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Abstract

Empirical evidence strongly suggests that interest rate volatility is stochastic and correlated
to changes in interest rates. In addition, the intensity process has been shown to generate
heavy-tailed behavior and this has been attributed to stochastic volatility. A good credit risk
model should incorporate the correlation between the short rate and credit spread processes
as changes in interest rates can directly affect and change the credit spread or indirectly

influence the market’s perception of default risk which has an impact on credit spreads.

The objective of this thesis is to model credit risk within a Markovian Heath, Jarrow, and
Morton [1992] (hereafter HIM) term structure model with stochastic volatility by extending
the defaultable framework developed in Schénbucher [1998]. Adapting the HIM framework to
include default risk results in a generalised framework that incorporates all the information on
the current risk free term structure as well as the credit spread curve. Under some conditions
on the specification of the volatility functions, the model admits finite dimensional Markovian
realisations and as a result, the default-free yield curve as well as the credit spread curves

can be calculated with low computational cost at any given time.

The main contributions of this thesis are:

& Markovian Defaultable HIM Term Structure Models with Unspanned Stochastic Volatil-
ity - Chapter 2. Stochastic volatility is introduced into the Schonbucher [1998] model
and we generalise it to allow for a correlation structure between the default-free forward
rate, the forward credit spread and stochastic volatility. Under certain level dependent
volatility specifications, we derive a Markovian representation of the defaultable short
rate in terms of a finite number of state variables which we then express in terms of
economic quantities observed in the market, specifically in terms of discrete tenor for-
ward rates. A numerical experiment is then conducted to investigate the distributional

properties of the defaultable bond price and bond returns which reveals the existence

XV



Abstract Abstract

of a left tail.

¢ Credit Derivative Pricing under a Markovian HIM Term Structure Model with (Dif-
fusion Driven) Humped Volatility - Chapter 3. We verify that under the assumption
of a humped volatility specification, the defaultable forward rates admits finite dimen-
sional affine realisations. The default of the underlying reference entity is modelled
as a Cox process and we derive exponential affine bond price formulas in the presence
of stochastic volatility. We then investigate the pricing of single-name credit default
swaps both in the presence and absence of counterparty risk and derive formulas for the
valuation of credit default swaptions within the framework. On relaxing the level de-
pendency assumption within the humped volatility specification, we price knocked-out

put options on defaultable bonds using the Fourier transform approach.

¢ Valuation of Bond Options under a Defaultable HIM Class of Models with Regime-
Switching Volatility - Chapter 4. We allow the defaultable forward rate volatility to
depend on the current forward rate curve as well as on a modulating continuous time
Markov chain making use of the results in Valchev [2004] and Elhouar [2008]. Stochas-
ticity is then introduced to the volatility function by a separable volatility specification
which guarantees finite-dimensional Markovian realisations under regime switching. A
special case of the short rate class of models, the Hull-White-Extended-Vasicek type
of model is obtained in the defaultable setting from which an explicit bond pricing
formula is derived. We then apply finite difference methods to price European options

under two-state regimes.

We give a summary of all the thesis findings in Chapter 5 where we also present the concluding

remarks and directions for future research work.

xvi



Chapter 1

Introduction

In this thesis, we model credit risk with the objective of pricing defaultable bonds, credit
derivatives and other financial securities that are exposed to credit risk. We develop a
general, flexible framework based on the Heath, Jarrow, and Morton [1992](hereafter HIM)
theory of the term structure of interest rates which models the evolution of the entire yield
curve. In that framework, the instantancous forward rates which are exogenously specified
are used as the building blocks that by construction guarantee the recovery of the currently
observed market yield curve. The no-arbitrage drifts of the defaultable forward rates are
uniquely specified when the volatilities and correlations are assigned. This yields a model
that enables us to capturc a number of important stylized facts in credit risk modelling
including the significance of correlation between market and default risk and the unspanned
stochastic volatility factors that drive interest rate derivatives innovations but do not affect

the innovations of interest rates or swap rates.

We adopt the broader definition of credit risk given in Bielecki and Rutkowski [2002] as any
risk associated with a credit-linked event, a random event whose occurrence affects the ability
of the counterparty to honor its contractual obligations in a financial contract. The possible
events include changes in the credit quality of the reference entity or the counterparties (both

upgrades and downgrades of their credit ratings), variation of the credit spreads, bankruptcy,



) 1.1 Motivation

restructuring and the default event (obligation default). These are defined with respect to a

reference credit and the reference credit assets issued by it.

1.1 Motivation

A major challenge faced by financial institutions including banks, hedge funds, insurance
companies, pension funds and brokerage firms is on how to manage or reduce their credit
exposures. Different economic and/or regulatory motives dictate the market participants
positions at any given time. Credit derivatives allow the market players to hedge credit
exposures, transfer credit risk either completely or partially between counterparties, generate
leverage, and decompose and separate risks embedded in securitics. In addition, they are
also used to “synthetically create loan or bond substitutes for entities that have not issued
in those markets at chosen maturities” and for expressing a directional or volatility view on

an institution.’

Credit derivatives offer a higher degree of structural flexibility as compared to the more
basic credit instruments such as bank loans and bonds. This arises from their ability to
separate credit risk from funding thereby allowing the market players to change their credit
risk exposures without the actual buying or selling of the loans or bonds in the primary or
secondary markets. There has been an evolution of standardized instruments like Credit
Default Swaps that efficiently facilitate the transfer of credit risk between entities and also
between different markets for risk. This enhances efficient allocation of credit risk within
economies which can be distorted by different capital adequacy requirements for different

types of credit investors.

There has been a considerable growth in the credit derivatives market that now exceeds, in

notional amounts®, both the equity derivatives and corporate bond markets. This growth

'See Merrill-Lynch [2006a, page 4]
2A detailed description of this is given in a survey report by British-Bankers-Association [2006].
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has gone hand in hand with the success of quantitative methodologies and technologi-
cal/computational advances that help practitioners manage the risk. In return, this has
spurred further research with the objective of better understanding, modelling and hedging
of credit risk in the advent of more complicated synthetic products. It was highlighted in
a Merrill-Lynch [2006a] report that, effective from late 2003 the credit derivatives market
had evolved from what was predominantly a single-name market to a more complex market
comprising in addition, index, correlation and options. This, they noted, arose as a result
of the need for yield enhancement, increased leveraging, increased index (CDX and iTraxx)
liquidity and continuous product innovation to meet growing investor needs. There exists
therefore, an increasing need for credit models that are internally consistent (arbitrage-free),
intuitive and that offer easy calibration to market data both for single-name and multi-name

products.

The primary motivation behind this thesis is to take advantage of the many appealing
properties, benefits and/or advantages of the HJIM term structure model as it was applied to
credit risk modelling in Schénbucher [2003] and to generalize it to accommodate a number of
stylized facts on credit risk. In obtaining finite-dimensional Markovian models, the choices of
the volatility functions allow us to introduce stochastic volatility in two ways: via a diffusion

process and through a Markov chain.

Introducing stochasticity through a diffusion process allows us to incorporate correlation
between stochastic volatility, the interest rates and credit spreads, consistent with stylised
facts on interest rate volatility. This generalisation vields closed-form solutions for risky
bonds and semi-analytical solutions for contingent claims on the bonds while incorporating
the correlation between interest rates and the market perception on the default risk. On
making use of the Markov chain to introduce stochastic volatility, we demonstrate that the
framework also yields semi-closed form solutions for defaultable bonds. We then we apply
finite-difference methods to solve the pricing partial differential equation for the European

options on the risky debt.



4 1.2 Literature Review

1.2 Literature Review

Over the last three and half decades, two major arbitrage-free methodologies that model
credit risk have evolved; namely, structural models® which are more intuitive and reduced-

form models* that allow for easier calibration to historical data.

1.2.1 Structural Models

Structural models are based on the firm'’s value and define default as a contingent claim
by specifying the default time. The credit event is triggered by the movement of the firm
value relative to some random or non-random barrier (also called default threshold) and
default time is endogenously specified. The models were initiated by Black and Scholes
[1973] and Merton [1974] and offer a link between the credit quality of the firm and its
economic/financial condition. The model assumes that default can only occur at the debt’s
maturity. By applying the Black-Scholes model assumptions, Merton derived a partial differ-
ential equation for defaultable bonds within a single rating class. Default time is taken as a
predictable stopping time in the model yielding unreasonable (almost zero) short term credit
spreads near maturity. This is contrary to the empirical evidence as documented in Jones
et al. [1984] which shows that the actual credit spread curves are sometimes flat or even
downward-sloping. Zhou [1997, 2001] suggested the introduction of jumps into the model to
remedy this shortcoming thereby allowing a firm to suddenly default due to a sudden drop

in its value.

Geske [1977] further extended the model to price defaultable coupon bonds by assuming
that the equity holders make the coupon payment and thereby own a compound option.
He then derived closed form solutions for the coupon bond prices. Cox, Ingersoll, and Ross

11985] (hereafter CIR) applied the Merton model to the valuation of defaultable bonds with

3We use this phrase to cover both the Merton class of models and first-passage-time models.
“This category includes intensity-based and migration models.
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[ ]

stochastic interest rates in order to identify the variable coupon rate that would eliminate
and/or reduce interest rate risk. Shirakawa [1999] extended the Merton model to incorporate
stochastic interest rates with dynamics governed by a Vasicek model and derived a closed
form solution for the risky bonds. Later extensions of the Merton model including those
of Frank and Torous [1989, 1994] who define bankruptcy as an endogenous event driven by
factors such as agency and bankruptcy costs. Further extensions have been done in Geske
(1979], Jamshidian [1989], Johnson and Stulz [1987], Leland and Toft [1996], Hull and White
[1995] and Hilberink and Rogers [2002] among others.

The first-passage models were introduced by Black and Cox [1976], as an extension of the
Merton model by incorporating a time-dependent exponential barrier thereby allowing earlier
defaults and the derivation of closed form solutions for the price of a defaultable bond. Their
approach facilitated the modelling of safety covenants that allow the bondholders to force
bankruptcy if some conditions are satisfied. Brennan and Schwartz [1980] applied a constant
default barrier in their valuation model for convertible defaultable bonds and solved the
resulting pricing partial differential equation numerically. Longstaff and Schwartz [1995a,b]
extended the Black-Cox model to incorporate interest rate risk by assuming that the short
term interest rates follows the Vasicek model. Default is triggered when the firm'’s value
process hits a constant threshold during the life of the bond. Similar work was done by

Briys and de Varenne [1997].

Kim, Ramaswamy, and Sundaresan [1993a,b] considered the case where the bondholders have
priority and there are provisions to prohibit the stockholders from selling the firm’s assets
to pay dividends. Cathcart and El-Jahel [1998] improved on the Longstaff and Schwartz
[1995a] model by assuming that the short rate process follows the CIR dynamics and that
the default threshold follows a geometric Brownian motion. Shirakawa [1999] investigated
the behavior of the credit spreads within the model framework while separating the analysis
of the yield spread from the default free interest rate process and evaluated analytically, the

arbitrage-free yield spread. However, the assumption on complete information about the
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asset and the default threshold make default a predictable process and the models therefore

still produce credit spreads close to zero for small maturities.

Duffie and Lando [2001] considered the case where investors have incomplete information
and can only infer the distribution function for the firm-value process implying that default
is not predictable. Giesecke [2004] assumed incomplete information on the default barrier
thereby introducing uncertainty in the default threshold and pointed out that the credit
yield spread tends to increase with longer maturity, reflecting the increase in uncertainty in
the distant future. These constitute what has been referred to in the literature as hybrid

models that combine both the structural and reduced-form models.

1.2.2 Intensity Models

In contrast, reduced-form models (also called intensity-based models) assume that an exoge-
nous random variable governs the default process that models the default time but not the
severity of loss as in structural models. This process assigns a non-zero default probability
over any time interval and default is usually treated as an unpredictable Poisson event. In
addition, the recovery rate is assumed to be an exogenously given process in comparison
to the structural models where the recovery mechanism is endogenously specified. This ap-
proach is attributed to Pye [1974] and Litterman and Iben [1991] and was developed further
in later works of Lando [1994], Artzner and Delbaen [1995], Hull and White [1995], Jarrow
and Turnbull {1995], Das and Tufano [1996], Duffie and Kan [1996], Jarrow [1996], Duffie
[1998], Schonbucher [1998], Lando [1998],Duffie and Singleton [1999], Madan and Unal [1998,
2000], Jarrow and Turnbull [2000], Jarrow and Yu [2001], Bielecki, Jeanblanc, and Rutkowski
(2004] and Jamshidian [2004] among others.

Jarrow and Turnbull [1995] assumed a constant, exogenously given default intensity Poisson
process and recovery rates which implied that default was equally likely throughout the life of

the bond. They derived closed form solutions for defaultable bonds and derivative securities.
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This was generalized in Lando [1994, 1998] who considered default intensity driven by a
more general Cox processes. Bielecki, Jeanblanc, and Rutkowski [2007] developed a general
valuation framework for defaultable basket claims based on Cox processes, from which the
implied default correlation was estimated from the prices of the most liquid credit derivatives.
The intensity-based approach has also been applied in Duffie et al. [2003] to the valuation

of defaultable sovereign debt.

Jarrow, Lando, and Turnbull [1997] extended the work of Jarrow and Turnbull [1995] to
allow for credit migration by using constant rating transition intensities although they main-
tained the independence assumption of the recovery rate to the state variables. This was
generalized in Lando [1998] who applied Cox processes to govern the transition intensities
thereby introducing time-dependency in the transition probabilities. Das and Tufano [1996]
relaxed the independence assumption in Jarrow et al. [1997] by incorporating dependence
between the default intensities and the interest rates in addition to allowing for random
recovery rates. Das and Tufano [1996] model® generated more realistic® credit spreads which
were linked to more general factors over and above the credit rating class. Kijima and Ko-
moribayashi [1998] modified the risk-neutral default probabilities in Jarrow et al. [1997] to

allow for better practical implementation of the model.

Hurd and Kuznetsov [2006, 2007] applied a continuous Markov chain to an independent set
of affine processes (stochastic intensities, interest rates and stochastic recoveries) to derive
an efficient pricing framework for defaultable securities. In their multi-firm migration frame-
work, the credit migration of each ﬁrI.n is correlated to the market conditions via a stochastic

time change variable which governs the migration and default of the firm.

A more exhaustive review and complete list of the literature on the credit risk models is

given in Bielecki and Rutkowski [2002], Schonbucher [2003], Duffie and Singleton [2003] and

®Their model was structured in a discrete-time HJM framework

This result could be partially attributed to the huge significance of the correlation structure between
default intensity and interest rate process in the valuation of options on risky debt. The correlation gives
some information about the link between the default free rates and the market’s perception of default risk.
Evidence of this is given in Longstafl and Schwartz [1995a] and Duffee [1998] among others.
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Lipton and Rennie [2011].

