Light Generation, Transport, Mixing and Extraction in Luminescent Solar Collectors

Jim Franklin

BSc (Hons) ANU

A dissertation submitted for the requirements for the degree of Doctor of Philosophy

Faculty of Science University of Technology, Sydney

2012

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Jim Franklin February 2013

ACKNOWLEDGEMENTS

Professor Geoff Smith was my supervisor for the whole of this project and I am grateful for his guidance during the lengthy experimental and development phases, and his patient editing assistance during the writing of this thesis. I would also like to thank my co-supervisor, Professor Peter Ralph, for his support and encouragement during the writing phase of this thesis.

I developed all of the mathematical theory of the thesis except for section 7.2, which was developed jointly with Dr Paul Swift and Prof Geoff Smith, with the largest contribution being made by Dr Paul Swift.

I designed all of the experiments described in this thesis except those of section 5.4.1 (jointly designed with Chris Deller) and chapter 10 (jointly designed with Dr Alan Earp).

Tristan Rawling suggested the possible useful contribution of antioxidants to photostability of light transport in LSC sheets described in section 10.3.1.

I would also like to thank doctoral students, Allan Earp and Chris Deller for their assistance with many of the measurements in this work. After his graduation, Dr Earp continued this collaboration while working on the commercialization phase of this project at Fluorosolar Systems Ltd.

Russell Collier at Fluorosolar Systems Ltd provided expert assistance with *SolidWorks*® models for curled-sheet flat-to-round couplers and other optical components.

Eddy Joseph at Poly Optics Australia Pty Ltd contributed very generously with his time and access to invaluable facilities.

BASF, especially Dr Arno Böhm in Germany and David Bleasby in Melbourne, gave considerable in-kind support over a lengthy period.

Special thanks are due to Michael Bonello and Steve Lynch of Skydome Skylight Systems Pty Ltd who supported the project over the long term. Skydome Skylight Systems Pty Ltd contributed considerable funding and in-kind assistance to this project.

The early phase of this project was partially supported by a NSW SERDF grant. The commercialization phase was partially supported by an AusIndustry Commercial Ready grant.

AUTHOR'S PUBLICATIONS

Parts of this thesis have been published in the journal articles, peer reviewed conference proceedings, granted patents and patent applications listed below. This thesis is unusual in that a substantial portion of the work was first published as patents. There are a number of problems in how to cite these patents. See Appendix 2 for a discussion of the problem and the conventions adopted.

Granted Patents and Published Patent Applications

- Franklin, J.B. 2001, *Lighting system for transmitting and releasing luminescent radiation*Patent US 6272265.
- Franklin, J.B., Joseph, E.K. & Smith, G.B. 2004, *Improvements in side-scattering light guides* Patent AU 2003/258363 B2.
- Franklin, J.B. & Smith, G.B. 2004a, A light collector Patent AU 2003/277982 B2.
- Franklin, J.B. & Smith, G.B. 2004b, A light transfer component Patent AU 2003/273627 B2.
- Franklin, J.B. & Smith, G.B. 2007, A Method of Coupling Light Collector sheets to a Light Transfer Component WO 2007/048181 A1.
- Franklin, J.B., Smith, G.B. & Joseph, E.K. 2003, Side scattering polymer light guide and method of manufacture Patent AU 2002/308415 B2.
- Franklin, J.B., Smith, G.B. & Joseph, E.K. 2007, Light emitting device Patent US 7218824 B2.
- Franklin, J.B. & Swift, P.D. 1997, *Improvements in fluorescent materials* Patent AU 717665 B2.
- Henderson, M., Franklin, J.B. & Smith, G.B. 2005, An Optically Traceable Transmission Cable for Transmitting Data or Electricity and a Traceable Conduit WO 2005/106899 A1.
- Joseph, E.K., Franklin, J.B. & Smith, G.B. 2008, *Side-scattering light guides* Patent US 7433565 B2.
- Smith, G.B. & Franklin, J.B. 1996, Sunlight collecting and transmitting system Patent US 5548490.

- Smith, G.B. & Franklin, J.B. 1998, Sunlight collecting and transmitting system Patent US 5709456.
- Smith, G.B. & Franklin, J.B. 2000, Sunlight collecting and transmitting system Patent US 6059438.
- Smith, G.B. & Franklin, J.B. 2004, A hybrid lighting system Patent AU 2003/275796 B2.
- Smith, G.B. & Franklin, J.B. 2007, A lighting system AU 2006/101069 A4.

Peer Reviewed Articles

Journals

- Deller, C.A., Franklin, J. & Smith, G.B. 2006, 'Monte Carlo ray-tracing in particle-doped light guides', *Lighting Research and Technology*, vol. 38, no. 2, pp. 95-108.
- Deller, C.A., Smith, G. & Franklin, J. 2004, 'Colour mixing LEDs with short microsphere doped acrylic rods', *Optics Express*, vol. 12, no. 15, pp. 3327-33.
- Earp, A., Franklin, J. & Smith, G.B. 2011, 'Absorption tails and extinction in luminescent solar concentrators', *Solar Energy Materials and Solar Cells*, vol. 95, pp. 1157–62.
- Earp, A., Smith, G. & Franklin, J. 2007, 'Simplified BRDF of a Non-Lambertian Diffuse Surface', *Lighting Research and Technology*, vol. 39, no. 3, pp. 265-81.
- Earp, A.A., Rawling, T., Franklin, J.B. & Smith, G.B. 2010, 'Perylene dye photodegradation due to ketones and singlet oxygen', *Dyes and Pigments*, vol. 84, no. 1, pp. 59-61.
- Earp, A.A., Smith, G.B., Franklin, J.B. & Swift, P. 2004a, 'Optimisation of a three-colour luminescent solar concentrator daylighting system', *Solar Energy Materials and Solar Cells*, vol. 84, no. 1-4, pp. 411-26.
- Earp, A.A., Smith, G.B., Swift, P.D. & Franklin, J. 2004b, 'Maximising the light output of a Luminescent Solar Concentrator', *Solar Energy*, vol. 76, no. 6, pp. 655-67.
- Smith, G.B., Jonsson, J.C. & Franklin, J. 2003, 'Spectral and Global Diffuse Properties of High-Performance Translucent Polymer Sheets for Energy Efficient Lighting and Skylights', *Applied Optics*, vol. 42, no. 19, pp. 3981-91.
- Swift, P.D., Smith, G.B. & Franklin, J. 2006, 'Hotspots in cylindrical mirror light pipes: description and removal', *Lighting Research and Technology*, vol. 38, no. 1, pp. 19-31.

Peer Reviewed Conference Proceedings

- Deller, C.A. & Franklin, J.B. 2005, 'Optimising the Length of Doped Polymer Light Mixers', *Proceedings of the Australian Institute of Physics 16th Biennial Congress*, ANU, pp. 85-8.
- Deller, C.A., Franklin, J.B. & Smith, G.B. 2006, 'Lighting simulations using smoothed LED profiles compared with measured profiles', *Proceedings of SPIE 6337*. *Sixth International Conference on Solid State Lighting*), vol. 6337, San Diego.
- Deller, C.A., Smith, G.B. & Franklin, J.B. 2004, 'Uniform white light distribution with low loss from colored LEDs using polymer-doped polymer mixing rods', *Proceedings of SPIE Vol 5530: Fourth International Conference on Solid State Lighting*, vol. 5530, pp. 231-40.
- Deller, C.A., Smith, G.B., Franklin, J.B. & Joseph, E. K. 2002, 'The integration of forward light transport and lateral illumination of polymer optical fibre', *Proceedings of the Australian Institute of Physics 15th Biennial Congress* pp. 307-9.
- Earp, A.A., Franklin, J.B. & Smith, G.B. 2005, 'Extraction of Trapped Light From Luminescent Solar Concentrators', *Proceedings of the Australian Institute of Physics 16th Biennial Congress*, AIP, ANU, pp. 104-7.
- Earp, A.A., Smith, G.B., Swift, P. & Franklin, J. 2003, 'Optimisation of a three-colour luminescent solar concentrator daylighting system', paper presented to the *International Solar Energy Society World Congress 2003*, Gothenburg, Sweden.
- Smith, G.B., Earp, A., Franklin, J. & McCredie, G. 2001, 'Novel high-performance scattering materials for use in energy-saving light fittings and skylights based on polymer pigmented with polymer', *Proceedings of the SPIE 4458 (Solar Materials)*, vol. 4458, San Diego, pp. 8-18.
- Smith, G.B., Earp, A.A., Stevens, J. Swift, P. D., McCredie, G. &Franklin, J. 2000, 'Materials Properties for Advanced Daylighting in Buildings', World Renewable Energy Congress VI, Elsevier, Brighton, pp. 201-6.
- Swift, P.D., Smith, G.B. & Franklin, J.B. 1999, 'Light-to-light efficiencies in luminescent solar concentrators', *SPIE 3789 Conference on Solar Optical Materials XVI*, vol. SPIE 3789, Denver, pp. 21-8.

