High Energy Electrode Materials for Lithium Sulfur Batteries

A thesis presented for the degree of Master of Science

By

Kefei Li

University of Technology, Sydney

Faculty of Science

March 2012

Certificate of Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Production Note: Signature removed prior to publication.

Kefei Li 05/03/2012

Acknowledgements

I would express my deep gratitude to my supervisor, Prof. Guoxiu Wang, for his consistent supervision and guidance throughout the whole period of my research work.

I also offer my regards to the staff members in School of Chemistry and Forensic Science, and Microstructural Analysis Unit who have provided essential assistance on the maintenance and operation of facilities. I am grateful to Dr. David Wexler who performed energy disperse spectroscopy elemental mapping on my behalf.

Special thanks to research students Bei Wang, Bing Sun, Dawei Su and Ying Wang in our group who have provided effective co-operation and generously shared their research experience with me.

Abstract

This thesis described the research work on high energy electrode materials for lithium sulfur batteries. The literature review of high energy electrode materials was presented, including the advantages and disadvantages of different anode and cathode materials and related synthesis techniques. The lithium-sulfur battery and sulfur cathode are the major focus due to their advantages in energy density, cost and environmental sustainability. Different sulfur cathodes based on amorphous carbon, graphene and mesoporous carbon were synthesized to study the correlation between morphology of carbonaceous material and the performance of the sulfur cathode. The as-prepared electrode materials have been characterized by X-ray diffraction, field emission scanning electron microscopy, backscattered imaging, energy disperse spectroscopy element mapping and thermogravimetric analysis. The synthesized sulfur composites are tested as cathode materials in subsequent electrochemical tests. The electrochemical tests performed on sulfur cathodes include cyclic voltammetry, galvanostatic charge-discharge cycle tests and electrochemical impedance measurements. The synthesized graphene-sulfur composite was tested as cathode material and achieved both high sulfur utilization rate with a high specific capacity of 1593 mAh /g and good rate capability at 1.0 C and 2.0 C discharge rates. Graphene within the sulfur composite greatly improved the electrochemical performance of Li-S battery. The effect of sulfur particle size and size distribution within the cathode to the performance of Li-S battery was investigated through the synthesis of carbon-sulfur nanocomposite by an innovative solution-based synthesis technique. The modification of synthesis method has helped to reduce the particle size of sulfur to the level of about 200 nm. The as-prepared sulfur nanocomposite with a homogeneous dispersion of sulfur particles was applied as the cathode material in Li-S battery and exhibited a high reversible capacity of 1220 mAh/g and maintained favorable cycle stability.

Table of Content

Certificate of Originalityi							
Acknowledgementsii							
Abstractiii							
Tab	Table of Content						
List	List of Publications						
List of Abbreviationsix							
List of Figuresx							
1	Intr	oductio	n	1			
2	Literature Review						
	2.1	Com	ponents of Lithium-Ion Batteries	9			
	2.2	Nand	ostructured Anode Materials	12			
		2.2.1	Nanostructured Carbon Anode Materials	13			
		2.2.2	Nanostructured Lithium Alloy Anode	13			
		2.2.3	Nanostructured Metal Oxides and Metal Sulfides	14			
	2.3	High	Energy Cathode Materials	21			
		2.3.1	Discharge Mechanisms of Sulfur Cathode	23			
		2.3.2	Electrolyte for Li-S battery	24			
		2.3.3	Morphology of Sulfur Cathode	26			
3	Experimental Design						
	3.1	Mate	erial Synthesis	33			
		3.1.1	Chemicals Used In Materials Synthesis	33			
		3.1.2	Melt-Diffusion Technique	35			
		3.1.3	Solution Based Synthesis	35			
		3.1.4	Sonication Technique	36			
	3.2	Mate	erials Characterization	37			

		3.2.1	X-Ray Diffraction	37
		3.2.2	Scanning Electron Microscope	39
		3.2.3	Thermogravimetric Analysis	42
	3.3	Elect	rode Fabrication and Battery Assembling	44
	3.4	Elect	rochemical Testing	45
		3.4.1	Cyclic Voltammetry	46
		3.4.2	Electrochemical Impedance	47
		3.4.3	Galvanostatic Charge-Discharge Tests	49
4	Grap	hene-S	ulfur Composite	51
	4.1	Mate	rial Synthesis of Graphene Sulfur Composite	51
	4.2	Mate	rial Characterization of Graphene-Sulfur Composite	52
	4.3	Grap	hene-Sulfur Cathode Fabrication	55
	4.4	Elect	rochemical Tests of Graphene-Sulfur Cathode	56
5	Carb	on-Sulf	fur Composite (CS ₂)	61
	5.1	Mate	rial Synthesis of Carbon-Sulfur Composite	61
	5.2	Mate	rial Characterization of Carbon-Sulfur Composite	61
	5.3	Carbo	on-Sulfur Cathode Fabrication	64
	5.4	Elect	rochemical Tests of Carbon-Sulfur Cathode	65
6	Carb	on-Sulf	ur Composite (DMSO)	70
	6.1	Mate	rial Synthesis of Carbon- Sulfur Nanocomposite	70
	6.2	Mate	rial Characterization of Carbon-Sulfur Nanocomposite	71
	6.3	Carbo	on-Sulfur Cathode Fabrication	74
	6.4	Elect	rochemical Tests of Carbon-Sulfur Cathode	75
7	Mesoporous Carbon-Sulfur Composite			82
	7.1	Mate	rial Synthesis of Mesoporous Carbon-Sulfur Composite	82
	7.2	Mate	rial Characterization of Mesoporous Carbon-Sulfur Composite.	84
	7.3	Meso	oporous Carbon-Sulfur Cathode Fabrication	85
	7.4	Elect	rochemical Tests of Mesoporous Carbon-Sulfur Cathode	86

