
Faculty of Engineering and Information Technology

University of Technology, Sydney

Negative Sequential Pattern Mining

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

by

Zhigang Zheng

January 2012

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted

for a degree nor has it been submitted as part of requirements for a degree

except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I

have received in my research work and the preparation of the thesis itself has

been acknowledged. In addition, I certify that all information sources and

literature used are indicated in the thesis.

Signature of Candidate

i

Acknowledgments

Foremost, I would like to express the deepest appreciation to my supervisor,

Professor Longbing Cao, for his professional guidance, persistent help and

continuous support throughout my Ph.D study and research.

I would like to thank Dr. Yanchang Zhao and Professor Xiangjun Dong,

for their patient guidance, and scientific advice. Without their generous

support this dissertation would not have been possible.

Besides, I offer my regards and blessings to all of my co-workers at lab,

and thank them for their support in my research and during the completion

of this dissertation.

In addition, I would like to thank all colleagues, specially Uma Srinivasan

and Sue Bird, of the CMCRC HIBIS project, for their strong support for my

research by providing much domain knowledge of health insurance industry.

Last but not the least, I would like to thank my family: my wife, my par-

ents, and my son. Without their encouragement, finishing this dissertation

would be impossible; without them, nothing would have any value.

Zhigang Zheng

June 2011 @ UTS

ii

Contents

Certificate . i

Acknowledgment . ii

List of Figures . viii

List of Tables . x

Abstract . xii

Chapter 1 Introduction . 1

1.1 Background . 1

1.2 Research Issues & Significance 3

1.3 The Profile of Research Work 6

1.3.1 Research Introduction 6

1.3.2 Research Problem Statement 7

1.3.3 NSP Mining Methodologies 7

1.3.4 Experiments and Evaluation 8

1.3.5 Case Studies . 8

1.4 Main Research Objectives . 9

1.4.1 Improving PSP Mining Algorithm 9

1.4.2 Mining NSP Based on Genetic Algorithms 10

1.4.3 Mining NSP by Deducible Theories 11

1.5 Research Contributions . 11

1.6 Thesis Organization . 12

Chapter 2 Related Work . 13

2.1 Positive/Negative Association Rule Mining 14

iii

CONTENTS

2.1.1 (Positive) Association Rule Mining 14

2.1.2 Negative Association Rule Mining 17

2.2 Sequential Pattern Mining . 20

2.2.1 Sequential Pattern Mining Algorithms 21

2.2.2 Comparison & Computational Complexity Analysis . . 24

2.3 Negative Sequential Pattern Mining 26

2.3.1 PSP Mining Algorithms in NSP Mining Problem . . . 26

2.3.2 State-of-the-art Algorithms 26

2.4 Summary and Conclusion . 28

Chapter 3 Problem Statement 31

3.1 Basic Definitions . 32

3.1.1 Positive/Negative Sequence 32

3.1.2 Data Sequence & Candidate Sequence 35

3.2 Constraints of Positive/Negative Candidates 35

3.3 Reconstruct Data Sequence 37

3.4 Supporting . 39

3.4.1 Basic Operation . 39

3.4.2 Criteria of Supporting 40

3.4.3 Properties of Negative Supporting 43

3.4.4 Positive/Negative Sequential Pattern 44

3.5 A Framework of NSP Mining 45

3.5.1 NSP Mining Problem 47

3.5.2 PSP Mining Problem 48

3.6 NSP Mining Problem in the Thesis 49

3.6.1 Constraints on Interesting NSP 49

3.6.2 Criteria of Negative Supporting 50

3.7 Conclusions . 51

Chapter 4 Neg-GSP Algorithm 53

4.1 GSP Algorithm . 53

4.1.1 General Description of GSP 53

iv

CONTENTS

4.1.2 Generating Candidates 54

4.1.3 Pruning Candidates . 54

4.1.4 Counting Candidates 55

4.1.5 Procedure of GSP . 55

4.1.6 Improving GSP to Find NSP 56

4.2 Process of Neg-GSP . 57

4.3 Neg-GSP Algorithm . 59

4.3.1 Joining to Generate Candidates 59

4.3.2 Pruning Invalid Candidates 60

4.3.3 Generating Seed Set for Next Pass 61

4.3.4 Algorithm Description 61

4.3.5 Computational Complexity Analysis 62

4.4 Experiments . 65

4.4.1 Datasets . 65

4.4.2 Performance Evaluation 66

4.4.3 Comparison with PNSP Algorithm 66

4.5 Conclusions . 69

Chapter 5 Genetic Algorithm Based Algorithm: GA-NSP . 71

5.1 Genetic Algorithm . 71

5.1.1 Procedure of Genetic Algorithm 72

5.1.2 Encoding . 74

5.1.3 Fitness Function . 74

5.1.4 Selection . 75

5.1.5 Crossover . 75

5.1.6 Mutation . 76

5.2 Genetic Algorithm Based NSP Mining 77

5.3 GA-NSP Algorithm . 77

5.3.1 Encoding . 78

5.3.2 Population . 79

5.3.3 Selection . 80

5.3.4 Crossover . 80

v

CONTENTS

5.3.5 Mutation . 81

5.3.6 Pruning . 81

5.3.7 Fitness Function . 81

5.3.8 Algorithm Description 83

5.3.9 An Example of GA-NSP Algorithm 85

5.4 Experiments . 90

5.4.1 Analysis of Crossover Rate 94

5.4.2 Analysis of Mutation Rate 94

5.4.3 Analysis of Decay Rate 94

5.4.4 Performance Comparison with Other Methods 94

5.5 Conclusions . 99

Chapter 6 Effective NSP (e-NSP) Mining Algorithm 105

6.1 Problem Statement . 106

6.1.1 Related Definitions . 106

6.1.2 Constraints of Negative Candidates 108

6.1.3 Negative Containment 109

6.1.4 Brief Introduction of Set Theory 112

6.1.5 Negative Supporting 113

6.2 e-NSP Algorithm . 115

6.2.1 Negative Sequential Candidates Generation 115

6.2.2 Supports of Negative Sequences / Candidates 116

6.2.3 Negative Conversion Strategy and Proof 117

6.2.4 e-NSP Data Structure and Optimization 118

6.2.5 Pseudocode of e-NSP Algorithm 120

6.2.6 An Example . 122

6.2.7 Computational Complexity Analysis 123

6.3 Experiments and Evaluation 125

6.3.1 Data Sets . 125

6.3.2 Computational Cost 127

6.3.3 Dataset Characteristics Analysis 127

6.3.4 Scalability Test . 129

vi

CONTENTS

6.3.5 Experiments Summary 131

6.4 Conclusions . 131

Chapter 7 Case Studies: NSP Applications 135

7.1 Case 1: Ancillary Services Over-service Analysis 135

7.1.1 Data Preparation . 136

7.1.2 PSP/NSP Mining by Neg-GSP Algorithm 137

7.1.3 Risk Scoring . 138

7.2 Case 2: Fraud Claim Detection 138

7.2.1 Data Preparation . 139

7.2.2 A Fraud Scenario . 140

7.2.3 Fraud Claim Detection by e-NSP Algorithm 141

Chapter 8 Conclusions and Future Work 143

8.1 Conclusions . 143

8.2 Future Work . 145

8.2.1 Future Work of Current Topics 145

8.2.2 Order-First and Negative-First Problems 145

8.2.3 Negative Sequential Pattern Classification 145

8.2.4 Post Mining of Negative Sequential Pattern 146

Chapter A Appendix: List of Publications 147

Chapter B Appendix: List of Symbols 149

Bibliography . 152

vii

List of Figures

1.1 The Profile of Research Work 6

2.1 Systematization of Association Rule Mining 17

2.2 Association Rule And Sequential Pattern Mining Algorithms . 21

3.1 A Framework of Negative Sequential Pattern Mining 46

4.1 The Process Flow of Neg-GSP 58

4.2 Neg-GSP: An Example . 63

4.3 Neg-GSP: Execution Time . 67

4.4 Neg-GSP: Patterns Counts . 68

4.5 Neg-GSP: Comparison with PNSP Algorithm 70

5.1 GA-NSP Algorithm: Process Flow 78

5.2 Experiments: Different Crossover Rates On DS1 92

5.3 Experiments: Different Crossover Rates On DS2 93

5.4 Experiments: Different Mutation Rates On DS1 95

5.5 Experiments: Different Mutation Rates On DS2 96

5.6 Experiments: Different Decay Rates On DS1 97

5.7 Experiments: Different Decay Rates On DS2 98

5.8 GA-NSP Algorithm: Execution Time Comparison On DS1 . . 100

5.9 GA-NSP Algorithm: Execution Time Comparison On DS2 . . 101

5.10 GA-NSP Algorithm: Execution Time Comparison On DS3 . . 102

5.11 GA-NSP Algorithm: Execution Time Comparison On DS4 . . 103

viii

LIST OF FIGURES

6.1 e-NSP Algorithm: the Intersection of {< a >} and {< b >} . . 114

6.2 e-NSP Algorithm: the Meaning of sup(< a ¬b c ¬d e ¬f >) . 114

6.3 e-NSP Algorithm: Framework 115

6.4 e-NSP Algorithm: Execution Time Comparison 128

6.5 e-NSP Algorithm: Maximum Length and Patterns Counts . . 133

6.6 Dataset Characteristics Analysis 134

6.7 e-NSP Algorithm: Scalability Test 134

7.1 Case Study: Example of Customers Risk Scoring 139

7.2 Samples of Customer Claims Dataset 139

ix

List of Tables

1.1 A Transactional Data Table 2

1.2 Synthetic Dataset Factors . 9

3.1 Example of Maximum Equivalent Sequence 38

3.2 Examples of Sequence Containing 39

3.3 Examples of Sequence Absolutely Containing 39

3.4 Examples of the Three Criteria of Supporting 42

3.5 Apriori-property in a Positive-first Problem 44

3.6 Neg-GSP: Example of Negative Supporting 51

4.1 Examples of base-support and support 57

4.2 An Example of Joining . 59

4.3 Neg-GSP: Features of Synthetic Datasets 66

5.1 Genetic Algorithm: Examples of Encoding 74

5.2 Genetic Algorithm: Single Point Crossover 76

5.3 Genetic Algorithm: Two Point Crossover 76

5.4 Genetic Algorithm: Cut and Splice Crossover 76

5.5 Genetic Algorithm: Mutation 77

5.6 GA-NSP Algorithm: Encoding 78

5.7 GA-NSP Algorithm: Crossover 80

5.8 GA-NSP Algorithm: Crossover at Head/End 81

5.9 GA-NSP Algorithm: Features of Synthetic Datasets 91

6.1 e-NSP: Data Structure and An Example 119

x

LIST OF TABLES

6.2 e-NSP: Data Set for Example 122

6.3 e-NSP: Example Results - Positive Patterns 123

6.4 e-NSP: Example Results - NSC and Supports 124

6.5 e-NSP: Experiments of Dataset Factors Analysis 130

xi

Abstract

Sequential pattern mining provides an important way to obtain special pat-

terns from sequence data. It produces important insights on bioinformatics

data, web-logs, customer transaction data, and so on.

Different from traditional positive sequential pattern (PSP) mining, neg-

ative sequential pattern (NSP) mining takes negative itemsets into account

besides positive ones. It would be more interesting in applications where

non-occurring itemsets need to be considered. This thesis reports our previ-

ous and the latest research outcomes in this area. The contributions of the

thesis are as following.

• A comprehensive literature review of negative frequent pattern mining

is described.

• A general framework of the NSP mining is proposed. It can be used to

describe the big picture of both PSP and NSP mining problems.

• Three innovative algorithms are proposed to mine NSP efficiently.

• Extensive experiments about the three algorithms on either synthetic

or real-world datasets show that the proposed methods can find NSP

efficiently.

• A case study describes a real-life application on customer claims anal-

ysis in health insurance industry.

Three algorithms of NSP mining are proposed in this thesis, listed as

below:

xii

ABSTRACT

(1) The first algorithm Neg-GSP (Zheng, Zhao, Zuo & Cao 2009) is based

on a PSP mining algorithm GSP (Srikant & Agrawal 1996). Neg-GSP deals

with negative problem by introducing new methods of joining and generating

candidates, which borrow ideas from GSP algorithm. And also, an effective

pruning method to reduce the number of candidates is proposed as well.

(2) The second one is a Genetic Algorithm based algorithm (Zheng, Zhao,

Zuo & Cao 2010), which is called GA-NSP. It is proposed to find NSP with

novel crossover and mutation operations, which are efficient at passing good

genes on to next generations. An effective dynamic fitness function and a

pruning method are also provided to improve performance.

(3) The third algorithm e-NSP (Dong, Zheng, Cao, Zhao, Zhang, Li, Wei

& Ou 2011) is based on the Set Theory. It mines NSP by only involving the

identified PSP, without re-scanning the database. In this way, mining NSP

does not require any additional database scans. It facilitates the existing

PSP mining algorithms to mine NSP. It offers a new strategy for efficient

mining of NSP.

The results of extensive experiments about the three algorithms show

that they can find NSP efficiently. They have good performance compared

with some other existing NSP mining algorithms, such as PNSP (Hsueh, Lin

& Chen 2008).

If we compare the problem statements of the above three methods, Neg-

GSP and GA-NSP share the same definitions, e-NSP uses stronger con-

straints since it requires clear boundary to follow the Set Theory. When

comparing their performances, GA-NSP algorithm slightly outperforms Neg-

GSP in terms of execution time, but it may miss some patterns in the com-

plete result sets due to limitations of Genetic Algorithm. Apparently, e-NSP

is the most efficient and effective one since it does not need to scan datasets

to calculate the support of NSP. Although adding stronger constraints on

e-NSP makes the search space much smaller than what it is under the nor-

mal definitions, it is still very practicable while being used in some real-life

applications.

xiii

ABSTRACT

Following that, NSP mining case studies coming from health insurance

industry are introduced. Based on real-life customer claims datasets, we use

the proposed NSP mining methods to find PSP and NSP on solving two

business issues, one is in ancillary service over-service analysis, another is

fraud claim detection. Both of the two case studies demonstrate the benefits

gained from mining NSP.

xiv

Chapter 1

Introduction

1.1 Background

Sequential pattern mining is an important task in data mining. It provides an

effective way to get special patterns from sequence data. Finding sequential

pattern has been widely recognized as a hot area in data mining and machine

learning. It has been proven to be very useful or even essential while handling

critical business problems, such as customer behavior analysis, event detec-

tion and bioinformatics. For example, it is widely employed in DNA, protein,

and medicine identification, where it helps scientists to find out identical and

different structures and functions of molecular or DNA sequences.

The concept of discovering sequential patterns was firstly introduced in

1995 (Agrawal & Srikant 1995), and aimed at identifying frequent subse-

quences as patterns in a sequence database, given a user-specified minimum

support threshold. Some popular algorithms in sequential pattern mining

include AprioriAll (Agrawal & Srikant 1995), Generalized Sequential Pat-

terns (GSP) (Srikant & Agrawal 1996), PrefixSpan (Pei, Han, Mortazavi-Asl,

Wang, Pinto, Chen, Dayal & Hsu 2004) and so on. GSP and AprioriAll are

both Apriori-like methods based on breadth-first search, while PrefixSpan is

based on pattern-growth strategy. Some other methods, such as SPADE (Se-

quential PAttern Discovery using Equivalence classes)(Zaki 2001) and SPAM

1

CHAPTER 1. INTRODUCTION

Table 1.1: A Transactional Data Table
Transaction Time Customer ID Buy Item

11-3-2009 11:00am 004 45

11-3-2009 11:00am 002 30,31,32

11-3-2009 12:00pm 004 29,16

11-3-2009 1:00pm 002 28

12-3-2009 7:00am 004 45

.

12-3-2009 7:01am 002 22,32

(Sequential PAttern Mining)(Ayres, Flannick, Gehrke & Yiu 2002), are also

widely referred in the area of sequential pattern mining.

Sequence and Sequence Dataset

A sequence is an ordered list of elements like < e1 e2 e3 . . . en >, where ei

is an element, and could be either one item or a set of items. The elements

can be ordered by time, position or any other standard. Each element could

also contain one or more items with no order between them. The length of

a sequence is usually not fixed.

Sequence data is an important type of data which is popular in many

scientific, medical, business service, bioinformatics, and some other applica-

tions.

An example of transactions data is shown in Table 1.1. In the data,

customer 002, he/she has three transactions. If all of his/her transactions

were ordered by the transaction time, they can be built into a sequence as

< (30, 31, 32) 28 (22, 32) >.

Another example comes from Bioinformatics. Following is a gene se-

quence which is ordered by position.

ACTGCTGCCAATC.

2

CHAPTER 1. INTRODUCTION

About Negative Sequential Pattern Mining

The previous literature work mainly focused on discovering the occurring

items that form positive sequential patterns (PSP). However, it is increas-

ingly recognized that negative sequential patterns (NSP), composed of both

occurring and non-occurring items (Hsueh et al. 2008)(Lin, Chen & Hao

2007)(Zheng et al. 2009)(Ouyang & Huang 2007), can play an irreplaceable

role in deeply understanding and tackling many business applications and

problems.

In contrast to traditional PSP, NSP focus on negative relationships be-

tween itemsets, in which, non-occurring items are taken into consideration.

More formal definitions of NSP mining problem are described in Chapter 3.

Here we just give a simple example to illustrate the difference between PSP

and NSP mining: suppose p1=<a b c d> is a PSP; p2=<a b ¬c e> is a

NSP; and each item, a, b, c, d and e, stands for a claim item code in the

customer claim database of an health insurance company. By getting the

pattern p1, we can tell that an insurant usually claims for a, b, c and d in a

row. However, with the pattern p2 and only with it, we are able to find that

given an insurant claim for items a and b, if he/she does NOT claim c, then

he/she would claim item e instead of d. However, patterns like p2 cannot be

described or discovered by PSP mining.

Limited research on NSP mining can be identified in recent years (Ouyang

& Huang 2007)(Lin et al. 2007)(Hsueh et al. 2008)(Zhao, Zhang, Cao, Zhang

& Bohlscheid 2008) (Zhao, Zhang, Cao, Zhang & Bohlscheid 2009)(Zhao,

Zhang, Wu, Pei, Cao, Zhang & Bohlscheid 2009)(Zheng et al. 2009)(Zheng

et al. 2010).

1.2 Research Issues & Significance

While utilizing traditional frequent pattern mining algorithms for mining

NSP, many problems stand in the way.

(1) Huge amounts of Negative Sequential Candidates (NSC) will be gen-

3

CHAPTER 1. INTRODUCTION

erated by classic breath-first search methods. Given 10 distinct positive

items, If we only consider 3-item candidates, there are only 1,000 (=103)

3-item positive candidates, but there will be 8,000 (=203) 3-item negative

candidates because there are another 10 negative items in addition to the 10

positive ones. It is a challenge to prune the large proportion of meaningless

and unnecessary NSC. And it is important to develop efficient approaches

for generating a limited number of genuinely meaningful NSC.

(2) Different negative supporting definitions challenge to NSP mining.

There is a standard positive supporting definition about how a data sequence

supports a positive sequence, but there is no unified negative supporting def-

inition about how a data sequence supports or contains a negative sequence

yet. For example, whether data sequence <e> contains negative sequences

<e ¬e>, <¬e e> or <¬e e ¬e>, and whether <a c> contains <a ¬b c ¬d>,

different researchers give out different explanations (Hsueh et al. 2008)(Lin

et al. 2007)(Zheng et al. 2009).

(3) Generally speaking, in spite of different negative supporting defini-

tions, a data sequence can support much more negative candidates than

positive ones. Take a 3-item data sequence <a b c> as an example, it can

only support 7 positive candidates <a>, , <c>, <a b>, <a c>, <b c>

and <a b c>. But in the negative case, the data sequence <a b c> can not

only support the positive candidates as mentioned above, but also support a

large bunch of negative candidates, such as <a ¬a>,<b ¬a>,<b ¬b>, <a ¬a
c>, <a ¬c c>, <a b ¬a>, <a b ¬b> and so on. As we know, a majority of

those candidates will not appear even once on the sequence database. Even

though we can prune meaningless and unnecessary NSC from them, there

are still huge amounts of candidates after effective pruning.

(4) The Apriori principle doesn’t apply to NSP mining. The Apriori

principle can be simply described as: a sequence cannot be frequent if any of

its sub-sequences is not. The Apriori principle is widely adopted to reduce

the number of candidate subsequences in PSP mining (Agrawal & Srikant

1995)(Srikant & Agrawal 1996), but the principle does not work for patterns

4

CHAPTER 1. INTRODUCTION

containing negative items. Suppose c1=<b ¬c> and c2=<b¬c a> are two

candidates, and s=<b d a c> is a data sequence. c1 is a subsequence of

c2 since c2 has one more element than c1. We can see that s supports c2

but doesn’t support its subsequence c1, which is to say, the candidate c2

could have a greater support value than c1 although c1 is the subsequence of

c2, and so the Apriori principle cannot be adopted to reduce the growth of

candidates in this case.

(5) In PSP mining, there are widely accepted definitions of positive se-

quences and positive patterns. However, this is not the case in NSP-related

work. There is no such a wide recognition of what NSP is. Different

definitions and constraints of NSP can be found in the literature (Hsueh

et al. 2008)(Ouyang & Huang 2007)(Zhao et al. 2008)(Lin et al. 2007). A

more consolidated formalization is certainly important for defining the un-

derlying research issue.

(6) Furthermore, NSP mining has not become as manageable and work-

able as mining for PSP, due to intrinsic complexities. The existing NSP

mining methods calculate the supports of NSC by additional scans of the

database after identifying PSP, which leads to additional costs and results in

low efficiency. It is essential to develop more efficient NSP mining methods

without database re-scanning.

Hence, the above problems make NSP mining as an interesting research

topic and an instructive exercise. Besides, NSP can play a more important

role than PSP in some special applications, like the example of health insur-

ance claim patterns in Section 1.1. Another real application comes from a

previous research project of our lab about government welfare anomaly anal-

ysis (Zhao et al. 2008)(Zhao, Zhang, Cao, Zhang & Bohlscheid 2009)(Zhao,

Zhang, Wu, Pei, Cao, Zhang & Bohlscheid 2009). From this project, we

found that the concept of NSP is very suitable for some business issues. For

example, failing to have a follow-up verification after a customer changes his

address may more likely result in overpayment to the customer. Details and

more application cases are also introduced in Chapter 7.

5

CHAPTER 1. INTRODUCTION

1.3 The Profile of Research Work

Figure 1.1 shows the research profile of the thesis.

Figure 1.1: The Profile of Research Work

1.3.1 Research Introduction

First of all, to learn what kinds of research issues exist in NSP mining and

how much effort has been made in this area are the most important step.

After a comprehensive literature review, we found that only limited research

on NSP mining can be identified in recent years. In the existing work, there

are no general common definitions of NSP since it is hard to have a uniform

formalization either.

6

CHAPTER 1. INTRODUCTION

1.3.2 Research Problem Statement

In PSP mining, there are a set of widely accepted definitions and clear prob-

lem statement about positive sequences and PSP mining. Therefore, we try

to explore different definitions of NSP in existing research and give more

general and formal definitions of NSP in Chapter 3. We bring out a general

framework to describe NSP mining problem in Section 3.5 as well.

1.3.3 NSP Mining Methodologies

After giving formal problem statement of NSP, which represents both the

framework and formal definitions, we propose three algorithms to mine in-

teresting NSP. For each algorithm, detailed description and evaluation are

provided. The evaluation focus on the comparison of their performance with

other existing methods in terms of execution time test, pattern length and

pattern counts test, and scalability test. Since there are few NSP methods

available in existing research work, we can only find those which target at the

research problems similar to our research topic. One of them is called PNSP

(Hsueh et al. 2008). While evaluating the proposed methods, evaluation of

the performance against PNSP is one of our tasks.

When we started this topic, we tried to establish some benchmark al-

gorithms for our research on the topic. After reviewing most of existing

classic PSP mining algorithms, and NSP mining algorithms. We choose PN-

SP (Hsueh et al. 2008), which targets on a similar research issue as ours. GSP

algorithm is one of the most classic PSP mining algorithms, and therefore,

we proposed a new algorithm, Neg-GSP, to mine NSP by extending GSP

algorithm. Since Neg-GSP generates candidates by joining operation, which

is more effective than the method used in PNSP, it can reduce the amount

of invalid candidates to improve the performance.

Since Neg-GSP still generates huge amount of candidates and has to scan

database to calculate support of each candidate, the performance can be

improved further. Two steps could be improved to get better performance.

7

CHAPTER 1. INTRODUCTION

One is to find good NSP more efficiently, and another is to avoid scanning

database when calculating support values of the candidates. Therefore, we

then target on improving the two points.

Since evolution algorithms can find the optimal solutions/patterns by

evolution, such as Genetic Algorithm, good/frequent sequences will be kept

for next generation with higher priority. This feature would enable it to be

much effective in mining either PSP or NSP. Based on this idea, a Genetic

Algorithm based method, GA-NSP, was proposed. Experiments showed it

outperformed Neg-GSP. GA-NSP is described in Chapter 5

At the same time, we tried to find more effective method to calculate

support of candidates without scanning database. Going through a long

way, e-NSP algorithm was proposed. It is based on the Set Theory and

much efficiently in calculating support values of candidates. Chapter 6 has

detailed information for it.

1.3.4 Experiments and Evaluation

For frequent pattern mining, the performance of an algorithm is always af-

fected by the distribution of training dataset. Therefore, we generate syn-

thetic sequence datasets as some of our test datasets by IBM data generator

(Agrawal & Srikant 1995), which provides a function to generate various

distribution datasets by predefined parameters composed of the following

factors, see Table 1.2, and then use those datasets to test the performance

of the proposed algorithms.

1.3.5 Case Studies

Real world applications are always the ultimate targets of data mining. We

applied the NSP mining approach to many real world applications, including

applications in the area of society welfare, health insurance and so on. Using

the proposed NSP algorithms, we designed some solutions to deal with real-

world business issues in an industry research project with a health insurance

8

CHAPTER 1. INTRODUCTION

Table 1.2: Synthetic Dataset Factors

C Average number of elements per sequence

T Average number of items per element

S Average length of maximal potentially large sequences

I Average size of items per element in maximal potentially

large sequences

DB Number of sequences (= size of Database)

N Number of items

company in Australia, where the proposed methods are utilized to detect

ancillary over-services and fraud claims.

1.4 Main Research Objectives

Proposing a general framework to formalize the NSP mining problem and

creating new NSP mining methods are the main objectives in the thesis.

Following are three aspects and ways that we tried to produce effective NSP

mining methods.

• Improve PSP mining algorithms and adapt them for negative condi-

tions;

• Deal with the NSP problem based on some classical data mining and

machine learning methods, such as evolution algorithms, graph and so

on;

• Find deducible theories to identify NSP based on the support informa-

tion of its corresponding PSP.

1.4.1 Improving PSP Mining Algorithm

Some popular algorithms in PSP mining include AprioriAll (Agrawal &

Srikant 1995), GSP (Srikant & Agrawal 1996), PrefixSpan (Pei et al. 2004),

9

CHAPTER 1. INTRODUCTION

SPADE (Zaki 2001), SPAM (Ayres et al. 2002) and so on. NSP mining ex-

tends the concept of PSP mining, making it somehow similar but different to

PSP mining. Improving existing PSP mining algorithms and adapting them

to be suitable for negative conditions is possible. However, while we apply

positive mining algorithm to the negative cases, we need to improve them to

deal with the following challenges:

(1) Negative candidates do not necessarily follow the Apriori principle.

Some algorithms of generating candidates by breath-first search methods,

such as GSP, are not suitable for generating negative candidates.