TABLE OF CONTENTS

CERTI	FICATE OF AUTHORSHIP/ORIGINALITY	
ACKN	OWLEDGEMENTS	i
AUTH	OR'S PUBLICATIONS	ii
GLOSS	SARY OF SYMBOLS AND ACRONYMS	X
LIST C	OF FIGURES	xvii
LIST C	OF TABLES	xxvi
ABSTE	AACT	xxvii
1 INT	TRODUCTION	1
1.1	MOTIVATION FOR THIS WORK	1
1.2	LUMINESCENT SOLAR COLLECTORS	3
1.3	THESIS STRUCTURE	8
2 FU	NDAMENTAL CONCEPTS	10
2.1	Introduction	10
2.2	SPECTRA OF FLUORESCENT EMISSION	12
2.3	LIGHT TRANSPORT AND EXTRACTION IN LSC'S	14
2.3	.1 Light Distribution Inside a Rectangular Light Guide	14
2.3	.2 Étendue	15
2.3	.3 Trapped Light	17
2.3	.4 Light Extractors	18
2.3	.5 Flat-to-Round Converters	20
2.4	EXTINCTION IN LSC SHEETS	21
3 ÉT	ENDUE ANALYSIS OF LSC'S	25
3.1	ÉTENDUE	25
3.1	.1 What is Étendue?	25
3.1	.2 Limiting Étendue	28
3.1	.3 The Light Field in a Fluorescent Sheet	31
3.1	.4 Étendue of Air Gaps and Optical Joints	32
3.1		34
3.1		35
3.1		37
2 1	8 Some Limitations of Étandue Analysis	33

	3.2	PR	ACTICAL LSC SYSTEMS	39
	3	2.1	Bornstein and Friedman	39
	3	2.2	Zastrow and Witter	43
	3.3	Тн	E UTS DAYLIGHTING PROJECT	46
	3	3.1	SCATS: A Sunlight Collection and Transmission System	46
	3	3.2	Improved Joints and Mixer/Couplers	49
	3	3.3	Coupling to Cylindrical Optical Fibres	52
	3	3.4	Hybrid LSC-LED Systems	53
4	FL	AT-	TO-ROUND CONVERTERS FOR OPTICAL FIBRES	59
	4.1	INT	TRODUCTION	59
	4.2	CU	TTING AND GLUING SOLID CORE OPTICAL FIBRE	60
	4.3	FIE	BRE COUPLER/MIXERS	62
	4.4	Тн	E COST OF SOLID CORE OPTICAL FIBRE	64
	4.5	FL.	AT-TO-ROUND CONVERTERS	70
	4	5.1	Basic Design of Curled-Sheet Converters	72
	4.6	DE	SIGNING A CURLED-SHEET FLAT-TO-ROUND CONVERTER	75
	4.	6.1	The Basics	75
	4.	6.2	Casting a Flexible Transparent Sheet	76
	4.	6.3	Assembling a Curled-Sheet Flat-to-Ring Converter	80
	4.	6.4	Modelling a Curled-Sheet Flat-To-Round Converter	83
	4.7	MA	ASS PRODUCTION OF FLAT-TO-ROUND CONVERTERS	88
5	TR	RIM	M DOPED SHEETS AND LIGHT GUIDES	93
	5.1	INT	TRODUCTION	93
	5.2	OP	TICAL PROPERTIES OF TRANSPARENT MICROPARTICLES IN A TRANSPARENT	
	Мат	ΓRIX		95
	5	2.1	Single Particle Interactions in a TRIMM System	95
	5.3	Mt	JLTI-PARTICLE INTERACTIONS IN A TRIMM SYSTEM	106
	5	3.1	Side-Loss in TRIMM Systems	106
	5	3.2	Specular Transmittance of TRIMM Doped Systems	109
	5	3.3	Light Diffusion Inside TRIMM Doped Systems	115
	5.4	AP	PLICATIONS OF TRIMM DOPED SYSTEMS	117
	5.	4.1	Mixing in TRIMM Doped Light Guides	117
	5.	4.2	TRIMM Based Side-scattering Optical Fibres	121

6	LIC	GHT EXTRACTION FROM SOLID OPTICAL SYSTEMS	126
	6.1	Introduction	126
	6.2	WHAT IS TRAPPED LIGHT?	126
	6.3	ENDLIGHT VS. TRAPPED LIGHT	127
	6.4	CALCULATION OF AMOUNT OF EACH FORM OF TRAPPED LIGHT	128
	6.5	Types of Light Extractors	135
	6.5	5.1 The Importance of Étendue	135
	6.5	5.2 Increasing the Cross Sectional Area	135
	6.5	5.3 Light Extractors Using Multiple Interactions	136
7	LIC	GHT TRANSPORT IN LSC SHEETS	143
	7.1	Introduction	143
	7.2	MODELLING OF LSC OUTPUT	145
	7.3	SPECTRAL SHIFT DUE TO SELF-ABSORPTION	149
	7.3	3.1 Experimental	149
	7.3	3.2 Results and Discussion	150
	7.4	LIGHT TRANSPORT PERFORMANCE	151
	7.4	4.1 Assessing Sheet Quality for Lighting	151
	7.4	1.2 Measurement of $L_{1/2}$	153
	7.4	1.3 Theoretical Calculation of $L_{1/2}$	154
	7.4	4.4 Experimental and Theoretical $L_{1/2}$ Results	156
	7.5	SEPARATING DYE AND MATRIX EFFECTS	158
	7.5	5.1 Dye-Related Losses	159
	7.5	5.2 Matrix-Related Losses	160
	7.6	OPTIMISATION OF COLLECTOR PROPERTIES	161
	7.7	CONCLUSION	165
8	MA	AKING LSC SHEETS	167
	8.1	CHOICE OF LUMINOPHORE	167
	8.2	DISPERSING THE DYE	170
	8.2	2.1 Procedure for Dissolving the Dye	172
	8.3	LASER TESTING DYED MMA AND PMMA	173
	8.4	MANUFACTURING METHODS FOR DYED PMMA SHEETS	175
	8.4	1.1 Extruded Sheet	175
	8.4	1.2 Continuous Casting	176
	8.4	1.3 Cell Casting	178
	8.4	1.4 Comparison of Sheet Production Methods	179
	8.5	MASS PRODUCTION OF OPTICAL-GRADE EDGES FOR LSC'S	180

9 EX	KTIN	ICTION MECHANISMS IN LSC'S	182
9.1	INT	TRODUCTION	182
9.2	Ex	PERIMENTAL METHOD AND THEORY	183
9.	2.1	Sample Preparation	183
9.	2.2	Test Equipment	184
9.	2.3	Transmission Measurements	184
9.	2.4	Scattering Measurements	186
9.	2.5	Absorption	187
9.	2.6	Stability Testing	188
9.3	RE	SULTS AND DISCUSSION	188
9.	3.1	Tails Extinction	188
9.	3.2	Overall Performance	191
9.4	Co	NCLUSIONS	194
10 PI	ЮТ	ODEGRADATION OF FLUORESCENT SHEETS	195
10.1	INT	RODUCTION	195
10.2	Ex	PERIMENTAL METHOD AND THEORY	195
1	0.2.1	Sample Preparation	195
1	0.2.2	Spectral Measurements	196
1	0.2.3	Luminous Output	198
1	0.2.4	Stability Testing	198
10.3	RES	SULTS AND DISCUSSION	199
1	0.3.1	Stability of Dye and Tails Absorption	199
1	0.3.2	Impact of an Antioxidant	203
1	0.3.3	Impact of UV Radiation	205
1	0.3.4	The Impact of a UV Additive	207
1	0.3.5	The Impact of Heat and Illumination	208
10.4	Co	NCLUSIONS	211
11 C	ONC	LUSIONS	213
11.1	OP	IICAL AND MECHANICAL DESIGN	213
11.2	OP:	TICAL PROPERTIES OF THE COLLECTOR SHEETS	214
11.3	AR	EAS OF FUTURE WORK	215
APPE	NDI	X 1: MASS PRODUCTION OF HIGH-PERFORMANCE LSC SHEETS	217
1.1	Ex	TRUDED SHEET	217
1.2	CE	LL CASTING	221
1.3		E INDUSTRIAL CULTURE OF PLASTICS PRODUCERS	223
		ASS PRODUCTION OF OPTICAL-GRADE EDGES FOR LSC'S	225

APPENDIX 2: CITING AND ACCESSING PATENTS		227
2.1	CITING PATENTS: PATENT FAMILY VS PATENT	227
2.2	Inventors Names	229
2.3	ONLINE ACCESS TO PATENTS	230
BIBL	IOGRAPHY	231

GLOSSARY OF SYMBOLS AND ACRONYMS

- (x, y, z) Cartesian coordinate system with an origin at the centre of the entry face of a flat-to-round converter
- (θ, ϕ, l) Spherical coordinates

