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Abstract

Ever since Milner showed that Church’s λ-calculus can be subsumed by π-

calculus, process calculi have been expected to subsume sequential com-

putation. However, Jay & Given-Wilson show that extensional sequential

computation as represented by λ-calculus is subsumed by intensional se-

quential computation characterised by pattern-matching as in SF -calculus.

Given-Wilson, Gorla & Jay present a concurrent pattern calculus (CPC)

that adapts sequential pattern-matching to symmetric pattern-unification

in a process calculus. This dissertation proves that CPC subsumes both

intensionality sequential computation and extensional concurrent computa-

tion, respectively SF -calculus and π-calculus, to complete a computation

square. A behavioural theory is developed for CPC that is then exploited

to prove that CPC is more expressive than several representative sequential

and concurrent calculi. As part of its greater expressive power, CPC provides

a natural language to describe interactions involving information exchange.

Augmenting the pattern-matching language bondi to implement CPC yields

a Concurrent bondi that is able to support web services that exploit both

sequential and concurrent intensionality.
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Chapter 1

Introduction

Computation can be characterised in two dimensions: extensional versus

intensional; and sequential versus concurrent. Extensional sequential com-

putation models are those whose functions cannot distinguish the inter-

nal structure of their arguments, here characterised by Church’s λ-calculus

[Chu36, CF58, Bar85]. Shifting along the first dimension from sequential to

concurrent, ever since Milner et al. showed that their π-calculus generalises

λ-calculus [Mil90, MPW92] (more precisely call-by-value or lazy λ-calculus),

concurrency theorists expect process calculi to subsume sequential computa-

tion as represented by λ-calculus [Mil90, MPW92, CG98, Mil99]. Following

from this, here extensional concurrent computation is characterised by pro-

cess calculi that, at least, support (call-by-value) λ-calculus. In the second

dimension shifting from extensional to intensional, Jay & Given-Wilson show

that λ-calculus does not support all sequential computation [JGW11]. In

particular, there are intensional Turing-computable [Tur36] functions, char-

1



2 CHAPTER 1. INTRODUCTION

acterised by pattern-matching, that can be represented within SF -calculus

[JGW11] but not within λ-calculus [JGW11]. Of course λ-calculus can en-

code Turing computation, but this is a weaker claim. Further, Given-Wilson,

Gorla & Jay present a concurrent pattern calculus (CPC) that not only gener-

alises intensional pattern-matching from sequential computation to pattern-

unification in a process calculus, but also increases the symmetry of interac-

tion [GGJ10].

These four calculi form the corners of a computation square

λv-calculus SF -calculus

π-calculus concurrent pattern calculus

-

-
? ?

where the left side is merely extensional and the right side also intensional;

the top edge is sequential and the bottom edge concurrent. All the ar-

rows preserve reduction. The horizontal arrows are homomorphisms in the

sense that they also preserve application or parallel composition. The verti-

cal arrows are parallel encodings in that they map application to a parallel

composition (with some machinery). Thus each arrow represents increased

expressive power with CPC completing the square.

As part of its greater expressive power, CPC provides a natural language

to describe interactions involving information exchange [GGJ10]. Augment-

ing the pattern-matching language bondi [bon11] to implement CPC yields

a Concurrent bondi [Con11] that is able to support web services that exploit
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both sequential and concurrent intensionality [GWJ11].

The rest of this introduction considers the computation square and in

doing so provides an overview of the dissertation’s contents.

1.1 Extensional Sequential Computation

The top left corner of the square is concerned with extensional sequential

computation, here characterised by Church’s λ-calculus [Chu36, Bar85] or

equivalently Schönfinkel’s combinatory logic [Sch24, CF58]. Both models

support the traditional concept of computation in that they are able to

represent all the Turing-computable [Tur36] functions on natural numbers

[Kle35]. Both have reduction rules based on the application of a function

to one or more arguments. In particular, these models are extensional, that

is a function does not have direct access to the internal structure of its ar-

guments. Thus functions that are extensionally equal are indistinguishable

within either λ-calculus or Schönfinkel’s combinatory logic.

There are several variations of λ-calculus distinguished by their opera-

tional semantics. To exploit the results of Milner et al. in formalising the

computation square requires choosing either call-by-value λ-calculus, denoted

λv-calculus, or lazy λ-calculus, denoted λl-calculus [Bar85]. The choice here

is to use λv-calculus, although all the results can be reproduced for λl-calculus

as well.

There is a homomorphism from λv-calculus into any combinatory logic
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that supports the combinators S and K [CF58, CHS72, Bar85, HS86]. In-

deed, this is a central result of combinatory logic stating that any combi-

natory logic that represents S and K is combinatorially complete, that is,

can represent λ-calculus [CF58]. Conversely there is a trivial homomorphism

from Schönfinkel’s combinatory logic to λ-calculus [CF58, CHS72, Bar85,

HS86].

There are now two choices about which direction to take out of the top

left corner of the square: across the top edge remains in sequential calculi;

and down the left side remains in extensional calculi. This dissertation will

follow extensionality down the left side, as it is more familiar.

1.2 Process Calculi

The bottom left corner of the square is concerned with extensional concurrent

computation, here defined to be a process calculus that supports an encoding

of some λ-calculus [Mil90]. Ever since Milner et al. showed this for π-calculus

[Mil90, MPW92] process calculi have been expected to support sequential

computation [Mil90, BB90, MPW92, CG98, Mil99, PV98]. Although this

means many calculi can be the exemplar of extensional concurrent compu-

tation, the π-calculus is the obvious choice as it is: the first process calculus

shown to generalise λ-calculus; has a widely recognised syntax and semantics;

and is well related to many other process calculi [Mil90, GA97, CG98, PV98].

Formally the relation from λv-calculus to π-calculus is through a parallel en-
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coding that preserves reduction and maps application to parallel composition

with some additional machinery. In particular, parallel encodings are defined

to support modular encoding of terms to processes and to exploit the poten-

tial for independent parallel reduction, thus taking advantage of concurrency.

This still leaves the problem of relating process calculi to each other

and comparing their relative expressive power, a topic that has been the

focus of much recent work [Nes06, Par08, Gor08a, Gor08b]. Relating process

calculi is complicated by both the large variety of calculi, and the lack of any

benchmark analogous to Turing-computability for sequential computation

[Mil99, PV98]. One general approach to relating process calculi, taken by

Gorla, is through valid encodings that preserve reduction (amongst other

properties) [Gor08b, Gor08a]. These valid encodings provide a solid basis

for relating process calculi and support the homomorphisms required for the

horizontal arrow at the bottom of the computation square.

In his work on valid encodings Gorla presents a hierarchy of sets of process

calculi related by their relative expressive power [Gor08b, Gor08a]. The π-

calculus is classified in this hierarchy, however it is not within one of four

equally-expressive sets that sit at the top of the hierarchy. As this dissertation

is exploring expressive power, it is natural to address one of these four equally

expressive sets of calculi. Gelernter’s Linda [Gel85, YFY96, PMR99] is the

most interesting choice to represent these sets as it has several differences to

π-calculus and is also implemented as a programming language, as is CPC.

Considering expressive power, there are some other representative process
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calculi that exploit intensionality and symmetry.

The Spi calculus of Gordon et al. [GA97] has a rich class of terms that in-

troduce structure and intensional reductions upon terms. In particular terms

can be tested for equality or structure, albeit only within a process and not

as part of communication. This step towards intensional concurrent com-

putation is of interest conceptually and in later formalisation of expressive

power.

Another concept in concurrency is the shift away from the sequential

asymmetry of function and argument to a symmetric parallel composition

where both processes can evolve equally. This was supported by Milner who

considered reductions in asynchronous calculi to be a symmetric interaction

between a process and the environment [Mil99]. Parrow & Victor take this

concept even further in their fusion calculus that shifts away from traditional

uni-directional information flow to exchange of information during communi-

cation [PV98, BBM04]. They observe that in fusion calculus the terminology

“input” and “output” are kept for familiarity, when “action” and “coaction”

might be more appropriate [PV98, p. 177]. Again this is a step towards a dif-

ferent style of interaction that is conceptually similar to the work presented

in this dissertation.
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1.3 Sequential Pattern-Matching

A return to the top of the square follows the introduction of intensionality

to sequential computation. Recent work by Jay and others develops a pure

pattern calculus that bases computation on pattern-matching [Jay04, JK06,

GW07, JK09, Jay09]. Although pure pattern calculus supports intensional

functions that examine the internal structure of their arguments, these are

limited to data structures. Intuitively, the intensionality of pure pattern

calculus is more expressive than purely extensional models such as λ-calculus.

However, while there is a trivial homomorphism from λ-calculus into pure

pattern calculus, the lack of an inverse has yet to be investigated.

The presentation of pure pattern calculus in this dissertation is to illus-

trate pattern-matching concepts and to indicate related background material.

There are several calculi that base reduction upon pattern-matching in the lit-

erature including; compound calculus, static pattern calculus, and earlier vari-

ations of pure/dynamic pattern calculus [Jay04, JK06, GW07, JK09, Jay09].

The CPC presented in this dissertation follows conceptually from this family

of calculi, although no formal results about the direct relations of sequen-

tial pattern calculi to CPC will be presented. Some discussion of indirect

relations and the complexities involved appear when detailing pure pattern

calculus and SF -calculus, as well as in the conclusions.
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1.4 Intensional Sequential Computation

New work begins in the top right corner of the square that formalises in-

tensional sequential computation through combinatory logic. Indeed, there

are intensional Turing-computable functions on combinators that cannot be

represented within λ-calculus or Schönfinkel’s combinatory logic [JGW11].

Specifically, combinators that are stable under reduction can be factorised

into their components. Exploiting factorisation in a combinatory logic leads

to SF -calculus that supports intensional sequential computation [JGW11].

The arrow across the top is formalised by showing a homomorphism

from Schönfinkel’s combinatory logic into SF -calculus. In the reverse di-

rection, the factorisation of SF -calculus cannot be defined within λ-calculus

[JGW11].

Just as extensionality can be characterised by β-reduction, intensional-

ity can be characterised by pattern-matching in the style of pure pattern

calculus. Similarly, as combinatorial completeness [CF58] captures the no-

tion of extensional computation, a new structure completeness can be defined

based upon pattern-matching for intensional computation [JGW11]. Struc-

ture complete combinatory logics support all Turing computable functions

on their normal forms, for example the definition of a combinator that can

test equality of normal forms. Indeed, there are a collection of structure

complete combinatory logics that support factorisation and thus intensional

sequential computation [JGW11].
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1.5 Concurrent Pattern Calculus

The bottom right corner of the square is populated by CPC [GGJ10] that

adapts intensionality, as captured by structure completeness, into concurrent

computation. Generalising from structure complete style pattern-matching

to symmetric pattern-unification provides a new basis for interaction in a con-

currency model. Such interactions extend both intensionality and symmetry

by performing both in an atomic manner.

The symmetry of process calculi and the properties of pattern-unification

make CPC a natural choice to specify trade. Unification of patterns can

be exploited to discover compatible trade partners before any exchange of

information. An example of traders is developed in CPC to illustrate the

concepts and as a precursor to later applications.

The support for matching on arbitrary number of symbols and arbitrary

structures also makes CPC well suited to modelling reduction systems. By

encoding the syntax or symbols into a pattern the reduction rules can then

be encoded into a process that operates on this pattern. This provides an

elegant encoding of reduction systems into CPC that can be highly modular.

1.6 Completing the Square

All that remains now to complete the square is to formalise the arrows down

the right side and across the bottom.

Down the right side there is a parallel encoding from SF -calculus into
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CPC. The same approach can also be used to translate Schönfinkel’s combi-

natory logic, and thus λ-calculus, to form a diagonal parallel encoding from

top left to bottom right.

Across the bottom there is a homomorphism, preserving reduction and

parallel composition, from π-calculus into CPC that does not rely on any

particular behavioural theory. The converse separation result can be proved

in two ways that exploit multiple name matching and symmetry. This com-

pletes the square.

1.7 Behavioural Theory

Although the relations that form the computation square are formalised,

further development is required to complete CPC and formalise relations

with other process calculi. In particular a behavioural theory is needed to

define what it means for two CPC processes to be equivalent, that is behave

the same way. This can be done adapting the standard approach [MPW92,

MS92, HY95, BGZZ98, WG04] taking into account the subtleties of CPC

interaction.

A barbed congruence relation is defined for CPC in the usual manner,

the only complexity being in the nature of the barbs. As unification of CPC

patterns may involve many names, the barbs are parametrised by a set of

names that appear in a pattern, subject to some limitations.

An alternative semantics for CPC is developed in the form of a labelled
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transition system (LTS) that induces the same operational semantics as the

reductions of CPC.

In developing the bisimulation relation the flexibility of pattern-unification

needs to be accounted for. In particular, some patterns are more general than

others and so a compatibility relation is defined that is a partial order on pat-

terns. This is then used to define the bisimulation.

Properties of the compatibility relation are considered, in particular the

motivation behind the ordering on patterns. Soundness of the bisimulation

is shown by proving that it is a barbed congruence. Completeness of the

bisimulation is shown by proving that the barbed congruence is a bisimula-

tion. This requires the development of contexts that can enforce behaviours

that fit the compatibility relation.

With the coincidence of the two semantics formalised, equivalence of pro-

cesses can be proved. In particular, a general result that shows compatible

patterns can be subsumed, with appropriate replications.

1.8 Relations to Other Process Calculi

With CPC’s behavioural theory completed, the relationship to other process

calculi can be formalised.

As Gorla demonstrates that Linda is more expressive than π-calculus it

is natural to compare Linda and CPC. There is a straightforward homomor-

phism from Linda into CPC. The converse separation result can be proved
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in two different ways using symmetry or intensionality.

As Spi calculus introduces some intensionality in a process calculus, the

relationship to CPC is also of interest. The intensionality of Spi calculus can

be homomorphically encoded into CPC. The symmetry of CPC cannot be

rendered in Spi calculus, thus ensuring there is no converse encoding.

As the separation results can all be proved exploiting symmetry, the rela-

tionship of fusion calculus to CPC is of particular interest. It turns out that

the peculiarities of name fusion prevent a valid encoding of fusion calculus

into CPC. Conversely, fusion calculus is unable to render the multiple name

matching or symmetry of CPC. Consequently, fusion calculus and CPC turn

out to be unrelated.

1.9 Applications

The symmetry and information exchange of CPC provide a natural language

to express trade. Traders can discover each other using common interest

represented by some information in a pattern. They can then exchange

information in a single interaction to complete a trade. The interplay of

sequential and concurrent intensionality can be exploited to develop trading

applications within Concurrent bondi. Combining all these elements allows

programming of web services where trade partners discover each other and

exchange information in an open collaborative environment [GWJ11].
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1.10 How to Read This Dissertation

This dissertation covers a variety of areas that may appeal to different read-

ers. Consequently there are several paths through the text that focus on

different topics.

The path outlined in the introduction covers all topics and is as follows.

The top left corner of the square is introduced in Chapter 2 using λ-calculus

and Schönfinkel’s combinatory logic. The arrow down the left side is fol-

lowed in Chapter 3 which introduces several process calculi that support

λ-calculus, and presents machinery for relating process calculi. Intensional-

ity in sequential computation is first presented conceptually in Chapter 4,

and then formally in Chapter 5 with the arrow across the top. The bottom

right corner of the square on CPC is presented in Chapter 6 and the arrows

completing the square in Chapter 7. A behavioural theory is developed for

CPC in Chapter 8 as a foundation for relating CPC to other process calculi

in Chapter 9. The expressive power of CPC is then demonstrated by appli-

cations in Chapter 10 that exploit sequential and concurrent intensionality.

Another path focuses upon the foundations of sequential computation

and travels across the top of the square. This begins in Chapter 2 with

extensional sequential computation and the relations between λ-calculus and

Schönfinkel’s combinatory logic. Intensionality is introduced conceptually by

considering computation based on pattern-matching in Chapter 4 through

recent work on pure pattern calculus. The completion of this path is in



14 CHAPTER 1. INTRODUCTION

Chapter 5 that develops SF -logic, formalises that SF -logic is more expressive

than λ-calculus and Schönfinkel’s combinatory logic, and presents a new

structural completeness.

A similar path focuses upon concurrent computation and travels across

the bottom of the square. This begins in Chapter 3 that revisits several

popular process calculi and introduces formalism to relate them. CPC is

developed in Chapter 6 and the arrow across the bottom of the square com-

pleted in Chapter 7. A supporting behavioural theory for CPC is presented

in Chapter 8 and then exploited in Chapter 9 that relates CPC to other

process calculi from Chapter 3.

A more practical path is driven by examples and applications supported

by the theory. An extensive example is developed in Section 6.3 (using CPC

as specification language) to motivate the theory and as a precursor to larger

applications. The bulk of this path is in Chapter 10 that revisits earlier

examples and concepts by developing programs in Concurrent bondi. This

includes applications exploiting both sequential and concurrent computation,

as well as the interplay between them.

Two chapters do not appear in the paths above: Chapter 1 provides an

overview of the dissertation as a whole; and Chapter 11 draws conclusions

and summarises the main results.



Chapter 2

Extensional Sequential

Computation

This chapter considers the top left corner of the computation square; ex-

tensional sequential computation as supported by two models: Church’s λ-

calculus [Chu36, Bar85, HS86] and Schönfinkel’s combinatory logic [Sch24,

CF58]. Both models are recalled while introducing general concepts and ter-

minology for use in later chapters. Details of the homomorphisms between

them are presented to show equivalence and for later exploitation.

Both models base reduction rules upon the application of a function to

one or more arguments. Functions in both models are extensional in nature,

that is a function does not have direct access to the internal structure of its

arguments. Thus, functions that are extensionally equal are indistinguishable

within either Church’s λ-calculus or Schönfinkel’s combinatory logic even

though they may have different normal forms.

15
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The relationship between Church’s λ-calculus and Schönfinkel’s combi-

natory logic is closer than sharing application-based reduction and exten-

sionality. There is a homomorphism from call-by-value λv-calculus into any

combinatory logic that supports the combinators S and K [CF58, CHS72,

Bar85, HS86]. There is also a homomorphism from Schönfinkel’s combina-

tory logic to a λ-calculus with more generous operational semantics [CF58,

CHS72, Bar85, HS86].

2.1 Abstraction

This section provides a skeletal introduction to Church’s λ-calculus. Some

general concepts and terminology are also presented along the way for later

use.

The term syntax of the λ-calculus is given by

t ::= x | t t | λx.t .

The variable x is a place holder for a term and is available for substitution.

The application s t applies the function s to the argument t. Abstractions

λx.t have a binding variable x and a body t.
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The free variables of a term t, denoted fv(t), are defined by

fv(x) = {x}

fv(s t) = fv(s) ∪ fv(t)

fv(λx.t) = fv(t)\{x} .

A variable is free in itself. The free variables of an application are the union

of the free variables of the function and argument. The free variables of an

abstraction are the free variables of the body excluding the binding variable.

A term t is closed if it has no free variables, that is, fv(t) = {}.

A substitution σ is defined as a partial function from variables to terms.

The domain of σ is denoted dom(σ); the free variables of σ, written fv(σ),

is given by the union of the sets fv(σx) where x ∈ dom(σ). The variables of

σ, written vars(σ), are dom(σ) ∪ fv(σ). A substitution σ avoids a variable x

(or collection of variables µ) if x /∈ vars(σ) (respectively µ ∩ vars(σ) = {}).

Substitution composition is denoted σ2 ◦ σ1 and indicates that σ2 ◦ σ1(t) =

σ2(σ1t). Note that all substitutions considered in this dissertation have finite

domain.

For later convenience define an identity substitution idX to map every

variable in X to itself. That is, idX = {xi/xi} for every xi ∈ X.
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The application of a substitution σ to a term t is defined as follows

σx = u if σ maps x to u

σx = x if x /∈ dom(σ)

σ(s t) = (σs) (σt)

σ(λx.t) = λx.(σt) if σ avoids x .

If a variable is in the domain of the substitution then apply the mapping of

the substitution, otherwise do nothing. Apply a substitution to the function

and argument of an application. A substitution is applied to the body of an

abstraction as long as the variable being bound in the abstraction is avoided.

The side conditions on abstraction prevent accidental clash or capture of

variables.

Problems with variable clash and capture are resolved by renaming of

variables, or α-conversion =α defined by

λx.t =α λy.{y/x}t

where y is not in the free variables of t.

Operational Semantics

There are several variations of the λ-calculus with different operational se-

mantics. For construction of the computation square by exploiting the results

of Milner et al. [Mil90], it is necessary to choose an operation semantics,
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such as call-by-value λv-calculus or lazy λl-calculus. The choice here is to

use call-by-value λv-calculus, although all the results can be reproduced for

lazy λl-calculus as well. In addition a more generous operation semantics for

λ-calculus will be presented for later discussion and relations.

To formalise the reduction of call-by-value λv-calculus requires a notion

of value v. Here, these are defined in the usual way, by

v ::= x | λx.t

consisting of variables and λ-abstractions.

Computation in the λv-calculus is through the βv-reduction rule

(λx.t)v −→v {v/x}t .

When an abstraction λx.t is applied to a value v then substitute v for x in

the body t.

The reduction relation (also denoted −→v) is the smallest that satisfies
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the following rules

βv :

(λx.t)v −→v {v/x}t

appl :
s −→v s

′

s t −→v s
′ t

appr :
t −→v t

′

s t −→v s t
′

.

The transitive closure of the reduction relation is denoted −→∗v though the

star may be elided if it is obvious from the context.

The more generous operational semantics for the λ-calculus allows any

term to be the argument when defining β-reduction. Thus the more generous

β-reduction rule is

(λx.s)t −→ {t/x}s

where t is any term of the λ-calculus.

The reduction relation (also denoted −→) is the least relation satisfying
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the following rules

β :

(λx.s)t −→ {t/x}s

appl :
s −→ s′

s t −→ s′ t

appr :
t −→ t′

s t −→ s t′
.

The transitive closure of the reduction relation is denoted −→∗ is as for

λv-calculus.

Observe that any reduction −→v of λv-calculus is also a reduction −→ of

λ-calculus.

Lemma 2.1.1. Every reduction −→v of λv-calculus is also a reduction −→

of λ-calculus.

Proof: Trivial. �

As reduction invokes implicit substitution, a single βv-reduction or β-

reduction may result in renaming many variable occurrences. There are a

number of approaches to managing the substitutions and variable scoping

[ACCL91, Fis93, dB72, GP02], however one of the oldest and cleanest is to

simply remove the variables from the picture.
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2.2 Combination

This section provides an overview of combinatory logics or calculi. The pre-

sentation in this chapter is done using Schönfinkel’s combinators S and K

while describing general concepts and terminology for later use in Chapter 5.

As the focus within this dissertation is on computation rather than logical

paradoxes, the emphasis will be on calculi over logics, with rules for reduction

rather than equations.

A combinatory calculus is given by a finite collection O of operators

(meta-variable O) that are used to define the O-combinators (meta-variables

M,N,P,Q,X, Y, Z) built from these by application

M,N ::= O | MN .

Syntactic equality of combinators will be denoted by ≡. The O-combinatory

calculus or O-calculus is given by the combinators plus their reduction rules.

A homomorphism of sequential calculi is a mapping from one calculus to

another that preserves reduction and application.

Schönfinkel’s combinatory logic can be represented by two combinators

S and K [Sch24, CF58] so the equivalent SK-calculus has reduction rules

SMNX −→ MX(NX)

KXY −→ X .

The combinator SMNX duplicates X as the argument to both M and N .
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The combinator KXY eliminates Y and returns X.

The rules are instantiated by replacing each meta-variable M,N,X or Y

by a particular combinator. The reduction relation −→ and reflexive transi-

tive closure −→∗ are as for λ-calculus.

The relation −→∗ also induces an equivalence relation = on the combi-

nators, their equality. The O-combinatory logic or O-logic is the system of

equivalence classes of combinators from O-combinatory calculus.

Although this is sufficient to provide a direct account of functions in the

style of λ-calculus, an alternative is to consider the representation of arbitrary

computable functions that act upon combinators.

A symbolic function is defined to be an n-ary partial function G of some

combinatory logic, i.e. a function of the combinators that preserves their

equality, as determined by the reduction rules. That is, if Xi = Yi for 1 ≤

i ≤ n then G(X1, X2, . . . , Xn) = G(Y1, Y2, . . . , Yn) if both sides are defined. A

symbolic function is restricted to a set of combinators, e.g. the normal forms,

if its domain is within the given set.

A combinator G in a calculus represents G if

GX1 . . . Xn = G(X1, . . . , Xn)
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whenever the right-hand side is defined. For example, the symbolic functions

S(X1, X2, X3) = X1X3(X2X3)

K(X1, X2) = X1

are represented by S and K, respectively, in SK-calculus. Consider the

symbolic function

I(X) = X .

In SKI-calculus where I has the rule

IY −→ Y

then I is represented by I. In both SKI-calculus and SK-calculus, I is

represented by any combinator of the form SKX since

SKXY = KY (XY ) = Y .

For convenience define the identity combinator I in SK-calculus to be SKK.

For later use, define some familiar logical constructs. Define the condition

if P then M else N by PMN . It follows that truth is given by K and

falsehood by KI since KMN −→M and KIMN −→ IN −→ N . The usual

boolean operations are defined in the obvious way; write notM for negation;

M and N for the conjunction of M and N ; M or N for their disjunction;

and M implies N for implication. Similarly, there is a fixpoint combinator
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fix with the property that fix M −→∗ M(fix M).

2.3 Relations

This section recalls the relations between various λ-calculi and SK-calculus.

In particular the homomorphism from λv-calculus to SK-calculus that pre-

serves reduction and application. When considering a homomorphism in the

other direction, the more generous reduction relation of SK-calculus requires

that the homomorphism be to λ-calculus, i.e. without the limitation of call-

by-value reduction.

One of the goals of combinatory logic is to give an equational account of

variable binding and substitution, particularly as it appears in λ-calculus.

In order to represent λ-abstraction, it is necessary to have some variables

to work with. Given O as before, define the O-terms by

M,N ::= x | O | MN

where x is as in λ-calculus. Free variables and the substitution {N/x}M

of the term N for the variable x in the term M are defined in the obvious

manner, since the term calculus does not have any binding constructions

built in. The O-term calculus has reduction defined by the same rules as

the O-calculus, noting that instantiation may introduce variables. Symbolic

computation and representation can be defined for terms just as for combi-

nators.
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Given a variable x and term M define a symbolic function G on terms by

G(X) = {X/x}M .

Note that if M has no free variables other than x then G is also a sym-

bolic computation of the combinatory logic. If every such function G on

O-combinators is representable then the O-combinatory logic is combinato-

rially complete in the sense of Curry [CF58, p. 5].

Given S and K then G above can be represented by a term λ∗x.M given

by

λ∗x.x = I

λ∗x.y = Ky if y 6= x

λ∗x.O = KO

λ∗x.MN = S(λ∗x.M)(λ∗x.N) .

The following lemma is both central to the theorem that λ-calculus can

be represented in combinatory logic, and exploited later in Chapter 5.

Lemma 2.3.1. For all terms M and N and variables x there is a reduction

(λ∗x.M) N −→∗ {N/x}M .

Proof: The proof is by induction on the structure of the combinator M .

• If M is x then (λ∗x.M)N ≡ IN −→ N ≡ {N/x}M .
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• If M is any other variable or an operator then (λ∗x.M)N ≡ KMN −→

M ≡ {N/x}M .

• Finally, if M is of the form M1M2 then

(λ∗x.M)N ≡ S(λ∗x.M1)(λ
∗x.M2)N

−→ (λ∗x.M1)N((λ∗x.M2)N)

−→ ({N/x}M1)({N/x}M2)

≡ {N/x}M

by two applications of induction.

�

The following theorem is a central result of combinatory logic [CF58]

and sufficient to show there is a homomorphism from λv-calculus to any

combinatory calculus that represents S and K.

Theorem 2.3.2. Any combinatory calculus that is able to represent S and

K is combinatorially complete.

Proof: Given G(X) = {X/x}M as above define G to be λ∗x.M and apply

Lemma 2.3.1. �

Indeed, this result can be used to show that there is a homomorphism from

λ-calculus to SK-calculus. These homomorphisms will be exploited later

when traversing the top edge of the computation square. During this traver-

sal the converse directions will also consider the relation to SK-calculus, so
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it is useful to formalise the converse to the homomorphisms from λ-calculi

to SK-calculus.

The SK-calculus can be translated to λ-calculus as follows [CF58, CHS72,

Bar85, HS86]:

[[S]] = λg.λf.λx.g x (f x)

[[K]] = λx.λy.x

[[MN ]] = [[M ]] [[N ]] .

For example

[[SKX]] = (λg.λf.λx.g x (f x)) (λx.λy.x) [[X]]

−→ (λf.λx.(λx.λy.x) x (f x)) [[X]]

−→ λx.(λx.λy.x) x ([[X]] x)

−→ λx.(λy.x) ([[X]] x)

−→ λx.x

for any combinator X. Indeed in SK-calculus any combinator of the form

SKX is an identity function and is equivalent to λx.x in λ-calculus.

The following theorem has been proved many times before [CF58, CHS72,

Bar85, HS86] and shows that the translation is a homomorphism.

Theorem 2.3.3. Translation from SK-calculus to λ-calculus preserves the

reduction relation.
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Of course there is also a trivial homomorphism from λv-calculus into λ-

calculus.

Theorem 2.3.4. There is a homomorphism from λv-calculus to λ-calculus.

Proof: Trivial by Lemma 2.1.1. �

Although the top left corner of the computation square is populated by

λv-calculus, the arrows out allow for either λv-calculus or SK-calculus to be

used. Indeed, the homomorphisms in both directions between λ-calculus and

SK-calculus allow these two calculi to be considered equivalent. This com-

pletes the top left corner of the computation square with either λv-calculus

or SK-calculus available when formalising the arrows out. Now there are

two choices about which arrow to follow first: across the top follows sequen-

tiality; and down the side follows extensionality. The path chosen here is to

following extensionality as intensionality leads to new work and new results.

Thus the next chapter introduces concurrency, discusses the left hand side

of the square, and remains focused on the literature. If the reader prefers to

remain on sequential computation then next step is in Chapter 4.
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Chapter 3

Process Calculi

The bottom left corner of the computation square considers extensional con-

current computation, here defined to be process calculi that subsume λ-

calculus. Milner identified the complexity faced by concurrency theorists

[Mil99]:

Building communicating systems is not a well-established science,

or even a stable craft; we do not have an agreed repertoire of con-

structions for building and expressing interactive systems, in the

way that we (more-or-less) have for building sequential computer

programs.

Since Milner et al. [Mil90] showed that their π-calculus [MPW92] generalises

λ-calculus [Chu36, Bar85], process calculi have been expected to support se-

quential computation represented by the λ-calculus [Mil90, BB90, MPW92,

CG98, Mil99]. Even limiting consideration to process calculi that subsume λ-

31
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calculus, there are many that could be the exemplar for the bottom left corner

of the square. This is complicated by the lack of a concurrency benchmark

analogous to Turing-computability for sequential computation [Mil99, PV98].

The most obvious choice is the π-calculus being: the first process calculus

shown to subsume λ-calculus; having widely recognised syntax and semantics;

and being widely related to other process calculi [Mil90, GA97, CG98, PV98].

Indeed, the encoding of Milner et al. for λv-calculus supports parallel re-

duction and translation of terms to processes, the key properties of parallel

encodings.

Arising from the large variety of concurrency models and lack of bench-

mark is a recent focus on relative expressive power and relating different

calculi to each other [Nes06, Par08, Gor08a, Gor08b]. Approaches to relat-

ing process calculi are usually done piecemeal due to the lack of a benchmark

to start from and so many models to take into account. However, a general

approach is taken by Gorla who uses valid encodings to relate process cal-

culi and formalise their relative expressive power [Gor08a, Gor08b, GGJ10].

These valid encodings preserve many important properties and can be easily

used to support the stronger homomorphisms required for the computation

square.

In Gorla’s work on valid encodings he presents a hierarchy of process cal-

culi structured according to relative expressive power [Gor08b, Gor08a]. The

nodes in the hierarchy consist of sets of calculi classified according to proper-

ties of communication [Gor08b, Gor08a]. The π-calculus already fits within
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one of these sets, however it is not in one of the four equally-expressive sets

that sit at the top of the hierarchy. As this dissertation is exploring expressive

power, it is natural to address one of these sets of calculi. Gelernter’s Linda

[Gel85, YFY96, PMR99] makes a good choice as it is from one of the most

expressive sets of calculi and has the least similarity to π-calculus, according

to Gorla’s classification system [Gor08b, Gor08a].

Considering relative expressive power, there are other process calculi that

have conceptual similarities to later work but do not fit within Gorla’s hier-

archy.

One such representative calculus is Gordon et al.’s Spi calculus that intro-

duces structured terms and intensional reductions upon them [GA97]. The

structures of terms include pairing, encryption and natural numbers, with

process forms and reduction axioms that rely upon intensionality upon the

structure of terms. Although all these reduction axioms are within a process

and not part of communication, this step towards intensional communica-

tion is of interest. The Spi calculus has been related to π-calculus before via

translations that preserve some properties [BPV03, BPV05], however these

do not meet the criteria for valid encodings.

Another concept in concurrency is the shift away from the sequential

asymmetry of function and argument to a symmetric parallel composition

where both processes can evolve equally. This was supported by Milner who

considered reductions in asynchronous calculi to be a symmetric interaction

between a process and the environment [Mil99]. Parrow & Victor take this
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concept even further in their fusion calculus that shifts away from traditional

uni-directional information flow to exchange of information during communi-

cation [PV98, BBM04]. They observe that in fusion calculus the terminology

“input” and “output” are kept for familiarity, with “action” and “coaction”

being more appropriate [PV98, p. 177]. Parrow & Victor show that π-calculus

can be translated into fusion calculus [PV98], however this does not meet the

criteria for valid encodings. Although relating fusion calculus to other cal-

culi proves problematic, the symmetry of interaction is conceptually similar

to later work.

The rest of this chapter recalls several process calculi and valid encodings.

Note that all results in this chapter are formalised in the literature and so

shall be restated rather than recalled in detail.

3.1 π-calculus

The π-calculus [MPW92, Mil93] holds a pivotal rôle amongst process calculi

for both popularity and being the most compact that subsumes extensional

sequential computation as represented by the λ-calculus [Mil90]. This section

overviews the π-calculus while introducing concepts and definitions for later

use. The culmination of the section is recalling Milner’s encoding of λv-

calculus in π-calculus.

The processes for the π-calculus are given as follows and exploit a class
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of names (denoted m,n, x, y, z, . . . similar to variables in the λ-calculus):

P ::= 0 | P |P | !P | (νa)P | a(b).P | a〈b〉.P |
√
.

The null process 0 is the process that can perform no communication or

reduction. The parallel composition P | Q are the two processes P and Q

in parallel. The replication !P is the unbounded repetition of the process

P . The restriction (νa)P limits the scope of the name a in the process P .

The input a(b).P coordinates on the channel a and binds an input to the

name b in the process P . The output a〈b〉.P coordinates on the channel a

and outputs the name b before continuing with the process P . The success

process
√

is used to signal reaching a specific state and is added here to

support valid encodings later.

The names of the π-calculus are used for channels of communication and

for information being communicated. The free names of a process fn(P ) are
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given by

fn(0) = {}

fn(P |Q) = fn(P ) ∪ fn(Q)

fn(!P ) = fn(P )

fn((νa)P ) = fn(P )\{a}

fn(a(b).P ) = (fn(P )\{b}) ∪ {a}

fn(a〈b〉.P ) = fn(P ) ∪ {a, b}

fn(
√

) = {} .

The null process has no free names. The free names of two processes in

parallel is the union of their sets of free names. The free names of a replication

are the free names of the process being replicated. The free names of a

restriction are the free names of the process under restriction except the

name being restricted. The free names of an input are the free names of the

body excluding the name being bound, union the channel name. The free

names of an output are the free names of the body, union the channel name

and output name. The success process has no free names.

Substitutions in the π-calculus are partial functions that map names to

names, with domain, range, free names, names, and avoidance, all straight-

forward adaptions from substitutions of the λ-calculus in Section 2.1. The
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application of a substitution σ to name is given by

σx = y if σ maps x to y

σx = x if x /∈ dom(σ).

The application of a substitution σ to a process is defined by

σ(0) = 0

σ(P |Q) = (σP ) | (σQ)

σ(!P ) = !(σP )

σ((νa)P ) = (νa)(σP ) if σ avoids a

σ(a(b).P ) = (σa)(b).(σP ) if σ avoids b

σ(a〈b〉.P ) = (σa)〈σb〉.(σP )

σ(
√

) =
√
.

The substitution has no effect on the null process. A substitution applied to

a parallel composition is applied to the processes in parallel. A substitution

is applied under a replication. As restriction limits the scope of a name only

apply the substitution if there is no clash of names. Similarly for input, apply

the substitution to the channel name and body as long as the binding name

b is avoided. Substitutions apply to all of: the channel name, output name,

and body of an output process. A substitution has no effect on the success

process.

Issues where substitutions must avoid restricted or input names are han-

dled by α-conversion =α that is the congruence relation generated by the
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following axioms

(νa)P =α (νb)({b/a}P ) b /∈ fn(P )

a(b).P =α a(c).({c/b}P ) c /∈ fn(P ) .

The renaming replaces the name that limits scope by another that does not

appear in the process whose scope is limited.

The general structural equivalence relation ≡ is defined in the usual way:

it includes =α and its defining axioms are below.

P | 0 ≡ P P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R (νn)0 ≡ 0

(νn)(νm)P ≡ (νm)(νn)P !P ≡ P | !P

P | (νn)Q ≡ (νn)(P |Q) if n 6∈ fn(P )

The π-calculus has one reduction rule given by

a(b).P | a〈c〉.Q 7−→ {c/b}P | Q .

It states that if an input and output in parallel composition share the same

channel name a then they interact as follows. The input binds b to c in

the body P which is then run in parallel composition with the body Q.

The reduction rule is then closed under parallel composition, restriction and
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structural equivalence to yield the reduction relation 7−→ as follows:

P 7−→ P ′

P | Q 7−→ P ′ | Q

P 7−→ P ′

(νn)P 7−→ (νn)P ′

P ≡ Q Q 7−→ Q′ Q′ ≡ P ′

P 7−→ P ′
.

The reflexive, transitive closure of 7−→ is denoted Z=⇒.

Relations to the π-calculus

This section develops machinery and results for later use and formalises the

relations from λ-calculus into π-calculus. The presentation here is to provide

a sketch of results in the literature and to set up definitions for later use.

To support relations to the π-calculus requires a behavioural theory that

defines what it means for two processes to be equivalent, that is behave

the same way. The standard approach to defining behavioural equivalence

[MPW92, MS92, HY95, BGZZ98, WG04] is summarised below. Note that

the following summary is skeletal as a detailed development of behavioural

theory is performed in Chapter 8 for CPC.

The first step is to define barbs that characterise the interactions a process

can exhibit. For the π-calculus barbs P ↓n can be defined to mean that the
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process P can perform an input or output on the channel n. That is, P has

a form (νm̃)(n(x).P1 | P2) or (νm̃)(n〈x〉.P1 | P2) where n /∈ m̃. Also define

contexts C(·) for π-calculus to be processes where one instance of the null

process is replaced by the dot. Exploiting these, a barbed congruence' can be

defined as the least, symmetric, barb preserving, reduction and context closed

binary relation on processes. That is, two processes are barbed congruent

if: any barb of one process is also a barb of the other; every reduction of

one process can be mimicked by the other; and the process remain barbed

congruent in any context.

The next step is to define a labelled transition system (LTS) that provides

an alternative semantics. The transitions are of the form P
µ−→ P ′ where µ

is a label that describes the action P takes to evolve to P ′. Typically such

actions are either internal actions τ that represent the process reducing,

or external actions (e.g. n〈x〉) that represent an interaction with another

process. For example, the process n〈x〉.P has a transition n〈x〉.P n〈x〉−−→ P

where the label is the output of x on the channel n and the process evolves

to P .

A bisimulation relation ∼ is then defined to equate processes that cannot

be distinguished by any sequence of transitions and that are closed under

substitution. That is, two processes are bisimilar if: every internal transition

of one process is mimicked by an internal transition of the other; every ex-

ternal transition of one process is mimicked by an external transition of the

other; and the processes remain bisimilar under any substitution. Note that
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while the bisimulation for π-calculus requires identical external transitions,

this is not always the case.

To conclude, soundness and completeness are shown. That is; the bisim-

ulation is shown to be a barbed congruence, and the barbed congruence is

shown to be a bisimulation.

This has been developed before in detail for the π-calculus and the results

from the literature shall be assumed [Mil89, MPW92, MS92, HY95].

Now that the π-calculus is recalled it remains to revisit the encoding of

λ-calculus by Milner [Mil90]. In “Functions as Processes” Milner presents

two translations of the form [[·]]c from λ-calculus into π-calculus that depend

upon the operational semantics: one is lazy and the other is call-by-value.

Although both show subsumption of some λ-calculus by π-calculus, the call-

by-value encoding is chosen to meet the requirements of a parallel encoding.

Definition 3.1.1. A translation [[·]]c from a language into process calculus,

parametrised by a name c, is a parallel encoding if the following two proper-

ties hold.

1. Reduction Preservation: For all reductions M −→ M ′ then there is a

sequence of reductions [[M ]]c Z=⇒ ' [[M ′]]c.

2. Parallelisation: The translation of the application MN is of the form

[[MN ]]c
def
= (νñ)(R | [[M ]]n1 | [[N ]]n2)

where n1, n2 ∈ ñ for some ñ and R that depend only upon the transla-

tion.
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Reduction preservation is a natural requirement considering the focus is

on models of computation. An encoding that does not preserve reduction, or

whose reductions map behaviourally distinct terms to equivalent processes,

would not support the same computations.

Parallelisation is a step towards compositionality (see valid encodings 3.2.1

in the next section) of encodings; that the encoding of components can be

independent of the encoding of application. Further, this approach allows

independent reduction of the components of an application, as is supported

by λv-calculus, λ-calculus and SK-calculus (though notably not λl-calculus).

As the shift from sequential to concurrent computation can exploit this to

support parallel reductions, the definition of parallel encoding encourages a

more flexible reduction strategy.

Observe that combining reduction preservation and parallelisation has

the following consequence. For all applications MN such that M −→ M ′

and N −→ N ′ then the translation [[MN ]]c
def
= (νñ)(R | [[M ]]n1 | [[N ]]n2) has

reductions

(νñ)(R | [[M ]]n1 | [[N ]]n2) Z=⇒ ' (νñ)(R | [[M ′]]n1 | [[N ]]n2)

and (νñ)(R | [[M ]]n1 | [[N ]]n2) Z=⇒ ' (νñ)(R | [[M ]]n1 | [[N ′]]n2) .

That is, if the components of an application can each reduce according to the

source reduction strategy, then these reductions can be performed in parallel

in the translation.
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As the βv-reduction rule depends upon the argument being a value the

translation into π-calculus must be able to recognise values. Thus, Milner

defines the following

[[y := λx.t]]
def
= !y(w).w(x).w(p).[[t]]c

[[y := x]]
def
= !y(w).x〈w〉 .

Also the following translation of λv-terms

[[v]]c
def
= (νy)c〈y〉.[[y := v]] y not free in v

[[s t]]c
def
= (νq)(νr)(ap(c, q, r) | [[s]]q | [[t]]r)

ap(p, q, r)
def
= q(y).(νv)y〈v〉.r(z).z〈p〉 .

Observe that application is translated to parallel composition, with some ad-

ditional side processes, and so meets the requirements for a parallel encoding.

That the translation preserves reduction is proved first by showing that

[[ t ]]c is weakly determinate and then in turn there is a call-by-value precon-

gruence relation as done in Theorem 7.7 of Milner [Mil90].

Corollary 3.1.2. The translation [[·]]c is a parallel encoding from λv-calculus

to π-calculus.

Proof: Straightforward by Definition 3.1.1 and Milner’s Theorem 7.7 [Mil90].

�

The lack of a parallel encoding in the reverse direction is immediate, due

to the lack of a parallel composition operator in λv-calculus. However, an
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attempt to define some analogue could be as follows:

[[P | Q]]
def
= R[[P ]][[Q]] .

Here the parallel composition is mapped to application, with some term R

that acts as the machinery as in the translation [[·]]c.

However, the difficulties of how to exploit such a structural encoding from

π-calculus into λv-calculus can be avoided since there are straightforward re-

sults to show that λv-calculus reduction cannot capture concurrency. This is

a corollary of Theorem 14.4.12 of Barendregt [Bar85, Ch 14], showing that

λ-calculus is unable to render concurrency or support concurrent compu-

tations. A similar result is shown by Lemma B of Abramsky [Abr90] who

proves that λ-calculus cannot solve the parallel-or problem. Thus, even with-

out a structural requirement for an encoding of π-calculus into λv-calculus,

the lack of support for π-calculus reductions is sufficient to show that no

reasonable encoding can exist.

Corollary 3.1.3. There is no encoding of π-calculus into λ-calculus that

preserves concurrency.

Proof:[Sketch] By Theorem 14.4.12 of Barendregt [Bar85], alternatively by

Lemma B of Abramsky [Abr90]. Both of these theorems can be used to

show that λ-calculus cannot represent a parallel-or function. The parallel-or
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function is a function f that satisfies the following three rules

f ⊥ ⊥ −→∗ ⊥

f T ⊥ −→∗ T

f ⊥ T −→∗ T

where ⊥ represents non-termination and T represents true. Of course such a

function is trivial to encode in π-calculus by

F = n1(x).m〈x〉.0 | n2(x).m〈x〉.0 .