(2) Due to the vast candidate space, how can we find frequent patterns

efficiently and effectively? The most popular method is to prune unneces-

sary candidates. But the pruning methods of PSP mining cannot deal with

negative conditions if we borrow ideas directly from PSP mining.

Therefore, one objective of the thesis is to improve existing PSP algo-

rithms and to adapt them for negative conditions.

1.4.2 Mining NSP Based on Genetic Algorithms

Besides improving PSP mining algorithms, proposing innovative algorithm

for NSP mining produces much more challenges. The rough idea is to try

some classical data mining and machine learning methods, such as Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), graph theory and so

on, to find NSP.

The motivation is to mine NSP in a more effective search space, rather

than the whole negative search space since the latter contains lots of unnec-

essary candidates.

GA is a good option to choose effective search space since it is efficient

at passing good genes on to next generations and will focus on the space

with good genes. But the issue comes along is that it is hard to find all

the negative patterns because the GA-based method cannot guarantee the

identification of all of them. Therefore, the goal of using GA to find NSP is

to choose an effective search space and to find as many NSP as possible.

10

CHAPTER 1. INTRODUCTION

1.4.3 Mining NSP by Deducible Theories

The typical approach of getting support of NSC is to pass over the whole

dataset which is obviously not efficient enough. We try to find a method to

avoid additional passing over the dataset and therefore reduce execution time

of calculating candidates’ support values. A feasible method is to calculate

supports of negative candidates by only using the support information of the

corresponding PSP, without re-scanning the dataset.

To do that, we need to find the relationship between a negative candidate

and its corresponding PSP, and to create precise deducible theories, or for-

mulas, to calculate the support of a negative candidate based on the support

of its corresponding positive patterns.

1.5 Research Contributions

The contributions of the thesis are:

• A comprehensive literature review of negative frequent pattern mining

is described.

• A general framework of the NSP mining is proposed. It can be used to

describe the big picture of both PSP and NSP mining problems.

• We propose a new algorithm, Neg-GSP, which is based on the GSP

algorithm (Srikant & Agrawal 1996). The original joining and pruning

steps of GSP are also improved to make them work for negative mining

problem.

• A GA-based algorithm, GA-NSP, is proposed to find NSP efficiently. It

obtains new generations by crossover and mutation operations, and uses

dynamic fitness to control population evolution to find as many NSP as

possible. A pruning method is also provided to improve performance.

• An innovative algorithm e-NSP, which can mine NSP by using only its

corresponding PSP information, is proposed. In this way, there is no

11

CHAPTER 1. INTRODUCTION

need to re-scan the database after discovering PSP. Importantly, based

on this strategy, most existing PSP algorithms can then be directly

applied for NSP mining.

• Extensive experiments about the three algorithms on either synthetic

or real-world datasets show that the proposed methods can find NSP

efficiently and effectively.

• Real-world NSP mining applications are described to find over-service

of ancillary services and detect fraud claims in health insurance indus-

try.

1.6 Thesis Organization

This thesis is organized as follows.

Chapter 1 gives an introduction to NSP mining. It describes research

issues, research framework, main research objects and our contributions on

NSP mining.

Chapter 2 talks about the literature review of negative frequent pattern

mining, including positive/negative association rules mining, PSP mining

and NSP mining.

Chapter 3 presents formal and general descriptions of NSP definitions and

a framework of NSP mining problem. Some criteria of negative supporting

and the properties of NSP are defined.

Three innovative NSP mining algorithms, Neg-GSP, GA-NSP and e-NSP,

are then given in Chapters 4, 5 and 6 correspondingly.

Chapter 7 introduces some real-world applications of NSP mining mod-

eling in customer claims dataset of health insurance industry.

Chapter 8 shows the conclusion and future work.

12

Chapter 2

Related Work

The research on NSP mining follows those of PSP mining and negative as-

sociation rules mining. And all of those NSP, PSP and negative association

rules mining can be included in Frequent Pattern Mining. A frequent pattern

is defined as a pattern, which can be a set of items, either with or without

an order, occurs together in a database frequent enough to satisfy a cer-

tain minimum threshold (Han, Cheng, Xin & Yan 2007). Frequent pattern

mining is the key step to find interesting patterns from databases, such as

association rule mining, sequential patterns mining, etc, and is vital in data

mining tasks.

Sequential pattern considers the order of itemsets, but association rule

doesn’t take that into account. For example, given a sequence, such as buy-

ing a desktop first, then an laptop, and then a router, if it occurs frequently

in customers’ shopping history with this special order, it is a (frequent) se-

quential pattern. When a frequent pattern only contains itemsets without

any order, it becomes a classical association rule problem; for example, the

same customer buys desktop, laptop and router without considering their

orders.

13

CHAPTER 2. RELATED WORK

2.1 Positive/Negative Association Rule Min-

ing

2.1.1 (Positive) Association Rule Mining

(Positive) Association rule mining (Agrawal, Imieliński & Swami 1993)(Agrawal

& Srikant 1994) is a commonly used method to generate rules in an unsuper-

vised way. It finds interesting associations and/or correlation relationships

among a large set of data items. The combinations of itemsets that occur fre-

quently will be presented as association rules in the form of “if item/itemset

A, then item/itemset B”. A formal statement of the association rule problem

is given below.

Let I = {I1, I2, . . . , Im} be a set of m distinct attributes, also called

literals. Let D be a data base, where each record T has a unique identifier,

and contains a set of items such that T ⊆ I, an association rule is an impli-

cation of the form X → Y , where X, Y (X,Y ⊂ I) are sets of items called

itemsets, and X ∩ Y = Φ. Here, X is called antecedent, and Y is called

consequent (Agrawal et al. 1993).

In association rule mining, “support” and “confidence” are two measures

to indicate the degree of uncertainty about a rule. Support is simply the

number of transactions that include all items in the antecedent and conse-

quent parts of the rule. Confidence is the ratio of the number of transactions

that include all items in the consequent as well as the antecedent to the

number of transactions that include all items in the antecedent as follows.

The threshold values of support and confidence are usually used for filtering

strong association rules.

Support(A → B) = P (A ∪B) (2.1)

Confidence(A → B) = P (B | A) (2.2)

For example, Buys(x, desktop) → Buys(x, router) [support:70%, confi-

dence:65%] is an association rule, which means buying router with desktop

14

CHAPTER 2. RELATED WORK

is a frequent pattern (if the predefined support threshold is less than 70%).

Support=70% means there are 70% transactions that include both desktop

and router. The confidence value of 65% means 65% of all transactions,

which include desktop, also include router.

The association rule mining algorithms can be generally categorized into

two types: Apriori-based and pattern-growth-based. In the next sections, we

will discuss their concepts, advantages and disadvantages.

Breadth-First/Apriori-based Algorithms

Breath-first algorithms mainly consist of the Apriori algorithm and other

Apriori-based methods. Apriori algorithm is based on the theory of the

Apriori property. It was proposed by (Agrawal et al. 1993) to find frequent

itemsets by generating candidate itemsets.

Apriori property: All nonempty subsets of a frequent itemset must also

be frequent. And, for any infrequent itemset, its superset cannot be frequent.

For example, {a, b, c} is frequent, all of its sub-itemset like {a, c} must also

be frequent. If {b, c} is infrequent, {a, b, c} isn’t frequent.

Based on this idea, the Apriori algorithm executes a breadth-first search

through the data set of all itemsets. It starts from 1-item candidates at the

very beginning, and then generates candidate itemsets Ck+1 of size k + 1 by

the patterns of size k iteratively. The Apriori procedure basically performs

two phrases of actions: joining and pruning. In the joining phrase, patterns

with k size, denoted by Lk, is joined with itself to generate potential candi-

dates Ck+1. And then, in the pruning phase, all candidates which have one or

more infrequent subsets should be pruned according to the Apriori property.

However, looking for candidates in each iteration is very time-consuming

especially when the pattern set is huge. Some Apriori-base methods are pro-

posed to improve its performance. (Agrawal & Srikant 1994) introduced a

hash tree structure in 1994. The items in each transaction are sorted de-

scendly in the hash tree. When it reaches one of its leaves, a candidate

set, members of which share a common prefix, can be found easily. Then

15

CHAPTER 2. RELATED WORK

only these candidates are joined for generating new candidates. Besides,

(Sarracco 2003) summarized that partitioning (partitioning the data to find

candidate itemsets) (Savasere, Omiecinski & Navathe 1995), transaction re-

duction (reducing the number of transactions to be scanned in future iter-

ations), dynamic itemset counting (adding candidate itemsets at different

points during a scan), and sampling (mining on a subset of the given data)

also help to improve the performance of Apriori.

Breath-first-search-based algorithms typically have to scan the source

database many times. Since it usually determines the support values of

all (k-1)-item candidates before counting the support values of the k-item

candidates. It must scan the source database once for each candidate.

Depth-First/Pattern-growth-based Algorithms

Another group of algorithms find frequent itemsets by the depth-first method,

such as ECLAT (Zaki, Parthasarathy, Ogihara & Li 1997) and FP-Growth

Algorithm (Han, Pei & Yin 2000).

FP-Growth uses a combination of the vertical and horizontal database

layout to store the database in main memory. In a preprocessing step, FP-

Growth derives a highly condensed tree, which is called FP-tree, to store the

transactional data in main memory. Every item has a head list to link all

transactions that contain that item. The generation of the FP-tree is done

by counting occurrences and directly descending to some part of the itemsets

in the search space. After the FP-tree is constructed, FP-Growth uses it to

derive the support values of all frequent itemsets.

Both the Apriori and FP-Growth methods mine frequent patterns from

a set of transactions in TID-itemset formats, where TID is a transaction-id

and itemset is the set of items bought in the transaction with TID, known

as horizontal data format.

ECLAT uses an item-TID set format, that is a vertical data format

instead. ECLAT does not know all frequent itemsets at a level before starting

the computation of the candidates at the next level. It combines depth-

16

CHAPTER 2. RELATED WORK

Figure 2.1: Systematization of Association Rule Mining

first search with TID list intersections, and recursively generates all item-

sets with the same prefix using vertical database layout. ECLAT employs

an optimization called “fast intersections”. Whenever two TID Lists are

intersected, the resulting TID List is interesting only if its cardinality reaches

the threshold of minimum support min sup. In other words, we should

break off each intersection as soon as we are sure that it will not satisfy this

threshold (Hipp, Güntzer & Nakhaeizadeh 2000).

Depth-first search will improve the memory utilization by maintaining

fewer candidates and is more efficient than breath-first search while dealing

with middle-size data set. Comparing with the depth-first algorithm, the

breadth-first algorithm is less efficient but more scalable.

(Hipp et al. 2000) proposed a systematization of the above algorithms,

see Figure 2.1.

2.1.2 Negative Association Rule Mining

After traditional association rule mining was proposed, some research work

started to look at negative association rules mining. Earlier research in this

area mostly focused on mining unexpected rules (Padmanabhan & Tuzhilin

17

CHAPTER 2. RELATED WORK

1998) (Padmanabhan & Tuzhilin 2000) and exceptional rules (Suzuki &

Shimura 1996) (Suzuki 1997) (Hussain, Liu, Suzuki & Lu 2000). They tar-

geted at finding surprising patterns which show big difference from normal

facts, which are also obtained from a model. For example, (Padmanabhan

& Tuzhilin 1998) found an unexpected rule “in December, professionals shop

more on weekdays than on weekends”, which is different from a normal fact

rule “professionals always shop on weekends”.

In the literature, (Brin, Motwani & Silverstein 1997) was published in

1997 and is the earliest work in negative association rules mining to the best

of our knowledge. It considered both absence and presence of items and used

chi-square test to search correlation rules.

(Savasere, Omiecinski & Navathe 1998) proposed a method to find strong

negative association rules by putting emphasis on domain knowledge, and

defining strong negative association rules to limit search space to an ac-

cepted level and adding constraints. In a word, it tries to find the most

interesting rules in a constrained search space. The constraints consider hi-

erarchies of itemsets and their taxonomy. For example, bottled water (BW)

and frozen yogurt (FY) are two types of itemsets. Let BW1 and BW2 be

two brands of bottled water, and FY1 and FY2 be two brands of frozen yo-

gurt. Suppose the support of BW is 20000; FY is 30000, and support of BW

& FY is 15000, BW1 is 5000, BW2 is 10000, FY1 is 20000, FY2 is 10000,

then the expected support of BW1 & FY1 is as follows.

esup(BW1&FY1)

= sup(BW&FY)× sup(BW1)

sup(BW)
× sup(FY1)

sup(FY)

= 15000× 5000

20000
× 20000

30000
= 2500

In the equation, sup(BW&FY) equals to 15000. That means the num-

18

CHAPTER 2. RELATED WORK

ber of clients who bought both bottle water (BW) and frozen yogurt (FY) is

15000. Among those clients, expected probability ofBW1 is sup(BW1)/sup(BW),

and expected probability of FY1 is sup(FY1)/sup(FY). Having all those, the

above equation can then get the expected probability of BW1 & FY1.

If (esup(BW1&FY1)−sup(BW1&FY1)) / sup(BW1) < min RI, where

min RI is a predefined threshold, BW1 → ¬FY1 is then an interesting neg-

ative rule.

(Wu, Zhang & Zhang 2004) and (Wu, Zhang & Zhang 2002) proposed a

method for mining both positive and negative association rules. A rule fol-

lows one of the following formats: <A→B>, <A→¬B>, <¬A→B>, <¬A→
¬B>. In the publications, they focused on infrequent itemsets as well as fre-

quent ones. Frequent and infrequent itemsets of potential interest were de-

fined. They argued that a rule <X→Y> is not interesting if supp(X ∪ Y) ≈
supp(X)× supp(Y). And it required that interest(X,¬Y) should be greater

than a theresholdmi if <X→¬Y> is an interesting negative association rules,

which made the search space shrink significantly.

(Antonie & Zäıane 2004) also proposed an approach to mine both positive

and negative association rules. It defined new interestingness different from

the traditional support-confidence framework. And the approach can find

confined negative association rules with strong negative correlation between

X and Y in formats as < ¬X → Y >, < X → ¬Y >, < ¬X → ¬Y >.

(Teng, Hsieh & Chen 2002) proposed a method named SRM (substitution

rule mining) to mine negative association rules in the format of < X →
¬Y >. It can be used to find what kinds of X can be a substitute for Y . A

negative rule is defined as a substitution rule if < X → ¬Y > exists and X

and Y have strong negative correlation. Here X and Y are concrete itemsets,

which is verified by chi-square to see their dependency.

Mining negative association rules is a very challenging problem (Jean-

Francois Boulicaut & Jeudy 2000). Boulicaut and Jeudy advised three pos-

sible approaches to deal with the negative problem. The first is a naive

approach, which use both positive and negative itemsets directly and tra-

19

CHAPTER 2. RELATED WORK

ditional association rules mining algorithms, like Apriori, to mine negative

association rules. The second one is to derive negative association rules using

only the information of positive rules. The third method is to use constraints

to define interesting rules, and therefore reduce the search space, which is

similar to the case that Apriori uses support as a constraint. The last one,

which is to define interestingness, seems the most popular measures to deal

with the problem. Interestingness is different from pure support-confidence

measures, and many kinds of measures of interestingness have been proposed

(Wu et al. 2004) (Antonie & Zäıane 2004) (Brin et al. 1997).

Besides the above three types of methods, some other methods are pro-

posed, such as (Alata & Akin 2006) (Ouyang 2009). (Alata & Akin 2006)

used Genetic Algorithm for mining negative quantitative association rules.

It proposed a method using Genetic Algorithm to generate uniform initial

population, and used an adaptive mutation probability and an adjusted fit-

ness function, to mine negative quantitative association rule. (Ouyang 2009)

used the fuzzy set theory to mine both positive and negative fuzzy association

rules.

2.2 Sequential Pattern Mining

Frequent sequential pattern discovery can essentially be thought of as asso-

ciation rule discovery over a temporal database (Mabroukeh & Ezeife 2010).

While association rule mining only considers frequent itemsets, without con-

sidering their orders, sequential pattern mining also discovers frequent or-

dered items/itemsets, such that the presence of a set of items is followed by

another item in a time-ordered set of transactions.

Sequential pattern mining is an essential task in sequence data mining.

It targets at finding frequent patterns among sequence database. The con-

cept of discovering sequential patterns was first introduced in 1995 (Agrawal

& Srikant 1995), and AprioriAll (Agrawal & Srikant 1995) algorithm was

brought out at that work. After that, PrefixSpan (Pei et al. 2004) and GSP

20

CHAPTER 2. RELATED WORK

Figure 2.2: Association Rule And Sequential Pattern Mining Algorithms

(Srikant & Agrawal 1996) algorithms were proposed for sequential pattern

mining. GSP and AprioriAll are Apriori-like methods that are based on

breath-first search methods, while PrefixSpan is based on pattern growth.

Other new methods such as SPAM (Ayres et al. 2002) are also popularly

used at present.

2.2.1 Sequential Pattern Mining Algorithms

Many sequential pattern mining algorithms borrow and extend ideas from

association rule algorithms, such as AprioriAll (Agrawal & Srikant 1995),

GSP (Srikant & Agrawal 1996), PrefixSpan (Pei et al. 2004) and so on.

Their relationships are demonstrated in Figure 2.2.

21

CHAPTER 2. RELATED WORK

Apriori-Based Algorithms

AprioriAll (Agrawal & Srikant 1995) is a three-phase algorithm. Firstly,

it finds all frequent itemsets, of which the support value is greater than a

user-defined threshold - minimum support. In the second phase, it replaces

each records in source database with the frequent itemsets contained by it.

By doing that, it transforms source database to a new database. The last

step is to identify sequential patterns in the new database. GSP (Generalized

Sequential Patterns) (Srikant & Agrawal 1996) is a sequential pattern mining

method that was developed by Srikant and Agrawal in 1996 and has been

very popular since then. It is an extension of Apriori algorithm(Agrawal

et al. 1993) for sequence mining. GSP uses a “Generating-Pruning” method

and makes multiple passes over the data to find frequent sequences. GSP

algorithm is very popular in sequential pattern mining. It makes multiple

passes over the datasets. The first pass determines the support of each single

item, and at the end of that pass, we will get all 1-item frequent sequences.

Then those 1-item frequent sequences will be regarded as the seed set to

generate candidate sequences for the next pass. Each candidate will have

one more item than its seed sequence. And then, infrequent candidates are

pruned without pass over the datasets. After getting new candidates, it

passes over the data sets and get support of the new candidates. At the end

of the pass, the algorithm identifies the frequent sequences from candidates.

These frequent candidates become the seed for the next pass. The algorithm

terminates when there are no more frequent sequences at the end of a pass,

or when no candidate sequence is generated. Some other algorithms, such as

AGM (Inokuchi, Washio & Motoda 2000), FSG (Kuramochi & Karypis 2001)

and PSP (Masseglia, P. & Cicchetti 2000), also belongs to Apriori-based

algorithms (Han et al. 2007)(Mabroukeh & Ezeife 2010).

Pattern-Growth Based Algorithms

The Apriori-like sequential pattern mining methods could generated a huge

set of candidates in a large sequence database, and could scan databases

22

CHAPTER 2. RELATED WORK

many times in training. It encounters difficulty when mining long sequential

patterns. FreeSpan was proposed in (Han, Pei, Mortazavi-Asl, Chen, Dayal

& Hsu 2000). Its general idea is to use frequent items to recursively project

sequence databases into a set of smaller projected databases and grow sub-

sequence fragments in each projected database. This process partitions both

the data and the set of frequent patterns to be tested, and confines each

test being conducted to the corresponding smaller projected database. Since

FreeSpan reduce the expensive candidate generation and test substantially,

it outperforms Apriori-based GSP algorithm considerably. PrefixSpan (Pei

et al. 2004) is a depth-first algorithm that extends the pattern-growth ap-

proach for frequent pattern mining. It starts from frequent items with 1-item

of the database, and then generates projected databases with their projec-

tion on the remaining data-sequences. The projected databases thus contain

suffixes of the data-sequences from the original database, grouped by prefix-

es. The process is recursively repeated until no frequent item is found in the

projected database.

Some other algorithms, such as gSpan (Yan & Han 2002), SPIN(Huan,

Wang, Prins & Yang 2004), WAP-mine (Pei, Han, Mortazavi-asl & Zhu

2000), FS-Miner (El-Sayed, Ruiz & Rundensteiner 2004) and so on, are also

mentioned as pattern-growth-based algorithms (Han et al. 2007)(Mabroukeh

& Ezeife 2010).

Hybrid Algorithms

SPADE (Sequential PAttern Discovery using Equivalent classes) (Zaki 2001)

is an Apriori-based sequential pattern mining algorithm that uses vertical

data format. The main idea of SPADE is to cluster frequent sequences based

on their common prefixes and enumerate the candidate sequences according-

ly. By using a vertical data format with the creation of ID lists, SPADE

reduces the number of scans of the sequence database. SPAM (Sequential

PAttern Mining (Ayres et al. 2002)) algorithm combines the idea of the depth-

first search, pattern-growth and pruning methods. The transactional data is

23

CHAPTER 2. RELATED WORK

stored using a vertical bitmap representation, which allows for efficient sup-

port counting as well as significant bitmap compression. Using this kind of

data structure, it achieves a high performance. A depth-first search strategy

is used to generate candidate sequences, and various pruning mechanisms

are implemented to reduce the search space. The integrated efficient pruning

and indexing techniques enable the discovery of frequent patterns and are e-

specially efficient when the sequential patterns in the database are very long.

DISC-all (DIrect Sequence Comparison) (Chiu, Wu & Chen 2004) uses a new

strategy to find frequent sequences without having to compute the support

counts of non-frequent sequences. The main difference between the DISC

strategy and Apriori-based methods is the way to prune non-frequent se-

quences. Apriori-based methods prune the non-frequent sequences according

to the frequent sequences with shorter lengths. On the contrary, the DISC

strategy prunes the non-frequent sequences according to the other sequences

with the same length. It claimed that it can outperforms the PrefixSpan

algorithm on mining in large databases (Chiu et al. 2004). LAPIN (LAst

Position INduction) (Yang, Wang & Kitsuregawa 2007) is based on the ideas

that the last position of an item is the key to judge whether or not a frequent

k-length sequential pattern can be extended to be a frequent (k+1)-length

pattern by appending the item to it. It can largely reduce the search space

during the mining process, and is very effective in mining dense datasets. It

claimed that it outperforms PrefixSpan on long pattern dense datasets.

2.2.2 Comparison & Computational Complexity Anal-

ysis

Comparing GSP with AprioriAll, the latter costs much more execution time

in transforming the database and is not suitable for large data set since it

needs to store the transformed database in memory. GSP algorithm generates

fewer candidates than AprioriAll, so it is many times more efficient than

AprioriAll. Although GSP could reduce the search space, it typically needs to

pass over the database for multiple times, and suffers from generating a huge

24

CHAPTER 2. RELATED WORK

set of candidate sequences, especially when mining long sequences. In another

word, GSP spends lots of execution time in passing over database. The

basic search methodology of SPADE and GSP is breadth first and Apriori

pruning. Despite the pruning, both algorithms have to generate large sets of

candidates. PrefixSpan is more efficient than GSP and AprioriAll.

It is not easy to determine the computational complexity of the algorithms

since some of them have problems when the sequence database is large or

the sequential patterns to be mined are numerous and/or long (Scime 2004).

(Dong 2009) gave some explanation of computational complexity analysis

for frequent sequential pattern mining. Theoretically, the problem of mining

the complete set of sequential patterns is #P-complete 1. Therefore, it is

impossible to have a polynomial time algorithm unless P=NP. Even if P=NP,

it is still unclear whether a polynomial time algorithm exists.

(Dong 2009) gave the computational complexity analysis of PrefixSpan as

well. The major cost of PrefixSpan is the construction of projected databas-

es. In the worst case, PrefixSpan constructs a projected database for every

sequential pattern. If there do exist a good number of sequential patterns, the

cost is non-trivial. Interestingly, we can show that the PrefixSpan algorithm

is pseudo-polynomial. That is, the complexity of PrefixSpan is linear with

respect to the number of sequential patterns, since each projection generates

at least one sequential pattern, and the projection cost is upper bounded by

the time of scanning the database once, and counting frequent items in the

suffixes. Therefore, the computational complexity of PrefixSpan is O(K) (K

is the number of sequential patterns).

1#P-complete is a complexity class in computational complexity theory. A problem is

#P-complete if and only if it is in #P, and every problem in #P can be reduced to it by a

polynomial-time counting reduction, i.e. a polynomial-time Turing reduction relating the

cardinalities of solution sets. (http://en.wikipedia.org/wiki/Sharp-P-complete 2012)

25

CHAPTER 2. RELATED WORK

2.3 Negative Sequential Pattern Mining

2.3.1 PSP Mining Algorithms in NSP Mining Problem

However, the existing PSP mining algorithms, which were described in the

above, are not suitable for NSP mining problem.

Firstly, down-closure property does not work in negative problems, which

means that a sequence may still frequent if some of its subsequences are infre-

quent. More details and example are described in Section 3.4.3. Therefore,

any of Apriori-based PSP mining algorithms can not deal with the negative

mining problem.

Secondly, pattern-growth based methods does not work either. PrefixS-

pan is a good example, since the projected database of a node is not able to

transfer all of the data sequences which support its child-nodes in negative

pattern mining.

2.3.2 State-of-the-art Algorithms

Unlike PSP mining and negative association rule mining, there is very lim-

ited research work available in the literature on mining NSP. We will briefly

introduce what we have identified.

The previous research work mainly focused on PSP mining. However, it is

increasingly recognized that NSP, which are composed of both occurring and

non-occurring items (Hsueh et al. 2008)(Lin et al. 2007)(Ouyang & Huang

2007)(Zheng et al. 2010)(Dong et al. 2011), can play an important role in

deeply understanding and tackling many business problems. NSP focus on

negative relationships between itemsets, in which, non-occurring items are

taken into consideration. More formal definitions of NSP mining problem

are described in Chapter 3.

Zhao et al. (Zhao et al. 2008) proposed an approach to mining event-

oriented negative sequential rules from infrequent sequences. They derived

equations to calculate supports, confidences and lifts of negative sequential

26

CHAPTER 2. RELATED WORK

rules, and proposed an algorithm based on SPAM (Ayres et al. 2002). How-

ever the identified rules were limited to formats of <A→¬B>, <¬A→B>

and <¬A→¬B>. They further presented an approach to discover both posi-

tive and negative impact-oriented sequential rules (Zhao, Zhang, Cao, Zhang

& Bohlscheid 2009). Their work mainly mines negative sequential rules from

frequent and infrequent positive patterns, and does not exactly involve NSP

mining.

Ouyang & Huang (Ouyang & Huang 2007) extended traditional sequen-

tial pattern definition <A B> to include negative elements such as <¬A B>,

<A ¬B> and <¬A ¬B>, which were similar to (Zhao et al. 2008). They put

forward an algorithm which finds both frequent and infrequent sequences. It

generates frequent itemsets first, then generates frequent and infrequent se-

quences, and finally obtains NSP from infrequent sequences. A drawback of

the algorithm is that a large amount of space is required in order to find both

frequent and infrequent sequences.

Nancy et al. (Lin et al. 2007) designed an algorithm PNSPM (Positive

and Negative Sequential Pattern Mining) for mining NSP. They applied the

Apriori principle to prune redundant candidates. They extracted meaningful

negative sequences using the interestingness measure; nevertheless the above

works defined some limited NSP, which are not general enough. According

to their pattern definition, all elements must be positive except for the last

one.

