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GLOSSARY OF SYMBOLS AND ACRONYMS 

(x, y, z) Cartesian coordinate system with an origin at the centre of the entry face of a flat-to-
round converter 

( , , l)  Spherical coordinates 
 

Roman Symbols and Acronyms 
a Aspect ratio of a sheet [m] 
a Axial particle number (the number of particles intercepted by a straight line drawn 

through a TRIMM-doped system parallel to the optic axis) [m-1] 
A Cross sectional area of the optical system [m2] 
A Absorbance of an optical system 
A Area of a source [m2] 
A  Mean absorption fraction of light entering an LSC 
dA An infinitesimal area [m2] 
dA Vector associated with an infinitesimal area, dA [m2] 
A( ) Absorption spectrum  
Aeff Effective collection area of an LSC [m2] 
Aextractor Area of the exit face of a hybrid LSC-LED light extractor [m2] 
ALED  Area of individual LED chips in hybrid LSC-LED light extractor [m2] 
B Fraction of total lumens from hybrid LSC-LED light extractor provide by the LED’s 
BRDF Bidirectional Reflectance Distribution Function [sr-1] 
co(z) Transverse curvature of the outer surface of a flat-to-round converter at distance z 

from the entry face [m-1] 
C Contrast ratio between specular and diffuse light 
C’o(z) Position of the centre of the transverse curvature of the outer surface of a flat-to-

round converter which has been adjusted so that the intersection of the outer 
surface with the y-z plane is a straight line [m] 

Ci(z) Position of the centre of the transverse curvature of the inner surface of a flat-to-
round converter at distance z from the entry face [m] 

Co(z) Position of the centre of the transverse curvature of the outer surface of a flat-to-
round converter at distance z from the entry face [m] 

d Diameter of an inflated tube [m] 
D( ) Divergence of a TRIMM microsphere i.e. the ratio of the intensity of light scattered 

by a TRIMM particle at angle  to the illuminating beam with the intensity of 
light scattered in the same direction as the illuminating beam 

DABCO  1,4-diazabicyclo-[2.2.2] octane, a useful antioxidant 
EC( )  Measured spectrometer signal from the end surface of a clear sheet [counts] 
ED( ) Measured spectrometer signal from the end surface of a dyed sheet [counts] 
Ee Total power emitted by dye molecules [W] 
EPO European Patent Office 
Ex( )  Spectral intensity at the side of an LSC at lateral distance x [counts.sec-1] 
f Matrix loss factor (the fraction of the light lost in the clear reference sheet due to 

matrix extinction and Fresnel reflection at the far end). 
f( ) Probability density distribution of the ray’s angular deviation [rad-1] 
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fcone Fraction of fluorescently emitted light in each escape cone 
fdiffuse Fraction of light in a hybrid LSC-LED light extractor that is diffuse rather than 

specular 
fedge Fractional loss of light in a flat-to-round converter due to scattering from rounded 

sidewall edges 
fend Fraction of fluorescently emitted light that is endlight (includes the correction for 

reflection at  a LSC sheet’s end mirror) 
fescape Fraction of fluorescently emitted light in combined escape cones 
fgeom Fraction of rays striking a TRIMM microsphere that are within the geometric limit  

i.e. the fraction of rays that are well approximated by geometric optics 
fscat Fractional loss of light in a flat-to-round converter due to scattering off rough 

sidewalls 
ftrapped Fraction of fluorescent emission that reaches the a LSC’s exit surface in the form of 

F Output luminous flux from an LSC [lm] 
F Output luminous flux from an LSC [lm] 
Fall The ratio of the total amount of light reaching a LSC’s exit surface (i.e. the sum of 

endlight and trapped light) to the endlight 
Fin Flux of a collimated light beam illuminating an annulus on a TRIMM 

microsphere [W] 
Fl  Luminous flux at the collection edge when LSC is illuminated at a plane of constant 

distance, l, from the collection edge [lm] 
FL Luminous flux at collection edge when LSC of length L is illuminated 

