm is

PMC =
1

r

r∑
l=1

(Vl − VT )(Vl − VT )
T (4.2)

We compare the mean estimation error and the covariances of the proposed SDR
approach with that of the optimal solution to the least squares (LS) SLAM problems.
For comparison purpose, we assume that the LS result when ground truth is used as
initial guess is the global optimal solution. By using this comparison method, all the
dimension of the state estimate can be evaluated.

4.2.2 Value of objective function

To evaluate how close the candidate solution to the optimal solution, the value of ob-
jective function in (2.12) at the candidate solution V f obtained from the proposed SDR
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technique (3.47) is compared with the value of objective function at the global optimum
V u.

4.3 SLAM Result Using Simulation Data

4.3.1 Small scale simulation

A small simulation environment is used to perform a comparison of the error covariance
of different algorithms. The 12m × 12m environment contains 40 point features and
the robot moved 72 steps. Each step, the robot moves 1 meter and rotates at a prede-
fined angle. The true robot trajectory is shown in Fig. 4.1. The robot is assumed to
have a sensor with 180 degree field of view and maximal range of 4 meters to acquire
measurements of the relative position between robot and features. The observation and
odometry information are corrupted with zero mean Gaussian noise. For observation
noise, the standard deviation on x and y are s ∗ 0.1m and s ∗ 0.2m where s is a scale
factor. The standard deviation of odometry noise on x, y and φ are s ∗ 0.1m, s ∗ 0.2m
and s ∗ 0.1rad respectively.

Figure 4.1: Simulation environment (red circles are beacon location; black dots are robot
position).

We compare the error covariance at two noise levels (i.e. s = 0.5 and s = 1). At each
noise level we generate 1000 datasets by Monte Carlo simulations and the comparison
of error covariance PMC are shown in Fig. 4.2(a) - Fig. 4.2(b). It can be observed
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that, for both cases, the mean of the SDR approach is very close to the mean of the LS
approach. Further more, the error covariance for the LS approach is bounded by the
error covariance for the SDR approach.

4.3.2 Larger scale simulation

The 25m× 25m environment contains 76 point features and the robot moves 256 steps.
The simulation environment is shown in Fig. 4.3(a). We compare the SDR result with
optimal solution obtained through LS at various noise level (i.e. s ≥ 0). At each noise
level 20 datasets are generated to perform the evaluation.

One odometry at noise level 1 (i.e. s = 1) is shown in Fig. 4.3(b). For this dataset, the
difference between ground truth and the feature position estimate from SDR is compared
with that of the difference from LS. The result is plotted in Fig. 4.3(c). The difference
between ground truth and robot pose estimate from the two algorithms is shown in Fig.
4.3(d).

To evaluate the SDR performance when odometry is not available, odometry informa-
tion is removed from the dataset then the SDR technique is applied on the observation
data only. Fig. 4.3(e) shows the difference between ground truth and feature position
estimate from SDR and LS. The difference between ground truth and robot pose esti-
mate is shown in Fig. 4.3(f). It can be seen that, for both the odometry available and
unavailable case, the SDR result and the optimal LS solution are similar.

For this case, the evaluation is performed by comparing the value of objective function
in (2.11) and (2.12) at the candidate solution V f obtained from the proposed SDR
technique with the value of objective function at the global optimum. Due to the space
limitation, only the results with the most significant difference between the value of
objective function from SDR approach and the value of objective function at the global
optimum among the 20 datasets at each noise level are shown. The result for odometry
available case is tabulated in Table 4.1 and the result for odomety unavailable case is
shown in Table 4.2. It can be seen that for both cases, the value of objective function
for SDR is less than 110% of the optimal value.
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(a) The error covariance comparison of LS and the proposed SDR approach at
noise level 0.5 (solid line is from LS; dashed line is from SDR approach).

(b) The error covariance comparison of LS and the proposed SDR approach at
noise level 1 (solid line is from LS; dashed line is from SDR approach).

Figure 4.2: Results using small simulation data.
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(b) One robot odometry example at noise level
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(c) Comparison of feature position estimate er-
ror from SDR and LS for odometry available
case (solid line is from LS; dashed line is from
SDR).
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(d) Comparison of robot pose estimate error
from SDR and LS for odometry available case
(solid line is from LS; dashed line is from SDR).
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(e) Comparison of feature position estimate er-
ror from SDR and LS for odometry unavailable
case (solid line is from LS; dashed line is from
SDR).
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(f) Comparison of robot pose estimate error
from SDR and LS for odometry unavailable case
(solid line is from LS; dashed line is from SDR).

Figure 4.3: Results using simulation data.
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Table 4.1: Value of Objective Function When Odometry Available
Noise level Value of objective function Value of objective function

for the SDR result for the optimal solution SDR/optimal
s = 0 0 0 -
s = 1 2863.7 2714.5 105.50%
s = 2 3002.3 2834.8 105.91%
s = 5 3208.8 2940.5 109.12%

Table 4.2: Value of Objective Function When Odometry Unavailable
Noise level Value of objective function Value of objective function

for the SDR result for the optimal solution SDR/optimal
s = 0 0 0 -
s = 1 2818.8 2705.1 104.74%
s = 2 2833.3 2684.9 104.99%
s = 5 2964.0 2738.2 108.25%

4.4 SLAM Result Using Experimental Data

To further validate the proposed algorithm, experiments have been performed on the
Victoria Park dataset [30] and the DLR-Spatial Cognition dataset [44]. As the memory
requirement for our current implementation is high, the current implementation is not
able to process either of the two datasets at once. Thus, in order to process the two
datasets, map joining method [35] has been used.

4.4.1 Result for the Victoria Park dataset

Odometry and observation data from every 100 robot steps has been used to build a
submap. For the whole Victoria Park dataset, 69 submaps have been created. If the SDR
result to each submap is refined using local optimization and then applied to map joining,
the final result will be the same as the result of joining the optimal submaps. Therefore
we present the map joining result using the submaps obtained by SDR without further
refinement for comparison. The submap building and map joining process is described
as follows. Firstly, SDR is applied on the submap data. Then the covariance matrix
for the submap has been computed by evaluating the Jacobian at the candidate solution
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obtained from the method described in Section 3.7. Finally, map joining algorithm is
applied on all the local submaps. In this thesis, the I-SLSJF [35] technique, which is
a local submap joining algorithm that fuses the local maps together using Extended
Information Filter (EIF) and LS, is used.

For each submap the value of objective function from SDR result and the LS result
is compared. As ground truth is not available for the experimental dataset, we treat LS
solution when odometry is used as initial guess as the global optimal solution. Fig. 4.4
shows the value of objective function comparison for each submap for the Victoria Park
dataset.