Sue-Chen et al.(Hsueh et al. 2008) proposed an algorithm called PNSP

(Positive and Negative sequential pattern mining) for mining PSP and NSP

in the form of <(abc) ¬(de)(ijk) >. They presented more comprehensive

and more general definitions about NSP and extended GSP algorithm to

deal with the NSP mining problem. Two concepts called n-cover and n-

contain were employed to guide the method. It was claimed that if a n-cover

value of a candidate was less than the predefined threshold min support, any

of its super-sequence was not going to be frequent and so the searching of

candidate could be ended. They also proposed some constraints for NSP,

27

CHAPTER 2. RELATED WORK

e.g., a valid negative sequence should not include contiguous non-occurring

elements and data sequence sd can’t contain negative sequence sn if the size

of sn is more than the size of sd, and an itemset must be frequent positively

to make a valid negative itemset.

PNSP is broken into three stages. 1) PSP are mined by traditional algo-

rithms and all positive itemsets are derived from these PSP; 2) All negative

itemsets are derived from these positive itemsets; 3). Finally, both positive

and negative itemsets are joined to generate NSC, which are in turn joined

iteratively to generate longer NSC in an Apriori-like way.

This approach calculated the support of NSC by additional scanning of

the database again. When it generated NSC in the appending step, it pro-

duced a lot of unnecessary candidates. And also, we found out it may miss

out some candidates.

Ouyang et al.(Ouyang, Huang & Luo 2008) presented the definitions of

three types of negative fuzzy sequential patterns: <a ¬b>, <¬a b> and

<¬a ¬b>, and then described a method for mining native fuzzy sequential

patterns from quantitative valued transactions.

2.4 Summary and Conclusion

Sequential pattern mining and association rule mining both belong to fre-

quent pattern mining. The difference between them is that the former consid-

ers order but the latter doesn’t consider it. NSP mining extends the research

work of sequential pattern mining and negative association rule mining.

The association rule mining algorithms can be generally categorized in-

to two categories: Apriori-based algorithms and pattern-growth based algo-

rithms. Apriori(Agrawal et al. 1993) is an Apriori-based and classical breath-

first search algorithm. FP-Growth(Han, Pei & Yin 2000) and ECLAT (Zaki

et al. 1997) propose two popular pattern-growth based algorithms.

Negative association rule mining was firstly proposed in 1996 (Brin et al.

1997), and earlier researches in this area mostly focus on mining unexpected

28

CHAPTER 2. RELATED WORK

rules (Padmanabhan & Tuzhilin 1998) (Padmanabhan & Tuzhilin 2000) and

exceptional rules (Suzuki & Shimura 1996) (Suzuki 1997) (Hussain et al.

2000). Mining negative association rule is a very challenging problem (Jean-

Francois Boulicaut & Jeudy 2000).

Sequential pattern mining is more complex than association rule min-

ing since it considers orders of itemsets. Many classical algorithms, such as

(Srikant & Agrawal 1996)(Pei et al. 2004)(Zaki 2001), have been proposed

after sequential pattern mining was firstly introduced in 1995 (Agrawal &

Srikant 1995). Existing sequential pattern mining algorithms can be cat-

egorized into three representative types, Apriori-based (Agrawal & Srikant

1995)(Srikant & Agrawal 1996)(Inokuchi et al. 2000)(Kuramochi & Karypis

2001)(Masseglia et al. 2000), pattern-growth based (Han, Pei, Mortazavi-

Asl, Chen, Dayal & Hsu 2000)(Pei et al. 2004)(Yan & Han 2002)(Huan

et al. 2004)(Pei et al. 2000)(El-Sayed et al. 2004) and hybrid methods (Zaki

2001)(Ayres et al. 2002)(Chiu et al. 2004)(Yang et al. 2007).

NSP mining considers non-occurring itemsets, which make the search

space much bigger than traditional PSP mining. A few NSP mining methods

(Ouyang & Huang 2007)(Lin et al. 2007)(Hsueh et al. 2008)(Zheng et al.

2009)(Dong et al. 2011) are available in the area.

The conclusions from the above literature review include:

• Pattern-growth based methods improve the memory utilization by main-

taining fewer candidates and is more efficient than Apriori-based meth-

ods generally.

• NSP mining is a very challenge problem, with few literatures since it is

a quite new topic. To the best of our knowledge, the NSP mining was

firstly proposed in 2007 (Ouyang & Huang 2007)(Lin et al. 2007), and

there are just few in literature talking about the problem so far, even

if we include some papers which proposed for mining strong-constraint

negative patterns.

• Boulicaut etc. (Jean-Francois Boulicaut & Jeudy 2000) advised three

29

CHAPTER 2. RELATED WORK

possible approaches to deal with negative association rule mining prob-

lem. The first option uses both positive and negative itemsets directly

and adapts traditional association rules mining algorithms to mining

negative association rule. The second one is to derive negative asso-

ciation rules using only the information of positive rules. The third

method is to use constraints to define interesting rules, and therefore

reduce search space. These three possible approaches are also taken

into consideration when we try to solve NSP mining problem in this

thesis.

30

Chapter 3

Problem Statement

Traditional frequent sequential pattern mining has a common recognized

problem statement, which is to find frequent sequential patterns on a se-

quence database by a given threshold. Accordingly, three essential concepts:

sequence database, sequential patterns and supporting, have been defined

very clear. Source transaction database is called sequence database, and

each sequence in it is called a data sequence. A potential frequent pattern

is called a candidate (sequence). If a candidate has higher support value

than the threshold, it becomes a pattern. The support value of a candi-

date is counted according to how many data sequences in sequence database

contain the candidate.

But it has much more complex descriptions in NSP mining problem.

Firstly, when negative items are taken into consideration, the amount of

candidates will increase greatly. Therefore, all existing research work on NSP

mining targets on interesting candidates only, which follow some different and

special constraints.The constraints of negative candidates are very important

to the topic.

Secondly, how to define supporting is another important issue, since d-

ifferent definitions of supporting may need different methodologies to solve

them. When we verify supporting in positive problem, we only need to match

items one by one between a data sequence and a candidate. But in negative

31

CHAPTER 3. PROBLEM STATEMENT

case, either matching positive item firstly, or negative item firstly, or just one

by one by order, as what positive mining does, is not an easy job to describe

and define formally. How to define supporting is a challenge in NSP mining

problem.

Finally, PSP mining problem should be a sub-area of NSP mining prob-

lem, because NSP considers not only positive items, but also negative items.

How to make PSP mining and NSP mining problems be compatible in a

higher level?

Based on the above issues, some essential definitions should be given to

make the problem clearer:

• Basic definitions of sequential pattern mining;

• The constraints of negative candidates;

• Criteria of supporting, which includes positive-first, negative-first and

order-first supporting;

• Reconstructing data sequence and candidate sequence, to make NSP

mining and PSP mining problem to be compatible in a general frame-

work.

3.1 Basic Definitions

3.1.1 Positive/Negative Sequence

Definition 1: Item, Element and Sequence

Let I be a set of items, i.e. {x1, x2, . . ., xn}, which represents both positive

items I+ and negative items I−, I=I+∪I−. An itemset is a subset of I. A

sequence s is an ordered list of itemsets, denoted by <e1 e2 . . . el>, where

ej (16j6l) is an itemset. ej is also called an element of the sequence, and

denoted as (i1i2. . .im), where ik is an item, ik∈I (16k6m). For simplicity, the

brackets around an element are omitted if it only has one item, i.e., element

32

CHAPTER 3. PROBLEM STATEMENT

ej=(i) is coded as ej=i. An item is only allowed to occur at most once

in one element, but can occur multiple times in several different elements

of a sequence. Items in the same element are at same level, and the order

is not significant among them. Usually we sort them by alphabetically. For

example, < (ab) c > equals to < (ba) c > since a and b are in the same itemset

and their order is not significant. Usually we just present it as < (ab) c >.

If an element e is composed of positive items only, it is called a positive

element ; if it is composed of negative items only, it is called a negative ele-

ment ; if both positive and negative items are included, the element is called

a mixed element.

Note: 1) We always treat mixed elements as negative elements when there

are not any special statements. 2) A negative element with more than one

item is sometimes represented by a brief format, for example, a negative

element (¬a¬b¬c) could be represented by ¬(abc).
If a sequence s is only composed of positive items, it is called a positive

sequence. Otherwise, if it includes at least one negative item, it is called a

negative sequence.

Example 1 . Given a set of items I, where I=I+∪I−, I+={a, b, c}, and
I−={¬a, ¬b, ¬c}, we say that s1=<(ab) c a> is a positive sequence and

s2=<(ab) ¬c a> is a negative sequence.

Definition 2: Length and Size of A Sequence

The length of sequence s, denoted as length(s), is the total number of items in

all elements in s. s is a k-length sequence or k-item sequence if length(s)=k.

The size of sequence s, denoted as size(s), is the total number of elements

in s. s is a k-size or k-element sequence if size(s)=k.

Example 2 . Sequence s2=<(ab) ¬c a> is composed of 3 elements (ab),

¬c and a, or 4 items a, b, ¬c and a. s is a 4-length (4-item) and 3-size

(3-element) sequence.

33

CHAPTER 3. PROBLEM STATEMENT

Definition 3: Subsequence

Sequence sα=<α1 α2 . . . αn> is called a subsequence of sequence sβ=<β1 β2

. . . βm> and sβ is a super sequence of sα, denoted as sα⊆sβ. If for each ele-

ment αi (16i6n) in sα, there exists ji such that αi⊆βji , and 16j1<j2<. . .<jn

6m, also say that sβ contains sα.

Example 3 . <a>, <¬c>, <b ¬c> and <(ab) a> are all subsequences

of <(ab) ¬c a>. <a ¬b> is a subsequence of <a (¬b¬c)>.

Definition 4: Maximum Positive Subsequence

Let sα be a positive sequence and sβ be either a positive or a negative se-

quence, sα is a maximum positive subsequence of sβ, if:

(1) sα is a subsequence of sβ, and

(2) sα includes all positive elements of sβ.

It is denoted by sα=MPS(sβ).

Example 4 . <a b f> is the maximum positive subsequence of <a b

¬c f> and <a b (¬c¬d) f>. For a positive sequence, its maximum positive

subsequence is itself.

Definition 5. 1-neg-size Maximum Subsequence

For a negative sequence s=<e1 e2 . . . el>, its subsequence that includes

MPS(s) and only one more negative element e than MPS(s) is called a

1-neg-size maximum subsequence, denoted as 1-negMS. It is a subsequence

of s which is composed of all positive elements and one negative element.

The subsequence set including all 1-neg-size maximum subsequences of s is

called 1-neg-size maximum subsequence set, denoted as 1-negMSSs.

Example 5.1 . Given s=<(¬a¬b) c ¬d>, <(¬a¬b) c> and <c ¬d>
are 1-negMS of s, its 1-neg-size maximum subsequence set is 1-negMSSs=

{<(¬a¬b) c>, <c ¬d>};
Example 5.2 . Given s’=<¬a (bc) d (¬c¬d¬e)>, <¬a (bc) d> and

<(bc) d (¬c¬d¬e)> are 1-negMS of s′, its 1-neg-size maximum subsequence

34

CHAPTER 3. PROBLEM STATEMENT

set is 1-negMSSs′={<¬a (bc) d>, <(bc) d (¬c¬d¬e)>}.

Definition 6. Reverse Partner

The reverse partner of a positive element e is ¬e, the reverse partner of a

negative element ¬e is e, denoted as RP(e)=¬e and RP(¬e)=e .

The reverse partner of a sequence s=<e1. . .el> is to change all elements in

s to their corresponding reverse partners, denoted asRP (s), i.e., RP(s)={<e′1

. . . e′l>| e′i=RP(ei), ei∈s}.
Example 6 . RP(<(¬a¬b) c ¬d>)=<(ab) ¬c d>.

3.1.2 Data Sequence & Candidate Sequence

Definition 7: Data Sequence

A sequence database D is the source dataset for model training, denoted as

a set of tuples [sid, sd], where sid is a sequence id and sd is a data sequence.

Sequence database only contains positive data sequences, and normally there

are not any negative data sequences in it.

Definition 8: Candidate Sequence

A sequence proposed to be a potential pattern is called candidate sequence.

A candidate sequence could be either positive or negative.

3.2 Constraints of Positive/Negative Candi-

dates

It is too costly and infeasible to talk NSP mining without any constraints,

since the search space is simply too huge and most identified patterns based

on free combinations are meaningless. In practice, constraints have to be con-

sidered, as shown in all available references (Ouyang & Huang 2007)(Hsueh

et al. 2008)(Dong et al. 2011)(Lin et al. 2007).

35

CHAPTER 3. PROBLEM STATEMENT

There are many kinds of constraints for negative candidates in existing

research works. For example, (Ouyang & Huang 2007) proposed NSP by the

format of <A ¬B>, <¬A B> and <¬A ¬B>, where A and B are positive

frequent subsequence and A∩B=∅. (Lin et al. 2007) only focuses on NSP

which has a negative item at the end of each pattern, like <c1 c2 . . . ¬cm>,

where ci (16i6m) is a positive item.

Different constraints could make different definition of NSP, so as to dif-

ferent support calculating methods and different heuristic pruning measures.

Some common constraints, which is popularly used in other research works,

are listed as following.

Candidate Constraint 1: To Be Positive Frequent

For each negative item in a NSP, its corresponding positive item is required

to be frequent. For example, (¬i) is an interesting negative item if its positive

item (i) is frequent.

The reason is that we are always interested in non-occurrences of frequent

positive items. It is helpful for us to avoid searching in the unnecessary

search space. This constraint is the most popular and valuable one (Ouyang

& Huang 2007)(Lin et al. 2007)(Hsueh et al. 2008)(Zheng et al. 2009).

Besides the above common constraint, we list some other constraints on

interesting NSP from existing research work.

Candidate Constraint 2: Format Constraints

(1) Two or more adjacent negative elements are not accepted in a negative

sequence.

Example 7 . <(¬a¬b) c ¬d> satisfies the constraint, but <(¬a¬b) ¬c
d> does not since (¬a¬b) and ¬c are two adjacent negative elements.

This constraint is used by many researchers (Hsueh et al. 2008)(Zheng

et al. 2009)(Dong et al. 2011).

(2) Only special parts of elements in the sequence can be negative.

36

CHAPTER 3. PROBLEM STATEMENT

(Ouyang & Huang 2007) only accepted a negative candidate with the last

part of it being negative. For example, <(ab) ¬c ¬d> was accepted. (Lin

et al. 2007) had a more strict constraints and proposed that only the last

element of a negative candidate can be negative, such as <(ab) c ¬d>.

3.3 Reconstruct Data Sequence

Based on the definition of positive sequence, we added negative items to

the definition of negative sequence. A negative item x represents that its

reverse partner RP (x) did not occur, that is to say, it can cover all the other

positive items except RP (x). For example, following the Example 1, given

the whole positive items set I+={a, b, c} and a negative item x = (¬a). x

means that positive item a can not occur, but the other positive items can

occur. Therefore, given a negative item x = (¬a), it can also be described

by x′ = (b or c).

On the other side, a positive item x = (a) represents positive item a

occur, that is to say, the other items did not occur. For example, given the

whole positive items set I+={a, b, c} and positive item x = (a). x means

that positive item a occurred, but the other two positive items, b or c did

not occur. Therefore, given a positive item x = (a), it can also be described

by x′ = (¬b and ¬c).
In the above two examples, x′ is called the equivalent item of x.

Definition 9: Equivalent Element

If an element e has the same meaning and coverage as another element e′, e

and e′ are called equivalent elements. We say e is an equivalent element of

e′, or e′ is an equivalent element of e, denoted by e≡e’, or e’=EE(e). If e is

not an equivalent element of e′, it is denoted by e̸≡e’.

Example 8 . Given a set of items I={a, b, c, d, ¬a, ¬b, ¬c, ¬d} and

an element e=(ab), its equivalent elements could be (ab), (ab¬c), (ab¬d),
(¬c¬d) and (ab¬c¬d).

37

CHAPTER 3. PROBLEM STATEMENT

Table 3.1: Example of Maximum Equivalent Sequence

Sequence Element1 Element2 Element3

s=<(ab) c a> (ab) c a

MES(s)=<(ab¬c) (¬a¬bc) (a¬b¬c)> (ab¬c) (¬a¬bc) (a¬b¬c)

Definition 10: Maximum Equivalent Element

Given two elements e and e′, e≡e’, if there are not any other equivalent

elements of e that have more items than e′, we call e′ the maximum equivalent

element of e, denoted by e’=MEE(e).

Example 9 . Following Example 8, (ab¬c¬d) is the maximum equivalent

element of e.

Definition 11: Maximum Equivalent Sequence

Given two sequences s=<e1 e2 . . . el> and s’=<e′1 e
′
2 . . . e

′
l>, if ∀m (0<m6l),

e′m=MEE(em), s
′ is the maximum equivalent sequence of s, denoted by s’=

MES(s).

Example 10 . Given a set of items I, where I=I+∪I−, I+={a, b, c},
and I−={¬a, ¬b, ¬c}, a sequence s=<(ab) c a>, according to the above

definition, we get s’=<(ab¬c) (¬a¬bc) (a¬b¬c)> and s’=MES(s). Table 3.1

presents a more straightforward view.

According to the definition of maximum equivalent sequence, a data se-

quence is always a subsequence of its maximum equivalent sequence. It is

also obvious that a data sequence only has parts of subsequences of what its

maximum equivalent sequence has.

To describe the NSP mining problem, we extend sequence database to

a new database which is composed of its corresponding maximum equiva-

lent sequences, that is to say, for each tuple [sid,sd], it is extended to [sid,

MES(sd)].

38

CHAPTER 3. PROBLEM STATEMENT

Table 3.2: Examples of Sequence Containing

Data Se-

quence sd

Maximum Equivalent Se-

quence s′d

Basic

Opera-

tion

Candidate

Sequence sc

<(ab) c a> <(ab¬c) (¬a¬bc) (a¬b¬c)> @ <a c ¬b>,

<(b¬c) ¬a>,

<¬b a>

<(ab) c a> <(ab¬c) (¬a¬bc) (a¬b¬c)> ̸@ <¬c b>, <b

c>, <b c

(¬a¬c)>

Table 3.3: Examples of Sequence Absolutely Containing

Data Se-

quence sd

Maximum Equivalent Se-

quence s′d

Basic

Opera-

tion

Candidate

Sequence sc

<(ab) c a> <(ab¬c) (¬a¬bc) (a¬b¬c)> ⊑ <a c ¬b>
<(ab) c a> <(ab¬c) (¬a¬bc) (a¬b¬c)> ̸⊑ <(b¬c) ¬a>,

<¬b a>

3.4 Supporting

3.4.1 Basic Operation

Basic Operation 1: Contain

A data sequence sd=<d1 d2 . . . dl> contains a candidate sequence sc=<c1

c2 . . . cm>, denoted by sc@sd, if sc is a subsequence of MES(sd). That is

to say, ∃ sequence s′d=<d’1 d’2 . . . d’l>, where s′d=MES(sd), and for each

element ci (16i6m) in candidate sequence sc, there exists an integer ji such

that: ci⊆d’ji , and (16j16j26. . .6jm6l).

Example 12 . Given a set of items I, where I=I+∪I−, I+={a, b, c} and

I−={¬a, ¬b, ¬c}. Table 3.2 shows some examples of sequence containing.

39

CHAPTER 3. PROBLEM STATEMENT

Based on the above definition, we define an extended definition of abso-

lutely containing.

Basic Operation 2: Absolutely Contain

A data sequence sd=<d1 d2 . . . dl> absolutely contains a candidate sequence

sc=<c1 c2 . . . cm>, denoted by sc⊑sd, if:

∃ sequence s′d=<d’1 d’2 . . . d’l>, where s′d is the maximum equivalent

sequence of sd. s
′
d contain sc and s′d doesn’t contain RP(sc);

Example 13 . Following Example 12, some examples of absolutely con-

taining are shown in Table 3.3. <(ab) c a> doesn’t absolutely contain<(b¬c)
a> or <¬b a> because it contains their reverse partners <(¬bc) ¬a> or <b

¬a>.

3.4.2 Criteria of Supporting

Using the above two basic operations, we define three criteria of supporting

as follows:

Criteria 1: Positive-First Supporting

Under this criteria, positive elements have higher priority than that of neg-

ative ones when verifying whether a data sequence supports a candidate

sequence.

Given a data sequence sd=<d1 d2 . . . dm> and a candidate sequence

sc=<c1 c2 . . . cn>, sequence s′d=<d’1 d’2 . . . d’m>=MES(sd), we call sd

supports sc if:

• For each positive supper element ej (16j6l) in s′c, there exists integers

kj1 and kj2 such that: <ej>@<d’kj1 , . . . , d’kj2>,

and (1) (16ki16ki2<kj16kj26l) if ej has a positive super element ei

right before it.

and (2) (16kj16kj2<ki16ki26l) if ej has a positive super element ei

right after it.

40

CHAPTER 3. PROBLEM STATEMENT

• For each negative supper element ej (16j6l) in s′c,

(1) if 1<j<l, ∃ integers k(j−1)2 , k(j+1)1 , ej⊑<d’k(j−1)2+1
, . . . , d’k(j+1)1−1

>.

(2) if j=1, ∃ an integer k(j+1)1 , ej⊑<d’1, . . . , d’k(j+1)1−1
>.

(3) if j=l>1, ∃ an integer k(j−1)2 , ej⊑<d’k(j−1)2+1
, . . . , d’l>.

(4) if j=l=1, ei⊑<d’1, . . . , d’l>.

The above criteria summarize what the existing research work utilizes

to define their negative supporting problems (Lin et al. 2007)(Hsueh et al.

2008)(Ouyang & Huang 2007)(Zheng et al. 2009)(Zheng et al. 2010).

Criteria 2: Negative-First Supporting

Suppose negative elements have higher priority than that of positive ones

when verifying whether a data sequence supports a candidate sequence, a

negative-first supporting problem needs to be considered as well.

Given a data sequence sd=<d1 d2 . . . dm> and a candidate sequence

sc=<c1 c2 . . . cn>, sequence s′d=<d’1 d’2 . . . d’m>=MES(sd), it is called sd

supports sc if:

• For each negative supper element ej (16j6l) in s′c, there exists integers

kj1 and kj2 such that: <ej>@<d’kj1 , . . . , d’kj2>,

and (1) (16ki16ki2<kj16kj26l) if ej has a negative super element ei

right before it.

and (2) (16kj16kj2<ki16ki26l) if ej has a negative super element ei

right after it.

• For each positive supper element ej (16j6l) in s′c,

(1) if 1<j<l, ∃ integers k(j−1)2 , k(j+1)1 , ej⊑<d’k(j−1)2+1
, . . . , d’k(j+1)1−1

>.

(2) if j=1, ∃ an integer k(j+1)1 , ej⊑<d’1, . . . , d’k(j+1)1−1
>.

(3) if j=l>1, ∃ an integer k(j−1)2 , ej⊑<d’k(j−1)2+1
, . . . , d’l>.

(4) if j=l=1, ei⊑<d’1, . . . , d’l>.

41

CHAPTER 3. PROBLEM STATEMENT

Table 3.4: Examples of the Three Criteria of Supporting

ID Data Sequence sd Support Candidate sc Criteria

E1 <a b c d>
√

<a ¬d d> Positive-First

E1 <a b c d> × <a ¬d d> Negative-First

E1 <a b c d>
√

<a ¬d d> Order-First

E2 <a b c d> × <a ¬b d> Positive-First

E2 <a b c d> × <a ¬b d> Negative-First

E2 <a b c d>
√

<a ¬b d> Order-First

E3 <a b c d> × <¬b b ¬d> Positive-First

E3 <a b c d>
√

<¬b b ¬d> Negative-First

E3 <a b c d>
√

<¬b b ¬d> Order-First

E4 <a b c d> × <¬a c ¬c> Positive-First

E4 <a b c d>
√

<¬a c ¬c> Negative-First

E4 <a b c d>
√

<¬a c ¬c> Order-First

Criteria 3: Order-First Supporting

In this criteria, positive and negative elements have the same level of priority.

When verifying whether a data sequence supports a candidate sequence, we

match all elements by order.

Given a data sequence sd=<d1 d2 . . . dm> and a candidate sequence

sc=<c1 c2 . . . cn>, sequence s′d=<d’1 d’2 . . . d’m> is the maximum equiv-

alent sequence of sd, and sequence s′c=<e1 e2 . . . el> is a reconstructed

candidate sequence. sd support sc if: for each supper element ej (16j6l) in

s′c, there exists integers kj1 and kj2 such that: <ej>@<d’kj1 , . . . , d’kj2> and

(16k116k12<. . . <kl16kl26m).

Examples

Table 3.4 shows some examples of the above three criteria of supporting.

In the example E1 in Table 3.4, we find that positive items a and d from

sd contain the corresponding items of sc. In sd, item d doesn’t occur between

42

CHAPTER 3. PROBLEM STATEMENT

a and d. Therefore, sd supports sc in a positive-first problem. For a negative-

first problem, we can find a, b, c in sd to match ¬d of sc. But we cannot find

corresponding items in sd so as to absolutely contain a and d in sc, because

the reverse partners of a and d can be found in sd, and this case doesn’t

belong to absolutely containing.

In the example E2 in Table 3.4, we find positive items a and d from sd

to contain the corresponding items of sc, but there is an item b occurring

between a and d in sd. Therefore, sd cannot support sc in a positive-first

problem. For a negative-first problem, we can find a, c, d in sd to match ¬b
of sc. But we cannot find the corresponding items in sd to absolutely contain

a and d in sc, because the reverse partners of a and d can be found in sd.

In the example E3, we find items a and c from sd to contain the corre-

sponding negative items ¬b and ¬d in sc. Further, an item b can be found

from sd to absolutely contain b in sc. Consequently, sd supports sc in a

negative-first problem. While in a positive-first problem, we do find d after

b in sd, so sd doesn’t support sc.

In the example E4, sd doesn’t support sc in a positive-first problem since

we can find a before c in sd, it can’t absolutely contain ¬a and c in sc. While

sd can support sc for a negative-first problem, since we can find b and d in

sd to contain ¬a and ¬c. In addition, c in sd absolutely contains c in sc.

In all the examples in Table 3.4, sd supports sc for an order-first problem.

In the example E1, we find <a b c> from sd contains sc=<a ¬d d>; in E2,

<a c d> from sd contains sc=<a ¬b d>; in E3, <a b c> from sd contains

sc=<¬b b ¬d>; in E4, <b c d> from sd to contain sc=<¬a c ¬c>.

3.4.3 Properties of Negative Supporting

Property: Negative Frequent Property

Based on the above definitions, if we use the order-first criteria to calcu-

late support, the following property follows the Apriori Property (Agrawal

et al. 1993):

In an order-first problem, if a negative sequence s is frequent, all its subse-

43

CHAPTER 3. PROBLEM STATEMENT

Table 3.5: Apriori-property in a Positive-first Problem

Candidate Sequence Support Data Sequence

s1=<b ¬c a> × <b f d c a>

s2=<b ¬c d a>
√

<b f d c a>

quence must be frequent; or if any subsequence of a sequence s is not frequent,

s cannot be frequent.

Proof : PSP mining follows down-closure property, that is to say, any

sub-set of a frequent item-set is also frequent. In the order-first problem of

NSP mining, all positive/negative items are treated by the same criteria as

they are in PSP mining problem. Therefore, the positive/negative itemset

follows down-closure property too. That is to say, if a negative is frequent,

all its subsequences are frequent.

If we use the positive-first or negative-first as supporting criteria, the

Apriori property doesn’t work. Table 3.5 gives out a straight-forward exam-

ple for the positive-first problem. s1=<b ¬c a> and s2=<b ¬c d a> are

two candidate sequences and <b f d c a> is a data sequence. The table

clearly shows that s does not support s1, while it supports s2 even if s1 is a

subsequence of s2.