Observe that F in parallel composition with two processes P1 and P2 that

output true on n1 and n2, respectively, if they reduce to true will report

true on m if either P1 or P2 output true. Since π-calculus can represent the

parallel-or function and Theorem 14.4.12 of Barendregt [Bar85]and Lemma B

of Abramsky [Abr90] show that λ-calculus cannot, the conclusion follows. �

3.2 Valid Encodings

Next is to formally compare the expressive power or process calculi while

respecting certain properties. The basic idea is that given an encoding from

a language L1 to a language L2 it then follows that L2 has equal or greater

expressive power than L1. Although the idea is straight forward, there is

some delicacy in the properties that the encoding must respect. This section:

formalises what it is to be a language; recalls Gorla’s valid encodings and
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their properties; and restates some proof techniques for showing that valid

encodings cannot exist.

A language Li is here defined to be a process calculus that has certain

properties as follows. A language must support a process that represents

no action denoted 0, for example the null process of π-calculus. To support

encoding a language must be able to represent a k-ary context C(· 1; . . . ; · k)

that is a process where k occurrences of 0 are linearly replaced by the holes

{· 1; . . . ; · k} and where linearity ensures each hole occurs only once. As pro-

cess calculi widely exploit names, for any process P of a language the free

names, denoted fn(P ) must be defined. As languages here must support

computation it follows that each language Li supports a notion of reduction,

denoted 7−→i, and the reflexive transitive closure of reduction denoted Z=⇒i.

Denote an infinite sequence of reductions for a language by 7−→ω
i . Further,

each language requires a reference behavioural equivalence 'i to equate be-

haviourally indistinguishable processes. Lastly, let P ⇓i mean that there

exists P ′ such that P Z=⇒i P
′ and P ′ ≡ P ′′ |

√
, for some P ′′ where

√
is a

process signalling success.

Gorla defines an encoding of a source language L1 into a target language

L2 as a pair ([[ · ]], ϕ[[ ]]) consisting of a translation [[ · ]] and a renaming policy

ϕ[[ ]]. The translation converts every source process into a target process. The

renaming policy maps every source name to some construct of the target

language containing k names for some k greater than zero. The translation

may also fix some names to play a precise rôle or may encode a single name
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into a target language construct containing several names. This fixing of

names can be obtained by exploiting the renaming policy [Gor08b]. Finally,

to simplify reading, let S range over processes of the source language (viz.,

L1) and T range over processes of the target language (viz., L2). Such a

definition of encodings is very general and allows many encodings that do

not preserve any behaviour.

Now consider encodings that satisfy the following properties that are

reasoned about at length by Gorla [Gor08b]. Some discussion of these prop-

erties follows the definition of valid encodings, including specifics related to

this dissertation.

Definition 3.2.1 (Valid Encoding [Gor08b]). An encoding ([[ · ]], ϕ[[ ]]) is valid

if it satisfies the following five properties:

1. Compositionality: for every k-ary operator op of L1 and for every

subset of names N , there exists a k-ary context CNop(· 1; . . . ; · k) such

that, for all S1, . . . , Sk with fn(Si) ⊆ N for 1 ≤ i ≤ k, it holds that

[[ op(S1, . . . , Sk) ]]
def
= CNop([[S1 ]]; . . . ; [[Sk ]]).

2. Name invariance: for every S and substitution σ, it holds that

[[σS ]]

 = σ′[[S ]] if σ is injective

'2 σ′[[S ]] otherwise

where σ′ is such that ϕ[[ ]](σ(a)) = σ′(ϕ[[ ]](a)) for every name a.

3. Operational correspondence:
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• for all S Z=⇒1 S
′, it holds that [[S ]] Z=⇒2'2 [[S ′ ]];

• for all [[S ]] Z=⇒2 T , there exists S ′ such that S Z=⇒1 S
′ and T Z=⇒2

'2 [[S ′ ]].

4. Divergence reflection: for every S such that [[S ]] 7−→ω
2 , it holds that

S 7−→ω
1 .

5. Success sensitiveness: for every S, it holds that S ⇓1 if and only if

[[S ]] ⇓2.

Compositionality is a natural property that ensures the encoding of an op-

erator upon processes is a context upon the encodings of the same processes.

That is; the encoding of a process op(S1, . . . , Sk) must be defined by plugging

in the encodings of its sub-processes [[Si]] into a context the depends only upon

the operator under translation CNop([[S1 ]], . . . , [[Sk ]]) and the set of names N .

Observe that this definition of compositionality accounts for all operators in

the source language. Compositionality with respect to some operator has

been assumed before to prove separation results [CCAV08, CCP07]. Indeed,

for proving separation the most widely accepted criterion is a homomorphism

of parallel composition [CM03, HMP08, Pal03, PSVV06, PV04, PV06], how-

ever this has been criticised and there are encodings that do not translate

parallel composition homomorphically [BPV03, BPV05, BG07, Nes00]. As

all process calculi in this dissertation share a common parallel composition

operation, all valid encodings can be assumed semi-homomorphic [GGJ10].

That is; the encoding of parallel composition is through a context of the form
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(νñ)(R | · 1 | · 2) for some restricted names ñ and process R that only depend

on the free names of the translated processes.

Name invariance is required as the process calculi considered in this dis-

sertation are name passing, so encodings cannot depend upon the names of

a process being encoded. Thus, a substitution σ upon a process S should

not change the behaviour of the corresponding substitution σ′ applied to the

encoding of that process [[S]] (taking into account the renaming policy ϕ[[ ]]).

As the focus of encodings is on the reduction or computational capabili-

ties of the languages it follows that operational correspondence requires the

source and target languages have the same reductions. This is captured by

two aspects: (i) every reduction of the source can be mimicked by its trans-

lation (ii) every reduction of a translation corresponds to some reduction of

its source. That is; translation does not prevent or introduce behaviours.

The requirement that the target language only be behaviourally equivalent

'2 allows for additional processes that are introduced by translation to be

ignored as long as they do not introduce any new behaviour.

Divergence reflection ensures any translation does not introduce infinite

reductions or computations, an important semantic issue [CM03, dBP94,

Her91, Nes00].

As the success process
√

is used for recognising the successful result of

some reductions it is necessary that this is preserved by a valid encoding.

Hence, success sensitiveness is necessary to ensure the encoding does not

prevent recognition of reaching certain states.
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Some results concerning valid encodings can be found in “Towards a

unified approach to encodability and separation results for process calculi”

[Gor08b]. In particular, proof techniques for showing separation results, i.e.

for proving that no valid encoding can exist between a pair of languages L1

and L2 satisfying certain conditions. The following proposition and theorems

are of particular use later in Chapters 7 & 9 and so restated here.

Below is one result of operational correspondence: if the source process

has no reductions then its translation must have no reductions.

Proposition 3.2.2 (Gorla [Gor08b]). Let [[ · ]] be a valid encoding; then,

S 7−→/ 1 implies that [[S ]] 7−→/ 2.

The following theorem asserts that if an L1 process S does not reduce

alone but reports success in parallel with itself, then there can be no valid

encoding into a language L2 when no L2 process that does not reduce alone

reduces in parallel with itself.

Theorem 3.2.3 (Gorla [Gor08b], updated by Given-Wilson, Gorla & Jay

[GGJ10]). Assume that there exists S such that S 7−→/ 1 and S 6⇓1 and S | S ⇓1;

moreover, assume that every T that does not reduce is such that T | T 7−→/ 2.

Then, there cannot exist any semi-homomorphic valid encoding of L1 into

L2.

Proof:[Sketch] The proof is by contradiction. Assume there is such a pro-

cess [[S ]]. Then by Proposition 3.2.2 and success sensitiveness [[S ]] 7−→/ 2

and [[S ]] 6⇓2, respectively. With some further work it can be shown that if
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[[S | S ]] ⇓2 then [[S ]] | [[S ]] ⇓2 which in turn implies [[S ]] | [[S ]] 7−→2. Yet

this contradicts the properties of all processes T of the target language. �

The following proof technique exploits the number of names that can be

tested for equality in a single interaction. Define the matching degree of a

language Md(L) to be the least upper bound on the number of names that

must be matched to yield a reduction. It follows that a language L1 cannot

be encoded into a language L2 if the matching degree of L1 is greater than

that of L2, i.e. Md(L1) > Md(L2).

Theorem 3.2.4 (from [Gor08b]). If Md(L1) > Md(L2), then there exists

no valid encoding of L1 into L2.

3.3 Linda

In his work on valid encodings Gorla presents a hierarchy of sets of process

calculi relating their expressive power [Gor08a, Gor08b]. Four sets of equally-

expressive process calculi sit at the top of the hierarchy. As this dissertation

is focused upon expressive power it is natural to address these sets of calculi.

Gelernter’s Linda [Gel85, YFY96, PMR99] is an example of one such calculus

that sits within a set with many differences to π-calculus. Thus Linda is both

an exemplar from Gorla’s work and distinct from other calculi presented here.
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An instance of Linda can be defined by:

t ::= λx | pnq

P ::= 0 | P |P | !P | (νa)P | (t1, . . . , tk).P | 〈n1, . . . , nk〉 |
√

exploiting names as in π-calculus. The templates t are either a binding name

λx used for input or a protected name pnq used to test name equality. The

null process, parallel composition, replication and restriction are as in π-

calculus. The input is a k-tuple of templates and a body process P . As

Linda is asynchronous the output is simply a k-tuple of names without any

body process. Again the success process
√

is added for use in encodings.

A well formed input is linear with respect to binding names. This rules

out (λx, λx) but accepts (λx, pnq, pnq). Only well formed inputs will be con-

sidered.

The free names of a template are given by

fn(λx) = {}

fn(pnq) = {n}

and the binding names by

bn(λx) = {x}

bn(pnq) = {} .
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The free names and binding names of a tuple are as expected: the union

of the free and binding names of their components, respectively. The free

names of a process are the same for π-calculus with the following expansions

for input and output

fn((t1, . . . , tk).P ) = (fn(P )\bn(t1, . . . , tk)) ∪ fn(t1, . . . , tk)

fn(〈n1, . . . , nk〉) = fn(〈n1, . . . , nk〉) .

Substitutions are as in the π-calculus, i.e. a partial function from names to

names. The application of a substitution to a name or process is as expected

with the following rules for templates

σ(λx) = λx

σ(pxq) = pnq if σ maps x to n

σ(pxq) = pxq if x /∈ dom(σ).

Templates are used to implement Linda’s pattern matching. The match

of a template t̃ against an tuple of names ñ is defined as follows

Match( ; ) = {} Match(λx;n) = {n/x} Match(pnq;n) = {}

Match(t;n) = σ1 Match(t̃; ñ) = σ2

Match(t, t̃ ; n, ñ) = σ1 ] σ2

where ẽ denotes a (possibly empty) sequence of entities of kind e (names

or template fields in this case). The match of empty tuples is the empty
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substitution. The match of a binding name λx against a name n creates a

substitution that maps x to n. The match of a protected name pnq against

the name m is the empty substitution when n = m and undefined otherwise.

Here ] denotes the union of partial functions with disjoin domain.

Observe that the match seeks a substitution whose domain is the binding

names of the template and that also ensures equality of protected names

in the template with names in the output. Also note that the match is

only defined when the arities of the template and output are equal and all

protected names are matched against equal names.

Linda’s sole reduction rule is given by

(t̃).P | 〈ñ〉 7−→ σP if Match(t̃; ñ) = σ .

It states that if the match of the template t̃ against the tuple ñ is defined

and generates a substitution σ then apply the substitution to the body P .

The α-conversion, structural equivalence relation and reduction relation

are straight forward in the style of the π-calculus. The barbed congruence

for Linda is similar, except that the barbs are defined with a tuple of names

P ↓(ñ) rather than a single name [BGZZ98]. This is to account for the

multiple names that can be tested for equality by Match in reduction.

The relationship between π-calculus and Linda has been formalised by

Gorla, thus the following are corollaries to his results [Gor08a].

Corollary 3.3.1. There is a homomorphism from π-calculus into Linda.
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Proof:[Sketch] Exploit the translations of Gorla [Gor08a] that all meet the

criteria for homomorphisms here. �

Corollary 3.3.2. There is no homomorphism from Linda into π-calculus.

Proof:[Sketch] Again exploit the results of Gorla [Gor08a] to show there

cannot be a valid encoding or a homomorphism, for example the matching

degree of π-calculus is one while the matching degree of Linda is infinite. �

Further, the homomorphism from π-calculus into Linda can be exploited

to show that there is a parallel encoding from λv-calculus into Linda.

Corollary 3.3.3. There is a parallel encoding from λv-calculus into Linda.

Proof:[Sketch] Exploit the parallel encoding from λv-calculus into π-calculus

and then the homomorphism from π-calculus into Linda, Corollaries 3.1.2 &

3.3.1 respectively. �

3.4 Intensionality in Spi Calculus

As this dissertation explores intensionality in computation it is natural to

consider process calculi that already support arbitrary structures. Gordon

et al.’s Spi calculus supports a variety of structured terms and intensional

reductions based upon these structures [GA97]. However, in Spi calculus

these reductions are limited to within a process and not part of communica-

tion. The rest of this section overviews the Spi calculus as a process calculus

supporting intensionality, albeit in a limited manner.
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The Spi calculus is distinct from the other calculi presented in this chapter

as the names are now generalised to terms of the form

M,N ::= n | x | (M,N) | 0 | suc(M) | {M}N .

The names n are as in π-calculus and Linda, and are intended for labelling

channels. The variables x are familiar from λ-calculus. The pair (M,N)

support the combination of any two component terms into a single term

form. The zero 0 and successor suc(M) are used to construct the natural

numbers. The encryption {M}N encrypts the term M using the term N as

the key.

Although the names and variables are separated for conceptual reasons

in the original work, there is no impact on intensionality so the differences

will be elided here.

Of particular structural interest are the pair and encryption terms that

can be bound to a single name (or variable) and have internal structure.

Although the pairing may appear similar to the tupling of polyadic calculi

they are distinct as pairs may be bound to a single name while tuples cannot.

The structural difference is clearer for the encryption that has no apparent

analogue.
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The processes of the Spi calculus are

P ::= 0 | P |P | !P | (νm)P |
√
| M(x).P | M〈N〉.P

| [M is N ]P | let (x, y) = M in P

| case M of {x}N : P | case M of 0 : P suc(x) : P .

The null process, parallel composition, replication, restriction and success

process are all familiar from the π-calculus and Linda. The input M(x).P

and output M〈N〉.P are generalised from their π-calculus analogues to allow

terms in the place of channel names and output. The (Spi) match [M is N ]P

determines structural equality of M and N . The pair splitting let (x, y) =

M in P decomposes pairs and binds the components to x and y respectively

in P . The (Spi decryption) case case M of {x}N : P decrypts M binding

the encrypted message to x. The integer case case M of 0 : P suc(x) : Q

branches according to the number M .

The free names of terms and processes are expected: unions of compo-

nents for all the term forms; and with the names being bound excluded from

the restriction, input, pair splitting, decryption case and integer case.

Substitutions in the Spi calculus are partial functions from names to terms

and otherwise as expected.

Concerning the operational semantics, consider the general form where



58 CHAPTER 3. PROCESS CALCULI

communication is given by the rule

M(x).P | M〈N〉.Q 7−→ {N/x}P | Q

where M is any term of the Spi calculus. Further, the Spi calculus has several

axioms that occur within a process and it is here that intensionality appears:

[M is M ]P 7−→ P

let (x, y) = (M,N) in P 7−→ {M/x,N/y}P

case {M}N of {x}N : P 7−→ {M/x}P

case 0 of 0 : P suc(x) : Q 7−→ P

case (suc(N)) of 0 : P suc(x) : Q 7−→ {N/x}Q .

The match process [M is N ]P reduces when the two terms M and N are the

same, naturally this requires that they have the same internal structure. The

pair splitting process let (x, y) = M in P reduces when M is a pair and so

is intensional with respect to M . Similarly the decryption case process form

case M of {x}N : P reduces when M is some message M encrypted with the

key N . Here intensionality can be used to recognise the encrypted structure

of M before decrypting with N . The integer case process case M of 0 :

P suc(x) : Q has two reduction rules according to the structure of M . If

M is zero then reduce to P . If M is of the form suc(N) then bind x to N

in Q. Again intensionality is used to examine the structure of the term to

determine how reduction should proceed.
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The α-conversion, structural equivalence relation and reduction relation

are straight forward in the usual manner as for π-calculus or Linda. The

barbed congruence for Spi calculus is similar to π-calculus [AG97].

Clearly the Spi calculus allows the binding of an arbitrary term to a name

and has axioms that are intensional. Despite this there are translations of

the Spi calculus into process calculi captured here, such as the π-calculus

[BPV03, BPV05]. However, these translations do not meet the criteria for

valid encodings, specifically the translation of a process may reduce when

the original process does not thus violating Proposition 3.2.2.

Showing there is a parallel encoding from λv-calculus into Spi calculus is

trivial as all the primitives required in π-calculus are in Spi calculus.

Theorem 3.4.1. There is a parallel encoding from λv-calculus into Spi cal-

culus.

Proof: Exploit the parallel encoding from λv-calculus into π-calculus as in

Corollary 3.1.2. �

The homomorphism from π-calculus into Spi calculus is similarly trivial.

Theorem 3.4.2. There is a homomorphism from π-calculus into Spi calcu-

lus.

Proof: There is a trivial translation that maps π-calculus to Spi calculus and

is homomorphic upon all syntax. This meets the criteria for valid encoding

and thus homomorphism. �
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3.5 Exchange in Fusion Calculus

All of the process calculi above have explicit input and output actions, how-

ever process calculi can support information exchange where both input and

output can be performed by the same primitive in an atomic reduction. Most

process calculi have explicit input and output similar to the explicit function

(input) and argument (output) of sequential computation. However, in con-

currency there is much more symmetry between processes. This ranges from

Milner’s observation [Mil99] that even an asynchronous reduction is an inter-

action with the environment (an application of Newton’s third law [New87]),

to Parrow & Victor’s fusion calculus where interaction applies the resulting

substitution to both processes (and more) [PV98, BBM04]. This section con-

siders information exchange by recalling Parrow & Victor’s fusion calculus.

The processes of fusion calculus are

P ::= 0 | P |P | (νx)P | !P | u(x̃).P | u〈x̃〉.P |
√

that exploit a class of names as in π-calculus. The null process, parallel

composition, restriction, replication, input, output and success process are

all as for the (polyadic) π-calculus.

The free names, substitutions, α-conversion and structural equivalence

relation are all the same as for π-calculus accounting for polyadicity.
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The difference appears in the reduction axiom that is given by

u(x1, . . . , xk).P | u〈y1, . . . , yk〉.Q
{x1=y1,...,xk=yk}⇔→ P | Q .

Here the input and output primitives fuse their names and continue with the

processes P and Q. Interestingly, this fusing of names applies to the entire

environment and may effect other processes. This is more clearly captured

by the notation of Wischik and Gardner [WG05]

(νũ)(u(x̃).P | u〈ỹ〉.Q | R) 7−→ σP | σQ | σR dom(σ) ∪ ran(σ) ⊆ {x̃, ỹ}

and ũ = dom(σ) \ ran(σ)

and σ(v) = σ(w)

iff (v, w) ∈ E(x̃ = ỹ)

where E(x̃ = ỹ) is the least equivalence relation on names generated by

the equalities x̃ = ỹ that is defined whenever the tuples have the same arity

(|x̃| = |ỹ|). Expressed in this manner the fusion calculus reduction relation is

obtained by closing under parallel composition, restriction and the structural

equivalence as per usual.

The reduction relation then follows as usual with the reference behavioural

equivalence available in the literature [WG04]; again the details shall not be

revisited here.

As the names are fused and the result applicable to both processes the

interaction is conceptually symmetric. Indeed Parrow & Victor noted that
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“input” and “output” are chosen for familiarity while “action” and “coac-

tion” may be more appropriate [PV98, p. 177]. In addition to this fusing

of names, the fusion calculus is also synchronous and polyadic. Thus both

processes gain all the information, input or output, of processes they com-

municate with.

The peculiarity of name fusion is such that relating fusion calculus to

other process calculi is non-trivial. Due to this, the formal relationship of

fusion calculus to other process calculi shall be withheld until Chapter 9.

Regarding the subsumption of λ-calculus by fusion calculus, Parrow &

Victor formalise both a generalisation of π-calculus and an encoding of strong

lazy λ-calculus in their paper “The Fusion Calculus: Expressiveness and

Symmetry in Mobile Processes (extended abstract)” [PV98]. Thus, fusion

calculus subsumes λv-calculus indirectly via the parallel encoding into π-

calculus and other relations are straightforward.

This completes the background material introducing concurrent compu-

tation. The next chapter returns to the top of the computation square to

consider intensionality.



Chapter 4

Sequential Pattern-Matching

Returning to the top of the computation square considers the introduction

of intensionality to sequential computation. Recent work by Jay and oth-

ers on pure pattern calculus [Jay04, JK06, GW07, JK09, Jay09] bases re-

duction upon pattern-matching. In addition to the extensional functions of

λ-calculus, pure pattern calculus supports intensional functions that exam-

ine the internal structure of their arguments [JGW11]. The intensionality

of pattern calculus is limited to data structures, a subset of terms that are

headed by a matchable symbol. Intuitively, the intensionality of pure pattern

calculus is more expressive than purely extensional models such as λ-calculus,

however the relationship is not so clear. Although there is a trivial homo-

morphism from λ-calculus into pure pattern calculus, the inability to define

pure pattern calculus within λ-calculus has yet to be formalised.

This chapter introduces pattern-matching as a basis for defining inten-

sionality in sequential computation using pure pattern calculus.

63
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4.1 Syntax

The terms of the pure pattern calculus are

t ::= x | x̂ | t t | [θ]t→ t .

The variable symbols x are similar to the variables of λ-calculus. The match-

able symbols x̂ serve to build data structures and as binding symbols in

patterns. Application is familiar from λ-calculus and SK-calculus in Chap-

ter 2. Cases [θ]p → s have a sequence of binding symbols θ, a pattern p and

body s. The binding symbols θ are used to denote which matchable symbols

in the pattern are data structures and which are binding (bound in pattern

matching, detailed later in this chapter). A case is well formed if each bind-

ing symbol appears only once in θ. All cases appearing in the rest of this

dissertation are assumed well formed.

The free variable symbols (or free variables) of a term fv(t) are given by

fv(x) = {x}

fv(x̂) = {}

fv(s t) = fv(s) ∪ fv(t)

fv([θ]p→ s) = fv(p) ∪ (fv(s)\θ) .

A variable symbol is free in itself. A matchable symbol is not free. Free

variable symbols of applications are the union of the free variable symbols

of the function and argument. The free variable symbols of a case are the
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free variable symbols of the body excluding those bound in θ, union the free

variable symbols of the pattern. Note that the binding symbols of a case

bind the body only and not the pattern.

The free matchable symbols of a term fm(t) are

fm(x) = {}

fm(x̂) = {x}

fm(s t) = fm(s) ∪ fm(t)

fm([θ]p→ s) = fm(s) ∪ (fm(p)\θ) .

The free matchable symbols of a variable symbol is empty. The free match-

able symbols of a matchable symbol are itself. The free matchables of an

application is the union of the free matchables of the function and argument.

The free matchable symbols of a case are the free matchables of the pattern

excluding the binding symbols, union the free matchables of the body.

A substitution is a partial function from variable symbols to terms as for

the λ-calculus. The application of a substitution to a term is defined by

σx = u if σ maps x to u

σx = x if x /∈ dom(σ)

σx̂ = x̂

σ(s t) = (σs) (σt)

σ([θ]p→ t) = [θ](σp)→ (σt) if σ avoids θ .

If a variable symbol is in the domain of the substitution then apply the map-
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ping of the substitution, otherwise do nothing. Substitutions have no effect

on matchable symbols. Apply a substitution to the function and argument

of applications. A substitution is applied to the pattern and body of a case

as long as the substitution avoids the binding symbols θ.

The action σ̂ of a substitution σ on matchable symbols can be defined as

follows

σ̂x = x

σ̂x̂ = u if σ̂ maps x to u

σ̂x̂ = x̂ if x /∈ dom(σ̂)

σ̂(s t) = (σ̂s) (σ̂t)

σ̂([θ]p→ t) = [θ](σ̂p)→ (σ̂t) if σ̂ avoids θ .

The behaviour is the same as normal substitution except operating on match-

able symbols rather than variable symbols. When σ is of the form {ui/xi}

then {ui/x̂i} may be used to denote σ̂.

One of the foci of the pure pattern calculus is the identification of data

structures. Data structures are terms headed by a matchable symbol defined

as follows

d ::= x̂ | d t .

Pattern-matching is based on a notion of matchable form, a subset of the

terms that are stable under substitution and reduction. In pure pattern

calculus these are given by the data structures and cases

m ::= d | [θ]t→ t .
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A compound is a matchable form that is also an application; all other match-

able forms are atoms, i.e. matchable symbols and cases.

4.2 Pattern-Matching

The match of a pattern p against an argument u with respect to binding

symbols θ is either a successful match some of a substitution σ or match

failure none. The disjoint union ] of two matches is: undefined if either

match is undefined; the disjoint union of the substitutions if both are some;

and none otherwise. The algorithm for matching {u//[θ]p} is given by

{u//[θ]x̂} = some {u/x} x ∈ θ

{x̂//[θ]x̂} = some {} x /∈ θ

{u v//[θ]p q} = {u//[θ]p} ] {v//[θ]q} if p q and u v are matchable forms

{u//[θ]p} = none otherwise if u, p are matchable forms

{u//[θ]p} = undefined otherwise.

The match of a binding symbol x̂ (with x ∈ θ) against any argument u is some

of the substitution {u/x}. The match of a matchable symbol x̂ (with x /∈ θ)

against itself is some of the empty substitution {}. Matches of applications

are done component wise when both pattern and argument are matchable

forms, with the disjoint union of the results. Otherwise if the argument is a

matchable form then the result is match failure none. If none of these apply

then the argument is not a matchable form and so suspend the matching
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until later.

As reduction of a pattern may eliminate binding symbols it is necessary

to ensure that successful matches account for all the binding symbols of the

pattern. The check of a defined match µ on a set of binding symbols θ is µ

if µ is some σ when the domain of σ is exactly θ and none otherwise.

The matching {u/[θ]p} of a pattern p against an argument u with respect

to binding names θ is the check of the match {u//[θ]p}. The application of

the result of matching to a term is given by

some σ t −→ σt

none t −→ [x]x̂→ x .

If the result of a matching is some substitution then apply the substitution

to the term, otherwise reduce to the identity function. The choice of iden-

tity function when matching fails is to support extensions (pattern-matching

functions that have many cases, discussed below and in Section 5.4) and

typing (details in “Pattern Calculus: Computing with Functions and Data

Structures” [Jay09]).
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4.3 Operational Semantics

As substitutions and reductions may require renaming of symbols as in λ-

calculus, renaming through α-conversion is defined by

[θ]p→ s =α [{y/x}θ]{ŷ/x̂}p→ {y/x}s y /∈ fm(p) ∪ fv(s) .

Where {y/x}θ acts as expected by replacing x with y in θ. Note that the

symbol being renamed is a matchable symbol in the pattern p, and a variable

symbol in both the bindings θ and body s.

Reduction in the pure pattern calculus is by the match rule

([θ]p→ s) u −→ {u/[θ]p}s

whenever the matching is defined. Observe that the match rule is similar to

the β-reduction of λ-calculus except that there may be patterns or arguments

that never reduce to a matchable form. Despite this, pure pattern calculus

is progressive and every closed irreducible term is a matchable form [Jay09,

p. 50].

The reduction relation (also denoted −→) is the relation obtained by

applying an instantiation of a reduction rule to some sub-expression. The

transitive closure of the reduction relation is denoted −→∗.

There is a translation from λ-calculus to pure pattern calculus defined as
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follows

[[x]] = x

[[s t]] = [[s]] [[t]]

[[λx.t]] = [x]x̂→ [[t]] .

The only interesting translation is the λ-abstraction λx.t which becomes a

case of the form [x]x̂→ [[t]].

Theorem 4.3.1. There translation from λ-calculus to pure pattern calculus

preserves reduction.

Proof: The only interesting translation is of abstractions as the variables

and applications are direct. Consider the translation of an abstraction

[[λx.t]] = [x]x̂→ [[t]] .

The pattern x̂ with binding symbol [x] will always match and always pass

the check. Thus ([x]x̂ → [[t]])[[s]] will always reduce by {[[s]]/x}[[t]] and the

rest is straightforward. Thus reduction is preserved. �

Corollary 4.3.2. There is a homomorphism from λ-calculus to pure pattern

calculus

Proof: Application is preserved by the translation and reduction by Theo-

rem 4.3.1. �
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Given a sequence of cases [θi]pi → si the pattern-matching function

[θ1]p1 → s1

| [θ2]p2 → s2

. . .

| [θn]pn → sn

is specified as follows. When applied to some argument, it reduces to the

first case [θi]pi → si where matching succeeds, or to match failure if none

succeed. These can be represented as cases using extensions [Jay04, Jay09].

Using extensions the function

[x, y]x̂ ŷ → True

| [z]ẑ → False

reduces to True when applied to a compound and False when applied to any-

thing else. Indeed such a function is intensional with respect to its argument

and can distinguish ĉ s from ĉ or [θ]p→ t. Indeed, these can be exploited to

develop generic queries that traverse arbitrary data structures [Jay09]. How-

ever, the intensionality is limited to data structures and patterns cannot be

used to match or decompose cases.

Intuitively pure pattern calculus supports intensionality that cannot be

represented within λ-calculus. However, the limitations of intensionality on

data structures and the subtleties of managing both variable and matchable
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symbols in translations make formalising this intuition difficult. A more

direct approach is to consider intensionality within the combinatory logic

setting.

Notes. A detailed account of pure pattern calculus, including standard

properties, relation to other pattern calculi, and typing, can be found in

“Pattern Calculus: Computing with Functions and Data Structures” [Jay09].



Chapter 5

Intensional Sequential

Computation

Intuitively intensional functions are more expressive than merely extensional

functions, however populating the top right corner of the computation square

requires more formality than intuition. As the relations between λ-calculus

and pure pattern calculus are complicated by the subtleties of symbols (vari-

able and matchable), a cleaner account is by considering combinatory logic.

Even in SK-calculus there are Turing-computable functions defined upon

the combinators that cannot be represented within SK-calculus. For exam-

ple, consider the function that reduces any combinator of the form SKX to

X. Such a function cannot be represented in SK-calculus, or λ-calculus, as

all combinators of the form SKX represent the identity function. However,

such a function is Turing-computable and definable upon the combinators.

This is an example of a more general problem of factorising combinators that

73
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are applications and stable under reduction.

Exploiting this factorisation is SF -logic (or SF -calculus) [JGW11] that

is able to support intensional functions on combinators including a structural

equality of normal forms. Thus SF -calculus sits at the top right hand cor-

ner of the computation square. The arrow across the top of the square is

formalised by showing a homomorphism from SK-calculus into SF -calculus.

The lack of a converse is proven by showing that the intensionality of SF -

calculus cannot be represented within SK-calculus, or λ-calculus.

Although this completes the top edge of the computation square, there

are also stylistic links to the pattern-matching of pure pattern calculus, and

more general results about combinatory logics. The intensionality supported

by factorisation can be characterised by pattern-matching in the style of pure

pattern calculus and used to define a new property, namely structure com-

pleteness [JGW11]. This completeness subsumes combinatorial completeness

and captures a notion of symbolic computation on normal forms [JGW11].

This chapter introduces symbolic functions on combinators and proves

there are intensional Turing-computable functions that cannot be represented

within λ-calculus. A full development of SF -calculus is presented to illustrate

the concepts before other factorisation logics are discussed. Pattern-matching

in the combinatory setting is presented as a basis for structure completeness.
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5.1 Symbolic Functions

Symbolic functions, as presented in Section 2.2, need not be merely exten-

sional, indeed it is possible to define symbolic functions that consider the

structure of their arguments. Define a symbolic function R by

R(O,M,N) = M

R(PQ,M,N) = NPQ .

Here R branches according to its first argument. Of course R does not

respect equality since applications may reduce to operators.

One approach to resolving this would be to modify the reduction rela-

tion, as in Kearns’ system of discriminators [Kea69, Kea73] which includes

a discriminator similar to R. Although this preserves a weakened motion of

reduction, the equivalence relation is not an equality in the sense of Leibnitz,

which allows the substitution of equals for equals.

A better approach is to restrict R to partially applied operators. Each

operator O has an arity given by the minimum number of arguments it

requires to instantiate a rule. Thus, K has arity 2 while S has arity 3. A

partially applied operator is a combinator of the form OX1 . . . Xk where k

is less than the arity of O. An operator with a positive arity is an atom

(meta-variable A). A partially applied operator that is an application is a

compound. Hence, the partially applied operators of SK-calculus are the

atoms S and K, and the compounds SM , SMN and KM for any M and
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N .

Now define a factorisation function F on combinators by

F(A,M,N) −→ M if A is an atom

F(PQ,M,N) −→ NPQ if PQ is a compound.

Lemma 5.1.1. If reduction is confluent then factorisation is a symbolic com-

putation.

Proof: To prove that F is a symbolic function, it suffices to prove that

F(X,M,N) = F(X ′,M ′, N ′) whenever both sides are defined and X = X ′

and M = M ′ and N = N ′ are three pairs of combinators. If X is a compound

PQ then, by confluence, X ′ must also be a compound P ′Q′ such that P = P ′

and Q = Q′. Thus, F(X,M,N) = NPQ = N ′P ′Q′ = F(X ′,M ′, N ′).

Similarly, if X is an atom A then by confluence X ′ must also be A so that

F(X,M,N) = M = M ′ = F(X ′,M ′, N ′). Finally, F is computable by

leftmost reduction of its first argument to a partially applied operator. �

Theorem 5.1.2. Factorisation of SK-combinators is a symbolic computa-

tion that is not representable within SK-calculus.

Proof: Suppose that there is an SK-combinator F that represents F . Then,

for any combinator X it follows that

F (SKX)S(KI) −→ KI(SK)X −→ X .

Translating this to λ-calculus as in Lemma 2.3.1 yields [[F (SKX)S(KI)]] −→
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[[X]] and also

[[F (SKX)S(KI)]] = [[F ]] [[(SKX)]] [[S]] [[KI]] −→ [[F ]] (λx.x) [[S]] [[KI]] .

Hence, by confluence of reduction in λ-calculus, all [[X]] share a reduct with

[[F ]] (λx.x) [[S]] [[KI]] but this is impossible since [[S]] and [[K]] are distinct

normal forms. Hence F cannot be represented by an SK-combinator. �

This result appears at odds with the traditional understanding of compu-

tation. It is straight forward to encode factorisation using a Turing machine,

yet λ-calculus, SK-logic and Turing machines all compute the same things.

The difficulty is resolved by observing that the classical theorems all concern

numerical rather than symbolic computations. For example, Kleene [Kle52]

states Church’s thesis as:

THESIS 1: Every effectively calculable function (effectively de-

cidable predicate) is general recursive.

As general recursive functions are numerical by definition, the restriction to

natural numbers, and things encoded as numbers through Gödelisation, is

implicit.

A natural objection is that the proofs of encodings between various models

are symbolic and so can be generalised. For example, that an SK-combinator

can be encoded on the tape of a Turing machine that supports factorisation

and this machine then expressed in SK-calculus. However, the catch is

that the expression of factorisation does not imply its representation as a
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combinator, indeed the encoding of the combinators onto the tape has already

performed the factorisation.

For example, consider the factorisation of SKK. Using Polish notation,

it can be encoded on a tape by aaSKK where a represents application.

Then expressing the tape as an SK combinator yields a list [a, a, S,K,K]

whose factorisation is a routine list operation. However, to produce this list

within the calculus would require support for factorisation that SK-calculus

does not possess (Theorem 5.1.2). In other words, the metamathematical

process of encoding a combinator onto the tape of a Turing machine is not

representable by an SK-combinator. Note that Gödelisation is not relevant

here, being solely concerned with the representation of [a, a, S,K,K] by a

number.

5.2 SF -calculus

When considering intensionality in a combinatory logic it is tempting to

specify a factorisation combinator F as a representative for F . However, F

is defined using partially applied operators, which cannot be known until all

reduction rules are given, including those for F . This circularity of definition

is broken by beginning with a syntactic characterisation of the combinators

that are to be factorable; similar to the matchable forms of pure pattern

calculus.
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The SF -calculus [JGW11] has factorable forms given by

S | SM | SMN | F | FM | FMN

and reduction rules

SMNX −→ MX(NX)

FOMN −→ M if O is S or F

F (PQ)MN −→ NPQ if PQ is a factorable form.

Observe that these rules can also be expressed with each of the factorable

forms as the first argument to F

SMNX −→ MX(NX)

FSMN −→ M

F (SX)MN −→ NSX

F (SXY )MN −→ N(SX)Y

FFMN −→ M

F (FX)MN −→ NFX

F (FXY )MN −→ N(FX)Y .

Lemma 5.2.1. The partially applied operators of SF -calculus are its fac-

torable forms. Hence F represents F .

Proof: Trivial. �
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Theorem 5.2.2. Reduction of SF -calculus is confluent.

Proof: It is enough to observe that the reduction rules are orthogonal [Ros73,

Hue80], since partially applied operators are stable under reduction. �

The expressive power of SF -calculus subsumes that of SK-calculus since

K is here defined to be FF and I is defined to be SKK as before.

Theorem 5.2.3. There is a homomorphism from SK-calculus into SF -

calculus.

Proof: Define K to be FF and the rest is trivial. �

Corollary 5.2.4. There is a homomorphism from λv-calculus to SF -calculus.

Proof: SF -calculus represents S and K and so there is a homomorphism

from λv-calculus into SF -calculus by Theorem 2.3.2. �

Corollary 5.2.5. There is a homomorphism from λ-calculus to SF -calculus.

Proof: SF -calculus represents S and K and so there is a homomorphism

from λ-calculus into SF -calculus by Theorem 2.3.2. �

Theorem 5.2.6. There is no homomorphism from SF -calculus to λ-calculus.

Proof: Straightforward by exploiting the ability of F to retrieve X from

identity combinators of the form SKX and by Theorem 5.1.2. �
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This completes the top edge of the computation square by showing that

SF -calculus subsumes λv-calculus and that the subsumption is irreversible.

Indeed, these results hold for SK-calculus and λ-calculus as well.

The rest of this chapter explores intensional sequential computation cul-

minating in a new completeness result for combinatory logics.

SF -calculus’ further power is illustrated by defining a combinator for

structural equality of normal forms. In brief, the algorithm is as follows: if

both normal forms are compounds then compare their corresponding com-

ponents: if both are atoms then compare them directly using a combinator

eqatom; otherwise the normal forms are not equal.

Clearly F is able to distinguish the atoms from the compounds. The

combinator isComp = λ∗x.Fx(KI)(K(KK)) tests for being a compound

since

isComp O −→ FO(KI)(K(KK))

−→ KI

isComp(PQ) −→ F (PQ)(KI)(K(KK))

−→ K(KK)PQ

−→ KKQ

−→ K if PQ is a compound.

Further, the first and second components of a factorable application can be
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recovered by

car = λ∗x.FxIK

cdr = λ∗x.FxI(KI)

whose names are taken from the corresponding Lisp [McC60] operators. Note

that they map operators to I so it is normal to check for being a compound

first.

Now all that remains is to separate the operators S and F . Define is(F )

by

is(F ) = λ∗x.x(KI)(K(KI))K .

It maps F to K and S to KI as desired since

is(F ) F −→ F (KI)(K(KI))K −→ KKI −→ K

is(F ) S −→ S(KI)(K(KI))K −→ KIK(K(KI)K) −→ KI .

Further, define equality of operators by

eqatom = λ∗x.λ∗y.if is(F )x then is(F )y else (not is(F )y) .
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Structural equality of normal forms can now be given by

equal = fix(λ∗e.λ∗x.λ∗y.

if isComp x

then if isComp y

then (e (car x) (car y)) and (e (cdr x) (cdr y))

else KI

else if isComp y

then KI

else eqatom x y .

Theorem 5.2.7. Let M and N be SF -combinators in normal form. If M =

N then equal M N −→ K else equal M N −→ KI.

Proof: The proof is by straightforward induction on the structure of M . �

Thus, the combinator equal represents the symbolic computation whose

domain is given by pairs of combinators that have a normal form. Of course,

equal also detects inequality of, say, an operator O and a factorable form

PQ even if Q does not have a normal form.

The development above illustrates a more general result.

Theorem 5.2.8. Any symbolic computation restricted to normal forms of

SF -calculus is representable.

Proof: The encoding of the normal form of the function argument can be

revealed by first factorising into operators and then using eqatom to identify
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the operator values. That done, the computation can be represented by a

combination of S and K in the traditional manner. �

Head Normal Forms

In extensional combinatory calculi such as SK-calculus, the head normal

forms are the partially applied operators, but this is not true of intensional

calculi such as SF -calculus. This section defines head normal forms in this

new setting, and shows that the definition of SF -calculus cannot be modified

to force the factorable forms to be the head normal forms without making

the logic unsound.

The head normal forms are defined by induction on their structure. An

operator is head normal if it is irreducible. An application PQ is head normal

if P is head normal and no reduct of PQ instantiates a reduction rule.

For SK-calculus the head normal forms are exactly the partially ap-

plied operators, but this is not true of SF -calculus as the combinator Ω =

(SII)(SII) does not reduce to a factorable form, and so FΩFF is a head

normal form but not a partially applied operator.

Theorem 5.2.9. Consider a combinatory calculus with two operators S and

H. Given a collection of headable forms define the reduction rules as follows

SMNX −→ MX(NX)

HOMN −→ M O is S or H

H(PQ)MN −→ NPQ PQ is headable.
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Let K = HH and I = SKK as usual. If the head normal forms of this

calculus are the headable forms then the resulting logic is unsound, i.e. K =

KI.

Proof: The proof proceeds by using the decidability of head normality to

obtain decidability of normality, which yields a contradiction. Consider the

combinator

isn = fix(λ∗i.λ∗x.H(HxH(λ∗y.λ∗z.H(i y)(i z)I)) S (K(K(SS)))) .

For all combinators X, the combinator isnX reduces to S if X is normal-

isable and to SS otherwise. The proof is by induction on the structure of

X.

First consider the situation when X does not reduce to a head normal

form or headable form. Then (HXH(λ∗y.λ∗z.H(isn y)(isn z)I)) is a head

normal form, i.e. a headable form, and so

isnX −→ H(HXH(λ∗y.λ∗z.H(isn y)(isn z)I)) S (K(K(SS))))

−→ K(K(SS))(HXH)(λ∗y.λ∗z.H(isn y)(isn z)I)

−→ SS

as required. If X is an atom A then

isnA −→ H(HAH(λ∗y.λ∗z.H(isn y)(isn z)I)) S (K(K(SS))))

−→ HHS(K(K(SS)))

−→ S .
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If X is a headable form PQ then

isn(PQ) −→ H(H(PQ)H(λ∗y.λ∗z.H(isn y)(isn z)I)) S (K(K(SS))))

−→ H((λ∗y.λ∗z.H(isn y)(isn z)I)PQ) S (K(K(SS))))

−→ H(H(isnP )(isnQ)I) S (K(K(SS)))) .

If P is not normalisable then

isn(PQ) −→ H(H(SS)(isnQ)I) S (K(K(SS))))

−→ H(ISS) S (K(K(SS))))

−→ SS

as required. If P is normalisable then

isn(PQ) −→ H(HS(isnQ)I) S (K(K(SS))))

−→ H(isnQ) S (K(K(SS)))) .

If Q is normalisable then this reduces to HSS(K(K(SS))) −→ S while if Q

is not normalisable then it reduces to K(K(SS))SS −→ SS, all as required.

This completes the proof of the properties of isn. Now it is routine to

show that

isnormal = λ∗x.H(isn x)K(K(K(KI)))

decides whether its argument has a normal form. Finally, consider the para-
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doxical combinator

paradox = fix(λ∗f.if isnormal f then Ω else K)

= if isnormal paradox then Ω else K .

If isnormal paradox = KI then paradox = K and so

KI = isnormal paradox = isnormal K = K

in which case the logic is unsound. Alternatively, if isnormal paradox = K

then paradox = Ω so that K = isnormal paradox = isnormal Ω = KI. �

Related Combinatory Calculi

Now consider how factorisation can be exploited in the presence of different

operators that define additional calculi. Each calculus to be developed in-

cludes a formal description of its factorable forms. It is then trivial to show

that these are the partially applied operators and that reduction is confluent

in the style of the corresponding proofs for SF -calculus. It is easy to con-

firm in each case that structural equality of normal forms is definable, once

equality of atoms is supported, and that the analogue of Theorem 5.2.8 holds.

Rather than do the proofs here, these results will follow from Corollaries 5.4.4

and 5.4.5.

Perhaps the closest calculus to SF -calculus is SKF -calculus where S,K

and F take their usual meanings and the factorable forms are S, SM , SMN ,



88 CHAPTER 5. INTENSIONAL SEQUENTIAL COMPUTATION

K, KM , F , FM and FMN .

Define:

is(K) = λx.F (xFF )K(K(K(KI)))

is(F ) = λx.x(KI)(K(KI))K

eqatom = λx.λy.if is(K)x then is(K)y

else if is(F )x then ((not is(K)y) and is(F )y)

else not (is(K)y or is(F )y) .

There is a trivial homomorphism of SF -calculus into SKF -calculus that

maps S to S and F to F but it is not clear if there is a homomorphism

in the opposite direction. The natural approach would be to map S to S

and K to FF , but then F cannot be mapped to F since FKMN reduces

to M in SKF -calculus but to NFF in SF -calculus, so this will not do.