Roman Symbols and Acronyms

a	Aspect ratio of a sheet [m]
а	Axial particle number (the number of particles intercepted by a straight line drawn through a TRIMM-doped system parallel to the optic axis) [m ⁻¹]
A	Cross sectional area of the optical system [m ²]
A	Absorbance of an optical system
A	Area of a source [m ²]
\overline{A}	Mean absorption fraction of light entering an LSC
dA	An infinitesimal area [m ²]
dA	Vector associated with an infinitesimal area, dA [m ²]
$A(\lambda)$	Absorption spectrum
$A_{\it eff}$	Effective collection area of an LSC [m ²]
$A_{extractor}$	Area of the exit face of a hybrid LSC-LED light extractor [m ²]
A_{LED}	Area of individual LED chips in hybrid LSC-LED light extractor [m ²]
B	Fraction of total lumens from hybrid LSC-LED light extractor provide by the LED's
BRDF	Bidirectional Reflectance Distribution Function [sr ⁻¹]
$c_o(z)$	Transverse curvature of the outer surface of a flat-to-round converter at distance z from the entry face [m ⁻¹]
C	Contrast ratio between specular and diffuse light
$C'_{o}(z)$	Position of the centre of the transverse curvature of the outer surface of a flat-to- round converter which has been adjusted so that the intersection of the outer surface with the y-z plane is a straight line [m]
$C_i(z)$	Position of the centre of the transverse curvature of the inner surface of a flat-to-round converter at distance z from the entry face [m]
$C_o(z)$	Position of the centre of the transverse curvature of the outer surface of a flat-to-round converter at distance z from the entry face [m]
d	Diameter of an inflated tube [m]
$D(\delta)$	Divergence of a TRIMM microsphere i.e. the ratio of the intensity of light scattered by a TRIMM particle at angle δ to the illuminating beam with the intensity of light scattered in the same direction as the illuminating beam
DABCO	1,4-diazabicyclo-[2.2.2] octane, a useful antioxidant
$E_C(\lambda)$	Measured spectrometer signal from the end surface of a clear sheet [counts]
$E_D(\lambda)$	Measured spectrometer signal from the end surface of a dyed sheet [counts]
E_e	Total power emitted by dye molecules [W]
EPO	European Patent Office
$E_x(\lambda)$	Spectral intensity at the side of an LSC at lateral distance x [counts.sec ⁻¹]
f	Matrix loss factor (the fraction of the light lost in the clear reference sheet due to matrix extinction and Fresnel reflection at the far end).
$f(\delta)$	Probability density distribution of the ray's angular deviation [rad ⁻¹]

f_{cone}	Fraction of fluorescently emitted light in each escape cone
$f_{\it diffuse}$	Fraction of light in a hybrid LSC-LED light extractor that is diffuse rather than specular
f_{edge}	Fractional loss of light in a flat-to-round converter due to scattering from rounded sidewall edges
f_{end}	Fraction of fluorescently emitted light that is endlight (includes the correction for reflection at a LSC sheet's end mirror)
f_{escape}	Fraction of fluorescently emitted light in combined escape cones
f_{geom}	Fraction of rays striking a TRIMM microsphere that are within the geometric limit i.e. the fraction of rays that are well approximated by geometric optics
f_{scat}	Fractional loss of light in a flat-to-round converter due to scattering off rough sidewalls
$f_{trapped}$	Fraction of fluorescent emission that reaches the a LSC's exit surface in the form of F Output luminous flux from an LSC [lm]
F	Output luminous flux from an LSC [lm]
F_{all}	The ratio of the total amount of light reaching a LSC's exit surface (i.e. the sum of endlight and trapped light) to the endlight
F_{in}	Flux of a collimated light beam illuminating an annulus on a TRIMM microsphere [W]
F_l	Luminous flux at the collection edge when LSC is illuminated at a plane of constant distance, <i>l</i> , from the collection edge [lm]
F_L	Luminous flux at collection edge when LSC of length L is illuminated uniformly [lm]
F_o	Luminous flux of the fluorescent test lamp [lm]
FSL	Fluorosolar Systems Ltd
g_{max}	Maximum possible étendue per unit area [sr.m²]
G	Étendue [sr.m²]
G_{gap}	Étendue of light at an air gap [sr.m²]
G_{limit}	Smallest value of the limiting étendue in an optical system [sr.m²]
$G_{_{_{\mathcal{X}}}}^{\max}$	Maximum possible étendue at cross section x [sr.m ²]
h	Impact ratio, $h = h/r$. h is independent of the microsphere's radius, r
h_{geom}	Impact ratio for the geometric limit, i.e. the impact ratio beyond which Mie theory is required to calculate the scattering pattern
Н	Perpendicular separation distance of a ray impacting on a microsphere from the parallel ray passing through a sphere's centre. [m]
HDPE	High Density Polyethylene
$i(\delta,l)$	Intensity of the light scattered by a single TRIMM microsphere measured at distance l from the sphere and a deviation angle of δ from the illuminating light beam [W.m ⁻²]
I	Average number of interactions of light with the sidewalls of a flat-to-round converter
I	The point on the inner sidewall edge of a flat-to-round converter corresponding to point P on the outer surface [m]
$I(\delta)$	The intensity light scattered by a TRIMM microparticle at a deviation angle of δ to the illuminating beam, measured inside the host material [W.m ⁻²]
I_{in}	Intensity of a collimated light beam illuminating a TRIMM microsphere [W.m ⁻²]
I_0	The intensity light scattered by a TRIMM microparticle in the direction of the illuminating beam, measured inside the host material [W.m ⁻²]

INPADOC International Patent Documentation Center

Solar luminous intensity incident on the top surface of the collector [lux] I_{sol} A proportionality constant for the fitted variation of the mean half-cone angular k spread, $\overline{\Sigma}$, with the axial particle number, a Length of a sheet [m] l Linear distance between point of illumination and collection edge [m] Path length of a ray inside a light guide [m] L Length of a light guide [m] L Length of a clear reference sheet or collector sheet [m] Radiance of a source [W.m⁻².sr⁻¹] LHalf-length i.e. the path length over which 50% of the fluorescently emitted light is $L_{1/2}$ lost due to extinction [m] Critical length of a TRIMM doped mixer rod i.e. the length where the mean half- L_{crit} cone angular spread of the light is equal to the material's critical angle [m] Half-length contribution from the collector sheet's dye [m] $L_{d\frac{1}{2}}$ Diffuse radiance of a skylight or LED-hybrid luminaire interpolated to the angle of $L_{diffuse}$ maximum radiance [W.m⁻².sr⁻¹] LDPE Low Density Polyethylene LED Light Emitting Diode Mean radiance from a hybrid LSC-LED light extractor [W.m⁻².sr⁻¹] L extractor Half-length contribution from collector sheet's geometry [m] $L_{g^{1/2}}$ Radiance of the LED's in a hybrid LSC-LED light extractor [W.m⁻².sr⁻¹] L_{LED} Radiance of the diffuse component of a system's output measured near the specular L_{local} component [W.m⁻².sr⁻¹] $L_{m^{1/2}}$ Half-length contribution from collector sheet's matrix [m] Maximum radiance of the specular component of a system's output [W.m⁻².sr⁻¹] L_{max} Radiance of the a mixer in a LED projector near the specular beam [W.m⁻².sr⁻¹] $L_{proj\ image}$ $L_{proj \, specular}$ Radiance of the specular beam from a mixer in a LED projector [W.m⁻².sr⁻¹] LSC Luminescent Solar Collector Maximum specular radiance of a skylight or LED-hybrid luminaire [W.m⁻².sr⁻¹] $L_{specular}$ Luminance of the image from a LED projector near the specular spot [lm.m⁻².sr⁻¹] $L_{v image}$ Luminance of the specular spot from a LED [lm.m⁻².sr⁻¹] $L_{v \, specular}$ Ratio of the refractive index of a fibre's core to its cladding m Relative refractive index (usually the ratio of the ratio of the particle's refractive m index to the matrix containing it) Refractive index n Refractive index of the host matrix containing a TRIMM microsphere n_{host} Refractive index of component i, such as a TRIMM microsphere or a light guide n_i matrix Refractive index of a TRIMM microsphere $n_{particle}$ Number of pixels that specular transmission is focused onto n_{pix} N Number of measurement positions along a the side of a LSC Number of LED chips in hybrid LSC-LED light extractor N_{LED} Number of pixels in a display N_{pix} A power index for the fitted variation of the mean half-cone angular spread, $\overline{\Sigma}$, with p the axial particle number, a Pressure of an inflated tube [Pa] $p(\theta_i)$. Path length inside a LSC for light with an angle of incidence of θ_i [m]