Fig. 4.5 shows final result comparison between the result from proposed method and
result from LS of the whole dataset. The comparison suggests that, result obtained from
the proposed method is almost identical with the result obtained from LS.
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Figure 4.4: Comparison of the values of objective function for submaps of Victoria park
dataset. Solid line is from SDR; dashed line is from LS

For this dataset, SDR result and the LS result has the most significant difference in
value of objective function at submap 24. Fig. 4.6(a) shows the submap comparisons
between LS result and SDR result for submap 24. The difference between feature location
estimates for the two methods is shown in Fig. 4.6(c) and the difference between robot
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Figure 4.5: Final results comparison using the Victoria Park dataset. Circle: feature
estimate using proposed SDR method with map joining, dot: feature estimate
using LS.

pose estimates is shown in Fig. 4.6(e). At submap 67 the SDR result and the LS result
has the least significant difference in value of objective function. Fig. 4.6(b) shows the
submap comparisons between LS result and SDR result. The difference between feature
location estimates for the two methods is shown in Fig. 4.6(d) and the difference between
robot pose estimates is shown in Fig. 4.6(f).

4.4.2 Result for the DLR-Spatial Cognition dataset

For DLR-Spatial Cognition dataset, odometry and observation data from every 100 robot
steps has been used to build a submap. For this dataset altogether 33 submaps have been
created. The objective function value comparison for each submap is plotted in Fig. 4.7.
Fig. 4.8 shows final result comparison between result from the proposed method with
map joining and result from LS of the whole dataset.

For this dataset, SDR result and the LS result has the most significant difference in
value of objective function at submap 4. Fig. 4.9(a) shows the submap comparisons
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(a) SDR result and LS result for submap 24.
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(b) SDR result and LS result for submap 67.
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(c) Feature position difference between SDR re-
sult and LS result for submap 24.
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(d) Feature position difference between SDR re-
sult and LS result for submap 67.
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(e) Robot pose difference between SDR result
and LS result for submap 24.
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(f) Robot pose difference between SDR result
and LS result for submap 67.

Figure 4.6: Submap result comparison for the Victoria Park dataset.
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Figure 4.7: Comparison of the values of objective function for submaps of DLR-Spatial
Cognition dataset. Solid line is from SDR and dashed line is from LS.
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Figure 4.8: Final results comparison using the DLR dataset. Circle: feature estimate
using proposed SDR method with map joining, dot: feature estimate using
least squares.
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between LS result and SDR result for submap 4. The difference for feature estimate
between the two methods is shown in Fig. 4.9(c) and the difference for robot pose
estimate is shown in Fig. 4.9(e). At submap 30 the SDR result and the LS result has the
least significant difference in value of objective fuction. Fig. 4.9(b) shows the submap
comparisons between LS result and SDR result. The difference between feature location
estimates for the two methods is shown in Fig. 4.9(d) and the difference between robot
pose estimates is shown in Fig. 4.9(f).

4.5 Summary

This chapter compares results obtained from proposed SDR approach and non-linear least
square. Using simulation and experimental data results, it has been shown that the SDR
result is very close to the global optimal solution to the SLAM problem and as such can
either be directly used or exploited as an initial guess to the more traditional nonlinear
least squares optimization algorithms if more accurate SLAM result with associated
uncertainties are required.
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(a) SDR result and LS result for submap 4. (b) SDR result and LS result for submap 30.
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(c) Feature position difference between SDR re-
sult and LS result for submap 4.
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(d) Feature position difference between SDR re-
sult and LS result for submap 30.
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(f) Robot pose difference between SDR result
and LS result for submap 30.

Figure 4.9: Submap result comparison for the DLR-Spatial Cognition dataset.
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5.1 Introduction

In Chapter 3, a convex optimization based approach has been proposed. We have also
demonstrated in Chapter 4 that the proposed method is a good approximation of the
original problem. However, as stated in Chapter 2, in point feature based SLAM, only a
small portion of the information is used. To utilize more information, in particular when
laser scan data is used, curve feature based SLAM is needed.

In this chapter, a general formulation for the 2D curve feature based SLAM problem
is proposed. Different from other existing SLAM formulations, in the proposed SLAM
formulation, the environment is represented by a set of continuous curves instead of point
clouds or occupancy grids. The variables of the optimization problem are the robot poses
as well as the parameters describing the curves. It has been shown that, point feature
based SLAM is a special case of the proposed SLAM formulation.

In the new SLAM formulation, negative information which indicates the absence of an
expected sensor reading is exploited as useful information. The event of not detecting an
object is treated as evidence that can be used to update its probability density function
[41]. It has been applied in the context of object tracking [70] and Markov localization
[31]. It has also been mentioned in the context of simultaneous localization and mapping
(SLAM) where it is used to adjust the confidence in landmark candidates [57].

As the objective function to be optimized contains discontinuities, the objective func-
tion can not be solved by standard gradient based approaches and thus a Genetic Algo-
rithm (GA) based method is applied. Matching of laser scans acquired from relatively
far apart robot poses is achieved by applying GA on top of the Iterative closest point
(ICP) algorithm.
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This chapter is organized as follows. Section 5.2 formulates the general 2D feature
based SLAM problem where traditional point feature SLAM is a special case. Section
5.3 formulates the laser scan based SLAM optimization problem. Section 5.4 analyzes
the properties of the proposed formulation. Section 5.5 proposes one approach to solve
the optimization problem. In Section 5.6, implementation issues for two scans in real
situation are discussed. Section 5.7 discusses the multi-scan SLAM implementation.
Section 5.8 summarizes the chapter.

5.2 Curve Feature SLAM Formulation

When formulating the curve feature based SLAM problem, the environment is repre-
sented by a number of continuous curves and each curve has been treated as one feature.
A continuous curve can be expressed by

{(x, y) : x = xc(t), y = yc(t), for some 0 ≤ t ≤ 1} (5.1)

where xc(t) and yc(t) are two continuous functions defined on 0 ≤ t ≤ 1. For example, a
line segment with end points (x1, y1) and (x2, y2) is a simple curve with

xc(t) = tx1 + (1− t)x2, yc(t) = ty1 + (1− t)y2, 0 ≤ t ≤ 1. (5.2)

A B-Spline of order k with control points (xi, yi), i = 0, . . . , n is a curve with

xc(t) =

n∑
i=0

xiβi,k(t), yc(t) =

n∑
i=0

yiβi,k(t). (5.3)

where βi,k(t) is given in (2.54). A single point feature (x0, y0) can be regarded as an even
special curve where

xc(t) ≡ x0, yc(t) ≡ y0, 0 ≤ t ≤ 1.

The environment is assumed to contain N curves in total and curve j (1 ≤ j ≤ N)
can be expressed by

{(x, y) : x = xj(t), y = yj(t), for some 0 ≤ t ≤ 1} (5.4)
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5 Curve Feature Based SLAM

where xj(t) and yj(t) are two continuous functions defined on 0 ≤ t ≤ 1.