Such problems will arise whenever an atom is translated to a compound, as

when Schönfinkel’s original combinators are represented as SK-combinators.

Hence, it is not yet clear if there is a “best” combinatory logic, much less

that SF -calculus is best.

Another way of extending SF -calculus is to add constructors in the style

of the matchable symbols of pure pattern calculus. A constructor is an atom

that does not appear at the head of any reduction rule, so that its arity

is infinite. Typical examples are Pair for building pairs, or Nil for the

empty list. Let C be a finite collection of constructors (meta-variable C).
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Also required is an operator eqatom for deciding equality of atoms, since

constructors are extensionally equal.

The constructors are used to build data structures as in pure pattern

calculus:

d ::= C | d M .

The SFC-calculus is then defined with factorable forms:

d | S | SM | SMN | F | FM | FMN | eqatom | eqatom M

which now include all the data structures. The reduction rules for S and F

are as usual. The reduction rules for eqatom are

eqatom O O −→ K

eqatom P Q −→ KI otherwise, if P and Q are factorable.

Observe that any countable collection of constructors can be encoded as

data structures built from a single, universal constructor C, as CC, C(CC),

C(CCC) etc; exploiting this yields the SFC-calculus. There is no need for

eqatom to be an operator, since it can be defined as follows. The combinator

is(C) = λ∗x.F (x(FK)IK)(KI)(K(KK))

maps C to K and maps S and F to KI. Hence, eqatom can be defined by

using is(C) first and then separating S and F as before.
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Finally, data structures can be represented in a variant of SF -calculus

in which Ω = (SII)(SII) plays the role of constructor. Define {S, F,Ω}-

calculus to have data structures

d ::= Ω | d M

and factorable forms

d | S | SM | SMN | F | FM | FMN

and reduction rules

SMNX −→ MX(NX)

FOMN −→ M if O is S or F

F (PQ)MN −→ NPQ if PQ is factorable .

Confluence is established as for SF -calculus since the only reduct of Ω that is

a factorable form is Ω itself. Again eqatom can be defined to distinguish S and

F as before. In a sense, Ω is playing the role of an constructor, even though

it is not a operator, or even a partially applied operator. Obviously, this

approach can be generalised to include other non-normalising combinators

as “constructors.”
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5.3 Combinatory Pattern-Matching

As intensionality in the combinatory setting is inspired from pattern calculi

it is natural to define pattern-matching in the combinatory setting. Consider

a confluent combinatory calculus whose patterns (meta-variable P ) are its

terms that are in normal form. From now on, limit attention to linear patterns

in which no variable occurs twice, similar to the bindings in pure pattern

calculus. While this may seem a little artificial, non-linear patterns describe

structures that come with side-conditions about the equality of substructures;

it is simpler and more natural to replace these side conditions with an explicit

equality test.

A case G is given by an equation of the form

G(P ) = M

where P is a pattern and M is an arbitrary term. Such a case yields a

symbolic function on terms given by pattern-matching, which is defined as

follows.

When G is applied to some term U the pattern P will be matched against

U to try and determine the values of the free variables in P so that these can

be substituted into M . That is, matching seeks a substitution σ such that

σP = U . However, the presence or absence of such a substitution is not an

infallible guide to evaluation.

If the equation σP = U is that of the logic then there can be many
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substitutions. For example, consider that P is x y and U is S. A naive

interpretation would consider that matching must fail, however as SKSS =

S = SKKS it would be acceptable to match x against either SKS or SKK.

Rather than take this course, it is more natural to develop a syntactic pro-

cedure for matching. In turn, this must respect reduction, which requires a

notion of partially applied operator in a term calculus.

The matchable forms upon which matching acts can be identified with

the partially applied operators of the term calculus on the understanding

that variables have arity 0. It follows that variables are neither atoms nor

appear at the head of a compound, which is appropriate since substitution

may trigger new reductions

Define a match to be either a successful match, some σ where σ is a

substitution, or a match failure none. Match equality is defined using term

equality. Two successful matches some σ1 and some σ2 are equal if σ1 and

σ2 have the same domain and σ1x = σ2x for each variable x in their domain.

Also none equals none. Otherwise, matches are not equal. Disjoint unions ]

of matches are as for pure pattern calculus. The application of a match to a

term is also defined as in pure pattern calculus

some σ M = σM

none M = I .

For definiteness, match failure must produce a combinator; the identity
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proves to be a useful choice when defining extensions as before.

The match {U//P} of a pattern P against a term U is defined by

{U//x} = some {U/x}

{A//A} = some {} if A is an atom

{UV//PQ} = {U//P} ] {V//Q} if UV is a compound

{U//P} = none otherwise if U is matchable

{U//P} = undefined otherwise.

The restrictions to matchable forms in the above definition are necessary to

ensure that matching is stable under reduction of U .

Now the case G introduced earlier becomes a partial function of combi-

nators defined by

G(U) = {U//P}M .

Lemma 5.3.1. Cases are symbolic computations on confluent term calculi.

Proof: For G above to be well-defined, it suffices to prove that if U = U ′

and the matches {U//P} and {U ′//P} are both defined then these matches are

equal. The proof is by induction upon the structure of P . If P is a variable x

then {U//x} = {U ′//x} since U = U ′. Otherwise, U and U ′ must be matchable

forms. By confluence, if U is an atom then U ′ must be the same atom, while

if U is some compound U1U2 then U ′ must be some compound U ′1U
′
2 such

that U1 = U ′1 and U2 = U ′2. Thus the only possibility of interest is when P is

an application P1P2 and U and U ′ are compounds as described above. Hence

{U//P} = {U1//P1} ] {U2//P2} = {U ′1//P1} ] {U ′2//P2} = {U ′//P}
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by two applications of induction. �

5.4 Completeness

A confluent combinatory calculus is structure complete if, for every normal

term P and term M , the case G(P ) = M is represented by some term

P →M .

Such a calculus is combinatorially complete since λx.M is given by x→

M . Hence, the calculus has combinators S and K with the usual behaviours.

Given a sequence of cases Pi →Mi the pattern-matching function

P1 →M1

| P2 →M2

. . .

| Pn →Mn

is defined as in pattern calculus. In the combinatory setting, the extension

of a combinator N (the default) by a special case consisting of a pattern P

and a body M is given by

P →M | N = S(P → KM)N .

When applied to some term U such that {U//P} = some σ for some substi-
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tution σ then

(P →M | N)U = S(P → KM)NU

−→ (P → KM)U(NU)

−→ (σKM)(NU)

= K(σM)(NU) = σM .

Alternatively, if {U//P} is none then

(P →M | N)U −→ (P → KM)U(NU)

−→ I(NU)

−→ NU .

For example, F is defined by

x y → (m→ n→ n x y)

| x→ (m→ n→ m)

where the arrow in the case is right-associative. Similarly, eqatom is defined
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by

eqatom =

A1 → (A1 → K | y → KI)

| A2 → (A2 → K | y → KI)

. . .

| An → (An → K | y → KI)

| x→ y → KI .

where A1, . . . , An is a listing of the finite collection of atoms.

A confluent combinatory calculus supports duplication (respectively, elim-

ination, factorisation, separation of atoms) if it has a combinator S (respec-

tively, K,F, eqatom) that represents S (respectively, K,F , equality of atoms).

Less formally, it supports S (respectively, K,F, eqatom) if it supports the cor-

responding symbolic function.

Lemma 5.4.1. For any three of S,K, F and eqatom there is a confluent

combinatory calculus that supports them but does not support the fourth.

Proof: For not supporting S, consider the F -calculus with factorable forms

F, FM and FMN . Then define K = FF and eqatom = K(KK). As nothing

can be duplicated, S is not representable.

For K, consider the S-calculus in which the usual rule for S is supple-

mented by S −→ S. Since there are no normal forms, there are no partially

applied operators or atoms, so define F = eqatom = S. However, nothing

can be eliminated by S so K is not definable.

For F , use SK-calculus with eqatom defined by extensionality.
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For eqatom, consider SFT -calculus in which T satisfies the same rules as

S. �

Theorem 5.4.2. A confluent combinatory calculus is structure complete if

and only if, it supports S,K, F and eqatom.

Proof: The forward direction follows from the previous constructions. For

the converse, suppose that suitable combinators S,K, F and eqatom exist.

Every case G defined by G(P ) = M is represented by P → M which is

defined by induction on the structure of P , employing a fresh variable x, as

follows:

• If P is a variable y then P →M is λ∗y.M .

• If P is an atom A then P →M is λ∗x.Fx(eqatomAxMI)(K(KI)).

• If P is an application P1P2 then P →M is

λ∗x.FxI(S(P1 → K(P2 →M))(K(KI))) .

The proof that P → M represents G(P ) = M is by induction on the

structure of P . Let U be a combinator such that G(U) is defined and consider

(P →M)U . Without loss of generality, no free variable of P is free in U .

• If P is a variable x then (P → M)U is (λx.M)U which reduces to

{U/x}M by Lemma 2.3.1.

• If P is an atom A then (P →M)U −→ FU(eqatomAUMI)(K(KI)).

When U is A this reduces to M . If U is any other matchable form then

(P →M)U reduces to I.
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• If P is an application P1P2 then (P →M)U reduces to

FUI(S(P1 → K(P2 →M))(K(KI))) .

If U is an atom then this reduces to I. Alternatively, if U is a matchable

form U1U2 then this reduces to

S(P1 → K(P2 →M))(K(KI))U1U2

which reduces to (P1 → K(P2 → M))U1(KI)U2. Now if {U1//P1} is

some σ1 for some substitution σ1 then the reduct becomes (σ1K(P2 →

M))(KI)U2 which is (P2 →Mσ1)U2 since P2 and P1 do not share any

free variables. In turn, if {U2//P2} = some σ2 for some substitution σ2

then the combinator reduces to σ2(σ1M). Now, free variables in the

range of σ1 are also free in U , and so not in the domain of σ2. Thus,

the result is (σ1 ] σ2)M = {U//P}M . Alternatively, if {U2//P2} = none

then the result is I as required. Finally, if {U1//P1} = none then the

result is I(KI)U2 = I as required.

�

Corollary 5.4.3. A confluent combinatory calculus that supports S, F and

eqatom is structure complete if it has any normal forms.

Proof: If the calculus has a normal form then it has an atom A so that K

can be defined to be FA. �

Corollary 5.4.4. The calculi with operators SF or SKF or SFC or SFC,

and the {S, F,Ω}-calculus are all structure complete.
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Corollary 5.4.5. Any symbolic computation restricted to normal forms of a

structure complete, confluent combinatory calculus is representable.

Proof: The combinators S,K, F and eqatom are sufficient to redeploy the

proof of Theorem 5.2.8. �

Pattern-matching functions of the sort described here have been used to

define path polymorphic functions [Jay09] which traverse the internal struc-

ture of their arguments. This is achieved by recursively using the pattern

x y to represent an arbitrary compound. In the examples below, recursion is

made implicit, and function arguments may be placed on the left-hand side

of defining equations.

A familiar example is structural equality, which can be described by the

pattern-matching function

equal =

x1 x2 → ( y1 y2 → (equal x1 y1) and (equal x2 y2)

| y → KI)

| x→ ( y1 y2 → KI

| eqatom x) .

Theorem 5.4.6. Let M and N be combinators in normal form. If M = N

then equal M N −→ K else equal M N −→ KI.

Proof: The proof is by straightforward induction on the structure of M . �
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More generally, path polymorphism can be used to define generic queries

that can select from, or update within, arbitrary structures. Since select-

ing requires a significant amount of list processing, the principles are better

illustrated through updating. First, define apply2all by

apply2all f x =

( y1 y2 → (apply2all f y1) (apply2all f y2)

| y → y)

(f x) .

The query apply2all f x recursively applies itself to the components of the

result of applying f to x as a whole. Building on this, define the update

combinator by

update t f = apply2all (λ∗x. if t x then f x else x) .

The basic path polymorphism of apply2all is used, but the function f is

only applied when a test t is passed. Once lists have been defined, then it is

equally easy to define a query select that produces a list of components of

a structure satisfying some property.

Notes. The pattern-matching described in this chapter is subtly different

from that of pure pattern calculus (and other pattern calculi [Jay04, JK06,

GW07, JK09, Jay09]). On one hand the patterns of pattern completeness do

not allow for free variables in the manner of pure pattern calculus. On the
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other hand, SF -calculus can factorise combinators, i.e. functions, that pure

pattern calculus cannot. Formally, there are (unpublished) translations from

pure pattern calculus into compound calculus, and from compound calculus

into SFC-calculus. In the reverse, none of compound calculus, static pattern

calculus, or dynamic/pure pattern calculus can represent F .

Further details on SF -calculus are available in “A combinatory account of

internal structure” [JGW11] including additional commentary on the relation

to classical theory and the typing of F using System F [GLT89].
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Chapter 6

Concurrent Pattern Calculus

Intensionality in sequential computation yields greater expressive power so

it is natural to consider intensional concurrent computation. This chapter

introduces concurrent pattern calculus (CPC) [GGJ10] that populates the

bottom right corner of the computation square. Intensionality in CPC is

supported by generalising from structure complete style pattern-matching to

symmetric pattern-unification. This in turn provides the basis for defining

interaction, much as pattern-matching defines reduction for pure pattern

calculus.

The symmetry and bi-directional information flow of pattern-unification

in CPC provide a natural language to express trade. Trades can discover each

other using common interest represented by some information in a pattern.

They can then exchange information in an atomic interaction to complete a

trade.

The ability to unify patterns based on multiple names and upon structure

103
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allows CPC to support reduction and rewriting systems. There are several

ways to approach encoding computation models in CPC that support differ-

ent properties ranging from a simple reduction system to parallel rewriting

systems.

This chapter develops CPC with interaction based on pattern-unification.

Concepts are illustrated through examples of share trading and reduction

systems which serve as a precursor to later applications and computation

models, respectively.

6.1 Syntax

The trade patterns (meta-variables p, p′, p1, q, q
′, q1, . . .) are built using a class

of names (familiar from π-calculus and Linda) and have the following forms

Patterns p ::= λx binding name

x variable name

pxq protected name

p • p compound.

Binding names λx denote information sought by a trader and are similar to

binding names in Linda templates. Variable names x represent information

being offered and are familiar from π-calculus and Linda. Protected names

pxq represent recognised information that cannot be traded, again similar

to templates in Linda. A compound combines two patterns p and q, its
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components, into a pattern p•q, somewhat similar to the pairs of Spi calculus.

Compounds are left associative similar to application in λ-calculus, pure

pattern calculus, and combinatory logics. The atoms are patterns that are

not compounds. The atoms x and pxq are defined to know x.

There is a correspondence between the trade patterns and the communi-

cation primitives of more familiar process calculi. Binding names correspond

to inputs and variable names to outputs. The protected names are similar

to the protected names in Linda templates and can also be used to repre-

sent channels as in the π-calculus. There is some subtlety in the relationship

to variable names. As protected names specify a requirement or template

similar to their rôle in Linda it is natural that they unify with the variable

form of the name. Similarly, as protected names in CPC are used to support

channel-based communication it is also natural that protected names unify

with themselves.

The subtleties can be clarified by considering a simple trading example

from the stock market that is trading shares. A stock jobber is offering to

sell shares in company ABC for one dollar, as represented by a pattern of the

form

ABC • $1 .

A stock raider is offering to buy shares in ABC but does not want anyone to

know this, unless they are offering to sell, as represented by the pattern

pABCq • λx .
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Finally, a bottom feeder is interested in buying any cheap shares and so may

use a pattern of the form

λx • $1 .

Given a pattern p the sets of: variables names, denoted vn(p); protected

names, denoted pn(p); and binding names, denoted bn(p), are as expected

with the union being taken for compounds. The free names of a pattern p,

written fn(p), is the union of the variable names and protected names of p.

A pattern is well formed if each binding name appears only once, similar to

Linda templates and structure complete patterns. All patterns appearing in

the rest of this dissertation are assumed to be well formed.

As protected names are limited to recognition and binding names are

being sought, neither should be communicable to another process. Thus, a

pattern is communicable, able to be traded to another process, if it contains

no protected or binding names.

Protection of a name can be extended to a communicable pattern p by

defining

pxq = pxq pp • qq = ppq • pqq .

A substitution σ (also denoted σ, σ1, ρ, ρ1, θ, θ1, . . .) is a partial function

from free names to communicable patterns. Otherwise substitutions and

their properties are familiar from Chapters 2, 3, 4 & 5. These are applied to
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patterns as follows:

σx =

 p if σ maps x to p

x if x /∈ dom(σ)

σpxq =

 ppq if σ maps x to p

pxq if x /∈ dom(σ)

σ(λx) = λx

σ(p • q) = (σp) • (σq) .

Similar to pure pattern calculus, the action σ̂ of a substitution σ can be

defined by

σ̂x = x

σ̂pxq = pxq

σ̂(λx) =

 p if σ maps x to p

λx if x /∈ dom(σ̂)

σ̂(p • q) = (σ̂p) • (σ̂q) .

The behaviour is the same as a normal substitution except operating on

binding names rather than free names. When σ is of the form {pi/xi} then

{pi/λxi} may be used to denote σ̂.

The symmetric matching or unification {p||q} of two patterns p and q

attempts to unify p and q by generating substitutions upon their binding

names. When defined, the result is some pair of substitutions whose domains
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are the binding names of p and of q. The rules to generate the substitutions

are:

{x||x}

{x||pxq}

{pxq||x}

{pxq||pxq}


= ({}, {})

{λx||q} = ({q/x}, {}) if q is communicable

{p||λx} = ({}, {p/x}) if p is communicable

{p1 • p2||q1 • q2} = ((σ1 ∪ σ2), (ρ1 ∪ ρ2))

 {p1||q1} = (σ1, ρ1)

{p2||q2} = (σ2, ρ2)

{p||q} = undefined otherwise.

Two atoms unify if they know the same name. A name that seeks informa-

tion, a binding name, unifies with any communicable pattern to produce a

binding for its underlying name. Two compounds unify if their correspond-

ing components do; the resulting substitutions are given by taking unions of

those produced by unifying the components (necessarily disjoint as patterns

are well-formed). Otherwise the patterns cannot be unified and the matching

is undefined.

Observe that unlike in pure pattern calculus, there is no failure of pattern

unification. The reason for this is discussed when defining interaction in the

next section.
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The processes of CPC are given by

Processes P ::= 0 null process

P |P parallel composition

!P replication

(νx)P restriction

p→ P case.

The null process, parallel composition, replication and restriction are the

classical ones for process calculi: 0 is the inactive process; P | Q is the

parallel composition of processes P and Q, allowing the two processes to

evolve independently by interacting; the replication !P provides as many

parallel copies of P as desired; (νx)P declares a new name x, visible only

within P and distinct from any other name. The traditional input and output

primitives are replaced by the case p→ P that has a pattern p and body P .

A case with the null process as the body p→ 0 may also be written p when

no ambiguity may occur. Note that replication, restriction and cases bind

stronger than parallel composition.

The free names of processes, denoted fn(P ), are defined as usual for all

the traditional primitives and

fn(p→ P ) = fn(p) ∪ (fn(P )\bn(p))

for the case. As expected the binding names of the pattern bind their free
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occurrences in the body.

6.2 Operational Semantics

Renaming is handled through α-conversion, =α, that is the congruence rela-

tion generated by the following axioms

(νx)P =α (νy)({y/x}P ) y /∈ fn(P )

p→ P =α ({λy/λx}p)→ ({y/x}P ) x ∈ bn(p), y /∈ fn(P ) ∪ bn(p) .

Renaming of a restriction is as usual. The renaming of a binding name is

also as expected with the usual restrictions.

The general structural equivalence relation ≡ is defined just as in π-

calculus [Mil93] and includes α-conversion. The defining axioms of structural

equivalence are:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P !P ≡ P | !P

P | (νn)Q ≡ (νn)(P | Q) if n 6∈ fn(P ) .

It states that: | is a commutative, associative, monoidal operator, with 0

acting as the identity; that restriction is useless when applied to the empty

process; that the order of restricted names is immaterial; that replication

can be freely unfolded; and that the scope of a restricted name can be freely
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extended, provided that no name capture arises.

The application σP of a substitution σ to a process P is defined in the

usual manner to avoid name capture. For cases this ensures that substitution

avoids the binding names in the pattern:

σ(p→ P ) = (σp)→ (σP ) if σ avoids bn(p).

Proposition 6.2.1. For every substitution σ and process P , there is an α-

equivalent process P ′ such that σP ′ is defined. If P1 and P2 are α-equivalent

terms, then fn(P1) = fn(P2) and, if Q1 = σP1 and Q2 = σP2 are both defined,

then Q1 =α Q2.

Proof: The proof is by straightforward induction. �

CPC has one interaction axiom given by

(p→ P ) | (q → Q) 7−→ (σP ) | (ρQ) if {p||q} = (σ, ρ) .

It states that if the unification of two patterns p and q is defined and gen-

erates (σ, ρ), then apply the substitutions σ and ρ to the bodies P and Q,

respectively. If the matching of p and q is undefined then no interaction

occurs.

Unlike in the sequential setting there is no need for capturing failure of

unification. This is due to interaction being opportunistic between processes

rather than being forced by application between terms. As such, failure to

interact should not prevent interactions with other processes.
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The interaction rule is then closed under parallel composition, restriction

and structural equivalence in the usual manner (although not under a case

as in pure pattern calculus)

P −→ P ′

P | Q −→ P ′ | Q

P −→ P ′

(νn)P −→ (νn)P ′

P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′
.

The reflexive and transitive closure of 7−→ is denoted Z=⇒.

For later convenience ñ shall denote a collection of names n1, . . . , ni or

other entities as before in defining Linda in Section 3.2.

The examples and theorems developed later in the dissertation rely on

control of interaction. The remainder of this section formalises some prop-

erties of interaction particularly to support the behaviour of channel-based

communication.

Definition 6.2.2 (Interaction). Two processes P and Q interact if they have

a reduct R such that P Z=⇒ p → P1 | P2 and Q Z=⇒ q → Q1 | Q2 and

{p||q} = (σ, ρ) and (σP1) | (ρQ1) | P2 | Q2 Z=⇒ R.

The rest of this section formalises that protected names can be used

to ensure that interacting processes both know the same name. Similar

results have shown that Linda style pattern-matching can be used to ensure

a channel name is known [Gor08a, Gor08b]. Here the results are generalised
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to account for pattern-unification and the larger class of patterns.

First is to show that if a case has a protected name in the pattern then

it will only interact with other cases that know the same name, i.e. have the

same name free in their pattern.

Lemma 6.2.3. If the unification of patterns p and q is defined then any

protected name of p is a free name of q.

Proof: Without loss of generality q is a not a binding name λx as this

implies p is communicable (and so without protected names). Now proceed

by induction on the structure of p:

• If p is a name then it follows that p is some protected name pxq. Then

q must be either x or pxq for the matching to be defined and x is in the

free names of q.

• If p is of the form p1•p2 then by unification q must be of the form q1•q2
and {pi||qi} is defined for i ∈ {1, 2}. Now pn(p) = pn(p1) ∪ pn(p2) and

fn(q) = fn(q1) ∪ fn(q2) and by two applications of induction pn(pi) ⊆

fn(qi) and conclude with pn(p) ⊆ fn(q).

�

Lemma 6.2.4. Given a process P and substitution σ, then fn(σP ) ⊆ fn(P )∪

fn(σ).

Proof: Trivial by definition of the application of σ. �

Lemma 6.2.5. Given a process P such that P Z=⇒ P ′, then fn(P ′) ⊆ fn(P ).
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Proof: Trivial by properties of substitutions and Lemma 6.2.4. �

Lemma 6.2.6. Suppose a process p→ P interacts with a process Q. If x is

a protected name in p then x must be a free name in Q.

Proof: For Q to interact with p→ P it must be that Q Z=⇒ q → Q1 |Q2 such

that {p||q} is defined. Then by Lemma 6.2.3 the free names of q include x and

consequently x must be free in q → Q1 | Q2 and it follows by Lemma 6.2.5

that x is free in Q. �

These results can be used to show that CPC supports channel-based

communication with similar properties to π-calculus. The key idea is that a

protected name requires both processes to know that name to interact. This

shall be exploited in the following section’s examples with a formal account

of supporting channel-based communication in Chapters 7 & 9.

6.3 Trade in CPC

This section uses the example of share trading to explore the potential of

CPC. The scenario is of two potential traders, a buyer and a seller, who wish

to engage in trade. To complete a transaction the traders need to progress

through two stages: discovering each other and exchanging information. Both

traders begin with a pattern for their desired transaction. The discovery

phase can be characterised as a pattern-unification problem where traders’

patterns are used to find a compatible partner. The exchange phase occurs

when a buyer and seller have agreed upon a transaction. Now each trader
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wishes to exchange information in a single interaction, ensuring both traders

are satisfied with a complete transaction.

The rest of this section develops a solution in three stages. The first

stage demonstrates discovery, the second introduces a registrar to validate

the traders, the third extends the second with protected names to ensure

privacy. The development is done here in CPC to present the concepts and

expressiveness of CPC. Later in Section 10.1 the development will be repeated

and extended in Concurrent bondi a programming language that implements

CPC [Con11].

Solution 1

Consider two traders, a buyer and a seller. The buyer Buy1 with bank account

b and desired shares s can be given by

Buy1 = s • λm→ m • b • λx→ B(x) .

The first pattern s • λm is used to match with a compatible seller using

share information s, and to input a name m to be used to coordinate the

exchange of bank account information b for share certificates bound to x.

The transaction concludes successfully with B(x).

The seller Sell1 with share certificates c and desired share sale s is given

by

Sell1 = (νn)s • n→ n • λy • c→ S(y) .
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The seller creates a fresh name n and then attempts to find a buyer for the

shares described in s, offering n to the buyer to continue the transaction. The

fresh name n is then used to coordinate the exchange of billing information

bound to y for the share certificates c. The seller then concludes with the

successfully completed transaction as S(y).

The discovery phase succeeds when the traders are placed in a parallel

composition and discover each other by unifying on s as follows

Buy1 | Sell1

≡ (νn)(s • λm→ m • b • λx→ B(x) | s • n→ n • λy • c→ S(y))

7−→ (νn)(n • b • λx→ B(x) | n • λy • c→ S(y)) .

The next phase is to exchange billing information for share certificates

(νn)(n • b • λx→ B(x) | n • λy • c→ S(y)) 7−→ (νn)(B(c) | S(b)) .

The transaction concludes with the buyer having the share certificates c and

the seller having the billing account b.

This solution allows the traders to discover each other and exchange in-

formation atomically to complete a transaction. However, there is no way to

determine if a process is a trustworthy trader.
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Solution 2

Now add a registrar that keeps track of registered traders. Traders offer

their identity to potential partners and the registrar confirms if the identity

belongs to a valid trader. The buyer is now

Buy2 = s • iB • λj → nB • j • λm→ m • b • λx→ B(x) .

The first pattern now swaps the buyer’s identity iB for the seller’s, bound to

j. The buyer then consults the registrar using the identifier nB to validate j;

if valid, the exchange continues as before coordinating with a name provided

by the registrar.

Now define the seller symmetrically by

Sell2 = s • λj • iS → nS • j • λm→ m • λy • c→ S(y) .

Also define the registrar Reg2 with identifiers nB and nS to communicate

with the buyer and seller, respectively, by

Reg2 = (νn)(nB • iS • n | nS • iB • n) .

The registrar creates a new name n to provide to traders who have been

validated; then it makes the name available to known traders who attempt

to validate another known trader. Although rather simple, the registrar can

easily be extended to support a multitude of traders.
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Running these processes in parallel yields the following interaction

Buy2 | Sell2 | Reg2

≡ (νn)(s • iB • λj → nB • j • λm→ m • b • λx→ B(x) | nB • iS • n

| s • λj • iS → nS • j • λm→ m • λy • c→ S(y) | nS • iB • n)

7−→ (νn)(nB • iS • λm→ m • b • λx→ B(x) | nB • iS • n

| nS • iB • λm→ m • λy • c→ S(y) | nS • iB • n) .

The share information s allows the buyer and seller to discover each other and

swap identities iB and iS. The next two interactions involve the buyer and

seller validating each other’s identity and inputting the name to coordinate

the exchange phase

(νn)(nB • iS • λm→ m • b • λx→ B(x) | nB • iS • n

| nS • iB • λm→ m • λy • c→ S(y) | nS • iB • n)

7−→ (νn)(n • b • λx→ B(x)

| nS • iB • λm→ m • λy • c→ S(y) | nS • iB • n)

7−→ (νn)(n • b • λx→ B(x) | n • λy • c→ S(y)) .

Now that the traders have validated each other, they can continue with the

exchange step from before

(νn)(n • b • λx→ B(x) | n • λy • c→ S(y)) 7−→ (νn)(B(c) | S(b)) .
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The traders exchange information and successfully complete with B(c) and

S(b) as before.

Although this solution satisfies the desire to validate that traders are le-

gitimate, the freedom of unification allows for malicious processes to interfere.

Consider the promiscuous process Prom given by

Prom = λz1 • λz2 • a→ P (z1, z2) .

This process is willing to match any other process that will swap two pieces of

information for some arbitrary information a. Such a process could interfere

with the traders trying to complete the exchange phase of a transaction. For

example,

(νn)(n • b • λx→ B(x) | n • λy • c→ S(y))

| λz1 • λz2 • a→ P (z1, z2)

7−→ (νn)(B(a) | n • λy • c→ S(y) | P (n, b))

where the promiscuous process has stolen the identifier n and the bank ac-

count information b. The unfortunate buyer is left with some useless infor-

mation a and the seller is waiting to complete the transaction.



120 CHAPTER 6. CONCURRENT PATTERN CALCULUS

Solution 3

The vulnerability of Solution 2 can be repaired by using protected names.

The buyer, seller and registrar can be repaired to

Buy3 = s • iB • λj → pnBq • j • λm→ pmq • b • λx→ B(x)

Sell3 = s • λj • iS → pnSq • j • λm→ pmq • λy • c→ S(y)

Reg3 = (νn)(pnBq • piSq • n | pnSq • piBq • n) .

Now all communication between the buyer, seller and registrar use protected

identifiers: pnBq, pnSq and pmq. Thus, all that remains is to ensure appropriate

restrictions:

(νnB)(νnS)(Buy3 | Sell3 | Reg3) .

Therefore, other processes can only interact with the traders during the dis-

covery phase, which will not lead to a successful transaction. The registrar

will only interact with the traders because all the registrar’s patterns have

protected names known only to the registrar and a trader (Lemma 6.2.6).

6.4 Computing with CPC

This section develops a simple boolean reduction system and shows how this

can be encoded in CPC. This serves to further introduce CPC syntax and

interactions as well as a precursor to formalising CPC’s expressive power



6.4. COMPUTING WITH CPC 121

with respect to sequential computation models and rewriting in Chapter 7.

Consider a simple boolean reduction system B with terms given by

t ::= true | false | cond t t t .

The two boolean primitives true and false, and the typical conditional state-

ment cond r s t with arguments r, s and t.

As the development in this section will demonstrate some different ap-

proaches to encoding sequential reduction systems into CPC, three different

collections of reduction rules are given for B: core, optional and parallel.

There are three core reduction rules

cond true s t −→ s

cond false s t −→ t

r −→ r′

cond r s t −→ cond r′ s t

.

The first two rules switch according to the first argument to a conditional;

with true reducing to the second argument and false reducing to the third.

The third rule reduces the first argument to a conditional.

Although these suffice for B’s core behaviour, additional rules can be

defined that allow reduction of the second and third arguments to the con-



122 CHAPTER 6. CONCURRENT PATTERN CALCULUS

ditional. Two optional reduction rules to support reduction under the con-

ditional are

s −→ s′

cond r s t −→ cond r s′ t

t −→ t′

cond r s t −→ cond r s t′

that reduce the second or third arguments, respectively. Observe that this is

similar to reducing arguments to combinators in SK-calculus or SF -calculus.

The B-terms can be easily encoded into patterns by defining the construc-

tion (| · |), exploiting reserved names true, false and cond, as follows

(|true|) def
= true

(|false|) def
= false

(|cond r s t|) def
= cond • (|r|) • (|s|) • (|t|) .

Observe that all three map the operator, true, false or cond, to a name and

use compounds to preserve the arguments to conditionals.

By representing B-terms in the pattern of a CPC case, the reduction can

then be driven by defining cases that recognise a reducible structure and

perform the appropriate operations. This is similar to how a Turing machine

operates on a tape, as is discussed further when encoding SF -calculus in

Chapter 7 and in the conclusions in Chapter 11. The reduction for the first
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two core rules can be captured by cases of the form

cond • true • λs • λt→ s

cond • false • λs • λt→ t

that will unify with the construction of terms of the form cond true s t

and cond false s t, respectively. The third core rule is a little more com-

plex, requiring a pattern that will unify with the encoding of the form

cond (cond r1 s1 t1) s2 t2. The first argument can then be reduced inde-

pendently before being combined with the rest of the original pattern. Thus,

define a process to perform these operations as follows

cond • (λa • λb • λc • λd) • λs • λt

→ (a • b • c • d→ λz → cond • z • s • t) .

The first pattern unifies with an encoded term whose first argument can be

reduced, binding the components of the first argument with λa •λb •λc •λd.

The second pattern is used to reduce a • b • c • d by interaction with another

process to perform the reduction. The third pattern binds the result of

reducing a • b • c • d with λz and then the components are recombined into

cond • z • s • t.

These three processes that perform the core reductions can be combined
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into a B-reducing process R as follows

R
def
= !cond • true • λs • λt→ s

| !cond • false • λs • λt→ t

| !cond • (λa • λb • λc • λd) • λs • λt

→ (a • b • c • d→ λz → cond • z • s • t) .

Observe that R is irreducible due to all cases having a binding name as their

rightmost component.

Thus the encoding [[·]] of B terms into CPC can then be easily defined by

[[t]]
def
= (|t|) | R

where the term is translated to the parallel composition of its construction

and the B-reducing process.

Theorem 6.4.1. The encoding [[·]] of B-terms into CPC preserves the core

reduction rules.

Proof: Consider the B term t that has a reduction t −→ t′. The proof is by

induction on the structure of t to show that (|t|) → P | R Z=⇒ (|t′|) | P | R.

Then taking P = 0 yields [[t]] Z=⇒ [[t′]].

• If t is of the form cond true r s then the core reduction must be

cond true r s −→ r
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and t′ = r. Now consider the following reduction sequence in CPC:

cond • true • (|r|) • (|s|)→ P | R

≡ cond • true • (|r|) • (|s|)→ P | R

| cond • true • λs • λt→ s

7−→ (|r|) | P | R .

• If t is of the form cond false r s then the core reduction must be

cond false r s −→ s

and t′ = s. Now consider the following reduction sequence in CPC:

cond • false • (|r|) • (|s|)→ P | R

≡ cond • false • (|r|) • (|s|)→ P | R

| cond • false • λs • λt→ t

7−→ (|r|) | P | R .

• If t is of the form cond (cond b1 r1 s1) r s then the core reduction must

be

cond b1 r1 s1 −→ c

cond (cond b1 r1 s1) r s −→ cond c r s

and t′ = cond c r s. Now consider the following reduction sequence in
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CPC:

cond • (cond • (|b1|) • (|r1|) • (|s1|)) • (|r|) • (|s|)→ P | R

≡ cond • (cond • (|b1|) • (|r1|) • (|s1|)) • (|r|) • (|s|)→ P | R

| cond • (λa • λb • λc • λd) • λs • λt

→ (a • b • c • d→ λz → cond • z • s • t)

7−→ cond • (|b1|) • (|r1|) • (|s1|)→ (λz → cond • z • (|r|) • (|s|)) | P | R

= (|cond b1 r1 s1|)→ (λz → cond • z • (|r|) • (|s|)) | P | R .

Now by induction hypothesis, since cond b1 r1 s1 −→ c there is a

sequence of reductions (|cond b1 r1 s1|)→ P1 | R Z=⇒ (|c|) | P1 | R. Take

P1 = λz → cond • z • (|r|) • (|s|) and proceed as follows

(|cond b1 r1 s1|)→ (λz → cond • z • (|r|) • (|s|)) | P | R

= (|cond b1 r1 s1|)→ P1 | P | R

Z=⇒ (|c|) | P1 | P | R

= (|c|) | λz → cond • z • (|r|) • (|s|) | P | R

7−→ cond • (|c|) • (|r|) • (|s|) | P | R

= (|cond c r s|) | P | R .

�

The B optional reduction rules can also be encoded into CPC with the
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following additions to R yielding Ropt:

Ropt def
= R | !cond • λr • (λa • λb • λc • λd) • λt

→ (a • b • c • d→ λz → cond • r • z • t)

| !cond • λr • λs • (λa • λb • λc • λd)

→ (a • b • c • d→ λz → cond • r • s • z) .

The encoding [[·]]opt of B-terms with core and optional reduction rules is

then

[[t]]opt
def
= (|t|) | Ropt

as before with the modified B reducing process Ropt.

Theorem 6.4.2. The encoding [[·]]opt of B-terms into CPC preserves the core

and optional reduction rules.

Proof: Straightforward as in Theorem 6.4.1. �

Observe that the encoding [[·]]opt preserves reduction; however this does

not exploit concurrency to support parallel reductions. Parallel reduction

can be supported with some modifications to the B reducing process and the

encoding. Observe that the only opportunity for parallel reduction is the

multiple arguments to the conditional, and so the parallel reduction rules

build upon the optional reduction rules. The parallel reduction rules support
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the parallel reduction of arguments to a conditional, for example:

s −→ s′ t −→ t′

cond r s t −→ cond r s′ t′

where s and t can be reduced in parallel, similarly r and s or r and t.

A pattern that can detect the potential parallel reduction of the second

and third arguments to a condition is

cond • λr • (λa • λb • λc • λd) • (λe • λf • λg • λh)

where λa • λb • λc • λd detects a reducible second argument and similarly

λe • λf • λg • λh for the third argument. The naive approach would be to

follow the style of the optional rules and share both a•b•c•d and e•f •g •h

to have them reduce with the (modified) B reducing process. However, if

a • b • c • d = e • f • g • h then these patterns could unify and this would not

be appropriate.

The solution is to follow the style of Milner’s encodings of λ-calculus into

π-calculus [Mil90] and include an identifying name for each component. Of

course this requires modification to the B reducing process and consequently

the encoding of the terms.

The modification to the B reducing process is to prefix each case with

an additional binding name. For example the first two core rules for the
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conditional are modified as follows:

cond • true • λs • λt→ s becomes λn • (cond • true • λs • λt)→ n • s

cond • false • λs • λt→ t becomes λn • (cond • false • λs • λt)→ n • t .

The other rules are similarly modified, the only non-trivial modification is

to create new restricted names for components that are being reduced, as in

the rule below for parallel reduction of the second and third arguments to a

conditional.

The rule for parallel reduction of s and t in the term cond r s t is now

defined as follows:

λm • (cond • λr • (λa • λb • λc • λd) • (λe • λf • λg • λh))

→ (νn)(νo)(n • (a • b • c • d)

| o • (e • f • g • h)

→ n • λx→ o • λy

→ m • (cond • r • x • y)) .

Observe that the two reducible components use restricted names n and o to

prevent unification with each other. After the third argument (e • f • g • h)

has been bound then the restricted names are used to rebuild the reduct

cond • r • x • y. Note that although this supports parallel reduction of the

second and third arguments, there is a possible reduction sequence that only



130 CHAPTER 6. CONCURRENT PATTERN CALCULUS

reduces the third argument.

Modifying Ropt to maintain identifying names and adding in the three

parallel reduction rules yields the parallel B reducing process Rpar. Now the

encoding [[·]]m is modified to include an initial identifying name m and defined

as follows:

[[t]]m
def
= (νm)(m • (|t|)) | Rpar .

Theorem 6.4.3. The encoding [[·]]m of B terms into CPC preserves the core,

optional and parallel reduction rules.

Proof: Straightforward as in Theorems 6.4.1 & 6.4.2. �

Observe that with the optional reduction rules, B can be considered as a

rewriting system since any sub-term can be reduced. Although such reduc-

tions are already supported by [[ · ]]opt and [[ · ]]m, the encoding always encodes

the entire term into a pattern. However, Milner’s encodings (and parallel

encodings: Definition 3.1.1) encode terms to processes. Since the parallel B

reducing process already uses names to identify sub-terms, an encoding [[ · ]]m

can be easily developed to encode terms as processes as follows:

[[true]]m
def
= m • true | Rpar

[[false]]m
def
= m • false | Rpar

[[cond r s t]]m
def
= (νn)(νo)(νp)(co(m,n, o, p) | [[ r ]]n | [[ s ]]o | [[ t ]]p)

co(m,n, o, p) = n • λx→ o • λy → p • λz → m • (cond • x • y • z) .
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The encoding is in the same style as Milner with the co(m,n, o, p) process

combining components of complex terms. This approach to encoding both:

simplifies reduction sequences for sub-terms, as they can be reduced before

combining with other sub-terms via co(m,n, o, p); and inherently supports

parallel reduction in the style of a parallel encoding.

Theorem 6.4.4. The encoding [[·]]m of B terms into CPC preserves the core,

optional and parallel rewriting rules.

Proof: Straightforward as in Theorems 6.4.1, 6.4.2 & 6.4.3. �

The above development illustrates how reduction and rewriting systems

can be encoded into CPC by exploiting the name matching and structure of

pattern-unification. It will be used to show a parallel encoding of SF -calculus

into CPC in Chapter 7.
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Chapter 7

Completing the Square

Support for both intensionality and concurrency places CPC at the bottom

right corner of the computation square. This chapter shows how SF -calculus

and π-calculus can be subsumed by CPC, and thus completes the computa-

tion square.

Down the right side of the square there is a parallel encoding (Defini-

tion 3.1.1) from SF -calculus into CPC that also maps the combinators S

and F to reserved names S and F , respectively. The lack of a converse en-

coding is due to the sequential nature of SF -calculus and is familiar from the

relation between λv-calculus and π-calculus in Chapter 3. Interestingly, in

contrast with the parallel encoding of λ-calculus into π-calculus, the parallel

encoding of SF -calculus into CPC does not fix a reduction strategy for SF -

calculus. This is achieved by exploiting the ability of CPC to match structure

and multiple names to directly encode the reduction rules for SF -calculus

into an SF -reducing process, or SF -machine. In turn, this process can then

133
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operate on translated combinators and so support reduction and rewriting

in the manner of Section 6.4. By further exploiting the techniques intro-

duced in Section 6.4 a general approach to encoding O-combinatory logics,

or rewriting systems, is developed. Although this general approach simplifies

the encoding of a combinatory logic into CPC and supports parallel reduc-

tion, it does not meet the criteria for parallel encodings. Both approaches to

encodings support a direct translation of SK-calculus, and thus λ-calculus,

into CPC. That is, there is a diagonal from the top left corner to the bottom

right corner of the computation square.

Relating π-calculus to CPC is done through valid encodings (Defini-

tion 3.2.1) and ensuring that the encoding also meets the criteria for a ho-

momorphism. A valid encoding suffices to show that behaviour is preserved,

along with other important properties related to concurrent systems (as dis-

cussed in Chapter 3). However, there are two further details: valid encodings

are defined with a notion of behavioural equivalence, and valid encodings do

not imply homomorphisms. For relating π-calculus to CPC no particular be-

haviour theory is required, thus the development of behavioural equivalence

for CPC is suspended until Chapter 8. Valid encodings do not require the

mapping of parallel composition to parallel composition, however this is the

case for the translation presented here. To support valid encodings, CPC

is augmented with a success process
√

as familiar from the process calculi

in Chapter 3. There is a straightforward homomorphism from π-calculus

into CPC that meets all the criteria for valid encodings. The lack of a valid
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encoding or homomorphism from CPC into π-calculus can be proved in two

ways that exploit CPC’s multiple name matching and symmetry.

7.1 SF -calculus

This section develops a parallel encoding from SF -calculus into CPC and

discusses some alternative encodings and implications. Similar to the encod-

ings in Section 6.4, the reduction rules are supported by a single SF -reducing

process R that performs all the reduction rules using reserved names S and

F . Since parallel encodings require components of applications be separate

processes, identifying names are required to track sub-terms as in the parallel

B reducing process of Section 6.4. Details of the SF -reducing process R are

shown in Figure 7.1.

Observe that R has a replicating process for each of the axioms and

reduction rules. The first seven replications instantiate the seven possible

reduction axioms of SF -calculus by considering each of the factorable forms

as a separate axiom. The next replication supports reduction of the first

argument to F by matching a reducible structure (λu • λv • λw • λx) and

performing reductions upon it before recombining with the original F and

m and n. The last four replications identify when sub-structures can be

reduced and performs that reduction before recombining into a single struc-

ture. Observe that each pattern is headed by a binding name used to track

components of a combinator being reduced before reconstruction; due to this
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!λc • (S • λm • λn • λx)→ c • (m • x • (n • x))

| !λc • (F • S • λm • λn)→ c •m

| !λc • (F • F • λm • λn)→ c •m

| !λc • (F • (S • λq) • λm • λn)→ c • (n • S • q)

| !λc • (F • (F • λq) • λm • λn)→ c • (n • F • q)

| !λc • (F • (S • λp • λq) • λm • λn)→ c • (n • (S • p) • q)

| !λc • (F • (F • λp • λq) • λm • λn)→ c • (n • (F • p) • q)

| !λc • (F • (λu • λv • λw • λx) • λm • λn)

→ (νd)d • (u • v • w • x)→ d • λz → c • (F • z •m • n)

| !λc • (λu • λv • λw • λx • λy)

→ (νd)d • (u • v • w • x)→ d • λz → c • (z • y)

| !λc • (λm • λn • λo • (λu • λv • λw • λx))

→ (νd)d • (u • v • w • x)→ d • λz → c • (m • n • o • z)

| !λc • (λm • λn • (λu • λv • λw • λx) • λp)

→ (νd)d • (u • v • w • x)→ d • λz → c • (m • n • z • p)

| !λc • (λm • (λu • λv • λw • λx) • λo • λp)

→ (νd)d • (u • v • w • x)→ d • λz → c • (m • z • o • p)

Figure 7.1: The SF -reducing process R.
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the SF -reducing process is irreducible.