P	A chosen point at the intersection of the outer surface of a flat-to-round converter a the sidewall [m]
P(h)	The cumulative probability density distribution at impact ratio <i>h</i>
$P_a(x)$	Probability of a ray encountering exactly <i>x</i> microparticles in a light guide with an axial particle number of <i>a</i>
PCT	Patent Cooperation Treaty
PMMA	Poly methyl methacrylate, colloquially called "acrylic plastic" or Perspex®
$P_o(\lambda)$	Spectral power of light immediately inside the entry surface of the clear reference sample [counts.sec ⁻¹ .nm ⁻¹]
$P_s(\lambda)$	Total spectral power scattered from the top, bottom and sides of a sheet [counts.sec ⁻¹ .nm ⁻¹]
$P_T(\lambda)$	Spectral power transmitted by a LSC [counts.sec ⁻¹ .nm ⁻¹]
Q	Heat [J]
Q_1, Q_3	Auxiliary points at the intersection of the outer surface of a flat-to-round converter with a sidewall, chosen to be on either side of P [m]
Q_2	Auxiliary point on the outer surface of a flat-to-round converter with the same z value as $P[m]$
QD	Quantum Dot
r	Particle radius (e.g. of a TRIMM microsphere)
r	Reflectivity of an end mirror
r_i	Radius of the inner surface of the exit ring of a flat-to-round converter [m]
$r_i(z)$	Radius of transverse curvature of the inner surface of a flat-to-round converter at distance z from the entry face [m]
r_n	Radius of the neutral surface of the exit ring of a flat-to-round converter [m]
r_o	Radius of the outer surface of the exit ring of a flat-to-round converter [m]
$r_o(z)$	Radius of transverse curvature of the outer surface of a flat-to-round converter at distance z from the entry face [m]
r_{side}	Nominal radius of the sidewalls' edges in a flat-to-round converter [m]
R	Fresnel reflectance of a surface
R	Reflectance of an optical system
R_I	Reflectance from a single TRIMM microsphere
$ar{R}_{\scriptscriptstyle 1}$	Mean reflectance from a single TRIMM microsphere
R_{ITE}	Reflectance coefficient from a TRIMM microsphere for light with transverse electric polarisation
R_{ITM}	Reflectance coefficient from a TRIMM microsphere for light with transverse magnetic polarisation
R_c	Reflectivity of one surface of the collector
R_{end}	Fresnel reflection loss at the far end surface of the LSC
RI	Refractive Index
$R_{particles}$	Mean total back reflectance from a mixer with a microparticles
R_{TE}	Reflectance coefficient for light with transverse electric polarisation
R_{TM}	Reflectance coefficient for light with transverse magnetic polarisation
S	Circumferential stress of an inflated tube [N.m ⁻²]
\overline{S}	Mean scattered fraction of light entering an LSC
S	The vector normal to the surface of a flat-to-round converter at point P and having a magnitude equal to the sheet thickness, t [m]
$S(\lambda)$	Scattering spectrum [W.m ⁻² .nm ⁻¹]

$S(\lambda)$	Spectral intensity of sunlight of wavelength λ [W.m ⁻² .nm ⁻¹]
$S(\Psi)$	Spectral intensity of sunlight of wavelength Ψ [W.m ⁻² .nm ⁻¹]
SCATS	Sunlight Collecting And Transmission System
S_T	Side-loss of an optical system i.e. the fraction of light that is transported laterally for a sufficient distance so that it does not enter the entry port of the detector
t	Thickness of a sheet measured perpendicular to the surface [m]
t	Wall thickness of an inflated tube [m]
T	Transmittance of an optical system
\overline{T}	Mean tails transmission for light entering an LSC
$T(\lambda)$	Transmission spectrum a LSC sheet
T(z)	Distance between the inner and outer surfaces of a flat-to-round converter in the y - z plane at distance z from the entry face [m]
$T_{\it diffuse}$	Hemispheric forward transmittance diffuse transmittance of a skylight or other diffuser sheet
TIR	Total Internal Reflection
TRIMM	Transparent Refractive Index Matched Microparticle
$T_{specular}$	Specular transmittance; for a TRIMM system the fraction of rays completely undeviated scattering
U	Symbol for étendue used by some workers. This thesis uses G [sr.m ²]
UTS	University of Technology, Sydney
W	Width of the collector sheet [m]
$w_{\rm C}$	Width of clear reference sheet [m]
w_D	Width of a dyed LSC [m]
W_{det}	Width of detector port on integrating sphere [m]
$w_i(z)$	Arc length of the inner surface of a transverse cross section of a flat-to-round converter at distance z from the entry face [m]
$w_o(z)$	Arc length of the outer surface of a transverse cross section of a flat-to-round converter at distance <i>z</i> from the entry face [m]
W	Work [J]
x	Lateral distance on an LSC measured from the entry surface [m]
X	Number of microparticles encountered by a ray
\bar{x}	Mean number of microparticles encountered by a ray over a specified distance
dx	Length interval represented by each measurement [m]
$y(\lambda)$	Standard photopic response of human eye
$y_{o}(z)$	y value of the exterior surface of a flat-to-round converter in the y-z plane [m]
z_i	z coordinate of the bottom of the exit ring in a flat-to-round converter [m]
Z_o	z coordinate of a sidewall at the exit ring in a flat-to-round converter [m]

Greek Symbols

α	Linear particle density i.e. the number of particles per metre intercepted by a straight line drawn through a TRIMM-doped light guide [m ⁻¹]
$\alpha(\lambda)$	Attenuation coefficient at wavelength λ [m ⁻¹]
$lpha_d(\lambda)$	Dye-related attenuation coefficient (including the effects of dye photodegradation, if applicable) $[m^{-1}]$
$\alpha_g(\theta,\phi,l)$	Attenuation coefficient for losses due to light guide geometry [m ⁻¹]
$lpha_m$	Matrix attenuation coefficient, assumed independent of wavelength [m ⁻¹]
γ	Exponential loss coefficient averaged over all rays [m ⁻¹]
δ	Semi-cone angular component of a ray's deviation, relative to the previous direction of the ray [rad]
$ar{\delta}$	Mean deviation angle of the rays interacting with a single TRIMM microsphere [rad]
$\delta(h)$	General expression for deviation angle of a ray impacting a TRIMM sphere, in terms of the impact ratio h [rad]
$\delta_{\scriptscriptstyle geom}$	Deviation angle at the geometric limit [rad]
$\delta_{\scriptscriptstyle median}$	Median deviation angle of the probability density distribution of the deviation $f(\delta)$ [rad]
δ_{median}	Median deviation angle of the rays interacting with a single TRIMM microsphere [rad]
$\varepsilon(\lambda,L)$	Spectral intensity at the collection edge of an illuminated LSC sheet [W.m ⁻² ·nm ⁻¹]
$\varepsilon_o(\lambda)$	Emission power spectrum of fluorescent dye [W.m ⁻² nm ⁻¹]
$\eta_{ab ext{s}}$	Fraction of light incident on an LSC collector stack that is absorbed by the dye molecules
$\eta_{conduit}$	Transport efficiency of an LSC system's optical conduit(s)
$\eta_{coupler}$	Fraction of the light reaching a LSC sheet's collection edge that is coupled into the optical conduit(s)
η_{cover}	Fraction of light transmitted by the protective cover
η_{direct}	Fraction of light from a light extractor that is directed to usefully illuminate a room
$\eta_e(\lambda)$	Energy-to-energy conversion efficiency of fluorescent dye (average emitted photon energy/incident photon energy)
$\eta_{extract}$	Extraction efficiency of a light extractor
η_{geom}	Geometric efficiency of a LSC sheet (i.e. losses due to the sheet not being a perfect rectangular prism)
$\eta_{l ext{-}l}$	Lumens-to-lumens efficiency of a LSC system (output lumens/input lumens)
$oldsymbol{\eta}_{lum ext{-}lum}$	Ratio of the luminous efficacy for a dye molecule of the emitted light to that of the absorbed light. Note that $\eta_{lum-lum}$ can exceed 100%
η _{material}	Efficiency of a LSC sheet due to material properties including: dye self-absorption, absorption by the matrix, scattering by dye particles, scattering by the matrix and absorption at the sheet's end mirror
η_{quant}	Photon-to-photon quantum efficiency (photons out/photons in)
η_{sheet}	Fraction of the fluorescently emitted light that reaches a LSC sheet's collection edge
η_{TIR}	Fraction of the fluorescent emission is trapped inside a LSC sheet by total internal reflection at the top and side surfaces
θ	Altitude angle between ray and normal to collector surface [rad]
$ heta_{crit}$	Critical angle [rad]
$ heta_{diffuse}$	Half-width of diffuse radiation form a skylight or other diffuser [rad]

