

University of Technology, Sydney Faculty of Engineering and IT Centre of Real-Time Information Networks

Packet Scheduling for LTE-Advanced

Author: Nguyen, Sinh Chuong (John)

Student Number: 10928517

Supervisor: A/Prof Kumbesan Sandrasegaran

In accordance with the requirement for the Degree of Master of Engineering by Research

Certificate of Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Abstract

LTE-Advanced has been approved by the International Telecommunication Union (ITU) as a 4G mobile communication system. It is also called IMT-Advanced or true 4G technology. LTE-Advanced is an evolution of LTE (Release-8) and backward compatible with LTE because they both use the same air-interface technologies such as OFDMA, MIMO, and the same core network.

Since radio spectrum is the most valuable resource in mobile technology, radio resource management (RRM) mechanisms are critical for the operation of a cellular network. One of the key RRM mechanisms is packet scheduling and it allocates suitable radio resources to each user for transmission of the downlink from the base station through the air interface to each mobile station.

The overall objectives of this project are to study packet scheduling mechanism for LTE-Advanced and find an optimized packet scheduling algorithm(s) to fully utilize new features and challenges of LTE-Advanced. This project is an extension of previous work done in packet scheduling in LTE at Centre for Real-time Information Networks (CRIN), UTS.

This thesis begins by explaining the design considerations used to create a computer simulation tool to model packet scheduling as well as other RRM mechanisms for LTE-Advanced. Thereafter, it will model, simulate, validate, and evaluate the performance of current well-known and new packet scheduling algorithms for LTE-Advanced. In this thesis, two new algorithms called optimized cross-CC proportional fair (OCPF) and optimized cross-CC M-LWDF (OCM) are proposed. (CC: component carrier)

The OCPF algorithm can overcome the weaknesses of current algorithms and improve system throughput. The OCM can provide a more effective solution for realistic traffic with strict requirement on the quality of services (QoS).

Acknowledgement

Firstly, I would like to express my deep gratitude to my supervisor Dr. Kumbesan Sandrasegaran for his guidance and support throughout this project.

Secondly, I would like to thank all the team members in CRIN center, Riyaj Basukala, Huda Adibah Mohd Ramli and others, for their contributions to help me gaining fundamental knowledge about this topic, their advice to make the simulation tool, as well as their valuable comments on my papers.

Finally, I would like to give grateful thank to my dear wife and my lovely parents. They have given me the excellent support and great encouragement to achieve the best education that I will never forget.

Table of Contents

CHAP	TER 1: INTRODUCTION	14
1.1.	Evolution of mobile technologies to 4 th Generation (4G)	14
1.2.	4G Technology and its technical requirements	16
1.3.	Development in 3GPP from 2G to 4G	18
1.4.	LTE-Advanced	22
1.5.	Radio Resource Management	23
1.6.	Research question and objectives	24
1.7.	Research signification	25
1.8.	Research Methodology and Plan	26
1.9.	Publications	27
CHAPT	TER 2: LITERATURE REVIEW	29
2.1.	LTE Technology Review	29
2.2.	Major characteristics of LTE-Advanced	33
2.3.	Packet Scheduling	38
2.3.1	Packet Scheduling Algorithms	39
A.	Round Robin (RR)	40
В.	First-in-First-out (FIFO)	40
C.	Maximum Rate (Max Rate)	40
D.	Proportional Fair (PF)	41
E.	Modified-Largest Weighted Delay First (M-LWDF)	41
F.	Exponential/Proportional Fair (EXP/PF)	42
2.4.	Theoretical Throughput Analysis of Packet Scheduling Algorithms	42
2.4.1	Theoretical Throughput Analysis of PF Algorithm	43
2.4.2	Theoretical Throughput Analysis of M-LWDF Algorithm	47
2.5.	Packet Scheduling in LTE-Advanced	51

	2.5.1.	New proposed Packet Scheduling Algorithms for LTE-Advanced	51
	2.5.2.	Challenges Faced to Implement Scheduling	59
	2.6.	Summary	60
C	HAPT	TER 3: SYSTEM MODELLING & SIMULATION	62
	3.1.	New model in LTE-A network	62
	3.2.	Packet Scheduling Simulation Tool	63
	3.2.1.	Pre-processing block	64
	3.2.2.	Main processing block	67
	3.2.3.	Post processing block	71
	i.	System throughput:	71
	ii.	Packet delay:	72
	iii.	Packet loss ratio	72
	iv.	Fairness	72
	3.3.	Summary	73
C	HAPT	TER 4: PACKET SCHEDULING ALGORITHMS FOR LTE-ADVANCE	ΞD
		74	
	4.1.	Cross-CC vs. In-CC scheduler with PF algorithm	74
	4.1.1.	Theory discussion	74
	4.1.2.	Simulation results	76
	4.2.	Cross-CC vs. In-CC scheduler with other algorithms	78
	4.2.1.	Theory discussion	78
	4.2.2.	Simulation results	79
	4.3.	Proposed PS algorithm for LTE-Advanced	83
	4.3.1.	Theory discussion	83
	A.	Optimized Cross-CC PF algorithm	83
	В.	Optimized Cross-CC M-LWDF algorithm	84
	4.3.2.	Simulation results	85