uniformly [lm] 
Fo Luminous flux of the fluorescent test lamp [lm] 
FSL Fluorosolar Systems Ltd 
gmax Maximum possible étendue per unit area [sr.m2] 
G Étendue [sr.m2] 
Ggap Étendue of light at an air gap [sr.m2] 
Glimit Smallest value of the limiting étendue in an optical system [sr.m2] 
Gx

max  Maximum possible étendue at cross section x [sr.m2] 

h Impact ratio, h = h/r. h is independent of the microsphere’s radius, r 
hgeom Impact ratio for the geometric limit, i.e. the impact ratio beyond which Mie theory is 

required to calculate the scattering pattern 
H Perpendicular separation distance of a ray impacting on a microsphere from the 

parallel ray passing through a sphere’s centre. [m] 
HDPE High Density Polyethylene 
i( ,l) Intensity of the light scattered by a single TRIMM microsphere measured at distance 

l from the sphere and a deviation angle of  from the illuminating light  
beam [W.m-2] 

I Average number of interactions of light with the sidewalls of a flat-to-round 
converter 

I  The point on the inner sidewall edge of a flat-to-round converter corresponding to 
point P on the outer surface [m] 

I( )  The intensity light scattered by a TRIMM microparticle at a deviation angle of  to 
the illuminating beam, measured inside the host material [W.m-2] 

Iin Intensity of a collimated light beam illuminating a TRIMM microsphere [W.m-2] 
I0  The intensity light scattered by a TRIMM microparticle in the direction of the 

illuminating beam, measured inside the host material [W.m-2] 
INPADOC  International Patent Documentation Center 



 
xiii

Isol  Solar luminous intensity incident on the top surface of the collector [lux] 
k A proportionality constant for the fitted variation of the mean half-cone angular 

spread, ,  with the axial particle number, a  
l Length of a sheet [m] 
l Linear distance between point of illumination and collection edge [m] 
l Path length of a ray inside a light guide [m] 
L  Length of a light guide [m] 
L Length of a clear reference sheet or collector sheet [m] 
L Radiance of a source [W.m-2.sr-1] 
L½ Half-length i.e. the path length over which 50% of the fluorescently emitted light is 

lost due to extinction [m] 
Lcrit Critical length of a TRIMM doped mixer rod i.e. the length where the mean half-

cone angular spread of the light is equal to the material’s critical angle [m]  
Ld½ Half-length contribution from the collector sheet’s dye [m] 
Ldiffuse Diffuse radiance of a skylight or LED-hybrid luminaire interpolated to the angle of 

maximum radiance [W.m-2.sr-1] 
LDPE Low Density Polyethylene 
LED Light Emitting Diode 
Lextractor  Mean radiance from a hybrid LSC-LED light extractor [W.m-2.sr-1] 
Lg½  Half-length contribution from collector sheet’s geometry [m] 
LLED Radiance of the LED’s in a hybrid LSC-LED light extractor [W.m-2.sr-1] 
Llocal  Radiance of the diffuse component of a system’s output measured near the specular 

component [W.m-2.sr-1] 
Lm½  Half-length contribution from collector sheet’s matrix [m] 
Lmax Maximum radiance of the specular component of a system’s output [W.m-2.sr-1] 
Lproj image  Radiance of the a mixer in a LED projector near the specular beam [W.m-2.sr-1] 
Lproj specular  Radiance of the specular beam from a mixer in a LED projector [W.m-2.sr-1] 
LSC Luminescent Solar Collector 
Lspecular Maximum specular radiance of a skylight or LED-hybrid luminaire [W.m-2.sr-1] 
Lv image  Luminance of the image from a LED projector near the specular spot [lm.m-2.sr-1] 
Lv specular  Luminance of the specular spot from a LED [lm.m-2.sr-1] 
m Ratio of the refractive index of a fibre’s core to its cladding 
m Relative refractive index (usually the ratio of the ratio of the particle’s refractive 

index to the matrix containing it) 
n Refractive index 
nhost Refractive index of the host matrix containing a TRIMM microsphere 
ni Refractive index of component i, such as a TRIMM microsphere or a light guide 

matrix 
nparticle Refractive index of a TRIMM microsphere 
npix Number of pixels that specular transmission is focused onto 
N  Number of measurement positions along a the side of a LSC 
NLED  Number of LED chips in hybrid LSC-LED light extractor  
Npix Number of pixels in a display 
p A power index for the fitted variation of the mean half-cone angular spread, ,  with 

the axial particle number, a  
p Pressure of an inflated tube [Pa] 
p( i). Path length inside a LSC for light with an angle of incidence of i [m] 



 
xiv

P A chosen point at the intersection of the outer surface of a flat-to-round converter a 
the sidewall [m] 