The robot initial pose is set to Xr0 = (0, 0, 0). Assuming the robot move p − 1 steps
and at each position Xri the robot gets ki sensor readings {zi1, · · · , ziki} by observing
the environments from its sensors the general feature based SLAM optimization problem
aims to find the 2N functions

Xfj = (xj(t), yj(t)), 0 ≤ t ≤ 1, j = 1, · · · , N

and p robot poses
Xri = (xri , yri , φri), 1 ≤ i ≤ p,

such that the observations and the odometry information are consistent with the map
and the robot poses. Assuming the noise on the odometry information and the sensor
readings are Gaussian, the objective can be achieved by minimizing the following least
squares objective function

p∑
i=0

ki∑
j=1

(z̃ij)
TP−1

zij
z̃ij +

p−1∑
k=0

õTi P
−1
oi õi (5.5)

where
z̃ij = zij −Hzij (X(t), Y (t), Xri , j) (5.6)

õi = oi −Hoi(Xri , Xri+1) (5.7)

Here, zij is the j-th sensor reading from robot pose i. The corresponding theoretical
sensor reading is denoted by Hzij (X(t), Y (t), Xri , j) provided that the curves are given
by X(t) = x1(t), · · · , xN (t), Y (t) = y1(t), · · · , yN (t). It depends on the sensor used. For
the case of laser range finder, the theoretical sensor reading is the distance between the
robot pose and the first ray-feature intersection. The difference between the theoretical
sensor reading Hzij (X(t), Y (t), Xri , j) and the actual sensor reading zij is denoted by
z̃ij . Matrix Pzij

is the covariance matrix for zij .The robot pose i is given by Xri . The
relative pose information between pose i and pose i+1 is described by odometry oi, the
corresponding theoretical odometry is denoted by Hoi(Xri , Xri+1) and õi is the difference
between the theoretical odometry Hoi(Xri , Xri+1) and the actual odometry oi. Matrix
Poi is the covariance matrix for oi.
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5 Curve Feature Based SLAM

In the above formulations, each curve is expressed by infinite number of parameters.
In practice, finite number of parameters (such as polynomials or B-Splines) is generally
enough for accurately expressing 2D curves.

For SLAM problem, the sensor reading zij means some robot-to-environment informa-
tion. It can be presented in various forms. Here we discuss a special case

Special case: point feature SLAM

Consider a special case where the environment is formed by N points

(X,Y ) = {(xj , yj), j = 1, · · · , N}

xj(t) ≡ xj , yj(t) ≡ yj , 0 ≤ t ≤ 1, j = 1, · · · , N.

Assuming all the N points can be observed from each pose, we have ki = N for
0 ≤ i ≤ p, and for each 1 ≤ j ≤ N . The sensor readings from each pose Xrk are the
range and bearing measurement from the robot pose to the N points and the theoretical
measurement can be expressed as

Hzij (X(t), Y (t), Xri , j) =

[ √
(xi − xj)2 + (yi − yj)2

atan(
yj−yi
xj−xi

)− θi

]
. (5.8)

The feature based SLAM optimization problem (5.5) becomes the point feature range-
bearing SLAM optimization problem formulation. This problem is a very clear least
squares optimization problem [5] and has been well studied.

5.3 Curve Feature SLAM When Laser Scanner Used

In this section, using laser range finder as an example, we discuss how to apply the
proposed formulation in more practical situation.

Consider a laser scanner that has the following configuration: the field of view of laser
scanner is [0o, 180o] and the resolution of the laser scanner is 1o. The curve feature SLAM
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optimization in this case is

p∑
i=0

181∑
j=1

(z̃ij)
TP−1

zij
z̃ij +

p−1∑
i=0

õTi P
−1
oi õi (5.9)

When odometry information is unavailable, the curve feature SLAM optimization prob-
lem becomes

p∑
i=0

181∑
j=1

(z̃ij)
TP−1

zij
z̃ij . (5.10)

Using this formulation, all the 181 laser readings have been included in the objective func-
tion. Even if the reading gives a maximal range, it is still compared with the theoretical
reading.

Notice that, this formulation aims to provide estimate for all the curves in the envi-
ronment: X(t) and Y (t), as well as the robot poses Xri . To explain this formulation, the
following example is used.

Example 5.1: One line segment, robot moves one step

Assume the environment only contains one line segment with end points denoted by
(x1, y1) and (x2, y2) (Fig. 5.1):

x = tx1 + (1− t)x2, y = ty1 + (1− t)y2, 0 ≤ t ≤ 1 (5.11)

The robot started from [0, 0, 0] and only moved once to Xr1 . The objective of our
formulation is to get the parameters for the line segment (x1, y1) and (x2, y2) as well as
the robot position Xr1 = (xr1 , yr1 , φr1) from the two laser scans. So there are 7 variables
in this optimization problem.

5.4 Special Properties of the Objective Function

In Section 5.3, the curve feature SLAM formulation when laser scanner is used has been
derived. All the available information is included in the formulation. Continue using the
line segment example (Example 5.1), some properties of this formulation are discussed.
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Figure 5.1: Example 5.1: One line segment, robot moves one step

5.4.1 Discontinuity of the function

Suppose the parameters for the line segment ((x1, y1) and (x2, y2)) and the robot’s po-
sition in x-axis xr1 are given. By varying the remaining two variables yr1 and φr1 , the
function plot of (5.9) for this case can be generated. The plot is shown in Fig. 5.2.

From Fig. 5.2(c), it can be clearly seen that (5.9) is a discontinuous function.

There are two reasons for this phenomenon.

1) Including the maximal laser range in the objective function.

2) Rigorous sensor reading comparison which compares each individual laser reading
with the theoretical reading.

We continue explain this phenomenon using the line segment case. In this case, the
true measurement is shown in Fig. 5.3(a). From Fig.5.3(b) - Fig.5.3(d) it can be observed
that, a little change in yr1 or θr1 dramatically enlarges the value of the objective function
however large change in xr1 does not change the value of objective function much. This is
due to the occurrence of theoretical laser reading where maximal range actually occurs.
This phenomenon further proves that the laser’s maximal range do carry important
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(a) The objective function plot of the optimiza-
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(c) Zoomed objective function plot. This plot is
generated by varying yr1 within ±2cm and φr1
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(d) Further zoomed objective function. This
plot is generated by varying yr1 within ±1cm
and φr1 within ±0.1 degrees. The global mini-
mum in this case is a line segment which defined
by the laser resolution

Figure 5.2: Function plot of Example 5.1: all the other variables are fixed apart from yr1
and θr1
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information.

(a) At true location the laser has 3 rays intersect
with the feature

(b) Change the robot’s position in y-axis by 1cm
results 4 laser rays intersect with the feature

(c) Change the robot’s orientation by 2 degrees
results 4 laser rays intersect with the feature

(d) Change the robot’s position in x-axis by
0.5m results 3 laser rays intersect with the fea-
ture.