A.	Optimized Cross-CC PF Algorithm	85
В.	Optimized Cross-CC M-LWDF algorithm	91
4.4.	Summary	94
СНАР	TER 5: CONCLUSION	95
APPE	NDIX	97
LIST (OF SYMBOLS	101
GLOS	SARY	106
REFEI	RENCES	114

List of Figures

Figure 1-1: The evolution paths to 4G	. 15
Figure 1-2: The transition from 2G to 4G in 3GPP family, adapted from [10]	. 19
Figure 1-3: 3PPP standardization & its key evolutionary features, adapted from [11]	. 20
Figure 1-4: The spectrum of three radio interfaces with its technologies, adapted fr [12]	
Figure 1-5: Radio Network Planing & Radio Resources Management [14]	. 24
Figure 2-1: The evolution in the Radio Access Network from 3G to LTE	. 29
Figure 2-2: Radio interfaces in the downlink and uplink of LTE [18]	. 30
Figure 2-3: Maintaining the Subcarriers' Orthogonality [18]	. 30
Figure 2-4: Radio Resource Block (RB) component [19]	. 31
Figure 2-5: The LTE scalable bandwidths	. 31
Figure 2-6: Modulation scheme & Link adaptation	. 32
Figure 2-7: Reference signals mapping [20]	. 32
Figure 2-8: FDD & TDD in LTE	. 32
Figure 2-9: MIMO technology [21]	. 33
Figure 2-10: Wider bandwidth [11]	. 34
Figure 2-11: Supporting wider bandwidth with multiple component carriers feature	. 34
Figure 2-12: Asymmetric bandwidth of uplink and downlink [25]	. 35
Figure 2-13: Advanced MIMO techniques [25]	. 35
Figure 2-14: Cooperative MultiPoint techniques [26]	. 36
Figure 2-15: Relaying function [25]	. 37
Figure 2-16: Packet scheduling operation [29]	. 39
Figure 2-17: Independent-Component Carrier scheduling [45]	. 51
Figure 2-18: Cross-Component Carriers scheduling [45]	. 52
Figure 2-19: Simple cross-CC Scheduling framework [44]	. 52
Figure 2-20: Throughput of cross-CC vs. In-CC [24]	. 54

Figure 2-21: Cell-edge user throughput [48]	. 54
Figure 2-22: Latency of cross-CC vs. In-CC [24]	. 54
Figure 2-23: Coverage of difference frequency bands [47]	. 55
Figure 2-24: User throughput CDF	. 56
Figure 2-25: Average sector throughput	. 56
Figure 2-26: Throughput	. 57
Figure 3-1: New model of LTE-Advanced with many kinds of user co-existence	. 63
Figure 3-2: LTE-Advanced Simulation Tool Block Diagram	. 64
Figure 3-3: Sample picture of users' location and movement in new simulation	. 65
Figure 3-4: Model of Multi-path Fading [55]	. 66
Figure 4-1: System throughput, in-CC vs. cross-CC	. 77
Figure 4-2: Cell edge users throughput, in-CC vs. cross-CC	. 77
Figure 4-3: System throughput	. 78
Figure 4-4: System throughput, algorithms comparison	. 80
Figure 4-5: System fairness	. 81
Figure 4-6: System fairness, new algorithms of fairness	. 81
Figure 4-7: System delay	. 82
Figure 4-8: Packet Loss Ratio	. 82
Figure 4-9: System throughput	. 86
Figure 4-10: LTE-A users' throughput	. 86
Figure 4-11: Cell-edge users' throughput	. 87
Figure 4-12: 5% best users' throughput	. 88
Figure 4-13: System throughput with 50% LTE-A users	. 89
Figure 4-14: System throughput in scenario of different CC bands (800MHz + 2GHz)	90
Figure 4-15: System fairness	. 91
Figure 4-16: System throughput with M-LWDF	. 93
Figure 4-17: Packet loss ratio	. 93