P(h) The cumulative probability density distribution at impact ratio h  
Pa(x) Probability of a ray encountering exactly x microparticles in a light guide with an 

axial particle number of a  
PCT Patent Cooperation Treaty  
PMMA Poly methyl methacrylate, colloquially called “acrylic plastic” or Perspex® 
Po( ) Spectral power of light immediately inside the entry surface of the clear reference 

sample [counts.sec-1.nm-1] 
Ps( ) Total spectral power scattered from the top, bottom and sides of a  

sheet [counts.sec-1.nm-1] 
PT( ) Spectral power transmitted by a LSC [counts.sec-1.nm-1] 
Q Heat [J] 
Q1, Q3 Auxiliary points at the intersection of the outer surface of a flat-to-round converter 

with a sidewall, chosen to be on either side of P  [m] 
Q2 Auxiliary point on the outer surface of a flat-to-round converter with the same z 

value as P [m] 
QD Quantum Dot 
r Particle radius (e.g. of a TRIMM microsphere) 
r Reflectivity of an end mirror 
ri Radius of the inner surface of the exit ring of a flat-to-round converter [m] 
ri(z) Radius of transverse curvature of the inner surface of a flat-to-round converter at 

distance z from the entry face [m] 
rn Radius of the neutral surface of the exit ring of a flat-to-round converter [m] 
ro Radius of the outer surface of the exit ring of a flat-to-round converter [m] 
ro(z) Radius of transverse curvature of the outer surface of a flat-to-round converter at 

distance z from the entry face [m] 
rside Nominal radius of the sidewalls’ edges in a flat-to-round converter [m] 
R Fresnel reflectance of a surface 
R Reflectance of an optical system 
R1 Reflectance from a single TRIMM microsphere 
R1  Mean reflectance from a single TRIMM microsphere 
R1 TE Reflectance coefficient from a TRIMM microsphere for light with transverse electric 

polarisation 
R1 TM Reflectance coefficient from a TRIMM microsphere for light with transverse 

magnetic polarisation 
Rc  Reflectivity of one surface of the collector  
Rend Fresnel reflection loss at the far end surface of the LSC 
RI  Refractive Index 
Rparticles Mean total back reflectance from a mixer with a microparticles 
RTE  Reflectance coefficient for light with transverse electric polarisation 
RTM Reflectance coefficient for light with transverse magnetic polarisation 
s Circumferential stress of an inflated tube [N.m-2] 
S  Mean scattered fraction of light entering an LSC 
S  The vector normal to the surface of a flat-to-round converter at point P and having a 

magnitude equal to the sheet thickness, t [m] 
S( ) Scattering spectrum [W.m-2.nm-1] 



 
xv

S( ) Spectral intensity of sunlight of wavelength  [W.m-2.nm-1] 
S( ) Spectral intensity of sunlight of wavelength  [W.m-2.nm-1] 
SCATS Sunlight Collecting And Transmission System 
ST Side-loss of an optical system i.e. the fraction of light that is transported laterally for 

a sufficient distance so that it does not enter the entry port of the detector 
t Thickness of a sheet measured perpendicular to the surface [m] 
t Wall thickness of an inflated tube [m] 
T Transmittance of an optical system 
T  Mean tails transmission for light entering an LSC 
T( ) Transmission spectrum a LSC sheet 
T(z) Distance between the inner and outer surfaces of a flat-to-round converter in the y-z 

plane at distance z from the entry face [m] 
Tdiffuse Hemispheric forward transmittance diffuse transmittance of a skylight or other 

diffuser sheet 
TIR  Total Internal Reflection 
TRIMM  Transparent Refractive Index Matched Microparticle 
Tspecular Specular transmittance; for a TRIMM system the fraction of rays completely 

undeviated scattering  
U Symbol for étendue used by some workers. This thesis uses G [sr.m2] 