Figure 5.3: Explanation of the phenomenon

5.4.2 Local minimum

From Fig.5.2(c), it can also be noted that, the function has lots of local minima. And
the objective function is constant in some small regions. Most of the existing SLAM
methods will be trapped into such a local minimum because of their linearization nature.
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5.5 One Approach for the Proposed SLAM Formulation

As discussed in Section 5.4, (5.10) is a discontinuous function, using traditional local
optimization method is not appropriate. It is necessary to use global optimization meth-
ods to solve this problem. In this chapter, a Genetic Algorithm (GA) based approach is
proposed to solve the curve feature based SLAM problem.

5.5.1 Increasing the chance by relaxation

Because of the discontinuity around global minimum, it may be not possible for GA to
find the global minimum easily.

To overcome this, the trimmed least squares [69] technique is applied to smooth the
objective function (5.10). That is, to ignore a few largest errors in the function (5.10).
This actually means that the possibility that the laser sensor can sometimes generate a
certain number of false readings has been taken into consideration.

In particular, we first compute all the z̃ij and then ignore the largest ns ∗ Nthreshold

terms among all the (m+1)× 181 terms. Here ns is the total number of segments in the
laser scans and Nthreshold is the number of false laser reading we can expect from each
segment (we choose Nthreshold = 2 in our experiment since it is quite possible that the
laser reading around the two end points of the curve may have large errors).

Utilizing the proposed relaxation method, we have changed the properties of the func-
tion. The threshold Nthreshold represents a trade-off between accuracy and convergence.
Larger threshold result in larger chance to find the global minimum for the relaxed (5.10).
However, instead of a single point, the global minimum of the relaxed (5.10) is a small
region.

5.5.2 Theoretical measurement calculation for complex features

For the laser scan based SLAM problem, the theoretical measurement is the range reading
in the direction of each individual laser ray. For complex features such as high order
polynomials, the measurement does not have closed-form solution. In this situation,
numerical method can be used to find the solution. Taken B-Splines as an example, the
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theoretical measurement calculation process is discussed below.

Suppose at robot pose Xr = (xr, yr, φr), the robot observes previously observed B-
Spline feature Xf = (x(t), y(t)), 0 ≤ t ≤ 1. The resolution of the equipped laser scanner
is 1o and the field of view is [0o, 180o]. The theoretical measurement for j−th laser ray
can be derived by find the intersection between the laser ray and the B-Spline. This can
be achieved by using the following steps.

Firstly, an orthonormal reference frame XJ = [xcj , ycj , φcj ] has been defined. The
coordinate system XJ is centered in the robot reference frame

xcj = xr, ycj = yr.

The orientation of the reference frame φcj is defined by the laser beam direction and
robot orientation which is

φcj = φr + j. (5.12)

Then the B-Spline need to be transferred to the coordinate system XJ and becomes
XJ

f = (xJ(t), yJ(t)), 0 ≤ t ≤ 1. Using the affine invariance property of B-Spline, the
B-Spline Xf can be transferred to XJ by transferring the control points of Xf . Let
Xi = [xi, yi], (i = 0, ..., n) be the control points for B-Spline Xf in global coordinate
and XJ

i = [xJi , y
J
i ], (i = 0, ..., n) be the control points in coordinate XJ , the relationship

between Xi and XJ
i is[

xJi
yJi

]
=

[
cosφcj sinφcj

− sinφcj cosφcj

][
xi − xcj

yi − ycj

]
(5.13)

When transferring the B-Spline to the coordinate system XJ , the intersection between
the laser ray and the B-Spline can be derived by finding t which makes yJ(t) = 0 and
the theoretical measurement becomes xJ(t). Figure 5.4 depicted this process. Since
B-Splines are differentiable, numerical method such as Newton-Raphson method can be
used to find the solution.
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Figure 5.4: Theoretical measurement calculation for B-Spline features.

5.6 Implementation Issues - Optimization for Two Scans

In practice, when solving the SLAM problem using all the available scan, there will be
many parameters to be estimated and the search space becomes too large. To simplify
the problem, we firstly consider the situation where the robot only moved one step and
acquired only two scans. In this section, we discuss some implementation issues for this
situation. For the problem to be solvable, it is assumed that the two laser scans have
more than poverlap percent overlap.

5.6.1 Limitations of the SLAM formulation and algorithm

Unknown feature number and feature type

In the laser scan SLAM optimization problem formulation (5.9), it is assumed that the
total number and the type of each feature are known and their parameters are used as
variables in the optimization problem. In practice, this information is not available but
need to be worked out from the scans.
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Along with this, the formulation for the expected measurement Hzij (X(t), Y (t), Xri , j)

is not available without knowing the type of feature.

Infinite search space

Although in most cases the search space is bounded by odometry information, there are
situations where odometry information is not available or very poor (e.g. loop closure).
In this case, it will be challenging to get the global minimum from the infinite search
space.

5.6.2 Problem of relating two scans

Suppose there are two scans available and the odometry information is not available and
noise on all the measurements are Gaussian, the curve feature based problem is to find
the relative pose Xr1 and the number and type of features involved in the two scans.
This can be achieved by finding Xr1 to minimize

181∑
j=1

[z1j −Hz1j (X1(t), Y1(t), Xr1 , j)]
2P−1

z1j
+

181∑
j=1

[z0j −Hz0j (X0(t), Y0(t), j)]
2P−1

z0j
(5.14)

subject to the condition that the overlap between (X1(t), Y1(t)) and (X0(t), Y0(t))

is more than poverlap. Here (X0(t), Y0(t)) represents the features in scan 0 and
(X1(t), Y1(t)) represents the features in scan 1 (transferred into the coordinate of Xr0

using Xr1). For this problem, these features are handled in implicit form (details of this
handling is discussed below).

This problem is a scan matching problem without initial guess. Here we use an objec-
tive function (5.14) and the overlap constraint to formulate the problem as an optimiza-
tion problem.

After the two scans are related to each other, the two scans can be transferred into one
coordinate frame using Xr1 . Then to work out the total number and the type of features
in the environment is not too difficult.
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5.6.3 Approach for relating two scans

In this chapter, the following procedure is proposed to solve the scan relating problem.

Segmentation

Before proceed to optimization, the formula for expected measurement need to be de-
cided. Due to the lack of environment knowledge, we perform segmentation on the laser
scan and assume that each segment is corresponding to a continuous curve.

For our segmentation method, only two cases have been considered: (a) Points sepa-
rated by maximal range; (b) Sudden change in consecutive points.

Use the merit of ICP

Directly using GA and try to find Xr1 is computationally very expensive to solve the
scan relating problem because of the infinite search bound. Here we propose to use the
advantages of ICP algorithm to speed up the optimization process. It is known that ICP
always converge but may converge to a local minimum. Since the global minimum must
be one of the local minima, we propose to use GA+ICP to find the solution quickly.
The idea is to generate a set of random initial values (chromosomes), and then apply
ICP to find the local minima around each of the initial values that satisfy the overlap
constraint. The objective function (5.14) is then used to evaluate the local minima and
get the fitness of each chromosome.