1.2.3 Markovian HJM Term Structure Models

The application of the Heath, Jarrow, and Morton [1992] (HJM) model to defaultable term
structure modelling falls within the reduced-form class of models. This was first examined
in Jarrow and Turnbull [1995] who considered the case where both the underlying and
the derivative security are subject to credit risk. Duffie and Singleton [1999] developed
a discrete-time reduced-form model that adds a forward spread process to the forward risk-
free rate and apply the HJM approach to derive the no-arbitrage drift restriction condition
in the defaultable setting. By assuming the recovery of market value, they derived recursive

formulas for the contingent claims.

The framework was developed further in Schénbucher [1998] to allow for restructuring of
defaultable bonds and multiple recoveries. Various forms of the no-arbitrage drift restriction
conditions between the default free and the defaultable term structures are derived from
which the term structurc of defaultable bond prices is obtained, where the forward credit
spread offers the link between the defaultable and default free term structures. Similar results
are derived in Pugachevsky [1999] and Maksymiuk and Gatarek [1999] where no requirement
is made for the existence of jumps in the forward rates that lead to default in the bond price

dynamics but rather default is triggered through exogenously specified point process.

Bielecki and Rutkowski [2000b, 2004] extended the ideas in Schonbucher [1998] to incorpo-
rate the probability of migration between rating classes. They derived the valuation formulas
for coupon bonds and credit derivatives under various recovery schemes. Eberlein and Ozkan
[2003] generalized the Bielecki and Rutkowski [2000b] framework using a large and flexible
class of Lévy processes to derive an arbitrage-free model of defaultable bonds that incorpo-

rates multiple defaults and recoveries in the spirit of Schonbucher [2003].

The resulting short rate prices in the HJM class of models were in general path-dependent
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where the present level of the short interest rates depend also on the level of interest rates
in the past. This is a consequence of the non-Markovian noise terms that occur in the
drift of the stochastic differential equation for the short rate. Various attempts to obtain
finite-dimensional Markovian models within the HJM framework have been made in the
risk-free term structure literature which hinge on particular volatility function specifications.
Conditions on level dependent volatility processes that lead to Markovian HJM models under
a diffusion forward rate process were obtained in Ritchken and Sankarasubramanian [1995],
Bhar and Chiarella [1997] and Inui and Kijima [1998]. Bjork and Svensson [2001], Bjork and
Landén [2002] and Chiarella and Kwon [2001, 2003] substantially extend these early studies,
by considering a rather gencral level dependent volatility structure, studying the necessary

and sufficient conditions for the existence of finite-dimensional-realisations (FDR).

Extensions to jump-diffusion volatility structures have been studied by Bjork and Gombani
[1999] who examined the necessary and sufficient conditions that guarantee FDR, under
a time deterministic jump volatility structure while Chiarella and Nikitopoulos-Sklibosios
[2003] considered the necessary conditions on a level dependent jump volatility structure. A
defaultable term structure with level dependent volatility and stochastic intensity was stud-
ied in CNS. They showed that finite-dimensional-realisations are feasible only for a truncated
Markovian system or for constant Poisson volatility functions. Filipovie, Tappe, and Teich-
mann [2010] establish existence, uniqueness and stability results for mild and weak solutions
of stochastic partial differential equations (SPDE’s) with path dependent coefficients driven
by an infinite dimensional Wiener process and a compensated Poisson random measure. In
Berndt, Ritchken, and Sun [2010], Markovian defaultable term structure models with level
dependent volatility are considered. Exponential affine representation of riskless and risky

bond prices are derived and the model allows for default clustering and contagion.
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1.2.4 Stochastic Volatility Models

Stochastic volatility models have been studied extensively for equity markets. They capture
some well-known features of the implied volatility surface, such as the volatility smile and
skew (slope at-the-money). Past contributions include work by Scott [1987], Hull and White
[1987], Stein and Stein [1991] and Heston [1993] who investigated the pricing of European
options under a single factor process. However, stochastic models in which volatility is
modelled as a one-factor diffusion have been shown to experience difficulties in fitting implied
volatility levels across all strikes and maturities. Extensions to the multi-factor case have
been investigated by various authors. The extension of Fouque and Lorig [2010] to the Heston
Model shows that a multi-scale model can improve calibration to the implied volatility surface

produced by the options market.

Research in term structure models with stochastic volatility has mostly revolved around the
family of Affine Term Structure Models (ATSM). Longstaff and Schwartz [1992] suggested the
existence of randomly changing volatility in interest rates that impacts on derivative prices.
Similar results are shown in the contributions by Ball and Torous [1999], Collin-Dufresne

and Goldstein [2002] and Trolle and Schwartz [2009].

Hull and White [2004/2005] implemented the Merton model using implied volatilities of
options issued by the firm and observed that implied volatility is sufficient to explain and
predict credit spreads. In addition, their results show there exists a positive correlation
between the implied volatility and credit spreads. Fouque, Sircar, and Solna [2006] inves-
tigated the effects of stochastic volatility in the dynamics of the risky debt in the Black
and Cox [1976] first passage model of credit risk using the multi-scale model developed in
Cotton, Fouque, Papanicolaou, and Sircar [2004]. This was extended in Fouque, Wignall,
and Zhou [2008] to allow for a dependency structure in the underlying portfolio of reference

single-names for pricing multi-name credit derivatives.

Within the HJM framework, stochastic volatility models were introduced (to the best of our
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knowledge) in Chiarella and Kwon [2000b] and further advanced by Bjork et al. [2004] and
Filipoviec and Teichmann [2002, 2003] who provided the necessary and sufficient conditions
on stochastic volatility for diffusion HIM models to admit FDR, by employing Lie algebra
theory. Chiarella, Fanelli, and Musti [2011] modelled the forward credit spread within the
HJM framework by assuming a stochastic volatility function linear in the state variables and

derived valuation techniques for pricing credit default swaps and swaptions.

1.2.5 Regime Switching in Term Structure Models

Research on regime switching within term structure models dates back to the contributions
of Hamilton [1989], Garcia and Perron [1996] and Naik and Lee [1997]. Changes in business
cycle conditions and monetary policies may affect real rates and expected inflation, causing
interest rates to behave differently in varyving time periods. Regime switching models have
been used to capture the variations in the stochastic behavior of interest rates over time as

they can accommodate regime-dependent mean reversion.

Ang and Bekaert [2002] demonstrated that univariate regime switching models explain ad-
equately the non-linear mean-reversion observed in interest rates. This was extended in
Bansal and Zhou [2002] to allow for regime-switching market prices of risk, thereby affecting
the entire term structurc. Hansen and Poulsen [2000] extended the Vasicek model to incor-
porate a regime switching long-term level whose change is governed by a Poisson process,
thereby allowing for jumps in the drift of the short rate process. They applied simulation

techniques for the valuation of bonds and bond option prices.

Landén [2000] developed a pricing model where the drift and diffusion parameters in the
short rate process are modulated by a Markov chain whose dynamics follow a jump-diffusion
process and derived semi-affine bond price formulas. To introduce a cyclical pattern in the
extended-Vasicek Hull-White model, Elliott and Wilson [2007] modelled the mean-reverting

level directly as a random process that follows a finite-state, continuous-time Markov chain
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and deduced the valuation formulas for zero bonds. Elliott and Siu [2009] derived exponential
affine bond price formulas under both Markovian regime-switching Hull-white and Cox-
Ingersoll-Ross models by allowing the short rate parameters to switch over time according

to a continuous-time, finite Markov chain.

Wong and Wong [2007] derived semi closed-form solutions for term structure of defaultable
interest rates that incorporates regime-switching using an affine-type model. They also
investigated empirically, the impact of the systematic risk of regime switching on the term
structure of defaultable bonds in a two-state regime within the Cox-Ingersoll-Ross model.
Andersson and Vanini [2010] extended the affine Markov chain model in Hurd and Kuznetsov
[2007] using a regime switching Markov mixture model that describes both the speed and

direction of the migration matrices and derived tractable solutions for credit default swaps.

Not much research work in regime switching has been done within the HJIM framework with
Valchev [2004] (to the best of our knowledge) being the first to attempt this in the default-
free framework. In his work, he extended the class of deterministic volatility HIJM models to
a stochastic framework via a Markov chain that modulates the exponential function of time-
to-maturity volatility. This allows for jump-discontinuities and a broader range of shapes in
the term structure of forward rate volatilities. Elhouar [2008] extended the work by Bjork
and Svensson [2001] to the regime-switching framework and investigated the necessary and
sufficient conditions on the volatility function that guarantee finite-dimensional-realisations
in Markovian state-space models. Generalisations of the Hull-White and Cox-Ingersoll-Ross

models were considered in that work.

1.3 Thesis Structure

The thesis covers two broad approaches to the incorporation of stochastic volatility within

the Markovian defaultable HIM term structure model. Default time is exogenously specified



13 1.3 Thesis Structure

through a Marked point process and at each default time the value of the defaultable bond
changes by a fractional recovery process. The first approach is covered in Chapter 2 and
Chapter 3 where the stochastic process governing the volatility dynamics is driven by a
Wiener process independent of the Wiener processes that drive the forward rate and forward
credit spread dynamics. In Chapter 2, the exponentially decaying volatility assumption as
a function of maturity is made as compared to the humped volatility specification made
in Chapter 3. The second approach, covered in Chapter 4, introduces stochasticity to the
forward rate volatility using a Markov chain with a finite number of states. Chapter 5
provides a summary of the results and findings, together with potential future research

directions.

1.3.1 Markovian Models with Diffusion-Driven Stochastic Volatil-

ity

Within the HIM framework, the use of the instantancous defaultable forward rates as the
building blocks of yield curve dynamics coupled with their exogenous specification guarantees
that the initial market yield curve can be recovered. It is well known that the no-arbitrage
drifts of the forward rates are uniquely specified once the volatilities and the correlations are
assigned. Empirical evidence in default-free interest rate markets as given in Collin-Dufresne
and Goldstein [2002] and Li and Zhao [2006] supports the existence of an additional source
of risk in the volatility of the forward rate that is independent of the risk associated with the
term structure. In this case, an additional state variable is required to model the stochastic

volatility factor, within a Heston [1993]-type framework.”

In this thesis, this notion is extended to the defaultable setting such that both the forward

rate and the forward credit spread volatilities depend on an additional state variable that

"We note that although option pricing with stochastic volatility has been investigated by Scott [1987],
Hull and White [1987] and Stein and Stein [1991] among other authors, Heston [1993] derived a semi-closed
form solution involving the evaluation of complex integrals thereby offering convenient computational benefits
when calculating the option prices.
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models the stochastic volatility factor. This is supported by the observation in D’Souza
et al. [2004] who demonstrated that the short rate and intensity processes exhibit stochastic
volatility that generates the heavy-tailed behavior observed in the unconditional distribution
of their daily movements. We begin Chapter 2 by establishing the correlation structure
between the forward rate, forward credit spread and stochastic volatility processes. Evidence
of the effects of correlation between stochastic volatility and the short rate on the bond
price was investigated in Heston [1993] whereas Jarrow and Turnbull [2000] showed that the
correlation between the short rate (forward rate) and the short credit spread (forward credit
spread) represents the empirically observed correlation between market risk and default risk.
Changes in the default-free short rate compel investors to reassess the probability of default

of the defaultable bonds and therefore change the credit spreads.

In addition, adapting the volatility specification in Chiarella and Kwon [2000a] and Bjérk
et al. [2004] to the Schonbucher [1998] framework, we discuss the conditions on the stochastic
volatility that would lead to finite dimensional Markovian representations of the defaultable
short rate dynamics. We then show that defaultable bond prices across all maturities can
be expressed in terms of the default-free short rate, the short term credit spread and a set of
Markovian state variables. These state variables are then expressed as a linear combination
of fixed tenor forward rates yielding finite dimensional affine realisations in terms of forward
rates which allows us to express the defaultable bond price in an exponential affine form in

terms of fixed tenor forward rates, which are market observable quantities.

By applying Euler discretisation to the Markovian system, we then discuss the effects of the
level of volatility of volatility, the speed of mean reversion and the various correlations on
the distribution of defaultable bond prices and returns. The distributional analysis reveals
the existence of a long left tail (asymmetry) consistent with the stylistic observation that
the upward potential of a bond is limited to the bond’s par value whereas the downward risk
is unlimited and the investor may lose a large part or the entire investment in the case of

bankruptcy.
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In Chapter 3, we extend the framework of Chapter 2 by a more generalised volatility specifi-
cation that allows us to capture a wider range of shapes of the yield curve and in particular,
a choice that allows for hump-shaped shocks. It was shown (Collin-Dufresne and Goldstein
2002] and Trolle and Schwartz [2009]) in the default-free setting that the humped volatility
improves the model specification, both in terms of likelihood score, analysis of yield errors
and caps pricing performance. We then verify that the defaultable forward rates admit fi-
nite dimensional affine realisation under the assumption of humped volatility specification
and consequently we show that the defaultable bond prices are exponentially affine in the
state variables. Expressing the forward rate process as an affine function of the state vari-
ables which are jointly Markovian yields faster numerical procedures both for simulation and

parameter estimation.

We then demonstrate how the framework can be applied to price credit default swaps and
swaptions. We derive some approximating formulas for single-name credit default swap
prices and show how this could be extended to include counterparty risk. We then consider
a put option that is knocked-out on default of the underlying bond thereby providing price
protection. On relaxing the level dependency assumption within the humped volatility spec-
ification, we demonstrate how bond options can be priced within the extended framework
using the Fourier transform method. The coupled system of differential equations that arise
when calculating the cumulative probabilities are solved using numerical integration from

which we derive a semi-closed option pricing formula.

1.3.2 Markovian Models with Regime-Switching Stochastic Volatil-
ity
In the deterministic volatility HJM models, the volatility curve is fixed and the volatility

of a specific forward rate moves along the curve yielding a deterministic motion along a

fixed curve. In order to describe the volatility curve effectively, there is need for a process
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with both deterministic and jump movements. Jump diffusion models are deemed not to be
adequate to capture these as they generate jumps too frequently. In Chapter 4, we allow
the defaultable forward rate volatility to depend on the current forward rate curve as well
as on a modulating continuous time Markov chain. This introduces jump discontinuities as
well as other deformations to the term structure of volatilities. We consider an exponentially
decaying volatility function in the HIM model driven by a continuous time Markov chain
which is independent of the driving Wiener processes. The transition intensity of the Markov

chain is assumed to be independent of the jump default intensity.

By extending the results in Valchev [2004] and Elhouar [2008], we discuss the conditions
on the defaultable forward rate volatility that would lead to finite dimensional Markovian
representations of the defaultable short rate dynamics in the presence of regime-switching.
A Markovian two-factor Hull and White [1990]-type model is then derived which allows
for better calibration to market data. By construction, the model can be automatically
calibrated to the initially observed defaultable and default-free forward curves. On solving
the regime-switching bond pricing partial differential equation, we derive a semi-closed form
solution for the price of a defaultable bond. This requires solving numerically a coupled
system of ordinary differential equations. Using Monte Carlo simulation, we investigate the
distributional properties of both the defaultable short rate and bond price dynamics under
regime-switching volatility. We observe that increasing the transition intensity and therefore
the frequency of regime switching leads to a decrease in the bond prices as investors demand
more compensation for the additional source of risk. In addition, increasing the correlation
between the market risk and credit risk leads to an increase in the skewness of the bond

price distribution in the presence of regime switching.