UTS University of Technology, Sydney 
w Width of the collector sheet [m] 
wC Width of clear reference sheet [m] 
wD  Width of a dyed LSC [m] 
wdet Width of detector port on integrating sphere [m] 
wi(z) Arc length of the inner surface of a transverse cross section of a flat-to-round 

converter at distance z from the entry face [m] 
wo(z) Arc length of the outer surface of a transverse cross section of a flat-to-round 

converter at distance z from the entry face [m] 
W Work [J] 
x Lateral distance on an LSC measured from the entry surface [m] 
x Number of microparticles encountered by a ray 
x  Mean number of microparticles encountered by a ray over a specified distance 
dx Length interval represented by each measurement [m] 
y( ) Standard photopic response of human eye 
yo(z) y value of the exterior surface of a flat-to-round converter in the y-z plane [m] 
zi z coordinate of the bottom of the exit ring in a flat-to-round converter [m] 
zo z coordinate of a sidewall at the exit ring in a flat-to-round converter [m] 
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Greek Symbols 

  Linear particle density i.e. the number of particles per metre intercepted by a straight 
line drawn through a TRIMM-doped light guide [m-1] 

 Attenuation coefficient at wavelength m  
d(  Dye-related attenuation coefficient (including the effects of dye photodegradation, if 

applicable) m
g( , l) Attenuation coefficient for losses due to light guide geometry m  
m Matrix attenuation coefficient, assumed independent of wavelength m  

Exponential loss coefficient averaged over all rays m  
  Semi-cone angular component of a ray's deviation, relative to the previous direction 

of the ray [rad] 
 Mean deviation angle of the rays interacting with a single TRIMM microsphere [rad] 

(h)  General expression for deviation angle of a ray impacting a TRIMM sphere, in terms 
of the impact ratio h [rad] 

geom  Deviation angle at the geometric limit [rad] 
median  Median deviation angle of the probability density distribution of the deviation 

f( ) [rad] 
median Median deviation angle of the rays interacting with a single TRIMM 

microsphere [rad] 
L Spectral intensity at the collection edge of an illuminated LSC sheet [W.m-2.nm-1] 
 Emission power spectrum of fluorescent dye [W.m-2 nm-1] 

abs Fraction of light incident on an LSC collector stack that is absorbed by the dye 
molecules 

conduit Transport efficiency of an LSC system’s optical conduit(s) 
coupler Fraction of the light reaching a LSC sheet’s collection edge that is coupled into the 

optical conduit(s) 
cover Fraction of light transmitted by the protective cover 
direct Fraction of light from a light extractor that is directed to usefully illuminate a room 
e( )  Energy-to-energy conversion efficiency of fluorescent dye (average emitted photon 

energy/incident photon energy) 
extract Extraction efficiency of a light extractor 
geom Geometric efficiency of a LSC sheet (i.e. losses due to the sheet not being a perfect 

rectangular prism) 
l-l  Lumens-to-lumens efficiency of a LSC system (output lumens/input lumens) 
lum-lum Ratio of the luminous efficacy for a dye molecule of the emitted light to that of the 

absorbed light. Note that lum-lum can exceed 100% 
material Efficiency of a LSC sheet due to material properties including: dye self-absorption, 

absorption by the matrix, scattering by dye particles, scattering by the matrix 
and absorption at the sheet’s end mirror 

quant Photon-to-photon quantum efficiency (photons out/photons in) 
sheet Fraction of the fluorescently emitted light that reaches a LSC sheet’s collection edge 
TIR Fraction of the fluorescent emission is trapped inside a LSC sheet by total internal 

reflection at the top and side surfaces 
 Altitude angle between ray and normal to collector surface [rad] 
crit Critical angle [rad] 
diffuse Half-width of diffuse radiation form a skylight or other diffuser [rad] 
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i Angle of incidence of external light entering a collector sheet [rad] 
sun Half-width of specular solar radiation [rad] 
 Lumens per watt conversion factor (683 lm W-1) [lm W-1] 

