Packet Scheduling for LTE-Advanced

Author: Nguyen, Sinh Chuong (John)
Student Number: 10928517
Supervisor: A/Prof Kumbesan Sandrasegaran

In accordance with the requirement for the Degree of Master of Engineering by Research

2011
Certificate of Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student
Abstract

LTE-Advanced has been approved by the International Telecommunication Union (ITU) as a 4G mobile communication system. It is also called IMT-Advanced or true 4G technology. LTE-Advanced is an evolution of LTE (Release-8) and backward compatible with LTE because they both use the same air-interface technologies such as OFDMA, MIMO, and the same core network.

Since radio spectrum is the most valuable resource in mobile technology, radio resource management (RRM) mechanisms are critical for the operation of a cellular network. One of the key RRM mechanisms is packet scheduling and it allocates suitable radio resources to each user for transmission of the downlink from the base station through the air interface to each mobile station.

The overall objectives of this project are to study packet scheduling mechanism for LTE-Advanced and find an optimized packet scheduling algorithm(s) to fully utilize new features and challenges of LTE-Advanced. This project is an extension of previous work done in packet scheduling in LTE at Centre for Real-time Information Networks (CRIN), UTS.

This thesis begins by explaining the design considerations used to create a computer simulation tool to model packet scheduling as well as other RRM mechanisms for LTE-Advanced. Thereafter, it will model, simulate, validate, and evaluate the performance of current well-known and new packet scheduling algorithms for LTE-Advanced. In this thesis, two new algorithms called optimized cross-CC proportional fair (OCPF) and optimized cross-CC M-LWDF (OCM) are proposed. (CC: component carrier)

The OCPF algorithm can overcome the weaknesses of current algorithms and improve system throughput. The OCM can provide a more effective solution for realistic traffic with strict requirement on the quality of services (QoS).
Acknowledgement

Firstly, I would like to express my deep gratitude to my supervisor Dr. Kumbesan Sandrasegaran for his guidance and support throughout this project.

Secondly, I would like to thank all the team members in CRIN center, Riyaj Basukala, Huda Adibah Mohd Ramli and others, for their contributions to help me gaining fundamental knowledge about this topic, their advice to make the simulation tool, as well as their valuable comments on my papers.

Finally, I would like to give grateful thank to my dear wife and my lovely parents. They have given me the excellent support and great encouragement to achieve the best education that I will never forget.
Table of Contents

CHAPTER 1: INTRODUCTION ... 14

1.1. Evolution of mobile technologies to 4th Generation (4G) 14
1.2. 4G Technology and its technical requirements 16
1.3. Development in 3GPP from 2G to 4G ... 18
1.4. LTE-Advanced .. 22
1.5. Radio Resource Management ... 23
1.6. Research question and objectives .. 24
1.7. Research signification ... 25
1.8. Research Methodology and Plan .. 26
1.9. Publications ... 27

CHAPTER 2: LITERATURE REVIEW .. 29

2.1. LTE Technology Review .. 29
2.2. Major characteristics of LTE-Advanced 33
2.3. Packet Scheduling .. 38
2.3.1. Packet Scheduling Algorithms .. 39
 A. Round Robin (RR) ... 40
 B. First-in-First-out (FIFO) ... 40
 C. Maximum Rate (Max Rate) ... 40
 D. Proportional Fair (PF) ... 41
 E. Modified-Largest Weighted Delay First (M-LWDF) 41
 F. Exponential/Proportional Fair (EXP/PF) 42
2.4. Theoretical Throughput Analysis of Packet Scheduling Algorithms 42
2.4.1. Theoretical Throughput Analysis of PF Algorithm 43
2.4.2. Theoretical Throughput Analysis of M-LWDF Algorithm 47
2.5. Packet Scheduling in LTE-Advanced .. 51
2.5.1. New proposed Packet Scheduling Algorithms for LTE-Advanced 51
2.5.2. Challenges Faced to Implement Scheduling 59
2.6. Summary .. 60

CHAPTER 3: SYSTEM MODELLING & SIMULATION 62

3.1. New model in LTE-A network ... 62
3.2. Packet Scheduling Simulation Tool .. 63
 3.2.1. Pre-processing block ... 64
 3.2.2. Main processing block ... 67
 3.2.3. Post processing block ... 71
 i. System throughput: .. 71
 ii. Packet delay: ... 72
 iii. Packet loss ratio .. 72
 iv. Fairness ... 72
3.3. Summary .. 73

