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Abstract

Near-Field Magnetic Induction Communication (NFMIC) is a relatively new tech-

nology which has been proposed for short-range applications such as body-area net-

works. Since it uses a rapidly-decaying magnetic near-field instead of an electromag-

netic wave as the signal transmission mechanism, it is ideal for situations in which

limited transmission range is actually an advantage, such as where minimising inter-

network interference or avoiding location disclosure are considered important.

To date, little work has been done on multihop techniques specifically designed for

NFMIC systems. Most existing applications, such as Radio Frequency Identification

(RFID) and Near Field Communication (NFC) are strictly point-to-point. However,

when each network node only needs to transmit occasionally, multihop relaying tech-

niques have the potential to significantly reduce power consumption and overall lev-

els of magnetic field egress. Cooperative retransmission strategies, where network

nodes that are neither a transmission source nor sink can participate in relaying of

frames at the physical layer, have been proposed as a solution for range-extension

of conventional electromagnetic/radiofrequency networks. This thesis aims to pro-

pose, analyse and simulate a variety of strategies for cooperative relaying which are

appropriate for the specific needs of multihop NFMIC networks.

A link budget model for NFMIC is firstly developed and thoroughly analysed, for a

variety of non-ideal channel conditions. Three relaying strategies are then proposed

and evaluated using the link-budget model under a variety of channel conditions,

varying from near-ideal to the pathological case, and a wide variety of source, des-
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Abstract iii

tination and relay node placement configurations. Simulation results are used to

identify the key factors which govern the performance of each technique and the

conditions under which throughput can be maximised. A new link metric, which

accurately captures these factors, is proposed and its benefits demonstrated through

simulation. Finally, a number of opportunities for future study are identified.
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