3.4.4 Positive/Negative Sequential Pattern

Definition 12: Positive/Negative Sequential Pattern

A candidate sequence sc is called a positive/negative sequential pattern if

sup(sc)>min sup, where min sup is a user-defined support threshold. By

contrast, sc is infrequent if sup(sc)<min sup.

In order to calculate the support value of a candidate sequence against

the data sequences in a sequence database, we need to clarify the criteria of

supporting.

Many researchers proposed different kinds of interesting NSP and different

kinds of criteria of supporting. To make various criteria to fit into a common

44

CHAPTER 3. PROBLEM STATEMENT

framework, the following two basic operations are proposed. The two basic

operations can be used to cover all existing criteria of negative supporting.

3.5 A Framework of NSP Mining

The above sequence containing definition is essential and very general for

defining criteria of supporting. In PSP mining, it always considers whether

a data sequence supports a positive candidate sequence. But when dealing

with NSP mining, we need to consider whether a MES of a data sequence

supports a reconstructed negative candidate sequence. We claim that their

difference are as follows:

• PSP mining is to mine frequent positive candidate sequences in a se-

quence database.

• NSP mining is to mine frequent positive/negative candidate sequences

in an extend sequence database, which are composed of MES of all data

sequences in the original sequence database.

Here we propose a framework of NSP mining as shown in Figure. 3.1. It

can be used to describe all the state-of-the-art NSP mining problems.

In this framework, NSP mining is described from three aspects.

(1) Source dataset is extended from an original sequence database by

transforming each data sequence to its MES.

(2) Constraints of candidates. As we described in the related work in

Section 2, one possible and direct way to use NSP mining is to focus on in-

teresting NSP instead of all of them, since it is impossible to explore all of a

huge number of negative candidates. Therefore, many researchers proposed

different kinds of interesting NSP algorithms, as described in Section 3.2.

Then according to their definitions of interesting NSP, they generate inter-

esting candidates directly or design pruning measures to delete uninteresting

candidates.

45

CHAPTER 3. PROBLEM STATEMENT

Figure 3.1: A Framework of Negative Sequential Pattern Mining

46

CHAPTER 3. PROBLEM STATEMENT

(3) Criteria of supporting. Current work always gives positive items high-

er priority than that to negative items. To describe all possible problems of

NSP mining, it is necessary to consider negative-first and order-first prob-

lems, and we will introduce them in the following section.

Generally speaking, NSP mining has much bigger search space than PSP

mining since it needs to search for negative candidate sequences in an ex-

tended sequence database, which is much bigger than the original sequence

database.

3.5.1 NSP Mining Problem

NSP mining problem is categorized as following three types.

Positive-first Problem

If we use the positive-first criteria to verify whether a data sequence supports

a candidate sequence, it is called a positive-first NSP mining problem. Usu-

ally, it is easy to be understood since positive items indicate those occurred.

It is easier for us to understand occurring items than non-occurring ones.

Hereby, we illustrate a simple positive-first problem described in Chapter 1

as follows.

Suppose p1=<a b c d>; p2=<a ¬b c e>; and each item, a, b, c, d and

e, stands for a claim item code in the customer claim database of an health

insurance company. The pattern p1 tells that an insurant usually claims for

a, b, c and d in a row. However, the pattern p2 itself indicates that given an

insurant claim for items a and c, if he/she does NOT claim b between a and

c, he/she would claim item e instead of d as shown in p1.

Considering p2 of the above example, we focus on positive items a, c and

e first, and then talk about b which is NOT claimed between a and c, and so

that is a positive-first case.

47

CHAPTER 3. PROBLEM STATEMENT

Negative-first Problem

If we use the negative-first criteria to verify whether a data sequence sup-

ports a candidate sequence, it is called a negative-first NSP mining problem.

Different from the positive-first problem, a negative-first problem is hard to

imagine since negative items don’t occur and it is different from the nor-

mal thinking of human being. We thus convert the above example to be a

negative-first problem case.

Suppose p1=<¬a ¬b ¬c d>; p2=<¬a b ¬c e>. By getting the pattern

p1, it tells us that if an insurant does NOT claim for a, b and c in a row,

he/she usually claims d after that. However, with the pattern p2, it indicates

that if an insurant does NOT claim for item a or c, but claims b between ¬a
and ¬c, then he/she likely claims item e instead of d.

In this example, we focus on negative items ¬a and ¬c in p2 first, and

then talk about b which is claimed between ¬a and ¬c.

Order-first Problem

If we use the order-first criteria to verify whether a data sequence supports

a candidate sequence, it is called an order-first NSP mining problem.

The above example can also be converted to an order-first problem case.

Suppose p1=<a b c d>; p2=<a b ¬c e>. By getting the pattern p1,it

tells that an insurant usually claim for a, b, c and d in a row. However,

the pattern p2 indicates that if an insurant does NOT claim c after claiming

items a and b, then next, he/she likely will NOT claim item e but d. Here

we see, ordering plays an important role in an order-first problem.

3.5.2 PSP Mining Problem

Positive sequential pattern mining problem is an order-first problem or a

positive-first problem.

Proof : In PSP mining, when verifying whether a data sequence contains

a candidate, it matches all items of them one by one orderly. Therefore,

48

CHAPTER 3. PROBLEM STATEMENT

PSP mining problem is an order-first problem without considering negative

items. And all items in PSP mining are positive items, that is to say, it is a

positive-first problem as well.

3.6 NSP Mining Problem in the Thesis

3.6.1 Constraints on Interesting NSP

As we described in the literature review of Chapter 2, one possible and di-

rect way to solve NSP mining is to focus on interesting NSP instead of all

NSP, since it is impossible to explore a huge number of negative candidates.

Therefore, many researchers proposed different kinds of interesting NSP.

(Ouyang & Huang 2007) proposed NSP in the formats of <A ¬B>, <¬A
B> and <¬A ¬B>, where A and B are frequent subsequences and A∩B=∅.

It required <A B> to be frequent if <A ¬B> is NSP. And also, it set

a threshold min interest for interesting NSP. The final definition follows

three constraints. <A ¬B> is an interesting NSP, if (1). A∩B=∅; (2).

sup(A)≥min sup, sup(B)≥min sup, sup(A∪¬B)≥min sup; (3). sup(A∪B)-
sup(A)×sup(¬B)≥min interest.

(Lin et al. 2007) only focused on NSP which has a negative item at the

end of a pattern, like <c1, c2, . . . , ¬cn>, where every ci, ci (16i6n) is

positive item. Such constraint is very strong for shrinking the search space.

In the literature, (Hsueh et al. 2008) proposed the most similar definitions

of NSP as ours, it stated that meaningful NSP should follow some constraints.

The first one is the size constraint, that is to say, a NSP can’t be supported

by a data sequence, when the length of the data sequence is shorter than that

of the NSP, or smaller in size. For example, given sd=<a b>, sc1=<a ¬c>
and sc2=<a ¬c d>, sd can support sc1 , but can not support sc2 , since the size

of sc2 is 3 and sd is only 2. The second constraint is the frequency constraint.

For each negative item in a negative pattern, it required its corresponding

positive item to be frequent too. For example, ¬a is a valid negative item if

a is frequent. The third constraint is the formation constraint, which doesn’t

49

CHAPTER 3. PROBLEM STATEMENT

allow two or more negative itemsets occur adjacently.

Our works target at mining general NSP without too strong constraints.

Therefore, we only define following three constraints for the proposed meth-

ods.

• For each negative item in a negative pattern, its positive item is required

to be frequent. For example, if (¬c) is a negative item, its positive item

(c) is required to be frequent. It is helpful for us to focus on the frequent

items.

• Two or more than two adjacent negative elements are not accepted in

the negative sequence, since it is hard to be explained in real-world

applications. This constraint is also used by other researchers (Hsueh

et al. 2008).

• Items in a single element should be either all positive or all negative.

For example, <a (a¬b) c> is not allowed since items a and ¬b occur

in the same element.

3.6.2 Criteria of Negative Supporting

Different Definitions in Related Work

All existing work focuses on the positive-first NSP mining problem, and even

with that, different researchers still present inconsistent definitions and expla-

nations since they represent different interesting negative patterns. (Hsueh

et al. 2008) considers that data sequence sd=<d c> cannot contain nega-

tive candidate sc=<(¬a¬b) c ¬d> since size(sc)>size(sd). They also add

more constraints in the support calculation, where they defined n-cover and

n-contain to describe how a candidate matches a data sequence. Another

issue is how to deal with a non-occurring element. (Hsueh et al. 2008) argues

that sd=<d c> cannot contain <¬c d> because <d> in sd has no antecedent

itemset; and sd cannot contain <c ¬d> because <c> in sd has no successor.

Furthermore, the containment position of each element is very tricky. (Hsueh

50

CHAPTER 3. PROBLEM STATEMENT

Table 3.6: Neg-GSP: Example of Negative Supporting

Candidate Sequence Supporting Data Sequence

<b ¬c a>
√

<b d a>

<b ¬c a>
√

<b d a c>

<b ¬c a> × <b d c a>

et al. 2008) proposes that a data sequence sd=<a a c b c> cannot contain a

negative candidate sc=<a ¬b c>, since sd also has a subsequence <a b c>,

which can be an opposite evidence of sc.

Negative Supporting of this Thesis

The above discussions show that there is not a consolidated concept of nega-

tive supporting in the literature. We defined a more consistent definition as

follows.

A data sequence sd=<d1 d2 ... dm> supports a negative candidate sc=<e1

e2 ... ek>, if:

1) sd contains the max positive subsequence of sc

2) for each negative element ei (16i6k), there exist integers pi, qi, ri

(16pi6qi6ri6m) such that: ∃ei−1⊆dpi∧ei+1⊆dri , and for ∀dqi, ei ̸⊂dqi ; and

(16p16q16r16. . . pk6qk6rk6m)

Table 3.6 gives examples of negative supporting, sc=<b ¬c a> is sup-

ported by <b d a c>, but is not supported by <b d c a>, since the negative

element c appears between the element b and a.

The above supporting definition also belongs to the positive-first problem.

3.7 Conclusions

• The search space of NSP mining problem is quite enormous. The num-

ber of candidates could be much larger than that of PSP mining. There-

fore, it is important to target on the most interesting candidates, which

follows some predefined constraints.

51

CHAPTER 3. PROBLEM STATEMENT

• The NSP mining problem can be categorized as three types, positive-

first, negative-first and order-first problems.

• Positive sequential pattern mining problem is an order-first and positive-

first problem.

52

Chapter 4

Neg-GSP Algorithm

4.1 GSP Algorithm

4.1.1 General Description of GSP

GSP algorithm (Srikant & Agrawal 1996) is a classical and widely accepted

algorithm for sequential pattern mining. It makes multiple passes over a

sequence database to find sequential patterns. The first pass starts from

calculating the support of every 1-item candidate. At the end of the first

pass, all of the 1-item patterns, which are then used as seeds to generate

new candidates for the next pass, are obtained. Each new candidate of the

next pass has one more item than its seeds. Then, the candidates are filtered

by pruning to remove infrequent ones. After pruning, the supports of the

new candidates are counted by another passing over the sequence database,

and frequent patterns become the seeds for the next pass. The algorithm

terminates when there is no more frequent pattern at the end of a pass, or

when no candidate is generated.

Three essential steps of GSP are as follows:

Step 1. Generating candidates. Candidate sequences are generated by

joining, and the algorithm tries to generate candidates as few as possible.

Step 2. Pruning candidate. To prune potential infrequent candidates as

53

CHAPTER 4. NEG-GSP ALGORITHM

many as possible.

Step 3. Counting candidates. This step is to calculate support value

of each candidate sequence. If the value of a candidate is greater than the

predefined threshold min sup, the candidate is put to the patterns set.

4.1.2 Generating Candidates

Each candidate is generated by the joining step described below. Let Lk

denote the set of all frequent k-item sequences, and Ck is the set of k-item

candidate sequences.

We generate candidates by joining all frequent (k-1)-item patterns in

Lk−1. A sequence s1 joins with s2 if the subsequence obtained by dropping

the first item of s1 is the same as that obtained by dropping the last item of

s2. By joining s1 with s2, a new candidate sequence is generated. It is the

sequence s1 extended with the last item in s2. The added item becomes a

separate element on the new candidate if it is a separate element in s2, or

becomes part of the last element if it is part of the last element of s2. When

joining L1 with L1, we need to add the item of s2 both as a part of an element

and as a separate element of the new candidate.

For example, joining two 1-item sequences <a> and produces three

2-item candidate sequences: <a b>, <b a> and <(ab)>. Joining two 4-item

sequences <a (bc) d> and <(bc) d e> produces <a (bc) d e>. Joining two

4-item sequences <a (bc) d> and <(bc) (de)> produces <a (bc) (de)>.

4.1.3 Pruning Candidates

We delete a k-item candidate sequence if it has at least one (k-1)-item sub-

sequence whose support count is less than the threshold min sup.

For example, if<(ab) d>, <b (ad)> and<b (de)> are in a 3-item patterns

set, joining <(ab) d> and <b (de)> will generate a 4-item candidate <(ab)

(de)>, which has 3-item subsequences including <b (de)>, <a (de)>, <(ab)

e> and <(ab) d>. Since two of them, <a (de)> and <(ab) e>, are not in

54

CHAPTER 4. NEG-GSP ALGORITHM

the 3-item patterns set, <(ab) (de)> can be pruned.

4.1.4 Counting Candidates

While passing over a sequence database to get the support values of all

candidates, we read one data sequence at a time and increase the support

counts of the candidates contained in the data sequence. Thus, given a set of

candidate sequences C and a data sequence sd, we need to find all sequences

in C that are contained in sd. Two techniques are utilized to solve this

problem:

1. It adds candidate sequences into a hash-tree to reduce the number of

candidates in C that need to be checked for a data sequence.

2. It transforms the format of a data sequence so that it can efficiently

find whether a data sequence contains a specific candidate sequence.

4.1.5 Procedure of GSP

The pseudo-code of GSP are given as follows.

GSP-Algorithm

Function: To find frequent sequential patterns in a sequence database.

Input: Sequence Database Ds, frequency threshold min sup.

Output: Frequent Sequential Patterns L=L1, L2, . . . , Lm.

RUN GSP Algorithm(Ds, min sup){
01. Take sequences in form of <x> as 1-item candidates

02. Passing over sequence database to find 1-item patterns set L1.

03. k=1;

04. while (Lk is not empty) {

55

CHAPTER 4. NEG-GSP ALGORITHM

05. Ck+1 = Join(Lk, Lk);

◃ Generate (k+1)-item candidates set Ck+1 from Lk;

06. Ck+1 = Prune(Ck+1);

07. if Ck+1 is not empty {
08. for (each sc in Ck+1) {

◃scan database once, to find (k+1)-item patterns set;

09. if (support(sc) >= min sup)

10. Lk+1.add(sc);

11. }
12. }
13. k=k+1;

14. L.add(Lk+1);

15. }
16. return L;

}

4.1.6 Improving GSP to Find NSP

The NSP mining problems of the thesis, including the constraints of candi-

dates and supporting criteria, have been described in Section 3.6.

Based on GSP algorithm, we need to adapt and modify the joining and

pruning steps for negative sequences to ensure searching the space integrality,

and reduce the number of negative candidates as well.

If the joining step only happens in the (k-1)-item patterns set, some k-

item candidates could be missed. Therefore, we generate a (k-1)-item seed

set S(k−1), which is a super set of (k-1)-item patterns set Lk−1, to join and

generate new candidates, and so we can ensure to cover all potential negative

candidates.

We use the following measure, base-support, to verify whether a candidate

is a potential seed.

56

CHAPTER 4. NEG-GSP ALGORITHM

Table 4.1: Examples of base-support and support

Data Sequence Sd Base-Support Support Candidate

< b d c a >
√

× < b ¬c a >

< b d a >
√ √

< b ¬c a >

Definition: Base-support

A data sequence sd base-supports a candidate sc if sd contains sc, see Section

3.4.1. That is to say, a data sequence sd base-supports a negative candidate

sc if sc is a subsequence of MES(sd).

For example, a data sequence sd=<b d a> base-supports a candidate

sequence sc=<b ¬c a>. A data sequence s′d=<b d c a> base-supports sc as

well, since the element d in s′d, which contains ¬c, can be found between the

elements b and a. See table 4.1.

If a data sequence base-supports a candidate sequence, then its base support

value is to be increased. The value is used to verify whether a candidate is a

potential seed. If the base support of a candidate is greater than min sup,

it is a potential seed, otherwise, it cannot be a seed. The set of k-item

seeds with base support>min sup can ensure that it won’t miss any k-item

candidates by joining in them.

This measure is efficient and easily to be proved. Base-support follows

the order-first matching, and the Apriori property works in an order-first

problem as we described in the negative frequent property, see Section 3.4.3,

therefore, it won’t miss any potential candidates.

4.2 Process of Neg-GSP

Suppose D is a sequence database, D={sd1, sd2, sd3, ..., sdn}, where sdi

(16i6n) is a data sequence. Then the objective of NSP mining is to find

frequent NSP inD, with a minimum support thresholdmin sup. We describe

the process of Neg-GSP as follows.

57

CHAPTER 4. NEG-GSP ALGORITHM

Figure 4.1: The Process Flow of Neg-GSP

Firstly, we utilize GSP algorithm to generate all PSP. Assume Lpos={Lpos,1,

Lpos,2, ..., Lpos,l}, where Lpos,j (16j6l) represents a j-item frequent PSP set.

Next, we begin to generate NSC from Lpos. We transform all 1-item PSP

in Lpos,1 to their corresponding 1-item negative sequences, which are taken

as the initial 1-item negative candidates set Cneg,1.

After those initial processes, we can start to mine NSP. A process flow of

Neg-GSP is also demonstrated in Figure 4.1.

For each 1-item candidate in Cneg,1, if its base support>min sup, it is

added into 1-item seed set Sneg,1. After that, we get a processed 1-item seed

set Sneg,1, which is then used to generate a 2-item negative candidate set

Cneg,2. For each candidate in Cneg,1, if its support is higher than min sup, it

is added into 1-item frequent patterns set Lneg,1.

By joining k-item seed set Sneg,k, it produces a (k+1)-item candidates set

Cneg,k+1. The new candidates set may include many invalid candidates, there-

58

CHAPTER 4. NEG-GSP ALGORITHM

Table 4.2: An Example of Joining

ci ei1 ei2 ei3 . . . eik−1
eik

= = = = =

cj ej1 ej2 . . . ejk−2
ejk−1

ejk

⇒ ck+1 ei1 ei2 ei3 . . . eik−1
eik ejk

fore, pruning invalid candidates is necessary and helpful for further search.

And an idea of pruning is to verify whether the maximum positive sub-

sequence of a candidate is frequent. After pruning, invalid candidates are

pruned, and valid ones are kept in the candidate set. Then, by passing over

the sequence database D, we get the support values of all (k+1)-item candi-

dates. Again, the (k+1)-item candidates with support higher than min sup

are output to the patterns set Lneg,k+1.

After the above procedures are performed, we get a (k+1)-item result

set Lneg,k+1 and a (k+1)-item seed set Sneg,k+1 for next iteration. Longer

patterns are generated by repeating the above process until the candidate

set is empty. Each iteration will generate and output frequent NSP into

Lneg={Lneg,1, Lneg,2, ..., Lneg,l}, which is the final results set.

4.3 Neg-GSP Algorithm

4.3.1 Joining to Generate Candidates

The (k+1)-item candidates are generated by joining k-item seeds. Given two

k-item seed sequences ci=<ei1 ei2 ei3 ... eik−1
eik> and cj=<ej1 ej2 ej3 ... ejk−1

ejk>. c′i is a sequence by deleting the first item of ci and c′j is a sequence by

deleting the last item of cj. If ci’=cj’, ci and cj can join to generate a new

(k+1)-item candidate ck+1, which is composed of c′i and the last item of cj.

If the item is part of the last element of cj, it will still be part of last element

of ck+1; if the item is a separate element of cj, then it is still to be a separate

element of ck+1, see Table 4.2.

59

CHAPTER 4. NEG-GSP ALGORITHM

The above joining method is similar to that of GSP. But there is a d-

ifference while generating the seed set. GSP algorithm uses the patterns

set as the seed set, and generates all (k+1)-item candidates by joining the

k-item patterns set. However, Apriori property doesn’t work in the NSP

mining problem, and we need to join not only k-item patterns but also some

infrequent k-item sequences, as we described in the above.

While performing the joining operation, we don’t join positive patterns

with themselves, since that has been done in the PSP mining at the first step

of Neg-GSP algorithm.

4.3.2 Pruning Invalid Candidates

In NSP mining, the number of candidates are much more than those in PSP

mining. It is important to design effective pruning methods to prune invalid

candidates, which were generated by joining step but were not possible to be

frequent patterns, from the candidates set.

While pruning happens in k-item candidates with GSP algorithm, it

prunes the candidates with at least one (k-1)-item infrequent subsequence.

However, the above pruning method won’t work for NSP mining. For exam-

ple, given a candidate sc=<a b ¬c d ¬e>, s′c=<a b ¬c ¬e> is a subsequence

of sc and is infrequent. As a result, sc should be pruned since its subsequence

s′c is not frequent. But in fact, sc still can be frequent. Another problem is

that we don’t allow two adjacent negative elements in a negative sequence,

s′c is an invalid negative sequence. According to the above two points, the

pruning method used by GSP algorithm can not be used in the NSP mining

problem directly.

We propose a pruning method below. Suppose s′c is the maximum positive

subsequence of a candidate sc. If s′c is not frequent, sc must be infrequent

and should be pruned. This method is simple but effective to prune invalid

candidates without missing potential valid candidates.

60

CHAPTER 4. NEG-GSP ALGORITHM

4.3.3 Generating Seed Set for Next Pass

Given an infrequent 3-item sequence <b ¬ca >, its 4-item candidate <b ¬c
d a> may still be frequent. For detailed explanation, please refer to Section

3.4.3 and the example in Table 3.5. Therefore we need to count <b ¬c> as

a seed for joining and generating 3-item candidate <b ¬c d>.

A k-item sequence is regarded as a k-item seed sequence if its base support

is greater thanmin sup. Therefore, the candidates with base support greater

than min sup are added into the seed set. Otherwise, it can not be used to

generate any (k+1)-item frequent pattern.

4.3.4 Algorithm Description

The proposed algorithm Neg-GSP is described as follows.

Step 1: Find all PSP by the traditional GSP algorithm (Srikant & Agrawal

1996).

Step 2: Transform 1-item positive patterns to 1-item negative candidates,

and then get 1-item seed set and 1-item patterns.

Step 3: For all (k-1)-item seeds, perform the joining operation with each

other and generates k-item candidates. (k-1)-item positive patterns and (k-

1)-item seed sequences are joined since it can generate valid k-item negative

candidates as well.

Step 4: Prune unnecessary candidates to get a smaller candidate set.

Step 5: Count support and base support of all candidates.

Step 6: For each candidate, if its base support is greater than min sup,

it is added to k-item seed set. If its support is greater than min sup, then it

is frequent and outputted as a k-item pattern.

Step 7: If k-item seed set is not empty, increase k by one and loop back

to Step 3 until the next candidate set is empty.

The procedure is illustrated with an example as Figure 4.2.

61

CHAPTER 4. NEG-GSP ALGORITHM

Neg-GSP Algorithm

Function: Find negative sequential patterns from a sequence database.

Input: Sequence database D, min sup

Output: NSP set L

RUN(D, min sup) {
◃ /∗ S: Seeds set; C: Candidates set; L: Results set; ∗/

01. k = 1;

02. Ck = initialize();

03. Sk = Ck;

04. while (Sk.size() > 0){
05. Ck+1 = Join(Sk);

06. Ck+1 = Prune(Ck+1);

07. for (each c in Ck+1){
08. if (c.base support > min sup) Sk+1.add(c);

09. if (c.support > min sup) Lk+1.add(c);

10. }
11. L.add(Lk+1);

12. k = k + 1;

13. }
14. return L;

}

4.3.5 Computational Complexity Analysis

Dong etc,. (Dong 2009) stated that the problem of mining the complete set of

sequential patterns is #P-complete theoretically. Therefore, it is impossible

to have a polynomial time algorithm unless P=NP. Even if P=NP, it is still

unclear whether a polynomial time algorithm exists.

62

CHAPTER 4. NEG-GSP ALGORITHM

Figure 4.2: Neg-GSP: An Example

63

CHAPTER 4. NEG-GSP ALGORITHM

Neg-GSP and PNSP will scan database once for every canidate to get its

support value. Therefore, the count of candidates will affect the computa-

tional complexity. PNSP and Neg-GSP are both Apriori-based algorithms.

We will analyze their computational complexity in the following part.

Let’s assume that the number of negative candidates N is:

N =
m∑
k=1

nk

where m is the length of the longest pattern, and nk is the number of

k-item candidates.

Neg-GSP: Neg-GSP generates 2-item candidates by joining 1-item pat-

terns. In the worst case, the number of 1-item patterns equals to the number

of 1-item candidates, that means all 1-item candidates are frequent. Let’s

assume that all 1-item patterns are able to join with each other to generate

2-item candidates, and then the algorithm will generate n2 2-item candidates,

n2 = n2
1. Therefore, we can get that nk+1 = n2

k.

N = n1 + n2 + n3 + . . . + nm

= n1 + n2
1 + n2

2 + . . . + n2
m−1

= n1 + n2
1 + n4

1 + . . . + n
(m−1)∗2
1

Based on the above, the computational complexity of Neg-GSP is O(nm
1),

where n1 is the number of 1-item patterns, and m is the length of the longest

pattern.

PNSP: PNSP generates (k+1)-item candidates by appending 1-item pat-

terns to the end of k-item patterns. In the worst case,

n2 = n1 * n1 = n2
1

n3 = n2 * n1 = n3
1

n4 = n3 * n1 = n4
1

. . .

nm = nm−1 * n1 = nm
1

Since N =
m∑
k=1

nk, the computational complexity of PNSP is O(nm
1) too,

64

CHAPTER 4. NEG-GSP ALGORITHM

where n1 is the number of 1-item patterns, and m is the length of the longest

pattern.

Therefore, Neg-GSP and PNSP have a same level computational com-

plexity. But in practise, joining operation of Neg-GSP is much more effective

than that of PNSP, because PNSP appends 1-item patterns into the end of

k-item patterns to generate (k+1)-item candidates in a very simple way.

4.4 Experiments

4.4.1 Datasets

Two synthetic datasets are generated by IBM data generator (Agrawal &

Srikant 1995), and are used to test the proposed algorithm in the experiments.

Dataset1(DS1) is C8.T8.S4.I8.DB10k.N1k. It contains 10k sequences,

the number of items is 1000, the average number of elements in a sequence

is 8, the average number of items in an element is 8, average length of max-

imal pattern consists of 4 elements and each element is composed of 8 items

averagely. The minimum number of elements in a sequence is 1, and the

maximum number is 237.

Dataset2(DS2) is C10.T2.5.S4.I2.5.DB100k.N10k. It contains 100k se-

quences, the number of items is 10k, the average number of elements in a

sequence is 10, the average number of items in an element is 2.5, average

length of maximal pattern consists of 4 elements and each element is com-

posed of 2.5 items averagely. The minimum number of elements in a sequence

is 1, and the maximum number is 138.

Features of the two synthetic datasets are listed in Table 4.4.1.

Data set 3 (DS3) is real application data for insurance claims. The data

set contains 479 sequences. The average number of elements in a sequence is

30. The minimum number of elements in a sequence is 1, and the maximum

number is 171.