The translation [[·]]c from SF -combinators into CPC processes is here

parametrised by a name c and combines application with a process ap(c,m, n).

This is similar to Milner’s encoding from λv-calculus into π-calculus, and to

the parallel encoding of B into CPC in Section 6.4. This allows the parallel

encoding to exploit compositional encoding of sub-terms as processes and

thus parallel reduction, while preventing confusion of application.

The translation [[·]]c of SF -combinators into CPC, exploiting the SF -

reducing process R and reserved names S and F , is defined as follows:

[[S]]c
def
= c • S | R

[[F ]]c
def
= c • F | R

[[MN ]]c
def
= (νm)(νn)(ap(c,m, n) | [[M ]]m | [[N ]]n)

ap(c,m, n)
def
= m • λx→ n • λy → c • (x • y) | R .

Observe that operators are translated to processes that consist of the channel

name c and the operator. As with Milner’s encoding, the application is

translated to a process of the form [[MN ]]c = (νm)(νn)(R | [[M ]]m | [[N ]]n)

and thus meets the structural requirements for parallel encoding.

Now all that remains is to show that the translation [[·]]c of an SF -

combinator M preserves reduction. The simplest solution is to prove the

results in the same manner as for showing that encodings of B into CPC

preserve reduction. This is simplified by first defining the construction (| · |)
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of combinators and showing that there is a reduction sequence from the

translation [[·]]c to c • (| · |) | R.

Define the construction (| · |) of an O-combinator into CPC, exploiting

reserved names O for each O ∈ O, as follows:

(|O|) def
= O O ∈ O

(|MN |) def
= (|M |) • (|N |) .

That is, a mapping from operators to themselves and from applications to

compounds.

The following proofs are simplified by observing that R | R ≡ R to

remove redundant copies of R. This is also formalised in Theorem 8.7.2 by

exploiting bisimulation in Chapter 8.

Lemma 7.1.1. Given an SF -combinator M the translation [[M ]]c has a re-

duction sequence to a process of the form c • (|M |) | R.

Proof: The proof is by induction on the structure of M .

• If M is S or F then [[M ]]c = c •M | R = c • (|M |) | R and the result is

immediate.

• If M is of the form M1M2 then [[M ]]c is of the form

(νm)(νn)(m • λx→ n • λy → c • (x • y) | R | [[M1]]m | [[M2]]n) .

By two applications of induction, [[M1]]m Z=⇒ m • (|M1|) | R and also
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[[M2]]n Z=⇒ n • (|M2|) | R. Now there are reductions as follows:

[[M ]]c Z=⇒ (νm)(νn)(m • λx→ n • λy → c • (x • y) | R

| m • (|M1|) | n • (|M2|))

7−→ (νm)(νn)(n • λy → c • ((|M1|) • y) | R | n • (|M2|))

7−→ (νm)(νn)(c • ((|M1|) • (|M2|)) | R)

= c • (|M1M2|) | R

yielding the required result.

�

Theorem 7.1.2. Given an SF -combinator M the translation [[M ]]c preserves

reduction.

Proof: The proof is routine, if tedious, by considering each reduction rule,

as in Theorem 6.4.1 and Lemma 7.1.1. �

Corollary 7.1.3. The translation [[·]]c is a parallel encoding from SF -calculus

into CPC.

Proof: Straightforward by Definition 3.1.1 and Theorem 7.1.2. �

The lack of a converse encoding from CPC into SF -calculus is as for

π-calculus into λ-calculus.

Theorem 7.1.4. There is no support for concurrency in SF -calculus.
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Proof: As in Corollary 3.1.3, exploit Theorem 14.4.12 of Barendregt [Bar85],

alternatively by Lemma B of Abramsky [Abr90]. As before this exploits the

ability for a process calculus to easily encode a parallel-or function, while

sequential calculi cannot. �

This completes the arrow down the right side of the computation square.

The rest of this section discusses some properties of translations and the

diagonal from the top left to the bottom right corner of the square.

Observe that the parallel encoding from SF -calculus into CPC does not

require the choice of a reduction strategy, unlike Milner’s encodings from

λ-calculus into π-calculus. The structure of patterns and peculiarities of

pattern-unification allow the reduction relation to be directly rendered by

CPC. In some sense this is similar to encoding the SF -combinators onto the

tape of a Turing machine, the pattern (| · |), and providing another process

to be the state that reads the tape and performs operations upon it, the

SF -reducing process R.

The translation from SF -calculus to CPC presented here is designed to

map application to parallel composition (with some restriction and R so as

to meet the criteria for parallel encoding), however the construction (| · |) can

be used to provide a cleaner translation as for the parallel encoding of B.

Consider an alternative translation [[·]]c parametrised by a name c as usual

and defined by

[[M ]]c
def
= (νc)(c • (|M |)) | R .
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Although such a translation does not allow reduction of combinators before

combining into a single pattern, it does preserve reduction (again by Theo-

rem 7.1.2).

This second approach could still support parallel reduction of components

by extending the SF -reducing process in the same manner as for B. That is,

additional cases to detect when two components could reduce independently

and allow parallel reductions. For example, consider FFFF (FFFF ) that

can reduce either copy of FFFF in parallel. An addition to R to support

this behaviour could be:

!λc • (λm • λn • λo • λp • (λu • λv • λw • λx))

→ (νd)(νd)(d • (m • n • o • p)

| e • (u • v • w • x)→ d • λy → e • λz → c • (y • z)) .

Such a modified SF -reducing process would allow the more elegant transla-

tion to support parallel reduction of the translation. Observe that by placing

the process to reconstruct the components d•λy → e•λz → c• (y •z) as the

body of a case, this ensures that there are no infinite sequences of reduction

introduced by the translation.

Indeed, both translation styles can easily be adapted to translate SK-

calculus into CPC, with an appropriately defined SK-reducing process. It

follows that there is a parallel encoding from SK-calculus into CPC without

requiring a specific reduction strategy (lazy or call-by-value), and thus a di-



142 CHAPTER 7. COMPLETING THE SQUARE

agonal from the top left corner to the bottom right corner of the computation

square.

7.2 π-calculus

Across the bottom of the computation square there is a homomorphism from

π-calculus into CPC. The converse separation result can be proved in multiple

ways that exploit the matching degree or symmetry of CPC.

The translation [[ · ]] from π-calculus into CPC is homomorphic on all

process forms except for the input and output which are translated as follows:

[[a(b).P ]]
def
= a • λb • in→ [[P ]]

[[a〈b〉.P ]]
def
= a • b • λx→ [[P ]] x not free in P .

Here in is any name, a symbolic name is used for clarity but no result relies

upon this choice. The fresh name x is used to prevent the introduction

of new reductions due to CPC’s symmetric matching. Observe that a naive

translation may be [[a〈b〉.P ]]
def
= a•b→ [[P ]], however two copies of this process

would reduce as the pattern a • b unifies with itself. Thus the fresh binding

name λx ensures that outputs cannot unify with themselves in translation.

Now to show that this translation meets the criteria for a valid encoding.

Lemma 7.2.1. Two processes P and Q are structurally equivalent if and

only if their translations are structurally equivalent. That is: P ≡ Q if and

only if [[P ]] ≡ [[Q ]].
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Proof: Trivial, from the fact that ≡ acts only on operators that [[ · ]] trans-

lates homomorphically. �

Theorem 7.2.2. The translation [[ · ]] from π-calculus into CPC preserves

reduction and does not introduce new reductions. That is:

• If P 7−→ P ′ then [[P ]] 7−→ [[P ′]];

• if [[P ]] 7−→ Q then Q = [[P ′]] for some P ′ such that P 7−→ P ′.

Proof: Both parts can be easily proved by a straightforward induction on

the judgements P 7−→ P ′ and [[P ]] 7−→ Q, respectively. In both cases, the

base step is the most interesting.

• For P 7−→ P ′ consider a(b).P1 | a〈c〉.P2 7−→ {c/b}P1 | P2. The trans-

lation is [[P ]] = a • λb • in → [[P1]] | a • c • λx → [[P2]] where x is

fresh. Then there is a reduction a • λb • in → [[P1]] | a • c • λx →

[[P2]] 7−→ {c/b}[[P1]] | {in/x}[[P2]] that is equivalent to {c/b}[[P1]] | [[P2]]

by freshness of x.

• For [[P ]] 7−→ Q the reduction must be of the form a • λb • in →

[[P1]] | a • c • λx → [[P2]]) 7−→ {c/b}[[P1]] | {in/x}[[P2]]. That is, the

translation of an input and an output in parallel with each other. Fur-

ther, as x must be fresh from the translation then Q = {c/b}[[P1]] | [[P2]].

Since the reduction is of a translated input and a translated output,

then P must be of the form a(b).P1 | a〈c〉.P2 and there is a reduc-

tion a(b).P1 | a〈c〉.P2 7−→ {c/b}P1 | P2 and P ′ = {c/b}P1 | P2 and so

Q = [[P ′]] as required.
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For the inductive cases where the last judgement is structural then apply

Lemma 7.2.1. �

Corollary 7.2.3. The encoding of π-calculus into CPC is valid.

Proof: Compositionality and name invariance hold by construction. Oper-

ation correspondence and divergence reflection follow from Theorem 7.2.2.

Success sensitiveness is proved as follows: P ⇓ means there exists P ′ and

k ≥ 0 such that P 7−→k P ′ ≡ P ′′ |
√

and by exploiting Theorem 7.2.2 k

times and Lemma 7.2.1 obtain that [[P ]] 7−→k [[P ′]] ≡ [[P ′′]] |
√

, that is that

[[P ]] ⇓. The converse implication can be proved similarly. �

Corollary 7.2.4. There is a homomorphism from π-calculus into CPC.

Proof: Trivial by the definition of translation [[ · ]] and Corollary 7.2.3. �

Thus the translation provided above is a homomorphism from π-calculus

into CPC. Now consider the converse separation result. It can be proved in

two ways.

The first exploits the matching degree Md(·) and is an application of

Theorem 3.2.4.

Theorem 7.2.5. There is no valid encoding of CPC into π-calculus.

Proof:[by matching degree] The matching degree of π-calculus Md(π) is

one while the matching degree of CPC Md(CPC) is infinite. Now apply

Theorem 3.2.4. �
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An alternative proof of Theorem 7.2.5 exploits CPC’s symmetry by defin-

ing a self matching process x→
√

and then using Theorem 3.2.3.

Proof:[by symmetry] The self-matching CPC process S = x →
√

is such

that S 67−→ and S 6⇓, however S | S 7−→ and S | S ⇓. Every π-calculus

process T is such that if T | T 7−→ then T 7−→. Hence by Theorem 3.2.3

there is no process T = [[S ]]. �

These results ensure that π-calculus cannot validly encode the behaviour

of CPC. Indeed, they both show that the reduction of CPC cannot be prop-

erly rendered in π-calculus. Thus they support the lack of a homomorphism

from CPC into π-calculus.

Theorem 7.2.6. There is no homomorphism from CPC into π-calculus.

Proof: By Theorem 7.2.5. �

This completes the arrow across the bottom of the computation square

and thus the square as a whole.

Observe that the results here, despite using valid encodings, do not rely on

any particular behavioural theory for CPC. However, relations to other pro-

cess calculi do require such a behavioural theory. The next chapter formalises

barbed congruence and bisimulation for CPC as a precursor to relating CPC

to other process calculi and implementing CPC in a programming language.



146 CHAPTER 7. COMPLETING THE SQUARE



Chapter 8

Behavioural Theory

A behavioural theory is needed for CPC to define what it means for two

processes to be equivalent, that is, to behave the same way. This can be done

by adapting standard approaches [MPW92, MS92, HY95, BGZZ98, WG04]

to take into account the subtleties of CPC interaction. The development

here is done in five steps as follows.

The first step in Section 8.1 is to characterise the interactions a CPC

process can participate in. This is done by defining barbs that capture infor-

mation about how a process can interact with another process. Commonly,

the barb is parametrised by the channel name when an interaction is chan-

nel based [MPW92, ACS98, SW01, WG04], however in calculi that can test

many names for equality in a single interaction the barb is parametrised by

a collection of names [BGZZ98]. As CPC can test many names for equality

in a single interaction, it follows that the barbs of CPC are parametrised by

a set of names. Once the barbs of CPC are defined the barbed congruence

147
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will be defined in the usual manner.

The second step in Section 8.2 is to define an alternative operational

semantics for CPC in the form of a labelled transition system (LTS). Here

transitions of the form P
µ−→ P ′ indicate that the process P performs some

action described by the label µ and evolves to the process P ′. Such labels

can be either: internal actions that indicate reduction within the process

P ; or external actions that indicate interaction with another process. The

main property that must hold is that the internal actions induce the same

operational semantics as the reduction relation.

The third step in Section 8.3 is to define a bisimulation relation that

equates processes with the same interactional behaviour as represented by

the labels of the LTS. The complexity here is that labels include patterns

and some patterns are more general than others. For example, a transition

of the form P
pnq−→ P ′ performs the external action pnq, however a similar

external action of another process could be n and the transition Q
n−→ Q′. If

P is behaviourally equivalent to Q, and also P ′ to Q′, then this should be

accepted by the bisimulation as it would be by the barbed congruence. Thus

a compatibility relation is defined on patterns that is then used to formalise

acceptable actions for the definition of bisimulation.

A diversion in Section 8.4 formalises several properties of the compatibil-

ity relation for later exploitation and to illustrate relations between patterns

in general. In particular, that compatibility preserves the information used

for defining barbs is, stable under substitution, reflexive, and transitive.
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The fourth step in Section 8.5 is to show that the bisimulation relation is

sound, i.e. a barbed congruence. That is, the bisimulation is barb preserving,

reduction closed, and context closed.

The fifth step in Section 8.6 is to show that the bisimulation relation is

complete, i.e. the barbed congruence is a bisimulation. This requires the

development of reply contexts that can yield reductions according to the

limitations on transitions defined by the bisimulation.

The chapter concludes with some examples of behaviourally equivalent

processes and some general results.

8.1 Barbed Congruence

The first step is to characterise the interactions a CPC process can participate

in. This is done by defining barbs that have information about a particular

interaction that can occur. In process calculi that use channels for interaction

the barbs are commonly parametrised by the channel name that is tested for

equality in an interaction, such as in π-calculus [MPW92, MS92, HY95], Spi

calculus [AG97] and fusion calculus [WG04]. When interactions can test

many names for equality the barbs usually have information about all these

names, such as in Linda [BGZZ98].

As protected names in CPC are used to test for equality, a naive attempt

to define the barbs would be to use these names. However, as variable names

can also be tested for equality in an interaction these also need to be ac-
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counted for by the definition of barbs. Thus in CPC the barbs P ↓m̃ indicate

that there exists a process Q of the form q → Q′ such that the protected

names of q are the names of the barb m̃ and that P and Q interact. More

formally, barbs are defined as follows.

Definition 8.1.1 (Barb). Let P ↓m̃ mean that

P ≡ (νñ)(p→ P ′ | P ′′) for some ñ and p and P ′ and P ′′

such that pn(p) ∩ ñ = {} and m̃ = fn(p)\ñ.

To explain the conditions within the definition of barbs, consider some

naive attempts and their limitations. As a barb is a potential interaction, a

simplistic barb P ↓ could be

Naive Bad Barb Attempt: P ↓ if

P ≡ p→ P ′ | P ′′ for some p and P ′ and P ′′.
(8.1)

However, this attempted definition is too strong; there are processes that

can interact with an external process but do not exhibit a barb by (8.1). For

example, the process (νn)(n→ P ) does not exhibit a barb, but can interact

with another process of the form λy → Q. Thus, a first attempt to improve

might be

Unprotected Bad Barb Attempt: P ↓ if

P ≡ (νñ)(p→ P ′ | P ′′) for some ñ and p and P ′ and P ′′.
(8.2)
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Now this attempt is too weak; there are processes that exhibit a barb by

this definition but cannot interact with an external process. For example,

the process (νn)(pnq → P ), that cannot interact with any other process by

Lemma 6.2.6. A further refinement of (8.2) could be

Protected Bad Barb Attempt: P ↓ if

P ≡ (νñ)(p→ P ′ | P ′′) for some ñ and p and P ′ and P ′′

such that pn(p) ∩ ñ = {}.

(8.3)

Although this solves the problem of (8.2), having a single kind of barb is

insufficient. As is usual in name passing calculi, including all those considered

in this dissertation, the barb accounts for the names that must be known for

interaction. As CPC also supports matching of many names in a single

interaction, the definition of barbs must account for these names. Thus, the

definition of barbs must be parametrised by the names of the pattern being

considered. Although a first attempt might be to simply take the free names

of the pattern p, this is insufficient as a name may appear both free and

protected while also being restricted, e.g. (νn)n • pnq→ P ′. So refining (8.3)

to account for all this yields the barbs as in Definition 8.1.1.

Thus the original definition of barbs is sufficient to characterise potential

interactions and begin defining process equivalence. For later use, let P ⇓m̃

denote that there exists a reduction sequence P Z=⇒ P ′ such that P ′ ↓m̃.

Using the definition of barbs for CPC, a barbed congruence can be defined

in the standard manner by requiring three properties [MS92, HY95, BGZZ98,
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WG04]. Let < denote a binary relation on CPC processes, and let a context

C(·) be a CPC process with the hole · replacing one instance of the null

process.

Definition 8.1.2 (Barb preservation). < is barb preserving if and only if,

for every pair of processes (P,Q) ∈ <, it holds that P ↓m̃ implies Q ↓m̃.

Definition 8.1.3 (Reduction closure). < is reduction closed if and only if,

for every pair of processes (P,Q) ∈ <, it holds that P 7−→ P ′ implies Q 7−→

Q′ for some Q′ such that (P ′, Q′) ∈ <.

Definition 8.1.4 (Context closure). < is context closed if and only if, for

every pair of processes (P,Q) ∈ < and for every CPC context C(·), it holds

that (C(P ), C(Q)) ∈ <.

Definition 8.1.5 (Barbed congruence). Barbed congruence ' is the largest,

symmetric, barb preserving, reduction and context closed binary relation on

CPC processes.

This is the usual barbed congruence that equates processes with the same

interactional behaviour as characterised by barbs. That is: any barb of one

process must also be a barb of the other; any reduction of one process must

be able to be mimicked by the other; and context closure ensures equivalence

under any circumstance.

This defines the strong version of barbed congruence, the weak counter-

part consists of replacing the predicate 7−→ with Z=⇒ in Definition 8.1.3,

and ↓m̃ with ⇓m̃ in Definition 8.1.2 in the usual manner [MPW92, MS92].
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The following proofs are simplified by working in the strong setting, however

everything can be rephrased in the weak setting, as usual in concurrency.

Many later results will exploit contexts that perform some actions and

report success and do not report failure. The name w is used with a barb ↓w

indicating success and ⇓w for a reduction sequence that eventually indicates

success. The name f is used similarly for failure. A process P succeeds

(alternatively succeeds by w and f) if it reports success and does not report

failure, i.e. P ⇓w and P 6⇓f .

The next two lemmas suffice to show that the barbed congruence is closed

under any substitution.

Lemma 8.1.6. Consider two processes P and Q and a name w which does

not appear free in P or Q. If P in parallel with pwq is barbed congruent to Q

in parallel with pwq then P is barbed congruent to Q. That is: if P | pwq '

Q | pwq then P ' Q.

Proof: Define a context C(·) def
= (pwq | · ). By context closure C(P | pwq) '

C(Q | pwq). There is a reduction C(P | pwq) 7−→ P and by reduction closure

there is a reduction C(Q | pwq) 7−→ Q′ such that P ' Q′. Now consider Q′:

if Q′ ≡ Q′′ | pwq then Q′ ↓w however this contradicts P 6↓w. Therefore Q′

must be Q and hence P ' Q. �

Lemma 8.1.7. Given two barbed congruent processes P and Q and a substi-

tution σ, then P and Q remain barbed congruent when σ is applied to them.

That is: if P ' Q then σP ' σQ.
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Proof: Since σ has finite domain, there are patterns p and q such that

{p||q} = (σ, {}). Given a fresh name w define a context C(·) def
= (p →

(· | pwq) | q). For any process R there is a reduction from C(R) to σR | pwq.

It follows with reduction closure that C(P ) 7−→ σP | pwq and C(Q) 7−→

σQ | pwq. Conclude by Lemma 8.1.6 that σP ' σQ. �

The complexity in proving (strong or weak) barbed congruence is in its

closure under any context. The typical way of solving this problem is by giv-

ing a coinductive (bisimulation-based) characterisation that yields an easier-

to-handle proof technique. In turn, this requires an alternative operational

semantics, by means of an LTS, on top of which the bisimulation equivalence

can be defined.

8.2 Labelled Transition System

The second step in developing CPC’s behavioural theory is to define an alter-

native operational semantics in the form of a labelled transition system (LTS).

This section details a straightforward adaption of the standard π-calculus late

LTS [MPW92]. The rest of the section defines the labels for CPC, the judge-

ments for inferring transitions, and then proves the operational semantics for

internal transitions is the same as CPC reductions.

The basic idea is to describe the behaviour of CPC by transitions be-

tween processes. The transitions describe interactions which the process can

participate in which can be within the process or with some external pro-
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cess. Specific information about the interaction is carried by a label on the

transition.

The labels µ for CPC’s LTS are defined as follows:

µ ::= τ | (νñ)p .

Here τ denotes an internal action; that is an interaction entirely within the

process, as is standard. The external action (νñ)p denotes an interaction be-

tween the process and some other process. The external actions carry infor-

mation about the restricted names (νñ) and pattern p; a standard adaptation

of the usual input or output actions of π-calculus [MPW92].

A transition is a judgement of the form P
µ−→ P ′ where P transitions to P ′

via the label µ. The label denotes whether the actions is internal or external,

consider the following examples.

An example of an internal action would be a process P of the form

p1 → P1 | p2 → P2 where {p1||p2} is defined and yields (σ1, σ2). Then a

transition for P is P
τ−→ P ′ where the τ represents the internal actions and

P ′ = σ1P1 | σ2P2.

An example of an external action would be a process P of the form

p → P ′. Here P has a transition p to P ′, denoted P
p−→ P ′. Observe that

external actions do not assume any substitution upon their binding names,

so the binding names in p are free in P ′. It follows that some care must be

taken when considering the binding names of labels.
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Define the variable names, protected names, binding names and free

names of a label µ to be those of the pattern when µ is of the form (νñ)p

and to be the empty set otherwise. Also the restricted names of a label µ are

those that are restricted when µ is of the form (νñ)p, i.e. ñ, and the empty

set when µ is τ . Lastly, define the names names(µ) of a label µ to be all the

names (restricted, free, or binding) of µ.

parint :
P

τ−→ P ′

P | Q τ−→ P ′ | Q

parext :
P

(νñ)p−−−→ P ′

P | Q (νñ)p−−−→ P ′ | Q
(ñ ∪ bn(p)) ∩ fn(Q) = {}

rep :
!P | P µ−→ P ′

!P
µ−→ P ′

resnon :
P

µ−→ P ′

(νn)P
µ−→ (νn)P ′

n /∈ names(µ)

resin :
P

(νñ)p−−−→ P ′

(νm)P
(νñ,m)p−−−−→ P ′

m ∈ vn(p) \ (ñ ∪ pn(p) ∪ bn(p))

case : (p→ P )
p−→ P

match :
P

(νm̃)p−−−→ P ′ Q
(νñ)q−−−→ Q′

P | Q τ−→ (νm̃, ñ)(σP ′ | ρQ′)

{p||q} = (σ, ρ)
m̃ ∩ fn(Q) = ñ ∩ fn(P ) = {}
m̃ ∩ ñ = {}

Figure 8.1: Labelled Transition System judgements for CPC.
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The rules for inferring transitions of the form P
µ−→ P ′ are defined in

Figure 8.1. The first rule parint states that if either process in parallel com-

position can transition by an internal action then the whole process can

transition by an internal action. The second rule parext is for when one of

the processes in parallel has an external action, then both processes have the

same external action as long as the restricted or binding names of the label do

not appear free in the parallel process. The third rule rep unfolds replication

to infer the action. The fourth rule resnon is for when a restricted name does

not appear in the names of the label. Simply maintain the restriction on the

process after the transition. The fifth rule resin is for when a restricted name

is shared by the label. As the restricted name has been shared and may now

be used by other processes, the restriction is removed. The sixth rule case

states that a case’s pattern can be used to interact with external processes.

The seventh rule match defines when processes interact with each other to

perform an internal action. This can occur whenever process in parallel have

labels that have unifiable patterns and there is no possibility of clash or cap-

ture due to restricted names. Note that α-conversion is always assumed to

satisfy the side conditions when required and that symmetric instances of

parint and parext are assumed, i.e. transitions on Q.

The main result that must be proved is that the LTS induces the same

operation semantics as the reductions of CPC. As CPC reductions only in-

volve interaction between processes and not the external actions of the LTS,

it is sufficient to show that any internal action of the LTS is mimicked by a
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reduction in CPC, and visa versa.

Lemma 8.2.1. If there is a transition P
(νm̃)p−−−→ P ′ then P has a form

(νm̃)(νñ)(p→ Q1 | Q2) for some ñ and Q1 and Q2 with ñ∩names((νm̃)p) =

{} and bn(p) ∩ fn(Q2) = {}.

Proof: The proof is by induction on the structure of the inference for

P
(νm̃)p−−−→ P ′, considering the last rule in the derivation.

• If the last rule is parext then P has a form P1 | P2 and P1
(νm̃)p−−−→ P ′1 and

fn(P2) ∩ (m̃ ∪ bn(p)) = {}. By induction hypothesis on P1
(νm̃)p−−−→ P ′1

it follows that P1 has a form (νm̃)(νñ′)(p → Q′1 | Q′2) for some ñ′ ∩

names((νm̃)p) = {} and (m̃ ∪ bn(p)) ∩ fn(Q2) = {}. As bn(p) ∩ fn(P2)

already holds, conclude with ñ′ and Q′1 and Q′2 | P2.

• If the last rule is rep then P has a form !Q
(νm̃)p−−−→ P ′ where there is a

transition Q | !Q
(νm̃)p−−−→ P ′. Conclude by induction and the fact that

P ≡ Q | !Q.

• If the last rule is resnon then P has a form (νo)P1
(νm̃)p−−−→ (νo)P ′1 where

o /∈ names((νm̃)p). By induction on P1
(νm̃)p−−−→ P ′1 then P1 has a form

(νm̃)(νñ′)(p→ Q′1 | Q′2) for some ñ′ ∩ names((νm̃)p) = {} and bn(p)∩

fn(Q2) = {}. As o /∈ names((νm̃)p) and by α-conversion o /∈ ñ′ conclude

with ñ′, o and Q′1 and Q′2.

• If the last rule is resin then P has a form (νo)P1
(νm̃′,o)p−−−−−→ P ′1 and o ∈

vn(p)\(m̃′ ∪ pn(p) ∪ bn(p)) and P1
(νm̃′)p−−−−→ P ′1 and m̃ = m̃′, o. Then

by induction hypothesis upon P1
(νm̃′)p−−−−→ P ′1 it follows that P1 has a
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form (νm̃′)(νñ′)(p → Q′1 | Q′2) for some ñ′ ∩ names((νm̃′)p) = {} and

bn(p) ∩ fn(Q2) = {}. Conclude with ñ′ and Q′1 and Q′2.

• The base case is when the last rule is case and P has a form (p →

P1)
p−→ P1. Conclude with {} and P1 and 0.

�

Proposition 8.2.2. If P
τ−→ P ′ then P 7−→ P ′′ such that P ′ ≡ P ′′. Con-

versely, if P 7−→ P ′ then P
τ−→ P ′′ such that P ′ ≡ P ′′.

Proof: The first claim is proved by induction on the structure of the inference

for P
τ−→ P ′.

• If the last rule is parint then P has a form P1 | P2 for P1
τ−→ P ′1 and

P ′ = P ′1 | P2. Apply induction to the transition P1
τ−→ P ′1 to show that

P1 7−→ P ′1.

• If the last rule is rep then P has a form !P1, for P1 | !P1
τ−→ P ′. By

induction P1 | !P1 7−→ P ′ and easily conclude, since P ≡ P1 | !P1.

• If the last rule is resnon then P has a form (νn)P1, for P1
τ−→ P ′1 and

P ′ = (νn)P ′1. Again proceed by induction on the transition P1
τ−→ P ′1

since (νn) preserves reduction.

• If the rule is match then P has a form P1 | Q1 where P1
(νm̃)p−−−→ P ′′1

and Q1
(νñ)q−−−→ Q′′1 and P ′ = (νm̃, ñ)(σP ′′1 | ρQ′′1) and {p||q} = (σ, ρ) and

m̃∩fn(Q1) = ñ∩fn(P1) = {} and m̃∩ñ = {}. Then by two applications

of Lemma 8.2.1 it follows that P1 has a form (νm̃)(νõ)(p → P ′1 | P ′2)

such that õ ∩ names((νñ)p) = {} and bn(p) ∩ fn(P ′2) = {} and Q1 has



160 CHAPTER 8. BEHAVIOURAL THEORY

a form (νñ)(νr̃)(q → Q′1 | Q′2) such that r̃ ∩ names((νñ)q) = {} and

bn(q) ∩ fn(Q′2) = {}. Since õ, r̃ ∩ (names((νm̃)p) ∪ names((νñ)q)) = {}

and exploiting α-conversion on the name in õ, ñ it follows that

P1 | Q1 (νm̃, ñ)((νõ)(p→ P ′1 | P ′2) | (νr̃)(q → Q′1 | Q′2))

≡ (νm̃, ñ)(νõ, r̃)(p→ P ′1 | P ′2 | q → Q′1 | Q′2) .

Now there is a reduction

P1 | Q1 ≡ (νm̃, ñ)(νõ, r̃)(p→ P ′1 | P ′2 | q → Q′1 | Q′2)

7−→ (νm̃, ñ)(νõ, r̃)(σP ′1 | P ′2 | ρQ′1 | Q′2) .

Since σ avoids õ and dom(σ)∩ fn(P ′2) = {} and ρ avoids r̃ and dom(ρ)∩

fn(Q′2) = {} and õ∩ fn(Q′1 | Q′2) = {} and r̃∩ fn(P ′1 | P ′2) = {}, conclude

with

(νm̃, ñ)(νõ, r̃)(σP ′1 | P ′2 | ρQ′1 | Q′2)

≡ (νm̃, ñ)(σ((νõ)(P ′1 | P ′2)) | ρ((νr̃)(Q′1 | Q′2)))

≡ (νm̃, ñ)(σP ′′1 | ρQ′′1) .

The second claim is by induction on the inference for P 7−→ P ′.

• The base case is when P is of the form p → P ′1 | q → Q′1 and P ′ =

σP ′1 | ρQ′1, for {p||q} = (σ, ρ). Then by the match rule in the LTS

(p→ P ′1)
p−→ P ′1 (q → Q′1)

q−→ Q′1

p→ P ′1 | q → Q′1
τ−→ σP ′1 | ρQ′1

{p||q} = (σ, ρ)
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and the result is immediate.

• If the reduction is due to P = P1 | P2, where P1 7−→ P ′1 and P ′ =

P ′1 | P2, then exploit the parint rule for

P1
τ−→ P ′1

P1 | P2
τ−→ P ′1 | P2

proceed by induction on P1 7−→ P ′1.

• If the reduction is P = (νñ)P1, where P1 7−→ P ′1 and P ′ = (νñ)P ′1,

then for each n ∈ ñ exploit the resnon rule

P1
τ−→ P ′1

(νn)P1
τ−→ (νn)P ′1

as n /∈ names(τ). Then apply induction on P1 7−→ P ′1.

• Otherwise, it must be that P ≡ Q 7−→ Q′ ≡ P ′. Now proceed by an

induction on the inference of the judgement P ≡ Q. The following

are the two most interesting base cases as the other cases are easier,

including the inductive case.

– If P is of the form !R and P ≡ R | !R = Q then by the first

induction hypothesis (the length of the inference for the reduction)

it follows that R | !R
τ−→ Q′′ for Q′′ ≡ Q′. By the rep rule of the

LTS P
τ−→ Q′′ and conclude with Q′′ ≡ Q′ ≡ P ′.

– If P is of the form (νn)P1 | P2 and P ≡ (νn)(P1 | P2) = Q

since n 6∈ fn(P2) then by the first inductive hypothesis it follows

that (νn)(P1 | P2)
τ−→ Q′′ for Q′′ ≡ Q′. Now by definition of the
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LTS the last rule used in this inference must be resnon and so

P1 | P2
τ−→ Q′′′ and Q′′ = (νn)Q′′′. There are now three possible

ways to generate the latter τ transition.

∗ If P1
τ−→ P ′1 and Q′′′ = P ′1 | P2 then it follows that

P1
τ−→ P ′1

(νn)P1
τ−→ (νn)P ′1

P = (νn)P1 | P2
τ−→ (νn)P ′1 | P2

and conclude by observing that (νn)P ′1 | P2 ≡ (νn)(P ′1 | P2) =

Q′′ ≡ Q′ ≡ P ′.

∗ If P2
τ−→ P ′2 and Q′′′ = P1 | P ′2 then this case is similar to the

previous one, but simpler.

∗ If P1
(νm̃)p−−−→ P ′1 and P2

(νñ)q−−−→ P ′2 andQ′′′ = (νm̃, ñ)(σP ′1 | ρP ′2)

where {p||q} = (σ, ρ) and m̃ ∩ fn(P ′2) = ñ ∩ fn(P ′1) = {}

and m̃ ∩ ñ = {} then this case is similar to the base case

of the first claim of this Proposition and, essentially, relies on

Lemma 8.2.1. The details are left to the interested reader.

�

This suffices to show that the LTS of internal actions has the same opera-

tional semantics as the reductions. The next step is to define the bisimulation

relation based on the LTS.
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8.3 Bisimulation

The third step is to develop a bisimulation relation for CPC that equates

processes with the same interactional behaviour as captured by the labels of

the LTS. The complexity for CPC is that the labels for external actions con-

tain patterns, and some patterns are more general than others. For example,

a transition P
pnq−→ P ′ performs the action pnq, however a similar external

action of another process could be the variable name n and the transition

Q
n−→ Q′. Both transitions have the same barb, that is P ↓n and Q ↓n, how-

ever their labels are not identical. Thus, a compatibility relation is defined

on patterns that can be used to develop the bisimulation. The rest of this

section discusses the development of compatibility and concludes with the

definition of bisimulation for CPC.

Similarity of processes two processes P and Q can be captured by a

challenge-reply game based upon the actions the processes can take. One

process, say P , issues a challenge and evolves to a new state P ′. Now Q must

perform an action that is a proper reply and evolve to a state Q′. If Q cannot

perform a proper reply then the challenge issued by P can distinguish P and

Q, that is, show they are not equivalent. If Q can properly reply then the

game continues with the processes P ′ and Q′. Two processes are bisimilar (or

equivalent) if the game can always continue, or neither process can perform

any actions.

The main complexity in defining a bisimulation to capture this challenge-



164 CHAPTER 8. BEHAVIOURAL THEORY

reply game is the choice of actions, i.e. challenges and replies. For a barbed

congruence, the barbs provide the definition of actions. For an LTS, the

labels describe the actions that a process can perform. Although this is

straightforward for the barbs of CPC, the relationship between the challenge

and the reply in the LTS requires some delicacy to formulate.

In most process calculi, a challenge is answered with an identical action as

the proper reply [Mil89, MPW92]. However, there are situations in which an

exact reply would make the bisimulation equivalence too fine for characteris-

ing barbed congruence [ACS98, DGP07]. This is due to impossibility for the

language contexts to force barbed congruent processes to execute the same

action; in such calculi more liberal replies must be allowed. That CPC lies in

this second group of calculi as demonstrated by the following two examples.

Example 1 Consider the processes

P = λx • λy → x • y → 0

Q = λz → z → 0

where P exhibits the challenge P
λx•λy−−−→ (x • y → 0). One may think that

a possible context Cλx•λy(·) to enforce a proper reply could be · | w • w →

pwq → 0, for w fresh. Indeed, Cλx•λy(P ) 7−→ w • w → 0 | pwq → 0 and

the latter process exhibits a barb over w. However, the exhibition of action

λx • λy is not necessary for the production of such a barb: as Cλx•λy(Q) 7−→

w • w → 0 | pwq→ 0, but in doing so Q performs λz instead of λx • λy.
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Example 2 Consider the processes

P = pnq→ 0

Q = n→ 0

and with the possible context Cpnq(·) 7−→ 0 | pwq→ 0, for w fresh. Although

Cpnq(P ) 7−→ 0 | pwq→ 0 exhibits a barb over w, the exhibition of action pnq

is not necessary for the production of such a barb as Cpnq(Q) 7−→ 0 | pwq→ 0

also exhibits a barb on w but in doing so Q performs n instead of pnq.

Example 1 shows that CPC pattern-unification allows binding names to

be contractive; it is not necessary to fully decompose a pattern to bind it.

Thus a compound pattern may be bound to a single name or to more than

one name in unification.

Example 2 illustrates that CPC pattern-unification on protected names

only requires the other pattern know the name, thus a protected or variable

name is sufficient.

These two observations make it clear that some patterns are more dis-

cerning than others, i.e. match fewer patterns than others. This leads to the

following definitions.

Definition 8.3.1. Let p and q be two patterns. That p is harmonious with
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q, written p≪ q, is defined as follows.

n ≪ n

pnq ≪ pnq

pnq ≪ n

p1 • p2 ≪ q1 • q2 pi≪ qi for i ∈ {1, 2}.

Definition 8.3.2. Let p and q be patterns each with a linked substitution,

σ and ρ respectively, such that the binding names of the pattern equal the

domain of the linked substitution, i.e. bn(p) = dom(σ) and bn(q) = dom(ρ).

Define that p is compatible with q by σ and ρ, denoted p, σ � q, ρ by induc-

tion as follows.

p, σ � λy, {σ̂p/y} fn(p) = {}

n, {} � n, {}

pnq, {} � pnq, {}

pnq, {} � n, {}

p1 • p2, σ1 ∪ σ2 � q1 • q2, ρ1 ∪ ρ2 pi, σi � qi, ρi, for i ∈ {1, 2} .

Observe that as all patterns are well formed, the union of substitutions is

disjoint.

Lemma 8.3.3. If two patterns p and q are compatible by the substitutions

σ and ρ, then p and q can be made harmonious by applying the respective

substitutions to the binding names of the patterns. That is: if p, σ � q, ρ

then σ̂p≪ ρ̂q.

Proof: Trivial by induction on the structure of p. �
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Note that the converse does not hold: consider the patterns λx and n

and the substitutions {n/x} and {}. Then {̂n/x}λx = n and {}n = n and

so n≪ n, however λx, {n/x} 6� n, {}.

Definition 8.3.4. Two patterns p and q are comparable, denoted p� q, if

these exists substitutions σ and ρ such that p, σ � q, ρ.

The idea behind these definitions is that a pattern p is comparable with

another pattern q if and only if every other pattern r that unifies with p by

some substitutions (θ1, σ) also unifies with q with some substitutions (θ2, ρ)

such that θ1 = θ2 and p, σ � q, ρ. That is, the sets of patterns r that match

against p are a subset of the patterns that match against q. This will be

proved later in Proposition 8.4.8.

A naive approach to understanding these definitions would be to avoid the

details of compatibility and define comparability via harmony. The problem

with this approach is that the choice of substitution in comparability could

unify a free name with a binding name, which would violate the barbed

congruence relation. For example, the patterns n and λx could be made

harmonious by the substitutions {} and {n/x}, but they are not compatible.

The comparability relation on patterns provides the concept behind the

proper replies of the challenge-reply game. However, as bisimulation also re-

quires delicate control of substitutions, compatibility is used in the definition

of bisimulation below.

Definition 8.3.5 (Bisimulation). A symmetric binary relation < on CPC
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processes is a bisimulation if, for every (P,Q) ∈ < and P
µ−→ P ′, it holds

that:

• if µ = τ , then Q
τ−→ Q′, for some Q′ such that (P ′, Q′) ∈ <;

• if µ = (νñ)p then, for all σ with dom(σ) = bn(p) and fn(σ) ∩ ñ = {}

and (bn(p) ∪ ñ) ∩ fn(Q) = {}, there exist q and Q′ and ρ such that

Q
(νñ)q−−−→ Q′ and p, σ � q, ρ and (σP ′, ρQ′) ∈ <.

Denote with ∼ the largest bisimulation closed under any substitution.

The definition is inspired by the early bisimulation congruence for the π-

calculus [MPW92]: for every possible instantiation σ of the binding names,

there exists a proper reply from Q. Of course, σ cannot be chosen arbitrarily:

it cannot use in its range names that were restricted in P . Also the action µ

cannot be arbitrary; its restricted and binding names cannot occur free in Q.

Differently from the π-calculus, however, the reply from Q can be different

from the challenge from P : this is due to the fact that contexts in CPC are

not powerful enough to enforce an identical reply (as evidence by Examples 1

and 2). Indeed, this notion of bisimulation allows a challenge p to be replied

to by some different q, provided that σ is properly adapted (yielding ρ and

making p compatible with q) before being applied to Q′.

At first this may appear slightly odd, as the bisimulation relation is sym-

metric, yet the relation between the challenges and replies, i.e. compatibility,

is not. This is due to the inability to force exact replies in CPC as illustrated

by Examples 1 & 2. A simple demonstration of this is to consider the two
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processes

P = pnq | !n

Q = !n .

Similar to Example 2, if P issues the challenge pnq then Q can properly reply

with n; as pnq, {} � n, {}. If Q issues the challenge n then P can also reply

with n. Thus P and Q can be shown bisimilar, even though they may not

always take the same action. Such similarities will be detailed in Section 8.7

once the coincidence of the two semantics has been proved.

Now that the bisimulation has been formalised, the challenges and replies

can also be formalised for later convenience. Observe that although the

challenges are based on the label of the transition as expected, the choice of

substitution in the bisimulation relation is also significant as reflected in the

following definitions. A challenge by P is a label, substitution and process

(µ, σ, P ′) where the binding names of µ equals the domain of σ. A reply by

Q is a label, substitution and process (µ′, ρ, Q′) where the binding names of

µ′ equals the domain of ρ. Given bisimilar processes P and Q then given a

challenge by P (µ, σ, P ′), a proper reply by Q of the form (µ′, ρ, Q′) implies

that P
µ−→ σP ′ and Q

µ′−→ ρQ′ such that σP ′ is bisimilar to ρQ′. Observe

that when µ is of the form (νñ)p then the µ′ of any proper reply must be of

the form (νñ)q where p, σ � q, ρ. To simplify later results, a challenge is a

label and a substitution (µ, σ) such that the binding names of µ equals the
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domain of σ and a proper reply is a label and substitution (µ′ρ) such that

the following holds. If µ is τ then µ′ is also τ . If µ is of the form (νñ)p then

µ′ is of the form (νñ)q such that p, σ � q, ρ.

8.4 Properties of Patterns

This section considers some properties of the relations on patterns, particu-

larly compatibility and comparability. Most are formalised for later exploita-

tion and to illustrate the relations between patterns in general. In particular,

that compatibility preserves information used for barbs, is stable under sub-

stitution, is reflexive and transitive. Also that comparability captures the

intuition behind the definitions in the first place. Although developed to for-

malise the coincidence of the two semantics, some properties are interesting

observations in their own right and may also be of use in sequential pattern

calculi.

The first property is that compatible and comparable patterns have the

same free names.

Proposition 8.4.1. If the patterns p and q are compatible by substitutions

σ and ρ, then p and q share the same free names. That is: if p, σ � q, ρ

then fn(p) = fn(q).

Proof: Trivial by definition of compatibility. �

Corollary 8.4.2. If the patterns p and q are comparable then they share the

same free names.
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Proof: Trivial by Proposition 8.4.1. �

The next three results ensure that compatibility is stable under substitu-

tion.

Proposition 8.4.3. If the patterns p and q are compatible by substitutions

σ and ρ, then they remain compatible when any substitution θ is applied to

(the free names of) p and q. More precisely, if p, σ � q, ρ then θp, σ � θq, ρ.

Proof: Straightforward by definition of compatibility and induction on the

structure of p. �

Proposition 8.4.4. If the patterns p and q are compatible by the substitu-

tions σ and ρ, then the free names of σ are the same as those of ρ. That is:

if p, σ � q, ρ then fn(σ) = fn(ρ).

Proof: Straightforward by definition of compatibility. �

Definition 8.4.5. Given two substitutions σ and θ, define θ[σ] to be {θpi/xi}

for xi ∈ dom(σ) and pi = σxi.

Lemma 8.4.6. If the patterns p and q are compatible by substitutions σ and

ρ then for all substitutions θ it follows that p and q are compatible by θ[σ]

and θ[ρ]. That is: if p, σ � q, ρ then p, θ[σ]� q, θ[ρ].

Proof: Straightforward by induction on the structure of p and exploiting

Definition 8.4.5 and Proposition 8.4.4. �

The compatibility relationship is reflexive.
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Proposition 8.4.7 (Compatibility is reflexive). For all patterns p and sub-

stitutions σ whose domain is the binding names of p it holds that p, σ � p, σ.