Evaluating the objective function of ICP result

For each local minimum obtained by ICP, the value of objective function is evaluated.
At this stage, there are only two scans need to be aligned and ICP has already found
the overlap area between the two scans, the computation of the objective function (5.14)
becomes possible.

For the uncommon area of the two scans, there is no difference between the true
measurement and the expected measurement. Thus only the difference for the common
area identified by ICP need to be computed. In hybrid GA-ICP [53], the authors uses
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sum of distances between matched pairs divided by the total number of matching pairs
as fitness function. Different from their approach, in our implementation, we describe
the common area in an implicit way. That is we use points from each segment to form
a polyline to approximate the curve. The theoretical distance is approximated using ray
tracing to polyline. As the laser scanner is sampled in a fine resolution, we consider this
is a valid approximation.

After applying GA on top of ICP, the relative pose information between scans is
derived.

5.6.4 Result

To test the proposed approach, the Intel dataset from the Robotics Data Repository [38]
is used. In Fig. 5.5(d) it is shown that, the proposed approach is able to align two far
apart laser scans without odometry information. The performance is better than vanilla
ICP proposed in [7] and hybrid GA-ICP [53].

Using only 47 scans from the Intel dataset, we get the result shown in Fig. 5.6. To
ensure enough overlap, when robot having straight motion, we selected approximately
every 100 scans, and when robot is turning, we select around every 30 scans.

5.7 Multi-scan SLAM Implementation

Now we consider a more practical scenario when we have a number of scans and want to
build a map.

5.7.1 Multi-scan SLAM problem formulation

We assume there are m + 1 laser scans sampled from the m + 1 robot poses. We also
assume there is no or very poor odometry information and we want to use the scans to
build a map.

To solve any SLAM problem, the necessary condition is: there is mutual information
between robot poses. The laser scan SLAM problem is no exception. It requires mutual
information between scans. If there is no mutual information among scans, the solution
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(a) Two raw scans from Intel lab data (b) Scans after segmentation. Each segment is
bounded by red circle

(c) For each segment, a polyline is formed to
approximate the feature.
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(d) Comparison of ICP, hybrid GA-ICP [53] and
the proposed method. Proposed method is able
to align two far apart laser scans without odom-
etry

Figure 5.5: Align two far apart scans using the proposed method
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Figure 5.6: Result for deriving relative pose from far apart scans. This figure shows the
result using 47 scans from the Intel dataset.

is not unique. Therefore, it is assumed that, if m+ 1 scans have been sampled in total,
any scan S from the m + 1 scans need to be directly or indirectly connected with the
remaining m scans.

Normally, there are two situations where two scans will have overlap: (a) Two scans
are sampled consecutively; (b) Two scans happened when loop is closed.

Multi-scan SLAM problem: Suppose there are m + 1 scans available, find the
number of features, type and parameters of each feature, and optimize the robot poses
Xri , i = 1, · · · , p and the feature parameters by minimizing (5.10).

Use GA+ICP to get the relative poses

From the previous section, we can solve the scan relating problem for two scans and
get the relative pose. We perform this for all the scan pairs that have overlaps.

Use least squares to further reduce search space

As mentioned earlier, our method improves the convergence. However, because the
use of “trimmed least square”, the solution may not be the “global minimum”. Before
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solving the multi step SLAM problem using GA, we use linear least squares to smooth
the trajectory and further reduce the search space.

Initialize the features

From the previous step, relative pose between scans had been established and each
scan has been divided into segments. By relating segments between scans, we can get all
the points of one feature. By curve fitting, we can get the initial estimate of the curve.

Final optimization

From Section 5.5, we can solve the SLAM problem by global optimization when the
numbers, types, and parameter bounds are given. At this stage, the feature estimate and
the robot pose estimate have been derived. The search space has been controlled in a
small region. With small search space, the global optimization now becomes tractable.
Applying GA and relaxation approach with a small search space we can get the feature
and pose estimate which minimizes (5.10).

5.7.2 Results using Intel dataset

Using the least square smoothing, the robot trajectory has been improved. However,
the result is not optimal. From Fig. 5.7(b), it can be observed that there are some
misalignment at loop closure.

After applying GA to multi-step SLAM optimization problem, we get the result in
Fig. 5.8. The misalignment at loop close has been fixed. Further more, instead of an
occupancy grid map, the result map is a feature map.

5.8 Summary

This chapter formulated the general feature based SLAM with laser data as an optimiza-
tion problem. The problem formulation aims to maximize the information use. Both
the bearing angle information and maximal range information is exploited. The new
formulation is a generalization of point feature based least squares SLAM formulation.

Because the objective function is not continuous and contains a lot of local minima.
It is proposed to use some relaxations techniques such that it is tractable by global
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optimization algorithms. The simulation and experimental results show that limited
number of scans can be used to build up a map without odometry information by using
the proposed relaxation and optimization techniques.

However, one problem can not be avoided is the convergence issue of the new formula-
tion. As the new formulation involves discontinuity, the new formulation is hard to solve
compare with point feature based least squares SLAM formulation. In next chapter, a
conversion method from the curve feature SLAM to the point feature SLAM is proposed.
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(a) Compare with Fig.5.6, the result is improved by using least
square smoothing.

(b) Zoomed at the loop closure part.

Figure 5.7: The result after applying least square smoothing
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Figure 5.8: Multi step SLAM result using GA
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6 Convert Curve Feature SLAM to Point
Feature SLAM

6.1 Introduction

In the previous chapter, a general curve feature based formulation is proposed. However,
it has been observed that, the formulation is hard to solve due to the discontinuity of
the objective function.

In this chapter, it is proposed to transfer curve feature based SLAM to point feature
based SLAM using B-Splines as features. Unlike the BS-SLAM proposed in [64], the
observation model used in this chapter is a function of relative positions between the
control points of the observed spline and the observation point. The uncertainty of the
control points has been derived analytically from two sources: spline fitting error and
the chord length error. It has been considered that the spline fitting error and the chord
length error are not independent. Unlike the observation model in [64], optimization
based techniques can be directly applied to the new observation model. Using this new
observation model, the curve feature based SLAM problem can also be solved by the
proposed SDR based approach.

This chapter is organized as follows. Section 6.2 proposes the new observation model.
In Section 6.3, the data association method for the new observation model is described.
Section 6.4 provides some consistency analysis on the new observation model. Section 6.5
shows results on B-spline SLAM using both simulation and experimental data. Section
6.6 summarizes the chapter.
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6.2 The New Observation Model

6.2.1 Curve length parameterizations

It has been observed in Section 2.7.3 that, given the order, the knot vector and the control
points, the location and the shape of the B-spline is completely decided. However, when
using spline fitting to compute the control points, even when the order and the knot
vector are all given, there are still infinite possible sets of control points that fit the
points due to the infinite number of possible time sequence rv = [t1, ..., tm]. Only when
the order, the knot vector and the time sequence are all given, the set of control points
can be uniquely determined. In the following we show how to decide the time sequence
such that the same set of control points can be estimated from the scan data obtained
from different observation points.