65

CHAPTER 4. NEG-GSP ALGORITHM

Table 4.3: Neg-GSP: Features of Synthetic Datasets

Parameters DS1 DS2

Number of sequences (DB) 10k 100k

Number of items (N) 1k 10k

Average number of elements per sequence (C) 8 10

Average number of items per element (T) 8 2.5

Average length of maximal potentially large se-

quences (S)

4 4

Average size of itemsets in maximal potentially

large sequences (I)

8 2.5

4.4.2 Performance Evaluation

The proposed algorithm Neg-GSP was implemented with Java and tested on

a PC with Intel Core 2 CPU of 2.9GHz, 2GB memory and Windows XP

Professional SP2.

We compared the execution time of Neg-GSP on different support thresh-

olds, see Figure 4.3, and compared counts of patterns on different support

thresholds as well, see Figure 4.4. Negative pattern mining costs much more

execution time than positive pattern mining because the candidates counts

are not of the same magnitude, especially when the support threshold is set

very low.

4.4.3 Comparison with PNSP Algorithm

Comparing Neg-GSP algorithm with PNSP algorithm (Hsueh et al. 2008),

the results of execution time (see Figure 4.5) show that Neg-GSP outperforms

PNSP in terms of execution time. The reason is that PNSP generates more

invalid candidates. Its negative candidates may increase sharply when the

number of negative frequent 1-item patterns increases. When there are a

huge number of negative candidates, Neg-GSP will cost lots of execution

time in the joining process. That would degrade its performance. Therefore,

66

CHAPTER 4. NEG-GSP ALGORITHM

Figure 4.3: Neg-GSP: Execution Time

67

CHAPTER 4. NEG-GSP ALGORITHM

Figure 4.4: Neg-GSP: Patterns Counts

68

CHAPTER 4. NEG-GSP ALGORITHM

when min sup is set very low, Neg-GSP can not have performance as good

as the case when min sup is high.

4.5 Conclusions

In this chapter, we proposed a NSP mining method, Neg-GSP, based on the

classical GSP algorithm.

• Joining and pruning are two essential steps of GSP, they are adapted

to negative mining in Neg-GSP.

• An effective pruning method is proposed to reduce the number of can-

didates by pruning invalid candidates.

• The efficiency and effectiveness of the proposed algorithm shown in the

experiments, which are tested on two synthetic datasets and a real-

application dataset, outperforms another existing NSP mining algo-

rithm PNSP.

• Neg-GSP has a same computational complexity as PNSP, but in prac-

tise, Neg-GSP can generate candidates more efficiently than PNSP.

69

CHAPTER 4. NEG-GSP ALGORITHM

Figure 4.5: Neg-GSP: Comparison with PNSP Algorithm

70

Chapter 5

Genetic Algorithm Based

Algorithm: GA-NSP

Since Neg-GSP generates huge amount of candidates, it will cost much execu-

tion time on calculating support values of all candidates by scanning sequence

database again and again. It is still quite hard to improve the performance.

Since evolution algorithms, such as Genetic Algorithm, are able to find the

best solutions/patterns by evolution. Better or more frequent sequences can

be kept for generating new offsprings with higher priority. That would make

it be more effective to mine PSP or NSP. Based on this idea, a Genetic

Algorithm based method is proposed, as GA-NSP.

First of all, a brief introduction of Genetic Algorithm will be given as

following.

5.1 Genetic Algorithm

Genetic Algorithm simulates biological evolution and genetic mechanism of

natural selection process. It can be used to search the best solution by simu-

lating natural evolutionary process. Genetic Algorithm was firstly proposed

by J. Holland in 1960. In the book (Holland 1975), it presented Genetic Al-

gorithm in a general theoretical framework. After that, research on Genetic

71

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Algorithm has spread quickly in computer science.

Genetic Algorithm is a population-based model, it uses three basic oper-

ators, including selection, crossover and mutation, to generate new solution

in a search space. Many Genetic Algorithm models have been introduced by

researchers largely working from an experimental perspective. Many of these

researchers are application oriented and are typically interested in Genetic

Algorithm as optimization tools. (Whitley 1994)

Genetic Algorithm allows a population composed of many individuals to

evolve under specified rules. It starts from a randomly selected individuals set

named population. This population is used to produce a next generation of

individuals by reproduction, which includes crossover and mutate operation.

When getting a new generation of individuals, that is a new population, it

evaluates the new individuals’ fitness. Then it selects new individuals with

high fitness from the population to reproduce for next generation. Individuals

with high fitness have more chance to be selected.

5.1.1 Procedure of Genetic Algorithm

First of all, to utilize Genetic Algorithm, encoding a problem to potential

solution is essential. For example, the solution could be as a string of num-

bers, a binary bit string, or any other kinds of chromosome code. A typical

potential solution (chromosome) may look like following:

0111101100101100101110111

After that, an initial population, which is composed of many chromo-

somes, is created, and it is usually created randomly. Each chromosome

in the population always represents a solution to the problem to be solved.

Then, following steps are repeated to find the best solution from the popu-

lation. The population evolutes all the time and keeps good genes in it.

(1) Test each chromosome to see how good it is at solving the problem

and assign a fitness score accordingly. The fitness score is a measure of how

72

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

good the chromosome is at solving the target problem.

(2) Select two chromosomes from the current population. The chance of

being selected is proportional to the chromosomes fitness. Roulette wheel

selection is a commonly adopted method.

(3) Based on a predefined crossover rate, crossover the selected chromo-

somes and generate next generation of chromosomes.

(4) Based on a predefined mutation rate, change the chosen chromosomes

at a randomly chosen point to generate a new chromosome.

(5) Repeat step 2, 3, 4 until the best solution has been found, or maximum

number of generations are reached.

The basic algorithm is as below:

Basic Genetic Algorithm

Function: Basic process of Genetic Algorithm.

Input: Maximum Generation Count max generation, Crossover rate

threshold Crossover Rate, mutation rate threshold Mutation Rate.

Output: Best individual(s)

GeneticAlgorithm(max generation){
01. Initialize population;

02. Evaluate fitness of individuals in initial population;

03. int genCount=0;

04. while (genCount < max generation){
05. Selection; ◃select individuals for reproduction;

06. if (RandomRate < Crossover Rate) Crossover();

07. if (RandomRate < Mutation Rate) Mutation();

08. Evaluate fitnesses of individuals in new population;

09. genCount++;

73

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Table 5.1: Genetic Algorithm: Examples of Encoding

Encoding Methods Examples

Binary Encoding 011110110010

Permutation Encoding 4 5 8 1 43 13 4 12

Value Encoding 1.32 4.2 99.2 123.2 3.123 5.2

Tree Encoding (− A (÷ 15 B))

10. }
11. return best individual(s).

}

5.1.2 Encoding

Encoding of chromosomes is to define the problem to be solved. It enables

the problem’s solutions to be represented by chromosome. Encoding depends

heavily on the needs of the problem to be solved.

There are many different methods of encoding chromosome, such as bi-

nary encoding, permutation encoding, value encoding and tree encoding.

Binary encoding is used the most widely. Permutation encoding method is

suitable for ordering problem. Value encoding can be used for complicated

value, such as real numbers. Some examples are given by Table.5.1 for a

straightforward demonstration.

5.1.3 Fitness Function

In order to evaluate the chromosomes/individuals and decide which are the

best ones for next generation, fitness function is implemented in Genetic

Algorithm. The function is to find good solution for the problem to be

solved.

The selection function is to use the fitness values to select the parents

of the next generation. Individuals with higher fitness value will have more

74

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

chance to be selected as parents.

Fitness function affects the performance of the Genetic Algorithm. If

fitness values of population are too widely, the individuals with the highest

values reproduce very rapidly, and preventing the algorithm from searching

other areas of the solution space. On the other hand, if the values vary only

a little, all individuals have approximately the same chance of reproduction

and the search will progress very slowly. (MathWorks 2011)

5.1.4 Selection

The selection function chooses parents from population for the next genera-

tion according to their fitness.

Roulette wheel selection (Bäck 1996), also called fitness proportionate

selection, is one of the most popular selection methods. In roulette wheel

selection, individuals are given probabilities of being selected that are directly

proportionate to their fitness. An individual could be selected more than once

as a parent, in which case it contributes its genes to more than one child.

Two parents are then chosen and produce offspring.

Some other selection methods include stochastic universal sampling (Baker

1987), tournament selection (Miller & Goldberg n.d.), truncation selection

and so on.

5.1.5 Crossover

Crossover is an operator that is used to make chosen chromosomes to generate

new generations. There are many different kinds of crossover methods. Single

point crossover, two-point crossover, cut and spice and so on.

Single Point Crossover

The most common method is single point crossover. Single point crossover

is to swap data between the two parent chromosomes at a predefined single

point. Table.5.2 shows an example of single point crossover.

75

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Table 5.2: Genetic Algorithm: Single Point Crossover

parent1 0111 ↕ 10110010 ⇒ child1 0111 00111001

parent2 1100 ↕ 00111001 ⇒ child2 1100 10110010

Table 5.3: Genetic Algorithm: Two Point Crossover

parent1 0111 ↕ 1011 ↕ 0010 ⇒ child1 0111 0011 0010

parent2 1100 ↕ 0011 ↕ 1001 ⇒ child2 1100 1011 1001

Two Point Crossover

Two point crossover swaps the data between the parent chromosomes at two

predefined points. Table.5.3 shows an example of two point crossover.

Cut And Splice Crossover

Cut and splice approach can generate new generations of various length. At

two different points in two parents, it swaps the data and generates children

of different length. Table 5.4 shows an example of cut and splice crossover.

5.1.6 Mutation

Mutation is an operator that is used to maintain genetic diversity from one

generation to the next generation. The mutation methods could be variously

dependant on particular problem. Simple one is to just select some genes

from a chromosome and replace them with a new value or a random value.

Table 5.5 gives an example. The mechanism of mutation looks very simple,

but it is vital to ensure genetic diversity within the population.

Table 5.4: Genetic Algorithm: Cut and Splice Crossover

parent1 0111 ↕ 10110010 ⇒ child1 0111 1001

parent2 11000011 ↕ 1001 ⇒ child2 11000011 10110010

76

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Table 5.5: Genetic Algorithm: Mutation

parent 0111 1 0110 0 10 ⇒ child 0111 0 0110 1 10

5.2 Genetic Algorithm Based NSP Mining

NSP mining has attracted increasing attentions in recent data mining re-

search because it considers negative relationships between itemsets, which

are ignored by PSP mining. However, the search space for mining negative

patterns is much bigger than that for positive ones. When the support thresh-

old is low, in particular, there will be huge amounts of negative candidates.

This chapter proposes a Genetic Algorithm based algorithm, GA-NSP, to

find NSP with novel crossover and mutation operations, which are efficient

at passing good genes on to next generations.

The target problem has been described in Section 3.6.

Based on Genetic Algorithm, we obtain NSP by crossover and mutation;

high frequent patterns are then selected to be parents to generate offspring.

By going through many generations, it will obtain a new and relatively high-

quality population.

Since the Genetic Algorithm based method cannot ensure locating all of

NSP, a key issue of using Genetic Algorithm in NSP mining is how to find all

NSP. We therefore use an incremental population, and add all negative pat-

terns, which are generated by crossover and mutation during the evolution

process, into population. A dynamic fitness function is proposed to control

population evolution. Ultimately, we can secure almost all the frequent pat-

terns. The proportion can capture more than 90% in our experiments on two

synthetic datasets.

5.3 GA-NSP Algorithm

The general idea of the proposed algorithm is shown as Figure 5.1. We

will describe it from how to encode a sequence, and then introduce what are

77

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.1: GA-NSP Algorithm: Process Flow

Table 5.6: GA-NSP Algorithm: Encoding

Sequence Chromosome

gene1 gene2 gene3

<a b ¬(c,d)> ⇒ +a +b (¬c¬d)

population, selection, crossover, mutation, pruning, fitness function and so

on. A detailed algorithm will then be introduced.

5.3.1 Encoding

Sequence is mapped into a chromosome code in Genetic Algorithm. Both

crossover and mutation operations depend on the chromosome code. We

need to define the chromosome to represent the problems of NSP mining

exactly. There are many different methods to encoding the chromosome,

such as binary encoding, permutation encoding, value encoding and tree

encoding (Mitchell 1996). The permutation encoding method is suitable for

ordering problem and its format is consistent with the format of the sequence

data, so we use it for sequence encoding.

78

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Each sequence is mapped into a chromosome. Each element of the se-

quence is mapped into a gene in the chromosome, no matter whether the

element has one item or more. Given a sequence <e1 e2 ... en>, it is trans-

formed to a chromosome which has n-genes. Each gene is composed of a

tag and an element. The element includes one or more items, and the tag

indicates that the element is positive or negative. For example, a negative

sequence <a b (¬c¬d)> is mapped into a 3-gene chromosome, see Table 5.6.

5.3.2 Population

In the classical Genetic Algorithm method, the number of populations is fixed

(Mitchell 1996). It uses a fixed number of populations to produce the next

generation, but the populations tended to contract into one high frequent

pattern, and it can only obtain a small part of frequent patterns. To achieve

as many sequential patterns as possible, we potentially needed a population

to cover more individuals. We therefore adjusted the basic Genetic Algorithm

to suit NSP mining in the following ways.

Initial Population

All 1-item frequent positive patterns are obtained first. Based on the 1-item

positive patterns, we transform all of them to their corresponding 1-item

negative sequences, such as transforming the frequent positive sequence <e>

to the negative sequence <¬e>. We then take all positive and negative

1-item patterns as the initial population.

Population Increasing

We do not limit population to a fixed number. When we acquire new sequen-

tial patterns during the evolvement, new patterns are put into the population

for the next selection. If the population has already included the patterns,

we ignore them. To improve the performance of this process, a hash table is

used to verify whether a pattern has already appeared in the population.

79

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Table 5.7: GA-NSP Algorithm: Crossover

parent1 b ¬c ↕ a ⇒ child1 b ¬c e
parent2 d ↕ e ⇒ child2 d a

5.3.3 Selection

The commonly used selection method is roulette wheel selection (Haupt &

Haupt 1998). We have an increased population and the population number

depends on the count of sequential patterns; thus, we can not use roulette

wheel selection because the selection will be too costly if the population num-

ber is huge. We select the top K individuals with high dynamic fitness (see

Section 5.3.7), where K is a constant number showing how many individuals

will be selected for the next generation. To improve the performance of this

selection method, we sort all individuals in population in descending order

by dynamic fitness value. In every generation, we only select the first K

individuals.

5.3.4 Crossover

Parents with different lengths are allowed to crossover with each other, and

crossover may happen at different positions to get sequential patterns with

varied lengths. For example, a crossover takes place at a different position,

which is shown by ’↕’ in Table 5.7. After crossover, it may acquire two

children. Child1 <b ¬c e> consists of the first part of parent1 and the

second part of parent2. Child2 <d a> consists of the second part of parent1

and the first part of parent2. So we get two children with different lengths. If

a crossover takes place both at the end/head of parent1 and at the head/end

of parent2, as Table 5.8 shows, child2 will be empty. In that case, we shall set

child2 by reverse. A Crossover Rate is also used to control the probability

of cross over when parents generate their children.

80

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Table 5.8: GA-NSP Algorithm: Crossover at Head/End

parent1 b ¬c a ↕ ⇒ child1 b ¬c a d e

parent2 ↕ d e ⇒ child2 d e b ¬c a

5.3.5 Mutation

Mutation is helpful in avoiding contraction of the population to a special

frequent pattern. To introduce mutation into sequence generation, we select

a random position and then replace all genes after that position with 1-item

patterns. For example, given an individual <b ¬c a>, after mutation, it may

change to <b d ¬e> if <d> and <¬e> are 1-item patterns. Mutation Rate

is a percentage to indicate the probability of mutation when parents generate

their children.

5.3.6 Pruning

When a new generation is obtained after crossover and mutation, it is neces-

sary to verify whether the new generation is valid in terms of the constraints

for NSP before passing over the whole dataset for their supports.

For a new individual c=<e1 e2 e3 ... en>, c’=<ei ej ... ek> (0<i≤j≤k≤n)

is the max positive subsequence of c, that is to say, ei, ej, ... and ek are all

positive elements, and other elements in c are negative. If c′ is not frequent, c

must be infrequent and should be pruned. This method is simple but effective

for pruning invalid candidates without cutting off possible valid individuals

by mistake.

5.3.7 Fitness Function

Fitness

In order to evaluate the individuals and decide which are the best for the

next generation, a fitness function for individuals is implemented in Genetic

81

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Algorithm. We use the fitness function shown in Equation.5.1:

ind.fitness = (ind.support−min sup)×DatasetSize. (5.1)

The fitness function is composed of two parts. Support is the percentage

that indicates how many proportion records are matched by the individual.

If support is high, fitness will be high, so that the individual has good charac-

teristics to pass down to next generation. min sup is a threshold percentage

value for verifying whether a sequence is frequent. Dataset size is the record

count of whole sequence database.

Dynamic Fitness

Because the characteristics of the individual have been transmitted to the

next generation by crossover or mutation, the individual should exit after a

few generations. The result will tend to contract to one point if the individ-

ual doesn’t exit gradually. We therefore set a dynamic fitness dfitness to

every individual in the population, shown in Equation.5.2. Its initial value

is equal to fitness, but decreases during the evolvement. It indicates that

the individuals in the population will gradually ceased to evolve. It is like a

life value. When an individual’s dynamic fitness is low or close to 0(<0.01),

we set it to 0 because we regard it as a wasted individual which cannot be

selected for the next generation.

ind.dfitness =

{
ind.fitness, initial set

ind.dfitness×(1−DecayRate), if ind is selected

(5.2)

Decay Rate. We set a decay rate to indicate the decrease speed of indi-

vidual’s fitness. The decay rate is a percentage value between 0% and 100%.

If an individual is selected by the selection process, its dynamic fitness will

decrease by the speed of the decay rate. If the decay rate is high, dynam-

ic fitness will decrease quickly and individuals will quickly cease to evolve.

Thus, we may get less frequent patterns through a high decay rate. If we

82

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

want to obtain the maximum frequent patterns, we can set a low decay rate,

such as 5%, but this will give rise to a longer execution time.

How Fitness Function Guide Effective Search

The fitness function focuses on the support of an individual/pattern. Gen-

erally speaking, an individual would have high fitness if it is highly frequent.

That makes higher frequent patterns get higher probability to be selected for

next generation. That is why some patterns can evolve whereas others can

not.

And the second key fitness function, dynamic fitness function, is to avoid

convergence of some special highly frequent patterns. If a pattern is selected

once, its dynamic fitness will be reduced by a predefined value, and that

makes its dynamic fitness value decrease gradually until it is dead, which

means it won’t evolve anymore.

5.3.8 Algorithm Description

Our algorithm is composed of the following six steps.

Step 1: We obtain the initial population which includes all frequent

1-item positive and 1-item negative sequences.

Step 2: Calculate all initial individuals’ fitness. Their dynamic fitness

is set to their fitness.

Step 3: We select the top K individuals with high dynamic fitness from

the population. After selection, the dynamic fitness of the selected individ-

uals is updated by Equation.5.2.

Step 4: Crossover and mutation between the selected individuals to

produce the next generation.

Step 5: After obtaining the next generation, we first prune invalid indi-

viduals and then calculate the frequency and fitness of remained individuals

in new generation. If the frequency of an individual is greater than min sup,

we add it into the population, and set its fitness and dynamic fitness, but if

the population has included this individual, we ignore it.

83

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Step 6: Go back to step 3 and iterate the above process until all indi-

viduals in the population are dead (i.e., their dynamic fitness has become

close to 0). The dead individuals are still in population, but they ceased to

evolve. In the end, we obtain the final result - whole population, which is

composed of all dead individuals.

The pseudocode of our algorithm is given as follows.

GA-NSP Mining Algorithm

Function: Find negative sequential patterns from a sequence database.

Input: Sequence database D, frequency threshold min sup, decay rate

threshold decay rate, crossover rate threshold Crossover Rate, mutation

rate threshold Mutation Rate.

Output: NSP set pop, which contains the best individuals.

RunGA(min sup, decay rate, crossover rate, mutation rate){
01. pop = initialPopulation();

02. for (each individual ind in pop){
03. ind.fitness = calculateFitness(ind);

04. ind.dfitness = ind.fitness

05. pop.sum dfitness = pop.sum dfitness + ind.dfitness

06. }
07. while (pop.sum dfitness > 0){
08. popK = Selection(pop);

09. if (Random()<crossover rate) Crossover(popK);

10. if (Random()<mutation rate) Mutation(popK);

11. for (each individual ind in popK) {
12. if (Prune(ind) ! =true && ind.sup >= min sup)

13. pop.add(ind);

84

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

14. }
15. }
16. return pop;

}

Selection(pop){ ◃ Subfunction for selecting top K individuals from pop-

ulation

01. for (each ind with top K dfitness in pop){
02. popK.add(ind);

03. ind.dfitness = ind.dfitness ∗ (1-decay rate);

04. if (ind.dfitness < 0.01)

05. ind.dfitness = 0;

06. }
07. return popK;

}

5.3.9 An Example of GA-NSP Algorithm

It may not be easy to understand the whole process of GA-NSP algorithm.

A simple example is listed here to make it clearer.

The example comes from one of the experiments in Section 5.4. It uses

Dataset 1 (DS1) as data source, and min sup is set at 0.24.

At first, it uses a PSP mining algorithm, such as GSP, to get frequent

1-item patterns, which is used as the initial population. In the example,

the initial population is as following. count means the support count of the

pattern, and dfitness is the dynamic fitness value of the pattern.

Initial-Population[0]= <91> , count=2578.0, dfitness=464.08

Initial-Population[1]= <414> , count=2325.0, dfitness=211.08

Initial-Population[2]= <440> , count=2266.0, dfitness=152.08

Initial-Population[3]= <538> , count=2209.0, dfitness=95.08

85

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Initial-Population[4]= <646> , count=2707.0, dfitness=593.08

Initial-Population[5]= <663> , count=2375.0, dfitness=261.08

And then, all corresponding negative 1-item patterns are added into the

initial population as well. Their count and dfitness are set to zero.

Initial-Population[6]= <-91> , count=0.0, fitness=0.01

Initial-Population[7]= <-414> , count=0.0, fitness=0.01

Initial-Population[8]= <-440> , count=0.0, fitness=0.01

Initial-Population[9]= <-538> , count=0.0, fitness=0.01

Initial-Population[10]= <-646> , count=0.0, fitness=0.01

Initial-Population[11]= <-663> , count=0.0, fitness=0.01

At this step, an initial population is formed and all these individuals in

the initial population will be put into final output patterns set patterns.

In the patterns, all individuals are sorted by dfitness to make following

selection operation run quickly.

Now evolution process starts. In the first generation, a population are

selected from the final patterns set patterns. We set the max count of popu-

lation at 20. Usually, it choose top 20 individuals with high dfitness. Since

there are only 12 individuals in the patterns in the example, all of them are

selected.

pop-individuals[0]= <-663>

pop-individuals[1]= <663>

pop-individuals[2]= <-646>

pop-individuals[3]= <646>

pop-individuals[4]= <-538>

pop-individuals[5]= <538>

pop-individuals[6]= <-440>

pop-individuals[7]= <440>

86

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

pop-individuals[8]= <-414>

pop-individuals[9]= <414>

pop-individuals[10]=<-91>

pop-individuals[11]=<91>

After the selection, it runs crossover and mutation on pop-individuals, as

following:

begin crossover:

father=<-663>

mother=<663>

–>>child 1: <663>

–>>child 2: <-663>

father=<-646>

mother=<646>

–>>child 1: <-646>

–>>child 2: <646>

father=<-538>

mother=<538>

–>>child 1: <-538>

–>>child 2: <538>

father=<-440>

mother=<440>

–>>child 1: <-440 440>

–>>child 2: <440 -440>

father=<-414>

mother=<414>

–>>child 1: <-414>

–>>child 2: <414>

father=<-91>

mother=<91>

87

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

–>>child 1: <-91 91>

–>>child 2: <91 -91>

begin mutation:

–>> null

In the previous steps, parents <440>, <-440>, <91> and <-91> can

generate 2-item children since the crossover happens at both head and end,

see Table 5.8 for details. No mutation happens up to now.

Now it gets a few new generations, such as <-440 440>, <440 -440>,

<-91 91> and <91 -91>. Their support count and dynamic fitness values

are calculated. If any of them has greater support than min sup, then it is

added into patterns and sorted by dfitness. The patterns would contain the

following values at this moment.

patterns[0]= <646> , count=2707.0, dfitness=563.43

patterns[1]= <91 -91> , count=2578.0, dfitness=464.08

patterns[2]= <91> , count=2578.0, dfitness=440.88

patterns[3]= <663> , count=2375.0, dfitness=248.03

patterns[4]= <414> , count=2325.0, dfitness=200.53

patterns[5]= <440 -440> , count=2266.0, dfitness=152.08

patterns[6]= <440> , count=2266.0, dfitness=144.48

patterns[7]= <538> , count=2209.0, dfitness=90.33

patterns[8]= <-663> , count=0.0, dfitness=0.0

patterns[9]= <-538> , count=0.0, dfitness=0.0

patterns[10]= <-414> , count=0.0, dfitness=0.0

patterns[11]= <-91> , count=0.0, dfitness=0.0

patterns[12]= <-440> , count=0.0, dfitness=0.0

patterns[13]= <-646> , count=0.0, dfitness=0.0

The dfitness values are updated since the corresponding patterns are

selected once. For example, <646> was selected in the previous steps. Its

88

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

dfitness value was 593.08, now its dfitness= 593.08*(1-decay rate) = 593.08

* (1-0.05) = 563.43, as the above patterns[0].

Then it starts next generation from selection, crossover and mutation

again as the same way, until the dfitness of all individuals in patterns are

close to zero.

Hereby we just list the No.200 generation results to see how it evolves.

patterns[0]= <-538 646> , count=2233.0, dfitness=49.79

patterns[1]= <-538 646 -646> , count=2178.0, dfitness=29.69

patterns[2]= <646 -646> , count=2707.0, dfitness=17.22

patterns[3]= <646 -663> , count=2336.0, dfitness=7.14

patterns[4]= <646 -440> , count=2390.0, dfitness=3.02

patterns[5]= <91 -646> , count=2213.0, dfitness=2.60

patterns[6]= <414 -414> , count=2325.0, dfitness=2.09

patterns[7]= <646 -414> , count=2339.0, dfitness=2.01

patterns[8]= <91 -663> , count=2217.0, dfitness=1.99

patterns[9]= <91 -538> , count=2284.0, dfitness=1.86

patterns[10]= <91 -414> , count=2254.0, dfitness=1.62

patterns[11]= <646 -538> , count=2406.0, dfitness=1.56

patterns[12]= <91 -440> , count=2269.0, dfitness=1.53

patterns[13]= <646 -91> , count=2315.0, dfitness=0.0

patterns[14]= <646> , count=2707.0, dfitness=0.0

patterns[15]= <-663> , count=0.0, dfitness=0.0

patterns[16]= <-91> , count=0.0, dfitness=0.0

patterns[17]= <-538> , count=0.0, dfitness=0.0

patterns[18]= <91 -91> , count=2578.0, dfitness=0.0

patterns[19]= <-646> , count=0.0, dfitness=0.0

patterns[20]= <538> , count=2209.0, dfitness=0.0

patterns[21]= <538 -538> , count=2209.0, dfitness=0.0

patterns[22]= <-91 646> , count=2146.0, dfitness=0.0

patterns[23]= <440 -440> , count=2266.0, dfitness=0.0

89

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

patterns[24]= <91> , count=2578.0, dfitness=0.0

patterns[25]= <440> , count=2266.0, dfitness=0.0

patterns[26]= <663> , count=2375.0, dfitness=0.0

patterns[27]= <-440> , count=0.0, dfitness=0.0

patterns[28]= <-414> , count=0.0, dfitness=0.0

patterns[29]= <414> , count=2325.0, dfitness=0.0

5.4 Experiments

The proposed algorithm is implemented with Java and tested with three

synthetic sequence datasets generated by an IBM data generator (Agrawal

& Srikant 1995) and a real-world dataset. We also implemented the PNSP

algorithm (Hsueh et al. 2008) and Neg-GSP algorithm (Zheng et al. 2009)

with Java for performance comparison. All the experiments were conducted

on a PC with Intel Core 2 CPU of 2.9GHz, 2GB memory and Windows XP

Professional SP2.