We finally consider the pricing of a European call option on a defaultable bond with a knock-
out provision for the special case of a 2-state regime. By applying finite difference (theta
scheme) methods to the coupled option pricing partial differential equations, the option price

is approximated on a discrete space-time grid.



Chapter 2

Markovian Defaultable HJM Term

Structure Models with Unspanned

Stochastic Volatility

This chapter introduces unspanned stochastic volatility into the general defaultable Schonbucher
[1998] term structure model. The Wiener processes that determine the uncertainty in the
defaultable forward curve are independent to the Wiener processes driving the uncertainty
in the stochastic volatility process, a feature that does not naturally arise within the general
Heath, Jarrow, and Morton [1992] model (hereafter HIM). Consistent with the stylized facts
that interest rate volatility is stochastic and that it is correlated with changes in interest

rates, our model is set up in a more generalized framework to incorporate these observations.

As required of a good pricing model in credit risk, the work in this chapter incorporates the
correlation between credit spread and short rate processes, as changes in interest rates can
directly affect and change the credit spread or indirectly influence the market’s perception of
default risk, which has an impact on credit spreads. We show that varying these correlations

affects the distribution of the defaultable bond prices. Empirical evidence in D’Souza et al.

17
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12004] demonstrates that short rate and intensity processes exhibit stochastic volatility which
generates the heavy-tailed behavior observed in their unconditional distribution of daily

movements.

2.1 Introduction

The HJM framework is considered as the most general and flexible setting for the study of
interest rate dynamics and the pricing of interest rate derivatives. The only inputs required
for the model are the currently observed forward rate curve and the volatility structure of
the forward interest rates. The shortcoming of the HJM term structure models is that in
the most general setting they are Markovian in the entire yield curve requiring an infinite
number of state variables. Since the initial forward rate is completely determined by the
market, the only remaining flexibility for obtaining finite dimensional Markovian models
within the HJM framework rests in a particular specification of the volatility function. This
chapter presents stochastic volatility specifications that will allow the proposed defaultable
term structure model to admit finite dimensional Markovian realisations (thereafter FDR),

in the spirit of Bjork et al. [2004].

Conditions on level dependent volatility specifications (that treat the forward rate volatility
as deterministic functionals of time to maturity and the short rate and/or fixed tenor for-
ward rates) have been extensively studied within the HIM modelling literature. Some works
studying volatility structures for diffusion processes include Ritchken and Sankarasubrama-
nian [1995], Bhar and Chiarella [1997], Bjork and Svensson [2001], Bjork and Landen [2002]
and Chiarella and Kwon [2001, 2003]. Filipovie and Teichmann [2002, 2003], by employing
Lic algebra theory, show that only affine term structure models admit FDR. Extension to
volatility structures for jump-diffusion processes have been studied by Bjork and Gombani

[1999], Chiarella and Nikitopoulos-Sklibosios [2003] and Filipovie et al. [2010].
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Several empirical studies support the existence of an additional source of risk in the volatil-
ity of the forward rate that is independent of the risk associated with the term structure,
see for instance Collin-Dufresne and Goldstein [2002], Li and Zhao [2006] and Trolle and
Schwartz [2009]. These empirical findings suggest the suitability of stochastic volatility term
structure models, within the Heston [1993]-type stochastic volatility framework,® or so-called
unspanned stochastic volatility, in which an additional state variable is introduced to model
the stochastic volatility factor. Unspanned stochastic volatility specifications within the
HJM framework that would lead to a Markovian term structure of interest rates were intro-
duced by Chiarella and Kwon [2000b]. Bjork et al. [2004] provide the necessary and sufficient

conditions on stochastic volatility for diffusion HIM models to admit FDR.

The modelling of a defaultable term structure using the HJM model was first examined by
Jarrow and Turnbull [1995] and Duffie and Singleton [1999]. Schonbucher [1998] proposed
a model for the spread of the defaultable interest rates over default-free interest rates that
adds a default risk module to an existing model of default free interest rates. Various forms
of the no-arbitrage condition between the default free and the defaultable term structures
were derived from which the term structure of defaultable bond prices was then obtained.
The model developed assumed that a jump in the defaultable forward rate leads to default.
In addition, Schonbucher [1998] showed that the forward rate credit spread offers the link
between the defaultable and default free term structures. Maksymiuk and Gatarek [1999]
obtained the HJM condition for the forward credit spread. They showed that under zero
recovery rate and assuming no correlation between defaultable and risk-free rates, the initial

spread term structure coincides with the initial term structure of the intensity process.

These results were extended by Pugachevsky [1999] to allow for the case of non-zero cor-
relation. He also derived the relationship between the drift and volatility terms for the

spread between forward rates. A defaultable term structure with level dependent volatility

8 As previously mentioned in Chapter 1, we note that although option pricing with stochastic volatility has
been investigated by Scott [1987], Hull and White [1987] and Stein and Stein [1991] among other authors,
Heston [1993] derived a semi-closed form solution involving the evaluation of complex integrals thereby
offering convenient computational benefits while calculating the option prices.
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and stochastic intensity was studied in CNS. They showed that FDR are feasible only for
a truncated Markovian system or for constant Poisson volatility functions. A recent paper
by Berndt ct al. [2010] considers Markovian defaultable term structure models with level
dependent volatility and demonstrates the importance of the correlations between interest

rates and credit spreads.

The contributions of this chapter are twofold: Firstly, stochastic volatility is introduced
within the generalised defaultable term structure model developed by Schénbucher [1998].
The proposed framework models the default time exogenously through a Cox (doubly
stochastic Poisson) process and at each default time the value of the defaultable bond is
altered by a fractional recovery. The dynamics of the defaultable interest rates are then de-
rived by assuming a diffusion model for the default-free interest rates and the credit spread.
The volatilities of both the default-free term structure and the forward credit spread are
stochastic as they depend on an non-observable volatility process whose Wiener processes
are independent of the Wiener processes driving the default-free term structure and credit
spread. By modelling the connection between the default-free and the defaultable term
structure, namely the credit spreads, we obtain an arbitrage free model® and we are able to
accommodate a correlation structure between the credit spread and interest rate as well as

the stochastic volatility.

Secondly, we present the necessary conditions on the volatility structure that allows the pro-
posed defaultable term structure model to admit FDR. Precisely in spirit the of Bjork et al.
[2004], we assume that the default-free forward rate volatility depends on the unobservable
volatility process, the current default-free term structure and a quasi exponential time factor.
Similarly, the volatility of the credit spread depends on the same hidden Markov volatility
process, the current default intensity process and a quasi exponential time factor. Analytical

exponential affine bond prices are obtained and the dynamics of the term structure model

“When the defaultable term structure and the default-free term structure are modelled independently
then a no-arbitrage model can be obtained where negative spreads are possible, see Schonbucher [1998],
Section 2.4.
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under the risk neutral measure can be described in terms of a finite number of state vari-
ables. Then the state space is expressed in terms of fixed tenor forward rates, assigning some
economic meaning to the state space. In addition, we conduct a Monte-Carlo simulation ex-
periment to investigate the flexibility of the pricing model and its responsiveness to changes

in the underlying correlation structure and volatility.

The structure of the chapter is as follows: In Section 2.2, we introduce stochastic volatility
into the defaultable term structure model developed by Schénbucher [1998] and we generalise
it to allow for a correlation structure between the default-free forward rate, the forward credit
spread and stochastic volatility. In Section 2.3, we assume specific volatility structures and
derive a Markovian representation of the defaultable short rate in terms of a finite number of
state variables. Furthermore, we express the state variables as a finite dimensional realisation
in terms of economic quantities observed in the market, specifically in terms of discrete tenor
forward rates. Section 2.4 presents some simulation results on the distributional properties
of the defaultable bond price and bond returns. Section 2.5 concludes the chapter. Some

technical results are gathered in the Appendix I.

2.2 The Model Setup

We consider the filtered probability space (2, F, (Fi)o<t<7, P) where P is the real world prob-
ability measure and the filtration F; = F;" vV F,", t > 0 satisfies the usual conditions. The

subfiltration F}V is the o—algebra generated by the 3—dimensional of standard P—Wiener
processes W (t) = {W/(t), WXt), WY (1)},

(F )ez0 = {o(W(s) : 0 < s < ) hiso, (2.1)

and represents the flow of all background information except from default itself which gen-

erates the sub-filtration }';V.



22 2.2 The Model Setup

We denote as P(t, T, w) the price at time ¢ of the default-free zero coupon bond with maturity
T > t. We assume a more general modelling setup, where the entire forward rate curve
depends on w € {2 which represents the dependence of the forward rate process on the
Wiener paths. This quite general structure will allow us later on to easily introduce the

uncertainty associated with stochastic volatility.

Definition 2.1 1. The instantaneous default-free forward rate of interest prevailing at

time t for instantaneous borrowing at T, is defined as *°

f(t,T,w) = —% In P(t,T,w), forall tel0,T]. (2.2)

2. The instantaneous default-free short rate is defined as the instantaneously maturing

forward rate so that

r(t,w) = f(t,t,w). (2.3)

We introduce next the defaultable term structure. We denote as Pd(t, T,w) the price at time

t of the defaultable zero coupon bond with maturity T > t.

Definition 2.2 1. The instantaneous defaultable forward rate at time { for instantaneous

borrowing at T is defined as

4t Tyw) = —% In P4t T,w), forall te(0,T). (2.4)

2. The instantaneous defaultable short rate is defined as

ré(t,w) = fUt, t,w). (2.5)

WEquivalently, on integrating (2.2) with respect to maturity we obtain the following alternative charac-

T
terisation that defines the bond price in terms of the forward rate; P(t, T, w) = exp ( - [ fa, a‘,w]ds).
t
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8. In addition, the continuously compounded instantaneous forward credit spread is defined

as
At T,w) = f4t,T,w) = [(t,T,w), (2.6)
and the instantaneous short-term credit spread is defined as

c(t,w) = AL, t,w). (2.7)

The default process is modelled via a marked point process, see Jeanblanc et al. [2009]. We
let (E, £) be a measurable (mark) space. A random measure p on the space R, x ' is a family
of positive measures (u(w; dt,dq),w € Q) defined on R, x K such that, for [0,¢| x A € B®E,
the map w — p(w; [0,¢], A) is F —measurable, and p(w; {0}, E) = 0. For Borel sets B,

note that £ = [0, 1].

Definition 2.3 1. A marked point process N is a random sequence (with stochastic

jumps) defined by the pair {(7;,¢;),7 € N} with 7; € Re and marks ¢; :== ¢(1;) € E.

2. A random measure 1 is associated to the marked point process N by
H‘('; [0: t]!A) = Nﬂ(t)!
such that

t oo
w(w; [0,t], E) = -/0 /};u(w;ds,dq) = Z]l{ﬁ(w]g}]l{q‘.(w)eg}.
=1

The measure pu(w; X x A) denotes the number of arrivals during the time set X C R;
that have marks with values in the mark set A C £ If we assume that limn; = oo, it
()

follows that p(w; X x A) < oo for any bounded interval X = [0,f] C B(R;) and that
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w(w; B(Ry) x A) = oo. Therefore, only a finite number of arrivals (defaults) occurs in any

bounded time interval although there is an infinite number of defaults overall.

The random measure y is characterized by the (predictable) compensator random measure

v on the space R, x E, so that for every predictable function /7(w;t, q), the process defined

by
t t
M (w;t) 2/ H(w; s, q)u(w; ds, dq) —/ / H(w; s, q)v(w; ds, dg), (2.8)
0o JE 0o JE
is a local martingale. The compensator v has the form
v(w;dt, dg) = hiw;t, dg)dt, (2.9)
where h(-; ¢, A) is a predictable process.
Remark 2.4 The most common form of intensity is
h(w;t, dg) = h(t)m:(dq), (2.10)

where h(t) is non-negative Fy—predictable and represents the intensity of a Poisson process
while my(dq) is the conditional distribution of the marker q on the space (E,§). The pair
(h(t). my(dq)) is called the (P, F,)—local characteristics of the counting measure pi(w; dt, dgq).
See Runggaldier [2003].

In practice, a default event does not terminate the debt contract as firms are usually reorga-
nized and the debt is re-floated. The proposed framework will allow for subsequent defaults
and hence multiple defaults are possible with the debt restructuring at each default event.
The recovery rate R(¢) given default is defined as the extent to which the value of an obli-
gation can be recovered once the obligor has defaulted. This is a measure of the expected

fractional recovery in case of default and therefore R(t) € [0,1]. In this case, there is an
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increasing sequence of default times {7; };ew and at each 7;, the defaultable bond’s face value

is reduced by the loss rate g(7;) € [0, 1], which can be a random variable.

At maturity T, the defaultable bond subject to multiple defaults has a final payoff

R(T) == [ (1 = g(n)), (2.11)

T"ST

where R(T') is the product of the face reductions after all defaults until maturity 7. The
random loss ¢(7;) is considered as a random draw at default time 7;. The fractional recovery
process R(t) can be represented as a Doléans-Dade exponential of the stochastic differential

equation, !

dR(l) = —R(t—) /E quldt, dg), (2.12)

where p(dt, dg) is the random measure associated to the marked point process.

The pre-default price P%(¢, T,w) at time ¢ of a defaultable zero coupon bond with maturity

T, the so-called ‘pseudo’ bond, is given by

Pit, T w) = cxp( - fT Fi, 3,w)ds). (2.13)

This is the price of the defaultable zero-coupon bond given that it has not defaulted before

time £. It then follows that the price of the defaultable bond can be written as

PUt,T,w) = Rt)exp - [ ! F(t,5,)ds) = RUPET ). (2.14)

HSee Appendix A.1 for the proof of this result based on Jacod and Shiryaev [2003, Theorem 4.61, pg.59]
and Klebaner {2005, Theorem 8.33 and Section 9.3].
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2.2.1 Embedding Stochastic Volatility within the Defaultable

HJM framework

Although the volatility processes in the standard HJM framework can be path dependent,
they arc not considered to be stochastic in the sense of Hull and White [1987], Heston [1993]
and Scott [1997]. In our stochastic volatility model for interest rates, the volatility processes
is driven by Wiener processes which are independent of the Wiener processes driving the

term structure of interest rates. In this way, the stochastic volatility is unspanned.

Chiarella and Kwon [2000b] introduced unspanned stochastic volatility within a class of HIM
term structure models in the default free setup and derived bond and bond option prices.
Bjork et al. [2004] and Filipovie and Teichmann [2002] significantly advanced the study of
stochastic volatility for HIM models driven by diffusion processes. We adapt these results
to the defaultable Schonbucher [1998] term structure model, where a modenl for the spread

between the denfaultable forward rates and default-free forward rates is proposed.