8	Conclusions	90
Refe	erences	92
Defi	nitions	99

List of Publications

Portions of the work presented in this thesis have been published, or have been submitted for publication. The following is a list of the citations for these publications:

Kefei Li, Bei Wang, Dawei Su, David Wexler, Hyojun Ahn, and Guoxiu Wang,

"Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique"

Journal of Power Sources, 2011, DOI information: 10.1016/j.jpowsour.2011.11.073

Bei Wang, **Kefei Li**, Dawei Su, David Wexler, Hyojun Ahn, and Guoxiu Wang, "Superior electrochemical performance of sulfur/graphene nanocomposite material for high capacity lithium sulfur batteries"

Electrochimica Acta, 2011, submitted.

List of Abbreviations

LIB	Lithium-ion Battery
BEV	Battery-Electric Vehicle
ICEV	Internal-Combustion-Engine Vehicle
LOMO	Lowest Occupied Molecular Orbital
НОМО	Highest Occupied Molecular Orbital
Li-Air Battery	Lithium-Air Battery
Li-S Battery	Lithium-Sulfur Battery
XRD	X-ray diffraction
SEM	Scanning Electron Microscope
TGA	Thermogravimetric Analysis
CV	Cyclic Voltammetry
EIS	Electrochemical Impedance Spectroscopy
wt%	Weight Percent
МО	Metal Oxide
MS	Metal Sulfide
DMSO	Dimethyl Sulfoxide
DME	1,2-dimethoxyethane
DOX	1,3-dioxolane
TEGDME	Tetra(ethylene glycol)dimethyl ether
THF	Tetrahydrofuran
EMS	Ethyl methyl sulfone
DGDE	Diethylene glycol dimethyl ether
EC	Ethylene carbonate
DMC	Dimethyl carbonate
LiTFSI	LiN(SO ₂ CF ₃) ₂

List of Figures

Figure 1.1 Schematic Configuration of Lithium-ion Battery2
Figure 2.1 Schematic Illustration of Electrolyte Redox Reactions on Anode and Cathode
Surfaces10
Figure 2.2 Reactors for hydrothermal synthesis: teflon-lined autoclave (left) and stainless
steel container (right)19
Figure 3.1 Schematic Illustration of Electron/Sample Interaction in SEM40
Figure 3.2 Schematic Illustration of Thermogravimetric Analysis
Figure 4.1 The XRD Patterns of Graphene-Sulfur Composite
Figure 4.2 The Morphology of Graphene-Sulfur Composite
Figure 4.3 The EDS Element Mapping of Graphene-Sulfur Composite
Figure 4.4 The Weight Loss Curve of Graphene-Sulfur Composite
Figure 4.5 The Cyclic-Voltammetry Plot of Graphene-Sulfur Composite
Figure 4.6 Voltage-Capacity Curves of Graphene-Sulfur Composite at Different Discharge
Current Densities
Figure 4.7 Specific Discharge Capacity of Graphene-Sulfur Composite at Different Current
Densities
Figure 5.1 The XRD Patterns of Carbon-Sulfur Composite
Figure 5.2 The Morphology of Carbon-Sulfur Composite
Figure 5.3 The Weight Loss Curve of Carbon-Sulfur Composite in Thermal-Gravimetric
Analysis64
Figure 5.4 The Cyclic-Voltammetry Plots of Carbon-Sulfur Composite
Figure 5.5 Voltage-Capacity Curves of Carbon-Sulfur Composite at Different Discharge
Current Densities
Figure 5.6 Specific Discharge Capacities of Carbon-Sulfur Composite at Different Current
Densities
Figure 6.1 The XRD Patterns of Carbon-Sulfur Nanocomposite71
Figure 6.2 The Morphology of Carbon-Sulfur Composite72
Figure 6.3 The Weight Loss Curve of Carbon-Sulfur Nano Composite in
Thermal-Gravimetric Analysis74
Figure 6.4 The Cyclic-Voltammetry Plots of Carbon-Sulfur Nanocomposite76
Figure 6.5 Voltage-Capacity Curves of Carbon-Sulfur Nanocomposite at Different Current
Densities
Figure 6.6 Specific Discharge Capacity of Carbon-Sulfur Nanocomposite at Different
Current Densities
Figure 6.7 Electrochemical Impedance Plot of sulfur-carbon nanocomposite and
reference sulfur cathode81
Figure 7.1 The XRD Patterns of Solution-Synthesized Mesoporous Carbon-Sulfur
Composite
Figure 7.2 The Morphology of Thermal-Synthesized Mesoporous Carbon-Sulfur

Composite	85		
Figure 7.3 Voltage-Capacity Curves of Solution-Synthesized	Mesoporous Carbon-Sulfur		
Cathode			
Figure 7.4 Voltage-Capacity Curves of Thermal-Synthesized	Mesoporous Carbon-Sulfur		
Composite			
Figure 7.5 Specific Discharge Capacity of Thermal-Synthesized Mesoporous Carbon-Sulfur			
Nanocomposite			