Dataset 1 (DS1) is C8.T8.S4.I8.DB10k.N1k, which means the average

number of elements in a sequence is 8, the average number of items in an

element is 8, the average length of a maximal pattern consists of 4 elements

and each element is composed of 8 items average. The data set contains 10k

sequences, the number of items is 1000. The minimum number of elements

in a sequence is 1, and the maximum number is 237.

Dataset 2 (DS2) is C10.T2.5.S4.I2.5.DB100k.N10k, which means the av-

erage number of elements in a sequence is 10, the average number of items

in an element is 2.5, the average length of a maximal pattern consists of 4

elements and each element is composed of 2.5 items average. The data set

contains 100k sequences, the number of items is 10k. The minimum number

of elements in a sequence is 1, and the maximum number is 138.

Dataset 3 (DS3) is C20.T4.S6.I8.DB10k.N2k, which means the average

number of elements in a sequence is 20, the average number of items in an

90

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Table 5.9: GA-NSP Algorithm: Features of Synthetic Datasets

Parameters DS1 DS2 DS3

Number of sequences (DB) 10k 100k 10k

Number of items (N) 1k 10k 2k

Average number of elements per sequence (C) 8 10 20

Average number of items per element (T) 8 2.5 4

Average length of maximal potentially large se-

quences (S)

4 4 6

Average size of itemsets in maximal potentially

large sequences (I)

8 2.5 8

element is 4, the average length of a maximal pattern consists of 6 elements

and each element is composed of 8 items average. The data set contains 10k

sequences, the number of items is 2k. The minimum number of elements in

a sequence is 1, and the maximum number is 301.

Dataset 4 (DS4) is real application data for insurance claims. The data

set contains 479 sequences. The average number of elements in a sequence is

30. The minimum number of elements in a sequence is 1, and the maximum

number is 171.

Features of the above three synthetic datasets are listed in Table 5.9.

Experiments were done to compare the different Crossover Rate, Muta-

tion Rate and Decay Rate on two synthetic datasets, DS1 and DS2. Each

experiment was run 10 times and then the average value was got as the final

result. We focused on comparing execution time, the number of patterns

and the execution time per pattern, which indicates how long it takes to get

one pattern. The total number of all patterns was determined by PNSP and

Neg-GSP algorithm, and it was then easy to know the proportion of patterns

we could get by using our algorithm. The Y axis (see the 2nd charts of Figure

5.2 and Figure 5.3) indicates the proportion of patterns.

91

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.2: Experiments: Different Crossover Rates On DS1

92

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.3: Experiments: Different Crossover Rates On DS2

93

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

5.4.1 Analysis of Crossover Rate

We compared different crossover rates from 60% to 100%. Figure 5.2 and

5.3 show the effect of different crossover rates on DS1 and DS2. With

low crossover rates, such as 60%, we obtained almost the same proportion

of patterns as with high crossover rates (see the 2nd charts in Figure 5.2

and Figure 5.3). The least execution-time per pattern is achieved when the

crossover rate is low, so 60% is the best choice for the two datasets in our

experiments.

5.4.2 Analysis of Mutation Rate

We compared different mutation rates from 0% to 20% on DS1 and DS2 (see

Figure 5.4 and Figure 5.5). They show that the mutation rate will not have

an outstanding effect, but if it is set to 0%, it will result in missing a lot of

patterns. A Mutation rate of 5-10% is a good choice because it can produce

around 80% patterns for DS1 and above 90% patterns for DS2. When the

mutation rate is 5%, the average execution-time per pattern is lower. We

therefore set a mutation rate of 5% for the following experiments.

5.4.3 Analysis of Decay Rate

Decay rate is a variable that we used to control evolution speed. If the decay

rate is high, individuals will die quickly, so we can get only small proportion

of patterns. If the decay rate is low, we can get more patterns, but a longer

execution time is necessary (see Figure 5.6 and Figure 5.7). In order to get all

NSP, we always choose decay rate=5%, which enables us to obtain around

90% to 100% patterns on the two datasets.

5.4.4 Performance Comparison with Other Methods

We compared our algorithm with PNSP and Neg-GSP, which are two algo-

rithms proposed recently for NSP mining. The tests are based on Crossover

94

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.4: Experiments: Different Mutation Rates On DS1

95

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.5: Experiments: Different Mutation Rates On DS2

96

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.6: Experiments: Different Decay Rates On DS1

97

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.7: Experiments: Different Decay Rates On DS2

98

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Rate=60%, Mutation Rate=5% and Decay Rate=5%. The results (see Fig-

ure 5.8 to 5.11) on 4 different datasets show that the performance of the

GA-NSP algorithm is better than PNSP and Neg-GSP when the support

threshold is low. Our algorithm is not better than others when min sup is

high, because most patterns are very short and the GA-NSP method cannot

demonstrate its advantage.

When min sup is high, there are not as many patterns and the patterns

are short, so it is very easy to find the patterns with existing methods.

However, when min sup is low, the patterns are longer and the search space

is much bigger, so it is time-consuming to find patterns using traditional

methods. Using our GA-NSP algorithm, it is still can obtain the patterns

quickly even though min sup is very low.

5.5 Conclusions

This chapter proposes a Genetic Algorithm based algorithm, GA-NSP, to

find NSP with novel crossover and mutation operations. An effective dy-

namic fitness function and a pruning method are also provided to improve

performance. The results of extensive experiments show that the proposed

method can find negative patterns efficiently and has remarkable performance

compared with some other algorithms of negative pattern mining. It special-

ly outperforms existing algorithms when the support threshold min sup is

low or when the patterns are long.

• Genetic Algorithm are efficient at passing good genes on to next gen-

erations in NSP mining;

• The fitness function focuses on the support of an individual / pattern.

A highly frequent individual would have high fitness. That makes the

highly frequent patterns have higher probability to be selected for next

generation. That is why some patterns can evolve whereas others can

not.

99

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.8: GA-NSP Algorithm: Execution Time Comparison On DS1

100

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.9: GA-NSP Algorithm: Execution Time Comparison On DS2

101

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.10: GA-NSP Algorithm: Execution Time Comparison On DS3

102

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

Figure 5.11: GA-NSP Algorithm: Execution Time Comparison On DS4

103

CHAPTER 5. GENETIC ALGORITHM BASED ALGORITHM: GA-NSP

• Dynamic fitness function can avoid convergence of some special highly

frequent patterns. If a pattern is selected once, its dynamic fitness will

be reduced by a predefined value, and that makes its dynamic fitness

value decrease gradually until it is dead, which means it won’t evolve

anymore.

104

Chapter 6

Effective NSP (e-NSP) Mining

Algorithm

The typical approach of getting support of NSC is to pass over the whole

sequence database, and Neg-GSP algorithm in Chapter 4 is one of them. But

it is obviously not efficient enough. We try to find a method that can avoid

passing over the sequence database many times so as to reduce execution

time of calculating candidate’s support. A feasible method is to calculate

support of negative candidate only using the support info of corresponding

positive patterns, without re-scanning database.

We focus on these area and got much progress so far. (Dong et al. 2011)

proposed a deducible method, which is called e-NSP, to calculate support of

negative candidate based on the support of identified positive patterns.

The idea of the proposed method comes from the Set Theory, it is assumed

that there is special relationship between NSC and its corresponding PSP.

Therefore, the support of a NSC can be calculated by using only the sup-

port information of the corresponding PSP, without any additional database

scanning. The basic working mechanism of e-NSP is as follows.

First, negative containment is defined to determine whether or not a data

sequence contains a negative sequence. It clearly defines the boundary of a

data sequence set containing a NSC, and supports applying the Set Theory

105

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

in NSP mining.

Second, an efficient approach is proposed to convert the negative con-

taining problem to a positive containing problem. The supports of NSC are

then calculated based only on the corresponding PSP. In this way, mining

NSP does not need additional database scans, and the existing PSP mining

algorithms can be used to mine for NSP.

Finally, a simple but efficient approach is proposed to generate NSC. We

test and compare our approach with two currently available NSP mining

algorithms on both synthetic and real-life datasets. This clearly shows that

e-NSP is much more efficient than any other available NSP approach. It also

shows that e-NSP offers a new strategy for efficient mining of NSP in large

datasets.

So far, we got only outcome for some special NSP with strong constraints,

not for all general NSP, as described in the following problem statements.

6.1 Problem Statement

6.1.1 Related Definitions

Several concepts are defined in the following before we discuss e-NSP algo-

rithm.

Definition 1. Positive Partner

The positive partner of a negative element ¬e is e, denoted as PP (¬e), i.e.,
PP (¬e) = e. The positive partner of positive element e is e itself, i.e.,

PP (e) = e. The positive partner of a negative sequence ns=<s1. . .sk> is

to change all negative elements in ns to their positive partners, denoted as

PP (ns), i.e., PP (ns) = {< s′1 . . . s′k >| s′i = PP (si), si ∈ ns}.
Example 1 . PP(<(¬a¬b) c ¬d>)=<(ab) c d>.

106

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Definition 2. Positive/Negative Element-id Set

Element id is the order number of an element in a sequence. Given a sequence

s =< s1 s2 . . . sm >, id(si) = i is the element id of element si. Element-id

set EidSs of s is the set that includes all elements and their ids in s, i.e.,

EidSs = {(si, id(si)) | si ∈ s} = {(s1, 1), (s2, 2), . . . , (sm,m)} (1 6 i 6 m).

The set including all positive and negative element-ids of a sequence s is

called positive and negative element-id set of s, denoted as EidS+
s , EidS−

s

respectively.

Example 2 . Given s =< ¬(ab) c ¬d >, EidSs={(¬(ab),1), (c,2),

(¬d,3)}, EidS+
s = {(c, 2)}, EidS−

s = {(¬(ab), 1), (¬d, 3)}.

Definition 3. Subsequence (Definition By Element-id Set)

Given a sequence s, EidS ′
s = {(α1, id1), (α2, id2), . . ., (αp, idp)} (1 < p 6 m)

is a subset of EidSs, α =< α1 α2 . . . αp >, if ∀αi, αi+1 ∈ α (1 6 i < p),

we have idi < idi+1, then α is called a subsequence of s, denoted as α =

Sub(EidS ′
s).

Example 3 . Following Example 2, s =< ¬(ab) c ¬d >, EidSs =

{(¬(ab), 1), (c, 2), (¬d, 3)}, EidS+
s = {(c, 2)}, EidS−

s = {(¬(ab), 1), (¬d, 3)}.
Sub(EidS+

s) =< c >. If EidS ′
s = {(¬(ab), 1), (c, 2)}, we can create a subse-

quence of s, Sub(EidS ′
s) =< ¬(ab) c >.

Maximum Positive Subsequence and 1-neg-size Maximum Subsequence

are two types of special subsequence; see the following definitions.

Definition 4. Maximum Positive Subsequence (Definition By Element-

id Set)

Maximum positive subsequence is a special subsequence which is composed of

all positive elements. Let ns =< s1 s2 . . . sm > be an m-size and n-neg-size

negative sequence (m−n > 0), Sub(EidS+
ns) is called the maximum positive

subsequence of ns, denoted as MPS(ns). MPS(ns) = Sub(EidS+
ns).

Example 4 . Given a negative sequence s=<¬(ab) c d >, EidS+ =

107

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

{(c, 2), (d, 3)}, its maximum positive subsequence is MPS(s) =< c d >.

Definition 5. 1-neg-size Maximum Subsequence

For a negative sequence ns, its subsequence that includes MPS(ns) and one

negative element e is called a 1-neg-size maximum subsequence, denoted as

1-negMS, 1-negMS=Sub(EidS+
ns, e), where e ∈ EidS−

ns.

The subsequence set including all 1-neg-size maximum sub-sequences of

ns is called 1-neg-size maximum subsequence set, denoted as 1-negMSSns,

1-negMSSns = {Sub(EidS+
ns, e) | ∀e ∈ EidS−

ns}. It is a subsequence which

is composed of all positive elements and one negative element.

Example 5.1 . ns =< ¬(ab) c ¬d >, 1-negMSSns = {< ¬(ab) c >,

< c ¬(d) >};
Example 5.2 . ns′ =< ¬a (bc) d ¬(cde) >, 1-negMSSns′={<¬a (bc) d>,

<(bc) d ¬(cde)>}.

6.1.2 Constraints of Negative Candidates

In real applications, the number of NSP is huge, and many of them are not

meaningful. In order to reduce the number of NSC and efficiently discov-

er meaningful NSP, some constraints must be added to negative sequences

(Hsueh et al. 2008)(Zheng et al. 2009). In this chapter, we only consider a

negative sequence that satisfies the following three constraints.

Constraint 1. Frequency Constraint

In Section 3.2, the constraint 1 defined that: for each negative item in a NSP,

its corresponding positive item is required to be frequent. For example, (¬i)
is an interesting negative item if its positive item (i) is frequent. It just

focuses on item. This chapter propose stronger constraint accordingly, which

focuses on negative sequence, not only item. For a negative sequence ns, it

must satisfy sup(PP(ns)) >min sup.

108

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Example 6 . Given frequent itemsets (ab) and d, we take their corre-

sponding negative itemsets ¬(ab) and ¬d into account in a negative sequence,

such as < ¬(ab) c ¬d >. However, if (ab) or d are not frequent, we ignore

¬(ab) or ¬d in our approach since we always focus on frequent positive item-

sets and their corresponding negative itemsets.

Besides the frequency constraint, we defined another two types of format

constraint as following. The two format constraints are described in Chapter

3, see section 3.2.

Constraint 2. Format Constraint 1

Adjacent negative elements in a NSC are not allowed.

Example 7 . < ¬(ab) c ¬d > satisfies Constraint 2, but < ¬(ab) ¬c d >

does not because of two adjacent negative elements ¬(ab) and ¬c.

Constraint 2. Format Constraint 2

The minimum negative unit in a NSC is an element. If the element includes

more than one item, either all items are positive or the whole element is

negative. It is not permitted for certain items in the element to be negative

while others are not negative (Zheng et al. 2009).

Example 8 . < ¬(ab) c d > satisfies Constraint 3, but < (¬ab) c d >

does not because only ¬a is negative in element (¬ab) while b is not.

In this chapter, we assume that a negative sequence implicitly satisfies

the above three constraints.

6.1.3 Negative Containment

Negative containment defines how a data sequence contains a negative se-

quence/candidate. Before discussing the formal definition of negative con-

tainment, we introduce a related definition as following.

109

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Definition 6. First Subsequence Ending Position / Last Subse-

quence Beginning Position

Given a data sequence ds =< d1 d2 . . . dt > and a positive sequence α,

(1) if ∃p(1 < p 6 t), α ⊆< d1 . . . dp > ∧α *< d1 . . . dp−1 >, then p

is called the First Subsequence Ending Position, denoted as FSE(α, ds); if

α ⊆< d1 > then FSE(α, ds) = 1;

(2) if ∃q(1 6 q < t), α ⊆< dq . . . dt > ∧α *< dq+1 . . . dt >, then q is

called the Last Subsequence Beginning Position, denoted as LSB(α, ds); if

α ⊆< dt > then LSB(α, ds) = t;

(3) if α * ds, then FSE(α, ds) = 0, LSB(α, ds) = 0.

Example 9 . Given ds =< a (bc) d (cde) >. FSE(< a >, ds) = 1,

FSE(< c >, ds) = 2, FSE(< c d >, ds) = 3, LSB(< a >, ds) = 1, LSB(<

c >, ds) = 4, LSB(< c d >, ds) = 2, LSB(< (cd) >, ds) = 4.

Our definition of a data sequence containing a negative sequence is as

follows.

Definition 7. Negative Supporting Definition

Let ds =< d1 d2 . . . dt > be a data sequence, ns =< s1 s2 . . . sm > be an

m-size and n-neg-size negative sequence, (1) if m > 2t+ 1, then ds does not

support ns; (2) if m = 1 and n = 1, then ds supports ns when PP (ns) * ds;

(3) otherwise, ds supports ns if, ∀(si, id(si)) ∈ EidS−
ns(1 6 i 6 m), any one

of the following three conditions holds:

a) (lsb = 1) or (lsb > 1) ∧ PP (s1) * <d1. . .dlsb−1 >, when i = 1,

b) (fse = t) or (0 < fse < t) ∧ PP (sm) * <dfse+1. . . dt >, when i = m,

c) (fse > 0 ∧ lsb = fse + 1) or (fse > 0 ∧ lsb >fse+1) ∧PP (si) *<

dfse+1 . . . dlsb−1 >, when 1 < i < m,

where fse = FSE(MPS(< s1 s2 . . . si−1 >), ds), lsb = LSB(MPS(<

si+1 . . . sm >), ds).

In the above definition, case a) indicates that the first element is negative

in ns. “(lsb > 1) ∧ PP (s1) *< d1 . . . dlsb−1 >” means that < dlsb . . . dt >

contains MPS(< s2 . . . sm >) but < d1 . . . dlsb−1 > does not contain PP (s1).

110

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

“lsb = 1” means that the last subsequence’s beginning position is 1, so

PP (s1) cannot be contained by ds. Case b) indicates that the last element

is negative in ns. Case c) indicates that the negative element is between the

first and last element in ns. “lsb > fse + 1” ensures there is at least one

element in “< dfse+1 . . . dlsb−1 >”. “fse > 0∧ lsb = fse+1” means that dfse

and dlsb are contiguous elements, so PP (si) cannot be contained between

them.

Example 10 . Given ds =< a (bc) d (cde) >, we have

1) ns =< ¬a c >. EidS−
ns = {(¬a, 1)}. ds does not contain ns. lsb =

4 > 0, but PP (s1) =< a >⊆ < d1 . . . d3 >=< a (bc) d > (Case a).

2) ns =< ¬a a c >. EidS−
ns = {(¬a, 1)}. ds contains ns because lsb = 1

(Case a).

3) ns =< (ab) ¬(cd) >. EidS−
ns = {(¬(cd), 2)}. ds does not contain ns

because fse = 0 (Case b).

4) ns =< (de) ¬(cd) >. EidS−
ns = {(¬(cd), 2)}. ds contains ns because

fse = 4(t = 4)(Case b).

5) ns =< a ¬d d ¬d >. EidS−
ns = {(¬d, 2), (¬d, 4)}. ds does not contain

ns. For (¬d, 2), fse = 1, lsb = 4, but PP (¬d) ⊆< d2 . . . d3 >=< (bc) d >

(Case c). If one negative element does not satisfy the condition, we do not

need to consider other negative elements.

6) ns =< a ¬b b ¬a (cde) >. EidS−
ns = {(¬b, 2), (¬a, 4)}. ds contains ns.

For (¬b, 1), fse = 1, lsb = 2, fse > 0 ∧ lsb = fse + 1 (Case c); For (¬a, 4),
fse = 2, lsb = 4, PP (¬a) *< d3 >=< d > (Case c).

Negative sequences do not satisfy the Apriori property. The Apriori

property can be simply described as: a sequence s is not frequent if any

of its sub-sequences s′ is not frequent, namely, sup(s′) > sup(s). Howev-

er, as shown in Example 11, sup(< ¬a c >) = 0, sup(<¬a a c >) = 1,

sup(< ¬a c >) < sup(< ¬a a c >), though < a c >⊆< ¬a a c >.

Given a data sequence ds =< d1 d2 . . . dt >, and ns =< s1 s2 . . . sm >,

which is an m-size and n-neg-size negative sequence, the negative contain-

ment definition can be described as follows.

111

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Data sequence ds contains negative sequence ns if and only if the two

conditions hold: (1)MPS(ns) ⊆ ds; and (2) ∀1-negMS ∈ 1-negMSSns, p(1-

negMS) * ds.

Example 11 . Given ds =< a (bc) d (cde) >, 1) if ns =< a ¬d d ¬d >,

1-negMSSns = {< a ¬d d >,< a d ¬d >}, then ds does not contain ns

because p(< a ¬d d >) =< a d d >⊆ ds; 2) if ns′ = < a ¬b b ¬a (cde) >,

1-negMSS ′
ns = {< a ¬b b (cde) >,< a b ¬a (cde) >}, then ds contains ns

because MPS(ns) =< a b (cde) >⊆ ds ∧ p(< a ¬b b (cde) >) * ds ∧ p(<

a b ¬a (cde) >) * ds.

Based on the above definition, set properties are applicable in calculating

sup(ns).

6.1.4 Brief Introduction of Set Theory

Set theory is the branch of mathematics that studies sets, which are collec-

tions of objects.

A set is a collection of things (called the members or elements), the

collection being regarded as a single object. For example, the set of prime

numbers less than 14 is {2, 3, 4, 7, 11, 13}.
Union of the sets A and B, denoted A ∪ B, is the set of all objects that

are a member of A, or B, or both. For example, the union of {1, 2, 3} and

{2, 3, 4} is the set {1, 2, 3, 4}.
Intersection of the sets A and B, denoted A ∩B, is the set of all objects

that are members of both A and B. For example, the intersection of {1, 2, 3}
and {2, 3, 4} is the set {2, 3}.

Set difference of U and A, denoted U \ A is the set of all members of U

that are not members of A. The set difference of {1, 2, 3}\{2, 3, 4} is {1} ,

while, conversely, the set difference of {2, 3, 4}\{1, 2, 3} is {4} . When A is a

subset of U , the set difference U \A is also called the complement of A in U .

112

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

6.1.5 Negative Supporting

In the following, we discuss negative containment in set theory by giving an

example. Figure 6.1 shows the intersection of sequence < a > and < b >.

{< a >}, {< b >} mean the set of tuples that contain sequences < a >,< b >

in a sequence database respectively. There are three 2-length sequences:

< a b >, < b a > and < (ab) >, and four disjointed sets: {< (ab) >only},
{< a b >only}, {< b a >only} and {< a b >} ∩ {< b a >}, which are the sets

of tuples that contain sequences < (ab) > only, < a b > only, < b a > only,

and both < a b > and < b a > respectively.

Taking {< a ¬b >} as an example, as seen in Figure 6.1, we have {<
a ¬b >} = {< a > − < b >}∪ {< (ab) >only} ∪ {< b a >only}

= {< a >} − {< a b >only} ∪ ({< ab >} ∩ {< b a >})
= {< a >} − {< a b >}
This result is consistent with the negative containment definition, by

which data sequences containing {< a ¬b >} are the same sequences that

contain {< a >} but do not contain {< a b >}.
So we can get:

sup(< a ¬b >) = sup(< a >)− sup(< a b >);

sup(< ¬a b >) = sup(< b >)− sup(< a b >);

sup(< b ¬a >) = sup(< b >)− sup(< b a >); and

sup(< ¬b a >) = sup(< a >)− sup(< b a >).

Figure 6.2 is another example to show the meaning of sup(ns) from the

aspect of set theory. Given ns = < a ¬b c ¬d e f >, 1-negMSSns = {<
a ¬b c e >, < a c ¬d e >,< a c e ¬f >}, sup(ns) =| {< a c e >} | − |<
a b c e > ∪ < a c d e > ∪ < a c e f >|.

The above examples show that the negative containment definition is

consistent with set theory.

113

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Figure 6.1: e-NSP Algorithm: the Intersection of {< a >} and {< b >}

Figure 6.2: e-NSP Algorithm: the Meaning of sup(< a ¬b c ¬d e ¬f >)

114

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Figure 6.3: e-NSP Algorithm: Framework

6.2 e-NSP Algorithm

Figure 6.3 shows the framework and working mechanism of e-NSP, which

consists of several steps as follows.

Step 1: Find all PSP from sequence database using any PSP Mining

algorithm, such as GSP, PrefixSpan, SPADE, etc.;

Step 2: Generate NSC based on the PSP we obtained from Step 1, see

Section 6.2.1;

Step 3: Use the information of corresponding PSP to calculate the sup-

port of NSC in Section 6.2.2;

We described a data structure and optimization for calculating the union

set in Section 6.2.4. Section 6.2.5 shows e-NSP in detail, and its pseudocodes.

6.2.1 Negative Sequential Candidates Generation

The approaches of generating NSC in some other papers (Hsueh et al. 2008)

(Zheng et al. 2009) are not compatible with the constraints of negative se-

quence in our approach, so we design an efficient approach to generate NSC.

The basic idea of generating a NSC is to change any non-contiguous ele-

ments (not items) in a PSP to their negative ones. For a k-size PSP, its NSC

are generated by changing any m non-contiguous element(s) to its (their)

negative one(s).

Example 12 . Given a PSP < (ab) c d >, it generates corresponding

NSC including:

m = 1, < ¬(ab) c d >,< (ab) ¬c d >,< (ab) c ¬d >;

115

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

m = 2, < ¬(ab) c ¬d >.

Obviously, for all PSP in a sequence database, we can generate NSC that

all satisfy the three constraints, which were described in Section 6.1.

6.2.2 Supports of Negative Sequences / Candidates

After obtaining NSC, the next step is to calculate supports of all NSC. Scan-

ning the whole database is the only method to get the supports directly, as

far as we know, but it is time consuming. Therefore, if we can verify whether

a data sequence contains a NSC based only on the information of the PSP,

without scanning the whole database, it will be more effective since we have

already obtained all PSP in a previous step. In this section, we will discuss

the method for calculating the supports of negative sequences / candidates

using only identified positive patterns.

Given a m-size and n-neg-size negative sequence ns, for ∀1-negMSi ∈ 1-

negMSSns(1 6 i 6 n), the support of ns in sequence database D is:

sup(ns) =| {MPS(ns)} − ∪n
i=1{PP (1-negMSi)} | (6.1)

Equation 6.1 can be rewritten as:

sup(ns) =| {MPS(ns)} | − | ∪n
i=1{PP (1-negMSi)} |

= sup(MPS(ns))− | ∪n
i=1{PP (1-negMSi)} |

(6.2)

Example 13 . sup(< ¬a (bc) d ¬(cde) >) = sup(<(bc)d >) − | {<
a (bc) d >} ∪ {< (bc) d (cde) >} |;

sup(< ¬(ab) c ¬d >) = sup(< c >)− | {< (ab) c >} ∪{< c d >} |.
If ns only contains a negative element, the support of ns is calculated by

following equation:

sup(ns) = sup(MPS(ns))− sup(PP (ns)) (6.3)

Example 14 ., sup(< (ab) ¬c d >) = sup(< (ab) d >) −sup(< (ab) c d >

)

116

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Specially, for negative sequence < ¬e >,

sup(< ¬e >) =| D | −sup(< e >) (6.4)

From equation 6.2 we can see that sup(ns) can be easily calculated if

we know sup(MPS(ns)) and | ∪n
i=1{PP (1-negMSi)} |. According to the

constraints of NSC and the NSC generation approach discussed in Section

6.2.1, MPS(ns) and PP (1-negMSi) are frequent. So sup(MPS(ns)) can be

easily obtained by traditional algorithms.

The problem now is changed to how to calculate | ∪n
i=1{PP (1-negMSi)} |.