List of Table

Table 1-1: Cell spectral efficiency	16
Table 1-2: Cell edge user spectral efficiency	17
Table 1-3: Mobility classes	17
Table 1-4: Handover interrupt time	18
Table 1-5: Voice capacity	18
Table 1-6: LTE-Advanced performance	22
Table 2-1: LTE Characteristics [22]	33
Table 2-2: LTE vs. LTE-Advanced [25]	37
Table 2-3: Packet scheduling in wireless technologies [14]	40
Table 2-4: Throughput of new algorithm	57
Table 2-5: Average user throughput in Mbps, 30 Users/cell	58
Table 2-6: Fairness index	58
Table 2-7: Average cell-edge user throughput in Mbps	58
Table 3-1: Traffic pattern [59, 60]	67
Table 3-2. CQI Mapping table	70
Table 4-1: System simulation configuration	76
Table 4-2: LTE-A users' throughput	87
Table 4-3: 5% best users' throughput	88
Table 4-4: The system throughput of 3 algorithms	89
Table 4-5: System throughput in scenario of 2 different CC bands (800MHz & 2GHz)	90
Table 4-6: Standardized QCI characteristics [72]	92
Table 4-7: System throughput with M-LWDF	92
Table 4-8: Packet loss ratio data	93

List of Acronyms

3G
 3rd Generation Wireless Network
 3GPP
 3rd Generation Partnership Project
 3GPP2
 3rd Generation Partnership Project 2
 4G
 4th Generation Wireless Network

ACK Acknowledgement
BLER Block Error Rate
BS Base Station

BSC Base Stations Controller
CA Carriers Aggregation
CC Component Carrier

CDMA Code Division Multiple Access

CoMP Coordinated MultiPoint transmission and reception

CP Cyclic Prefix

CQI Channel Quality Indicator

CRIN Centre of Real-Time Information Networks

Cross-CC Cross-Component Carriers

CS/CB Coordinated Scheduling/Beam-forming.

CSI Channel State Information

EDGE Enhanced Data rates for GSM Evolution

eNodeB evolved NodeB
EPC Evolved Packet Core
E-UTRAN Evolved UTRAN

EXP/PF Exponential/Proportional Fair EVRC Enhanced Variable Rate Coder FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

FIFO First-in-First-out

GSM Global System for Mobile communications

HARQ Hybrid-Automatic Repeat Request

HOL Head of Line

HOM Higher Order Modulations

HSDPA High-Speed Downlink Packet Access

IEEE Institute of Electrical and Electronics Engineers
IMT-2000 International Mobile Telecommunications-2000

In-CC Independent-Component Carriers

IP Internet Protocol

ITU International Telecommunication Union

JP Joint Processing

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

Max-Rate Maximum-Rate

MCS Modulation and Coding Scheme MIMO Multiple Input Multiple Output

M-LWDF Modified-Largest Weighted Delay First

MME Mobile Management Entity
NACK Negative Acknowledgement

NRT Non-Real Time

OCM Optimized Cross-Component Carrier M-LWDF

OCPF Optimized Cross-Component Carrier Proportional Fair

OFDM Orthogonal Frequency Division Multiplex

OFDMA Orthogonal Frequency Division Multiple Access

PCU Packet Control Unit

PDF Probability Density Function

PDN Packet Data Network
PF Proportional Fair
P-GW PDN Gateway
PLR Packet Loss Ratio
PS Packet Scheduling

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

QSI Queue State Information RAN Radio Access Network

RB Resource Block RMS Root Mean Square

RN Relay Node

RNC Radio Network Controller
RNP Radio Network Planning

RR Round Robin

RRM Radio Resource Management

RT Real Time

RTT Round-Trip Time SA Spectrum Aggregation

SC-FDMA Single Carrier Frequency Division Multiple Access

SDF Sub-band Discrimination Factor

S-GW Serving Gateway

SINR Signal to Interference-plus-Noise Ratio

SISO Single-Input-Single-Output SNR Signal-to-Noise-Ratio

TB Transport Block

TDD Time Division Duplex

TDMA Time Division Multiple Access

TFT Time For Transmission
TTI Transmit Time Interval
UDF User Discrimination Factor

UE User Equipment

UMB Ultra Mobile Broadband

UMTS Universal Mobile Telecommunications System UTRAN UMTS Terrestrial Radio Access Network

VoIP Voice over IP

WCDMA Wideband Code Division Multiple Access

WiMAX Worldwide Interoperability for Microwave Access