Wavelength of light [nm] 
The average wavelength of photons emitted by the dye molecule [nm] 

 Wavelength interval [nm] 
 Wavelength of light incident on a LSC [nm] 

μ  Difference of the relative refractive index, m, from 1 
  Spectrometer integration time [s] 
 Azimuthal angle on x-y plane between ray and positive x-axis (long axis) [rad] 
 Angle between the geometric cross section surface and the effective cross section 

surface [rad] 
 Inclination of the end surface of a light guide [rad] 
 Misalignment angle between two components [rad] 

 Radiant flux of a source [W] 
  Critical angle at the collector-air interface (chapter 7 only – the rest of the thesis  

uses crit) [rad] 
 Mean half-cone angular spread of light in the cross-sectional plane of a light 

guide [rad] 
 Emission solid angle of a source [sr] 
 Solid angle [sr] 
 Solid angle of a light field at a given point [sr] 
 Solid angle subtended by a source [sr] 
 Vector of magnitude  in the central direction of a light field that has a solid angle 

of  [sr]  
escape Solid angle of the escape cone [sr] 
extractor Solid angle subtended by the LSC component of light from hybrid LSC-LED light 

extractor [sr] 

LED Solid angle subtended by light from an LED [sr] 

max Maximum possible solid angle of light confined in the system at a specified cross 
section [sr] 

max mer Maximum solid angle of meridional light trapped inside an optical fibre [sr] 
max rect Maximum solid angle of light trapped inside a rectangular light guide [sr] 
max sheet Maximum solid angle of light trapped inside a sheet [sr] 
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Abstract 

The difficulty of directing daylight deep into the heart of buildings means that much artificial 

lighting is required during the day, which substantially increases energy costs for lighting and 

air conditioning. This thesis explores the feasibility of daylighting with luminescent solar 

collectors. 

An LSC is a stack of thin sheets of polymer doped with fluorescent dyes. Sunlight 

entering the sheets is absorbed and emitted isotropically at longer wavelengths. 75% of this 

emission is trapped by total internal reflection and propagates towards the sheets’ edges. A 

special coupler channels some of this light into a flexible optical fibre that guides it to a remote 

luminaire. High quality white light with zero excess heat is produced by appropriate dye use. 

LSC’s collect both diffuse and specular sunlight, so their luminous output is only weakly 

affected by light clouds. 

The best previous LSC’s for daylighting gave an outdoor-to-indoor lumens-to-lumens 

efficiency of only 0.2%. This project achieved an efficiency of 5%. 

The basic tool for optical design was étendue analysis. Key results are: i) the system’s 

cross sectional area must not decrease along the optical path, ii) the collector sheets need a high 

aspect ratio, and iii) an often neglected requirement for a solid optical system with no air gaps. 

Other optical design problems solved include high-efficiency flat-collector-sheet to 

cylindrical-optical-fibre couplers and high-efficiency light extractors (which boost output by 

approximately 50%). 

Major advances in mechanical design resulted in several new practical solutions 

including: strong, enduring optical joints; mass produced collector-sheet to optical-fibre 

couplers using injection moulding with demonstrated efficiencies of 96%; affordable flexible 

light guides; high-performance cover materials; roof and façade mounting; and reduced mass. 

Required system performance is impossible without high quality LSC sheets. Maximising 

fluorescence yield involves detailed understanding of the roles of: dye quantum efficiency, 

Stokes shift, long wavelength absorption “tails”, dye dispersion, light transport inside a sheet 

and long term sheet stability. A substantial improvement in the performance of collector sheets 

was achieved. 

Solutions to all the key problems for daylighting with practical LSC systems have been 

demonstrated using outdoor mounted collectors channeling light to indoor spaces, with one key 

exception: the increase in absorption tails over the long term. Techniques were developed for 

measuring this weak tails absorption, which significantly reduces light output from the required 

long collector sheets. Suggestions are made as to its cause, and possible methods of its 

reduction.  
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