Assumption 2.2.1 The dynamics of the stochastic volatility process V = {V (t),t € [0,T]}

are

dV(t) =av(t, V)dt + oV (¢, VYdWV (1), (2.15)

where the drift and diffusion depend only on V.

We further assume that for any function g¢(¢,7,w) there exists a function z such that
g(t,T,w) = =z(t,T,V(t)). However, for notational convenience we adopt the notation

g(t, T, V) = g(t, T, V(¢)) instead of z(t, T,V (t)) from now on.

Assumption 2.2.2 The instantaneous denfault-free forward rate f(¢,T,V) and the instan-
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taneous forward credit spread \(t, T, V') satisfy the stochastic differential equations

df(t,T,V) = of(t, T, V)dt + o’ (t, T, V)dW?(¢), (2.16)

AL, T, V) = Mt T, V)dt + o*(t, T, V)dW(t), (2.17)
respectively, where WY (t) and W(t) are two correlated Wiener processes.

Note that we have consequently assumed that the filtration F}", see (2.1), includes 7}V =

Fiv F) Vv F,, where

[ (F)eso = {o(W 20 < 5 < )}eso,

{ (Fiso = {o(W): 0 <s <t)}iso, (2.18)

L (F)eso = {o(W) : 0 <5 < )}z

The details on the correlation structure are given in Section 2.2.2. By using the equivalent
stochastic integral equations imposed by Assumption 2.2.2, the stochastic integral equations
for the instantaneous default-free short rate r(¢, V') := f(t,, V) and the instantaneous short-

term credit spread c(t, V') := A(¢,t, V) are given by

r(t, V) = f(0,t, v0)+f af(u,!.,V]du+]t ol (u,t, V)dW/ (u), (2.19)
a 4]

e(t, V)= A0,t, Vo) + /t oMu, t, V)du + /t oM u, t, V)dW(u), (2.20)
JQ Q

respectively where Vj is the initial volatility.

By using (2.6) and the dynamics specified in Assumption 2.2.2, the stochastic integral equa-

tion for the defaultable forward rate is expressed as

t i t
fUt, T, V) = f40,T,Vp) + / o (u, T, V)du + / of (u, T, V)dW (u) + f o*u, T, V)dW*(u),
0 0

0

(2.21)
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where the initial defaultable forward curve is

F40,T, Vo) = £(0,T, Vo) + M0, T, V%), (2.22)
and the drift coefficient is given by the sum of the individual drift coefficients

oAt T, V) =a/(t,T, V) +a ¢, T,V). (2.23)
In addition, (2.21), for T = ¢, provides the dynamics for the instantaneous defaultable short

rate ré(t, V) := f4Ut, 1, V) = f(t,t, V) + \t,t,V) =r(t, V) + ¢(t, V) as

t

t t
rl(t, V) = £40,t, Vo) + f a(u, t, V)du + ] ol (u, t, VYAWY (u) + f oM, t, V)AWA (u). (2.24)
0 0 0

2.2.2 Correlation Structure

Evidence of the effects of correlation between stochastic volatility and the short rate on the
bond price were investigated in Heston [1993]. Jarrow and Turnbull {2000] showed that the
correlation between the short rate and the credit spread represents the empirically observed
correlation between market risk and credit risk. Changes in the default free short rate force
investors to reassess the probability of default of defaultable bonds and therefore impact the

credit spreads.

We define the correlation matrix between the Wiener processes W/ (t), W*(t) and WY (t) by

1 pi2 pi3
E[(@WY,dW* dW/)T(dWY, dW* dW')] = | pyi 1 pos | > (2.25)

P31 P32 1
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where the correlation coefficients p;; are given by

pradt = E[dWY (t) - dW(1)], (2.26a)
pradt = E[dWVY(t) - dW/(1)], (2.26b)
pasdt = E[dW(t) - aW/ (¢)]. (2.26¢)

To apply the techniques of the HIM approach, it is convenient to replace the correlated
Wiener processes WY (t), W*(t) and WY (¢) with uncorrelated processes. We define the

uncorrelated Wiener process W (t) = (Wy(t), Wa(t), Wa(t)) under P such that

dWVY (1) 211 Q12 013 dWi(t)
dWA(t) | = | 021 022 023 dWa(t) | - (2.27)
dWZ(t) 031 032 033 dWs(¢)

Note that the p;;’s are chosen such that the correlation structure of the Wiener processes

Wi(t), WA(t) and WY (t) is preserved with

3 3
Y owo =piy, for i#j, j=1,2,3, and S =1, for i=123 (228)
k=1

Then, equations (2.16), (2.17) and (2.15) can be expressed in terms of independent Wiener

processes as
df(t, T, V) = o/ (¢,T,V)dt + ZJ: &l (t, T, V)dw,(t), (2.29a)

d\(t, T, V) = o¢, T, V)dt + i Mt T, V)dWi(t), (2.29b)

dv(t) =¥ (t,V)dt + i &Y (t, V)dw;(t), (2.29¢)

i=1
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where by using transformation (2.27), the volatility functions are defined as
~f — pord A - — 5V = pu:g?
ol (t, T, V) = 030’ (t,T,V), 6;(t,T,V) = 000" (t, T, V), &;(t,V)=pn0" (t,V), (2.30)
fori=1,2,3. Then, (2.21) is expressed as
t 3 t
FULT, VY = f40, T, Vo) +/ o(u, T, V)du + Zf 53 (u, T, V)dW,(u), (2.31)
where, for ¢ = 1, 2, 3, the volatility functions are defined as
G4t T, V) =6/t T,V)+at,TV). (2.32)

Setting T = ¢ in (2.31) provides the equation for the defaultable short rate as

t 3 t
ri(t, V) = f40,t, V0)+/ a’(u,t, V)du-l—Z/ 5 (u, t, V)dWi(u). (2.33)
i=1 70

0

We then have the following result for the price dynamics of the default-free bond and the
defaultable bond. We show how multiple defaults and recoveries can be incorporated within

the HIM framework when there is no jump in the forward rate dynamics.

Proposition 2.5 Given the dynamics (2.29a) for the default-free forward rate f(t,T,V),

the defaull-free bond price satisfies the stochastic differential equation

dP(t, T,V 3
p“‘(‘t'(;_'t'*"—", T, V)) [r(t, V) +b(t, T, V)]d 2; ( / 5/, s, V)ds)dwi(t), (2.34)

where

b(t,T,V)z—];T (t,s,V)ds + %Z::(f t,‘s,V)ds) . (2.35)



31 2.2 The Model Setup

Given the dynamics (2.31) for the defaultable forward rate f*(t,T, V) and the relation (2.14)
between defaultable and pseudo bond prices, the defaultable bond price satisfies the stochastic

differential equation

. 3
;i)}d’(t{_t,‘?;:";)} [Fi(t, V) + bU(t, T, V)] dt - Z (] (t,s, V]ds’)dW( ) — / qu(dt,dq), (2.36)

=1
where
d T g T ?
(¢, T, V) = —-/; a’(t, s, V)ds + 5; ([ oy (t,s,V)ds) . (2.37)
Proof: The proof of this result is provided in Appendix A.2. |

2.2.3 Risk-Neutral Dynamics

The absence of arbitrage opportunities implies that there exists an equivalent probability
measure P, namely the risk-neutral measure.’? For every finite maturity T, there exists a. 3-
dimensional predictable process ®(t) = {¢1(¢), ¢2(t), ¢3(¢), ¢t € [0,T]} and a strictly positive

measurable function (¢, ¢) satisfying the integrability conditions
t i
j ll6i(s)|%ds < 00, for i=1,2,3, / / (s, Q)h(s, dg)|ds < o0, (2.38)
0 0o JE
such that
dWi(t) = dW,(t) — ¢i(t)dt, for i=1,2,3, (2.39)
is a P-Wiener process and the default indicator process N(¢) has a P-intensity

h(t, dq) = (¢, q)h(t, dg). (2.40)

2This measure is not unique due to market incompleteness which arises from the independent Wiener
process that drives the stochastic volatility process.
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Proposition 2.6 Using Girsanov’s theorem such that the integrability conditions (2.38) and

(2.39) are satisfied, then a risk-neutral measure P ezists, if and only if,

3 T
T V) == 3TV (00 - [ 6lesvids), (2.41)

where ¢;(t) denotes the market price of interest rate risk associated with the noise process

Wi(t). Then the risk-neutral dynamics of the default-free forward rate are

3 T 3
df(t.T,V)=> &l V)( f &l (t, s, V)ds) dt+ Y &, T, V)dWi(t), (2.42)
i=1 i

=1

and the risk-neutral dynamics of the default-free bond price are

dP(,T,V) 3 T .
Pty BV - Z_I ( f 5 (t,5,V)ds ) AWi(1). (2.43)
Proof: Follows along the lines of Heath et al. [1992] as given in Appendix A.3. [ ]

Proposition 2.7 Using Girsanov’s theorem such that the integrability condition (2.38) and

equations (2.89),(2.40) are satisfied, then a risk-neutral measure P exists, if and only if,

V) + 64, T, V)] — Z@(t)[ &(t,s,V)ds — qup(t,q)h(t,dq) =r(t,V), (244)

where ¢;(t) is the market price of interest rate risk associated with the noise process Wi(t)

and Y(t,q) is the market price of default risk.

Proof: Follows similar arguments to thosc of Bjork et al. [1997]. See Appendix A.4. [ |
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Taking the derivative of (2.44) with respect to 7" and performing some standard manipula-

tions then yields

3

a1, T, V) Z (1, T,V ( (1) — fT 5,‘;’1(!.,5,1/)0’.5)7 (2.45)

which is the corresponding HJM forward rate drift restriction condition for the defaultable
bond price. As noted in Schonbucher [2003], the precise knowledge of the nature of the
default process N and its compensator M is not necessary in setting up an arbitrage free

model for the term structure of defaultable bonds.

Corollary 2.8 The credit spread drift restriction implied by the proposed model is

oMt T, V) = Za‘)(f)a tTV)JrZ tTV/T&g\(t,s,V)ds

+23:( (t,T,V) /T I(t,s,V)ds + &L (t,T, V) fT&g(n,s,V)ds). (2.46)

Proof: Substitute (2.23) and (2.32) into (2.45) and use condition (2.41). Sec also Ap-
pendix A.5. ]

The drift of the credit spread (Equation (2.46)) is expressed in terms of the volatilities of the
default free forward rate and the credit spread. This condition guarantees that the spread
cannot become negative because by construction (See Bielecki and Rutkowski [2002, Chapter

13, pages 387 - 390])

PUt, T, V) = P(t,T, V) exp ( . fT AL, s, V)ds),

from which P4(¢,T,V) < P(t,T,V).
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Substituting b%(t, T, V) as given in equation (2.37) into (2.44), as well as using (2.45), it
follows that the short term spread is the product of the market price of jump risk, the

default intensity and the expected loss quota, that is

it V) —rt,V) = /%qa;’)(t, q)h(t,dq). (2.47)

Taking into account the fact that the intensity of the default process under the risk-neutral

measure is given by (2.40) then

ri(t, V) —r(t, V) = / qh(t,dq). (2.48)
E

From (2.7) and (2.48), the short term credit spread, c(t, V') under fractional recovery can

then be expressed as

e(t,V) = /F q h(t, dq). (2.49)

Formulating the intensity rate as a stochastic process allows rich dynamics for the credit
spread process and is flexible enough to capture the empirically observed stochastic credit
spreads. As cited in Jarrow and Turnbull [2000], there is considerable empirical evidence
that clearly suggests that the credit spread is a function of at least default intensity and the
recovery process. Pan and Singleton [2008] further noted that since the default intensity and
the recovery process enter symmetrically into pricing under fractional recovery of market

value (RMV), they cannot be separately identified using defaultable bond price data alone.

In order to alleviate notational complexity, we define some path dependent quantities S;(¢, V')

and v;(¢, V') to that regard.
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Definition 2.9 We define the subsidiary state variables

3 t t

St V) =Y ] 51 (u,t,V) / & (u, v, V)dvdu, (2.50a)
=1 0 uw
3 t t

So(t, V) = Z/ aMu,t,V) / &M u, v, V)dvdu, (2.50b)
i—1 Y0 Ju
3 t t

Ss(t, V)= f 5 (u,t, V) f 5Mu, v, V)dvdu, (2.50¢c)
3 t t

Sa(t, V) 22/ &f(u}t,V)f 5! (u,v, V)dvdu, (2.50d)
i=1 0 °w
3 )

G, V)= f ! (u,t, V)dW;(u), (2.50e)
i=1 Y0
3 t _

Po(t, V) = Z/ Mu, t, VYAW;(u). (2.50f)
i=1 Y0

Lemma 2.10 Consider the path-dependent state space variables S;(t,V') and ¢;(t, V) pre-
sented in Definition 2.9. Under P, the defaultable short rate satisfies the stochastic integral

equation
4 2
ri(t, V) = f90.4, Vo) + > Si(t, V) + D ilt, V), (2.51)
=1 =1
the default-free short rate satisfies the stochastic integral equation
r(t, V) = f(0,t, Vo) + S1(t, V) + ¥ (t, V), (2.52)

while the short term spread satisfies the stochastic integral equation
4
c(t. V) = M0,t, Vo) + ) Silt, V) + (L. V). (2.53)

i=2

In addition, the state variable V = {V (t),t € 0, T} satisfies the stochastic differential equa-
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tion

dv(t) = [a¥(t, V) + > ai(t)a) (t,V)]dt + > 6Y (1, V)dW,(1). (2.54)

i=1 i=1

Proof: Sce Appendix A.6. ]

Corollary 2.11 The defaultable bond price can be expressed as

P, T, V) = ]E[exp ( - f s, V)ds)R(T))IJa]. (2.55)

t

Proof: Sec Appendix A.7. [ ]
Given the dynamics of the short rate process r(¢, V') and the recovery process R(t), we can

use Monte Carlo simulation to calculate the price of the defaultable bond.

The market price of risk ¢;(t) of the risk factor W;(t) appears in the drift of the volatility
process. Thus our model shares the common feature of the class of Heston [1993] stochastic
volatility models, which is that these models do not imply a complete market as they cannot
be fully hedged by a portfolio of bonds. Jarrow and Turnbull [2000] suggested that the
default intensity process could be assumed to depend on different state variables to reflect a
dependency on several macro-economic factors. This requirement could be well captured by
a multi-dimensional model of the type in equation (2.53) for the instantaneous spread which

is related to the intensity through (2.44).
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2.3 The Markovian Term Structure Models with Stochas-

tic Volatility

A key drawback of the HIJM approach is the non-Markovian nature of the stochastic differ-
ential equation for the short interest rate in its most general form due to the non-Markovian
Wiener term that appears in the drift, thereby increasing the computational complexity.
More specifically in our modelling framework, the state space variables defined in Defini-
tion 2.9 depend on the entire path history of the forward rate and credit spread volatility

processes, leading to an infinite dimensional system of stochastic differential equations.