CHAPTER 4: PACKET SCHEDULING ALGORITHMS FOR LTE-ADVANCED 74

4.1. Cross-CC vs. In-CC scheduler with PF algorithm 74
 4.1.1. Theory discussion .. 74
 4.1.2. Simulation results ... 76
4.2. Cross-CC vs. In-CC scheduler with other algorithms 78
 4.2.1. Theory discussion .. 78
 4.2.2. Simulation results ... 79
4.3. Proposed PS algorithm for LTE-Advanced 83
 4.3.1. Theory discussion .. 83
 A. Optimized Cross-CC PF algorithm ... 83
 B. Optimized Cross-CC M-LWDF algorithm 84
 4.3.2. Simulation results ... 85
A. Optimized Cross-CC PF Algorithm .. 85
B. Optimized Cross-CC M-LWDF algorithm .. 91
4.4. Summary ... 94

CHAPTER 5: CONCLUSION .. 95

APPENDIX .. 97

LIST OF SYMBOLS .. 101
GLOSSARY .. 106
REFERENCES .. 114
List of Figures

Figure 1-1: The evolution paths to 4G ... 15
Figure 1-2: The transition from 2G to 4G in 3GPP family, adapted from [10] 19
Figure 1-3: 3PPP standardization & its key evolutionary features, adapted from [11] ... 20
Figure 1-4: The spectrum of three radio interfaces with its technologies, adapted from [12] .. 21
Figure 1-5: Radio Network Planning & Radio Resources Management [14] 24
Figure 2-1: The evolution in the Radio Access Network from 3G to LTE 29
Figure 2-2: Radio interfaces in the downlink and uplink of LTE [18] 30
Figure 2-3: Maintaining the Subcarriers' Orthogonality [18] 30
Figure 2-4: Radio Resource Block (RB) component [19] 31
Figure 2-5: The LTE scalable bandwidths ... 31
Figure 2-6: Modulation scheme & Link adaptation ... 32
Figure 2-7: Reference signals mapping [20] .. 32
Figure 2-8: FDD & TDD in LTE ... 32
Figure 2-9: MIMO technology [21] ... 33
Figure 2-10: Wider bandwidth [11] ... 34
Figure 2-11: Supporting wider bandwidth with multiple component carriers feature ... 34
Figure 2-12: Asymmetric bandwidth of uplink and downlink [25] 35
Figure 2-13: Advanced MIMO techniques [25] .. 35
Figure 2-14: Cooperative MultiPoint techniques [26] 36
Figure 2-15: Relaying function [25] ... 37
Figure 2-16: Packet scheduling operation [29] ... 39
Figure 2-17: Independent-Component Carrier scheduling [45] 51
Figure 2-18: Cross-Component Carriers scheduling [45] 52
Figure 2-19: Simple cross-CC Scheduling framework [44] 52
Figure 2-20: Throughput of cross-CC vs. In-CC [24] 54
Figure 2-21: Cell-edge user throughput [48] .. 54
Figure 2-22: Latency of cross-CC vs. In-CC [24] .. 54
Figure 2-23: Coverage of difference frequency bands [47] 55
Figure 2-24: User throughput CDF ... 56
Figure 2-25: Average sector throughput ... 56
Figure 2-26: Throughput .. 57
Figure 3-1: New model of LTE-Advanced with many kinds of user co-existence 63
Figure 3-2: LTE-Advanced Simulation Tool Block Diagram 64
Figure 3-3: Sample picture of users’ location and movement in new simulation 65
Figure 3-4: Model of Multi-path Fading [55] ... 66
Figure 4-1: System throughput, in-CC vs. cross-CC .. 77
Figure 4-2: Cell edge users throughput, in-CC vs. cross-CC 77
Figure 4-3: System throughput ... 78
Figure 4-4: System throughput, algorithms comparison 80
Figure 4-5: System fairness .. 81
Figure 4-6: System fairness, new algorithms of fairness 81
Figure 4-7: System delay .. 82
Figure 4-8: Packet Loss Ratio ... 82
Figure 4-9: System throughput ... 86
Figure 4-10: LTE-A users’ throughput ... 86
Figure 4-11: Cell-edge users’ throughput ... 87
Figure 4-12: 5% best users’ throughput .. 88
Figure 4-13: System throughput with 50% LTE-A users 89
Figure 4-14: System throughput in scenario of different CC bands (800MHz + 2GHz) 90
Figure 4-15: System fairness .. 91
Figure 4-16: System throughput with M-LWDF .. 93
Figure 4-17: Packet loss ratio ... 93
List of Table