Our approach is as follows. The sid of the tuples containing PP(1-negMSi)

are stored into set {PP(1-negMSi)}, and then we calculate the union set of

{PP(1-negMSi)}. Because PP(1-negMSi) are frequent, the sid of the tuples

containing PP(1-negMSi) can be easily obtained by well-known algorithm-

s with minor modifications. For instance, we store the sid of the tuples

containing PP(1-negMSi) to {PP(1-negMSi)}, while traditionally only the

number of the tuples containing them is stored in mining PSP.

6.2.3 Negative Conversion Strategy and Proof

Theorem 1. Negative Conversion Strategy

Given a data sequence ds =< d1 d2 . . . dt >, and ns =< s1 s2 . . . sm >, which

is an m-size and n-neg-size negative sequence, the negative containment def-

inition can be converted as follows: data sequence ds contains negative se-

quence ns if and only if the two conditions hold: (1) MPS(ns) ⊆ ds; and

(2) ∀1-negMS ∈ 1-negMSSns, PP (1-negMS) * ds.

Example 15 . Given ds =< a (bc) d (cde) >, 1) if ns =< a ¬d d ¬d >,

1-negMSSns = {< a ¬d d >,< a d ¬d >}, then ds does not contain ns

because PP (< a ¬d d >) =< a d d >⊆ ds; 2) if ns′ =< a ¬b b ¬a (cde) >,

1-negMSS ′
ns = {< a ¬b b (cde) >,< a b ¬a (cde) >}, then ds contains ns

because MPS(ns) =< a b (cde) >⊆ ds∧PP (< a ¬b b (cde) >) * ds∧PP (<

a b ¬a (cde) >) * ds.

117

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Proof of Theorem 1

Here we only prove that case c) in the negative containment definition is

equivalent to the negative converting strategy, because cases a) and b) can be

proved in the same way. In case c), condition “(fse > 0∧lsb = fse+1)” says

that dfse and dlsb−1 are contiguous elements, so PP (si) can’t be contained

between them. It is a special case of another condition “(fse > 0 ∧ lsb >

fse + 1) ∧ PP (si) *< dfse+1 . . . dlsb−1 >”. So we only need to prove that

“(fse > 0 ∧ lsb > fse + 1) ∧ PP (si) *< dfse+1 . . . dlsb−1 >” is equivalent to

negative converting strategy.

For (si, id(si)) ∈ EidS−
ns(1 6 i 6 m), “0 < fse” means MPS(<s1 s2

. . . si−1>)⊆<d1 . . . dfse>, and “0 < lsb” means MPS(< si+1 . . . sm >

) ⊆< dlsb . . . dt >. Since fse < lsb, MPS(< s1 s2 . . . si−1 si+1 . . . sm >

) ⊆< d1 . . . dfse dlsb . . . dt >, i.e., MPS(ns) ⊆ ds. On the other hand, if

MPS(ns) ⊆ ds, for ∀(si, id(si)) ∈ EidS−
ns, there must exist 0 < fse < lsb

s.t. MPS(< s1 s2 . . . si−1 >) ⊆< d1 . . . dfse > and MPS(< si+1 . . . sm >

) ⊆< dlsb . . . dt >.

In addition, according to the definition of 1-neg-size maximum subse-

quence, MPS(< s1 s2 . . . si−1 >), MPS(< si+1 . . . sm >) and si just con-

struct a 1-neg-size maximum subsequence 1-negMS of si, so “(fse > 0∧lsb >
fse + 1) ∧ PP (si) *< dfse+1 . . . dlsb−1 >” also means PP (1-negMS) * ds.

For ∀(si, id(si)) ∈ EidS−
ns, “(fse > 0 ∧ lsb > fse + 1) ∧ PP (si) *<

dfse+1 . . . dlsb−1 >” can be converted to: ∀1-negMS ∈ 1-negMSSns, PP (1-

negMS) * ds, and vice versa.

Corollary 1 proves that the negative containment problem is equivalent

to the negative conversion problem.

6.2.4 e-NSP Data Structure and Optimization

In order to efficiently calculate the union set, we design a data structure

to store the e-NSP related data. The data structure is shown in Table 6.1.

Column one stores positive sequential patterns, column two holds its sup-

118

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

port, column three encloses {sid} which is the set of the tuples that contain

corresponding PSP.

Table 6.1: e-NSP: Data Structure and An Example

PSP Support {sid}
<(ab)> 2 {20,30}
<(ab) c> 1 {30}
.

The e-NSP data is stored in a hash table to identify PSP efficiently, as

shown in the following pseudocode.

Function: Create hash table for calculating support of NSC.

Input: All PSP and their related information;

Output: PSP’ hash table;

CreatePSPHashTable(PSP){
01. HashTable PSPHash = new HashTable();

02. for (each pattern p in PSP)

03. PSPHash.put(p.HashCode(),p.support,p.size,p.sidSet);

04. return PSPHash;

}

In order to calculate the union set efficiently, we propose two other opti-

mization methods as follows.

(1) When we calculate support of a NSC, we also utilize a hash table to

accelerate search speed. For example, given a NSC ns=< a ¬b c ¬d e ¬f >,

1-negMSSns = {< a ¬b c e >,< a c¬d e >,< a c e¬f >}, for each

sequence 1-negMSi in 1-negMSSns, it is easy to get its positive partner

PP (1-negMSi). Then we search all {sid} of PP (1-negMSi) and add each

119

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

sid to the hash table if the sid is not available in the hash table. Finally,

ns’s support can be easily calculated by sup(MPS(ns)) minus the size of

the new sid set, according to Equation 6.2. Compared with the performance

using common array, the search speed with hash table is far more effecient.

(2) We assume that all data in the e-NSP data structure are stored in

main memory. This is feasible in practice since the mainstream memory

can reach gigabytes and above. We do not record the {sid} of 1-size PSP

because the equations do not need to calculate the union set of those {sid}
of 1-size PSP. Even in the worst situation in which the data are too big to fit

completely into the main memory, by using the e-NSP candidate generation

method for a k-size positive sequential pattern, the size range of negative

elements in the corresponding NSC is 1 → pk/2q, the size range of PSP used

to calculate the support of these candidates is (xk/2y+ 1) → (k− 1), where

xk/2y is a maximum integer not more than k/2. Therefore, only {sid}s of

(xk/2y+ 1) → (k − 1) size PSP are necessary to be put into main memory.

Example 16 . (Continuation of Example 12) Given a PSP s, size(s) = 5,

the range of neg-size of NSC based on the PSP is 1 → 3, and the size range

of PSP used is 3 → 4. Specifically, when neg-size(NSC) = 1, the support of

NSC can be calculated by Equation 6.2. When neg-size(NSC) = 2, we need

to calculate the union set of 4-size PSP because size(1-negMSNSC) = 4.

When neg-size(NSC) = 3, we need to calculate the union set of 3-size PSP

since size(1-negMSNSC) = 3.

6.2.5 Pseudocode of e-NSP Algorithm

The e-NSP algorithm, as shown following, is proposed to mine for NSP. It

consists of three key steps.

(1) Find all PSP from sequence database using any PSP Mining algorith-

m, such as GSP, PrefixSpan, SPADE, etc. All PSP and their sid sets are

saved in a hash table PSPHash, in which PSP’s hash code acts as the key

code.

(2) For each PSP, generate NSC by the approach stated in Section 6.2.1.

120

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

(3) For each NSC ns, its support is calculated by Equation (6.1)-(6.2).

e-NSP Algorithm

Function: Run e-NSP algorithm to mine NSP;

Input: Sequence Database D and min sup;

Output: Negative Sequential Patterns set NSP ;

RunENSP(D, min sup){
01. PSP = minePSP();

02. HashTable PSPHash = CreatePSPHashTable(PSP);

03. for (each psp in PSP){
04. NSC = e-NSP Candidate Generation(psp);

05. for (each nsc in NSC){
06. if (nsc.size==1 && nsc.neg size==1) {
07. nsc.support = |D| - PP (nsc).support;

08. } else if (nsc.size>1 && nsc.neg size==1){
09. nsc.support = MPS(nsc).support-PP (nsc).support;

10. } else {
11. 1-negMSSnsc = {1-negMSi | 1<=i<=nsc.neg size};
12. HashTable cHash = new HashTable();

13. for (i=1; i<=nsc.neg size; i++) {
14. for (each sid in PP (1-negMSi).sidSet){
15. if (sid.hashcode NOT IN cHash)

16. cHash.put(sid.hashcode(),sid);

17. nsc.support=MPS(nsc).support-cHash.size();

18. }
19. if (nsc.support > min sup)

20. NSP.add(nsc);

121

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

21. }
22. }
23. }
24. }
25. return NSP;

}

6.2.6 An Example

The above sections introduce key concepts and components as well as the

e-NSP algorithm for NSP mining. This section illustrates how to mine for

NSP by an example. The sequence database is shown in Table 6.2 (Hsueh

et al. 2008). In the example, we set min sup=2 (to make the example easy

to understand, we use the records count as min sup here).

Table 6.2: e-NSP: Data Set for Example

Sid Data Sequence

10 < a b c >

20 < a (ab) >

30 < (ae) (ab) c >

40 < a a >

50 < d >

The process is as follows.

(1) Mine PSP using one of the well-known algorithms, such as GSP, and

fill in e-NSP data structure, which are shown as Table 6.3.

(2) Use the e-NSP Candidate Generation method to generate all NSC.

(3) Use Equations 6.1-6.2 to calculate the support of these NSC. The

results are shown in Table 6.4, and the NSP are marked in bold.

From this example, we can see that < a c > and < a ¬c >, < a (ab) > and

< a ¬(ab) > are frequent patterns, but clearly not all of them can be used to

122

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Table 6.3: e-NSP: Example Results - Positive Patterns

PSP Support Size {sid}
< a > 4 1 -

< b > 3 1 -

< c > 2 1 -

< a a > 3 2 {20,30,40}
< a b > 3 2 {10,20,30}
< a c > 2 2 {10,30}
< b c > 2 2 {10,30}
< (ab) > 2 1 -

< a b c > 2 3 {10,30}
< a (ab) > 2 2 {20,30}

make decisions because some of patterns are misleading, which means some

patterns may conflict with each other. For example, < a c > is frequent, and

< a ¬c > is frequent as well, which one is useful for decision making? Some

of them might not be useful. How to select the right patterns is one of our

ongoing tasks, see Section 8.2.4.

6.2.7 Computational Complexity Analysis

Section 4.3.5 has described the computational complexity analysis of Neg-

GSP and PNSP. In this section, we will talk about that of e-NSP.

e-NSP calculates the support value of each candidate by set operations,

such as union, interaction and set difference. Since it will be much quicker

than scanning the whole database, as what Neg-GSP and PNSP did, and e-

NSP focus on smaller search space than that of PNSP and Neg-GSP, e-NSP

will have higher performance.

According to the problem statement of e-NSP, negative candidates come

from positive patterns. That is to say, the number of negative candidates

would affected by the number of PSP. For a k-item positive pattern, it will

123

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Table 6.4: e-NSP: Example Results - NSC and Supports

PSP NSC Related PSP sup

< a > < ¬a > < a > 1

< b > < ¬b > < b > 2

< c > < ¬c > < c > 3

< a a > < ¬a a > < a >,< a a > 1

< a ¬a > < a >,< a a > 1

< a b > < ¬a b > < b >,< a b > 0

< a ¬b > < a >,< a b > 1

< a c > < ¬a c > < c >,< a c > 0

< a ¬c > < a >,< a c > 2

< b c > < ¬b c > < c >,< b c > 0

< b ¬c > < b >,< b c > 1

< (ab) > < ¬(ab) > < (ab) > 3

< a (ab) > < ¬a (ab) > < (ab) >,< a (ab) > 0

< a ¬(ab) > < a >,< a (ab) > 2

< a b c > < ¬a b c > < b c >,< a b c > 0

< a ¬b c > < a c >,< a b c > 0

< a b ¬c > < a b >,< a b c > 1

< ¬a b ¬c > < b >,< a b >,< b c > 0

124

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

generate many 1-item to k-item candidates, as following:

N ′
k = n′

1 + n′
2 + n′

3 + . . . + n′
k

= k + k×(k−1)
2×1

+ k×(k−1)×(k−2)
3×2×1

+ . . . + k×(k−1)×(k−2)×···×1
k×(k−1)×(k−2)×···×1

= 2k − 1

If there are m1 1-item positive patterns, m2 2-item positive patterns, . . . ,

and mk k-item positive patterns, the number of all candidates will be:

N = m1 × (21 − 1) + m2 × (22 − 1) + . . . + mk × (2k − 1)

Therefore, the computational complexity of e-NSP is O(M × 2k), where

M is the number of the positive patterns, and k is the length of the longest

positive patterns.

6.3 Experiments and Evaluation

We conduct experiments on 14 synthetic and real datasets to compare the ef-

ficiency and scalability of e-NSP with two baseline approaches PNSP (Hsueh

et al. 2008) and Neg-GSP (Zheng et al. 2009). We select PNSP and Neg-GSP

because they are the only available algorithms that are comparable to our

algorithm. To compare their performance, we adapt PSNP and Neg-GSP

to follow the same definitions and constraints as stated in Section 6.1. In

the comparison, all positive patterns are identified by GSP. NSP are further

mined by e-NSP, PNSP and Neg-GSP. We conduct intensive experiments to

compare the difference between three algorithms in terms of computational

costs on different data sizes and data characteristics, and scalability. We also

apply NSP to the detection of fraudulent claims in health insurance.

All algorithms are implemented in Java in a PC with Intel Core 2 CPU

of 2.9GHz, 2GB memory and Windows XP Professional SP2. All algorithms

are evaluated in terms of the execution time and scalability.

6.3.1 Data Sets

To describe and observe the impact of data characteristics on algorithm per-

formance, we define the concept of data factors.

125

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Data Factor

A data factor describes the characteristic of underlying data from a particular

perspective. It was introduced in Section 1.3. The data factors include: C,

T, S, I, DB and N

C : Average number of elements per sequence;

T : Average number of items per element;

S : Average length of maximal potentially large sequences;

I : Average size of items per element in maximal potentially large sequences;

DB : Number of sequences (= size of Database); and

N : Number of items.

Four source datasets are used for the experiments. They include both

real data and synthetic datasets generated by IBM data generator (Agrawal

& Srikant 1995). By partitioning the data, we obtain 14 datasets in total.

Dataset 1 (DS1), C8 T4 S6 I6 DB100k N100, which means the average

number of elements in a sequence is 8, the average number of items in an

element is 4, the average length of a maximal pattern consists of 6 elements

and each element is composed of 6 items average. The data set contains 100k

sequences, the number of items is 100. The minimum number of elements in

a sequence is 1, and the maximum number is 182.

We further adjust DS1 to generate 10 additional datasets, labelled as

DS1.x (x = 1, . . . , 10).

Dataset 2 (DS2), C10 T8 S20 I10 DB10k N200, which means the average

number of elements in a sequence is 10, the average number of items in an

element is 8, the average length of a maximal pattern consists of 20 elements

and each element is composed of 10 items average. The data set contains 10k

sequences, the number of items is 200. The minimum number of elements in

a sequence is 1, and the maximum number is 256.

Dataset 3 (DS3) is from UCI and consists of MSNBC.com anonymous web

data about web page visits. Visits are recorded at the page category and are

recorded in a temporal order. There are 989,818 records in the dataset. The

average number of elements in a sequence is 4, and each element only has

126

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

one item. Its file size is 12M, which is relatively small since the dataset is

shown in a special format without sequence id and element id. The minimum

number of elements in a sequence is 1, and the maximum number is 323.

Dataset 4 (DS4) is real-application data about health insurance claim

sequences. The data set contains 5,269 customers/sequences. The average

number of elements in a sequence is 21. The minimum number of elements

in a sequence is 1, and the maximum number is 144. The file size is around

5M.

6.3.2 Computational Cost

The execution time of mining NSP by the three approaches is shown in Figure

6.4. e-NSP takes less than 3% of the execution time of PNSP and Neg-GSP

on all datasets. For example, e-NSP spends 2.7% to 1.6% execution time of

PNSP on DS3 when min sup decreased from 0.025 to 0.01. When min sup

is reduced to 0.01, PNSP and Neg-GSP take around one hour, but e-NSP

takes less than one minute, because e-NSP only needs to “calculate” NSP

support based on the sid sets of corresponding positive patterns, while PNSP

and Neg-GSP have to re-scan the whole dataset.

The results about the maximum length and number of negative patterns

are shown in Figure 6.5. It is difficult to get a reliable conclusion from them,

since the datasets characteristics are not comparable. Therefore, we conduct

dataset characteristics analysis in following section.

6.3.3 Dataset Characteristics Analysis

We analyze the dataset characteristics in terms of the above defined data

factors to see the impact of the data factors (see Section 6.3.1) on the per-

formance of e-NSP, compared to PNSP and Neg-GSP. We generate various

types of synthetic datasets with different distributions.

Dataset DS1 is extended to ten different datasets by tuning each factor,

as shown in Table 6.5. For example, dataset DS1.1 (C4T4S6I6. DB10k.N100)

127

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Figure 6.4: e-NSP Algorithm: Execution Time Comparison

128

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

is different to DS1 (C8T4S6I6.DB10k.N100) on C factor, which means they

have different average numbers of elements in a sequence. We mark the

difference by underlining the distinct factor for each dataset in Table 6.5.

In Table 6.5, t1, t2 and t3 represent the execution time of Neg-GSP, PNSP

and e-NSP correspondingly. We use t3/t2 to show e-NSP’s performance

compared with PNSP. From the results (see Table 6.5), we can say that

factors C, T and N seriously affect the performance of e-NSP, and factors S

and I do not greatly affect it. When factor C is low, such as DS1.1, e-NSP

works better than on datasets with big C, such as DS1 and DS1.2. Similar

results hold for T, such as DS1 with small T, compared with DS1.3 and

DS1.4 with big T. When N is high, such as in DS1.9 and DS1.10, e-NSP

works better than that with small N, such as in DS1.

Figure 6.6 shows a big-picture of the results in Table 6.5 in terms of the

ratio of t3/t2. In the figure, DS1.1, DS1.9 and DS1.10 have very low ratios,

which means e-NSP outperforms PNSP much. Generally speaking, on most

of the 11 datasets, when min sup is set at higher value, the ratio would be

less.

6.3.4 Scalability Test

e-NSP calculates support based on the sid sets of corresponding positive

patterns; its performance is affected by the size of sid sets. If the dataset is

huge, it produces big sid sets. A scalability test is conducted to test e-NSP’s

performance on large datasets. Figure 6.7 shows the results of the three

approaches on datasets DS1 and DS3 in terms of different data sizes: 10K

to 100K data sequences are extracted from DS1, and 100k to 1,000k from

DS3, by setting min sup 0.12 on DS1, and 0.015 on DS3.

On DS3, when the sampled data size is increased to 1,000k, e-NSP takes

24 seconds to get the results. This is around 12 times the execution time

of a sampled data size of 100k. This indicates an increase of 10 times the

data size, corresponding to a 12 times increase in execution time. Moreover,

compared to PNSP and Neg-GSP, e-NSP for dataset DS1 takes only around

129

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Table 6.5: e-NSP: Experiments of Dataset Factors Analysis

min NegGSP PNSP e-NSP

ID Dataset sup t1 t2 t3 t3/t2

0.04 1451.7 638.2 14.94 2.3%

DS1 C8T4S6I6.DB10k.N100 0.06 241.4 163.1 4.16 2.5%

0.08 78.9 61.9 1.53 2.5%

0.01 517.5 208.4 1.08 0.5%

DS1.1 C4T4S6I6.DB10k.N100 0.015 130.4 64.5 0.33 0.5%

0.02 48.0 28.4 0.16 0.5%

0.14 229.0 191.9 7.99 4.2%

DS1.2 C12T4S6I6.DB10k.N100 0.16 127.6 109.5 4.49 4.1%

0.18 73.8 66.9 2.53 3.8%

0.22 130.8 118.5 5.22 4.4%

DS1.3 C8T8S6I6.DB10k.N100 0.24 83.7 76.5 3.19 4.2%

0.26 55.9 52.8 2.14 4.1%

0.3 1205.2 969.3 57.55 5.9%

DS1.4 C8T12S6I6.DB10k.N100 0.4 133.2 123.5 6.75 5.5%

0.5 23.6 23.0 1.06 4.6%

0.04 1130.0 478.6 12.22 2.6%

DS1.5 C8T4S12I6.DB10k.N100 0.06 187.0 124.7 3.39 2.7%

0.08 61.2 47.5 1.23 2.6%

0.04 297.1 157.4 3.47 2.2%

DS1.6 C8T4S18I6.DB10k.N100 0.06 64.2 45.5 0.97 2.1%

0.08 23.5 19.0 0.36 1.9%

0.06 690.2 395.1 7.33 1.9%

DS1.7 C8T4S6I10.DB10k.N100 0.07 334.7 227.5 4.23 1.9%

0.08 188.1 138.0 2.63 1.9%

0.08 983.9 630.8 8.88 1.4%

DS1.8 C8T4S6I14.DB10k.N100 0.1 320.5 248.9 3.63 1.5%

0.12 141.8 112.7 1.61 1.4%

0.03 378.2 98.4 0.59 0.6%

DS1.9 C8T4S6I6.DB10k.N200 0.04 101.8 43.1 0.17 0.4%

0.05 39.5 23.3 0.06 0.3%

0.015 823.0 97.4 0.08 0.1%

DS1.10 C8T4S6I6.DB10k.N400 0.02 197.3 42.0 0.03 0.1%

0.025 99.8 20.6 0.02 0.1%

130

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

2% of the time when the data size is 10k. It still takes around 2% when the

dataset grows to 100k. A similar result holds for dataset DS3. The results

show that the performance of e-NSP is robust on large datasets.

6.3.5 Experiments Summary

In summary, the experiments show that:

(1) e-NSP is very efficient, taking less than 3% of the execution time of

the two baseline algorithms;

(2) e-NSP works very well for a small number of elements in a sequence,

a small number of items in an element, and for a large number of itemsets.

The length of patterns and the average number of items in an element of

patterns are not sensitive to e-NSP; and

(3) The scalability test shows that the execution time of e-NSP has a

linear relation with the number of data sequences. It proves that e-NSP can

also perform well on large datasets.

6.4 Conclusions

In this chapter, we have proposed a simple but very efficient NSP mining

algorithm: e-NSP. e-NSP is based on a formal and consistent concept, neg-

ative containment, which defines how a data sequence contains a negative

sequence. e-NSP encloses a negative conversion strategy to convert the prob-

lem of whether a data sequence contains a negative sequence to the prob-

lem of whether a data sequence contains some of the corresponding positive

sequences. Supports of NSC are then calculated based only on the corre-

sponding PSP. Finally, a simple but efficient approach has been proposed to

generate negative sequential candidates. e-NSP has been tested on both syn-

thetic and real-world datasets and compared with NSP mining algorithms.

The experimental results and comparisons on 14 datasets from data charac-

teristics and scalability perspectives have clearly shown that e-NSP is much

131

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

more efficient than existing approaches. e-NSP offers a new strategy for

efficiently mining large scale negative sequential patterns.

• Mining NSP is very challenging due to the large search space of negative

candidates. Current NSP techniques rely on re-scanning of databases

after identifying positive patterns. This has been shown to be very

inefficient, and little progress has been made.

• In this chapter, stronger constraints of NSP makes the search space

much smaller than what it is under Neg-GSP (Chapter 4) and GA-

NSP (Chapter 5).

• Set theory can be used if there are clear boundaries of NSP constraints,

just like what are defined in this chapter.

132

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Figure 6.5: e-NSP Algorithm: Maximum Length and Patterns Counts

133

CHAPTER 6. EFFECTIVE NSP (E-NSP) MINING ALGORITHM

Figure 6.6: Dataset Characteristics Analysis

Figure 6.7: e-NSP Algorithm: Scalability Test

134

Chapter 7

Case Studies: NSP

Applications

Two NSP mining applications in health insurance are introduced in the fol-

lowing. One tries to find over-service of ancillary services, and another is

about fraud claim detection.

7.1 Case 1: Ancillary Services Over-service

Analysis

This work is to explore relationships between chronic and acute conditions

and over-service of ancillary services 1 2. In this work, chronic diseases are

scoped as a kind of disease that is long-lasting, continuous or recurrent, and

acute diseases are defined as diseases with a rapid onset or a short course.

For different diseases, their common sequential patterns of ancillary services

1Zhigang Zheng, Ziye Zuo, Longbing Cao. Analysis of Ancillary Services with Chron-

ic and Acute Diseases - By Sequence Analysis Methods. Technical Report of Industry

Project, HIBIS Project, CMCRC & HCF, Feb 2010
2Uma Srinivasan. Industry Research Proposal: A note on Chronic Conditions and

Acute Conditions - And Their Possible Relationship to Over-servicing of Physiotherapy

and Related Allied Health Service Claims. HIBIS Project, CMCRC & HCF, 20 Oct 2009

135

CHAPTER 7. CASE STUDIES: NSP APPLICATIONS

usually demonstrate different trends.

For example, diabetes is a chronic condition, while hip replacement is

considered an acute condition. Both people who got diabetes and those who

had hip replacement usually undertake a long period of physiotherapy ser-

vices 3, which belong to ancillary services. And they may have special trends

or rules of physiotherapy services, i.e., most of the patients with hips re-

placement would go for physiotherapy services two weeks after their hospital

treatments.

So it is supposed that we are able to explore the relationships between

diseases and physiotherapy services and find out whether the physiotherapy

services of a customer are over-serviced.

For each customer, we will track his physiotherapy activities for a period,

i.e. 6 months, right after his hospital treatment and then try to find out

trends or rules of physiotherapy services during the period.

First, we start with exploring all diseases which are most possibly related

to physiotherapy. And then, we explore the distributions of physiotherapy

services of the high-related diseases, and mine frequent patterns of physio-

therapy services. After that, look for abnormal services, which don’t fall into

the normal patterns and are potential over-service. We also propose a scoring

method to indicate customer’s risk of being over-serviced.

7.1.1 Data Preparation

The first step is to find diseases which are highly related to physiotherapy

services. We are interested in the diseases with which patients are most

possible to go for physiotherapy service.

We deal with the high-related diseases one by one since different diseases

have different trends of physiotherapy services.

We reconstruct each physiotherapy service sequence from day sequence

3Physiotherapy is a clinical health science and profession that aims to rehabilitate and

improve people with movement disorders by using evidence-based, natural methods such

as exercise, motivation, adapted equipment, education and advocacy.

136

CHAPTER 7. CASE STUDIES: NSP APPLICATIONS

to week sequence. For example, given a day sequence of customer’s services

< 53 100 121 144 >, it means the customer got physiotherapy service 4

times after his hospital activity, with the first time of service being the 53rd

days after the activity, second the 100th day, third and fourth time are the

121st and the 144th day correspondingly. It can be transformed to a week

sequence < week7 week14 week17 week20 >. The week sequence has higher

granularity than day sequence.

7.1.2 PSP/NSP Mining by Neg-GSP Algorithm

In this step, we try to find frequent patterns on the week sequence dataset.

Besides PSP, we are specially interested in NSP. For example, <¬week3
¬week4> means customers didn’t go for service in the 3rd week or the 4th

week. Since we focus on over-service analysis, getting NSP is more valuable

for investigating the risk of over-service. After we get frequent PSP and NSP,

we can utilize both of them to score risk levels of customers.