0	A 1 C' '1 C 4 11' 14 4 ' 11 4 1 4 F 17
θ_i	Angle of incidence of external light entering a collector sheet [rad] Half-width of specular solar radiation [rad]
$ heta_{sun}$	Lumens per watt conversion factor (683 lm W ⁻¹) [lm W ⁻¹]
K	, , , , , , , , , , , , , , , , , , , ,
λ	Wavelength of light [nm]
< <i>\lambda</i> >	The average wavelength of photons emitted by the dye molecule [nm]
$\Delta\lambda$	Wavelength interval [nm]
Ψ	Wavelength of light incident on a LSC [nm]
μ	Difference of the relative refractive index, <i>m</i> , from 1
au	Spectrometer integration time [s]
ϕ	Azimuthal angle on x-y plane between ray and positive x-axis (long axis) [rad]
ф	Angle between the geometric cross section surface and the effective cross section surface [rad]
ф	Inclination of the end surface of a light guide [rad]
ф	Misalignment angle between two components [rad]
Φ	Radiant flux of a source [W]
χ	Critical angle at the collector-air interface (chapter 7 only – the rest of the thesis uses θ_{crit}) [rad]
$\overline{\Sigma}$	Mean half-cone angular spread of light in the cross-sectional plane of a light guide [rad]
Ω	Emission solid angle of a source [sr]
Ω	Solid angle [sr]
Ω	Solid angle of a light field at a given point [sr]
arOmega	Solid angle subtended by a source [sr]
Ω	Vector of magnitude Ω in the central direction of a light field that has a solid angle of Ω [sr]
Ω_{escape}	Solid angle of the escape cone [sr]
$\Omega_{extractor}$	Solid angle subtended by the LSC component of light from hybrid LSC-LED light extractor [sr]
$\Omega_{ m LED}$	Solid angle subtended by light from an LED [sr]
Ω_{max}	Maximum possible solid angle of light confined in the system at a specified cross section [sr]
$\Omega_{max\;mer}$	Maximum solid angle of meridional light trapped inside an optical fibre [sr]
$\Omega_{max\ rect}$	Maximum solid angle of light trapped inside a rectangular light guide [sr]
$\Omega_{max\ sheet}$	Maximum solid angle of light trapped inside a sheet [sr]

LIST OF FIGURES

CHAPTER 1 INTRODUCTION

Figure 1.1	(a) A two axis sun tracker that uses a single large Fresnel lens to focus the specular	
	component of sunlight onto an optical fibre for remote illumination (Solar Magazine	
	2002). (b) A Parans® two-axis sun tracking system that uses multiple small lenses to	
	focus sunlight onto individual small optical fibres (Parans 2011).	2
Figure 1.2	Schematic of a luminescent solar collector capturing sunlight and coupling the light into	
	optical fibres that distribute the light throughout a building.	3
Figure 1.3	Schematic cross section of a luminescent solar collector sheet.	4
Figure 1.4	The edges of fluorescent sheets are bright because light is collected over the large flat	
	surfaces and transported by total internal reflection to the much smaller edges.	4
Figure 1.5	Schematic of a three colour LSC stack connected to light guides and a luminare.	5
Figure 1.6	Trapped light is totally internally reflected at all surfaces.	6
Figure 1.7	Schematic of a generic LSC system.	7
CHAPTER	2 FUNDAMENTAL CONCEPTS	
Figure 2.1	Measured spectra of dye absorption () and dye emission (****) along with the	
	associated measured (—) and calculated (—) emission spectra for a 1.2 m LSC	
	doped with Lumogen® F300 (red).	14
Figure 2.2	Emission inside a sheet of refractive index <i>n</i> showing TIR and the forward halves of the	
	four side loss cones.	15
Figure 2.3	Definition of étendue in a light guide of cross sectional area A for light with a solid angle	
	of Ω .	16
Figure 2.4	Effect of a thin section in a light guide. The thickness variation is exaggerated for clarity.	17
Figure 2.5	(a) Endlight can pass through an end surface of a light guide, whereas (b) trapped light is	
	totally internally reflected at all surfaces.	18
Figure 2.6	Expanded area light extractor (66) connected by an optical joint (67) to flexible thin	
	rectangular light guides (58).	19
Figure 2.7	(a) A perpendicular end surface reflects almost half of the available light. (b) Extraction	
	of trapped light by a luminare with expanded area and diffusely reflecting white	
	surfaces.	19
Figure 2.8	An injection-moulded flat-to-round coupler fed by a green LSC sheet feeding light to a	
	solid core optical fibre.	20

Figure 2.9 Transmission tails measured through a 2.00 mm thick LSC sheet doped with 60 ppm	
Lumogen® F083. The solid line represents the measured transmission of the green dye	
(excluding Fresnel reflectance), and the dashed line is the same spectrum, except that	
the transmission in the 'tails region' beyond 520 nm has been artificially set to 100%	
as a reference.	23
Figure 2.10 Tails extinction measurements for a 1200 mm long green LSC (a) before exposure, (b)	
after exposure. A Rayleigh scattering function has been fitted for $\lambda \! > \! 600$ nm.	24
CHAPTER 3 ÉTENDUE ANALYSISI OF LSC'S	
Figure 3.1 Definition of étendue in a light guide.	25
Figure 3.2 A linear optical system that decreased étendue could be combined with a heat engine to	
construct a perpetual motion machine of the second kind (turning heat spontaneously	
into work).	26
Figure 3.3 Light in various light guides. (a) Étendue increases due to diffusion. (b) Étendue	
increases due to excessively rapid increase in cross sectional area. (c) Étendue	
conserved by an adiabatic expansion area that trades more area for smaller solid angle.	27
Figure 3.4 Emission inside a sheet of refractive index <i>n</i> showing TIR and the forward halves of the	
upper and lower loss cones.	28
Figure 3.5 Calculation of the cosine of θ_{crit} .	29
Figure 3.6 Light inside a rectangular light guide of refractive index n showing the forward halves of	
the four loss cones.	30
Figure 3.7 Trapping of meridional light in an optical fibre.	30
Figure 3.8 Calculation of the étendue of the end of a light guide inclined at angle ø.	33
Figure 3.9 Claimed schematic of many (impractical) LSC designs.	37
Figure 3.10 How the system in Figure 3.9 actually works at best (it may well actually have	
substantially lower performance).	38
Figure 3.11 Key drawings from Bornstein and Friedman's patent US 4,539,625 with some numbers	
replaced by labels. (a) Overview of their system. (b) Details of the collector stack.	40
Figure 3.12 Bornstein and Friedman's design for a luminaire with an inclined end (51) to the light	
guide (50) feeding a Fresnel lens (52B) inside a prismatic light guide (56B) that	
disperses the light. Note the use of spacer sheets (40, 42, 44) between the collector	
sheets (12, 14, 16) that would significantly increase the size of the light guides.	42
Figure 3.13 Single colour fluorescent collector system of (Zastrow & Wittwer 1986a) using a	
hollow cone of fluorescent PMMA as light collector, a 5.0 long assembly of hollow	
tube of PMMA as a light guides and an end mirror to illuminate a kitchen two floors	
below the roof.	43

Figure 3.14	Schematic of a SCATS (Sunlight Collecting And Transmitting System) with a three-	
	layer stack of fluorescent sheets optically coupled to thin, flexible light guides and a	
	light extractor. A properly designed system emits white light. Using long, narrow	
	collector sheets permits the light guides to be narrow enough to give good flexibility to	
	the optical conduit – essential for practical installation.	47
Figure 3.15	The final form of the SCATS LSC system with a three colour fluorescent stack on the	
	roof connected by an optical conduit made from thin, flexible PMMA, connected to a	
	luminare.	48
Figure 3.16	Light guide clamp in a SCATS system.	50
Figure 3.17	Glued "offset T-joints" provide mechanical strength but optical isolation.	50
Figure 3.18	Coupler and light mixer from that combines the light from a three layer stack of	
	fluorescent collector sheets and transfers it to dual light guides.	51
Figure 3.19	Bent coupler/mixer (50) to mix light from a three-layer collector stack (glued on the left	
	to surfaces 50a, 50b and 50c) and to transfer it as white light to twin light guides (glued	
	on the right to surfaces 50d and 50e).	52
Figure 3.20	Perspective and cross sectional views of a set of tubular fluorescent light collectors	
	(blue 40, green 41 and red 42) whose output is mixed and coupled by a converter (44)	
	to a solid cylindrical light guide (46). The optical joints 43 and 45 are essential for	
	good performance. End (47) and bottom (48) reflectors boost performance.	53
Figure 3.21	A LSC- LED hybrid lighting system. A blue LED (44) powered by a solar cell (48)	
	provides enough blue light to colour balance the fluorescent emission from a collector	
	sheet stack (43).	54
Figure 3.22	A hybrid LED-LSC system with the blue LED's (67) at the luminaire/light extractor	
	(66) colour balancing the fluorescent emission from the light guides (64).	55
Figure 3.23	(a) Assembly of a hybrid light extractor. (b) The hybrid light extractor in operation.	55
Figure 3.24	Using an integrating sphere (on the right) for the visual colour assessment of the light	
	output from a hybrid SCATS system. The collector stack on the left has two small	
	solar cell arrays that power blue LED's in the luminaire. The twin light guides are	
	protected by an orange plastic sheath.	56
Figure 3.25	Façade mounting of two hybrid SCATS collectors to illuminate an interior room.	57
Figure 3.26	Installation of the hybrid SCATS system.	57
_		
CHAPTER 4	4 FLAT-TO-ROUND CONVERTERS FOR OPTICAL FIBRES	
Figure 4.1	Cutting a solid core optical fibre with optical shears such as a $Poly\ Cutter^{TM}$. The surface	
	cut by the highly polished primary face of the chisel-ground blade has a much higher	
	quality than that at the inclined secondary face.	61
Figure 4.2	A fibre coupler/mixer that provides a good optical and mechanical coupling from a	
	three-layer collector stack to solid core optical fibres (only one fibre is shown in this	
	cross section).	63