Proof: Trivial by definition of compatibility. �

The next result captures the idea behind the definitions leading to com-

parability. A pattern p is comparable with a pattern q if and only if, for every

pattern r that unifies with p by some substitutions (θ1, σ) then r also unifies

with q with some substitutions (θ2, ρ) such that θ1 = θ2 and p, σ � q, ρ.

That is, the patterns matched by p are a subset of the patterns matched by

q.

Proposition 8.4.8. The patterns p and q are comparable if and only if, for

all patterns r such that {r||p} exists and yields (θ1, σ) then r unifies with q

by {r||q} = (θ2, ρ) and θ1 = θ2 and p, σ � q, ρ.

Proof: In the forward direction proceed by induction on the comparability

relation for p.

• If fn(p) = {} and q is of the form λy then for the unification of r and

p to be defined it follows that {r||p} = ({}, σ) such that σ = {ri/xi}

for xi ∈ bn(p) and each ri is communicable and σ̂p = r. It follows

that {r||q} = ({}, {r/y}) = ({}, {σ̂p/y}) and so θ1 = {} = θ2 and

p, σ � λy, {σ̂p/y}.

• If p is a variable name n then by comparability q = n. Now consider r.

– If r is a binding name λz then {r||p} = ({n/z}, {}) = {r||q} and

n, {} � n, {}.
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– If r is n or pnq then {r||p} = ({}, {}) = {r||q} and n, {} � n, {}.

• If p is a protected name pnq then by comparability q is n or pnq. For

r to unify with p it follows that r is n or pnq. In either case {r||p} =

({}, {}) = {r||q} and pnq, {} � q, {} as required.

• Otherwise, if p is of the form p1 • p2 then by comparability q is of the

form q1 • q2. Now consider r.

– If r is a binding name λz then for r to unify with p it follows

that p is communicable and by definition of comparability that

q = p. Hence {r||p} = ({p/z}, {}) = ({q/z}, {}) = {r||q} and

p, {} � q, {} by Lemma 8.4.7.

– Otherwise for r to unify with p then r must be of the form r1 • r2
and proceed by two applications of induction.

In the reverse direction examine that {r||p} = (θ1, σ) implies {r||q} = (θ2, ρ)

such that θ1 = θ2 and p, σ � q, ρ. Consider p.

• If fn(p) = {}, then r must be of the form {̂ri/xi}p for xi ∈ bn(p), where

each ri can be any communicable pattern and θ1 = {}. As each ri can

be chosen to avoid any free names of q, it follows that, for {r||q} to be

defined, fn(q) = {}. Now consider the structure of p:

– If p is λx then by choosing r = n it must be that q is of the

form λy and {n||λy} = ({}, {n/y}) = (θ1, {σ̂p/y}) and p, σ � q, ρ

follows and thus p� q.

– If p is of the form p1 • p2 and q is of the form λy then {r||λy} =

({}, {r/y}) = (θ1, {σ̂p/y}) and p, σ � q, ρ follows and thus p� q.



174 CHAPTER 8. BEHAVIOURAL THEORY

– Otherwise, if p is of the form p1 • p2 then q must be of the form

q1 • q2 and proceed by induction.

• If p is n then r can be n or pnq or λz. For {r||q} to always be defined,

it must be that q = n, so now consider r.

– If r is λz then {r||p} = ({n/z}, {}) and {r||q} = ({n/z}, {}). It

follows that θ1 = θ2 and p, σ � q, ρ and thus p� q.

– If r is n or pnq then {r||p} = ({}, {}) and {r||q} = ({}, {}). Again

θ1 = θ2 and p, σ � q, ρ and thus p� q.

• If p is pnq then r can be n or pnq. For q to unify with pnq it follows that

q may be n or pnq. In both cases {r||p} = ({}, {}) and {r||q} = ({}, {})

and it follows that θ1 = θ2 and p, σ � q, ρ and thus p� q.

• Otherwise, if p is of the form p1 • p2 and fn(p) 6= {}. It follows that

there must be at least one free name n in p1 or p2 and so chooser r to

have a protected name pnq that unifies with that free name. Now for

{r||q} to be defined it follows that q is of the form q1 • q2. Proceed by

two applications of induction.

�

The above result can be exploited to show that comparability is transitive.

Given p comparable with q, then every pattern that unifies with p also unifies

with q. That is, the patterns that unify with p are a subset of the patterns

that unify with q. It follows that if q is comparable with r, then p must be

comparable with r.
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Proposition 8.4.9 (Comparability is transitive). Given p comparable with

q and q comparable with r, then p is comparable with r. That is: if p � q

and q � r implies p� r.

Proof: For any pattern p1 that unifies with p, it follows by Proposition 8.4.8

that p1 unifies with q and then again by Proposition 8.4.8 that p1 unifies with

r. �

The following lemma is a variation on Proposition 8.4.8 that uses com-

patibility and fixes the substitutions σ and ρ in advance. This is done to

simplify later proofs and flexibility in the substitutions can be recovered by

exploiting Lemma 8.4.6.

Lemma 8.4.10. Given p is compatible with q by substitutions σ and ρ, then

for all r such that r unifies with p to yield (θ, σ) it follows that r unifies with

q by substitutions (θ, ρ). That is: p, σ � q, ρ and {r||p} = (θ, σ) implies

{r||q} = (θ, ρ).

Proof: Straightforward by induction in the manner of Proposition 8.4.8. �

The following lemma shows that given p comparable to q and a sub-

stitution σ whose domain is the binding names of p, by exploiting pattern

unification a substitution ρ can be found that makes p and q compatible by

σ and ρ. Although of interest by itself, this result is exploited to show that

compatibility is also transitive. That is, if p is compatible with q by σ1 and

ρ1 and q is compatible with r by ρ2 and θ2 then there is a substitution θ3 such

that p is compatible with r by σ1 and θ3. Observe that as this shall later
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be used to show that the bisimulation relation is transitive, the approach

fixes the substitution on the left side of the compatibility relation to find the

substitution on the right side, as in the definition of bisimulation.

Lemma 8.4.11. Given p comparable with q and a substitution σ whose do-

main is the binding names of p, then {σ̂p||q} = ({}, ρ) such that p is com-

patible with q by σ and ρ. That is: if p � q and dom(σ) = bn(p) then

{σ̂p||q} = ({}, ρ) and p, σ � q, ρ.

Proof: The proof is by induction on the structure of q.

• If q is of the form λy then by comparability fn(p) = {}. Now σ̂p is

a communicable pattern and so {σ̂p||q} = ({}, {σ̂p/y}) and p, σ �

λy, {σ̂p/y}.

• If q is a variable name n then p is either n or pnq and so σ = {}. It

follows that {p||n} = ({}, {}) and thus p, {} � n, {}.

• If q is pnq then by comparability p is also pnq and so σ = {}. It follows

that {pnq||pnq} = ({}, {}) and thus pnq, {} � pnq, {}.

• If q is of the form q1•q2 then by comparability p is of the form p1•p2 and

also there must be σ1 and σ2 such that σ1∪σ2 = σ and dom(σ1) = bn(p1)

and dom(σ2) = bn(p2). Proceed by two applications of induction.

�

Proposition 8.4.12 (Compatibility is transitive). If p is compatible with q

by σ1 and ρ1, and q is compatible with r by ρ2 and θ2, then p is compatible with
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r by substitutions σ1 and some θ3. That is: if p, σ1 � q, ρ1 and q, ρ2 � r, θ2

implies p, σ1 � r, θ3.

Proof: When ρ1 = ρ2 then θ3 = θ2 and the result is immediate. Otherwise

by Proposition 8.4.9 p is comparable with r and so exploit Lemma 8.4.11

with p and r and σ1 to yield θ3. �

As compatibility and comparability are orderings upon patterns it is inter-

esting to observe that for every pattern p there is a unique maximal pattern

with respect to �.

Proposition 8.4.13. For every pattern p there exists a maximal pattern q

with respect to � that is unique up-to α-conversion of binding names.

Proof: The proof is by induction on the structure of p:

• If fn(p) = {} then q = λy for some fresh y.

• If p is n or pnq then q is n.

• If p = p1 • p2 then proceed by induction on p1 and p2.

The only arbitrary choice is the y used in the first item, that can be α-

converted to any other fresh name. �

To conclude the properties of the compatibility and comparability rela-

tions, it is worth remarking they do not yield a lattice: there is no supremum

for the two patterns λx and n.

Notes. The development of compatibility of patterns in CPC raises ques-

tions about a similar relation on patterns for pure pattern calculus (and
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other pattern calculi [Jay09]). Such a relation has been suggested before as

a way to indicate when extensions are overshadowed by previous cases, or in

optimising evaluation of pattern-matching.

8.5 Soundness of the Bisimulation

The fourth step is to show that the bisimulation relation is a barbed congru-

ence. That is, the bisimulation relation is barb preserving, reduction closed,

and context closed.

Barb preserving and reduction closed are ensured by the following two

lemmas.

Lemma 8.5.1. The bisimulation relation ∼ is barb preserving.

Proof: Straightforward by definition of bisimulation and Proposition 8.4.1.

�

Lemma 8.5.2. The bisimulation relation ∼ is reduction closed.

Proof: Trivial by Proposition 8.2.2. �

Closure under any context is less easy to prove. The next lemma serves

to show that bisimilarity is closed under cases. Then the following lemma

shows that the bisimulation is closed under name restriction and parallel

composition (as in π-calculus it is necessary to handle these simultaneously

due to name extrusions).
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Lemma 8.5.3. Bisimilarity is closed under cases, that is, if P ∼ Q then

p→ P ∼ p→ Q.

Proof: It is necessary to prove that p → P is bisimilar to p → Q. The

only possible transition of p→ P is p→ P
p−→ P such that bn(p) ∩ fn(Q) =

{}. Also the only possible transition of p → Q is p → Q
p−→ Q such that

bn(p) ∩ fn(P ) = {}. Thus for either process the only possible challenge is

(p, σ) for any substitution σ such that dom(σ) = bn(p). The proper reply

is also (p, σ) and conclude with σP ∼ σQ by bisimilarity of P and Q and

closure under substitution of the bisimulation. �

Lemma 8.5.4. Bisimulation is closed under name restriction and parallel

composition. Given two bisimilar processes P and Q then they remain bisim-

ilar when placed under the same restricted names ñ and in parallel compo-

sition with some other process R. That is: if P ∼ Q then (νñ)(P | R) ∼

(νñ)(Q | R).

Proof: It is necessary to prove that the relation

< = {((νñ)(P | R), (νñ)(Q | R)) : P ∼ Q}

is a bisimulation. If there are no transitions then the result is immediate.

Otherwise these must be a transition of the form (νñ)(P | R)
µ−→ P̂ and it

suffices to show that for any µ there is a transition (νñ)(Q | R)
µ′−→ Q̂ such

that µ′ is a proper reply and P̂ ∼ Q̂. Now proceed by induction on the

structure of the inference for (νñ)(P | R)
µ−→ P̂ .

• If the last rule is parint then (νñ)(P | R) is P | R and µ = τ , now there

are two possibilities.
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– If the transition is
P

τ−→ P ′

P | R τ−→ P ′ | R

then by P ∼ Q there exists Q
τ−→ Q′ and conclude with Q̂ =

Q′ | R.

– If the transition is
R

τ−→ R′

P | R τ−→ P | R′

then take the same transition and Q̂ = Q | R′ and conclude.

• If the last rule is parext then (νñ)(P | R) is P | R and there are two

possibilities.

– If the transition is

P
(νñ)p−−−→ P ′

P | R (νñ)p−−−→ P ′ | R
(ñ ∪ bn(p)) ∩ fn(R) = {}

then define a substitution σ = idbn(p). Now by P ∼ Q there exists q

andQ′ and ρ such thatQ
(νñ)q−−−→ Q′ and (ñ∪bn(q))∩fn(R) = {} (by

α-conversion on binding names of q as required) and p, σ � q, ρ

and σP ′ ∼ ρQ′. As σ only maps names to themselves it follows

that σP ′ = P ′, and then by P ′ ∼ ρQ′ take Q̂ = ρQ′ | R and

conclude.

– If the transition is

R
(νñ)r−−−→ R′

P | R (νñ)r−−−→ P | R′
(ñ ∪ bn(r)) ∩ fn(P ) = {}
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then take the same transition

R
(νñ)r−−−→ R′

Q | R (νñ)r−−−→ Q | R′
(ñ ∪ bn(r)) ∩ fn(Q) = {}

exploiting α-conversion as required to avoid the free names of Q.

Conclude by taking Q̂ = Q | R′.

• If the last rule is rep then there are two possibilities.

– If the transition is
P

µ−→ P ′

P | R µ−→ P ′ | R

then by P ∼ Q there exists Q
µ′−→ Q′ such that µ′ is a proper reply

to µ and P ′ ∼ Q′ and conclude with Q̂ = Q′ | R.

– If the transition is
R

µ−→ R′

P | R µ−→ P | R′

then take the same transition and Q̂ = Q | R′ and conclude.

• If the last rule is resnon then

(P | R)
µ−→ P ′

(νn)(P | R)
µ−→ (νn)P ′

n /∈ names(µ) .

Now consider the transition µ.

– If µ is an internal action τ then µ′ is also an internal action and n /∈

names(µ′). Now by the induction hypothesis there is a transition

(Q | R)
µ′−→ Q′ and so conclude with Q̂ = (νn)Q′.
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– If µ is of the form (νñ)p then define a substitution σ = idbn(p). Now

by induction on (P | R)
µ−→ P ′ there exists q and Q′ and ρ such

that (Q | R)
(νñ)q−−−→ Q′ and p, σ � q, ρ and σP ′ ∼ ρQ′. Also n /∈ ñ

and by Proposition 8.4.1 n /∈ fn(q) and by α-conversion n /∈ bn(q),

it follows that n /∈ names(µ′). As σ maps names to themselves it

follows that σP ′ = P ′ and thus conclude with Q̂ = (νn)(ρQ′).

• If the last rule is resin then

(P | R)
(νñ)p−−−→ P ′

(νm)(P | R)
(νñ,m)p−−−−→ P ′

m ∈ vn(p)\(ñ ∪ pn(p) ∪ bn(p)) .

Define a substitution σ = idbn(p). Now by induction hypothesis there

is a transition (Q | R)
(νñ)q−−−→ Q′ for some q and Q′ and ρ such that

p, σ � q, ρ and σP ′ ∼ ρQ′. It remains to show that the side conditions

hold in the following transition

(Q | R)
(νñ)q−−−→ Q′

(νm)(Q | R)
(νñ,m)q−−−−→ Q′

m ∈ vn(q)\(ñ ∪ pn(q) ∪ bn(q)) .

That m /∈ ñ follows from the original transition. By definition of

compatibility of p and q it follows that m ∈ vn(q) and m /∈ pn(q).

That m /∈ bn(q) is handled by exploiting α-conversion. Thus conclude

by observing that as σ maps names to themselves σP ′ = P ′ and so

P ′ ∼ ρQ′ and finally take Q̂ = ρQ′.

• If the last rule is case then there are two possibilities; either P or R is

the null process.
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– If P is the null process then by bisimilarity Q must also have no

transitions. That R ∼ R is immediate and the conclusion follows.

– If R is the null process then there is a transition (p→ P ′)
p−→ P ′.

Define a substitution σ = idbn(p). By ∼ there exists q and Q′ and

ρ such that Q
q−→ Q′ and p, σ � q, ρ and σP ′ ∼ ρQ′. As σP ′ = P ′

take Q̂ = ρQ′ and conclude.

• If the last rule is match then

P
(νm̃)p−−−→ P ′ R

(νõ)r−−−→ R′

P | R τ−→ (νm̃, õ)(σP ′ | θR′)

with {p||r} = (σ, θ) and m̃∩fn(R) = õ∩fn(P ) = {} and dom(σ) = bn(p)

and dom(θ) = bn(r) and m̃ ∩ ñ = {}. Then P̂ = (νm̃, õ)(σP ′ | θR′).

Now by ∼ there exists q and Q′ and ρ such that Q
(νm̃)q−−−→ Q′ and

p, σ � q, ρ and σP ′ ∼ ρQ′. By Lemma 8.4.10 {q||r} = (ρ, θ) and so

Q
(νm̃)q−−−→ Q′ R

(νõ)r−−−→ R′

Q | R τ−→ (νm̃, õ)(ρQ′ | θR′)

with õ ∩ fn(Q) by α-conversion and the other side conditions already

hold. Thus Q̂ = (νm̃, õ)(ρQ′ | θR′).

�

Continuing with context closure of the bisimulation, the next two lemmas

and proposition ensures that bisimilar processes remain so under replication.
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Lemma 8.5.5 (Bisimulation is transitive). If P is bisimilar to Q and Q is

bisimilar to R, then P is bisimilar to R. That is: if P ∼ Q and Q ∼ R then

P ∼ R.

Proof: Straightforward by Proposition 8.4.12. �

Definition 8.5.6. An LTS is structurally image finite if, for every P and

µ, it holds that {P ′ : P µ−→ P ′}/≡ contains finitely many elements.

Proposition 8.5.7. The LTS defined for CPC in Figure 8.1 is structurally

image finite.

Proof: It suffices to show that for a given P and µ there are finitely many

structurally equivalent P ′ when P
µ−→ P ′ is defined. The proof by induction

on the inference for P
µ−→ P ′. The base case is when the last rule is case

and there is just one equivalence class wiz. [P ′]≡. All the inductive steps are

straightforward except for when the last rule is rep. When the last rule is rep

then the rule must be of the form

!P1 | P1
µ−→ P ′′

!P1
µ−→ P ′′

.

Now consider the inference for the transition !P1 | P1
µ−→ P ′′.

• If the last rule is parint or parext then P ′′ must be of the form Q1 | Q2

and there are two possibilities.

– If the rule is of the form

!P1
µ−→ Q1

!P1 | P1
µ−→ Q1 | Q2
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then Q2 must be P1. Now by induction !P1
µ−→ Q1 there are finitely

many Q1 up to structural equivalence. Further, it is straightfor-

ward to show that all suchQ1 are structurally equivalent to !P1 |Q′

for some Q′. Thus conclude with Q1 | Q2 = !P1 | Q′ | P1 ≡

!P1 | Q′ = Q1.

– If the rule is of the form

P1
µ−→ Q2

!P1 | P1
µ−→ Q1 | Q2

then the conclusion is straightforward.

• If the last rule is match then the conclusion is straightforward.

�

Lemma 8.5.8. If two processes P and Q are bisimilar, then their respective

replications are also bisimilar. That is: if P ∼ Q then !P ∼!Q.

Proof: This proof rephrases the similar one by Sangiorgi & Walker [SW01];

here the main steps shall be revisited. First, define the n-th approximation
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of the bisimulation:

∼0 = Proc× Proc

∼n+1 = {(P,Q) :

For all transitions P
µ−→ P ′ the following hold. If µ = τ there

exists a transition Q
τ−→ Q′ such that (P ′, Q′) ∈∼n.

Otherwise if µ = (νñ)p then for all substitutions σ such that

dom(σ) = bn(p) and fn(σ) ∩ ñ = {} and (bn(p) ∪ ñ) ∩ fn(Q)

= {} then there exists q and Q′ and ρ such that Q
(νñ)q−−−→ Q′

and p, σ � q, ρ and (σP ′, ρQ′) ∈∼n.

Also the same for transitions of Q.

Trivially, ∼0 ⊇ ∼1 ⊇ ∼2 ⊇ . . .

Since the LTS is structurally image finite by Proposition 8.5.7 it follows

that

∼ =
⋂
n≥0

∼n . (8.4)

One inclusion is trivial: by induction on n, it is straightforward to prove that

∼ ⊆ ∼n for every n and so ∼ ⊆
⋂
n≥0 ∼n. For the converse, fix P

µ−→ P ′.

Consider the case for µ = (νñ)p, since the case for µ = τ can be proved as

in π-calculus. For every n, there exist qn, Qn and ρn such that Q
(νm̃)qn−−−−→ Qn

and p, σ � qn, ρn and σP ′ ∼n ρnQn. By Proposition 8.4.13, there are finitely

many (up-to α-equivalence) such qn’s and thus there must exist (at least)

one qk that leads to infinitely many Qn’s. However, by Proposition 8.5.7

such Qn’s cannot be all different up to structural equivalence. Thus, there

must exist (at least) one Qh such that Q
(νm̃)qk−−−−→ Qh and there are infinitely
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many Qn’s such that Q
(νm̃)qk−−−−→ Qn and Qn ≡ Qh. It suffices to prove that

σP ′ ∼n ρhQh, for every n. This is trivial whenever n ≤ h and it follows

that ∼n ⊇ ∼h. So consider when n > h. If Qn ≡ Qh, conclude since ≡ is

closed under substitutions (as ρn = ρh since qn = qh = qk) and ≡ ⊆ ∼n, for

every n. Otherwise, there must exist m > n such that Qm ≡ Qh (otherwise

there would not be infinitely many Qn’s structurally equivalent to Qh). Thus,

σP ′ ∼m ρhQh implies σP ′ ∼n ρhQh, since m > n.

Following on from this, !P ∼!Q if and only if !P ∼n!Q, for all n. Let P n

denote the parallel composition of n copies of the process P (and similarly

for Q). Now, it can be proved that

!P ∼n P 2n and !Q ∼n Q2n . (8.5)

By repeatedly exploiting Lemma 8.5.4, for all n it follows that P 2n ∼ Q2n

and so by (8.4)

P 2n ∼n Q2n . (8.6)

Now by (8.6) it follows that P ∼ Q implies for all n that P 2n ∼n Q2n. Then

by (8.5) and Lemma 8.5.5 (that also holds with ∼n in place of ∼) for all n it

follows that !P ∼n!Q. Finally, conclude by (8.4) to show that !P ∼!Q. �

Context closure can now be proved by exploiting the above lemmas for

restriction, parallel composition and replication.

Lemma 8.5.9. The bisimulation relation ∼ is contextual.

Proof: Given two bisimilar processes P and Q, it is necessary to show that

for any context C(·) it holds that C(P ) ∼ C(Q). The proof is by induction
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on the structure of the context.

• If C(·) def
= · then the result is immediate.

• If C(·) def
= C ′(·) | R or C(·) def

= (νn)C ′(·), then C ′(P ) ∼ C ′(Q) by induc-

tion, and conclude by Lemma 8.5.4.

• If C(·) def
=!C ′(·), then C ′(P ) ∼ C ′(Q) by induction, and conclude by

Lemma 8.5.8.

• If C(·) def
= p→ C ′(·), then C ′(P ) ∼ C ′(Q) by induction, and conclude by

Lemma 8.5.3.

�

Thus the soundness of the bisimulation follows.

Theorem 8.5.10 (Soundness of the bisimulation). Bisimilar processes are

barbed congruent. That is: ∼ ⊆ '.

Proof: By Definition 8.1.5 is suffices to show that the bisimulation relation

is: barb preserving by Lemma 8.5.1, reduction closed by Lemma 8.5.2, and

context closed by Lemma 8.5.9. �

8.6 Completeness of the Bisimulation

The fifth step is by showing that the barbed congruence relation is a bisim-

ulation. This section develops the machinery required to construct reply

contexts for any challenge and then exploits these to prove the barbed con-

gruence is a bisimulation. The more complex case arises when a process P
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has a challenge is of the form ((νñ)p, σ). This is addressed by defining a

reply context that succeeds if and only if supplied with a process Q that

can properly reply by ((νñ)q, ρ′) to the challenge ((νñ)p, idbn(p)). The reply

context is of the form (νõ)(p′ → tests) | · where unification of p′ with q is nec-

essary for comparability. However, further testing is required to ensure that

p� q is satisfied. Constructing the reply context begins with a specification

developed from p and N (to be thought of as the free names of P and Q) that

defines the complementary pattern p′ and ingredients for building the tests.

In particular p′ is defined so that unification with q yields (θ, ρ′) where θ is

required for further testing and ρ′ is used to make p and q compatible. Tests

are then defined that succeed if and only if the variable names of q can be

made equal to those of p. That is: when a variable name n is free in (νñ)p

then n is free in (νñ)q; and when a variable name n is restricted in (νñ)p then

(perhaps exploiting renaming) n is restricted in (νñ)q. The complementary

pattern and tests are then combined into a characteristic process that is in

turn used to define a reply context CNp (·) for the challenge ((νñ)p, idbn(p)).

From here it is straightforward to generalise to challenges ((νñ)p, σ) with

any substitution σ and so show the barbed congruence is a bisimulation.

Specification

Given a challenge ((νñ)p, idbn(p)) the specification of the pattern p provides

the ingredients required to construct the reply context. In particular, the

specification yields a complementary pattern p′ that will unify with any q
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such that p� q while also binding the components of q that require further

testing to ensure that p � q. One complexity is in distinguishing the free

variable names from the restricted variable names in p and q. To resolve this,

a set of names N disjoint from ñ is used that will later be defined to be the

free names of the processes being considered.

Definition 8.6.1. The specification specN(p) of a pattern p with respect to

a finite set of names N is defined follows:

specN(λx) = x, {}, {}

specN(n) = λx, {(x, n)}, {} n ∈ N and x is fresh

specN(n) = λx, {}, {(x, n)} n /∈ N and x is fresh

specN(pnq) = pnq, {}, {}

specN(p • q) = p′ • q′, Fp ] Fq, Rp ]Rq

 specN(p) = p′, Fp, Rp

specN(q) = q′, Fq, Rq

where Fp ] Fq means the disjoint union of the pairs of names.

Given a pattern p, the specification specN(p) = p′, F, R of p with respect

to a set of names N has three components: the complementary pattern p′. a

collection F of pairs (x, n) of: a binding name in p′, and the expected (free)

name it will be bound to n; and a collection R of pairs (x, n) of: a binding

name in p′ and the expected (restricted) name it will be bound to n. Observe

that p′ is well formed as all binding names are fresh.

The specification is straightforward for binding names, protected names

and compounds. When p is a variable name then p′ is a fresh binding names
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λx and the intended binding of x to n is recorded in F or R according to

whether n is free or restricted, respectively.

Proposition 8.6.2. Given a pattern p and a finite set of names N , define

specN(p) = p′, F, R. The unification of p and p′ is defined and yields the

substitutions σ and θ such that σ is the identity substitution on the binding

names of p and for every pair (x, n) in F ∪R then θ maps x to n.

Proof: By straightforward induction on the structure of p. �

For later convenience define the first projection fst(F ) and second pro-

jection snd(F ) of a set of pairs, that is, fst({(x,m), (y, n)}) = {x, y} and

snd({(x,m), (y, n)}) = {m,n}, respectively.

Testing

Tests are used that succeed when the binding names of p′ have bound to

appropriate patterns in unification with q. When a binding name of p′ is

intended to bind to a free variable name n of the challenge, i.e. (x, n) ∈ F ,

then the test should succeed if and only if x can unify with n. Alternatively,

when a binding name of p′ is intended to bind to a restricted name n of the

challenge, i.e. (x, n) ∈ R, then a test should succeed if and only if x is not

bound to a compound or any name in N . Although this ensures the binding

of x when (x, n) ∈ R is a restricted name, some renaming may be required

to achieve compatibility. To ensure that renaming is possible a further test

is required to indicate that renaming is safe. To illustrate the difficulties of
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such renaming, consider the following three transitions and specification:

µ1 = (νm1)(νm2)m1 •m1 •m2

µ2 = (νn1)(νn2)n1 • n1 • n2

µ3 = (νo1)(νo2)o1 • o2 • o2

spec{}(m1 •m1 •m2) = λx • λy • λz, {}, {(x,m1), (y,m1), (z,m2)} .

Observe that the patterns of all three transitions unifies with λx•λy•λz and

that all of the names bound to x, y and z will be restricted. Now consider

a challenge (µ1, {}) and the three transitions above. Obviously (µ1, {}) is

a proper reply. Subject to renaming then µ2 can also be a proper reply by

taking n1 = m1 and n2 = m2. No renaming allows µ3 to be a proper reply.

The ability to rename µ2 is due to the structure of n1 • n1 • n2, or when

unified with λx • λy • λz then x = y and x 6= z and y 6= z. Observe that the

relations that make renaming safe can be recovered from the information in

R. Thus, a further test is defined that succeeds when these relations hold

and renaming is safe.

To simplify the test definitions, define the production
∏

x∈S P(x) of a set

S to be the parallel composition of processes P(x) for each x in S. That is,

if P(x) = x→ 0 and S = {x1, . . . , xi} then

∏
x∈S

P(x) ≡ x1 → 0 | . . . | xi → 0 .
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The tests are also simplified by defining a check check(x,m, y, n, w) to

ensure equality or inequality of names. That is, when m = n then x = y and

when m 6= n then x 6= y.

check(x,m, y, n, w) = (νz)(pzq • pxq | pzq • pyq→ pwq) m = n

check(x,m, y, n, w) = pwq | (νz)(pzq • pxq | pzq • pyq→ pfq • λz) m 6= n

Observe that a check succeeds if and only if m and n share the same equality

or inequality as x and y.

Definition 8.6.3 (Tests). Tests for ensuring compatibility.

free(x, n, w) = (νm)(pmq • pnq→ pwq | pmq • pxq)

restN(x,w) = pwq | (νm)(νz)(

pmq • x • z

| pmq • (λy1 • λy2) • λz → pfq • λz fail on compound

|
∏

n∈Npmq • pnq • λz → pfq • λz fail on n ∈ N

)

equalityR(x,m,w) = (νw̃y)(

pwy1q→ . . .→ pwyiq→ pwq

|
∏

(y,n)∈R check(x,m, y, n, wy)

)

where ỹ = fst(R).

A free test free(x, n, w) for x is a process that succeeds by reporting success
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with pwq if and only if x is equal to n. A restricted test restN(x,w) for x is

a process that succeeds by: immediately reporting success with pwq; and not

reporting failure with pfq • λz when x is a compound or any name in N . An

equality test equalityR(x,m,w) for x is a process that succeeds by ensuring

every check on pairs (y, n) in R reports success and does not report failure.

Lemma 8.6.4. A free test free(x, n, w) for x succeeds if and only if x equals

n.

Proof: Trivial. �

Lemma 8.6.5. A restricted test restN(x,w) for x succeeds if and only if x

is not a compound and x is not any name in N .

Proof: Straightforward. �

Lemma 8.6.6. An equality test equalityR(x,m,w) for x succeeds if and only

if, for every pair (y, n) in R then:

• if m = n then x = y

• if m 6= n then x 6= y.

Proof: In order for equalityR(x,m,w) to succeed by exhibiting a barb pwq,

each check check(x,m, y, n, wy) must succeed by producing pwyq. The rest of

the proof is straightforward. �

For each test that succeeds there is an exact number of reductions required

to reduce to a form barbed congruent to pwq.
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Lemma 8.6.7. For each test T that succeeds, there is exactly k reductions

to a form barbed congruent to pwq where k depends only on the structure of

the test.

Proof: Trivial for free and restricted tests. For equality tests it suffices to

observe that each check has an exact number of reductions to succeed and

then there is a reduction to consume the success barb of each check. �

Reply Context

Given a pattern p and a finite set of names N (thought of as the free names

of P and Q), the characteristic process can be defined by exploiting the

specification and tests. In turn the characteristic process can then by used

to construct a reply context that succeeds if and only if supplied supplied

with a process Q that can properly reply to the challenge ((νñ)p, idbn(p))

where ñ is disjoint from N .

Definition 8.6.8. The characteristic process charN(p) of a pattern p with

respect to a finite set of names N is charN(p) = p′ → testsN(p) where

testsN(p)
def
= (νw̃x)(νw̃y)(

pwx1q→ . . .→ pwxiq→ pwy1q→ . . .→ pwyjq→ pwq

|
∏

(x,n)∈R equalityR(x, n, wx)

|
∏

(x,n)∈F free(x, n, wy)

|
∏

(x,n)∈R restN(x,wy)

)
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and specN(p) = p′, F, R and {x1, . . . , xi} = fst(R) and {y1, . . . , yj} = fst(F )∪

fst(R). For later convenience the denote testsN(p) as the tests of p and N .

Proposition 8.6.9. The characteristic process of a pattern p with respect to

a set of names N does not reduce.

Proof: It is sufficient to observe that charN(p) is a case for every p and N .

�

Lemma 8.6.10. Given a characteristic process charN(p) and any substitution

θ such that θ(testsN(p)) succeeds, then there are exactly k reduction steps

θ(testsN(p)) 7−→k ' pwq where k depends only on p and N .

Proof: Straightforward by induction on the number of tests and repeated

applications of Lemma 8.6.7. �

A reply context for a challenge ((νñ)p, idbn(p)) with a finite set of names

N can be defined by exploiting the characteristic process.

Definition 8.6.11. A reply context CNp (·) for the challenge ((νñ)p, idbn(p))

with a finite set of names N such that ñ is disjoint from N is defined as

follows:

CNp (·) def
= charN(p) | · .

Proposition 8.6.12. Given a reply context CNp (·) then there is a minimum

number of reductions required for CNp (·) to succeed when supplied with a pro-

cess. That is, the minimum number of reductions required for CNp (·) to succeed

is the number of reduction steps k′ for testsN(p) to succeed plus 1.
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Proof: By Lemma 8.6.10 then for any substitution θ such that testsN(p)

succeeds then testsN(p) 7−→k′ ' pwq where k′ depends only on p and N .

Thus the minimum number of reductions is when the dot is replaced with a

process of the form (νm̃)(q → Q1 | Q2) for some m̃ and q and Q1 and Q2

such that {p′||q} = (θ, ρ) and θS 7−→k′ ' pwq. Conclude with k = k′ + 1

depending only upon p and N . �

Thus, the minimum number of reductions required for a reply context

CNp (·) to succeed is equal to the number of reductions for testN(p) to succeed

plus 1. Denote this number of reductions by Proposition 8.6.12 as Mr(N, p).

The next theorem serves to show that a reply context CNp (·) succeeds in

exactly Mr(N, p) reduction steps when supplied with a process Q that has

a transition that yields a proper reply to ((νñ)p, idbn(p)).

Theorem 8.6.13. Suppose given a challenge ((νñ)p, idbn(p)) and a finite set

of names N and a process Q and fresh names w and f such that restricted

names of the challenge union w and f are disjoint from N , and the free

names of the challenge union the free names of Q are contained within N .

If Q has a transition of the form Q
(νñ)q−−−→ Q′ and there is a substitution ρ

such that p, idbn(p) � q, ρ then CNp (Q) succeeds and has a reduction sequence

CNp (Q) 7−→k ' ρQ′ | pwq where k = Mr(N, p).

Proof: To simplify the proof, α-conversion can be used to ensure that bind-

ing names of p are fresh, in particular do not appear in Q. Observe that by

Lemma 8.6.10 then the number of reductions for testsN(p) to succeed k′ is

fixed and by Proposition 8.6.12 k′ = k − 1. By Proposition 8.6.2 {p||p′} =
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(σ, θ) where σ = idbn(p) and θ is such that dom(θ) = bn(p′) = fst(F ) ∪ fst(R)

and for every (x, n) ∈ F ∪ R then θ maps x to n. By Lemma 8.4.10

{q||p′} = (ρ, θ). Thus CNp (Q) 7−→ ρQ′ | θ(testsN(p)). Since w and f do

not appear in Q or p′, it suffices to show that θ(testsN(p)) succeeds and the

proof is by contradiction.

• Assume that θ(testsN(p)) 6⇓w, then there are two possibilities.

– If there is a pwxiq that cannot be consumed then consider the

equality test equalityR(x,m,wxi) of the form (νw̃z)(pwz1q→ . . .→

pwzkq → pwxiq |
∏

(y,n)∈R check(x,m, y, n, wz)). Now consider the

pwzkq that cannot be consumed. There are two possibilities de-

pending on the check that does not report success.

∗ If the check is of the form check(x,m, y, n, wzk) where m = n

then it must be that x 6= y, however by compatibility it must

be that x = y.

∗ If the check is of the form check(x,m, y, n, wzk) where m 6= n

then contradiction is immediate as these checks immediately

exhibit a barb on wzk.

– If there is a pwyiq that cannot be consumed then consider the test

that fails to yield pwyiq:

∗ If yi ∈ fst(F ) then there is some component of S of the form

pmq • pq1q → pwyiq | pmq • pnq and q1 6= n. However, by com-

patibility it must be that q1 = n.

∗ If yi ∈ fst(R) then contradiction is immediate, since restricted

tests immediately exhibit a barb on wyi.
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• Assume that θ(testsN(p)) ⇓f then there are two possibilities depending

on the test that failed.

– If the failure is due to an equality test then it must be that there

is some (x,m) ∈ R and some other (y, n) ∈ R such that m = n

and x 6= y. However, this contradicts Lemma 8.6.6.

– If the failure is due to a restricted test then consider the pattern

bound by y ∈ fst(R).

∗ If y is bound to a compound then this contradicts compati-

bility.

∗ If y is bound to n and n ∈ N this yields contradiction as for

n ∈ R it must be that n /∈ N .

�

The difficulty in ensuring a reply context succeeds is to account for renam-

ing of restricted names in determining a proper reply. The next two lemmas

deal with renaming of restricted names by showing when patterns can be

renamed to be compatible and then considering the requirements for a label

of the form (νm̃)q to be part of a proper reply to a challenge ((νñ)p, idbn(p)).

These are in turn used to show that if a reply context succeeds in exactly

Mr(N, p) reduction steps then there is a transition that meets the criteria

for a proper reply.

Lemma 8.6.14. Suppose given patterns p1 and p2 and q1 and q2 and sub-

stitutions θ1 and θ2 such that p1 � θ1q1 and p2 � θ2q2. If dom(θ2) ∩
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(vn(q1)\dom(θ1)) and dom(θ1) ∩ (vn(q2)\dom(θ2)) are both empty and for all

x ∈ dom(θ1)∩dom(θ2) it follows that θ1x = θ2x then p1•p2 � (θ1∪θ2)(q1•q2).

Proof: Straightforward by induction on the structure of q1 • q2. �

Lemma 8.6.15. Given a challenge ((νñ)p, idbn(p)) and a finite set of names

N and a label of the form (νm̃)q and fresh names w and f such that ñ∩N =

{} and s, f /∈ N ∪ fn((νm̃)q) and m̃ = vn(q)\N then CNp ((νm̃)q) succeeds if

and only if there exists a pattern q′ and substitutions θ and ρ such that θ

maps names to names and dom(θ) = m̃ and fn(θ) = ñ and |ñ| = |m̃| and

q′ = θq and p, idbn(p) � q′, ρ. That is: CNp ((νm̃)q) succeeds if and only if

(νm̃)q =α (νñ)q′ and p, idbn(p) � q′, ρ.

Proof: To simplify the proof, α-conversion can be used to ensure that bind-

ing names of p are fresh, in particular do not appear in (νm̃)q, and that

restricted names of (νm̃)q do not appear in p.

For the reverse direction, obtain the label µ by α-converting the names m̃

to ñ according to θ, i.e. µ = (νñ)θq. Then define the process Q = µ→ 0 and

by existence of ρ such that p, idbn(p) � θq, ρ conclude via Theorem 8.6.13.

In the forward direction observe that CNp ((νm̃)q) is of the form (νm̃)(p′ →

testsN(p) | q) where specN(p) = p′, F, R. By freshness of w and f for

CNp ((νm̃)q) to succeed there must be a reduction (νm̃)(p′ → testsN(p) | q) 7−→

(νm̃)θ(testsN(p)) where {p′||q} = (θ, ρ). Now proceed by induction on the

structure of q to show that |ñ| = |m̃| and p, idbn(p) � θq, ρ.

• If q is of the form λy then it follows by unification of p′ and q that p′

is a communicable pattern and that ρ = {p′/y}. By definition of the
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specification it must be that fn(p) = {} and thus p′ = (îdbn(p))p. Thus

θ = {} and ñ = {} = m̃ and conclude with p, idbn(p) � q, ρ.

• If q is n and n ∈ N then by freshness of binding names of p and

unification of p′ with q there are two possibilities for p′.

– If p′ is λz then by definition of the specification there is a pair

(z,m) ∈ F ∪ R. If (z,m) ∈ R then by Lemma 8.6.5 the reply

context would not succeed and this would contradict the premise.

Therefore, (z,m) ∈ F and for the reply context to succeed and by

Lemma 8.6.4 it follows that n = m. Conclude with θ = {} and

ñ = {} = m̃ and n, {} � n, {}.

– If p′ is pnq then by definition of the specification p is also pnq.

Conclude with θ = {} and ñ = {} = m̃ and pnq, {} � n, {}.

• If q is m and m /∈ N then it follows that m̃ = {m} and p′ must be of

the form λz. It follows that there is a pair (z, n) ∈ F ∪R. However, if

(z, n) ∈ F then n ∈ N and by Lemma 8.6.4 then m ∈ N which yields

contradiction. Therefore, (z, n) ∈ R and ñ = {n} and |m̃| = |ñ| and

conclude with θ = {n/m} and n, {} � {n/m}m, {}.

• If q is pnq then by unification p′ is n or pnq. By definition of the spec-

ification and freshness of the binding names of p it follows that p′ is

pnq and thus p is pnq. Conclude with θ = {} and ñ = {} = m̃ and

pnq, {} � pnq, {}.

• If q is of the form q1 • q2 then consider p′. If p′ is a binding name λz

then it follows that z ∈ fst(F ) ∪ fst(R). However, if z ∈ fst(F ) then
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this contradicts Lemma 8.6.4 and if z ∈ fst(R) then this contradicts

Lemma 8.6.5. Therefore p′ must be of the form p′1 •p′2 and by definition

of the specification p must be of the form p1 • p2.

Now by two applications of the induction hypothesis there are sub-

stitution θ1 and θ2 and also ñ1 and ñ2 and m̃1 and m̃2 such that for

i ∈ {1, 2} then pi, idbn(pi) � θiqi, ρi and |ñi| = |m̃i|. Since dom(θi) =

vn(qi)∩m̃ it follows that dom(θ2)∩(vn(q1)\dom(θ1)) = {} and dom(θ1)∩

(vn(q2)\dom(θ2)) = {}. To apply Lemma 8.6.14 it remains to show

that every x ∈ dom(θ1 ∩ θ2) then θ1x = θ2x. Also to show that

|ñ1∪ ñ2| = |m̃1∪ m̃2| it suffices to show that for every x ∈ dom(θ1) and

y ∈ dom(θ2) if x = y then θ1x = θ2y and if x 6= y then θ1x 6= θ2y. These

can both be resolved at once by observing that for every x ∈ dom(θ1)

and y ∈ dom(θ2) there is a check of the form check(x, θ1x, y, θ2y, wz).

Since the reply context succeeds it follows by Lemma 8.6.6 that every

check succeeds. Thus conclude with ñ = ñ1∪ ñ2 and m̃ = m̃1∪ m̃2 and

θ = θ1 ∪ θ2 and ρ = ρ1 ∪ ρ2 and thus p1 • p2, idbn(p) � θ(q1 • q2), ρ.

�

Theorem 8.6.16. Suppose given a challenge ((νñ)p, idbn(p)) and a finite set

of names N and a process Q and fresh names w and f such that restricted

names of the challenge union w and f are disjoint from N , and the free

names of the challenge union the free names of Q are contained within N . If

CNp (Q) succeeds in k reduction steps where k = Mr(N, p) then there exists q

and Q′ and ρ such that Q
(νñ)q−−−→ Q′ and p, idbn(p) � q, ρ.
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Proof: By Proposition 8.6.9 and w, f /∈ fn(Q) and for CNp (Q) ⇓w there

must a reduction Q 7−→j Q′′ such that CNp (Q′′) 7−→ θ(testsN(p)) | ρQ′

θ(testsN(p)) 7−→k′ ' pwq and Q′′
(νm̃)q′−−−−→ Q′ and {p′||q} = (θ, ρ). Observe

that by Lemma 8.6.10 then the number of reductions for θ(testsN(p)) to suc-

ceed k′ is fixed and by Proposition 8.6.12 k′ = k − 1 and so j = 0 and Q′′ is

Q.

Now by Lemma 8.6.15 |ñ| = |m̃| and there exists a substitution θ′ and

q = θ′q′ such that p, idbn(p) � q, ρ and thus Q
(νñ)q−−−→ Q′ by exploiting α-

conversion. �

Thus a reply context succeeds if and only if supplied with a process that

can properly reply to a challenge of the form ((νñ)p, idbn(p)). From here it is

straightforward to generalise to any substitution as part of the challenge and

thus show the barbed congruence is a bisimulation.

Theorem 8.6.17 (Completeness of the bisimulation). The barbed congru-

ence is a bisimulation. That is: ' ⊆ ∼.

Proof: It is sufficient to prove that for every pair of processes P and Q such

that P ' Q and every challenge by P of the form (µ, θ, P ′) there exists a

proper reply by Q.

When the challenge by P is (τ, {}, P ′) then the result follows by reduction

closure and Proposition 8.2.2.

When the challenge by P is of the form ((νñ)p, σ, P ′) consider the reply

context CNp (·) where N = fn(P ) ∪ fn(Q).

By Theorem 8.6.13 and Proposition 8.4.7 then CNp (P ) succeeds in k reduc-

tion steps where k = Mr(N, p). It follows by barbed congruence that CNp (Q)
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succeeds in k reduction steps, and Theorem 8.6.16 implies that Q
(νñ)q−−−→ Q′

for some q and Q′ and ρ′ such that p, idbn(p) � q, ρ′.

By two applications of Theorem 8.6.13 it follows that CNp (P ) 7−→k '

P ′ | pwq and CNp (Q) 7−→k ' ρ′Q′ | pwq. Further, by barbed congruence and

Lemma 8.1.6 it follows that P ′ ' ρ′Q′.