Table 1-1: Cell spectral efficiency ... 16
Table 1-2: Cell edge user spectral efficiency .. 17
Table 1-3: Mobility classes ... 17
Table 1-4: Handover interrupt time ... 18
Table 1-5: Voice capacity ... 18
Table 1-6: LTE-Advanced performance ... 22
Table 2-1: LTE Characteristics [22] ... 33
Table 2-2: LTE vs. LTE-Advanced [25] ... 37
Table 2-3: Packet scheduling in wireless technologies [14] 40
Table 2-4: Throughput of new algorithm ... 57
Table 2-5: Average user throughput in Mbps, 30 Users/cell 58
Table 2-6: Fairness index ... 58
Table 2-7: Average cell-edge user throughput in Mbps 58
Table 3-1: Traffic pattern [59, 60] .. 67
Table 3-2. CQI Mapping table ... 70
Table 4-1: System simulation configuration .. 76
Table 4-2: LTE-A users’ throughput ... 87
Table 4-3: 5% best users’ throughput ... 88
Table 4-4: The system throughput of 3 algorithms .. 89
Table 4-5: System throughput in scenario of 2 different CC bands (800MHz & 2GHz) 90
Table 4-6: Standardized QCI characteristics [72] .. 92
Table 4-7: System throughput with M-LWDF ... 92
Table 4-8: Packet loss ratio data ... 93
List of Acronyms

3G 3rd Generation Wireless Network
3GPP 3rd Generation Partnership Project
3GPP2 3rd Generation Partnership Project 2
4G 4th Generation Wireless Network
ACK Acknowledgement
BLER Block Error Rate
BS Base Station
BSC Base Stations Controller
CA Carriers Aggregation
CC Component Carrier
CDMA Code Division Multiple Access
CoMP Coordinated MultiPoint transmission and reception
CP Cyclic Prefix
CQI Channel Quality Indicator
CRIN Centre of Real-Time Information Networks
Cross-CC Cross-Component Carriers
CS/CB Coordinated Scheduling/Beam-forming.
CSI Channel State Information
EDGE Enhanced Data rates for GSM Evolution
eNodeB evolved NodeB
EPC Evolved Packet Core
E-UTRAN Evolved UTRAN
EXP/PF Exponential/Proportional Fair
EVRC Enhanced Variable Rate Coder
FDD Frequency Division Duplex
FDMA Frequency Division Multiple Access
FIFO First-in-First-out
GSM Global System for Mobile communications
HARQ Hybrid-Automatic Repeat Request
HOL Head of Line
HOM Higher Order Modulations
HSDPA High-Speed Downlink Packet Access
IEEE Institute of Electrical and Electronics Engineers
IMT-2000 International Mobile Telecommunications-2000
In-CC Independent-Component Carriers
IP Internet Protocol
ITU International Telecommunication Union
JP Joint Processing
LTE Long Term Evolution
LTE-A Long Term Evolution Advanced
Max-Rate Maximum-Rate
MCS Modulation and Coding Scheme
MIMO Multiple Input Multiple Output
M-LWDF Modified-Largest Weighted Delay First
MME Mobile Management Entity
NACK Negative Acknowledgement
NRT Non-Real Time
OCM Optimized Cross-Component Carrier M-LWDF
OCPF Optimized Cross-Component Carrier Proportional Fair
OFDM Orthogonal Frequency Division Multiplex
OFDMA Orthogonal Frequency Division Multiple Access
PCU Packet Control Unit
PDF Probability Density Function
PDN Packet Data Network
PF Proportional Fair
P-GW PDN Gateway
PLR Packet Loss Ratio
PS Packet Scheduling
QAM Quadrature Amplitude Modulation
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
QSI Queue State Information
RAN Radio Access Network
RB Resource Block
RMS Root Mean Square
RN Relay Node
RNC Radio Network Controller
RNP Radio Network Planning
RR Round Robin
RRM Radio Resource Management
RT Real Time
RTT Round-Trip Time
SA Spectrum Aggregation
SC-FDMA Single Carrier Frequency Division Multiple Access
SDF Sub-band Discrimination Factor
S-GW Serving Gateway
SINR Signal to Interference-plus-Noise Ratio
SISO Single-Input-Single-Output
SNR Signal-to-Noise-Ratio
TB Transport Block
TDD Time Division Duplex
TDMA Time Division Multiple Access
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFT</td>
<td>Time For Transmission</td>
</tr>
<tr>
<td>TTI</td>
<td>Transmit Time Interval</td>
</tr>
<tr>
<td>UDF</td>
<td>User Discrimination Factor</td>
</tr>
<tr>
<td>UE</td>
<td>User Equipment</td>
</tr>
<tr>
<td>UMB</td>
<td>Ultra Mobile Broadband</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>UTRAN</td>
<td>UMTS Terrestrial Radio Access Network</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice over IP</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
<tr>
<td>WiMAX</td>
<td>Worldwide Interoperability for Microwave Access</td>
</tr>
</tbody>
</table>