Stochastic volatility specifications within the HJM framework that allow finite dimentional
Markovian representations (FDR) have been studied by Chiarella and Kwon [2000b], Bjork
et al. [2004] and Filipovie and Teichmann [2002]. By employing Lie algebra theory, Bjork
et al. [2004] examined the necessary and sufficient conditions on stochastic volatility for
diffusion default-free HJM models to admit FDR. They demonstrated that a sufficient con-
dition for the existence of FDR is that the volatility function should be the product of a
quasi exponential function of the time to maturity and an arbitrary function of the forward

3

rate and the volatility process.”®> We adopt these volatility specifications and consider an

application to the defaultable term structure model proposed by Schonbucher [1998].

Thus we consider a class of functional forms for the volatility functions o/(¢,7,V) and
o (t,T,V), as proposed by Bjork et al. [2004], that will allow the non-Markovian represen-
tation of 7%(¢, V), given by (2.51), to be reduced to a finite dimensional Markovian system

of stochastic differential equations.

Assumption 2.3.1 The wvolatility functions of the defoult-free forward interest rate, the

Y9ee Proposition 5.2 of Bjérk et al. [2004].
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forward credit spread and the volatility are of the form

o (1, T, V) = o/ V(t)r(t, V)e T8, (2.56a)
A, T, V) = ax/V({t)e(t,V)e T, (2.56b)
c’(t,V) = oy /V (1), (2.56¢)

respectively, where oy > 0, 0y > 0, oy > 0, k¢ and Ky are given constants.

The volatility specifications (2.56a) and (2.56b) can be considered as an extension of the
Ritchken and Sankarasubramanian [1995] volatility structures to stochastic volatility with

an application to the defaultable term structure.

Definition 2.12 Under the volatility specifications of Assumption 2.5.1, we define the ad-

ditional subsidiary state variables

3 t

m(t, V) = Z 9%5[ o2r(u, V)V (u)e 2 dy, (2.57a)
i=1 0
3 t

ne(t,V) = Z gi—] ole(u, V)V (u)e #rE Wy, (2.57b)
i=1 0

3 t
ns(t, V) = Z Qg,;g;ﬁ[ oo/, Ve(u, V)V (u)e™ S Halt=vigy, (2.57¢)
i=1 0

Proposition 2.13 For i = 1,2,3, the subsidiary state variables n;(t,V) of Definition 2.12

satisfy the stochastic differential equations

dn(t,V) = (30 ehofr(t VIV(E) - 26mi(t,V) ), (2.582)
dna(t, V) = (Z Goe(t, VIV(E) = 2mam(t, V) ) dt, (2.58b)

3
dns(t,V) = (3 omenosoy/r&, VI VIV (8) — (s + ia)ms(t, V) ), (2.58¢)
i=1
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and the state variable S3(t, V), see (2.50c), satisfies the stochastic differential equation

dSs(t, V) = |ma(t, V) —nfsg(t,m] dt. (2.59)

Proof: Follows from taking the differentials of the state variables defined in Definition 2.12.1

The following proposition shows that the defaultable short rate, the default-free short rate,
the short term spread and the defaultable bond price are completely determined by seven
state space variables, namely r(t,V), c(t, V), n:(t,V), (i = 1,2,3), S3(¢t,V) and V(t). Note
that an alternative representation that employs ten state space variables is also feasible, see
Appendix A.8, though we use the formulation in the set of state space that requires fewer

variables and includes model factors such as r(t, V) and ¢(¢, V).

Proposition 2.14 Under the volatility specification of Assumption 2.3.1 and given the state
variable dynamics in Proposition 2.13, the defaultable short rate, default-free short rate,
short term credit spread and stochastic volatility processes satisfy the stochastic differential

equations

d'rd(t, V)= [Gd(t, Vo) + mt, V) +ma(t, V) + 2n3(t, V) — (k5 — 62)Sa(t, V) + (k5 — £a)e(t, V)

— wgr(t,V)]dt + (Z o3iof\/r(t, VIV(L) + Z 22i0 AV A(2, V)V(t))dvi’,;(t); (2.60a)
i=1 i=1

3
dr(t,V) = [05(t, V) + m(t, V) — kpr(t, V) dt + Z 03:0 /(. V)V ()dWi(2), (2.60b)
i=1
de(t, V) = [0x(t, V) +m(t, V) + 2n3(t, V) — (55 — K2)S3(t, V) — rac(t, V)] dt

3
+ Z 0203/ c(t, V)V (t)dWi(t), (2.60c)

3

3
dv(t)=[a"(t,V)+ > ei()ov/V(H)]dt+ 6 (¢, V)dWi(t). (2.60d)

i=1 i=1
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respectively, where the functions in the deterministic drifts are given by

8a(t, Vo) = f2(0,t, Vo) + K7 £(0,¢, Vo) + saA(0, ¢, Vi),
04(t, V) = f2(0,1, Vo) + &5 £(0, ¢, Vo), (2.61)

9,\(3, V) = /\2(01 t, Vg) + R,\)\(O, t, Vg)

Proof: The proof to this proposition is found in Appendix A.8. |

We show next that the defaultable bond prices across all maturities can be expressed in terms

of the default-free short rate, the short rate spread and a set of Markovian state variables.

Proposition 2.15 Under the Assumption 2.3.1, the price of a T—maturity defaultable bond
is exponential affine and is given by

Pd(os T! VU)

PUET.V) = a5 2vh)

1 1
exp ( - ¢(t,T) — 56?(*@ Tym(t,V) - E;’ii(t, Tyne(t, V) (2.62)

—a(t, T)ns(t, V) = [Bs(t, T) + BA(t, T)| S3(t, V) — B85 (¢, T)r(t, V) — Ba(t, T)c(t,V)),

where

4

C(t,T) =InR(t) + B¢(t, T) f(0,t, Vo) + Bar(t, T)A(0, ¢, V)],

] a(t,7) = %ﬁ;(m + AT+ (;_1; +2) ( L) (1= ertreonr0),

-

T T
By(t,T) :/ e " @ty and Ba(t, T) :/ e~ A=t gy,
t ¢

\

Proof: See Appendix A.9. [ |

Essentially, with this result we have shown that the defaultable bond price takes an expo-

nential affine form in the sense of Duffie and Kan [1996].
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2.3.1 Finite Dimensional Realisations in Terms of Defaultable For-

ward Rates

Some of the Markovian state variables obtained in the proposed Markovian defaultable HJM
model do not posses an economic meaning, namely 7;(¢t, V), (i = 1,2,3) and S3(¢, V). Under
a default-free term structure setting, Bjork and Svensson [2001] and Chiarella and Kwon
[2003] have shown that it is possible to express these types of state variables as a linear
combination of fixed tenor forward rates, thus obtaining finite dimensional affine realisations

in terms of forward rates.

In this section, by adopting their idea, we are able to express the six state variables of the
proposed defaultable term structure model, namely r(¢, V), c(t, V), S3(¢, V) and n,(¢, V),
(i = 1,2,3), in terms of defaultable forward rates of six fixed tenors.* Consequently, the
proposed defaultable term structure is expressed as an exponentially affine term structure in
terms of fixed tenor defaultable forward rates. This representation establishes a connection

between the defaultable bond price (2.62) and market observable quantities.

Definition 2.16 We define the deterministic functions

a(t,T) =e T ay(t,T) = e T ag(t,T) = a1 (t, T)Bs (£, T), ag(t,T) = as(t,T)Bx(t,T),

a5(t,T) = [a1(t, T)BA(E,T) + aa(t. T)Bs (1. T)],  as(t, T) = a1 (t, T) + az(t, T).

Proposition 2.17 The defaultable forward rate of any maturity can be expressed in terms

of siz fized tenor forward rates as

ST V) =DET)+ Y > ai(t, Tajmf*(t, T, V), (2.63)

6
i=1 m=1

YNote that state variables 7(t, V') and ¢(¢, V) have an economics meaning but are not directly observable,
The model could allow to express only the non-observable state variables n; (f, V) fori = 1,2,3 and S3(¢, V') in
terms of fixed tenor defaultable forward rates, if this is required, see for instance Chiarella and Nikitopoulos-
Sklibosios [2003].
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where
6 6

D(t,T) = f40,40,T)+ > a;(t, T)a;mf4(0,4;0, ),

i=1 m=1

and
F40,0,T) = F(0,T, Vo) + A0, T, Vo) — e+ T=8 10,1, Vp) — e T=D(0, 1, Vp), (2.64)

and @;m denotes the jm™ element of the matriz A(t)™', which is the inverse of the 6 x 6

square matriz A(t) defined as

A(t) = [ajm] (2.65)

with ajm = am(t,T;) as giwven in Definition 2.16. Assume that A(t) is invertable for all
t e {t';t" = min;[T;)}. The state variable V = {V(t),t € {t';t' = min;[T}|}} satisfies the
stochastic differential equation (2.60d).

Proof: See Appendix A.10. [ |

Proposition 2.18 Given the dynamics for the defaultable forward rate in (2.63), the de-
faultable bond price can be expressed in an exponential affine form in terms of fixed tenor

forward rates as

6 [ T
Pt T, V) = ’;‘;((%3;:2) [ / D(t,s) S—ZZ/ a;(t, 8)dséjm fA(t, T, V)| -

m=1 j=1

(2.66)

Proof: Substitution of (2.63) into the definition (2.14) derives the result. m
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The defaultable bond price expression (2.66) offers an important advantage especially for
applications. Market information related to a distinct set of fixed-tenor discrete defaultable
forward rates can be embedded into the formula for the defaultable term structure in a very

convenient manner due to the tractability of the proposed model.

2.4 Numerical Experiments

In this section, we examine the effect of variations in the parameters of the stochastic volatil-
ity and correlations on the distribution of the defaultable bond price and the defaultable bond
returns. We first observe that the bond pricing formula in Proposition 2.15 will depend on
a particular realisation of the path for the volatility process V. We would simulate the en-
tire system to obtain values of (¢, V), (¢, V), S3(¢, V), m(t, V), na2(¢, V) and ns(¢, V') which
would then be substituted into the formula (2.62) to obtain the bond price for that particular

realisation of V.

2.4.1 Model Inputs

In our numerical investigations we use a typical choice of the system (2.27) so that g2 =

013 = 093 = 0. This yields the transformation®®

1 0 0

dWV (1) AW, (1)
a2
awr ) | =| P12V 1= pia 0 AW (t) | - (2.67)
@ — 1 - 2 p2 2
dw’ (1) P23 — P12013 Piz — Pis — P33 + 2p12P13P23 AWs(2)

s T 1= ph
In this case, pis represents the correlation between the stochastic volatility process and the
short term credit spread, p;3 gives the correlation between stochastic volatility and the default
free short rate process whereas ps3 represents the correlation between the short term credit

spread and short rate process. We have specified the volatility functions for the stochastic

5The choice of this specific transformation is necessitated by convenience rather than uniqueness.
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volatility process in (2.56¢), and note that &y (t,7,V) = &y (t,T,V) = 0. By using (2.54), we
specify the drift by oV (V,t) = kv (V —V(t)), and the market price of risk by ¢;(t) = ¢+/V (1)
with the scaling factor ¢ = 1*6. Then the risk neutral dynamics for the volatility process V

are

AV (t) = [rvV — (kv — ov)V(8)]dt + oy /V (£)dW (1) (2.68)

Except for the scenario where we vary the volatility of volatility oy, we will use the set of
parameters given in Table 2.1 and initial term structures of forward rate and forward credit

spread given by
£(0,7, Vo) = 0.05 — 0.04/Voe*7 and (0, T, V;) = 0.03 — 0.01/Vpe 7

respectively, with the initial volatility chosen to be V; = 0.08. This implies that the initial
short rate and the initial short term credit spread will be (0, V5) = 0.0387 and ¢(0, V) =
0.0272 respectively. The proposed initial term structures provide forward rates between 3.8%

and 5% over a period of 20 years and a forward credit spread between 2.7% and 3%. We make

" Tloflon] ov |V TEENEY
(1.0 0.65 ] 0.45 | 0.0960 | 0.0857 | 0.25 | 0.3 | 0.85 |

Table 2.1: The parameter values used in the simulation experiment.

a simplifying assumption that the initial level of credit spread remains the same irrespective
of downgrade on default and subsequent restructuring. Unless otherwise specified, the full

correlation structure is given by pia = 0.25, p13 = 0.45 and py3 = —0.30. V7

For recovery, we simulate the process dR(t) = —R(t—)q(t)dM (t) where g(7;) is the loss rate

This is one possible parameterisation that eventually rescales other parameters in the volatility drift
ferm.

"The choice of these parameter values has been motivated by several empirical studies conducted within
the default-free HJM framework including Tahani [2004] and Trolle and Schwartz [2009] and which we have
adapted to the defaultable framework. We noted that the credit spread levels observed in the market are
usually lower than the interest rate levels and therefore their values are significantly lower than the once in
the mentioned literature.
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at default time 7;, the compensated process dM(t) = dN(t) — h(t)dt is a martingale and
N{(t) is a Cox process governing the default dynamics. This is a special case of the general

marked point processes in (2.12) as explained in Remark 2.4.'®

For the simulation experiment, we use an Euler-Maruyama approximation, for 7" = 2 and
discretise into 250 subintervals. We generate 200,000 simulated paths for the short rate
r(t, V), see (2.60b), and the short rate spread (¢, V'), see (2.60c), to obtain the defaultable

bond price as in Proposition 2.15 whose distribution we calculate at the point, ¢ = 1.0.

2.4.2 Simulation Results

We recall that under recovery of market value (RMV), the recovery ratio is a fraction of
the current market value (see Duffie and Singleton [1997], Duffie and Huang [1996] among
others). This offers greater computational tractability as compared to other recovery models.
In some models, for example, Duffie and Singleton [1999] and Houweling and Vorst [2005], the
recovery rate is interwoven with the risk premium, making the distinction between intensity
(hazard) and recovery rate difficult and this is the case when using defaultable bond data

alone.

Pan and Singleton [2008] have however shown that in the CDS markets, the default intensity
and recovery play distinct roles. Given that recovery is a fraction of the face value, the
arrival intensity and the recovery parameters can in principle be separately identified using
the information contained in the term structure of CDS spreads. In our two-fold analysis, we
investigate the distributional properties of a defaultable bond at the point, ¢ = 1.0 and then
consider the special case of its pre-default (pseudo bond) values under varying parametric

specifications.