Now by Lemma 8.1.7 obtain σP ′ ' σ(ρ′Q′). Use Lemma 8.4.6 to prove

that p, idbn(p) � q, ρ′ implies p, σ[idbn(p)] � q, σ[ρ′]. Now conclude by defin-

ing ρ = σ[ρ′] to obtain p, σ � q, ρ and finally the proper reply by Q of

((νñ)q, ρ,Q′).

This suffices to show that barbed congruence is a bisimulation. �

Thus the barbed congruence and bisimulation relations capture the same

semantics for CPC. Indeed barbed congruent, or bisimilar, processes are be-

haviourally equivalent and indistinguishable in any context.

8.7 Equational Reasoning

This section considers some examples where bisimulation can be used to

show equivalence of processes. Since CPC does not have an operator for

non-deterministic choice, it is predictable that such bisimilarities involve

replicated processes. This section presents two examples where bisimula-

tion can be used to show equivalence, a general result that subsumes both

examples, and some equivalences for later use.

The first example exploits the unification of protected names with both

variable and protected names. Observe that the processes pnq→ P | !n→ P
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can be subsumed by the more compact process !n→ P , that is

pnq→ P | !n→ P ∼ !n→ P .

Any challenge of the left hand processes can be properly responded to by the

right hand process and visa versa.

The second example considers the contractive nature of binding names in

CPC. A case with the pattern λx • λy can be subsumed by a replicated case

with the pattern λz as long as some conditions are met. For example:

λx • λy → P | !λz → Q ∼ !λz → Q if P ∼ {x • y/z}Q .

The same structure as the previous example exploits the replication. The

side condition requires that the bodies of the cases are bisimilar when a

substitution is applied to Q that preserves the structure of any pattern bound

by λx • λy.

These examples both arise from pattern-unification and also appear in

the compatibility relation. Indeed, the examples above are instances of a

general result:

p→ P | !q → Q ∼ !q → Q when p, idbn(p) � q, ρ and P ∼ ρQ .

Theorem 8.7.1. Given processes P = p → P ′ | !q → Q′ and Q = !q → Q′

and σ = idbn(p) and there exists a substitution ρ such that p, σ � q, ρ and

σP ′ ∼ ρQ′ it follows that P ∼ Q.
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Proof: It suffices to show that any challenge by P of the form (µ, σ, P̂ ) there

exists a proper reply by Q of the form (µ′, ρ, Q̂) and P̂ ∼ Q̂.

Now proceed by induction on the structure of the inference for P
µ−→ P̂ .

• If the last rule is parint then µ = τ the transition must be due to

Q
τ−→ Q′′

(p→ P ′ | Q)
τ−→ (p→ P ′) | Q′′

and Q′′ must be of the form Q | Q′′′. There is the same transi-

tion Q
τ−→ Q′′ and Q′′ ≡ Q | Q′′′ and proceed by induction on p →

P ′ | Q | Q′′′ ∼ Q | Q′′′.

• If the last rule is parext then there are two possibilities.

– If the transition is as follows

(p→ P ′)
p−→ P ′

(p→ P ′ | Q)
p−→ P ′ | Q

bn(p) ∩ fn(Q) = {}

due to the case rule for p→ P ′. Now take Q1 = q → Q′ | Q ≡ Q

and there is a transition Q1
q−→ (Q′ | Q) and bn(q) ∩ fn(Q) by

definition. As p, σ � q, ρ and σP ′ = P ′ then P ′ ∼ ρQ′ and

conclude with P̂ = P ′ | Q and Q̂ = ρQ′ | Q.

– If the transition is

Q
(νñ)q′−−−→ Q′′

(p→ P ′ | Q)
(νñ)q′−−−→ (p→ P ′ | Q′′)

where (ñ∪bn(q′))∩fn(p→ P ′) = {}. It follows that Q′′ must be of
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the form Q | Q′′′. Then there is the same transition Q
(νñ)q′−−−→ Q′′

and proceed by induction on p→ P ′ | Q | Q′′′ ∼ Q | Q′′′.

• If the last rule is rep then it must be due to

Q
µ−→ Q′′

(p→ P ′ | Q)
µ−→ (p→ P ′) | Q′′

and Q′′ must be of the form Q | Q′′′. There is the same transi-

tion Q
µ−→ Q′′ and Q′′ ≡ Q | Q′′′ and proceed by induction on p →

P ′ | Q | Q′′′ ∼ Q | Q′′′.

• If the last rule is resnon then it must be of the form

P
µ−→ P ′′

(νn)P
µ−→ (νn)P ′′

n /∈ names(µ) .

Now consider the label µ.

– If µ is an internal action τ then by induction on P
τ−→ P ′′ there

exists a transition Q
τ−→ Q′′. As n /∈ names(τ) it follows that

(νn)Q
τ−→ (νn)Q′′ and conclude.

– If µ is (νñ)p′ then by induction on P
(νñ)p′−−−→ P ′′ and for all σ′ such

that (bn(p′) ∪ ñ) ∩ fn(Q) = {} there exists q′ and Q′′ and ρ′ such

that Q
(νñ)q′−−−→ Q′′ and p′, σ′ � q′, ρ′ and σ′P ′′ ∼ ρ′Q′′. As n /∈ ñ

and by Lemma 8.4.1 n /∈ fn(q′) and by α-conversion n /∈ bn(q′), it

follows that n /∈ names(µ′). Conclude by taking σ′ = idbn(p′) such

that σ′P ′′ = P ′′ and then (νn)Q
(νñ)q′−−−→ (νn)ρ′Q′′.
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• If the last rule is resin then it must be of the form

P
(νñ)p′−−−→ P ′′

(νm)P
(νñ,m)p′−−−−−→ P ′′

m ∈ vn(p′)\(ñ ∪ pn(p′) ∪ bn(p′)) .

By induction hypothesis on the transition P
(νñ)p′−−−→ P ′′ for all σ′ such

that (bn(p′) ∪ ñ) ∩ fn(Q) = {} there exists q′ and Q′′ and ρ′ such that

Q
(νñ)q′−−−→ Q′′ and p′, σ′ � q′, ρ′ and σ′P ′′ ∼ ρ′Q′′. By compatibility it

follows that m ∈ vn(q′) and m /∈ pn(q′). That m /∈ ñ is by the original

transition. That m /∈ bn(q′) is handled by α-conversion. Thus the side

conditions hold and so by taking σ′ = idbn(p′) then σ′P ′′ = P ′′ and

conclude with the transition (νm)Q
(νñ,m)q′−−−−−→ ρ′Q′′.

• If the last rule is match then

(p→ P ′)
p−→ P ′ Q

(νñ)r−−−→ Q′′

(p→ P ′ | Q)
τ−→ (νñ)(σ′P ′ | θ′Q′′)

such that {p||r} = (σ′, θ′) and ñ ∩ fn(p → P ′) = {}. Take Q1 = q →

Q′ | Q ≡ Q. Since σ maps names to themselves it follows that σ′[σ] = σ′

and by Lemma 8.4.6 take ρ′ = σ′[ρ] and p, σ′ � q, ρ′. By exploiting

renaming as required ñ∩fn(q → Q′) = {} and by Lemma 8.4.10 {q||r} =

(ρ′, θ′) and there is a transition

(q → Q′)
q−→ Q′ Q

(νñ)r−−−→ Q′′

(q → Q′ | Q)
τ−→ (νñ)(ρ′Q′ | θ′Q′′)

.

As σ′P ′ ∼ ρ′Q′ the conclusion follows.
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�

Observe that the substitution linked to p in the compatibility relation

cannot be generalised. Consider λx→ P ′ | Q where P ′ = (νn)(pnq • x | pnq •

m → pwq) where x 6= m and Q = λx → Q′ and Q′ = (νn)(pnq | pnq → pwq).

By taking a substitution σ = {m/x} it follows that λx, σ � λx, σ and that

σP ′ ∼ σQ′. However, P is not bisimilar to Q as the context C(·) = · | k for

k 6= m yields different behaviours.

The following results are of minor interest to previous results and optimi-

sations in Appendix 10. The first has been referenced (although not required)

previously in Lemma 7.1.1. The latter two are exploited in Section A.3.

Theorem 8.7.2. Given a process P , then !P | !P ∼ !P .

Proof: Straightforward by induction on the inference for the transitions

!P | !P
µ−→ P ′. �

Theorem 8.7.3. Given two processes P and Q, then !(P | Q) ∼ !P | !Q.

Proof: Straightforward by induction on the inference for the transitions

!(P |Q)
µ−→ P ′. �

Theorem 8.7.4. Given a process P , then !P ∼ !!P .

Proof: Straightforward by induction on the inference for the transitions

!P
µ−→ P ′. �

These results conclude the discussion of bisimulation for CPC. Now that

the semantics of CPC have been formalised, the next chapter exploits these

to relate to CPC to other process calculi.
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Chapter 9

Relations to Other Process

Calculi

Now that the behavioural theory for CPC has been defined, valid encodings

(Definition 3.2.1) can be used to formalise the relations between CPC and

the process calculi in Chapter 3. Since the relation between π-calculus and

CPC has already been formalised in Chapter 7, this chapter relates CPC to

Linda, Spi calculus and fusion calculus. Although a behavioural theory is

part of the definition of valid encodings, CPC’s behavioural equivalence is

only required for the relation to Spi calculus.

The pattern-matching of Linda can be rendered in CPC and it follows

that there is a homomorphism from Linda into CPC. The converse separation

result can be proved by exploiting CPC’s symmetry or intensionality.

The intensionality of Spi calculus can also be homomorphically encoded

into CPC up to behavioural equivalence. The lack of a valid encoding of

211
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CPC into Spi calculus is proved by exploiting symmetry.

As the separation results between CPC and π-calculus, Linda and Spi

calculus can all be proved by exploiting symmetry, the relationship between

fusion calculus and CPC is of particular interest. The peculiarities of name

fusion prevent a valid encoding, and thus a homomorphism, of fusion calculus

into CPC. Conversely, that fusion calculus cannot validly encode CPC is

shown by exploiting multiple name matching or symmetry. Consequently

fusion calculus and CPC are unrelated.

9.1 Linda

In Gorla’s work on valid encodings he presents a hierarchy of sets of process

calculi structured according to relative expressive power [Gor08b, Gor08a].

The π-calculus is contained within one of these sets, however there are several

sets that are more expressive according to the hierarchy. As this dissertation

focuses upon expressive power, this section formalises the relationship be-

tween CPC and Linda, a process calculus that is within one of the four most

expressive sets of Gorla’s hierarchy. This relationship can be summarised as

follows. There is a straightforward homomorphism from Linda into CPC.

The converse separation result can be proved in two different ways using

symmetry or intensionality. The rest of this section formalises these results.

The first step is to show a valid encoding of Linda into CPC. Similar to

π-calculus, the encoding [[ · ]] is homomorphic with respect to all operators
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except for input and output which are encoded as follows:

[[ (t̃).P ]]
def
= pat−t(t̃)→ [[P ]]

[[ 〈̃b〉 ]] def
= pat−d(̃b)→ 0 .

The functions pat−t(·) and pat−d(·) are used to translate templates and data,

respectively, into CPC patterns. The functions are defined as follows:

pat−t( )
def
= λx • in for x a fresh name

pat−t(t, t̃) def
= t • in • pat−t(t̃)

pat−d( )
def
= in • λx

pat−d(b, b̃)
def
= b • λx • pat−d(̃b) for x a fresh name

where in is a symbolic name as in the encoding for π-calculus. Moreover, the

function pat−d(·) associates a bound variable to every name in the sequence;

this fact ensures that a pattern that translates a template and a pattern

that translates a datum match only if they have the same length (this is a

feature of Linda’s pattern matching but not of CPC’s). It is worth noting

that the simpler translation [[ 〈b1, . . . , bn〉 ]]
def
= b1 • . . . • bn → 0 would not

work: the Linda process 〈b〉 | 〈b〉 does not reduce, whereas such an encoding

(b→ 0 | b→ 0) does. This fact would contradict Proposition 3.2.2.

Next is to prove that this encoding is valid. This is an easy corollary of

the following lemma, stating a strict correspondence between Linda’s pattern

matching and CPC’s (on patterns arising from the translation).
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Lemma 9.1.1. Match(t̃; b̃) = σ if and only if {pat−t(t̃)||pat−d(̃b)} = (σ ∪

{in/x}, {in/x0, . . . , in/xn}), where {x0, . . . , xn} = bn(pat−d(̃b)) and dom(σ)]

{x} = bn(pat−t(t̃)) and σ maps names to names.

Proof: In both directions the proof is by induction on the length of t̃. The

forward direction is as follows.

• The base case is when t̃ is the empty sequence of template fields; thus,

pat−t(t̃) = λx • in. Then by definition of pattern-unification it must

be that b̃ is the empty sequence and that σ is the empty substitution.

Thus, pat−d(̃b) = in • λx and the thesis easily follows.

• For the inductive step t̃ = t, t̃′ and pat−t(t̃) = t • in • pat−t(t̃′). Then

by pattern-unification it must be that b̃ = b, b̃′ and Match(t, b) = σ1

and Match(t̃′, b̃′) = σ2 and σ = σ1 ] σ2. By the induction hypoth-

esis, {pat−t(t̃′)||pat−d(b̃′)} = (σ2 ∪ {in/x}; {in/x1, . . . , in/xn}), where

{x1, . . . , xn} = bn(pat−d(b̃′)) and dom(σ2)]{x} = bn(pat−t(t̃′)). There

are now two sub-cases to consider according to the kind of template

field t.

– If t = pbq then σ1 = {} and it follows that σ = σ2 and

{pat−t(t̃)||pat−d(̃b)} = (σ ∪ {in/x}, {in/x0, . . . , in/xn}).

– If t = λy then σ1 = {b/y} and y 6∈ dom(σ2). Thus, pat−t(t̃) is a

pattern in CPC and it follows that {pat−t(t̃)||pat−d(̃b)} = (σ1 ∪

σ2∪{in/x}, {in/x0, . . . , in/xn}) = (σ∪{in/x}, {in/x0, . . . , in/xn}).

The reverse direction is as follows.
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• The base case is when t̃ is the empty sequence of template fields; thus,

pat−t(t̃) = λx • in. Now proceed by contradiction. Assume that b̃

is not the empty sequence. In this case, pat−d(̃b) = b0 • λx0 • (b1 •

λx1 • (. . . (bn • λxn • (in • λxn+1)) . . .), for some n > 0. By definition

of pattern matching in CPC, pat−d(̃b) and pat−t(t̃) cannot match, and

this would contradict the hypothesis. Thus, it must be that b̃ is the

empty sequence and easily conclude.

• The inductive case is when t̃ = t, t̃′ and thus, pat−t(t̃) = t• in•pat−t(t̃′).

If b̃ was the empty sequence, then pat−d(̃b) = in • λx and it would

not match against pat−t(t̃). Hence, b̃ = b, b̃′ and so pat−d(̃b) = b •

λx • pat−d(b̃′). By definition of pattern-unification in CPC it follows

that {pat−t(t̃)||pat−d(̃b)} = (σ1∪σ2∪{in/x}, {in/x0, . . . , in/xn}), where

{t||b} = (σ1, {}) and {pat−t(t̃′)||pat−d(b̃′)} = (σ2 ∪ {in/x}, {in/x1, . . . ,

in/xn}) and σ = σ1 ∪ σ2. Now consider the two sub-cases according to

the kind of the template field t.

– If t = pbq then σ1 = {} and so σ2 = σ. By induction hypothesis,

Match(t̃′; b̃′) = σ, and so Match(t̃; b̃) = σ.

– If t = λy then σ1 = {b/y} and σ2 = {ni/yi} for yi ∈ dom(σ)\{y}

and ni = σyi. Thus, y 6∈ dom(σ2) and so σ = σ1 ] σ2. So by

the induction hypothesis, Match(t̃′; b̃′) = σ2 and, by definition of

Match, Match(t; b) = σ1. Thus, Match(t̃; b̃) = σ.

�

Lemma 9.1.2. Two processes P and Q are structurally equivalent if and

only if their translations are structurally equivalent. That is: P ≡ Q if and
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only if [[P ]] ≡ [[Q ]].

Proof: Trivial, from the fact that ≡ acts only on operators that [[ · ]] trans-

lates homomorphically. �

Theorem 9.1.3. The translation [[ · ]] from Linda into CPC preserves reduc-

tion and does not introduce new reductions. That is:

• If P 7−→ P ′ then [[P ]] 7−→ [[P ′]];

• if [[P ]] 7−→ Q then Q = [[P ′]] for some P ′ such that P 7−→ P ′.

Proof: Both parts can be easily proved by a straightforward induction on

judgements P 7−→ P ′ and [[P ]] 7−→ Q, respectively. In both cases, the base

step is the most interesting one and it trivially follows from Lemma 9.1.1;

the inductive cases where the last rule used is the structural one rely on

Lemma 9.1.2. �

Corollary 9.1.4. The encoding of Linda into CPC is valid.

Proof: Reuse the proof for Corollary 7.2.3, that is as follows. Composition-

ality and name invariance hold by construction. Operational correspondence

and divergence reflection easily follow from Theorem 9.1.3. Success sensi-

tiveness can be proved as follows: P ⇓ means that there exists P ′ and k ≥ 0

such that P 7−→k P ′ ≡ P ′′ |
√

; by exploiting Theorem 9.1.3 k times and

Lemma 9.1.2, obtain that [[P ]] 7−→k [[P ′ ]] ≡ [[P ′′ ]] |
√

, i.e. that [[P ]] ⇓. The

converse implication can be proved similarly. �

Corollary 9.1.5. There is a homomorphism from Linda into CPC.
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Proof: Trivial by definition of [[ · ]] and Corollary 9.1.4. �

Thus CPC subsumes Linda via a homomorphism. The converse separa-

tion result can be proved in two different ways.

The first proof exploits CPC’s symmetry and the self matching process

as in the proof by symmetry of Theorem 7.2.5 for the π-calculus.

Theorem 9.1.6. There is no valid encoding of CPC into Linda.

Proof:[by symmetry] Reuse the proof by symmetry for Theorem 7.2.5 as

every Linda process T is such that if T | T 7−→ then T 7−→. �

The second proof exploits CPC’s support for arbitrarily complex patterns

that can be bound to a single name or matched explicitly. The proof is by

showing that any Linda encoding that supports matching of both a single

binding name λx and an arbitrary number of protected names pn1q• . . .•pnkq

leads to contradiction.

Proof:[by intensionality] Suppose there exists a valid encoding [[ · ]] from CPC

into Linda. Consider the process S = λx →
√

and it’s encoding T = [[S ]].

It follows that T interacts with other encoded CPC processes by an input or

output with some arity k. Now consider the following CPC processes

S1 = n1 • . . . • nk • nk+1 → 0

S2 = pm1q • . . . • pmkq • pmk+1q→
√
.

It follows that S | S1 7−→ and S | S1 ⇓ and so for the encoding to be valid

T | [[S1 ]] 7−→ and T | [[S1 ]] ⇓. Also if ni = mi for all i then S1 | S2 7−→ and
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S1 | S2 ⇓ and so [[S1 ]] | [[S2 ]] 7−→ and [[S1 ]] | [[S2 ]] ⇓ for the encoding to be

valid.

Now consider the arity of the interaction between [[S1 ]] and [[S2 ]].

• If the arity is less than or equal to k then at least one ni and mi are

not being tested for equality in the interaction. Thus, there exists some

S3 = po1q • . . . • poiq such that at least one ni 6= oi and thus S1 | S3 67−→,

however [[S1 ]] | [[S3 ]] 7−→ and this contradicts Proposition 3.2.2.

• If the arity is greater than k then [[S1 ]] must interact with arity k

and arity greater than k. Clearly there is contradiction if [[S1 ]] has

a single input or output as this would require k > k, thus it must

be that [[S1 ]] is of the form (νõ)(T1 | T2) where T1 has an input or

output of arity k and T2 has an input or output of arity greater than k.

Also it follows that T | (νõ)T1 7−→ and [[S2 ]] | (νõ)T2 7−→. Therefore

T | (νõ)(T1 | T2) | [[S2 ]] 7−→2, however S | S1 | S2 67−→2 and this

contradicts Proposition 3.2.2.

�

Observe that the proof by intensionality technique could be adapted to

use k + 1 binding names to show that CPC’s intensionality cannot be ren-

dered into a polyadic calculus by rendering compounds as polyadic structures.

Here the use of name matching simplifies the proof and illustrates that the

technique holds even when both calculi, e.g. Linda and CPC, have infinite

matching degree.

Corollary 9.1.7. There is no homomorphism from CPC into Linda.
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Proof: By Theorem 9.1.6. �

Thus there is no homomorphism, or valid encoding, of CPC into Linda

and hence CPC is more expressive than the sets of calculi captured by Gorla’s

hierarchy.

9.2 Spi Calculus

As Spi calculus introduces some intensionality in a process calculus, the re-

lationship to CPC is also of interest. The intensionality of Spi calculus can

be homomorphically encoded into CPC. The symmetry of CPC cannot be

rendered in Spi calculus, thus ensuring there is no converse encoding. This

section takes some space to cover the rich syntax and reduction rules of Spi

calculus and also to discuss peculiarities of the encoding.

The first step is to show that there is an encoding of Spi calculus into

CPC. The terms can be encoded as patterns using the reserved names pair,

encr, 0 and suc by

[[n ]]
def
= n

[[ x ]]
def
= x

[[ 0 ]]
def
= 0

[[ suc(M) ]]
def
= suc • [[M ]]

[[ (M,N) ]]
def
= pair • [[M ]] • [[N ]]

[[ {M}N ]]
def
= encr • [[M ]] • [[N ]] .
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The tagging is used for safety, as otherwise there are potential pathologies in

the translation: without tags, the representation of a natural number could

be confused with a pair or an encryption.

The encoding of the familiar process forms are homomorphic as expected.

The input and output both encode as cases as in π-calculus:

[[M(x).P ]]
def
= [[M ]] • λx • in→ [[P ]]

[[M〈N〉.P ]]
def
= [[M ]] • ([[N ]]) • λx→ [[P ]] x is a fresh name.

The symbolic name in (input) and fresh name x (output) are used to ensure

that encoded inputs will only match with encoded outputs as in π-calculus

and Linda.

The four remaining process forms all require pattern matching and so

translate to cases in parallel. In each encoding a fresh name n is used to

prevent interaction with other processes, see Lemma 6.2.6. As in the Spi

calculus, the encodings will reduce only after a successful matching and will
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be stuck otherwise. The encodings are

[[ [M is N ]P ]]
def
= (νn)(pnq • [[M ]]→ [[P ]] | pnq • [[N ]])

[[ let (x, y) = M in P ]]
def
= (νn)(pnq • (ppairq • λx • λy)→ [[P ]]

|pnq • [[M ]])

[[ case M of {x}N : P ]]
def
= (νn)(pnq • (pencrq • λx • [[N ]])→ [[P ]]

|pnq • [[M ]])

[[ case M of 0 : P suc(x) : Q ]]
def
= (νn)(pnq • p0q→ [[P ]]

|pnq • (psucq • λx)→ [[Q ]]

|pnq • [[M ]]) .

The match [M is N ]P only reduces to P if M = N , thus the encoding

creates two patterns using [[M ]] and [[N ]] with one reducing to [[P ]]. The

pair splitting let (x, y) = M in P encoding creates a case with a pattern

that matches a tagged pair and binds the components to x and y in [[P ]].

This is put in parallel with another case that has [[M ]] in the pattern. The

decryption case case M of {x}N : P checks whether M is a message encoded

with key [[N ]] and retrieves the value encrypted by binding it to x in the

continuation. Lastly the integer case case M of 0 : P suc(x) : Q translation

creates a case for each of the zero and the successor possibilities. These cases

match the tag and the reserved names 0, reducing to [[P ]], or suc and binding

x in [[Q ]]. The term to be compared M is as in the others.
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Lemma 9.2.1. Two processes P and Q are structurally equivalent if and

only if their translations are structurally equivalent. That is: P ≡ Q if and

only if [[P ]] ≡ [[Q ]].

Proof: Trivial, from the fact that ≡ acts only on operators that [[ · ]] trans-

lates homomorphically. �

Theorem 9.2.2. The translation [[ · ]] from Spi calculus into CPC preserves

reduction and does not introduce new reductions. That is:

• If P 7−→ P ′ then [[P ]] 7−→ '2 [[P ′]];

• if [[P ]] 7−→ Q then Q '2 [[P ′]] for some P ′ such that P 7−→ P ′

where '2 is barbed congruence for CPC.

Proof: The first claim can be easily proved by a straightforward induction

on judgement P 7−→ P ′. The base case is proved by reasoning on the Spi

axiom used to infer the reduction. Although all the cases are straightfor-

ward, a reduction rule for integers is shown for illustration. Consider the

reduction for a successor as the reduction for zero is simpler. In this case,

P = case suc(M) of 0 : P1 suc(x) : P2 and P ′ = {M/x}P2. Then,

[[P ]]
def
= (νn)(pnq • (num • p0q)→ [[P1 ]]

| pnq • (num • (psucq • λx))→ [[P2 ]]

| pnq • (num • (suc • [[M ]]))→ 0) .

and it can only reduce to

{[[M ]]/x}[[P2 ]] | (νn)pnq • (num • p0q)→ [[P1 ]] .
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By a straightforward induction on the structure of P2 it is easy to prove that

{[[M ]]/x}[[P2 ]] = [[ {M/x}P2 ]]. Thus, [[P ]] 7−→ [[ {M/x}P2 ]] | (νn)pnq•(num•

p0q)→ [[P1 ]] '2 [[P ′ ]], where the last equivalence follows from Lemma 6.2.6.

The inductive case is straightforward, with the structural case relying on

Lemma 9.2.1.

The second part can be proved by induction on judgement [[P ]] 7−→ Q.

There is just one base case, i.e. when [[P ]] = p → Q1 | q → Q2 and Q =

σQ1 | ρQ2 and {p||q} = (σ, ρ). By definition of the encoding, it can only be

that p = [[M ]] • λx • in and Q1 = [[P1 ]] and q = [[M ]] • ([[N ]]) • λx and Q2 =

[[P2 ]] for some P1, P2, M and N . This means that P = M(x).P1 | M〈N〉.P2

and that Q = {[[N ]]/x}[[P1 ]] | [[P2 ]] = [[ {N/x}P1 | P2 ]]. To conclude, it

suffices to take P ′ = {N/x}P1 | P2. For the inductive case there are two

possibilities.

• The inference of [[P ]] 7−→ Q ends with an application of the rule for

parallel composition or for structural equivalence: this case can be

proved by a straightforward induction.

• The inference of [[P ]] 7−→ Q ends with an application of the rule for

restriction; thus, [[P ]] = (νn)Q′, with Q′ 7−→ Q′′ and Q = (νn)Q′′. If

Q′ = [[P ′′ ]], for some P ′′, apply a straightforward induction. Otherwise,

there are the following four possibilities.

– Q′ = pnq • p[[M ]]q → [[P1 ]] | pnq • p[[N ]]q and, hence, Q′′ = [[P1 ]].

By definition of the encoding, P = [M is N ]P1. Notice that the

reduction Q′ 7−→ Q′′ can happen only if [[M ]] and [[N ]] match; by

construction of the encoding of Spi-terms, this can happen only
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if M = N and, hence, P 7−→ P1. The thesis follows by letting

P ′ = P1, since n is a fresh name and so Q = (νn)[[P1 ]] ≡ [[P1 ]].

– Q′ = pnq • (ppairq • (λx • λy))→ [[P1 ]] | pnq • (pair • ([[M ]] • [[N ]]))

and, hence, Q′′ = {[[M ]]/x, [[N ]]/y}[[P1 ]]. This case is similar to

the previous one, by letting P be let (x, y) = (M,N) in P1.

– Q′ = pnq•(pencrq•(λx• [[N ]]))→ [[P1 ]] | pnq•(encr•([[M ]]• [[N ]]))

and, hence, Q′′ = {[[M ]]/x}[[P1 ]]. This case is similar to the

previous one, by letting P be case {M}N of {x}N : P1.

– Q′ = pnq • (num • p0q) → [[P1 ]] | pnq • (num • (psucq • λx)) →

[[P2 ]] | pnq • [[M ]]. Hence, P = case M of 0 : P1 suc(x) : P2.

According to the kind of [[M ]], there are two sub-cases (notice

that, since Q′ 7−→ Q′′, no other possibility is allowed for [[M ]]).

∗ [[M ]] = num • 0: in this case, Q′′ = [[P1 ]] | pnq • (num • (psucq •

λx)) → [[P2 ]] and so Q = (νn)Q′′ ≡ [[P1 ]] | (νn)pnq • (num •

(psucq • λx)) → [[P2 ]] '2 [[P1 ]]. In this case, M = 0 and so

P 7−→ P1; to conclude, it suffices to let P ′ be P1.

∗ [[M ]] = num • (suc • [[M ′ ]]), for some M ′: in this case, Q′′ =

{[[M ′ ]]/x}[[P2 ]] | pnq•(num•p0q)→ [[P1 ]] and soQ = (νn)Q′′ ≡

[[ {M ′/x}P2 ]] | (νn)pnq•(num•0)→ [[P1 ]] '2 [[ {M ′/x}P2 ]]. In

this case, M = suc(M ′) and so P 7−→ {M ′/x}P2; to conclude,

it suffices to let P ′ be {M ′/x}P2.

�

Corollary 9.2.3. The encoding of Spi calculus into CPC is valid.
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Proof: Reuse the proof for Corollaries 7.2.3 and 9.1.4, that is as follows.

Compositionality and name invariance hold by construction. Operational

correspondence and divergence reflection easily follow from Theorem 9.2.2.

Success sensitiveness can be proved as follows: P ⇓ means that there exists

P ′ and k ≥ 0 such that P 7−→k P ′ ≡ P ′′ |
√

; by exploiting Theorem 9.2.2 k

times and Lemma 9.2.1, obtain that [[P ]] 7−→k [[P ′ ]] ≡ [[P ′′ ]] |
√

, i.e. that

[[P ]] ⇓. The converse implication can be proved similarly. �

Corollary 9.2.4. There is a homomorphism from Spi calculus into CPC.

Proof: By definition of [[ · ]] and Corollary 9.2.3. �

Thus CPC is able to render the intensionality of Spi calculus and there is

a homomorphism from Spi calculus into CPC. The converse separation result

exploits the symmetry of CPC.

Theorem 9.2.5. There is no valid encoding of CPC into Spi calculus.

Proof: Exploit the self-matching CPC process x →
√

as in the proof by

symmetry in Theorems 7.2.5 & 9.1.6. �

Corollary 9.2.6. There is no homomorphism from CPC into Spi calculus.

Proof: By Theorem 9.2.5. �

Now that the relations between Spi calculus and CPC have been for-

malised, the rest of this section considers some artefacts of the encoding of

Spi calculus into CPC.
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Notice that the criteria for a valid encoding does not imply full abstrac-

tion of the encoding (actually, they were defined as an alternative to full

abstraction [Gor08a, Gor08b]). This means that the encodings of equivalent

Spi calculus processes can be distinguished by contexts in CPC that do not

result from the encoding of any Spi calculus context. Indeed, while this en-

coding allows Spi calculus to be modelled in CPC, it does not entail that

cryptography can be properly rendered. Consider the pattern encr • λx • λy

that could match the encoding of an encrypted term to bind the message and

key, so that CPC can break any encryption! Indeed this is an artefact of the

straightforward approach to encoding taken here.

An alternative approach to encryption is to exploit CPC’s matching de-

gree. A restricted name can be created for the ciphertext c and then a process

created that offers the plaintext p to any process that knows the ciphertext

and the key k. For example

(νc)(!pkq • pcq • p | P )

where P is the process that transmits the ciphertext. Here any other pro-

cess must know both the key and ciphertext to obtain the plaintext, by

Lemma 6.2.6. Note that the replication is used to allow any number of

copies of the plaintext to be accessed.

Indeed, such an approach can modify the process offering the plaintext

to yield interesting effects. For example, by removing the replication the



9.2. SPI CALCULUS 227

process encrypting the message can ensure that only one recipient can access

the plaintext:

(νc)(pkq • pcq • p | P ) .

Of course this recipient may then make the plaintext available after obtaining

it, however the plaintext can only accessed once from the original encryption.

The behaviour of the process that offers the plaintext can be taken ad-

vantage of in other ways. By modifying the process slightly it is possible to

detect each time the plaintext is accessed. Consider the following process

(νc)(!pkq • pcq • p • λx→ R | P )

where R reports back to P that the plaintext has been accessed. A minor

modification here is to add a binding name λx to the process offering the

plaintext as otherwise the replication would cause an unbounded number of

interactions and false reports of access via R. Of course these mechanisms

could be combined to limit and detect how often the plaintext is accessed.

Another effect of this approach is that encryption hides information about

the message from third parties that may only transport ciphertext. In Spi

calculus the encryption of the same plaintext with the same key can be tested

for equality

[c1 is c2]P 7−→ P if c1 = {M}N and c2 = {M}N .
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So even though the process above is not able to access the plaintext M

encrypted by N and bound to c1 and c2, testing for equality reveals that the

message and keys are the same. This does not hold when restricted names

are used for the ciphertext as α-conversion ensures they can never be equal.

9.3 Fusion Calculus

As the separation results for CPC and the other process calculi presented so

far can all be proved via symmetry, the relationship between fusion calculus

and CPC is of particular interest. It turns out that the peculiarities of

name fusion prevent a valid encoding of fusion calculus into CPC. Conversely,

that fusion calculus cannot validly encode CPC can be shown by exploiting

matching degree or even symmetry. Consequently, fusion calculus and CPC

turn out to be unrelated. The rest of this section formalises these results.

The lack of a valid encoding of fusion calculus into CPC is ensured by

the following theorem. The proof is by contradiction and can be summarised

as follows. Define two fusion calculus processes in parallel composition such

that one is an input and the other an output on the same channel name.

Now place these processes under a restriction so that they can perform a

reduction and report success. Thus, the reduction arises from a ternary

cooperation between the two processes and the restriction. Since interactions

are binary in CPC, it can be shown that any reduction of the encoding yields

a contradiction.
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Theorem 9.3.1. There exists no valid encoding of Fusion calculus into CPC.

Proof: By contradiction, assume that there exists a valid encoding [[ · ]] of

Fusion into CPC. Consider the Fusion process P
def
= (νx)(u〈x〉 | u(y).

√
), for

x, y and u pairwise distinct. By success sensitiveness, P ⇓ entails that [[P ]] ⇓;

first consider that the latter fact can only happen after a reduction of [[P ]], i.e.

that every occurrence of
√

in [[P ]] falls underneath some prefix. By composi-

tionality, [[P ]]
def
= C {u,x,y}(νx) (C {u,x,y}| ([[u〈x〉 ]]; [[u(y).

√
]])). If [[P ]] had a top-level

unguarded occurrence of
√

, then such an occurrence could be in C {u,x,y}(νx) ( ),

in C {u,x,y}| ( 1; 2), in [[u〈x〉 ]] or in [[u(y).
√

]]; in any case, it would also follow

that at least one of [[ (νx)(u〈x〉 | y(u).
√

) ]] or [[ (νx)(x〈u〉 | u(y).
√

) ]] would re-

port success, whereas both (νx)(u〈x〉 | y(u).
√

) 6⇓ and (νx)(x〈u〉 | u(y).
√

) 6⇓,

against success sensitiveness of [[ · ]]. Thus, the only possibility for [[P ]] to

report success is to perform some reduction steps (at least one) and then

exhibit a top-level unguarded occurrence of
√

.

Thus it is clear that [[P ]] must reduce. Now prove to that every possible

reduction leads to contradiction of validity of [[ · ]]; this suffices to conclude.

There are five possibilities for any reduction [[P ]] 7−→.

1. Either C{u,x,y}(νx) 7−→, or C{u,x,y}| 7−→, or [[u〈x〉 ]] 7−→ or [[u(y).
√

]] 7−→.

In any of these cases, at least one out of [[ (νx)(u〈x〉 | y(u).
√

) ]] or

[[ (νx)(x〈u〉 | u(y).
√

) ]] would reduce, however (νx)(u〈x〉 | y(u).
√

) 67−→

and (νx)(x〈u〉 | u(y).
√

) 67−→, against Proposition 3.2.2 (that must hold

whenever [[ · ]] is valid).

2. Reduction is generated by interaction between C{u,x,y}(νx) and C{u,x,y}| . As

before, [[ (νx)(u〈x〉 | y(u).
√

) ]] 7−→ whereas (νx)(u〈x〉 | y(u).
√

) 67−→,
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against Proposition 3.2.2.

3. Reduction is generated by interaction between C{u,x,y}op and [[u〈x〉 ]], for

op ∈ {(νx), | }. Like case 2.

4. Reduction is generated by interaction between C{u,x,y}op and [[u(y).
√

]],

for op ∈ {(νx), | }. As before it follows that [[ (νx)(x〈u〉 | u(y).
√

) ]] 7−→

whereas (νx)(x〈u〉 | u(y).
√

) 67−→, against Proposition 3.2.2.

5. The reduction is generated by an interaction between the processes

[[u〈x〉 ]] and [[u(y).
√

]]. In this case, it follows that [[u〈x〉 | u(y).
√

]] 7−→

whereas u〈x〉 | u(y).
√
67−→: indeed, the interaction rule of Fusion im-

poses that at least one between x and y must be restricted to yield the

interaction.

�

Corollary 9.3.2. There is no homomorphism from fusion calculus into CPC.

Proof: By Theorem 9.3.1 �

The converse separation result can be proved in two ways. The first

exploits the matching degree as in the proof by matching degree of Theo-

rem 7.2.5 for the π-calculus.

Theorem 9.3.3. There is no valid encoding of CPC into fusion calculus.

Proof:[by matching degree] Observe that the matching degree of fusion cal-

culus Md(fusion) is one while the matching degree of CPC Md(CPC) is

infinite. Now apply Theorem 3.2.4. �
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The alternative proof exploits CPC’s symmetry and the self matching

process as in the proof by symmetry of Theorems 7.2.5, 9.1.6 & 9.2.5.

Proof:[by symmetry] Reuse the proof by symmetry for Theorems 7.2.5, 9.1.6

& 9.2.5 as every fusion calculus process T is such that if T | T 7−→ then T 7−→.

�

Corollary 9.3.4. There is no homomorphism from CPC into fusion calculus.

Proof: By Theorem 9.3.3. �

Thus there is no valid encoding or homomorphism from CPC into fusion

calculus despite them both supporting a notion of symmetry. Observe that

Theorem 9.1.6 could also be adapted to show that fusion calculus is unable

to render the intensionality of CPC.

This concludes the expressiveness results for CPC. An alternative path

of development for CPC is by implementing the theory in a programming

language. Details of this implementation are in Appendix 10. The next

chapter presents applications exploiting CPC in a programming language.
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Chapter 10

Applications

This chapter develops two major trading examples. The first introduces ba-

sic Concurrent bondi [Con11] syntax while redeveloping and extending the

traders example from Section 6.3. By contrast with the previous develop-

ment, the focus here is upon Concurrent bondi syntax and on extending the

example to consider multiple traders. The second exploits the flexibility and

expressive power of both sequential and concurrent Concurrent bondi pro-

grams. This includes discussion of Concurrent bondi’s sequential features

and how their interplay with concurrency can be exploited for distributed

computing on heterogeneous data structures and programming paradigms.

The essence of trade is the discovery of a compatible trading partner and

the exchange of information to complete the deal. The symmetric pattern-

unification and information exchange of CPC provide a natural language to

express such trades. As in Section 6.3 trading can be considered in two

phases. The first phase exploits the structure of patterns to express infor-

233
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mation and then pattern-unification to allow traders to discover their shared

interest. The second phase exploits the ability to exchange information in

a single interaction to complete the deal fairly and without opportunity for

incomplete trades.

More practically, trade often involves collaboration between systems that

have different data representations and limited information about one aother.

Further computation and flexibility is required to easily support trade be-

tween systems that have different programming paradigms. The interplay

of sequential and concurrent intensionality can be utilised to develop trad-

ing applications that support distributed computing across heterogeneous

systems, paradigms and data [GWJ11].

Note that Concurrent bondi is an augmentation of the bondi program-

ming language and interpreter [bon11] to support CPC. The basis of bondi

is to implement the key concepts of pattern calculus and show how this

can express many programming styles with a small pattern-matching core

[GWHJ07, JK09, Jay09, bon11, GWJ11]. Several design decisions have

been made to integrate sequential and concurrent computation in Concur-

rent bondi, most significantly: the interplay of Concurrent bondi programs

and CPC patterns, Concurrent bondi syntax for CPC, and typing for CPC

patterns and processes. As discussion of these design decisions and imple-

menting CPC in a programming language appear in Appendix A, the rest

of this chapter will focus on the examples and present Concurrent bondi

through them. Details of Concurrent bondi syntax with respect to CPC
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are in Section A.1, however readers familiar with conventions of Objective

Caml’s functional and imperative style [Cam11], and Java’s object-oriented

style [GJS05] should be able to follow this chapter without reading the ap-

pendix.

10.1 Trade

This section redevelops the example presented in Section 6.3 to introduce

CPC syntax and programs in Concurrent bondi. (The following presentation

highlights the full example code that is available here http://www-staff.

it.uts.edu.au/~tgwilson/concurrent_bondi/section_10.1.bon.) Re-

call that the scenario is of two potential traders, a buyer and a seller, who

wish to engage in trade. To successfully complete a transaction the traders

need to progress through two stages; discovering one other and exchang-

ing information. The discovery phase is resolved when compatible traders

find each other by unifying on some common pattern or information. The

exchange phase occurs when the buyer and seller have agreed upon a trans-

action. Now information is exchanged in a single interaction, preventing any

incomplete trades from occurring.

There are three stages to the original development in Section 6.3 that

increase in sophistication. The first focuses upon discovery. The second

introduces a registrar and identity validation. The third uses protected names

to ensure privacy. Here, a further stage introduces a market with many
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buyers and sellers as well as a broker that acts as both buyer and seller.

Although the redevelopment could simply use (restricted) names for all

information, the example is clearer when Concurrent bondi algebraic data

types (ADTs) are used. These can also be exploited in the success states to

display legible results.

The first step is to define some useful ADTs for the stock information.

datatype Price = Price of Float

with toString += | Price p -> "$" ^ (toString p);;

datatype Stock = Stock of String and Int and Price

with toString += | Stock s i p -> s ^ " " ^

(toString i) ^ " " ^ (toString p);;

The first line declares an ADT for prices that are floating point numbers in

the style of OCaml. The second line is a novel feature of Concurrent bondi

that allows dynamic addition of cases to existing functions. The default

toString function would result in "Price" concatenated with the floating

point number as a string. Here a special case is added with += that matches

the pattern Price p of a Price data type applied to a floating point number

p and instead yields "$" concatenated with the string representation of p.

The double semi-colon ;; terminates a declaration in Concurrent bondi.

These techniques are repeated for the Stock ADT.

Similar declarations define the bank accounts (with number and name)

and share certificates (with company and number of shares).

datatype BankAccount = BankA of Int and String

with toString += | BankA n s -> (toString n) ^ " " ^ s;;

datatype Certificate = Cert of String and Int

with toString += | Cert s i -> s ^ " " ^ (toString i);;

Also declare a data type of identities for later use.
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datatype Identity = Id of Int

with toString += | Id i -> "ID" ^ (toString i);;

These ADTs can be used to declare the information used in redeveloping

the solutions from before.

let s = Stock "ABC" 100 (Price 0.38);;

let b = BankA 123456 "Buyer";;

let c = Cert "ABC" 100;;

let bid = Id 0;;

let sid = Id 1;;

Here s is the stock information the traders are interested in; b is the buyer’s

bank account information; c is the seller’s share certificates; and bid and sid

are the buyer and seller identities, respectively. Observe that let declarations

are similar to OCaml with Concurrent bondi constructors being applied

to their arguments (rather than a single tuple of all the arguments). This

supports partial application of constructors and shall be exploited later with

the stock to separate out price information.

Solution 1

Consider two traders, a buyer and a seller. The buyer is interesting in pur-

chasing stock described by s and is willing to pay using bank account infor-

mation b. The buyer wishes to find a compatible trader who will provide

a name m used to exchange bank account information for share certificates

(bound by x). The first pattern that supports unification of s and binding m

is represented as s, \m where the comma denotes tupling of the components

and the backslash denotes a binding name. The second pattern to unify on

m and exchange b for some information bound to x is similarly represented

by m, b, \x. Combining these into a process is through cases of the form
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cpc p -> P where p is a pattern and P a Concurrent bondi program. Thus,

the Concurrent bondi program to represent the buyer and print the purchase

result can be defined as follows.

cpc s, \m ->

cpc m, b, \x ->

println ("Bought " ^ (toString x));;

The basic structure of the program for the seller is the same as the buyer,

the only significant difference is the creation of a restricted name. This is

declared with the rest keyword, for example rest n in P creates a fresh

(unique internal value) name n for the process P. Thus the seller can be

defined with the following program.

rest n in

cpc s, n ->

cpc n, \y, c ->

println ("Bill " ^ (toString y));;

Like the buyer, the seller unifies on s and shares n, then uses n to exchange

c for information bound by y and completes by printing the bank account to

charge.

Interaction between the buyer and seller in Concurrent bondi becomes

possible when both are declared and consequently added to a common data-

space. This is illustrated below using the Concurrent bondi interpreter.

~~ cpc s, \m ->

cpc m, b, \x ->

println ("Bought " ^ (toString x));;

it: Unit

~~ rest n in

cpc s, n ->

cpc n, \y, c ->

println ("Bill " ^ (toString y));;

it: Unit



10.1. TRADE 239

"Bill 123456 Buyer"

"Bought ABC 100"

~~

The double tilde ~~ is the prompt of the Concurrent bondi interpreter

that accepts declarations and responds with the type and value of the pro-

gram. Thus the result of each anonymous declaration is it: Unit to indi-

cate unit type and value. The printed messages "Bill 123456 Buyer" and

"Bought ABC 100" are the output of the traders successfully interacting.