Figure 4.3 (a) Three-layer stack of fluorescent sheets connected via a coupler/mixer to 21 optical	
fibres. (b) The ends of the fibres are bonded to a luminare. (c) Overview of the system.	63
Figure 4.4 Typical cost curve for solid core optical fibre, normalized to prices for 10 mm diameter	
fibre.	65
Figure 4.5 Typical cost per unit area of solid core optical fibre, normalized to prices for 10 mm	
fibre. For small diameters $cost \sim 1/d^2$. For large diameters $cost \sim 1/d$. The break point	
is at about 5 mm.	67
Figure 4.6 Exploded view of a "curled-sheet" flat-to-round converter that couples light from a	
rectangular entry section to a cylindrical optical fibre.	70
Figure 4.7 The geometric cross section (measured normal to the optic axis) and the effective cross	
section (measured at right angles to the local surface) differ by the cosine of the	
inclination, Ø.	71
Figure 4.8 A ring-to-solid circle converter with constant solid cross sectional area.	75
Figure 4.9 Ray tracing a ring-to-solid circle converter in Zemax® for light with the maximum solid	
angle.	76
Figure 4.10 Side view of a curled-sheet flat-to-ring converter. Note the distortion of the exit ring.	82
Figure 4.11 Curled-sheet flat-to-ring coupler attached to a fluorescent sheet. The output is then fed	
into an integrating sphere and compared to that from a similar luminescent sheet	
without a coupler.	83
Figure 4.12 Transverse cross section of a flat-to-round converter with the inner and outer surfaces	
having a common centre of curvature at C. The mean direction of the light is inclined	
to this cross section by $(90 - \phi)$. Note that the converter's thickness in this plane, T ,	
has been exaggerated for the sake of clarity.	85
Figure 4.13 Calculating the sidewall. For a point P on the upper edge of the sidewall, auxiliary	
points Q_1 , Q_2 and Q_3 are used to construct a vector S that is perpendicular to the outer	
surface and has a length equal to the sheet thickness, t. The point on the inner edge of	
the sidewall, I , corresponding to P is $I = P + S$.	87
Figure 4.14 Ray tracing in Zemax® of a curled-sheet flat-to-ring converter. The source has the	
largest possible range of angles for light to be confined by TIR inside a flat sheet.	
More than 98% of the rays reach the exit ring.	87
Figure 4.15 The Arrk® prototype glued to a red LSC and fitted with a conical light extractor. The	
glued joints between the upper and lower pieces are visible as a bright line at the exit	
surface.	89
Figure 4.16 A <i>Solidworks</i> ® model of a flat-to-round converter designed to couple a 50 mm x 6 mm	
stack of three LSC sheets to a 20 mm diameter solid core optical fibre.	90
Figure 4.17 An <i>Arrk</i> ® rapid prototype of the design shown in Figure 4.16 glued on the left to a	
green LSC. The glued joints between the upper and lower pieces of the optical model	
are visible as bright lines. The green triangular streak to the bottom left of the	
converter is a reflection of the sidewall by the smooth black sheet supporting the	
prototype.	91

Figure 4.18 An injection moduled flat-to-found couplet fed by a green LSC sheet. The rectangular	
piece of plastic near the optical fibre is the injection-moulding gate, which is normally	
removed. Also seen at the bottom left hand corner of the photo are the stepped surfaces	
used to make an "offset-T joint" from the LSC sheets to the coupler.	92
CHAPTER 5 TRIMM DOPED SHEETS AND LIGHT GUIDES	
Figure 5.1 Definition of different parameters when a single ray enters a TRIMM sphere. The final	
deviation angle, δ , is greatly magnified compared to that in the materials discussed in	
this chapter.	96
Figure 5.2 Reflectance from a TRIMM sphere for $\mu = 0.0114$ for various impact ratios. Rays with	
$h < 0.71$ are back reflected. The geometric limit for 35 μ m particles is $h = 0.966$.	100
Figure 5.3 (a) Angular deviation of a single ray striking a TRIMM sphere of unit radius. (b) The	
probability density distribution of the deviation, $f(\delta)$ for $\mu = 0.0114$.	101
Figure 5.4 Geometry for a sphere of radius r illuminated by collimated light.	104
Figure 5.5 Normalised intensity distribution of light scattered by a TRIMM microsphere with $\mu =$	
0.0114 (solid black line) and a best fit Gaussian distribution with a standard deviation	
of 0.760° (dashed red line). The large angle scattering is also plotted on the right hand	
scale at 10x sensitivity.	105
Figure 5.6 Normalised intensity distribution of light scattered by a TRIMM microsphere with $\mu =$	
0.0114 (solid black line). Also plotted is a best-fit sum of two Gaussian distributions	
(dashed red line) that have central heights of 0.690 and 0.305 and standard deviations	
0.587° and 1.294° respectively.	105
Figure 5.7 Schematic of rays traversing a block of clear polymer of thickness L doped with clear	
spheres. A ray is shown that is totally internally reflected.	106
Figure 5.8 (a) Photograph of a TRIMM doped sheet obliquely illuminated with a narrow HeNe laser	
beam. Both rays that transmit and exit after a single pass and those that make up the	
side-loss component can be seen. (b) Schematic of some different categories of ray	
paths in TRIMM dope systems according to their contribution to measured	
components. The black rectangles under the sheet represent the cross section of the	
spectrometer's entrance aperture.	107
Figure 5.9 Side-loss S_T spectra from 300 to 1000 nm at 1, 2, 3, and 4-mm thickness of N77 TRIMM	
doped PMMA plotted in curves L1 – L4 respectively.	108
Figure 5.10 Radiance of a conventional diffuser illuminated with an intense light source. Examples	
include: a skylight illuminated by the sun, a luminaire in a hybrid LSC-LED system,	
and a LED projector.	109

Figure 5.11	(a) Assembly of a hybrid light extractor showing the LED's at the back of the extractor.	
	There is a TRIMM diffuser sheet optically bonded to the front surface to reduce the	
	glare from the LED's. (b) The hybrid light extractor in operation with the LED's	
	viewed through the front TRIMM diffuser. Note the absence of glare from the high	
	intensity LED chips.	112
Figure 5.12	2 Experimental set-up, showing (from the left): alignment laser, LED array, PMMA	
	mixing rod, frosted glass screen and the translational stage with a photometric detector.	118
Figure 5.13	3 (a) & (b) Photographed output from a clear 100 mm long PMMA rod observed on a	
	screen 100 mm from the end of the rod, viewed from different viewing angles. (c)	
	Modelled output.	119
Figure 5.14	(a) Photographed output from a 88 mm TRIMM doped PMMA rod observed on a	
	screen 100 mm from the end of the rod. (b) Modelled output from the TRIMM doped	
	rod. (c) Measured CIE coordinates for a 1 mm central strip of (a) and (b).	119
Figure 5.15	(a) Modelled and (b) measured output from a clear 25.5 mm diameter, 58.9 mm long	
	rod viewed 150 mm from the output surface.	120
Figure 5.16	Output colour distribution transmitted through the frosted glass screen 150 mm from	
	the end of the TRIMM sheet. (a) Modelled. (b) Photographed.	121
Figure 5.17	Stair lights at UTS using TRIMM doped side-scattering optical fibre.	123
Figure 5.18	Bicycle helmet using LED's and TRIMM doped side-scattering optical fibre. Note the	
	even brightness achieved by using a LED at each end of the fibre.	124
Figure 5.19	Diagram of a luminare with a side-scattering optical fibre (delivering light from a LSC)	
	integrated with an electrically driven fluorescent tube in a common housing. The	
	control system senses the light level in the room and can adjust the output of the	
	fluorescent tube to keep the light level constant without changing the illumination	
	pattern. The side-scattering fibre is transparent to light from the fluorescent tube,	
	which makes it easier to integrate the two light sources to give constant illumination	
	pattern.	125
CHAPTER	6 LIGHT EXTRACTION FROM SOLID OPTICAL SYSTEMS	
Figure 6.1	(a) Endlight can pass through an end surface, whereas (b) trapped light is totally	
	internally reflected at all surfaces.	128
Figure 6.2	Distribution of the light emitted by dye molecules in an LSC sheet. The sideloss cones	
	(cones 5 and 6) have been omitted for clarity.	129
Figure 6.3	A hemispherical lens is coupled to the end of a LSC to observe and measure the light	
	field inside a LSC. There is a 2.0 mm x 2.0 mm emission window from the LSC at the	
	centre of the hemisphere. The LSC and lens form a solid optical system. The black	
	cloth that usually covers the LSC and the hemispherical diffuser screen that usually	
	covers the lens been removed for the sake of clarity.	132
Figure 6.4	Schematic of the experimental set-up for observing and measuring the light field inside a	
	LSC.	132