18 Although our model allows for multiple defaults and recovery, we assume that the firm’s default intensity
and recovery rate remain the same even after default and restructuring. A more realistic specification would
allow for downgrade in the credit quality thereby increasing the default intensity and reducing the recovery
rate in the eventuality of future events. This would require a more general migration model.
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Defaultable Bond Analysis

The defaultable bond is assumed to have an average default intensity ﬁ(t) = 0.30. This risk-

s ;
m, with a
yield spread of s = 1321bps as the average yield spread of defaultable bonds over treasuries.

neutral default intensity is backed out of bond prices using the formula h=

This choice falls between B—rated bonds risk-neutral default intensity approximated to be
0.0902 and Caa—rated bonds whose intensity was estimated to be 0.2130 in Hull et al.
[2005]. In addition, we assumed the loss given default to be distributed according to LGD ~

N(0.6839,0.07).1°

Defaultable Bond Prices
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Figure 2.1: Distribution of defaultable bond price and normalised bond returns under varying
p12 while keeping p13 = 0.45 and py3 = —0.40.

Figure 2.1 illustrates the effect of the correlation p;2 between the stochastic volatility process
V(t) and the credit spread process c(t, V') on the distribution of defaultable bond price and
bond returns. Increasing the correlation p;s from —0.6 to 0.6 while holding the other corre-

lations at zero tends to increase the (negative) skewness of the two distributions. Table 2.2

19This is documented in Moody’s [2003] report which gives average recoveries for different rating classes
over the time period 1982 — 2003.
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gives the values of the changes in skewness and kurtosis with change in the correlation p;o

between short term credit spread and stochastic volatility.

I o2 T 060 | 000 | 060 |
Kurtosis (Price) 4.1178 | 4.3144 | 4.6628
Skewness(Price) | -0.8157 | -0.9095 | -1.0270
Kurtosis (Returns) || 4.8161 | 4.7308 | 4.6410
Skewness(Returns) || 0.1596 | 0.1708 | 0.2043

Table 2.2: Effect of correlation p;2 between short term credit spread and stochastic volatility
with change in the kurtosis and skewness of defaultable bond price and bond returns.

A similar observation is made in Figure 2.2, where we vary the correlation p;3 between the
stochastic volatility process V(t) and the short rate process 7(t,V). However increasing
the correlation p,3 from —0.6 to 0.6 while holding the other correlations at zero tends to
generate a larger variation in the skewness of the bond price and bond returns distribution.
This could be attributed to the fact that the short rate has a higher average volatility than

the credit spread process. Table 2.3 shows the effect of the correlation p;3 on the defaultable

Defaultable Bond Prices
0.06 T T T T T

—p,,=—06
===Pyy =00

--l—-pl3 = 06

0.02- ' b

0988 0.89 0.9 0.51 0.92 93 0.94 0.95
Normalised Defauitable Bond Returns
0.06 T T T T T
0.04+
0.02r
0
—4 3

Figure 2.2: Distribution of defaultable bond price and normalised bond returns under varying
p13 while keeping p12 = 0.30 and pg3 = —0.40.
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bond price and defaultable bond returns distributions.

[ P13 [ -0.60 0.00 | 060 |
Kurtosis (Price) || 3.2345 | 3.9043 | 4.6427
Skewness(Price) || -0.5263 | -0.7667 | -1.0254
Kurtosis (Returns) || 3.7569 | 4.3455 | 4.7903
| Skewness(Returns) || 0.0973 | 0.1393 | 0.1997

Table 2.3: Effect of correlation p;3 between short rate and stochastic volatility with change
in the kurtosis and skewness of defaultable bond price and bond returns.

Figure 2.3 illustrates the effect of the correlation p;3 between the short-term credit spread
¢(t.V) and the short rate process r(¢,V) on the distribution of defaultable bond prices.
Increasing the correlation po3 tends to decrease both the kurtosis and the (negative) skewness
of the distributions. The correlation py; between the short-term credit spread c(t, V') and
the short rate process r(t,V) conveys information about the covariation between default-
free discount rates and the market’s perception of default risk. In Longstaff and Schwartz
[1995b] and Duffee [1998], it was shown that this relationship is negative for investment-
grade, noncallable corporate bonds and strongly negative for lower rated and callable bonds.

The magnitude of the effect of this correlation, po3 is given in Table 2.4.

| P13 -0.60 [ 0.00 | 0.60 |
[ Kurtosis (Price) [ 5.6115 | 4.5180 | 4.4358
. Skewness(Price) | -1.2169 | -0.9805 | -1.0128
Kurtosis (Returns) || 5.9690 | 4.6780 | 5.0029
Skewness(Returns) || 0.1443 | 0.1641 | 0.1933

Table 2.4: Effect of correlation pg3 between the short rate and the short term credit spread
on the change in kurtosis and skewness of defaultable bond price and bond returns.

Figure 2.4 illustrates the effect of the volatility of volatility ¥ on the distribution of de-
faultable bond price and returns, respectively. When ¢¥ = 0, the volatility process is
deterministic and an increasing ¢ implies that the market has a higher chance of extreme
movements. We observe that, increasing volatility of volatility tends to skew the bond price
and bond returns distribution to the right and increases the kurtosis of both the bond price

and bond returns. Note that, it has been empirically observed that negatively skewed returns
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Figure 2.3: Distribution of defaultable bond price and normalised bond returns under varying
po3 while keeping p12 = 0.30 and p;3 = 0.45.
(with heavy downside tails) are characteristic of portfolios of defaultable bonds, see D’Souza

et al. [2004].

We also investigated the effects of the speed of mean reversion ky on the volatility process
of the defaultable bond price and returns distribution. From Figure 2.5 we observe that
increasing the speed of mean reversion of the volatility process reduces the kurtosis of both
the defaultable bond price and returns. Figure 2.6 shows the effect of the default intensity

h(t) on distribution of defaultable bond price and bond returns.

We finally tested the deviation from ‘normality’ of the various price and returns distributions
using QQ-plots, the results of which are given in Figure 2.7 under full correlation and the
parameter values given in Table 2.1. Of particular mention is Figure 2.7(c) which captures
the heavy tail events in the normalised returns of the defaultable bond with the risk-neutral

default intensity h(t) = 0.0507.

In Figure 2.8 we show the effects of varying the bonds maturity on the bond price and returns
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Figure 2.4: Distribution of defaultable short rate and defaultable bond price under varying
o while keeping the correlation piz = 0.30, p13 = 0.45 and py3 = —0.40.
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Figure 2.5: Distribution of defaultable bond price and defaultable bond returns under varying

K.
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Figure 2.6: Distribution of defaultable bond price and defaultable bond returns under varying
default intensity h(t).

distribution. From Figure 2.8(a) and Figure 2.8(b) we observe that increasing the maturity
T reduces the negative skewness and lowers the kurtosis of the bond price distributions.
However, increasing the maturity was observed to lead to an increment in the kurtosis of the

bond returns as shown in Figure 2.8(c) and Figure 2.8(d).

2.4.3 Discussion

Our model results indicate that increasing the correlation between the volatility process
V(t) and either the short term credit spread c(¢, V') or short rate processes r(t, V) (pi2 or
P13 respectively) increases the negative skewness of the risky and pseudo bond prices. This
is attributed to the existence of a long left tail of the distribution. In addition, there is an
increase in the positive excess kurtosis due to less frequent large changes, again indicating

the presence of long, fat tails.
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Figure 2.7: A set QQ-Plots of Bond Price quantiles: (a) describes the qg-plot for Pseudo bond
price quantiles; (b) describes the qg-plot for defaultable bond price quantiles; (c) describes
the qq-plot for defaultable bond returns quantiles; and, (d) describes the qg-plot between
the Pseudo-bond price quantiles and defaultable bond price quantiles.

Increasing the correlation p;3 between the credit spread and short rate of the defaultable
bond leads to a decrease in the negative skewness and kurtosis of both the defaultable bond
price and bond returns. In particular, we observe that there is a reduction in the peakedness
of the defaultable bond price distribution. This change is also observed in the distribution of
the returns for the defaultable bonds. It was noted in D’Souza et al. [2004] that defaultable
bonds have returns that are negatively skewed. This, they observed was due to the fact that
the probability of defaultable bonds earning a substantial price appreciation is relatively small

but there exists a large probability of earning small profit through interest rates earnings. The

distribution, as observed also in our simulated results tends to be skewed around a positive
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Figure 2.8: Panel (a) describes pseudo bond price distribution; panel (b) describes the
defaultable bond price distribution; panel (c¢) describes the distribution of the normalised
pseudo bond returns while panel (d) describes the distribution of the normalised defaultable
bond returns. All these distributions are made under increasing maturity.

value with a small positive tail reflecting the limited upside potential. Adverse movements
in credit quality occur with small probability but these can have an adverse negative impact
on the value of the asset, generating significant losses. It has been empirically observed

that skewed returns with heavy downside tails are characteristic of portfolios of defaultable

bonds.

In addition, we observed that increasing the volatility of volatility increases both the kurtosis
and negative skewness of the defaultable bond price when the short rate, credit spread
and stochastic volatility processes are independent but there is a reduction in the negative

skewness under a full correlation structure in addition to an increment in the kurtosis under
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both cases. We also observe that higher volatility of volatility yields an increase in the
kurtosis of the defaultable bond returns under both cases of dependent and independent

structures.

2.5 Summary

This chapter develops a class of defaultable HJIM term structure models with unspanned
stochastic volatility. By modelling the credit spreads, a connection between the default-free
and the defaultable forward term structure has been established and a correlation structure
between credit spreads, interest rates and stochastic volatility has been incorporated. We
specified the default process using a marked point process whose marker models the un-
certainty in the recovery rate. We have considered level dependent volatility specifications
that reduce the proposed model to admit finite dimensional realisations. In addition, we
derived an explicit exponential affine formula for defaultable bond prices in terms of some

state variables.

The chapter also attempts to provide a link between the state variables and the market
observed quantities, in particular fixed tenor forward rates. This is of significant value when
implementing the model and further research into calibration and evaluation of these models.
We also expressed the defaultable forward rates in terms of the fixed tenor forward rates and
obtained a representation of the defaultable bond price in an exponential affine form, in

terms of the fixed tenor forward rates.

Some numerical results have been presented demonstrating how the level of the volatility of
volatility, speed of mean reversion of the stochastic volatility process and correlation between
the Wiener processes driving the defaultable short rates, short term credit spreads and the
stochastic volatility affect the defaultable bond prices and returns. The parameters used in

the simulations were chosen from past empirical studies in the default-free HJM framework
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and adapted to incorporate default risk. Evidence of the existence of fat tails due to the
presence of stochastic volatility and defaults in the bond price dynamics was observed in the
distributions as depicted by the QQ-plots. In addition, the varying effects of the processes
as a result of their varying correlations was observed in the skewness and kurtosis of the
distributions. These observations were found to be consistent with the stylised facts on

defaultable debt in the presence of stochastic volatility as well as under a correlated system.



Chapter 3

Pricing Defaultable Securities under

Humped Volatility

In this chapter, we introduce a framework for pricing credit derivatives within the defaultable
Markovian HJM framework under stochastic volatility. We generalise the stochastic expo-
nential decaying volatility specifications developed in Chapter 2 to allow for a term structure
model with stochastic humped volatility in addition to depending on the level of the interest
rates themselves, in line with the empirical evidence in Chan et al. [1992], Amin and Morton
[1995] and Mercurio and Moraleda [2000]. The hump volatility specification allows for sharp
curvature changes within the forward rate curves thereby reducing pricing errors in addition
to producing various shapes. This framework therefore yields an effective pricing model for

options on defaultable bonds as well as for credit default swaps and swaptions.

3.1 Introduction

Over the course of time, the credit derivatives market has evolved from a primarily single-

name CDS market into a more complex market that consists of not only the more mainstream
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single-name CDS (in both high grade and high yield credit) but also the liquid CDS indices
(CDX, iTraxx) and the correlation and volatility products. Whereas a single-name CDS
is physically settled, CDS indices and tranches are moving towards a standardised cash
settlement where following a credit event, the protection seller provides a single cash payment
which reflects the extent to which a market valuation of a specific debt obligation of the

reference entity has fallen.

Following the events of the recent financial crisis, both the regulators and credit risk models
have received a fair share of criticism. Regulatory authorities in the critical financial centres
potentially had information on the sub-prime exposure (and hence potential losses) on an
institution by institution basis. The entire system of safeguards, consisting of disclosure,
regulation and supervision failed and these failures have driven regulators into setting tougher
rules and are requiring banks to run stress tests with scenarios that include huge jumps in
interest rates. There is also the requirement for ‘reverse’ stress testing (compulsory in some
countries), in which a firm postulates that it has failed and works backwards to dctermine

which vulnerabilitics caused the hypothetical collapse.

Berndt, Ritchken, and Sun [2010] noted that the Markovian framework in the Heath, Jarrow,
and Morton [1992] model is uniquely suitable for credit stress testing since it is both tractable
and general. The state variables can be shown to have some economic interpretation as
functions of forward rates of different maturities. The volatilities of the instantaneous interest
rates and credit spreads can be chosen arbitrarily and are not restricted to the affine family
of Duffie and Kan [1996]. The defaultable HIM framework allows for the risk-free and
credit spread curves to be analytically computed at any point in time as a function of some
state variables and can be initialized to match the observable term structure of volatilities.
The model also allows one to incorporate the correlation between interest rates and credit
spreads which has been shown (for example in D’Souza et al. [2004]) to be critical when
valuing options on risky debt or when valuing insurance contracts that offer protection

against default of a counterparty to an underlying derivatives position. In addition, they
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showed that Default-free interest rates, credit spreads and stochastic volatility exhibit mean-

reversion.

Empirical studies have shown that interest rate volatility is stochastic. Ball and Torous
[1999] observed that in contrast to stock returns, interest rate volatility exhibit faster mean
reversion behavior and the innovations for interest rate volatility are negligibly correlated to
the innovations in interest rates. Collin-Dufresne and Goldstein [2002] and Casassus ct al.
[2005] postulated unspanned stochastic volatility factors that drive the innovations of interest
rate derivatives but do not affect the innovations in the swap rates and therefore the bond
prices themselves. They argued this unspanned volatility is the derivatives volatility that

cannot be hedged using the vield curve instruments.

Humped volatility improves the model specification, both in terms of likelihood score, anal-
ysis of yield errors and cap pricing performance. Reno and Uboldi [2005] argued that a
HJM model with humped term-structure volatility could be an alternative to the unspanned
volatility model in Collin-Dufresnc and Goldstein [2002]. They showed that the R? of the
regression of observed straddle variations against the straddle price movements from the
humped HJM model were close to unity and the model performed well in modelling of strad-
dle prices although their results did not rule out the existence of unspanned volatility. Trolle
and Schwartz [2009] showed that a model based on the HJM with a humped term structure
and unspanned stochastic volatility matches the implied skews and the dynamic volatilities
in the risk-free setup. They estimated the model using a 7-year data set consisting of LIBOR,
swap rates, forward swaptions and caps using Quasi maximum likelihood in conjunction with

the extended Kalman filter and observed that it gives a good fit.