Solution 2

The first solution allows the traders to discover each other and exchange

information atomically to complete the transaction. The second solution

adds identities for the traders and a registrar to keep track of registered

traders, thus ensuring that traders are trustworthy. The traders now offer

their identity to potential partners and then confirm with the registrar that

their potential trade partner is a valid trader, i.e. trustworthy.

The discovery phase now includes the buyer exchanging their identity

bid for the potential partner’s identity, bound by j. The buyer then checks

with the registrar if the potential partner is a valid trader. This is achieved

by interacting with the registrar via a a shared name nb and checking the

registrar knows j with unification providing a name, bound to m, to then

complete the transaction. The exchange phase continues as before using the

name provided by the registrar.

cpc s, bid, \j ->

cpc nb, j, \m ->

cpc m, b, \x ->

println ("Bought " ^ (toString x))
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The first pattern now exchanges the buyer’s identity for the seller’s, bound

to j. The buyer then consults the registrar using nb to validate j with the

registrar providing the name to complete the exchange.

The seller is defined simmilarly with their identity sid and shared name

with the registrar ns.

cpc s, \j, sid ->

cpc ns, j, \m ->

cpc m, \y, c ->

println ("Bill " ^ (toString y))

The registrar is defined as a restriction of a name n and the parallel com-

position | of two processes to interact with the two traders. The restriction

scopes a name n to provide to the traders. Then each of the sub-processes

unifies with a trader using the shared name, nb or ns, and confirms the iden-

tity of the other trader while providing the name n. After interaction with a

trader the registrar does nothing, i.e. performs the unit program ().

rest n in

cpc nb, sid, n -> ()

| cpc ns, bid, n -> ()

Observe that while rather simple, such a registrar can easily be extended to

support a multitude of traders.

Running these processes in parallel with appropriate restricted names to

share between the traders and the registrar yields the following results.

~~ rest nb ns in

(cpc s, bid, \j -> cpc nb, j, \m -> cpc m, b, \x ->

println ("Bought " ^ (toString x)))

| (cpc s, \j, sid -> cpc ns, j, \m -> cpc m, \y, c ->

println ("Bill " ^ (toString y)))

| (rest n in cpc nb, sid, n -> () | cpc ns, bid, n -> ());;

it: Unit
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"Bill 123456 Buyer"

"Bought ABC 100"

~~

The share information s allows the buyer and seller to discover each other

and swap identities bid and sid. The next two interactions involve the

buyer and seller validating each other’s identity and inputting the identifier

to complete the transaction and print the results as before.

Although this solution satisfies the desire to validate that traders are le-

gitimate, the freedom of matching allows for malicious processes to interfere.

Specifically the negotiation and validation are vulnerable to the promiscuous

process that offers some dummy information a (or "anything") in exchange

for capturing two other pieces of information. Adding such a promiscuous

process to the scenario can interfere with the traders and registrar, preventing

successful trade.

let a = "anything";;

rest nb ns in

(cpc s, bid, \j -> cpc nb, j, \m -> cpc m, b, \x ->

println ("Bought " ^ (toString x)))

| (cpc s, \j, sid -> cpc ns, j, \m -> cpc m, \y, c ->

println ("Bill " ^ (toString y)))

| (rest n in cpc nb, sid, n -> () | cpc ns, bid, n -> ())

| (cpc \z1, \z2, a -> println ("Stole: " ^ (toString z1)

^ " and " ^ (toString z2 )));;

Running this in Concurrent bondi may yield the following result

it: Unit

"Stole: ABC 100 $0.38 and ID0"

when the promiscuous process has interacted with the buyer to steal the

desired stock information ABC 100 $0.38 and the buyer’s identity ID0. As

the trading requires an open environment to discover partners, this behaviour

is acceptable even if annoying.
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More problematic is an alternative result of running the same program

that yields

it: Unit

"Stole: ... and ID1"

where the promiscuous process has interacted with the buyer’s attempt to

validate the seller, stealing the restricted name nb (that displays as ... as it

is an internal value only) and the seller’s identity ID1. Here the promiscuous

process has stolen information that should have been kept private.

Note that as Concurrent bondi’s implementation of CPC is not deter-

ministic both results are possible. Details on how this is implemented are in

Sections A.3 & A.4.

Solution 3

Recall that the vulnerability exploited by the promiscuous process above

can be repaired using protected names. Names are protected in Concurrent

bondi by adding the tilde ~ in front of the name. One names have been

protected, the processes can be run as before with the same results.

~~ rest nb ns in

(cpc s, bid, \j -> cpc ~nb, j, \m -> cpc ~m, b, \x ->

println ("Bought " ^ (toString x)))

| (cpc s, \j, sid -> cpc ~ns, j, \m -> cpc ~m, \y, c ->

println ("Bill " ^ (toString y)))

| (rest n in cpc ~nb, ~sid, n -> () | cpc ~ns, ~bid, n -> ());;

it: Unit

"Bill 123456 Buyer"

"Bought ABC 100"

~~

This ensures that other processes can only interact with the traders during

the discovery phase, which will not lead to a successful transaction. The
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registrar will only interact with the traders (by Lemma 6.2.6) as all of the

registrar’s patterns have protected names known only to the registrar and a

trader.

The advantage of protected names is that once discovery is completed

then the rest of the interactions are performed in private (by Lemma 6.2.6).

Of course this does not prevent the promiscuous process from interfering

with the discovery phase, however without open discovery new trade partners

cannot be found in the first place. The following output from Concurrent

bondi shows an execution of the code with protected names.

~~ rest nb ns in

(cpc s, bid, \j -> cpc ~nb, j, \m -> cpc ~m, b, \x ->

println ("Bought " ^ (toString x)))

| (cpc s, \j, sid -> cpc ~ns, j, \m -> cpc ~m, \y, c ->

println ("Bill " ^ (toString y)))

| (rest n in cpc ~nb, ~sid, n -> () | cpc ~ns, ~bid, n -> ())

| (cpc \z1, \z2, a -> println ("Stole: " ^ (toString z1)

^ " and " ^ (toString z2 )));

it: Unit

"Bill 123456 Buyer"

"Bought ABC 100"

~~ %status;;

Process with ID 9:(Pair Pair (\z1) (\z2) a ->

println

^ ("Stole: ")

(^ (toString (z1))

(^ (" and ") (toString (z2)))))

~~

Further, the %status;; commend displays the processes in the data-space,

here showing that the promiscuous process has been left over without any

other process to interact with.

The solution could be extended further: although the share informa-

tion is never examined in detail, it could be partially matched against and
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some information filled in during the discovery stage. This would allow dis-

covery based on partial information, for example: specify a company code

and price, but not the number of shares Stock "ABC" \v (Price 0.38);

or specify only the price and accept any company or number of shares

Stock \u \v (Price 0.38). The seller could also offer partial share in-

formation, although this may be a very risky business strategy! Observe

that either trader can protect any component of the pattern if they wish to

ensure that the other party exactly meets that criterion.

Another possibility is to allow for some checking of the integrity of the

patterns being communicated. Given some standard language for the repre-

sentation of data, such as the data types here or XML, this could be checked

by the matching. For example, a valid bank account may be required to be

constructed by BankA with the account number and account name. Thus, a

pattern to input only valid bank accounts, binding the account number to u,

the name to v could be BankA \u \v. Thus, any pattern that successfully

matches must be identically constructed. Indeed, this could be developed

further to account for XML and web services such as in PiDuce [BLM05].

Some of these techniques for unifying on parts of data structures or bind-

ing only the components of interest are used in the next section. Others are

exploited in the second example later in the chapter.

Market

A market can be created that allows many buyers and sellers to interact.

Here the stock can be created with a partially applied constructor

~~ let sc = Stock "ABC" 100;;
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sc: Price -> Stock

~~

that has the same company information but no price. Observe that the

type of sc is a function type Price -> Stock that when supplied with an

argument of type Price reduces to something of type Stock.

Now create a market with five buyers (with identities bid1 to bid5) and

five sellers (with identities sida to side). To simplify the registrar definition

the buyers shall nominate a channel to be used for the later transaction and

inform the registrar. The sellers shall nominate the price (pa to pe) they

are offering to sell shares at. Lastly, to clarify the code, a print function

print_trade outputs the details of a transaction from the buyer, while the

sellers remain silent.

A single buyer can now be defined by the following program.

cpc sc \p, bid1, \j ->

rest m in

cpc ~nb1, j, m ->

cpc ~m, b, \x ->

print_trade bid1 j sc p

The first pattern sc \p, bid1, \j unifies with stock and binds p to the

price being asked for the stock while offering the buyer’s identity bid1 for

the seller’s, bound by j. Observe that the application of sc to \p unifies

with a stock data structure, for example Stock "ABC" 100 (Price 0.40)

and binding p to Price 0.40.

A single seller can be defined as follows

cpc sc pa, \j, sida ->

cpc ~nsa, j, \m ->

cpc ~m, \y, c -> ()
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that offers stock at price pa and identity sida in exchange for the buyer’s

identity bound to j. The remainder is symmetric to the buyer process except

that no output is generated upon completion of the trade.

The market can now be defined with the buyers and sellers all competing

to find partners, as shown below.

~~ rest nb1 nb2 nb3 nb4 nb5 nsa nsb nsc nsd nse in

(cpc sc \p, bid1, \j -> rest m in cpc ~nb1, j, m -> cpc ~m, b, \x

-> (print_trade bid1 j sc p))

| (cpc sc pa, \j, sida -> cpc ~nsa, j, \m -> cpc ~m, \y, c -> ())

| (cpc sc \p, bid2, \j -> rest m in cpc ~nb2, j, m -> cpc ~m, b, \x

-> (print_trade bid2 j sc p))

| (cpc sc pb, \j, sidb -> cpc ~nsb, j, \m -> cpc ~m, \y, c -> ())

| (cpc sc \p, bid3, \j -> rest m in cpc ~nb3, j, m -> cpc ~m, b, \x

-> (print_trade bid3 j sc p))

| (cpc sc pc, \j, sidc -> cpc ~nsc, j, \m -> cpc ~m, \y, c -> ())

| (cpc sc \p, bid4, \j -> rest m in cpc ~nb4, j, m -> cpc ~m, b, \x

-> (print_trade bid4 j sc p))

| (cpc sc pd, \j, sidd -> cpc ~nsd, j, \m -> cpc ~m, \y, c -> ())

| (cpc sc \p, bid5, \j -> rest m in cpc ~nb5, j, m -> cpc ~m, b, \x

-> (print_trade bid5 j sc p))

| (cpc sc pe, \j, side -> cpc ~nse, j, \m -> cpc ~m, \y, c -> ())

(* Registrar process here, left out for brevity *);;

it: Unit

"Buyer ID14 bought "ABC" for $38. from ID101"

"Buyer ID13 bought "ABC" for $37. from ID104"

"Buyer ID12 bought "ABC" for $39. from ID103"

"Buyer ID15 bought "ABC" for $40. from ID102"

"Buyer ID11 bought "ABC" for $41. from ID105"

~~

The printing shows that all the buyers and sellers have found a partner to

trade with, although some buyers have paid more than others.

Once a market is established where both buyers and sellers can trade,

traders could be added that act as both buyer and seller to generate profit.

Consider the scenario above with an additional trader that first buys some
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shares and then sells them at an increased price. Here the generic trader

has their own identity tid and corresponding communication channel to the

registrar nt. Their succeed state prints out the profit they made on trading.

cpc sc \p, tid, \j ->

rest m in

cpc ~nt, j, m ->

cpc ~m, bt, \x ->

let np = Price (match p with

| Price p -> p * 1.1)

in

cpc sc np, \j, tid ->

cpc ~nt, j, \m ->

cpc ~m, \y, c ->

(match p with

| Price p ->

println ( "Made $"

^ (toString (p * 0.1 * 100.))

^ " profit!")))

Observe that the first four lines behave the same as a buyer, purchasing stock

and providing the trader’s bank account information bt. A new price np is

calculates as the old price plus 10% and then the trader behaves as a seller

and sells the stock with the new price. After completing the sale the profit

is then calculated and displayed.

Running the market again with the trader may yield the following output.

it: Unit

"Buyer ID11 bought "ABC" for $41. from ID105"

"Buyer ID14 bought "ABC" for $37. from ID104"

"Buyer ID12 bought "ABC" for $40. from ID102"

"Buyer ID15 bought "ABC" for $39. from ID103"

"Buyer ID13 bought "ABC" for $41.8 from ID999"

"Made $3.8 profit!"

Here the trader has made a small profit and one buyer has paid slightly more

for their stock.
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This illustrates the implementation of CPC in Concurrent bondi is able

to represent CPC processes and captures the data space, unification, and non-

determinism required. The next section develops a more complex example

that also exploits the interplay with sequential Concurrent bondi.

10.2 Services

More general trading scenarios involve collaboration between heterogeneous

systems in open environments to perform a trade. Consider the problem of

shopping for a term deposit from a variety of different banks. These banks not

only use different shapes of data, but also different programming paradigms.

By combining sophisticated pattern-matching with pattern-unification a sim-

ple, distributed solution can be programmed in Concurrent bondi. (The

following presentation highlights the full example code that is available here

http://www-staff.it.uts.edu.au/~tgwilson/concurrent_bondi/section_

10.2.bon.)

The example is of banks that offer a similar product, namely term de-

posits, and is developed through four stages. The first presents Concurrent

bondi data structures using both ADTs and object-orientation. The second

exploits dynamic patterns to traverse heterogeneous data structures within

a single closed system. The third generalises to many distributed systems in

an open environment by exploiting pattern-unification. The last shifts from

finding information to completing a transaction in this setting.
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Data Structures

Concurrent bondi’s support for multiple programming paradigms is illus-

trated by developing two banks: the NSW banks that represents its data

using ADTs; and the Vic banks that uses object-oriented classes.

Bank accounts at NSW bank of type Account are of the form Acct n x

where n is the name of the account (a string) and x is the balance of the

account (a float):

datatype Account = Acct of String and Float

in the familiar functional programming style. Term deposits are declared

similarly, with the bank name, product name, minimum deposit, rate, period

and government guarantee.

datatype TermDepositADT =

TDADT of String and String and Int and Float and Int and Bool

The NSW bank is represented by Bank with lists of accounts and term de-

posits.

datatype BankADT = BankADT of String and List Account

and List TermDepositADT

with toString += | BankADT n _ _ -> n

The NSW bank containing two customer accounts and two term deposits

is given below.

let acct1 = Acct "John Citizen" 2222.00;;

let acct2 = Acct "Jane Doe" 2736.30;;

let tdnsw1 = TDADT "NSW" "Standard TD" 1000 4.7 12 True;;

let tdnsw2 = TDADT "NSW" "Short and cheap TD" 500 3.3 1 False;;

let nsw = BankADT "NSW" [acct1,acct2] [tdnsw1,tdnsw2];;

The Vic bank is implemented using mostly object-oriented classes, which

are modelled upon those of Java [GJS05]. The term deposits are defined

below, with a minimum deposit, rate and period.
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class TermDepositOO {

minDep: Int; (* Minimum deposit *)

rate: Float; (* Rate *)

period: Int; (* Period *)

(* Get and set methods. *)

with toString += | (x:TermDepositOO) -> "" }

Observe that in addition to using a different format, the Vic bank does

not store the bank name within its term deposits. Also like when declaring

ADTs, the generic toString function can be augmented to alter the printing

of classes; here printing nothing.

The Vic bank is also represented by a class defined below.

class BankOO {

name: String; (* Bank name *)

accts: List Account; (* List of accounts, same ADT as NSW *)

tds: List TermDepositOO; (* List of term deposit classes. *)

(* Get and set methods. *)

with toString += | (x:BankOO) -> x.getName() }

Here the extension to the toString function matches the pattern (x:BankOO)

to bind x to an object of type BankOO and then uses the method getName()

to display the bank name.

The Vic bank is created as follows.

let tdvic = new TermDepositOO;;

tdvic.setMinDep(2000);

tdvic.setRate(4.6);

tdvic.setPeriod(3);;

let vic = new BankOO ;;

vic.setName("Vic");

vic.setAccts([acct2]);

vic.setTDs([tdvic]);;
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Dynamic Patterns

The relevant attributes of term deposits are chosen to be the name of the

bank, the minimum amount, rate of return, and period. Routine techniques

are used to display this information.

let display b m r p = println ("Term deposit from " ^ b ^

" with minimum $" ^ (toString m) ^ ", rate " ^ (toString r) ^

"%, and period " ^ (toString p) ^ " months.")

Harder is to recognise a term deposit as such within a larger, arbitrary

data structure, and to extract the relevant attributes. As the pattern (or

shape) for a term deposit varies between banks this needs to be given by a

shape parameter shape to the function.

let findTDs f = fun

(shape: lin (String -> Int -> Float -> Int -> a)) ->

iter (| {b,m,r,p} shape b m r p -> f b m r p

| _ -> ())

The first argument f of findTDs is some program to accept the desired

attributes of any term deposits found, for example display. The second ar-

gument shape is used to create the pattern shape b m r p which will match

against term deposits. Note that the pattern here is defined in pure pattern

calculus style and has a list of binding symbols {b,m,r,p} that also appear as

arguments to the function shape. Here the program shape b m r p must be

evaluated before matching can occur, that is the pattern is dynamic. Pattern

parameters such as shape must be linear, to avoid duplication or elimination

of pattern binders, as indicated by the keyword lin applied to its type. The

iter function uses path polymorphism (as introduced in Chapter 5 and in

the literature [GWHJ07, Jay09]) to traverse any data structure applying the

anonymous function that matches term deposits and applies f.
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Finding and displaying term deposits is now as simple as providing the

shape and bank as arguments to findTDs display. Create an ADT for

banks that contains the shape and data.

datatype Bank = Bank of (lin (String -> Int -> Float -> Int -> a))

and b

Note that the types for the result of the pattern and for the bank data are

existential here. That is; they do not appear on the left hand side of the

data type declaration and so are not universally quantified. Now

let allTDs = iter (| Bank shape bank -> findTDs display shape bank

| _ -> ())

will display all term deposits found within any bank that is in turn within

any data structure containing, say, businesses. Observe that all this has been

written before any actual shapes have been defined.

Now define the shape for term deposits in the NSW bank as follows.

lin shapeNSW b m r p = TDADT b _ m r p _

Here lin indicates that a linear term is being declared, and the wildcards

_ are used to ignore the information that is not required. The arguments

to the shape are the binding symbols that will be bound in the matching

process. That is, shapeNSW is a function that accepts binding symbols and

returns a pattern containing each of those binding symbols exactly once.

The shape for the Vic bank uses a helper function and fills in the missing

bank name with an explicit value.

let getTDVicData (x:TermDepositOO[a]) =

("Vic",x.getMinDep(),x.getRate(),x.getPeriod());;

lin shapeVic b m r p = view(getTDVicData,(b,m,r,p))

as (_:TermDepositOO);;
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The pattern view(getTDVicData,(b,m,r,p)) as (_:TermDepositOO) has

a two separate pattern-matching stages when evaluated. The first ensures

the argument is any object of the class TermDepositOO. If this succeeds, then

the second matches (b,m,r,p) against the result of applying getTDVicData

to the argument (the term deposit object).

Now combine the NSW and Vic banks into a single data structure

let banks = [Bank shapeNSW nsw, Bank shapeVic vic]

taking advantage of the existential types to remain type safe. Then evaluat-

ing allTDs banks yields

~~ allTDs banks;;

it: Unit

"Term deposit from NSW with minimum $1000,

rate 4.7%, and period 12 months."

"Term deposit from NSW with minimum $500,

rate 3.3%, and period 1 months."

"Term deposit from Vic with minimum $2000,

rate 4.6%, and period 3 months."

~~

showing that the function finds and displays all the term deposits as desired.

Thus a simple solution is able to find information based upon local shapes

within arbitrary data structures. However, this approach is limited to a

single system and relies upon the function having access to all the bank’s

data without limitations.

Pattern unification

In the concurrent setting the main challenge is for the bank and customer

to discover each other and communicate. Discovering each other requires
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that they have some small amount of shared data, namely a parameter that

describes term deposits. Here tdDesc is a constant pattern to describe shared

term deposit data that is understood by both parties. For the rest, each party

is free to create its own processes.

For example, the NSW bank process for term deposits will involve a pat-

tern descNSW that provides a bank description, and a function security that

sandboxes the query, as well as the parameters shapeNSW and nsw employed

before. These are combined to form a process.

cpc descNSW, ~tdDesc, \q -> security q shapeNSW nsw

That is: a process that shares the bank’s description descNSW; requires the

other process be interested in term deposits ~tdDesc; and binds q to a query

for the bank’s data. Observe that the query q is passed through the bank’s

security and then allowed access to the bank’s data within the bank, thus

keeping the bank’s internals hidden from other processes.

Define a similar process for the Vic bank term deposit service.

cpc descVic, ~tdDesc, \q -> security q shapeVic vic

To interact with these services the customer must create a process that

will unify with a bank’s term deposit pattern. This requires accepting the

bank’s description, being interested in term deposits, and providing a query.

Such a query consists of a function similar to allTDs that adapts to the

shape provided by the bank and then acts on an arbitrary data structure.

Of course the modified query communicates its results back to the customer

rather than printing the information out on the bank’s system. Such a query

could be

let query session =

findTDs (fun b m r p -> cpc ~session, b, m, r, p, -> ())
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that executes the familiar findTDs query on the banks data, communicates

this back to the customer along session and terminates. Note how the

higher-order function findTDs has been applied to a function that returns a

process. The results are displayed using the process returned by the function

let displayFromSession session =

!(cpc ~session, \b, \m, \r, \p -> display b m r p)

by replicating ! a process to accept any number of results along a private

channel session from the bank and then print them. Then

! rest session in

cpc \bank, tdDesc, (query session) -> (

println ("Querying " ^ bank);

displayFromSession session)

uses rest session to restrict access to the channel session, and then repli-

cates the whole, so as to be able to interact with many banks. Summarising,

when a bank is discovered by unification the service reports the bank that

accepted the query and creates another process that collects all responses

from that bank to display them.

Now running this process in parallel with the services from the NSW and

Vic banks yields the following.

"Querying Vic Bank"

"Querying NSW Bank"

"Term deposit from NSW with minimum $500,

rate 3.3%, and period 1 months."

"Term deposit from Vic with minimum $2000,

rate 4.6%, and period 3 months."

"Term deposit from NSW with minimum $1000,

rate 4.7%, and period 12 months."

Observe that the queries were computed in parallel and the results displayed

as they arrived with no relation to the structure of the banks’ data.



256 CHAPTER 10. APPLICATIONS

Purchasing

While these steps demonstrate the components, the ultimate goal is to write

a program that can find a suitable term deposit from a potentially unknown

supplier and make a purchase. With all the ingredients already available, a

little modification is all that is required. The problem of discovering services

for term deposits is handled with pattern unification. The query sent to the

bank can be modified to only find term deposits that meet specific criteria,

for example a rate greater than 4.5%. The last ingredient is a way for the

purchase to be made, taking a name for the account and the amount to be

deposited. This can all be combined into a query.

let query session purchase =

findTDs (fun b m r p ->

if r > 4.5

then cpc ~session b (\n, \a) ->

purchase n a

else ())

Here purchase is a program to purchase a term deposit provided by the bank

the query is run on. Observe that when an appropriate term deposit is found

the session is used to obtain the name n and amount a from the customer

to complete the purchase.

The purchase code can be defined for the banks by the following functions.

let purchaseNSW n a =

nsw = (| BankADT b acs tds ->

BankADT b (Cons (Acct n a) acs) tds) !nsw;;

let purchaseVic n a =

vic.setAccts (Cons (Acct n a) (vic.getAccts ()));;

The NSW bank is now stored in a reference to allow for stateful updating.

The purchase programs for both banks add a new account with the name

and amount provided.
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The services for the banks can now be defined with

let descNSW = "NSW Bank" in

cpc descNSW, ~tdDesc, \q -> security q purchaseNSW shapeNSW nsw;;

let descVic = "Vic Bank" in

cpc descVic, ~tdDesc, \q -> security q purchaseVic shapeVic vic;;

that behaves as before with the addition of providing their own purchasing

code to the query.

All that remains is to define the program for the client. The name and

amount for the prospective term deposit are declared, with the body of the

code as before. The main difference is that instead of collecting results, the

first successful result is used to purchase a term deposit.

let name = "Carl Smith" in

let amount = 10000.0 in

begin

rest session in

(!cpc \bank, tdDesc, (query session) ->

println ("Querying " ^ bank))

| (cpc ~session \bank (name, amount) ->

println ("Deposited with " ^ bank))

end

The result of running the programs is as follows.

~~ let name = "Carl Smith" in

let amount = 10000.0 in

begin

rest session in

(!cpc \bank, tdDesc, (query session) ->

println ("Querying " ^ bank))

| (cpc ~session \bank (name amount) ->

println ("Deposited with " ^ bank))

end;sleep 1.0;;

it: Unit

"Querying Vic Bank"

"Querying NSW Bank"

"Deposited with NSW"

~~
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Here the purchase has been made with the NSW bank, this can be confirmed

by showing all the accounts now at the NSW bank.

~~ (* Show NSW accounts *)

(| BankADT _ acs _ -> acs)!nsw;;

it: List Account

it = [Acct "Carl Smith" 10000.,

Acct "John Citizen" 2222.,

Acct "Jane Doe" 2736.3]

~~

Another run may result in the purchase being made with the Vic bank

as shown below.

~~ let name = "Carl Smith" in

let amount = 10000.0 in

begin

rest session in

(!cpc \bank, tdDesc, (query session) ->

println ("Querying " ^ bank))

| (cpc ~session \bank (name amount) ->

println ("Deposited with " ^ bank))

end;sleep 1.0;;

it: Unit

"Querying NSW Bank"

"Querying Vic Bank"

"Deposited with Vic"

~~

The accounts for the Vic bank can be viewed to confirm that the purchase

has been successful by.

~~ (* Show Vic accounts *)

vic.getAccts();;

it: List Account

it = [Acct "Carl Smith" 10000.,

Acct "Jane Doe" 2736.3]

~~
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This solution to the problem of finding and purchasing term deposits in

a collaborative environment shows how patterns can be exploited in both

sequential and concurrent computation. The sequential dynamic patterns

support queries that adapt to the shape of heterogeneous data and program-

ming styles. Further, pattern-unification supports decentralised discovery

of compatible processes and exchange of information, all within an atomic

interaction.
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Chapter 11

Conclusions

This chapter draws conclusions and discusses future work by first reconsider-

ing the computation square and then the results of this dissertation in finer

detail.

This work has shown that extensional, sequential computation can be

generalised by adding intensionality, that respects the usual reduction prop-

erties, to be able to represent symbolic computation not representable in

merely extensional models. The expressive power of extensionality and in-

tensionality can be characterised by structure completeness, i.e. the ability

to support arbirary pattern-matching functions whose patterns are normal

forms. This is demonstrated by SF -calculus that is structure complete, and

thus able to represent all Turing computable functions on SF -combinators

in normal form, for example equality of normal forms.

Shifting to the concurrent setting, process calculi are expected to subsume

sequential computation. A popular example is the π-calculus that has en-

codings of λ-calculus with a specific reduction strategy. The combination of

261
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encoding λ-calculus and the independent parallel reduction of process calculi,

yields an extensional, concurrent model of computation.

As process calculi are expected to subsume sequential computation, a

natural development is to consider an intensional concurrent computation

model. By basing interaction on symmetric pattern-unification, CPC is able

to generalise both intensional sequential computation and extensional con-

current computation. Further, as all interactions are inherently between

(at least) two parties, CPC increases the symmetry of interaction by shift-

ing away from asymmetric input/output or pattern-matching, to symmetric

pattern-unification.

The original concrete computation square relates λv-calculus, π-calculus,

SF -calculus and CPC as follows

λv-calculus SF -calculus

π-calculus concurrent pattern calculus

-

-
? ?

where the left side is extensional, the right side intensional, the top side se-

quential, and the bottom side concurrent. The horizontal arrows are homo-

morphisms that map application/parallel composition to itself and preserve

reduction. The vertical arrows are parallel encodings (Definition 3.1.1) that

map application to parallel composition (with some extra machinery) and

preserve reduction. Significantly all the arrows are translations [[ · ]] such that

a source term S translates to a target term T = [[S ]] and when S −→ S ′ then

T =⇒ T ′ for some T ′ equivalent to [[S ′ ]] in the target language. Further,

there are no reverse arrows as each arrow signifies an increase in expressive



263

power. Such a square raises many questions, not all of which are easy to

answer.

The square does not commute due to both the choice of translations and

the choice of calculi. This stems from the π-calculus’ inability to examine

the structure of a name and so the parallel encoding from λv-calculus trans-

lates terms into processes that capture behaviour. Further, these limitations

also prevent easily capturing the reductions of λ-calculus and so requiring

the choice of a reduction strategy. By contrast the parallel encoding of SF -

calculus into CPC is able to exploit the structure of translated terms to

directly perform reductions. This does not require fixing a reduction strat-

egy as the reducing process can operate directly upon the translated syntax

and so support any reduction rules. Thus, travelling from λ-calculus to CPC

via π-calculus yields a behavioural representation of the terms, while trav-

elling via SF -calculus yields separate syntax and reduction rules. Also the

homomorphism from π-calculus into CPC is unlike the other arrows in that it

is faithful; i.e. every reduction of π-calculus yields a single reduction in CPC.

While every other arrow preserves reduction to some notion of behavioural

equality, the homomorphism from π-calculus into CPC is a direct equivalence

of the translations.

The diagonals of the square have not been detailed in this dissertation.

From λv-calculus to CPC there are already two diagonals via either π-calculus

or SF -calculus. A third diagonal via SK-calculus and then directly to CPC

has been shown to be a straightforward adaption of the parallel encoding of

SF -calculus into CPC, i.e. a parallel encoding of SK-calculus into CPC. The

existence of either diagonals between SF -calculus and π-calculus have not
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been explored. The lack of a reduction preserving encoding from π-calculus

into SF -calculus should be routine. However, the arrow from SF -calculus to

π-calculus has yet to be formalised. On the surface the inability to represent

structure within a name in π-calculus suggests that such an arrow does not

exist, but to prove this is another matter.

Conjecture 1. There exists no parallel encoding from SF -calculus into π-

calculus.

There are many ways to produce a concrete computation square of calculi

that have corners according to extensional, intensional, sequential and con-

current computation. The top left corner could be populated by λv-calculus

or λl-calculus with minimal changes to the proofs. Alternatively, choosing

λ-calculus or SK-calculus may also hold, although a parallel encoding into

π-calculus may require some work. The bottom left corner is also open to

some other calculi mentioned in this dissertation: monadic/polyadic syn-

chronous/asynchronous π-calculus or Linda could replace π-calculus with no

significant changes to the results. The top right corner could be populated

by any of the structure complete combinatory logics, SF -calculus, SKF -

calculus, SFC-calculus, SFC-calculus or {S, F,Ω}-calculus, without much

effort. It may also be possible to take pure pattern calculus, or other pattern

calculi [Jay04, JK06, GW07, JK09, Jay09], at the top right. Similarly, there

will be other process calculi that can take the place of CPC at bottom right.

(Some variations on CPC are discussed in Section 11.2.)

Many choices of calculi, and thus many concrete computation squares,

can be routinely shown to have the same irreversible arrows. However, it

is not clear if there are general results which cover the many possibilities
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and formalise an abstract computation square of families of: extensional E or

intensional I; and sequential S or concurrent C calculi.

ES IS

EC IC

-

-
? ?

Another consideration is to generalise the relations between calculi in the

manner that Gorla developed valid encodings for process calculi. Thus lead-

ing to the following question: is there a single notion of encoding that can

be used for every arrow?

11.1 Intensional Sequential Computation

The ability to examine the internal structure of combinators within a com-

binatory logic is simple and powerful. Usually such examination arises in a

more operational setting, such as when a Turing machine acts upon combina-

tor syntax. In general, such encodings are so powerful that ad-hoc techniques

are required to ensure that such operations respect combinator semantics.

By beginning with a syntactic characterisation of the factorable forms,

factorisation can be guaranteed to respect the semantics, and so yield a

symbolic computation. When factorisation and operator equality is combined

with extensionality then the resulting calculus is structure complete, in that

one is able to represent pattern-matching functions in which arbitrary normal

forms are allowed as patterns. Examples include a generic test for structural

equality of normal forms, and general forms of the queries popular in database
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programming. In turn, structure complete calculi are characterised by their

support for four combinators, namely S (for duplication), K (for elimination),

F (for factorisation) and eqatom for separating irreducible operators.

11.2 Concurrent Pattern Calculus

By basing interaction on symmetric pattern-unification, combined with the

usual process calculus primitives, CPC is able to support intensionality in

a concurrent setting. Indeed, CPC’s support for input, output and equality

through pattern-unification allows discovery of compatible partners and ex-

change of information. This models the essence of trading in the information

age, as illustrated by the example of traders who discover each other in the

open and then close a deal in private.

Although CPC sits in the bottom right corner of the computation square,

there are many variations on CPC that could fulfil the same rôle. The sup-

port for intensionality does not require the symmetry of pattern-unification,

indeed a simpler calculus could limit interaction to the traditional input

and output primitives while retaining intensionality. The development of a

pattern-matching calculus can exploit the existing definitions for CPC. For

example, reduction can be defined by

p→ P | q → Q 7−→ σP | Q where {p||q} = (σ, {}).

Here p→ P is an “input” p and q → Q is an “output” q. Although “outputs”

would still interact under this definition, modifying the calculus to prevent

this is routine. Observe that such a modified calculus would still support all
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the development on the boolean reduction system B and thus the encoding of

SF -calculus. Further, it is straightforward to show that there is a homomor-

phism from such a calculus into CPC. The lack of a converse would follow

from the separation results by symmetry for π-calculus, Linda, Spi calculus

and fusion calculus. While pattern-matching alone captures intensionality

in the style of structure completeness, the symmetry of interaction has been

artificially limited.

Another variation on CPC would be to prevent variable and protected

names unifying with each other. That is, variable names only unify with

variable names, and protected names only unify with protected names. Al-

though this would simplify some results, it would not yield greater expressive

power and would limit the flexibility of discovery in the trading examples.

In addition to variations on the concepts motivating CPC, there are also

further paths of development for CPC itself. Implementation in a program-

ming language has been indirectly demonstrated through the applications in

Chapter 10. Of course there are many design decisions in converting from

calculus to programming language, some of which have been discussed in the

notes on the development of Concurrent bondi in Appendix A. One of par-

ticular interest, even without implementing a programming language, being

a type system for CPC. Some preliminary work on this for CPC appears

in Section A.2, however a robust, rather than ad-hoc, approach that builds

upon the lessons from sequential typing of pattern calculus [Jay09, Part II]

could lead to many interesting results.

Lastly, the relation of CPC to pure pattern calculus remains. Although

pure pattern calculus and pattern-matching are the motivation for CPC,



268 CHAPTER 11. CONCLUSIONS

the relations are not yet clear. In particular, that pure pattern calculus is

more expressive than λ-calculus is ongoing work. Further, there are some

preliminary results which show a homomorphism from pure pattern calculus

into SF -calculus, thus ensuring that there is (at least an indirect) relation

between pure pattern calculus and CPC. A more direct relation is not simply

a routine translation of the terms due to two complexities. First, the patterns

of pure pattern calculus support reduction while the patterns of CPC do not.

Although binding names to functions has been shown to be sufficient for π-

calculus, it is not clear whether this still holds when intensionality is in play.

Second, pure pattern calculus has a notion of match failure to detect when a

pattern cannot be matched against an argument. However, in CPC pattern-

unification is used to determine interaction, not structural application, thus

detecting match failure is non-trivial. Following from these observations and

ongoing work there is likely an encoding from pure pattern calculus into

CPC, however the manner and directness of such an encoding are not yet

clear.

11.3 Completing the Square

The parallel encoding from SF -calculus into CPC exploits intensionality to

match both the operators and structure in translated combinators. By sepa-

rating the behaviour from the translated combinators CPC is able to encode

SF -calculus without having to fix a reduction strategy, as is required by the

parallel encodings of Milner. Thus, a straightforward adaptation of these

techniques can be used to provide a parallel encoding of SK-calculus (and
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thus λ-calculus) into CPC.

The combination of matching arbitrary numbers of symbols and arbitrary

structure through CPC’s pattern-unification suggests support for general re-

duction systems. This is clearest in the encodings that translate the source

terms into a pattern and exploit a reducing process that operates upon the

encoded pattern to perform reductions. The development of encodings of

system B and SF -calculus illustrate how this can be done by examining the

syntax and the structure of the reduction rules. This style of translation

is similar to encoding the terms onto the tape of a Turing machine, as one

process, and the reduction rules into the state, another process.

Conjecture 2. There is a parallel encoding of any reduction system into

CPC.

Indeed, an elegant and faithful encoding of a Turing machine into CPC is

routine by exploiting these techniques and taking a little care in representing

the boundless nature of the tape. Combined with the above conjecture this

yields two ways to encode a reduction system into CPC, either directly or

via a Turing machine. However, a parallel encoding supports modularity of

the translation and respects the semantics in a manner that ad-hoc Turing

machine encodings do not.

Shifting to the bottom of the computation square, there is a homomor-

phism from π-calculus into CPC that does not rely upon any behavioural

theory. That is, CPC is able to validly encode π-calculus relying only upon

structural congruence. The lack of a valid encoding of CPC into π-calculus

follows from both CPC’s ability to match any number of names in an interac-

tion and CPC’s symmetry. That π-calculus cannot preserve the reductional
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behaviour of CPC ensures there can be no homomorphism from CPC into

π-calculus.

11.4 Behavioural Theory

The behavioural theory of CPC is unusual due to the peculiarities of pattern-

unification. In particular, the manner in which variable names may be tested

for equality, and the contractive nature of binding names. The first appears

in the definition of barbs that are defined with a set of names. Both appear

in the comparability relation that leads to an ordering on patterns. This

ordering is asymmetric with respect to patterns, yet used to define the (in-

herently symmetric) bisimulation relation. Although the development of the

behavioural theory for CPC follows the standard approach, these peculiari-

ties lead to some unusual constructions.

The definition of barbs for CPC includes parametrisation by a set of

names that include both those that may be tested for equality and those

that must. Interestingly, a set is sufficient to represent all the names; that

is, the order of appearance in the pattern, number of occurrences, and form

(variable or protected) is immaterial to the barb definition. This is in contrast

with the barbs of, say Linda, where both order and number of occurrences

are part of the definition (along with the size of the tuple).

The flexibility of names that may be tested for equality and the ability to

bind arbitrarily complex patterns to a single name leads to some patterns be-

ing more general than others. This is captured by the comparability relation

that also orders related patterns. The ability to order patterns provides po-
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tential for optimisations, in particular for implementing more efficient unifica-

tion algorithms. Another direction in which such orderings appears is in the

development of object-oriented systems. The ordering on patterns provides

the basis for developing inheritance hierarchies and thus could elegantly cap-

ture object-oriented communication in CPC, indeed structure bases object-

orientation has been developed before in pattern calculi [Jay09, Chapters. 6,

11 & 18].

The mixture of the asymmetric comparability of patterns with the sym-

metric bisimilarity of process seems counter-intuitive. While there are other

process calculi whose bisimulation does not require an exact response, order-

ing of responses based upon structure appears to be new.

11.5 Relations to Other Process Calculi

Although relating CPC to π-calculus completes the computation square,

there are other process calculi whose relation to CPC is of particular in-

terest. By exploiting valid encodings suitable translations and separation

results are easy to formalise.

The encoding of Linda into CPC is straightforward once a suitable trans-

lation of Linda templates and data has been found. That this encoding is

valid, and indeed a homomorphism, is simple to prove and, like for π-calculus,

does not rely upon behavioural equivalence for CPC. Following this result,

all of the process calculi captured by Gorla’s work on valid encodings should

have homomorphisms into CPC. The lack of a valid encoding into CPC by

exploiting symmetry is a trivial reuse of the separation result for π-calculus.
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The lack of a valid encoding by intensionality indicates that even a CPC style

pattern-matching (not unification) process calculus would be more expressive

than Linda.

Although developed to consider security, the Spi calculus terms support

intensionality much in the way that SF -calculus does. That is, Spi calculus

supports arbitrary structures within terms and intensional reductions upon

them. Indeed, the combination of arbitrary structure, (Spi) match, and

pair splitting appears to be sufficient to encode intensionality. However, to

support a parallel encoding either additional tagging or a reduction strategy

(similar to the parallel encodings from λ-calculus to π-calculus) would be

required.

Conjecture 3. There is a parallel encoding of SF -calculus into Spi calculus.

This support for intensionality, and likely support for SF -calculus, make

the relation to CPC of particular interest. The valid encoding of Spi calculus

into CPC is routine, if long, due to the rich syntax of Spi calculus. Inter-

estingly, the behavioural theory for CPC is required to dispose of processes

that cannot interact or reduce that may be a side effect of reducing a trans-

lated Spi calculus process. The lack of a valid encoding of CPC into Spi is

ensured by CPC’s symmetry. Interestingly, there is likely an adaptation of

the proof by intensionality (for separating CPC from Linda) that would work

for Spi calculus as well. The crucial point is that any (attempt to produce a

valid) encoding into Spi calculus would yield reductions when there is none

in CPC, and thus lead to violating either divergence reflection or success

sensitiveness. Thus, even without symmetry, CPC’s linking of intensionality

with communication has expressive power than cannot be captured by Spi
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calculus.

Since the separation results for CPC and the other process calculi so far

can all be proved by exploiting CPC’s symmetry, the relation to fusion cal-

culus is of particular interest. This interest is piqued further by observation

that fusion calculus was partially motivated by a desire to model sequential

computation and in particular strong lazy λ-calculus. The lack of a valid

encoding of fusion calculus into CPC is due to the peculiarities of name

fusion, as there are fusion calculus processes that would require a ternary

interaction in CPC. However, that there is also no valid encoding of CPC

into fusion calculus is ensured by both the ability of CPC to test any number

of names for equality in a single interaction, and by CPC’s symmetry. Thus,

fusion calculus and CPC are unrelated and appear to be focused in different

directions.

11.6 Applications

Programming with Concurrent bondi is able to exploit the expressiveness

of CPC to generalise computation into a concurrent setting. In particular,

pattern-unification supports discovery of compatible processes and informa-

tion exchange while also allowing private channels of communication. This

combination of behaviours provides the essence of trading in the information

age.

Exploiting CPC alone, traders can create patterns for desired deals and

advertise this to discover partners. Credentials can be exchanged and then

used to verify each other before closing the deal, via another exchange of
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information, in private. Since interactions in CPC are atomic, discovery and

trade are immediate without any possibility of partial transactions failing

mid-way through, and with each trader on equal standing.

Combining CPC’s expressive power with Concurrent bondi’s dynamic

patterns and support for heterogeneous programming styles allows for solu-

tions to distributed programming in open collaborative environments. Here

agents can discover collaborators and communicate programs that work across

agents and structures to find information. These can be exploited further to

then use that information to trade using Concurrent bondi as a common

environment.

To conclude, intensionality yields greater expressive power in both sequen-

tial and concurrent computation. Even greater expressive power is achieved

by generalising from pattern-matching to pattern-unification and exploiting

the inherent symmetry of process calculi. In addition to supporting these

concepts, CPC provides a natural language to express trade where pattern-

unification can be exploited to discover trade partners and exchange informa-

tion. Capturing all of these in a programming language, Concurrent bondi is

able to support open, collaborative, distributed and heterogeneous programs.
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Implementation

This appendix discusses an alternative development for a process calculus;

implementation in a programming language [PT97, NFP98, PMR99, cpp10,

JoC11]. The focus here is upon design decisions, algorithms and machinery

required to augment an existing programming language to support CPC.

The augmentations to support CPC have been made to the bondi pro-

gramming language and interpreter [bon11]. This decision is due to bondi

being built upon a foundation of pattern-matching as an implementation of

the concepts captured by pure pattern calculus [JK09, Jay09, bon11]. This

allows bondi to support many programming styles, including: functional,

imperative, relation, and object-orient, with a small pattern-matching core

[GWHJ07, Jay09, bon11, GWJ11]. As bondi is already built upon pattern-

matching and pure pattern calculus, it is natural to augment bondi to sup-

port the pattern-unification of CPC to yield Concurrent bondi [Con11].

Although bondi is a good starting point, there are several design deci-

sions to consider when supporting both existing bondi and CPC. Pure pat-

275
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tern calculus style data structures are built with application and constructors,

ideally CPC compound patterns should unify with applicative data structures

and support constructors. As free names (variables) in bondi could appear

in CPC patterns there needs to be some reasonable way to support reduction

and imperative features in CPC patterns. The bondi language is strongly

typed and so CPC in Concurrent bondi will require types.

Once the design decisions have been made, the augmented Concurrent

bondi requires algorithms to support CPC rules that account for both the

CPC specification and the design decisions. Of particular interest are: the

two algorithms to do pattern-unification and process interaction; and the

implementation of the process space to support both concurrency and non-

determinism.

The rest of the appendix is structured as follows. Section A.1 discusses

language design decisions to support CPC in Concurrent bondi. Section A.2

develops types for CPC that are compatible with the bondi type system and

type inference. Section A.3 presents the algorithms for pattern-unification

and process interaction. Section A.4 considers implementing the process

space to support concurrency.

A.1 Syntax

The bondi programming language syntax is styled after Objective Caml

(OCaml) [Cam11] for functional and imperative programming, with Java

[GJS05] style syntax for object-orientated programming. As the majority of

bondi and Concurrent bondi syntax is very similar to OCaml detail shall
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be elided here except to highlight differences and design decisions. Examples

of Concurrent bondi programs exploiting functional, imperative and object-

oriented programming are presented in Chapter 10 as well as in the literature

[GWHJ07, GW07, Jay09, GW10, GWJ11].