Figure 6.5	Left: a Hemispherical diffuser screen that is placed over the hemispherical lens to help	
	visualise the light pattern inside a LSC. Right: Projected light distribution inside a	
	LSC. The white circle shows the endlight cone. The four sideloss cones are clearly	
	visible. Light between the endlight circle and the sideloss cones is trapped light.	133
Figure 6.6	Measured internal field luminance for a LSC in various scan directions.	134
Figure 6.7	Light extractors. (a) A simple increase in area does not work. (b) A smooth increase in	
	area can give good light extraction.	135
Figure 6.8	Expanded area light extractor (66) with a cylindrically curved exit face.	136
Figure 6.9	System used to measure the gain in output from a treated end (46) of a LSC (42)	
	illuminated with a lamp (41). Light output is measured with an integrating sphere (43).	
	From (Franklin 2001a).	137
Figure 6.10	A TRIMM based light extractor at the end of a light guide stack.	138
Figure 6.11	(a) A perpendicular end surface reflects almost half of the available light. (b) Extraction	
	of trapped light by a luminare with expanded area and diffusely reflecting white	
	surfaces.	139
Figure 6.12	2 A wedge-type light extractor. Light moving down the extractor strikes the surfaces at	
	increasing angles until it is no longer confined by total internal reflection.	139
Figure 6.13	3 A conical light extractor for an optical fibre.	140
Figure 6.14	4 "Scimitar" light extractors made by $Arrk^{\otimes}$ (left) with the observed output for the green	
	LSC illuminating a white screen (right).	141
Figure 6.15	5 Hollow cone light extractor.	141
CHAPTER	7 LIGHT TRANSPORT IN LSC SHEETS	
Figure 7.1	Absorption and emission spectra of the green fluorescent dye $\textit{Lumogen}^{\$}$ F083 at 60 ppm.	144
Figure 7.2	Luminescent Solar Concentrator of length L, illuminated by source $S(\lambda)$, produces end	
	emission $\varepsilon(\lambda, L)$ at collection edge.	146
Figure 7.3	Measured spectra of dye absorption () and dye emission () along with the	
	associated measured (—) and calculated (—) emission spectra for a 1.2 m LSC for:	
	(a) Lumogen® F300 (red), (b) Lumogen® F083 (green), and (c) Lumogen® F570	
	(violet). The measured spectra are normalized and the calculated spectra are fitted by	
	eye.	151
Figure 7.4	Experimental set-up for measurement of the half-length of an LSC.	153
Figure 7.5	Luminous output as a function of length for a 1.2 m green LSC doped with 60 ppm	
	Lumogen® F083. Here a perfect non-scattering matrix is compared with a standard	
	$matrix (L_{m'/2} = 5 m).$	157

Figure 7.6 Transmission tails measured through a 2.00 mm thick LSC sheet doped with 60 ppm	
Lumogen® F083. The solid line represents the measured transmission of the green dye	
(excluding Fresnel reflectance), and the dashed line is the same spectrum, except that	
the transmission in the 'tails region' beyond 520 nm has been artificially set to 100%	
as a reference.	160
Figure 7.7 Theoretical half-length for a 1.2 m green LSC as a function of Lumogen® F083 dye	
concentration, for standard ($L_{m/s} = 5$ m) and perfect (non-scattering) matrices with and	
without tails attenuation.	161
Figure 7.8 Theoretical luminous output as a function of dye concentration for a 1.2 m green LSC for	
standard ($L_{m/2} = 5$ m) and perfect (non-scattering) matrices with and without tails	
attenuation.	162
Figure 7.9 Theoretical luminous output vs. collector length for a green LSC doped with <i>Lumogen</i> ®	
F083 fluorescent dye at concentrations of 30 ppm, 60 ppm and 100 ppm in (a) a	
standard matrix of half-length $L_{m/2} = 5$ m, and (b) a perfect non-scattering matrix.	164
Figure 7.10 Theoretical lumens-to-lumens efficiency vs. collector length for a green LSC doped	
with Lumogen® F083 fluorescent dye at concentrations of 30 ppm, 60 ppm and 100	
ppm in (a) a standard matrix of half-length $L_{m/2} = 5$ m, and (b) a perfect non-scattering	
matrix.	165
CHAPTER 8 MAKING LSC SHEETS	
Figure 8.1 Set-up for laser testing using a polarized laser beam. The observer is located so that the	
scattering angle is a right angle and the laser is polarized perpendicular to the line of	
sight. By rotating the polarizing analyser the observer can estimate the degree of	
polarisation in the scattered light. Scattering from nanoscale particles is 100%	
polarised. Scattering from micron-sized is almost unpolarised.	174
CHAPTER 9 EXTINCTION MECHANISMS IN LSC'S	
Figure 9.1 Experimental set-up for transmission measurements.	184
Figure 9.2 Side view of the experimental set-up for scattering measurements.	186
Figure 9.3 Tails extinction measurements for a 1.2 m long green LSC (a) before exposure, (b) after	
6 days outdoor exposure. A Rayleigh scattering function has been fitted for λ >	
600 nm.	189
Figure 9.4 Relative performance of green LSC after outdoor exposure for dye absorption, output	
luminous flux, mean tails transmission and half-length.	192

CHAPTER 10 PHOTODEGRADATION C	OF FLUORESCENT	SHEETS
-------------------------------	----------------	--------

Figure 10.1 Experimental setup for tails transmission measurements. 197	
Figure 10.2 LSC dye absorption before and after outdoor exposure underneath a UV cover sheet,	
for three Lumogen® dyes in PMMA: (a) violet F570, (b) green F083, and (c) pink	
F285. Attenuation spectra are shown on a logarithmic scale for 2.0 mm thick samples	
before exposure (solid black line) and after exposure periods of 10 days (dark blue	
line) and 71 days (light blue line). For reference, the relative emission spectra for each	
dye are shown as a dotted line.	200
Figure 10.3 Tails transmission of PMMA LSC's containing <i>Lumogen</i> ® dyes over a path length of	
300 mm, before and after outdoor illumination under a UV cover sheet: (a) violet	
F570, (b) green F083, (c) pink F285, and (d) clear reference. (Note the 20-fold change	
of vertical scale for (d)). Transmission spectra were measured before exposure (solid	
black line), after 4 days (dark blue), 10 days (blue) and 71 days exposure (light blue).	
Relative dye emission spectra are shown for reference as a dotted line.	202
Figure 10.4 Luminous output degradation of PMMA LSC's after exposure under a UV cover sheet.	
Three different dyes were used: Lumogen® violet F570 (blue diamonds); Lumogen®	
green F083 (green squares); Lumogen® pink F285 (red circles); and a three layer LSC	
stack consisting of violet above green, above pink (black triangles).	203
Figure 10.5 Photodegradation curves for (a) dye absorption and (b) tails transmission, for two	
batches of LSC's. Batch 1 (dotted lines, open shapes) contains no antioxidant while	
batch 2 (solid lines, closed shapes) contains 0.2 mM DABCO antioxidant. Three	
different Lumogen® dyes were used in PMMA: violet F570 (diamonds), green F083	
(squares), pink F285 (circles).	205
Figure 10.6 Degradation rates of various LSC performance parameters: (a) dye absorption, and (b)	
tails transmission. PMMA LSC's containing three different Lumogen® dyes: F570	
violet (diamonds), F083 green (squares), and F285 pink (circles) were exposed	
underneath one UV cover (open shapes) or two UV covers (solid shapes).	206
Figure 10.7 Photodegradation rates of (a) dye absorption and (b) tails transmission for PMMA	
LSC's containing Lumogen® dyes violet F570 (diamonds), green F083 (squares) and	
pink F285 (circles), as a function of relative concentration of a UV stabiliser. High UV	7
peak attenuation relates to high concentration of the UV additive. Samples were	
exposed to sunlight under a UV cover sheet, and degradation rates were calculated	
from linear fits to the photodegradation curves between 5 days and 30 days exposure.	
Linear fits to the data are shown as solid lines to highlight any trends.	208
APPENDIX 1: Mass Production of High Performance LSC Sheets	
Figure 1.1 C.R. Clarke 1550 [®] diamond polishing machine. Photo from (C. R. Clarke 1550 2011).	226
APPENDIX 2: CITING AND ACCESSING PATENTS	
Figure 2.1 Patent family for US 5,548,490 generated with <i>Patent Lens</i> ®	228