For the proposed observation model, the time parameter sequence need to be invariant
to the observation point. As length of a spline is invariant with observation point,
chord length method [52] is used. The chord length method uses the ratio between the
cumulated chord length and the total chord length to approximate the time parameter
tj :

l1 = 0

lj =
∑j−1

i=1 ‖di+1 − di‖
lm−1 =

∑m−1
i=1 ‖di+1 − di‖

tj = lj/lm−1

(6.1)

where di is the i−th data point and ‖ · ‖ is the Euclidean norm.

Once the time sequence is derived, the estimated control points can be simply obtained
by spline fitting.

6.2.2 Covariance matrix derivation

To use the estimated control points as observation model to SLAM algorithm, the co-
variance matrix need to be correctly modelled. Assuming the uncertainty of the raw
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measurement is S, the covariance matrix of control points can be derived from (2.59):

Ps =
∂ΦM

∂M
S
∂ΦM

∂M

T

(6.2)

Since the size of M is m × 2 and size of Φ is n × m, by the product rule for matrix
calculus [52] we have:

∂ΦM

∂M
= (MT ⊗ In)

∂Φ

∂M
+ (I2 ⊗ Φ)

∂M

∂M
(6.3)

where
∂Φ

∂M
=

∂Φ

∂B

∂B

∂M
=

∂(BTB)−1BT

∂B

∂B

∂M
(6.4)

and ⊗ is the tensor product. Apply product rule on equation (6.4):

∂Φ

∂M
= ((B ⊗ In)

∂(BTB)−1

∂B
+ (Im ⊗ (BTB)−1)

∂BT

∂B
)
∂B

∂M
(6.5)

Using matrix calculus, ∂(BTB)−1/∂B can be derived as:

∂(BTB)−1

∂B
= − (((BTB)−1)T ⊗ In

In ⊗ (BTB))

∂(BTB)

∂B
(6.6)

where
∂(BTB)

∂B
= (BT ⊗ In)

∂BT

∂B
+ (In ⊗BT )

∂B

∂B
(6.7)

From the collocation matrix equation

B =

⎡
⎢⎢⎣

β0,k(t1) · · · βn,k(t1)
...

. . .
...

β0,k(tm) · · · βn,k(tm)

⎤
⎥⎥⎦ , (6.8)

the collocation matrix B and the raw sensor measurement M is not related. However,
each element of the collocation matrix is a function of time parameter t and the time
parameter t is derived from chord length using raw sensor measurements. Therefore
∂B/∂M becomes:

∂B

∂M
=

∂B

∂rv

∂rv
∂M

(6.9)

From the basis function derivative equation

∂βi,k(t)

∂t
=

k − 1

εi+k−1 − εi
βi,k−1(t)− k − 1

εi+k − εi+1
βi+1,k−1(t), (6.10)
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partial derivative of collocation matrix B with respect to time parameter sequence rv

can be derived as

∂B

∂rv
=

⎡
⎢⎢⎣

∂B1,1

∂t1
. . .

∂B1,1

∂tm
...

. . .
...

∂Bm,n

∂t1
. . .

∂Bm,n

∂tm

⎤
⎥⎥⎦ . (6.11)

And ∂rv/∂M can be derived using chain rule:

∂rv
∂M

=
∂rv
∂E

∂E

∂C

∂C

∂M
(6.12)

with
E = [�e1, ...,�em−1]

C = [�c1, ...,�cm−1]
(6.13)

where �ej is the real length of the curve piece j and

�cj = ||dj+1 − dj ||

is the chord length of the curve piece j.

From (6.1), the Jacobian of cj w.r.t E can be derived as:

∂tj
∂E = ∂(lj/lm−1)/∂E

= (lm−1(∂lj/∂E)− lj(∂lt/∂E))/l2m−1

(6.14)

where
∂lj
∂E

= [
∂lj

∂�e1
, . . . ,

∂lj
∂�em−1

] (6.15)

As the function of the curve is unknown, it is not possible to estimate the real curve piece
length. But it is possible to get a bound between the chord length and the real length
from [22]:

0 ≤ �ej −�cj ≤ 1

12
�ej

3‖S(t)′′‖2[tj ,tj+1]
(6.16)

where S(t) is the actual spline equation. Since the approximated spline Ŝ(t) and the real
spline S(t) should be close enough, we have:

�ej ≤ �cj +
1

12
�cj

3‖Ŝ(t)′′‖2[tj ,tj+1]
(6.17)
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‖Ŝ(t)′′‖[tj ,tj+1] can be derived using (6). Therefore ∂E
∂C and ∂C

∂M can be calculated.

6.3 Data Association

In point based SLAM problem, data association process is to associate the observations
to the point features in the state. However, for the proposed curve based SLAM method,
features are arbitrary B-Splines. Identifying corresponding pair is insufficient. Correla-
tion between the new observation and spline estimate Ŝ need to be identified.

Using laser range finder as an example, this section discusses the data association
process for the proposed B-Spline based SLAM. It contains two stages: 1). Pairing
observation with B-Splines in the map. 2). Identifying time parameter sequence rv for
new observation.

6.3.1 Pairing observation with state objects

Suppose at step n, a new scan Bn has been acquired. In order to perform the pairing,
the new scan and the map estimate Vn,u, which contains u splines, need to be in the
same coordinate system.

Similar with the data association process for point feature based SLAM, current scan
Bn and previous scan Bn−1 has been first transferred to the same coordinate system using
odometry information (when the odometry contain large uncertainties, scan matching
algorithm can be applied to get more accurate relative pose information).

After Bn and Vn,u being in the same coordinate system, the following process were
performed: a). Scan Bn has been segmented result in v segments corresponding to
different spline objects. b). For segment i(1 ≤ i ≤ v) the laser beam angle of extreme
points (Segi,s and Segi,e) are calculated. These angles are compared against the laser
beam angle of extreme points (Ŝj,s and Ŝj,e) for map spline j(1 ≤ j ≤ u). Also, taking
into account of range information for segment i, the pairing process completes. Fig. 6.1.
illustrates this idea.
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Figure 6.1: Map estimates are shown in blue line, new scan points are shown in red
crosses. Laser beam angle for extreme points of data from segment i and
map spline j are calculated. If Ŝj,s ≤ Segi,s ≤ Ŝj,e or Ŝj,s ≤ Segi,e ≤ Ŝj,e

then segment i is associated with B-Spline j

6.3.2 Identify time sequence for new observations

For the proposed observation model, features are arbitrary curves represented using B-
Spline. We begin with initializing a set of B-Splines derived from appropriately segmented
scan data and include these splines in the state vector. The term “full spline” is used to
describe the B-Splines represented in the state vector. As new laser scans been acquired,
new observation about “full splines” become available. The new observation may be
about the whole “full spline”, part of the “full spline” or previously un-observed part of
the “full-spline”. In the following we use “part of spline” to describe part of the “full
spline” and “extension of spline” to describe previously un-observed part of the “full-
spline”. Whenever “extension of spline” is observed, the “full-spline” will be updated.