Patterns

One particular feature of bondi is the implementation of data structures

in the style of pure pattern calculus. That is; compound data structures

are terms headed by a constructor and built by application. Thus, the list

containing the numbers 1 to 3 is represented by

[1,2,3] = Cons 1 (Cons 2 (Cons 3 Nil))

using the typical list constructors Cons and Nil. As pure pattern calculus,

and bondi, allow patterns that match any compound, the same is preferred

in implementing compound patterns for CPC in Concurrent bondi.

Thus the first step in developing the Concurrent bondi language is to de-

fine the syntax for CPC patterns. The translations from CPC to Concurrent

bondi are given by

Variable name [[x]] = x

Protected name [[pxq]] = ~x

Binding name [[λx]] = \x

Compound [[p • q]] = [[p]] [[q]] .

The variable names are translated directly to variables in Concurrent bondi.

The protected names are prefixed with a tilde ~ to denote their protected

status. The binding names are prefixed by a backslash, chosen for similarity
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to the λ.Compounds are translated component wise with the bullet replaced

by application to align with other Concurrent bondi (and pure pattern cal-

culus) compounds.

The choice to indicate binding names with backslashes is to keep the syn-

tax as close to CPC as possible. This is distinct from the dynamic patterns of

pure pattern calculus that have a sequence of binding names at the beginning

of the pattern to denote the status of symbols (names). As CPC patterns

cannot lose their binding symbols through reductions there is no need to track

this information separately and so a separate sequence for binding symbols

is not required.

Although this translation of patterns is adequate to support CPC theory,

the interplay with the other aspects of Concurrent bondi is much more

elegant if constructors and primitive datum (integers, booleans, strings, etc.)

are supported in CPC patterns. So in addition to the translation above, the

Concurrent bondi class of patterns also supports data structures and datum,

with either variable or protected status. Thus, the pattern to bind the tail

of a list headed by 1 to t can be written

~Cons ~1 \t

using a protected constructor ~Cons and a protected datum ~1.

Combining all these, with brackets as required, allows CPC patterns to

support arbitrarily complex structures while seamlessly supporting Concur-

rent bondi datum in patterns.
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Processes

The Concurrent bondi language extensions for processes are given by

Parallel composition [[P | Q]] = [[P ]] | [[Q]]

Replication [[!P ]] = ![[P ]]

Restriction [[(νx)P ]] = rest x in [[P ]]

Case [[p→ P ]] = cpc [[p]] -> [[P ]] .

The parallel composition is translated directly to the translation of processes

separated by the bar |. The replication is also straightforward with the bang

symbol ! in front of the translated process. Restrictions use the keyword

rest and are similar to let declarations on the understanding that values

for the names are not required. Cases are declared similar to anonymous

functions with the keyword cpc beginning the declaration, followed by the

translation of the pattern, the arrow symbol ->, and then the (translation of

the) body.

Like let declarations, the restriction can be used to declare any number

of names with a single use of the rest keyword. For example the process

(νx)(νy)(νz)P

can be represented by

rest x y z in [[P ]]

rather than rest x in rest y in rest z in [[P ]].

As the null process can be represented by any Concurrent bondi program
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type p_term =

| Papply of p_term * p_term

...

(*> CPC *)

| Pname of name_form * identifier

| Pcname of name_form * identifier

| Pdname of name_form * p_term

| Pparr of p_term * p_term

| Prest of identifier * p_term

| Prepl of p_term

| Ppcase of p_term * p_term

and name_form = Variable | Protected | Binding

(*< CPC *)

Figure A.1: CPC parsed term constructors

that contains no CPC cases. For simplicity the unit program () shall be used

to denote the null process when required.

Parsing

This section discusses the parsing of Concurrent bondi syntax, using Lex and

Yacc [LMB92], into algebraic data types (ADTs). Some detail is presented

where useful to understanding the Concurrent bondi interpreter and as these

ADTs appear later in the code for typing in Section A.2.

To support CPC several new constructors were added for the parsed data

types p_term shown in Figure A.1. Note that (*> CPC *) denotes the begin-

ning of code blocks modified for Concurrent bondi and (*< CPC *) denotes

the end. The Pname directly corresponds to the names of CPC with a name

form (Variable, Protected or Binding) and an identifier (a string). The

Pcname supports constructors being used in patterns, e.g. Cons or Nil for
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"cpc" CPC

"in" IN

"rest" REST

"status" DIRECTIVE_status

"Un" UN

"\\" CPCBIND

"~" CPCPRO

"(" LPAREN

")" RPAREN

"|" BAR

"!" BANG

"->" RARROW

"," COMMA

Figure A.2: Glossary of lexer tokens

lists, and can be denoted as variable or protected. Datum are supported

by Pdname which can be denoted as variable or protected. Compounds are

represented using the application Papply of the components of the pattern.

Note that this is the same application as use for pure pattern calculus terms

to apply functions and build data structures. Parallel composition is rep-

resented by Pparr of the two parsed terms (processes). Restriction Prest

has the name (identifier) being restricted and the process as a parsed term.

The replication Prepl is simply the process being replicated. The CPC case

Ppcase consists of the pattern and the body, both as parsed terms.

The code to parse CPC syntax is divided into five declarations; datum

patterns, name patterns, compound patterns, name lists, and processes. The

declarations make use of a number of tokens, rather than explain each in

detail a glossary is provided in Figure A.2.

The support for datum in patterns is managed by a separate collection

of parsing rules. These construct appropriate parsed term forms and are
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defined as follows.

/* Datum as they can appear in CPC patterns, a subset of all

* datum forms and not treated as general terms. */

datumPattern:

| LPAREN RPAREN { Pconstructor "Un" }

| INTEGER { p_datum (Int $1) }

| FLOAT { p_datum (Float $1) }

| CHARACTER { p_datum (Char $1) }

| STRING { p_datum (String $1) }

| TRUE { p_datum (Bool true) }

| FALSE { p_datum (Bool false)}

| UN { Pconstructor "Un" }

Here p_datum is a helper function to convert datum into parsed terms.

Patterns that are atoms are parsed by the namePattern code that also

identifies the form of the atom; variable, protected or binding. The di-

rect translation of names (and variables from bondi) are lower case iden-

tifiers L_IDENT and can be of any form. Constructors (U_IDENT) and datum

(datumPattern) can be either variable or protected.

/* Name patterns are CPC patterns that are atomic, i.e. not

* build from compounds. This includes names (variable,

* protected and binding), and also constructors (variable

* or protected) and datum (variable or protected). */

namePattern:

| LPAREN namePattern RPAREN { $2 }

| L_IDENT { Pname (Variable, $1) }

| CPCPRO L_IDENT { Pname (Protected,$2) }

| CPCBIND L_IDENT { Pname (Binding, $2) }

| U_IDENT { Pcname (Variable,$1)}

| CPCPRO U_IDENT { Pcname (Protected,$2) }

| datumPattern { Pdname (Variable,$1) }

| CPCPRO datumPattern { Pdname (Protected,$2) }

Compound patterns are parsed by the code declared by compoundPattern.

For elegance, tuples can be declared directly in patterns and are denoted with
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a comma. This is syntactic sugar for declaring nested instances of the Pair

constructor as used throughout Concurrent bondi programs.

/* Compound CPC patterns are built with applications, this

* approach ensures they are left associative for consistent

* interplay with pattern calculus. */

compoundPattern:

| namePattern

{ $1 }

| LPAREN compoundPattern RPAREN

{ $2 }

| compoundPattern LPAREN compoundPattern RPAREN

{ Papply ($1,$3) }

| compoundPattern namePattern

{ Papply ($1,$2) }

| compoundPattern COMMA LPAREN compoundPattern RPAREN

{ Papply (Papply (Pcname(Variable,"Pair"),$1),$4) }

| compoundPattern COMMA namePattern

{ Papply (Papply (Pcname(Variable,"Pair"),$1),$3) }

Processes are parsed directly, with the only non-trivial example being the

restriction where nameList parses a list of names and multirest folds over

this list to produce the parsed term.

/* Process forms: bracketed processes, parallel composition,

* replication, restriction and CPC case. */

process:

| LPAREN process RPAREN { $2 }

| process BAR process { Pparr($1,$3) }

| BANG process { Prepl $2 }

| REST nameList IN process { multirest $2 $4 }

| CPC compoundPattern RARROW pTerm { Ppcase ($2,$4) }

A.2 Typing

Once syntax has been parsed in the Concurrent bondi interpreter, the parsed

data syntax tree is transformed to inferred data. This transformation per-
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forms type inference and type checking for Concurrent bondi programs. As

bondi is strongly typed, it follows that Concurrent bondi must also be

strongly typed. The rest of this section discusses types and type rules for

CPC as implemented in Concurrent bondi, including some detail of the type

inference implementation. As the type inference requires some delicacy and

the bondi type system is not formalised anywhere, the approach here is to

provide type derivation rules for CPC syntax and then highlight the type

inference code in the Concurrent bondi interpreter. The implementation is

consistent with the existing bondi type system and exploits existing type

inference algorithms. Thus the typing for Concurrent bondi is consistent

with bondi, however as there is no formalised type system no claims can be

proved about the implementation.

Type Derivation

The type derivation rules utilise a type context Γ that is a mapping from

variables (names) to types (meta-variables U, V,W,X, Y, Z). The domain

and range of type contexts are as expected, with the free type variables,

denoted FTV(Γ), being the union of the free type variables of all the types

in the range of Γ.

The type derivation rules for patterns are given in Figure A.3. Vari-

able names and protected names have their types given by the type context.

Binding names must be a fresh type variable that does not appear in the

context otherwise. The two rules for typing patterns relate to the interplay

with sequential Concurrent bondi programs. The first, ensures that any

communicable pattern must have a type consistent with application; that is
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the left hand side must be a function type, and the right hand side must

be an appropriate argument type. The second, is for when a pattern is not

communicable, in which case the types of the components can be unrelated.

(Here a fresh type is used for the pattern as a whole, although it is of no

relevance to the rest of the type derivation.)

The rule that requires communicable compound patterns to have types

that support application is due to the following Concurrent bondi program.

cpc x y -> () | cpc \z -> z

Observe that as the pattern x y could be bound to a single name z and

then evaluated, the application of x to y must be type safe (and in this case

yield Unit). This is only required for communicable patterns as compounds

of protected or binding names cannot be bound to a single name. (Of course if

they are applied elsewhere in the program then the typing infers appropriate

types.)

Observe that due to Concurrent bondi’s support for tuples in patterns,

an alternative translation of compound patterns that keeps the typing simple

is

[[p]] • q = [[p]],[[q]]

where the bullet is replaced by a comma. Although this prevents some inter-

play with other Concurrent bondi programs, this approach simplifies pure

CPC programs.

The type derivation rules for processes are straightforward on the under-

standing that all processes have unit type, as detailed in Figure A.4. The

parallel composition of processes has the unit type if both processes are of
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Γ;x : X ` x : X Γ;x : X ` pxq : X

Γ;x : X ` λx : X
X /∈ FTV(Γ)

Γ ` p : U → V Γ ` q : U

Γ ` p • q : V
(p • q) is communicable

Γ ` p : U Γ ` q : V

Γ ` p • q : X

(p • q) is not communicable
X /∈ FTV(Γ)

Figure A.3: Type derivation rules for patterns

unit type. Replication of a process is the unit type when the process is the

unit type. Restriction of a name in a process is of unit type if the process

has unit type after the type context is extended to map the restricted name

to a fresh type variable. The only complex rule is for cases. Here the type

context Γ is extended by ∆ that maps all the binding names of the pattern

to fresh type variables. If the extended context Γ; ∆ shows that the pattern

p has a type, and the body t (a possibly any Concurrent bondi program)

has type unit, then the case p→ t has unit type.

Type Inference

The Concurrent bondi interpreter has a type inference algorithm that at-

tempts to find a type while transforming a parsed term to an inferred term.

This is initiated by the infer function that accepts the parsed term and an

expected type. When successful the result is a tuple of: the inferred term,
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Γ ` P : Unit Γ ` Q : Unit

Γ ` (P | Q) : Unit

Γ ` P : Unit

Γ ` (!P ) : Unit

Γ;x : X ` P : Unit

Γ ` ((νx)P ) : Unit
X ∩ FTV(Γ) = {}

Γ; ∆ ` p : P Γ; ∆ ` t : Unit

Γ ` (p→ t) : Unit

∆ = {x : X} where x ∈ bn(p)
range(∆) ∩ FTV(Γ) = {}

Figure A.4: Type derivation rules for processes

the final type, and the type substitution required to map the expected type

to the final type. Failure to infer a type is handled by exceptions. The infer

function in turn calls the inf function that takes the parsed term, a type

scheme environment (a mapping from variables to types), a type substitution

(initially the identity substitution), and the expected type. When successful

the result is a pair of: the type substitution for unification, and the inferred

term. Additional inferred term constructors to support CPC are shown in

Figure A.5 and closely align with their parsed term counterparts with the

addition of type information (i_type) for patterns. The main body of the

inf function switches on the parsed term’s constructor as show below.

and inf = function

(* inf term (sEnv,fixed,constraints,sub,expectedTy) = (sub’,term’)

* term

* sEnv = type scheme environment for free variables in the term

* fixed = type variables to be fixed in substitution

* sub = the initial type substitution

* expectedTy = the expected type

* The arguments need not be normal w.r.t. the substitution *)

...
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type i_term =

...

(*> CPC *)

| Tdname of P_data.name_form * i_term * i_type

| Tcname of P_data.name_form * term_variable * int * i_type

| Tname of P_data.name_form * term_variable * int * i_type

| Tpapp of i_term * i_term * i_type

| Prll of i_term * i_term

| Rest of term_variable * i_term

| Repl of i_term

| Pcase of i_term * i_term

(*< CPC *)

Figure A.5: CPC inferred term constructors

(*> CPC *)

| Pparr (p1,p2) -> infer_parallel_composition p1 p2

| Prepl (p) -> infer_replication p

| Prest (n,p) -> infer_restriction n p

| Ppcase (p,s) -> infer_cpc_case p s

| Pname _

| Pdname _

| Pcname _ -> (fun _ _ _ _ -> typeError []

"Unexpected CPC name/constructor, aborting.")

(*< CPC *)

The inferences for processes are all handled by appropriate helper functions

As the helper function for cases manages the patterns separately, instances of

atoms (Pname, Pdname and Pcname) in inf are errors and raise an appropriate

exception.

The functions for parallel composition and replication are straight for-

ward; infer a type for the process and unify with the unit type before return-

ing the appropriate inferred term and type substitution. The more interesting

functions are for the restriction and cases.
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The restriction creates an instance of the unit type uty and a fresh type

variable newty. The type scheme is augmented to sEnv1 with the fresh

variable for the restricted name. This is used to infer the type for the process

with the expected type being Unit. If this succeeds then continue building

the type substitution by unifying the expected type for the process with the

unit type. Return the resulting type substitution and the process converted

to a inferred term.

(* Bind the restricted name to a new variable and infer the

* process under the restriction. *)

and infer_restriction name proc sEnv fixed sub0 expectedTy =

let uty = cvar "Unit" in

let newty = (TyV(nextTypeVar(),0),Simple) in

let sEnv1 = TMap.add (Var name) newty sEnv in

let (sub2,proc2) = inf proc sEnv1 fixed sub0 uty in

let sub3 = unify fixed sub2 uty expectedTy in

(sub3,Rest(Var name,proc2))

The type inference for cases is more complex as patterns require signifi-

cant type inference and checking, as well as requiring unification with type

information from the body. Further, the scope of variables and constructors

must be managed for both free and binding names. Lastly, the type informa-

tion for patterns needs to be preserved in the inferred term for use in pattern

unification.

To assist in the inference for cases there are three straightforward helper

functions. The communicable function determines if a pattern is communi-

cable or not, returning a boolean. The getVarInfo functions returns a pair

of the index and type of a variable, and raises an exception if the variable is

not in the local or global environment, i.e. is not declared anywhere. The

pushSub function that takes a type substitution and applies it to the type
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information carried in inferred patterns.

Most of the complexity in the inference for cases is in inferring the pattern.

The infer_cpc_pattern function takes a type environment (mapping from

variables to types), a type substitution, an expected type, and a pattern as

input. The result is a tuple of; a type environment (a mapping from binding

names to fresh type variables), a type substitution (unifying the types of the

pattern where required), and the pattern as an inferred term.

The transformation for binding names, variables, constructors and datum

is straightforward with detail given below. Observe that the inferred patterns

contain type information to ensure type safety in evaluation (discussed in

Section A.3). The binding name is mapped to the expected type (a fresh

type variable) in the environment, and the expected type is added to the

inferred binding name. Note that duplicate binding names are detected from

the environment and raise exceptions during type inference. A variable or

protected name has its index and type determined by the environment. The

type is unified with the expected type, and the index and expected type

used to create the inferred term for the name. Constructors in patterns

have the substitution and inferred constructor generated by the inference for

constructors. This information is used to create the inferred term of the

constructor in the pattern. Datum are similarly handled by obtaining the

substitution and inferred term by using the existing inference for datum. The

results are used to create the inferred pattern for a datum.

(* Helper function to infer a CPC pattern, returns:

* - environment of binding names and their types

* - updated type substitution

* - inferred pattern *)

let rec infer_cpc_pattern env sub pTy = function

| Pname(Binding,x) ->
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if TMap.mem (Var x) env

then termError [Tvar(Var x,0)] "is a duplicate binding symbol"

else (TMap.add (Var x) (pTy,Simple) env,

sub,Tname(Binding,Var x,0,pTy))

| Pname(form,x) ->

let (n,ty) = getVarInfo (Var x) in

let sub1 = unify fixed sub pTy ty in

(env,sub1,Tname(form,Var x,n,pTy))

| Pcname(form,c) ->

let (sub1,c1) = infer_constructor c env fixed sub pTy in

begin

match c1 with

| Tconstructor(Var c2,n) ->

(env,sub1,Tcname(form,Var c2,n,pTy))

| _ -> termError [c1] "when expecting constructor"

end

| Pdname(form,Pdatum(d)) ->

let (sub1,d1) = infer_datum d env fixed sub pTy in

(env,sub1,Tdname(form,d1,pTy))

The inference for compound patterns depends on whether the pattern

(as a whole) is communicable or not. When the pattern is communicable

then the left hand component should be a function type U → T and the

right hand component should be of type U . The type inference for this

infers types for the components separately, augmenting the environment and

substitution, and transforming the pattern. The substitution is then applied

to the inferred function type by applySub sub2 funTy, and quantifications

removed with inst_tyscheme, and the resulting type examined. If the result

is a function type from aTy to rTy, then unify the argument type argTy with

aTy, and the expected result type pTy with rTy. Return the appropriate

environment, substitution and pattern. If the inferred type for the left hand

component is not a function type, then unify it with a function type from

the right hand component to the expected type funty argTy pTy. Again

return the appropriate environment, substitution and pattern.
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(* Communicable compound patterns must have types that support

* evaluation. *)

| Papply(p,q) as patt when communicable patt ->

let funTy = TyV(nextTypeVar(),0) in

let argTy = TyV(nextTypeVar(),0) in

let (env1,sub1,p1) = infer_cpc_pattern env sub funTy p in

let (env2,sub2,q2) = infer_cpc_pattern env1 sub1 argTy q in

begin

match inst_tyscheme (applySub sub2 funTy) with

| Funty(aTy,rTy) ->

let sub3 = subunify fixed sub2 aTy argTy in

let sub4 = subunify fixed sub3 rTy pTy in

(env2,sub4,Tpapp(p1,q2,pTy))

| fTy ->

let sub3 = subunify fixed sub2 fTy (funty argTy pTy) in

(env2,sub3,Tpapp(p1,q2,pTy))

end

Otherwise when the pattern is not communicable then it does not need to

support evaluation of the left hand component applied to the right. Here is it

sufficient to generate the environment, substitution and pattern components

without any relation between the types. Indeed, fresh types are used for

the components and the expected type used for the compound pattern as a

whole. (Note that the expected type is not checked for any type unification,

its value does not matter as will be discussed in Section A.3.)

(* Pattern is not communicable, the type of the "function" and

* "argument" components do not relate to each other. *)

| Papply(p,q) ->

let pTy0 = TyV(nextTypeVar(),0) in

let (env1,sub1,p1) = infer_cpc_pattern env sub pTy0 p in

let qTy1 = TyV(nextTypeVar(),0) in

let (env2,sub2,q2) = infer_cpc_pattern env1 sub1 qTy1 q in

(env2,sub2,Tpapp(p1,q2,pTy))

Once the type inference for patterns is defined, the type inference for

cases is straightforward. Generate a type environment, type substitution and
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inferred pattern by starting with an empty type environment, the existing

type substitution, and a fresh type variable for the pattern. The resulting

type environment sEnv1 is then folded into the original type environment

sEnv0 to allow the binding names to overshadow earlier declarations. The

body is then inferred with the expected type of Unit. The resulting type

substitution is used to (sub)unify the expected type for the case with the

unit type. The resulting type substitution is then applied to the types in

the inferred pattern. Lastly the type substitution and transformed case are

returned.

(* The inference goes as follows

* - create a fresh type for the pattern

* - infer the pattern with the fresh type and empty binding

* environment

* - use binding environment to update substitution environment

* - infer the body with updated environment and sub

* - subunify to final sub

* - use sub to update type annotations in the pattern

* (removing dependence on sub)

* - return sub and inferred CPC case *)

let pTy = TyV(nextTypeVar(),0) in

let (sEnv1,sub1,patt1) =

infer_cpc_pattern TMap.empty sub0 pTy patt in

let sEnv2 = TMap.fold TMap.add sEnv1 sEnv0 in

let (sub2,body2) = inf body sEnv2 fixed sub1 (cvar "Unit") in

let sub3 = subunify fixed sub2 (cvar "Unit") expectedTy in

let patt2 = pushSub sub3 patt1 in

(sub3,Pcase(patt2,body2))

Although the detail of the bondi type system has not been formalised

anywhere, by exploiting the existing functions and algorithms the type in-

ference for CPC constructs is consistent with Concurrent bondi type. This

includes exploiting sub-unification algorithms to handle object-orientation,

and instantiating type schemes to support quantified types.
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A.3 Interacting

Once Concurrent bondi programs have been transformed by parsing and

type inference, the inferred terms are passed to an evaluator that performs

reductions to yield values. This section highlights the additions to the evalu-

ator to support evaluation of processes, in particular pattern unification and

process interaction.

Evaluation

Evaluation in the Concurrent bondi interpreter is handled by an eval func-

tion that accepts a value environment and an inferred term and reduces this

to a value. The value environment is a mapping from variables to values and

accumulates all bindings that occur within an evaluation of a term. Similar

to the inference function inf, eval switches on the inferred term and calls

helper functions to handle different term forms. The additions to the eval

function for CPC are shown below.

let rec (eval : value_env * i_term -> value) = fun (vEnv,term) ->

match term with

...

(*> CPC *)

| Prll(p1,p2) -> eval_parallel_composition vEnv p1 p2

| Rest(x,p) -> eval_restriction vEnv x p

| Repl(p) -> eval_replication vEnv p

| Pcase(_,_) -> eval_process_case vEnv term

(*< CPC *)

As interactions for processes are handled separately to support concurrency,

the helper functions for processes perform optimisations and then queue the

resulting processes for adding to the data-space (details on the data-space
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are in Section A.4). The optimisations always yield either a replication or a

case for adding to the data-space.

For parallel composition the optimisation is straightforward: each pro-

cesses is evaluated separately ultimately ending up in the queue. The parallel

processes are evaluated in random order to prevent potential determinism.

A restriction that appears in the eval function is top level, that is not

under any replication or case. Thus it is is safe to instantiate the restricted

name to a unique (internal only) value and evaluate the process under re-

striction.

A replication can be handled in three separate ways depending on what

process form is immediately under the replication. If the replication is a

parallel composition then each of the processes is treated as a separate repli-

cation

!(P | Q) ∼ !P | !Q

as by Theorem 8.7.3. If the replication is of another replication then one is

dropped

!!P ' !P

as by Theorem 8.7.4. Otherwise the process under the replication is a restric-

tion or a case. In both of these scenarios the process is queued for adding

to the data-space. The queue accepts a tuple consisting of: a locking func-

tion for the process; an unlocking function for the process; the local value

environment; and the process as an inferred term. The locking and unlock-

ing is required for safe concurrency, details in Section A.4, while the value

environment and process are required for interaction and reduction.

(* Remove excess replications, continue until the process
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* under the replication is either a restriction or a case. *)

and eval_replication pEnv = function

(* !(P|Q) is close enough to !P|!Q that we shall use the

* second form to simplify the matching algorithm. *)

| Prll(p1,p2) -> let _ = (eval_replication pEnv p1,

eval_replication pEnv p2) in

Vdatum Datum.Un

(* !(!P) is close enough to !P that we use the latter. *)

| Repl(p) -> eval_replication pEnv p

(* Replications can always be locked and require no effect

* to unlock. *)

| p -> let l,ul = (fun () -> true),(fun () -> ()) in

add_to_proc_queue (l,ul,pEnv,Repl(p))

Note that as processes have the unit value when evaluated, the result of

eval_replication (and add_to_proc_queue) is the unit value (given by

Vdatum Datum.Un).

Cases cannot be optimised and are simply queued for adding to the data-

space with appropriate locks.

Pattern unification

The first major algorithm to be implemented from CPC is the unification of

patterns. This can be implemented as an algorithm that accepts two patterns

and determines if they can be unified. When successful, the result should

include the substitutions generated by unification. If they cannot be unified

then failure is reported.

Implementing such an algorithm is more complex than simply imple-

menting the pattern-unification rules, the algorithm must also account for:

constructors, datum, reducible variables, imperative constructs, and type

unification.
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Consider a few illustrative examples of pattern-unification to be sup-

ported by the algorithm. Consider the unification of the two names (or

variables) x and x. Although they may have the same identifier, i.e. "x",

they may have different scope. For example:

let x = 3 in (cpc x -> () | rest x in cpc x -> ())

where one x is bound to 3 and the other is a restricted name. As these two

patterns should not unify, the algorithm must evaluate names in patterns

and compare their values. Note that this is not necessarily trivial as each

pattern has its own value environment and so both will appear to be x until

the appropriate environment is checked.

Another example is when one pattern has structure and the other does

not. For example, consider the following program:

let ls = [1] in cpc ls -> () | cpc Cons 1 Nil -> println "[1]" .

A naive unification algorithm would note that the first pattern ls is a name

and the second a compound and fail to unify. Of course the patterns can

be unified if ls is instantiated to Cons 1 Nil. However, immediately in-

stantiating ls to its binding (in this case Cons 1 Nil) in the pattern is not

suitable either, consider the sequence of declarations below (each declaration

is terminated by ;;).

let x = Ref 3;;

let y = Ref 5;;

cpc x -> () | cpc y -> println "Found 5";;

x = 5;;

If x was immediately instantiated to a copy of the reference to 3 then the

patterns would never unify, however when x is assigned the value 5 then

unification should succeed. Therefore, to account for these examples the
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unification algorithm evaluates free names in patterns only when required

for unification.

Yet another complexity for the unification algorithm is to ensure type

safety. The process

cpc \f -> f 1 2

should only unify when the binding name f is bound to a function of type

Int -> Int -> Unit. The pattern-unification must also support appropri-

ate type unification, including handling sub-typing, instantiation of type vari-

ables, and type quantification.

All of these complexities are handled in the pattern-unification algorithm,

as well as implementing the basic specification of CPC’s pattern-unification.

The rest of this section discusses how these are handled by the pattern-

unification algorithm.

The main function to perform pattern-unification is unify1 that accepts:

a pair of value environments; a pair of substitutions; and a pair of patterns.

The value environments are the respective local mappings (from variables to

values) for each of the patterns. The substitutions are those generated by

unification so far.

When both patterns are variable or protected names then their values are

computed (with eval) and compared. If the values are equal then the result

is Some of the substitutions so far (no additional bindings). If the values are

not equal then they cannot be unified as indicated by None.

(* When simple names/variables are involved, compare their

* evaluated values. *)

| (Tname(P_data.Variable,pv,pn,_),Tname(P_data.Variable,qv,qn,_))

| (Tname(P_data.Variable,pv,pn,_),Tname(P_data.Protected,qv,qn,_))

| (Tname(P_data.Protected,pv,pn,_),Tname(P_data.Variable,qv,qn,_))
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| (Tname(P_data.Protected,pv,pn,_),Tname(P_data.Protected,qv,qn,_))

-> if evalVar pEnv pv pn = evalVar qEnv qv qn

then Some (subp,subq)

else None

If one pattern p is a binding name then several checks need to be made

to see if the patterns can be unified. The other pattern q is passed to the

communicable function that here returns a pair of a boolean, if the pattern is

communicable or not, and the type of the pattern qTy. When q is communi-

cable then attempt to unify the types of p and q (pTy and qTy respectively).

Successful type unification finds a type substitution that makes pTy and qTy

equal, which is then added to the environment along with the binding of p

to q. This substitution is then passed back to indicate success. Failure to

unify types results in failure to unify the patterns. Here and for the rest of

the section when there are two symmetric pieces of code only one shall be

shown. In this scenario the following code is for when p is a binding name.

(* If one pattern is a binding name then ensure the other is

* communicable and determine it’s type. Check that

* the binding is type safe, if so bind, otherwise fail. *)

| (Tname(P_data.Binding,bp,_,pTy),qv) ->

begin

match communicable qv with

| (false,_) -> None

| (true,qTy) ->

try

begin

let sub = unify_for_cpc (getTySub pEnv)

(getTySub qEnv) pTy qTy in

Some(TMap.add bp (eval (qEnv,(unCPCPattern qv)))

(TMap.add (Mvar(-1)) (VtySub(sub)) subp),

subq)

end

with _ -> None

end
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When both patterns are compounds, represented by applications, then at-

tempt to unify their respective left hand components. If this succeeds then

pass the augmented substitutions into recursively unifying the right hand

components, otherwise return failure to unify.

(* Do application component wise. *)

| (Tpapp(p1,p2,_),Tpapp(q1,q2,_)) ->

begin

match unify1 (pEnv,qEnv) (subp,subq) (p1,q1) with

| Some (subp1,subq1) ->

unify1 (pEnv,qEnv) (subp1,subq1) (p2,q2)

| None -> None

end

It is possible that a variable or protected name is bound to an application

and the other pattern is a compound. To catch this possibility, find the value

bound to the name and determine if it is an application. When the value

is a compound, create a new pattern, maintaining the variable or protected

status, that is a compound with fresh names and mappings in the value

environment. The unification can then proceed as before. Note that the

components of values found during evaluation cannot be accurately typed,

so do not attempt to unify with binding names as this would break type

safety. Here the freePattern function ensures a pattern has no binding

names1.

(* One is an application and the other is a non-binding name,

* should evaluate the name to see if it is also an application

* (bondi data structure).

* ... *)

| (Tpapp(_,_,_) as p,Tname(qf,qv,qn,qTy))

when qf != P_data.Binding && freePattern p ->

begin

1When the type system is disabled freePattern always returns true as type rules are
not enforced.
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match evalVar qEnv qv qn with

| Vapply(qVal1,qVal2) ->

let qv1 = nextvar () in

let qv2 = nextvar () in

let qEnv1 = TMap.add qv1 qVal1

(TMap.add qv2 qVal2 qEnv) in

let q1 = Tname(qf,qv1,0,qTy) in

let q2 = Tname(qf,qv2,0,qTy) in

unify1 (pEnv,qEnv1) (subp,subq) (p,Tpapp(q1,q2,qTy))

| _ -> None

end

Constructors and datum in patterns are handled in a somewhat similar man-

ner; create a fresh term variable and add a mapping from that variable to the

value in the local environment. Unification then continues with the variable

in the pattern and the modified environment.

(* Constructors in patterns can add complexities, easiest to

* augment local environment. *)

| (Tcname(pt,pv,pn,pTy),q) ->

let pv1 = nextvar () in

let pEnv1 = TMap.add pv1 (Vconstructor (pv,pn)) pEnv in

unify1 (pEnv1,qEnv) (subp,subq) (Tname(pt,pv1,0,pTy),q)

...

(* Datum in patterns, simply treat like a constructor. *)

| (Tdname(pt,Datum(pd),pTy),q) ->

let pv1 = nextvar () in

let pEnv1 = TMap.add pv1 (Vdatum pd) pEnv in

unify1 (pEnv1,qEnv) (subp,subq) (Tname(pt,pv1,0,pTy),q)

If all these fail then there is no unification of the patterns so return failure.

(* Unable to unify, fail. *)

| _ -> None

Unification of patterns is started by the unify function that accepts the value

environments and associated patterns, this in turn calls unify1 beginning

with empty substitutions.
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Interaction

Now that unification can be computed, the next step is to determine if two

arbitrary processes can interact. This is a little more complex than simply

checking if processes are cases and then trying to unify their patterns, as cases

may be underneath some combination of parallel composition, replication and

restriction.

The algorithm to compute whether two processes can interact is some-

what similar to the pattern-unification algorithm. The algorithm takes two

value environments and two processes, and returns either Some (of an OCaml

function) when interaction occurs or None if the processes cannot interact.

The main difference is that successful interaction returns a function within

the interpreter to evaluate the processes yielded by interaction.

The rest of this section highlights the algorithm for testing interactions

between processes. Observe that some delicacy is required to ensure no

processes are lost during interaction. For example, if the processes being

considered are P and Q, and P = P1 | P2 such that P1 | Q 7−→ R then the

result must be R | P2.

The inner function that handles the majority of testing for interactions

between processes is interactable1 that switches on the processes to try

and find cases. If either of the processes is a restriction then instantiate

the restricted name to a fresh (internal only) value in the appropriate value

environment and then continue under the restriction. As before, when the

code handles two symmetric scenarios, only one shall be shown here.

let rec interactable1 pE qE p q =

match(p,q) with

(* Restrictions that must be underneath a replication, can
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* instantiate the name to try and match. *)

| (Rest(n,p1),_) -> let n1 = nextvar() in

let pE1 = TMap.add n (Vvar(n1)) pE in

interactable1 pE1 qE p1 q

When parallel composition is encountered then both processes in parallel

must be tested for interaction. To avoid deterministic behaviour this is done

in random order. If an interaction occurs with one of the processes from a

parallel composition then the other process is added to the returned function

so that it is not lost. This is handled by the following code.

(* Parallel composition underneath a replication/restriction.

* Note that this only tests against p and q matching each

* other, internal reductions are done elsewhere. *)

| (Prll(p1,p2),_) ->

begin

let pA,pB = if Random.int 2 = 1 then p1,p2 else p2,p1 in

match interactable1 pE qE pA q with

| Some cont -> Some (fun () -> cont ();

ignore (eval(pE,pB)))

| None ->

begin

match interactable1 pE qE pB q with

| Some cont -> Some (fun () -> cont ();

ignore (eval(pE,pA)))

| None -> None

end

end

Replications require that if an interaction occurs the replication is main-

tained, similar to the parallel process that did not interact. This is straight-

forward and handled as below.

(* Replication, just try to interact with a copy. If successful we

* are under a restriction already so we must have a copy of

* the replicating process with the right restriction/scoping. *)

| (Repl(p1),_) ->

begin
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match interactable1 pE qE p1 q with

| Some cont -> Some (fun () -> cont ();

ignore (eval(pE,Repl(p1))))

| None -> None

end

Otherwise when both processes are cases, if their patterns can be unified then

create a function to evaluate the resulting bodies with value environments

augmented by the substitutions.

(* Two cases, try to match their patterns. *)

| (Pcase(pp,pb),Pcase(qp,qb)) ->

begin

match unify pE qE pp qp with

| Some (ps,qs) -> Some (fun () ->

begin

(* Generate the processes to continue with. *)

let pE1 = TMap.fold TMap.add ps pE in

let qE1 = TMap.fold TMap.add qs qE in

let _,_ = (eval (pE1,pb)),(eval (qE1,qb)) in ()

end)

| None -> None

end

This finds any interactions between two processes but has two limitations;

top level replicating processes will create copies of themselves, and there is

no detection of reductions within a process.

The copying of replications is required to ensure those within a process

are not lost. However, top level replications do not need to be copied. To

manage this the interactable function is called on top level processes that

strips off the outer replications and then calls interactable1.

Interactions within a process are handled by a similar function self_interaction

that finds interactions within a process. Due to the optimisations any inter-

actions within a process must be under a top level replication. This makes
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managing self interactions easier and so the result of self_interact is al-

ways the OCaml unit value.

A.4 Concurrency

Now that the machinery for evaluation and interaction is defined it remains to

manage the processes in a concurrent setting. Management of the processes

has two main aspects; the management of the global process environment,

and testing for interactions of processes.

The process environment is represented as a hash table keyed on process

identifiers (integers) that stores a tuple consisting of; a locking function, an

unlocking function, the value environment for the process, and the process as

an inferred term. The process identifiers are generated by a concurrency safe

function that increments a counter. The locking and unlocking functions are

to prevent a process from interacting with more than one other process at a

time. For processes that are cases at the top level this is based on a mutual

exclusion lock For replicating processes, dummy functions that always allow

locking and unlocking are sufficient.

The management of the environment is done by a constant loop that goes

through three stages; adding new processes to the environment, testing for

interactions, and removing processes from the environment. Each loop also

incorporates a short (100ms) pause to improve load balancing and respon-

siveness of the interpreter. The code for this is in the procManager function

shown in Figure A.6.

Adding processes is done by locking the process queue and then adding
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(* An evaluation engine for CPC, goes through a constant

* cycle to add processes to the environment, try to match

* them all and then clean up. *)

let procManager () =

let addprocs () =

pqlock();

randomiter (fun x -> Hashtbl.add procEnv (procGen ()) x)

!proc_queue;

proc_queue := [];

pqunlock()

in

while true do

Thread.delay 0.1;

addprocs ();

Hashtbl.iter self_interaction procEnv;

let (r,ks) = Hashtbl.fold topfoldinteract procEnv (false,[]) in

if r

then List.iter (Hashtbl.remove procEnv) ks

done

Figure A.6: CPC process manager

the waiting processes in random order. Each process is given a freshly gen-

erated process identifier and added to the environment. Once all the queued

processes have been added, the queue is reset to empty and unlocked.

Testing for interactions is handled by two functions self_interaction

and topfoldinteract. The first finds interactions within a replication and

always returns unit. The second finds interactions between processes and

returns a (possibly empty) list of identifiers for processes that should be

removed from the process environment. If interactions have occurred that

may result in processes being listed for removal, then the list is used to

remove the identified processes.

The last aspect of process management is to introduce concurrency. As all
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the relevant functions have been made concurrency safe, it is possible to run

any numbers of procManager functions in parallel to support concurrency.

The Concurrent bondi interpreter creates two instances of procManager in

separate threads, as well as running the original evaluator code including

the pre-processing of CPC process in a third thread. This allows multiple

interactions to occur at once, as well as computations for other Concurrent

bondi programs.

The rest of this section overviews how processes in the process environ-

ment are tested for interaction.

Choosing processes

All of the processes in the process environment need to be tested for inter-

actions. This involves both testing for interactions within replications, and

testing if any two processes in the environment can interact with each other.

The interaction of processes with themselves is handled by the function

self_interaction that performs any interactions and returns unit. Such

interactions are trivial to handle by the process manager. As interactions

within a process will evaluate the resulting programs themselves there is

no need to manage the evaluation. Further, as these always occur within

replications there is no need to consider locking or remove the replicated

process from the process environment.

The interaction between processes is more complex and is implemented

with two functions that fold over the process environment. The general

approach is to attempt to lock each process in the process environment by

an outer topfoldinteract function. If a process can be locked, then attempt
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to interact with other processes in the environment via foldinteract. When

interactions occur then; evaluate the bodies, record that an interaction has

occurred, and pass back any process identifiers of processes that should be

removed from the environment. The remainder of this section details how

this is implemented.

The topfoldinteract function begins with a pair of; a boolean to in-

dicate if interactions have occurred, and an empty list of processes to be

removed from the environment. This is then folded over the processes envi-

ronment and attempts to lock each process in turn using the process’ locking

function pl. If locking is successful, then the inner function foldinteract

is called with the outer process’ information. If the inner call returns that

interaction occurred then this is passed back out along with an updated list

of processes to remove from the environment (the to_clean function identi-

fies the relevant process identifiers). Note that when interactions occur the

process is not unlocked. Otherwise if no interaction occurred then the (outer)

process is unlocked with pul and the ongoing record of interaction success

and processes to remove is passed on.

(* A top level fold that tries to interact every process in

* the process environment with every other process. Uses

* foldinteract (above) with each process to try every

* possible pair of processes. Accumulates whether any

* interactions have occurred (succ) and also a list of

* processes to be removed from the process environment (ks).

* Note: Now updated to do multiple interactions per pass. *)

let topfoldinteract ppid (pl,pul,pE,p) (succ,ks) =

if pl()

then

begin

let (r,_,_,_,ks1) = Hashtbl.fold foldinteract procEnv

(false,ppid,pE,p,ks) in

if r
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then (true,to_clean ppid ks1 p)

else (pul();(succ,ks))

end

else (succ,ks)

Observe that topfoldinteract may lock many processes in a single fold over

the process environment and thus allows any number of interactions to occur

per pass.

The inner function foldinteract is called when one process is already

locked to test if that process can interact with any other. If no interaction

with the outer process has already occurred succ and the inner process can be

locked ql, then both processes are tested for interaction with interactable.

If they do interact then the bodies are evaluated immediately and the inter-

action is reported along with an updated list of processes to remove from the

environment. As before when interaction occurs the process that interacted

is not unlocked. If no interaction occurs then the inner process is unlocked

and the original information is passed along.

(* A foldable function that attempts to interact a CPC process

* with it’s ID (ppid), environment pqE), processes (p) against

* every other process (qE,q) in the environment. Result is

* either false if no interaction and the input, or true if

* there is a interaction with the list of processes IDs to

* remove from the environment. *)

let foldinteract qqid (ql,qul,qE,q) (succ,ppid,pE,p,ks) =

if succ || not (ql ())

then (succ,ppid,pE,p,ks)

else match interactible pE qE p q with

| Some cont -> (cont (); (true,ppid,pE,p,to_clean qpid ks q))

| None -> (qul();(succ,ppid,pE,p,ks))

;;

This approach ensures that every process is tested for interaction with ev-

ery other process in the process environment. Although this can be inefficient
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with the constant testing of processes that may never interact, it supports

the interplay between imperative and object-oriented features within Con-

current bondi. Specifically, references, arrays or objects that appear in CPC

patterns may change their value between attempts to find interactions, and

so must be tested regularly. Note that in a language without these features

it may be possible to test for interaction only when adding processes to the

environment, and when replications create infinite interactions.



Bibliography

[Abr90] Samson Abramsky. The lazy lambda calculus. In Research Top-

ics in Functional Programming, pages 65–116. Addison-Wesley,

1990.

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lvy. Explicit sub-

stitutions. Journal of Functional Programming, 1(04):375–416,

1991.

[ACS98] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On

bisimulations for the asynchronous π-calculus. Theoretical Com-

puter Science, 195(2):291–324, 1998.

[AG97] Martn Abadi and Andrew Gordon. Reasoning about crypto-

graphic protocols in the spi calculus. In Antoni Mazurkiewicz

and Jzef Winkowski, editors, CONCUR ’97: Concurrency The-

ory, volume 1243 of Lecture Notes in Computer Science, pages

59–73. Springer Berlin / Heidelberg, 1997.

[Bar85] Henk P. Barendregt. The Lambda Calculus. Its Syntax and Se-

mantics. Studies in Logic and the Foundations of Mathematics.

311



312 BIBLIOGRAPHY

Elsevier Science Publishers B.V., 1985. BAR h 85:1 1.Ex.

[BB90] Gerard Berry and Gerard Boudol. The chemical abstract ma-

chine. In POPL ’90: Proceedings of the 17th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages,

pages 81–94, New York, NY, USA, 1990. ACM.

[BBM04] Michele Boreale, Maria Grazia Buscemi, and Ugo Montanari. D-

fusion: a distinctive fusion calculus. In In Proc. APLAS04, LNCS

3302, pages 296–310. Springer, 2004.

[BG07] Michele Bugliesi and Marco Giunti. Secure implementations of

typed channel abstractions. In Proceedings of the 34th annual

ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, POPL ’07, pages 251–262, New York, NY, USA,

2007. ACM.

[BGZZ98] Nadia Busi, Roberto Gorrieri, Gianluigi Zavattaro, and Mura An-

teo Zamboni. Comparing three semantics for linda-like languages.

Theoretical Computer Science, 240, 1998.

[BLM05] Allen L. Brown, Cosimo Laneve, and L. Gregory Meredith.

Piduce: A process calculus with native XML datatypes. In In

Proc. of EPEW05/WS-FM05, volume 3670 of Lect, pages 18–34.

Springer, 2005.

[bon11] bondi. bondi, 2011. http://bondi.it.uts.edu.au.



BIBLIOGRAPHY 313

[BPV03] Michael Baldamus, Joachim Parrow, and Björn Victor. Spi cal-

culus translated to π-calculus preserving may testing. Technical

report, 2003.

[BPV05] Michael Baldamus, Joachim Parrow, and Björn Victor. A fully

abstract encoding of the pi-calculus with data terms. In ICALP,

pages 1202–1213, 2005.

[Cam11] The Caml language. The Caml language: Home, 2011. http:

//caml.inria.fr/.

[CCAV08] Diletta Cacciagrano, Flavio Corradini, Jesús Aranda, and
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