The chapter makes the following contributions. A generalised defaultable term structure
model within the Heath et al. [1992] (hereafter HIM) framework that accommodates un-
spanned stochastic volatility is presented. More specifically, the proposed model has the
following properties. By construction, the model is consistent with the currently observed

yield curve and credit spread curve. The model features a default-free term structure that
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is driven by n factors, a defaultable term structure that is driven by 2n factors, and n addi-
tional stochastic volatility factors affecting only (interest rate and credit) derivative prices.
Additionally, the connection between the two markets (default-free and defaultable) is estab-
lished through the credit spread, see Schénbucher [1998], which allows us to accommodate a
correlation structure between the interest rates, the credit spreads and the stochastic volatil-

ity.

However, it is well-known that these models are Markovian in the entire yield curve and
credit spread curve thus requiring an infinite number of state variables. Consequently, a
quite general volatility specification for the default-free and the defaultable term structure is
proposed that leads to finite dimensional realisation of the state space, sce for instance Bjork
et al. [2004], Chiarella and Kwon [2000a] and CNS. The proposed volatility structure allows
for level dependency and hump-shaped shocks. In this regard, our model can be considered
as an extension of the Berndt et al. [2010] to accommodate unspanned stochastic volatility.
In line with the empirical evidence provided by Chan et al. [1992], Amin and Morton [1995]
and Mercurio and Moraleda [2000], the volatility structure depends on the level of the short
rates and the short-term credit spreads. Under these volatility specifications, the model
offers tractability and flexibility as it allows (default-free and defaultable) bond prices to be
expressed as exponentially affine functions of state variables which are jointly Markovian.
Although the model gives rise to a large (finite) number of state variables, their Markovian

structure guarantees that the computational cost remains low.

In addition, pricing of credit derivatives is considered under the proposed model. We de-
rive pricing formulas for single-name credit default swap rates (hereafter CDS rates) and
swaptions. Based on approximations proposed by Brigo and Morini [2005], CDS rates are
expressed in terms of defaultable bond prices with varying maturities, both in the absence
and the presence of counterparty risk. Swaptions have been also priced by using a Black’s-
type formula. Lastly, the impact of the correlation structure and the stochastic volatility

specifications on CDS rates and swaption prices is studied by the means of Monte-Carlo
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simulations. The simulation results indicate that the correlation between interest rate and
credit spread impacts the CDS rate and consequently the swaption prices, similarly to the
results derived by Berndt et al. [2010]. This is contrary to the results given in Krekel and

Wenzel [2006], who argued that this correlation does not play a significant role in the pricing.

On relaxing the level dependency assumption within the humped volatility specification, we
then extend the framework to the option pricing problem. By considering a put option that
is ‘knocked-out’ on default of the underlying bond, we apply Fourier transform methods to
derive a semi-closed form solution for the option and obtain the option pricing formula by
inverting the semi-closed-form solutions of the characteristic functions derived. The resulting
coupled system of differential equations when calculating the exercise probabilities is solved

using numerical integration.

The chapter is structured as follows. Section 3.2 presents a multi-dimensional defaultable
term structure model with unspanned stochastic volatility. Section 3.3 proposes a hump-
shaped level dependent volatility structure for the default-free and the defaultable forward
rate that allow this model to admit finite dimensional affine realisations and to produce
exponentially affine defaultable bond prices. Section 3.4 considers the pricing of credit default
swaps and credit default swaptions. In Section 3.5, the framework is applied to price put
options on defaultable bonds where we have assumed that the option is knocked out on the
default of the underlying bond. Section 3.6 concludes. The proof of the technical results in

this chapter are given in Appendix II.

3.2 A General Defaultable Term Structure Model

We introduce a defaultable term structure model under a general volatility specification that
allows a wider range of volatility shocks to the defaultable forward curve. In particular, it

represents a term structure in which the volatility is level dependent and contains a hump.
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As in Chapter 2, we assume the complete probability space (2, 7, P) given the full filtration
F, = FV v FYN contains default-free information plus explicit monitoring of default up to
time ¢ as defined in Section 2.2. In addition, for this chapter, we define default time to be

T=T1].

We consider the model setup of Section 2.2. To allow for various factors in the economy
or the market to drive the dynamics of the forward rate and credit spread, we propose the

following multi-dimensional model.

Assumption 3.2.1 The instantaneous default-free forward rate f(t,T,V) and the instan-

taneous forward credit spread N(t,T, V) satisfy the stochastic integral equations

F(t, T, V) = f(0,T,Vg) + f tuf(u,T, V)du+» ]0 taif(u,T, Viyaw/! (),  (3.1)
i=1

0

t n t
At T,V) = A0, T, Vo) + / oM, T, Vydu+ Y ] oMu, T, V)dW} (),  (3.2)
0 i Jo

where the stochastic volatility vector process V.= {(Vi(t), ..., V,(t)),t € [0,T]} satisfies the

set of the stochastic differential equations

dVi(t) = @V (t, Vi)dt + &) (t, V) dWY (t),i = 1,2,..n (3.3)

with V being the initial value of the volatility process. As in Section 2.2.1, we assume that
the same volatility process V; is used for both volatility functions a{ (¢,T,V;) and o}(t, T, V;)

and that the drift and the diffusion of the volatility process depends only on V;.

By using definition (2.6) and the dynamics specified in Assumption 3.2.1, the stochastic
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integral equation for the defaultable forward rate is expressed now as

fHE, T, V) = f40,T,V,) + ft(af(u, T,V) + oMu, T, V))du

" ’ " (3.4)
=y / of (u, T, V)dW{ (u) + 3 f oMu, T, V;)dW(u),
i=1 Y0 i=1 Y0
where the initial defaultable forward curve is
F40,T, Vo) = f(0,T, Vo) + A0, T, Vy). (3.5)

Furthermore, the specifications of Assumption 3.2.1 imply the following dynamics for the
instantaneous default-free short rate r(¢, V) := f(¢,1, V) and the instantaneous short-term

credit spread (¢, V) := A(¢, 1, V)

r(t,V) = f((],t)+ftaf(u,t,V)du+i/taf(u,t,v‘-)dwgf(u), (3.6)
0 i Y0
L n t

c(t, V) = X0, 1) —f—/ oMu, t, V)du + Z/ oMu, t, V))dWMu), (3.7)
0 i1 YO

respectively, where for notional convenience, we have suppressed the explicit dependence
on Vg by setting f(0,t) = f(0,t,Vp) and A(0,t) = X(0,¢,Vg). For T = t, Equation (3.4)
provides the dynamics for the instantancous defaultable short rate r(¢, V) := f4(t,(,V) =

F6,5, V) + A(t, ¢, V) as

ri(t, V) = £40,t) + /i(af (u,t, V) + oMu, t, V))du

— T (3.8)
+ Z] crf{u, L 'Lf;)dWif(u) + Z/ oMu, t, Vi)dW (u).
=170 i=1 70
In the subsequent analysis, we consider the correlation structure
Sipi¥dt if z # vy,
E[dWy - dWY] =< (3.9)

Sidt it z =y,



63 3.2 A General Defaultable Term Structure Model

1 ifi=j,
where §;; = J ,for zyy € {V, A, f}, 1 <i,j <nand p¥ € [-1,1] for all 5.
0 otherwise

The correlated Wiener processes W/ (t), W) () and WY(t), for i = 1,2,...,n, can be
expressed in terms of independent Wiener processes W;(t), for ¢ = 1,2,...,3n. For

i=1,2,...,n, we adopt the following decomposition (for modelling convenience)
f _ . h :
Wl (1) = =P dwi),

dWA(t) = 2 dWi(t) + 22 dW,4.(2), (3.10)

dAWY (t) = 21 dWi(t) + 2/2dW,i(t) + 23 dWapn4(2),

where the correlation parameters, for ( pzf )2 # 1, are set as

A
"lngf. 332:\/1—(;) e, (3.11)
Y [ ) Ve YN ’
Vi VS Va Pq' P,IP ! Ve 1-— (P«;f)z - (Pi _}')3 (P‘ )\)z 2p; f nyA
z; = 7f z %} = — U\Q .
1-(p}))2 Pi

By using the decomposition (3.10), the stochastic integral equations (3.1) and (3.2) as well
as the stochastic differential equation (3.3) are expressed in terms of independent Wiener

processes as

t n t
f(z,T,V):f(U,T)+/ (xf{u,T,V)du+Z/ &7 (u, T, Vi)dWi(u), (3.12)
0 i1 Y0
t n .
A, T, V) :,\(O,T)+/ a*(u,T,V)dquZ/ &Mu, T, V;)dW;(u), (3.13)
0 o1 Y0

(%]

dVi(t) = o (t, Vi)dt + Z (ViAW 1yt (B), (3.14)
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where the volatility functions &g’ (¢, T, Vi), 3)¢t, T, V;) and &Y (t,V;) are given by

zglcr{(t,T,%); fori=1,...,n

5{(t. T, V) = (3.15)
0, otherwise;
AL_A .
2o (8, T, V;), fori=1,...,n;
T V)= * " ( ' (3.16)
Z{\_znag\_n(t, T, Vip), fori=n+1,...,2n;

while for j =1,2,3andi=1,...,n,

Yt Vi)=20Y(t,V;), for i=1,...,n and j=1,23. (3.17)

Moreover, when the decomposition (3.10) is applied to (3.4), we have that the defaultable

forward rate follows the stochastic integral equation
t 2n ot
fUe,T) = F40,T) + f (@f (u,T) + o (w, T))du + / G (u, T, V;)dW;(u), (3.18)
0 =1 /0
where
G4 T Vi) = 61 (4T, Vi) + 61, T, V3). (3.19)

The system of equations (3.14), (3.18) and (3.12) embeds stochastic volatility into a tradi-
tional defaultable HJM framework. The default-free forward rate is driven by n sources of
uncertainty while the (apparently larger) defaultable forward rate is driven by 2n sources
of uncertainty. The volatility of these forward rate curves, in general, is driven by a total
number of 3n sources of uncertainty, subject to the correlation structure between the forward
rate and their volatilities. Therefore, volatility sensitive instruments, such as interest rate
derivatives and credit derivatives are affected by 3n factors. Indeed, the proposed framework
can be considered as an adaptation of the Heston [1993] stochastic volatility equity model

to a defaultable term structure model.
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Our extension of the HJM framework to a defaultable setting incorporates also unspanned
stochastic volatility. A defaultable term structure model with 2n factors is considered, where
n factors are associated with the default-free term structure and 3n factors associated with
their volatilities. Thus the proposed model, subject to the correlation structure allows for n
unspanned stochastic volatility factors.

For illustrations purposes, we present the system of the stochastic integral and differential

equations (3.12), (3.13) and (3.14) for the special case of n = 3.

t

ST, V) = f(0,T) + / taf(u,’l‘,V}du+ f ta{ (u, T, V4)dW, (u) + f &1 (u, T, Va)dWi (u)
1] (W] 0

t
+ f &4 (u, T, Va)dWs(u),
0]

t

At T, V) = A\0,T) + f ' o u, T, V)du + f zc"rf‘(u,T,v,}fm-’l(u)+ f a2 (u, T, Va)dWa(u)
] 0

t
+/ Mu, T, Va)dWi( u)+/ & (u, T, Vi)dWa (w) (3.20)

L
+ / G2 (u, T, Vo) dWis(u) + / G4 (u, T, V3)dWe(u),
1] [#]

AV (t) = ¥ (8, V3)dt + &Y (¢, V1)dW, (£) + &7 (t, V1)dWa(t) + &5 (t, V1)dWs(t),
dVa(t) = ay (t, Va)dt + 63 (1, Va)dWa(t) + 67 (L, Va)dWs (1) + Gy (t, Va)dWs(2),

dVa(t) = ay (t, Va)dt + 55 (t, Va)dWs(t) + o (t, Va)dWs(t) + Gy (¢, Va)dWs(t).
Hereafter, we suppress the dependency of the volatility functions 6';" and &} on V; for nota-
tional simplicity.

The absence of arbitrage implies that there exists an equivalent probability measure P where

for every maturity T there is a 3n-dimensional process
y
(I)n(t) = {‘;bl(t]u (902(]5): ey ¢’3‘n(t))t (S [0, Tw]}:

and a strictly positive measurable function ¥(¢, q) satisfying the integrability conditions

t t
] [|¢:(s)||?ds < 00, for i=1,2,...,3n, / / (s, q)|h(s,dq)ds < oo, (3.21)
0 0o JE
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such that

dW;(t) = dWi(t) — ¢i(t)dt, for i=1,2,...,3n, (3.22)

is a P-Wiener process and the default indicator process N(f) has a P-intensity

h‘(t: dg) - ’i;ﬂ‘(t, Q)h‘(t: dg) (323)

Using Girsanov’s theorem (see Heath et al. [1992] and Bjork et al. [1997]) and working along
the lines of Proposition 2.6 and (2.45), we obtain the multi-dimensional version of the HJM
default-free and defaultable forward rate drift restriction, respectively, (see equations (2.41)
and (2.45)) as

T

of (t,7) = =" 5{(t.T) (@(t) - /t ! a1, s)ds), (3.24)

i=1
T
i

2n
oX(t,T) = of (t.T) + oM, T) = = Y 646, T) (6:(t) - ] 52(t,s)ds). (3.25)
i=1

Moreover, by using (3.25) together with (3.24) and (3.19) we derive the credit spread drift
restriction which is expressed in terms of the volatilities of the default-free forward rate and

the credit spread as

2n 2n T
At T) = - ()G LT)+ Y 5. T) / G} (t, s)ds
i=1 i=1 ¢

(3.26)

i

+Zj (a2e1) / "5l (4 )ds + 51(6,T) ] ", )ds).