To be able to estimate the same set of control points of a spline for various observa-
tion, the time parameter sequence rv need to be uniquely defined which is invariant to
the observation points. Thus the time parameter sequence for the new spline data is
calculated according to the current “full spline”.

In order to compute the time parameter sequence for new observation data, only the
start point and end point of the observed spline data need to be corresponded with the
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spline estimate Ŝ. The ray tracing [77] method has been used to find the time parameter
t for the extreme points. Suppose time parameter for start and end point has been
identified as ts and te, time parameter for remaining spline data points can be calculated
by a modified version of (6.1):

l1 = 0

lj =
∑j−1

i=1 ‖di+1 − di‖
lm−1 =

∑m−1
i=1 ‖di+1 − di‖

tj = lj(te − ts)/lm−1 + ts

(6.18)

6.3.3 Spline fitting for new observations

After the relation between new observation and current “full spline” Ŝj has been iden-
tified and the time parameter sequence of the new spline data has been computed, the
observation model of the new spline data can be derived.

Case 1: re-observe “full spline”

If the new observation is made to whole Ŝ, control points and the associated covariance
matrix for current observation can be derived using the process detailed in Section 6.2.

Case 2: re-observe “part of the spline”

When the new observation corresponds to part of the Ŝ, we can not simply use the spline
fitting process detailed in Section 6.2 to estimate the control point.

Assume the knot vector for an order k spline is (2.52) time parameter sequence for the
new observation is rv = [t1, ..., tm] while 0 ≤ εa < t1 < tm < εb ≤ 1. From the collocation
matrix equation (6.8), the collocation matrix for the new observation can be derived as

Bnew =

⎡
⎢⎢⎣

βa,k(t1) · · · βb,k(t1)
...

. . .
...

βa,k(tm) · · · βb,k(tm)

⎤
⎥⎥⎦ . (6.19)
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Using our proposed method in Section 6.2.2, control points Xa to Xb and associated
covariance matrix can be derived.

Case 3: observe “extension of the spline”

If unexplored part of a spline has been observed, Ŝ needs to be updated. Common area
between Ŝ and the new observation need to be firstly identified (Fig. 6.2. illustrates
this). An updated length of the spline can be calculated. Time parameter sequence for
the new observation according to new length will be calculated. Estimate of the control
points can be derived from method described in Case 2.

Figure 6.2: Map estimate are shown in blue line, new scan points are shown in red crosses.
Laser beam angle for extreme points of map spline Ŝ are calculated. After
common area being identified, the spline length has been updated.

6.4 Consistency of the Observation Model

To evaluate the consistency of the proposed observation model, simulations have been
carried out. In our simulation, the range finder observations are generated by finding
the intersection points between the reference spline and the artificial laser beams from a
fixed robot pose. The field view of the sensor is [−π

2 ,
π
2 ] and the sensor range used is 6m.
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6.4.1 Test method

The consistency of the proposed observation model is examined in simulation by per-
forming Monte Carlo runs. For example, to perform a large number of simulations with
independent sensor noises and use the resulting state estimates to compute the aver-
age normalized estimation error squared (NEES) of different runs and then perform a
chi-square test [32]. The NEES of each run is given by

NEES = (x̂− xtrue)
TP−1(x̂− xtrue) (6.20)

where x̂ is the state estimate and P is the covariance matrix and xtrue is the ground
truth of the state.

Because the ground truth of the control points is needed to perform the consistency
analysis of the map, we first discuss how to get these ground truth control points in
simulation.

6.4.2 Estimate the “ground truth” of control points using noise free
simulation data

It could be noted that, the ground truth of the control points are not trivial to be defined
prior due to the time sequence given in Fig. 2.3 which is evenly distributed, is NOT the
same as the time parameter derived from the curve length.

Here we propose to use a good approximation of the control points as the “ground
truth”. In order to estimate the control points, the curve length of the reference spline
must be approximated as accurate as possible. Here a small angular resolution (0.1o) was
used and no noise is added in the simulated scan data. The time sequence was defined
using equation (6.18). Using the spline fitting method described in Section 2.7.3, an
estimate of the control points is obtained. The associated covariance matrix computed
from the method described in Section 6.2 is very small. To validate this, a new spline
equation was derived using the estimated “ground truth” control points. The curve of
the new spline was compared with the reference spline and the difference between the
two curves is undistinguishable.

To further prove the validity of the “ground truth” control points using the “Affine
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Invariance Property” defined in Section 2.7.3, new noise-free observation of the spline
was taken from another position. The control points estimated from the second scan
were derived and transferred back to the coordinate defined by the first pose. The result
is shown in Fig. 6.3. It can be observed that, the control points estimates overlap nicely
with the “ground truth control points”.

6.4.3 Estimate the control points through noisy scan data

To simulate the real laser data, we use 0.5o for the laser resolution and we used a zero
mean Gaussian noise with 6mm standard deviation to add on the range readings. The
control points estimated from the proposed spline fitting algorithm in Section 6.2 and
the associated 2σ uncertainty ellipses are plotted and compared with the “ground truth”
control points in Fig. 6.4.

To investigate the consistency of the observation model, 50 simulation data sets are
generated and the average NEES obtained is 33.45, while the chi-square distribution for
the 95% confidence level is 33.92.

6.4.4 Estimate control points when “part of spline” is observed

A simulation result for the scenario when only “part of spline” is observed is shown in
Fig. 6.5(a). The uncertainty ellipses are shown in Fig. 6.5(b).

Again, 50 simulation data sets with added independent noise (from the second scan
only) are generated. The average NEES obtained is 16.03, while the chi-square distribu-
tion for the 95% confidence level is 26.29.

6.5 SLAM Results

6.5.1 SLAM result using simulation data

A simulation experiment containing 9 splines in the environment and 46 robot poses
was created to further evaluate the consistency of the proposed SLAM algorithm. The
simulation environment is shown in Fig. 6.6.
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(a) Two noise-free scans from different poses

(b) “Ground truth” control points from the two noise-free scans
(the control points obtained from the second scan is transferred to
the coordinate system defined by the first pose)

Figure 6.3: Estimate “ground truth” control points
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Figure 6.4: Spline fitting with noisy data

The SLAM results obtained using I-SLSJF [35] is shown in Fig. 6.7(a). Comparing
with the “ground truth”, the estimate of control points and robot poses appear to be very
accurate. To evaluate the consistency of the observation model and the SLAM results,
the NEES comparison is plotted Fig. 6.7(b). The NEES of the final estimate (for the
final map containing 99 control points and 46 poses) obtained is 391.16, while the the
99% probability concentration region of the chi-square distribution is [0, 399.32].

We also test the proposed observation model using the SDR based approach. The
comparison between the result from LS approach and SDR approach is shown in Fig 6.8.

6.5.2 SLAM using real data

Using the 47 scans of Intel dataset from the Robotics Data Set Repository [38] described
in Section 5.6.4 we further validate the proposed algorithm.