We adapt Neg-GSP to get NSP. As defined in Chapter 4, in Neg-GSP

algorithm, we don’t allow two or more than two adjacent negative elements,

but in this case, we do need consider that because of nature of the data. When

we consider two or more than two adjacent negative elements, it increases

search space much more. Another aspect of the problem is that this case

is much similar to association rule mining since the elements occurred by a

special order, for example, week3 or ¬week3 is always after week1 and week2,

and after ¬week1 and ¬week2 as well. And it will make the search space

much smaller than it was expected. Therefore, on the combined impacts of

the above two factors, the overall search space is not very huge, and we can

still use Negtive-GSP to mine NSP efficiently in this application.

We modified the Neg-GSP algorithm from the following two aspects:

(1). Allow two or more than two adjacent negative elements while joining

and generating candidates.

(2). Add another constraint in the joining step to make candidates follow

the elements order. For example, it is not allowed to join and get candidate

137

CHAPTER 7. CASE STUDIES: NSP APPLICATIONS

like < week3 week2 > since week3 must occur after week2, and the same

principle applies for negative items.

7.1.3 Risk Scoring

After getting all PSP and NSP in the above steps, we proposed a method to

measure the distances between customer’s service sequence and all patterns,

including PSP and NSP. For each customer, we compared his/her service

sequence with all PSN and NSP, and gave him/her a risk score to verify the

possibility of over-service. If the sequence can match a pattern, the support

count of the pattern is added to the score by Equation 7.1.

score =
n∑

i=1

sup(Patterni), if service sequence matches Patterni (7.1)

If a customer’s score is very high, it means that he/she have quite normal

patterns like most of other customers because he can match many frequent

patterns. A customer with very low score is allocated with high level risk of

over-service since his service activities are quite unique. We list the top 20

risk level customers with disease I18Z on Figure 7.1.

7.2 Case 2: Fraud Claim Detection

Frequent pattern mining can be applied to customer claims analysis. which

contain many types of medical codes, such as CMBS, ICD10 and DRG codes.

We are able to find out the frequent patterns of certain diseases or certain

group of diseases with PSP mining.

Instead of considering only the occurrences of itemsets in sequences, the

absence of itemsets are taken into account by NSP mining. Given a more

concrete business example, in health insurance industry, there is a business

rule, which is used to find claim fraud, it says “if a defibrillator prosthesis (A)

has been charged, there should be a charge for a corresponding procedure

138

CHAPTER 7. CASE STUDIES: NSP APPLICATIONS

Figure 7.1: Case Study: Example of Customers Risk Scoring

(B)”. If a customer claims A, but not claim B, which is represented as

< A ¬B >, it is a potential fraud claim.

7.2.1 Data Preparation

The customer claims data is composed of many fields, including customer

id, separated date, three types of illness codes and service date, as shown

in Figure 7.2. For a customer, his/her transactions are ordered by service

date, and then can be used to generate a sequence. In the sample data of

Figure 7.2, customer 10006 has a claim sequence <(C2702, E1139, P500)

(C2702, E1139, P505) (C2702, E1139, P505)>, which is composed of three

transactions, and each transaction has three items.

Figure 7.2: Samples of Customer Claims Dataset

139

CHAPTER 7. CASE STUDIES: NSP APPLICATIONS

7.2.2 A Fraud Scenario

Some Medical Codes Should Occur Together

In the health insurance service, the non-occurrence of some medical service

codes in claim transactions may indicate a problem, such as fraud, in a service

procedure, prothesis or a specific disease. For example, for certain patients

with a special disease, a medical service code a usually occurs after a code b

in their claim histories. If a customer claims a, but does not make a claim

b prior to a, which is represented as <¬b a>, the claim can be treated as a

potential fraudulent claim. We therefore apply NSP mining to identify fraud

in health insurance claims. The goal is to develop NSP that are associated

with more than one non-occurring medical service code (that is, more than

one negative item) in claims to detect claim fraud. As a result, we identify

NSP, as the following, to detect claim fraud.

Fraud Claim: If a customer’s medical claim sequence s satisfies the

following conditions:

• s=<i1 i2 . . . in>, where ix (16x6n) is a positive item and represents

one medical service code;

• s′ is m-neg-size negative sequence, and the positive parter of s′ P-

P(s’)=s ;

For example, when m=1, s′=<i1. . .¬ix. . . in>(16x6n); when m=2,

s′=<i1. . .¬ix ix+1. . . iy−1 ¬iy. . . in> (16 x<y6n);

• 0<sup(s’)/sup(s)<min ratio (i.e. min ratio = 0.02)

the customer’s claims are likely fraudulent, since those medical codes in s

should be claimed together but they did not occur in the customer’s claims.

The above negative claim patterns can be further converted into business

rules, as in the following example.

If a patient claimed item 45530 for a rectus abdominis flap, item 45569

should also be claimed for the closure of the abdomen and reconstruction of

140

CHAPTER 7. CASE STUDIES: NSP APPLICATIONS

the umbilicus. 4 That is to say, 45569 should be claimed with 45530; if a

patient’s claim history shows <45530 ¬45569>, such a case is suspicious and

should therefore be reviewed.

7.2.3 Fraud Claim Detection by e-NSP Algorithm

Using e-NSP algorithm as introduced in Chapter 6.2, we can find all PSP and

its corresponding NSC. Based on them, it is not hard to find such fraudulent

claims.

Step 1. We can find all PSP by PSP mining algorithms, such as GSP,

PrefixSpan and so on. Their related information, such as support values, can

be gotten as well.

Step 2. For all PSP, generate their corresponding NSC. For example, for

PSP < a b c >, its corresponding NSC are < ¬a b c >, < a ¬b c >, < a b ¬c >
and < ¬a b ¬c > according to the definitions of e-NSP algorithm, see Chapter

6.2 for details.

Step 3. Then, we modified e-NSP to find the fraud pairs of claims. In

the process of original e-NSP, we find frequent patterns by calculating NSC’s

supports; in this application we need to compare all NSC’s supports with

their corresponding PSP’s supports to find fraud pairs of claims, even if the

NSC is not frequent.

For example, s=< a b c > is a PSP, and based on s, we can get its

corresponding NSC s′, which could be < ¬a b c >, < a ¬b c >, < a b ¬c >
or < ¬a b ¬c >, and then all their supports are calculated correspondingly.

If 0<sup(s’)/sup(s)<min ratio, the claim sequences which support s′ could

be potential fraud.

In the original algorithm e-NSP, the target is to find frequent patterns

from NSC. But hereby, we are only interested in the NSC with low ratio of

4(http://www9.health.gov.au/mbs 2011) CMBS code 45530 represents breast recon-

struction using a latissimus dorsi or other large muscle or myocutaneous flap, including

repair of secondary skin defects; 45569 represents closure of the abdomen with reconstruc-

tion of the umbilicus, with or without lipectomy.

141

CHAPTER 7. CASE STUDIES: NSP APPLICATIONS

sup(s′)/sup(s), and so s′ is still get attention even if sup(s’) is low.

142

Chapter 8

Conclusions and Future Work

8.1 Conclusions

• Different from traditional PSP mining, NSP mining considers both pos-

itive and negative relationships between items. It doesn’t necessarily

follow the Apriori property, and the searching space of NSP mining is

much larger than that of PSP mining.

• NSP mining can be categories into three types of problems, positive-

first problem, negative-first problem and order-first problem. PSP min-

ing problem is a special positive-first and order-first problem.

• Giving definitions and some constraints of NSP, this thesis proposes

three innovative methods for mining NSP.

The first algorithm is Neg-GSP, which is based on the PSP mining

algorithm GSP, and we extend it to deal with negative cases. An

effective pruning method to reduce the number of candidates is advised

as well. Neg-GSP can find NSP effectively and efficiently by joining and

pruning.

The second method GA-NSP is based on Genetic Algorithm. The pro-

posed method can find negative patterns efficiently since it gives more

143

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

priorities to the most frequent NSP. An effective dynamic fitness func-

tion and a pruning method are also provided to improve performance.

The third algorithm is e-NSP, which is based on the Set Theory. e-NSP

mines for NSP by only involving the identified PSP, without re-scanning

database. The basic working mechanism of e-NSP is as follows. First

of all, negative containment is defined to determine whether a data

sequence contains a negative sequence. It clearly defines the boundary

of a data sequence set containing a NSC, and supports the application

of the Set Theory in NSP mining. Secondly, an efficient approach is

proposed to convert the negative containment problem to a positive

containment problem. The supports of NSC are then calculated based

only on the corresponding PSP. In this way, mining NSP does not need

additional database scans, and the existing PSP mining algorithms

can be used to mine for NSP. Finally, a simple but efficient approach

is proposed to generate NSC.

• Comparing the NSP definitions of the above three methods, Neg-GSP

and GA-NSP share the same definitions, e-NSP uses stronger con-

straints since it requires clear boundary to follow the Set Theory. When

we compare their efficiency, GA-NSP algorithm slightly outperforms

Neg-GSP in terms of the execution time, but it misses some of pat-

terns in the complete result sets due to limitations of GA. Apparently,

e-NSP is the most efficient and effective one since it doesn’t need to s-

can datasets to calculate the support of NSP. Although adding stronger

constraints makes the NSP set much smaller than what it is under the

normal definitions, it is still very practicable while being adopted in

some real-life applications.

• Neg-GSP has the same computational complexity as PNSP, but in prac-

tise, Neg-GSP can generate candidates more efficiently than PNSP.

• e-NSP is based on the Set Theory. It is quite effective and offers a new

strategy for efficient mining of NSP in large datasets.

144

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Future Work

8.2.1 Future Work of Current Topics

In our future research, we will explore post mining methods to find interesting

patterns from discovered NSP. Since we often obtain a large amount of NSP,

finding interesting and interpretable patterns from them is crucial in real-

world applications.

Another potential research direction is to find more effective pruning

methods that can reduce candidates and avoid generating unnecessary can-

didates.

To further improve the GA-NSP algorithm, we will focus on studying

new measures including fitness functions, selection and crossover methods to

make the algorithm more efficient and find more effective pruning strategies.

Using low bound and upper bound to calculate the support of NSP in-

stead of precise support in e-NSP algorithm could possibly reduce the cost

of computation. It could be used to prune invalid candidates as much as

possible.

8.2.2 Order-First and Negative-First Problems

Since most of existing research work focuses on the positive-first problem,

and seldom touches the order-first or negative-first problem, it will be an

interesting topic for further research. The order-first problem is especially

suitable for protein and gene sequence analysis since the protein and gene

sequence data are always ordered by positions. If we take non-occurring items

information into account, it will be able to find more interesting patterns and

to improve the accuracy of classification and prediction.

8.2.3 Negative Sequential Pattern Classification

Sequence classification has a broad range of applications such as genomic

analysis, information retrieval, health informatics, finance, and anomaly de-

145

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

tection (Xing, Pei & Keogh 2010). Because sequences do not have explicit

features even with advanced feature selection techniques, and the number of

potential features are still very high, sequence classification itself is a chal-

lenging task. If we consider negative itemsets in sequence classification, it will

make the problem even more complicated. But since the topic will still take

advantage of negative patterns, it is expected to get much higher accuracy

by negative or combined classifiers.

8.2.4 Post Mining of Negative Sequential Pattern

Identifying interesting patterns or rules from the discovered NSP will be

necessary when we got a huge amount of uninterpretable negative patterns.

How to find interesting and interpretable rules from them is challenging and

valuable in business applications. They may include:

(1) Single high-impact pattern. Find special patterns with high impact,

high confidence or by some other measures.

(2) Comparable patterns or pattern groups. Find similarity or difference

between two patterns or among pattern groups, and then get interpretable

patterns by going through comparison. For example, given two patterns <a

¬b c> and <a b d>, after comparing them, we may find out that the second

element , which follows <a>, actually has a high impact on the third

element c or d.

(3) Eliminating unmeaning and unnecessary patterns. For example, if <a

¬b> and <a b> are both frequent, it will be much interesting to learn which

one is actually more important or necessary.

146

Appendix A

Appendix: List of Publications

Papers Published

• Dong, X., Zheng, Z., Cao, L., Zhao, Y., Zhang, C., Li, J., Wei, W. &

Ou, Y. (2011), e-nsp: efficient negative sequential pattern mining based

on identified positive patterns without database rescanning, CIKM ’11,

pp. 825-830.

• Zheng, Z., Zhao, Y., Zuo, Z. & Cao, L. (2010), An efficient ga-based

algorithm for mining negative sequential patterns, in ‘Advances in

Knowledge Discovery and Data Mining, PAKDD ’10, Vol. 6118, p-

p. 262-273.

• Zheng, Z., Zhao, Y., Zuo, Z. & Cao, L. (2009), Neg-GSP: An efficient

method for mining negative sequential patterns, in ‘Data Mining and

Analytics’, Vol. 101, pp. 63-67.

• Cao, L., Luo, D., Xiao, Y. & Zheng, Z. (2008), Agent collaboration

for multiple trading strategy integration, ‘Agent and Multi-Agent Sys-

tems: Technologies and Applications’, Vol. 4953, Springer Berlin /

Heidelberg, pp. 361-370.

147

CHAPTER A. APPENDIX: LIST OF PUBLICATIONS

Papers to be Submitted/Under Review

• Zheng, Z., Cao, L. Framework of Negative Sequential Pattern Mining

and Genetic Algorithm Based Approach, to be submitted as a journal

paper.

• Zuo, Z., Zheng, Z., Yin, J., Li, J. & Cao, L. (2011), Discriminative

Customer Behavior Analysis by Efficient Emerging Sequential Pattern

Mining, to be submitted as a conference paper.

Research Reports of Industry Projects

• Zhigang Zheng, Ziye Zuo and Longbing Cao. Analysis of Ancillary Ser-

vices with Chronic and Acute Diseases - By Sequence Analysis Meth-

ods. HIBIS Project, CMCRC & HCF Australia, Feb 2010.

• Zhigang Zheng, Junfu Yin and Longbing Cao. Mining Discriminative

Patterns Showing Significant Behavioural Difference between Lapse

and Active Customers. AMP Pilot Data Mining Project, AMP Aus-

tralia, Jan 2011.

148

Appendix B

Appendix: List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

@ Contain

̸@ Not contain

⊑ Absolutely contain

̸⊑ Not absolutely contain

1-negMS(s) 1-neg-size maximum subsequence of sequence s

1-negMSSs 1-neg-size maximum subsequence set of sequence s

Ck k-item candidates set

Cneg,k k-item negative candidates set

EE(e) Equivalent element of element e

EidSs Elements ID set of sequence s

EidS+
s Positive elements ID set of sequence s

EidS−
s Negative elements ID set of sequence s

FSEorfse First subsequence ending position

149

CHAPTER B. APPENDIX: LIST OF SYMBOLS

I Set of items

I+ Set of positive items

I− Set of negative items

ind Individual in population (Genetic Algorithm)

Lk k-item sequential patterns set

Lneg,k k-item negative sequential patterns set

Lpos,k k-item positive sequential patterns set

length(s) Length of sequence s

LSBorlsb Last subsequence beginning position

MEE(e) Maximum equivalent element of element e

MES(s) Maximum equivalent sequence of sequence s

min sup Threshold of minimum support value

MPS(s) Maximum positive subsequence of sequence s

pop Population in Genetic Algorithm

PP (s) Positive partner of sequence s

RP (s) Reverse partner of sequence s

Sneg,k k-item negative seed set

sc Candidate sequence

sd Data sequence

Sk k-item seed set

size(s) Size of sequence s

150

CHAPTER B. APPENDIX: LIST OF SYMBOLS

Sub(s) Subsequence of sequence s

sup(sc) Support value of candidate sequence sc

151

Bibliography

Agrawal, R., Imieliński, T. & Swami, A. (1993), Mining association rules

between sets of items in large databases, SIGMOD ’93, ACM, New

York, NY, USA, pp. 207–216.

Agrawal, R. & Srikant, R. (1994), Fast algorithms for mining association

rules, VLDB ’94.

Agrawal, R. & Srikant, R. (1995), Mining sequential patterns, in ‘ICDE ’95.’,

pp. 3–14.

Alata, B. & Akin, E. (2006), ‘An efficient genetic algorithm for automated

mining of both positive and negative quantitative association rules’, Soft

Computing - A Fusion of Foundations, Methodologies and Applications

10, 230–237.

Antonie, M.-L. & Zäıane, O. R. (2004), Mining positive and negative associ-

ation rules: an approach for confined rules, PKDD ’04, pp. 27–38.

Ayres, J., Flannick, J., Gehrke, J. & Yiu, T. (2002), Sequential pattern

mining using a bitmap representation, KDD ’02, ACM, New York, NY,

USA, pp. 429–435.

Bäck, T. (1996), Evolutionary Algorithms in Theory and Pratice, Oxford

University Press, New York, USA.

Baker, J. E. (1987), Reducing bias and inefficiency in the selection algorithm,

in ‘Proceedings of the Second International Conference on Genetic Al-

152

BIBLIOGRAPHY

gorithms and their application’, L. Erlbaum Associates Inc., Hillsdale,

NJ, USA, pp. 14–21.

Brin, S., Motwani, R. & Silverstein, C. (1997), Beyond market baskets: gen-

eralizing association rules to correlations, SIGMOD ’97, ACM, New Y-

ork, NY, USA, pp. 265–276.

Chiu, D.-Y., Wu, Y.-H. & Chen, A. (2004), An efficient algorithm for min-

ing frequent sequences by a new strategy without support counting, in

‘ICDE 2004’, pp. 375–386.

Dong, G. (2009), Sequence Data Mining, Springer-Verlag, Berlin, Heidelberg.

Dong, X., Zheng, Z., Cao, L., Zhao, Y., Zhang, C., Li, J., Wei, W. & Ou,

Y. (2011), e-nsp: efficient negative sequential pattern mining based on

identified positive patterns without database rescanning, CIKM ’11, p-

p. 825–830.

El-Sayed, M., Ruiz, C. & Rundensteiner, E. A. (2004), Fs-miner: efficient and

incremental mining of frequent sequence patterns in web logs, WIDM

’04, ACM, pp. 128–135.

Han, J., Cheng, H., Xin, D. & Yan, X. (2007), ‘Frequent pattern mining:

current status and future directions’, Data Mining and Knowledge Dis-

covery 15, 55–86.

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U. & Hsu, M.-C. (2000),

Freespan: frequent pattern-projected sequential pattern mining, KDD

’00, ACM, New York, NY, USA, pp. 355–359.

Han, J., Pei, J. & Yin, Y. (2000), Mining frequent patterns without candidate

generation, SIGMOD ’00, ACM, New York, NY, USA, pp. 1–12.

Haupt, R. & Haupt, S. (1998), Practical Genetic Algorithms, Wiley, New

York, NY, USA.

153

BIBLIOGRAPHY

Hipp, J., Güntzer, U. & Nakhaeizadeh, G. (2000), ‘Algorithms for association

rule mining - a general survey and comparison’, SIGKDD Explor. Newsl.

2, 58–64.

Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, The

University of Michigan Press.

Hsueh, S.-C., Lin, M.-Y. & Chen, C.-L. (2008), Mining negative sequential

patterns for e-commerce recommendations, in ‘IEEE Asia-Pacific Ser-

vices Computing Conference, 2008. APSCC’08’, pp. 1213–1218.

http://en.wikipedia.org/wiki/Sharp-P-complete (2012).

http://www9.health.gov.au/mbs (2011).

Huan, J., Wang, W., Prins, J. & Yang, J. (2004), Spin: mining maximal

frequent subgraphs from graph databases, KDD ’04, ACM, pp. 581–

586.

Hussain, F., Liu, H., Suzuki, E. & Lu, H. (2000), Exception rule mining

with a relative interestingness measure, in ‘Knowledge Discovery and

Data Mining. Current Issues and New Applications’, Vol. 1805, Springer

Berlin / Heidelberg, pp. 86–97.

Inokuchi, A., Washio, T. & Motoda, H. (2000), An apriori-based algorithm

for mining frequent substructures from graph data, in ‘Principles of

Data Mining and Knowledge Discovery’, Vol. 1910 of Lecture Notes in

Computer Science, pp. 13–23.

Jean-Francois Boulicaut, A. B. & Jeudy, B. (2000), Towards the tractable

discovery of association rules with negations, in ‘Proceedings FQAS00,

Advances in Soft Computing series’, pp. 425–434.

Kuramochi, M. & Karypis, G. (2001), Frequent subgraph discovery, in ‘ICDM

2001’, pp. 313–320.

154

BIBLIOGRAPHY

Lin, N. P., Chen, H.-J. & Hao, W.-H. (2007), Mining negative sequential

patterns, in ‘Proceedings of the 6th Conference onWSEAS International

Conference on Applied Computer Science’, Stevens Point, Wisconsin,

USA, pp. 654–658.

Mabroukeh, N. R. & Ezeife, C. I. (2010), ‘A taxonomy of sequential pattern

mining algorithms’, ACM Comput. Surv. 43, 3:1–3:41.

Masseglia, F., P., P. & Cicchetti, R. (2000), ‘An efficient algorithm for we-

b usage mining’, NETWORKING AND INFORMATION SYSTEMS

JOURNAL 2, 571–604.

MathWorks (2011), ‘User’s guide: Using the genetic algorithm’.

Miller, B. L. & Goldberg, D. E. (n.d.), Genetic Algorithms, Tournament

Selection, and the Effects of Noise.

Mitchell, M. (1996), Introduction to Genetic Algorithms, MIT Press, Cam-

bridge, MA.

Ouyang, W. (2009), Mining positive and negative weighted fuzzy association

rules in large transaction databases, in ‘Second International Sympo-

sium on Knowledge Acquisition and Modeling, 2009.’, Vol. 2, pp. 269–

272.

Ouyang, W., Huang, Q. & Luo, S. (2008), Mining positive and negative fuzzy

sequential patterns in large transaction databases, in ‘Fifth Internation-

al Conference on Fuzzy Systems and Knowledge Discovery, 2008. FSKD

’08.’, Vol. 5, pp. 18–23.

Ouyang, W.-M. & Huang, Q.-H. (2007), Mining negative sequential pat-

terns in transaction databases, in ‘International Conference on Machine

Learning and Cybernetics, 2007’, Vol. 2, pp. 830–834.

Padmanabhan, B. & Tuzhilin, A. (1998), A belief-driven method for discov-

ering unexpected patterns, in ‘AAAI 98’, AAAI Press, pp. 94–100.

155

BIBLIOGRAPHY

Padmanabhan, B. & Tuzhilin, A. (2000), Small is beautiful: discovering the

minimal set of unexpected patterns, KDD ’00, ACM, New York, NY,

USA, pp. 54–63.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal,

U. & Hsu, M.-C. (2004), ‘Mining sequential patterns by pattern-growth:

the prefixspan approach’, IEEE Transactions on Knowledge and Data

Engineering 16(11), 1424–1440.

Pei, J., Han, J., Mortazavi-asl, B. & Zhu, H. (2000), Mining access patterns

efficiently from web logs, in ‘Knowledge Discovery and Data Mining.

Current Issues and New Applications’, Vol. 1805, pp. 396–407.

Sarracco, F. (2003), ‘Hypergraphs and fast mining of association rules’.

Savasere, A., Omiecinski, E. & Navathe, S. (1995), An efficient algorithm for

mining association rules in large databases, VLDB ’95, pp. 432–443.

Savasere, A., Omiecinski, E. & Navathe, S. (1998), Mining for strong nega-

tive associations in a large database of customer transactions, in ‘Pro-

ceedings of14th International Conference on Data Engineering, 1998.’,

pp. 494–502.

Scime, A. (2004), Web Mining: Applications and Techniques, IGI Publishing,

Hershey, PA, USA.

Srikant, R. & Agrawal, R. (1996), Mining sequential patterns: Generaliza-

tions and performance improvements, in ‘Advances in Database Tech-

nology EDBT ’96’, Vol. 1057, Springer Berlin / Heidelberg, pp. 1–17.

Suzuki, E. (1997), Autonomous discovery of reliable exception rules, in ‘In

Proceedings of the Third International Conference on Knowledge Dis-

covery and Data Mining (KDD-97)’, AAAI Press, pp. 259–262.

Suzuki, E. & Shimura, M. (1996), Exceptional knowledge discovery in

databases based on information theory, in ‘In Proceedings of the Sec-

156

BIBLIOGRAPHY

ond International Conference on Knowledge Discovery and Data Mining

(KDD-96)’, AAAI Press, pp. 275–278.

Teng, W.-G., Hsieh, M.-J. & Chen, M.-S. (2002), On the mining of substitu-

tion rules for statistically dependent items, ICDM ’02, IEEE Computer

Society, Washington, DC, USA.

Whitley, D. (1994), ‘A genetic algorithm tutorial’, Statistics and Computing

4, 65–85.

Wu, X., Zhang, C. & Zhang, S. (2002), Mining both positive and negative

association rules, ICML ’02, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, pp. 658–665.

Wu, X., Zhang, C. & Zhang, S. (2004), ‘Efficient mining of both positive and

negative association rules’, ACM Trans. Inf. Syst. 22, 381–405.

Xing, Z., Pei, J. & Keogh, E. (2010), ‘A brief survey on sequence classifica-

tion’, SIGKDD Explor. Newsl. 12, 40–48.

Yan, X. & Han, J. (2002), gspan: graph-based substructure pattern mining,

in ‘ICDM 2002’, pp. 721–724.

Yang, Z., Wang, Y. & Kitsuregawa, M. (2007), Lapin: Effective sequential

pattern mining algorithms by last position induction for dense databas-

es, in ‘Advances in Databases: Concepts, Systems and Applications’,

Vol. 4443 of Lecture Notes in Computer Science, pp. 1020–1023.

Zaki, M. J. (2001), ‘Spade: An efficient algorithm for mining frequent se-

quences’, Machine Learning 42, 31–60.

Zaki, M. J., Parthasarathy, S., Ogihara, M. & Li, W. (1997), ‘New algorithms

for fast discovery of association rules’.

Zhao, Y., Zhang, H., Cao, L., Zhang, C. & Bohlscheid, H. (2008), Efficient

mining of event-oriented negative sequential rules, in ‘IEEE/WIC/ACM

157

BIBLIOGRAPHY

International Conference on Web Intelligence and Intelligent Agent

Technology, 2008. WI-IAT ’08.’, Vol. 1, pp. 336–342.

Zhao, Y., Zhang, H., Cao, L., Zhang, C. & Bohlscheid, H. (2009), Mining

both positive and negative impact-oriented sequential rules from trans-

actional data, in ‘Advances in Knowledge Discovery and Data Mining’,

Vol. 5476, Springer Berlin / Heidelberg, pp. 656–663.

Zhao, Y., Zhang, H., Wu, S., Pei, J., Cao, L., Zhang, C. & Bohlscheid, H.

(2009), Debt detection in social security by sequence classification using

both positive and negative patterns, ECML PKDD ’09, Springer-Verlag,

Berlin, Heidelberg, pp. 648–663.

Zheng, Z., Zhao, Y., Zuo, Z. & Cao, L. (2009), Negative-gsp: An efficient

method for mining negative sequential patterns, in ‘Data Mining and

Analytics’, Vol. 101, pp. 63–67.

Zheng, Z., Zhao, Y., Zuo, Z. & Cao, L. (2010), An efficient ga-based algorith-

m for mining negative sequential patterns, in ‘Advances in Knowledge

Discovery and Data Mining, PAKDD’ 2010’, Vol. 6118, Springer Berlin

/ Heidelberg, pp. 262–273.

158

	Title Page

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction

	Chapter 2 Related Work

	Chapter 3 Problem Statement

	Chapter 4 Neg-GSP Algorithm

	Chapter 5 Genetic Algorithm Based Algorithm: GA-NSP

	Chapter 6 Effective NSP (e-NSP)_Mining Algorithm

	Chapter 7 Case Studies: NSP Applications

	Chapter 8 Conclusions and Future Work

	Appendix A
	Appendix B
	Bibliography