LIST OF TABLES

CHAPTER	3 ÉTENDUE ANALYSIS OF LSC'S	
Table 3-1	Maximum solid angles for forward propagating light in various geometries.	31
Table 3-2	Limiting étendue per unit area in various generic LSC components.	36
Table 3-3	Limiting étendue per unit area of components is a Bornstein and Friedman LSC	42
Table 3-4	Limiting étendue per unit area of various components in the Zastrow and Witter system.	
	Note that the area of all components is just the light-carrying portion of the cross	
	section.	45
Снартея	5 TRIMM DOPED SHEETS AND LIGHT GUIDES	
Table 5-1	Optical properties of various TRIMM based diffuser systems with specified specular	
	contrast ratios.	114
Table 5-2	Optical properties of various TRIMM based diffuser systems that have specular contrast	
	ratios of 0.10%.	115
CHAPTER	6 LIGHT EXTRACTION FROM SOLID OPTICAL SYSTEMS	
Table 6-1	Light fractions for a non-absorbing, non- scattering PMMA LSC that has a refractive	
	index of 1.49 and a mirror reflectivity of 90%.	130
Table 6-2	Comparison of Different Types of Light Extractor	142
CHAPTER	7 LIGHT TRANSPORT IN LSC SHEETS	
	7 LIGHT TRANSPORT IN LSC SHEETS Theoretical and experimental LSC half-length, $L_{\frac{1}{2}}$ (in metres), for a green LSC doped	
	Theoretical and experimental LSC half-length, L _{1/2} (in metres), for a green LSC doped	
	Theoretical and experimental LSC half-length, $L_{\frac{1}{2}}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{@}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results	158
Table 7-1	Theoretical and experimental LSC half-length, $L_{1/2}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{\circledast}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix ($L_{m1/2} = 5$ m) and a simulated perfect	158
Table 7-1 CHAPTER	Theoretical and experimental LSC half-length, $L_{1/2}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{\circledast}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix ($L_{m1/2} = 5$ m) and a simulated perfect non-scattering matrix ($L_{m1/2} \approx \infty$), using γ values derived from the curves in Figure 7.5.	158 180
Table 7-1 CHAPTER Table 8-1	Theoretical and experimental LSC half-length, $L_{1/2}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{\circledast}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix ($L_{m1/2} = 5$ m) and a simulated perfect non-scattering matrix ($L_{m1/2} \approx \infty$), using γ values derived from the curves in Figure 7.5.	
Table 7-1 CHAPTER Table 8-1 CHAPTER	Theoretical and experimental LSC half-length, $L_{1/2}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{\circledast}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix ($L_{m1/2} = 5$ m) and a simulated perfect non-scattering matrix ($L_{m1/2} \approx \infty$), using γ values derived from the curves in Figure 7.5. 8 Making LSC Sheets Key parameters for the various manufacturing methods for making PMMA sheet.	
Table 7-1 CHAPTER Table 8-1 CHAPTER	Theoretical and experimental LSC half-length, $L_{1/2}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{\circledR}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix ($L_{m1/2} = 5$ m) and a simulated perfect non-scattering matrix ($L_{m1/2} \approx \infty$), using γ values derived from the curves in Figure 7.5. 8 Making LSC Sheets Key parameters for the various manufacturing methods for making PMMA sheet. 9 Extinction Mechanisms in LSC's	
Table 7-1 CHAPTER Table 8-1 CHAPTER	Theoretical and experimental LSC half-length, $L_{1/2}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{\circledast}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix ($L_{m1/2} = 5$ m) and a simulated perfect non-scattering matrix ($L_{m1/2} \approx \infty$), using γ values derived from the curves in Figure 7.5. 8 Making LSC Sheets Key parameters for the various manufacturing methods for making PMMA sheet. 9 Extinction Mechanisms in LSC's Mean transmission and extinction components in the wavelength range 600 nm – 750 nm	
CHAPTER Table 8-1 CHAPTER Table 9-1	Theoretical and experimental LSC half-length, $L_{1/2}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{@}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix ($L_{m1/2} = 5$ m) and a simulated perfect non-scattering matrix ($L_{m1/2} \approx \infty$), using γ values derived from the curves in Figure 7.5. 8 Making LSC Sheets Key parameters for the various manufacturing methods for making PMMA sheet. 9 Extinction Mechanisms in LSC's Mean transmission and extinction components in the wavelength range 600 nm – 750 nm for a green LSC containing $Lumogen^{@}$ F083 fluorescent dye, before and after outdoor	180
CHAPTER Table 8-1 CHAPTER Table 9-1 CHAPTER	Theoretical and experimental LSC half-length, $L_{1/2}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{\circledast}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix ($L_{m1/2} = 5$ m) and a simulated perfect non-scattering matrix ($L_{m1/2} \approx \infty$), using γ values derived from the curves in Figure 7.5. 8 MAKING LSC SHEETS Key parameters for the various manufacturing methods for making PMMA sheet. 9 EXTINCTION MECHANISMS IN LSC'S Mean transmission and extinction components in the wavelength range 600 nm $-$ 750 nm for a green LSC containing $Lumogen^{\circledast}$ F083 fluorescent dye, before and after outdoor exposure.	180
CHAPTER Table 8-1 CHAPTER Table 9-1 CHAPTER	Theoretical and experimental LSC half-length, $L_{1/2}$ (in metres), for a green LSC doped with 60 ppm $Lumogen^{@}$ F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix ($L_{m1/2} = 5$ m) and a simulated perfect non-scattering matrix ($L_{m1/2} \approx \infty$), using γ values derived from the curves in Figure 7.5. 8 MAKING LSC SHEETS Key parameters for the various manufacturing methods for making PMMA sheet. 9 EXTINCTION MECHANISMS IN LSC'S Mean transmission and extinction components in the wavelength range 600 nm $-$ 750 nm for a green LSC containing $Lumogen^{@}$ F083 fluorescent dye, before and after outdoor exposure. 10 Photodegradation of Fluorescent Sheets	180
CHAPTER Table 8-1 CHAPTER Table 9-1 CHAPTER Table 10-1	Theoretical and experimental LSC half-length, L½ (in metres), for a green LSC doped with 60 ppm Lumogen® F083. The sheet dimensions are 1200 x 135 x 2.0 mm. Results are shown for both a standard matrix (Lm½ = 5 m) and a simulated perfect non-scattering matrix (Lm½ ≈ ∞), using γvalues derived from the curves in Figure 7.5. 8 MAKING LSC SHEETS Key parameters for the various manufacturing methods for making PMMA sheet. 9 EXTINCTION MECHANISMS IN LSC'S Mean transmission and extinction components in the wavelength range 600 nm − 750 nm for a green LSC containing Lumogen® F083 fluorescent dye, before and after outdoor exposure. 10 PHOTODEGRADATION OF FLUORESCENT SHEETS Fluorescence peak wavelengths and tails absorption regions for the dyes used in this	180 190

Abstract

The difficulty of directing daylight deep into the heart of buildings means that much artificial lighting is required during the day, which substantially increases energy costs for lighting and air conditioning. This thesis explores the feasibility of daylighting with luminescent solar collectors.

An LSC is a stack of thin sheets of polymer doped with fluorescent dyes. Sunlight entering the sheets is absorbed and emitted isotropically at longer wavelengths. 75% of this emission is trapped by total internal reflection and propagates towards the sheets' edges. A special coupler channels some of this light into a flexible optical fibre that guides it to a remote luminaire. High quality white light with zero excess heat is produced by appropriate dye use. LSC's collect both diffuse and specular sunlight, so their luminous output is only weakly affected by light clouds.

The best previous LSC's for daylighting gave an outdoor-to-indoor lumens-to-lumens efficiency of only 0.2%. This project achieved an efficiency of 5%.

The basic tool for optical design was étendue analysis. Key results are: i) the system's cross sectional area must not decrease along the optical path, ii) the collector sheets need a high aspect ratio, and iii) an often neglected requirement for a solid optical system with no air gaps. Other optical design problems solved include high-efficiency flat-collector-sheet to cylindrical-optical-fibre couplers and high-efficiency light extractors (which boost output by approximately 50%).

Major advances in mechanical design resulted in several new practical solutions including: strong, enduring optical joints; mass produced collector-sheet to optical-fibre couplers using injection moulding with demonstrated efficiencies of 96%; affordable flexible light guides; high-performance cover materials; roof and façade mounting; and reduced mass.

Required system performance is impossible without high quality LSC sheets. Maximising fluorescence yield involves detailed understanding of the roles of: dye quantum efficiency, Stokes shift, long wavelength absorption "tails", dye dispersion, light transport inside a sheet and long term sheet stability. A substantial improvement in the performance of collector sheets was achieved.

Solutions to all the key problems for daylighting with practical LSC systems have been demonstrated using outdoor mounted collectors channeling light to indoor spaces, with one key exception: the increase in absorption tails over the long term. Techniques were developed for measuring this weak tails absorption, which significantly reduces light output from the required long collector sheets. Suggestions are made as to its cause, and possible methods of its reduction.