Due to the imperfection of the data association, manual association are performed on
some of the scans. In the experiment, cubic splines with 11 knots were used. Fig. 6.9(b)
shows the control points estimates obtained from LS. The map contains 29 cubic splines.
Each spline contains 7 control points. Fig. 6.10 depicts the map using cubic splines
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(a) Raw data for observing part of a spline. First scan is “full spline”, second scan
is “part of spline”

(b) Spline fitting result when “part of spline” is observed. The 3 left most control
points are not estimated here, as this range has not been observed

Figure 6.5: Spline fitting with noisy data when “part of spline” is observed
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Figure 6.6: A simulation environment with 9 splines, red dots show the robot poses, blue
triangles show the “ground truth” of the control points

derived from the control point estimates.

The comparison between the result from I-SLSJF approach and SDR approach for this
case is shown in Fig 6.11. As the proposed SDR approach is a convex optimization based
method, it only has one global minimum. Therefore, it does not provide any uncertainty
information. However, it can be observed from Fig 6.11 that, results acquired from the
SDR approach is very close to the mean of I-SLSJF result.

6.6 Summary

In this chapter, a new observation model for B-Spline based SLAM is proposed. Method
to estimate the covariance matrix for control points in a B-Spline based SLAM algorithm
is also proposed. The errors in the control points estimates originates from two dependent
sources: the raw data error and the chord length estimate error. It has been shown that,
under various conditions, the proposed error analysis leads to consistent spline fitting
result.

91



6 Convert Curve Feature SLAM to Point Feature SLAM

−5 0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

20

X(m)

Y
(m

)

(a) SLAM result using the simulation data. Blue star show the “ground truth”
control points. Estimated control points almost coincide with “ground truth”
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Figure 6.7: Simulation result

92



6 Convert Curve Feature SLAM to Point Feature SLAM

−5 0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

20

X(m)

Y
(m

)

Figure 6.8: Comparison of LS result with the SDR result for the simulation data (black
dot is the LS robot position estimate; red dot is the LS feature position
estimate; green triangle is the SDR robot position estimate; blue cross is the
SDR feature position estimate).
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(a) Result after applying least squares on ICP result

(b) Spline map derived by applying least squares on the new obser-
vation model

Figure 6.9: SLAM result using the Intel dataset
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Figure 6.10: The location of the estimated control points

Figure 6.11: Comparison of I-SLSJF result with the SDR result for the Intel data (black
dot is the I-SLSJF robot position estimate; red dot is the I-SLSJF feature
position estimate; green triangle is the SDR robot position estimate; blue
cross is the SDR feature position estimate).
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Using the new observation model, the curve feature based SLAM can be transferred
into point feature based SLAM. Some SLAM results using simulation and real data
further proves that the estimate is consistent. It has also been shown that the proposed
convex optimization based approach can also be applied to the transformed curve feature
SLAM problem.
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7 Conclusions and Future Work

The main objective of this thesis is attempting to provide a solution to an important
problem of autonomous mobile robots namely simultaneous localization and mapping
(SLAM). In particular, three problems were considered: 1) The convergence of point
feature based SLAM 2) Cure feature based SLAM 3) The relationship between point
feature based SLAM and curve feature based SLAM. This chapter aims to summarize the
principle contributions of this thesis and provides a set of future directions for extending
this work.

This chapter is organized as follows. Section 7.1 highlights the major contributions.
Section 7.2 suggests directions of future work in this field of research.

7.1 Summary of Contributions

The following lists the major contributions made in this thesis.

7.1.1 Convex optimization based approach for point feature SLAM

The first contribution of this thesis is the reformulation of the point feature SLAM prob-
lem. In Chapter 3, we propose to reformulate the point feature SLAM problem as a
quadratically constrained optimization programming (QCQP) problem. This is achieved
by introducing a new representation for robot orientation with quadric constraint and
approximations on the structure of the uncertainty of measurements. The main advan-
tage of this formulation over the least squares SLAM formulation is that, the objective
function does not contain product of the state elements and becomes exactly quadratic.
However, unlike the least squares SLAM formulation which does not involve any con-
straints, the new formulation involves a nonconvex quadratic constraint.
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To overcome the nonconvexity, the semi-definite relaxation (SDR) technique has been
applied to the new formulation to obtain a semi-definite programming (SDP) problem.
Since SDP problems are convex problems, unique solution can be computed even when
a suitable initial guess is not available. It is shown in Chapter 4 using simulation and
experimental results that, the candidate solution is close to the true solution to the SLAM
problem.

7.1.2 General curve feature SLAM formulation

In Chapter 5, a least squares formulation for general feature SLAM is proposed. In this
formulation, the environment is represented by a set of continuous curves such as lines
or B-Splines and negative information which indicates the absence of an expected sensor
reading is exploited as useful information.

It has been observed that this formulation contains discontinuities, the problem be-
comes hard to solve. Although there are optimization based approaches such as Genetic
Algorithm (GA) which are able to handle discontinuities, the computational cost involved
is too high.

7.1.3 Curve feature SLAM to point feature SLAM conversion

Chapter 6 proposed a new observation model for B-Spline SLAM. The observation model
used is a function of relative positions between the control points of the observed spline
and the observation point. The uncertainty of the control points has been derived an-
alytically from two sources: spline fitting error and the chord length error. It has been
considered that the spline fitting error and the chord length error are not independent.

Using this new observation model, the conversion from curve feature SLAM to point
feature SLAM becomes possible. Because the curve feature SLAM formulation is hard
to solve, the curve feature is converted to point feature. Using the conversion method,
the curve feature SLAM problem can be transferred to point feature SLAM problem and
can be solved by the convex optimization based approach.
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7.2 Future Work

The research documented herein provided insight into possible future directions as well
as unforseen challenges. These are put forward in the following brief discussion.

7.2.1 Approximation ratio for the SDR based approach for SLAM problem

The theoretical relationship between the SDR result and the optimal SLAM solution has
been derived only for the case when the sensor measurements do not contain noises. It
is important to derive the worst-case approximation bounds when measurements contain
noise, especially when the covariance matrices of the measurement noise are far from
spherical.

7.2.2 Reducing the computational complexity of the SDR approach

Generally speaking, using interior-point algorithm, the SDP problem (3.45) can be solved
with a worst case complexity of

O(N4.5log(1/ε))

where ε > 0 is the solution accuracy. However, the computational complexity for some
of the modern SLAM algorithms is

O(N2)

To apply the proposed SDR approach, the computational complexity for the proposed
approach need to be reduced.

One can even exploit the structure of the SLAM problem to build fast customized
interior-point algorithm.

7.2.3 Extend the SDR based approach to other form of SLAM problem

Only the 2D, feature-based, range and bearing SLAM problem was analyzed. It is not
clear whether the extension to 3D, or other SLAM problems such as range-only and
bearing-only SLAM are feasible.
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