By substituting the drift restriction conditions (3.24) and (3.26) into (3.12) and (3.13),

respectively, we obtain the dynamics for the forward rate and forward credit spread processes
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under the risk neutral measure

nooot ; T ; noopt ; _
- 7 (u & (u. 8 o TYdW;(u), .
7(t.T) f(O,TJ+§./O & ‘T)fu & (u, )dsdu+§f0 o (u, T)dWi(w),  (327)
T

2n # n i T
AET) =M0,T)+ ) / &Mu, T) / 5 (u, s)dsdu+ Y ] Mu, T) / & (u, s)dsdu
i=1 Y0 i=1 Y0 u
n t T n st _
+) f &/ (u, T) f M u, s)dsdu+ ) f 5 (u, )dW; (u). (3.28)
i=1 Y0 u i=1 70

Further, by substituting the drift restriction condition (3.25) into (3.18), the defaultable

forward rate f%(¢, T') is governed by the system of equations, under the risk-neutral measure,

i, T) = f40,T) + Z[; 5?(1;,’1")/ 5% (u, s)dsdu + Z/ﬂ 53 (u, T)dW;(u), (3.29)

where the risk neutral dynamics for the volatility process V = {1}, V4,..., V,,} are expressed

as

3 3
avi(t) = [a¥ (Vi) + 3 66-0msi0FY (VD |de + D Y (6 VAW msslt) (3.30)
i=1

J=1

By setting 7" = ¢ in (3.27) and (3.28), we obtain the risk-neutral dynamics of the short rate

and short term spread as

1 + i n i
r{t) = f(0,t 5! 1, 55 , 8)dsd 5 (. ) dWi(w), .
) = £( f)+§fn &1 t)fua,(u ) u+§fn & (u, £)dWi (u) (3.31)
2n t t L £ t
= 5 5 sdu & 54 (u, s)ds
c(t) = A(0,¢t) +§A 7 (u, t)fu i (u, s)dsd +§fo Mu, t)ju &} (u, s)dsdu
n t t n t
5 (u M, ¢ M, Vi(u). .
+i_zl/0 a; ( ,t)/‘u i ( ,9)dsd‘u+§]ﬂ 7 (u. t)dW;(u) (3.32)

Consequently, the instantaneous defaultable short rate dynamics r4(t) = f9(¢,1) satisfies the
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stochastic integral equation

ri(t) = f40,t) + 22,1-/;5@(1;; t) /t c?rfi(u,.‘;)nsl.'::d'u;ﬁ—2213/t & u, t)dW;(u) (3.33)
, i:ll)!’ul :?:10Tsl ’

Working along the lines of Proposition 2.5 (but for the multi-dimensional case) and using the
drift restriction conditions (3.24) and (3.26), the corresponding dynamics for the defaultable

bond price under the risk-neutral measure satisfies the stochastic differential equation

% = r(t)dt + g &% . (t, T)dW;(t) — dM(w, t), (3.34)

T

where the volatility function is given by (}‘f?,,-(t, T)=— f 5%(t, s)ds and the process M(w, t)
t

is defined by

dM (w,t) :]Equ(w;dt,dq)—/J;qu(w;dt,dq). (3.35)

Proposition 3.1 The defaultable bond price can be expressed as

T .
P41, T) = ]l{.,;;g}IWE[-/ R(s)h(s, dg)e™ e s VIi+hwdnldu g
t

7. (3.36)

Proof: Similar to that of Proposition 2.11 but for 2n—dimensions as given in Appendix A.7.

Under general volatility functions, the defaultable forward rate curve in (3.29) is non-
Markovian, thereby leading to computational complexity during derivatives pricing. However
in the next section, we propose certain volatility structures that guarantee that the default-

able HIM admits finite dimensional realisations.
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3.3 A Specific Volatility Structure

A particular specification of these volatility functions allow us to transform the original non-
Markovian structure to Markovian form in line with earlier works in the stochastic volatility

vet default-free setting of Chiarella and Kwon [2001) and Bjork et al. [2004].

Assumption 3.3.1 For 1 <1 < n, the volatility functions are of the form

ol (t, T, Vi) = agi + ari(T = O)}/r(0)/Vi(H)e ™ T, (3.37)
oM. T, V) = [boi + bu(T — )/ e(t)V/Vi(t)e T8, (3.38)

where n{, nf‘, ag:, @15, bo; and by; are constants.

This class of volatility functions gives rise to a high degree of flexibility in modelling the
wide range of shapes of the yield curve by virtue of the polynomial in the deterministic
part. These volatility specifications are level dependent and involve unspanned stochastic
volatility factors. In addition, the specification allows for hump-shaped shocks that would

be essential in matching interest rate derivatives empirically.

Proposition 3.2 Under the volatility specification for the default-free forward rate and for-
ward credit spread as specified as in Assumption 3.3.1, the default-free forward rate f(t,T)

is expressed as

T

FT) = f0,T)+ > Boy (T = t)ayu(t) + 3> Bo (T — )0;i(t),  (3.39)

=1 i=1 j=1
and the forward credit spread A(t,T) is expressed as
n 20

A6 T) = M0, T) + Zn: Z By (T = Ozs(t) + > Ba, (T — £)®5:(1). (3.40)

i=1 j=2 i=1 j=T7
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Thus, the defaultable forward rate f4(t,T) is expressed as

n 3 n 20
[AET) = 40, T)+ D) B (T = t)zju(t) + Y > Ba (T = )@5(t),  (3.41)
i=1 j=1 i=1 j=1
where
( By (T —t) = [ag; + ani(T — t)]e_"{(T_”.,
B, (T — t) = Zg\l [b[)i + bi(T — t)?E_KNT_t),
Buy (T — t) = 202[bgi + bu(T — t)]e T,
Ba,, (T — 1) = 2l agie™ T-0),
_aug 1l agy . e (T—1)
Bo, (T —t) = ;:'r' (ﬁf + a_u)Lam -ay(T - t)le ;
4 aiiai (1 aoi (3.42)
Bo, (T —t) = — (_ ao0i
@Jl( t) [ K{ K{ + ali)
. . A2 .
P8 900 )(@ - )+ G (7 el T,
Ky sz- K;
(a1:)® 11 @i\ _nf(r—
Bg,. T—1)= J— —_ Ky (T t),
o, (T — 1) . (n{ + au)e
Bo, (T —t) = _a—? [E’l}l‘ + 2a0; + 2a;(T — t)]e_%{fT‘t)‘
Ky R
_ (‘111)2 —2:f(T-1)
| Bq')m(T—t)— —TE s

i
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.

agiboi | a1iboi | faoibi | @b _KMT-1)
Bay (T —t) = 2 B0 (S0 AN (7 gyl RTD),
W0 = N RN R At J
-
apiboi . ariboi a1:boi | @bl | aiibi
Bg, (T —t) = =20 + Tt
@0 =2 [ L+ 5 T )T

ahblz (T ) j| e—(n{-l'ﬂ?}('r—!):

B (T — t) = 24 (M N M)e-nm_n‘

AR (W)
3.43)
M aisboi | aoibii | awubi  a1bi (! R2)(T— 0. (
B@loe(T_t) = T [ .!q:f ﬁf (,a;-_f)? 2 n-,f (T t)]e
T T 3 1
bl AT
By, (T -t) = —z;‘l‘“ﬂ_fle (< +sD(T 1)
_ nJaoiboi | aoibii | raiboi | a1ibii k(1)
BowuT =) =27 [ =57 + (32 ( ) (n3)2)(T - fea,
T T T
agiboi | @1b1i\ . tipy
B‘I:'l.'i(T—t): :\1 T e " )
L ( K} (KE\JQ)
( byi boi N o
Bo,, (T - Kl{\ (.‘\7 + b? )Ib[}z + b1 (T ~ t)le o t);
bubii (1 boi\ | bui by ; e
Bow (T = 1) = [255 (S + 72) + =2 py + 2b0;) (T = £) + &)y 2] -2str-0),
by; 0\ —x*T—
B‘?lu (1 _‘t) (::) (&A +b—l_)e T t):
b s (3.44)

Bow (T =) = = 5[5 + 2boi + 2b34(T -~ t)]e—%NT—”,

1

b1i)° ot
By, (T —1) = _(;,\) e 2T t)a

Y
Bqllgi (T - t) = z?lblie_ﬁ‘ I\T‘t),

B‘I’zoa(T - t) = z:\zblic_ﬁ?{’r-t)?

and the state variables x;;(t) and ® (1) satisfy the stochastic differential equations given in

Corollary 3.3.

Proof: See Appendix B.1 for the technical details. [ |

Corollary 3.3 The state variables z;;(t) and ®;;(t) satisfy the stochastic differential equa-
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tions

dari(t) = —xf cr(t)dt + /r(8)Vi(t)dWi(t),

dzgi(t) = —K1 2o (1)dt + /()i (£)dWi(t),

dzsi(t) = —k}zai(t)dt + /c(t) Vi (£)dW, 44 (t)

d®1i(t) = [z1(t) — kI ®u(t)]dt,  dBau(t) = [r()Vi(t) — & ®2u(t)] dt

d®si(t) = [r()Vi(t) — 261 Bgi(t)]dt,  dPai(t) = [D2i(t) — £ Pai(t)]dt

d®si(t) = [®3:(t) — 267 5i(1)]dt,  dPei(t) = [2@5i(t) — 2] Dei(t)]

do7.(t) = [(Vi()Vr(Oc(t) - x}Or(0)]dt,  dPsi(t) = [ViO)V/r(D)e(t) — (] + k) @ai(D)]dt,  (3.45)
dBoi(t) = [@9i(t) — k) Boi(t)]dt,  dPioilt) = [Br0i(t) — (r] + £})Pr0:i(t)]dt

d®115(t) = [2B12:(t) — (k] + &) @10 ()] dt,  dP12i(t) = [Vi(t)V/r(t)c(t) — kI B1ai(t)]dt,
dPy3i(t) = [@14i(t) — k] Przi(t)]dt,  dPrai(t) = [c(O)Vi(t) — w] @ra(t)] dt

d®1s5i(t) = [c(t)Vilt) — 26} @15i(t)|dE,  dPigilt) = [P16i(t) — K] Pr6i(t)] dt

d®17:(t) = [P15i(t) — 267 P17:(t)]dt,  dB1si(t) = [2017:() — 26} B1si(2)] dt,

dP1oi(t) = [w2i(t) — K} Proi(t)]dt,  dPooi(t) = [m3:(t) — K] Pao:(t)]dt

\

subject to the initial conditions z;(0) = ®;(0) =0 fori=1,..,n and j = 1,...,20.

Proof: Take the stochastic differential of (B.1.4), (B.1.10) and (B.1.12) in Appendix B.1 to

obtain the stochastic differential equations.

Corollary 3.4 The short rate and the short term credit spread processes can be expressed

as

n 6
r(t) = £(0,1) +Zahzh(t )+ DD B
j=1

i=1

C(t, T) = A(O, T) + Z Z Oijgil?ﬁ(f) + Z Z ﬂﬁ@ﬁ(t)

i=1 j=2 i=1 j=T7

(3.46)

where Qg = le (0) and ?831, = Bq’jg(o)'
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Proof: By using (3.39) and r(¢) = f(¢,1), as well as (3.40) and c(t) = A(¢, ). |

For simplicity, we will assume that on specifying the market price of risk ¢(;j_1),4i(t), the
drift function given in (3.30) can be simplified to the general form s, (V; — V;) and (3.30)

could be written as
— 3 o~
AVi(t) = kY (Vi = Vi)dt + > a5/ Vi(t) AW _1ymaa(t) (3.47)
j=1

Figure 3.1 illustrates a possible evolution of the defaultable forward rate curve surface (3.41)
for n = 1. The surface is generated over a maturity T' = 2 by assuming that the initial term

structures of the forward rate and forward credit spread are given by
£(0,7) =0.05 — 0.03/V(0)e %7 and A0,T) = 0.03 — 0.01/V(0)e 167,

respectively with the initial volatility chosen to be V(0) = 0.08. In addition, Table 3.1

specifies the parameter values used in the illustration. *

apy ayy ’7501 l by ' |4 & | &y Kf l»‘ﬁ)\ x por l pv! |pﬂ'—l
0.0045 | 0.0131 | 0.0025 | 0.011 | 0.0857 | 0.096 | 0.85 | 0.3341 | 0.25 | 0.2720 | 0.4615 | -0.40 |

Table 3.1: The parameter values used in simulating forward rate and price surfaces, where

YV (=Y =V =V
6" = {8,},019, 013}

As evident from Figure 3.1, the proposed hump-shaped level dependent stochastic volatility

model can generate a variety of shapes for the defaultable forward rate curve.

Proposition 3.5 If the default-free forward rate dynamics satisfies the dynamics i (8.39),

20The model is sensitive to the choice of the parameters agy, a1, bo1, b1, & ¢ and K. A parameter
estimation exercise would add a lot of value to the simulation results, more so for the forward credit spread
dynamics where this (to the best of our knowledge) has not been attempted within the HIM framework with
stochastic hump shaped volatilities. For the default-free parameters, we experimented with the parameters
estimated in Trolle and Schwartz [2009].
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Defaultable Forward Curve Surface

Defaultable Forward Rate
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Time, t 00 Time—-to-Maturity

Figure 3.1: A sample evolution of the defaultable forward curve surface simulated using
(3.41) for T = 2 years.

the price of a default-free bond is ezpressed in the exponential affine form and of the form

P(t,T) = ’; ((‘())t xp (- ZD% b t)—ZZD¢J_ (T - ;1) (3.48)

=1 j=1

In addition, assuming that the defaultable forward rate process satisfies the dynamics given
in Proposition 3.2, then the defaultable bond price P4(t,T) = R(t)P%(t,T) is exponential

affine and has the representation

= P (0 T) n 3 n 20
P T) = S50 05 ° ( =Y Y DT - 0)zi(t) - 3. Da,o(T - t)<I>j,-(t)), (3.49)

i=1 j=1 i=1 j=1

where z;;(t) and ®;:(t) are specified in Corollary 3.3 and the deterministic functions D, (T-
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t) and Dg, (T —t) are given by

( f - -
Dy (T -1t) = z} - [agi! +ay — T (amﬁ{ +ayi +ayus! (T - f)) )
(G )2t -
Al .
2 —MT—
\ Daos(T 1) = (nt_\)? _ﬁoiﬂé\ +ay; —e T (ausn? +ay; + ayx} (T — t))_, (3.50)
Ae . ;
D, (T—t)= Zi agik) + ay; — e (T (a KD+ ay; + aykNT - t))
T3; - (K/\)2 | 04 vy 1i Difvg 1¢ lifvg Ik
{ D‘Dli(T_ t) = Z{If;li (1 - 6_“{(1‘_”)1
i
— (G (1 e ( L 900\ ({8 _ 1\ o (T — pe=r! (T—t)]
Da, (T — t) = (K{) (K,{Jrau)[ E{-i-ah)(e 1) +(T - t)e :
ay; aii | aoi | (00i)°\ , _axf(T-1)
3 - = — —_— — 1 - l
DQJ;(T L} ((}g{)g) [(2(55)2 + n{ + 2a1i )(6 )
i —F(a'—}l + ﬂ‘,m‘)(T - t)fz‘?"";'f(]"_'!J + %(T - t}ge_z"f(T_‘)} , (3.51)
Ki
o (ML ey kfroy)
quq‘.(T t) = (;"}‘) (Kf + a—h)(e 1),
I A5t aii N (o—2xf(r-1) _ (P _ =26l (1=t
Do, (T —t) = ((n.f)')) [(xf +ao,) (e 1) + a1 (T — t)e ],
lra i 2 _aef
Doy (T = 1) = 5 (%5 ) (779 —),
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A
’ M ai —? (T 0
Do, (T —t) = —2 [(ﬂi )bl,T—t) ]
‘Dn( ) K{Kf‘ 0 k‘ (
Al
\ z; agiboi
Do -0 =~ (5
i i 1
anbng)( (! DT 1) ) 1 (aubm agib1i aubn)
+ e T 1)+ +
(H}{)z K.! + K} K.{ K{ [K,f}‘Z

—tef 1M (T— ] M T 1 ayiby
[l—t’. (ki +RNT ﬂ“(-‘i{‘f"i;\)(T—l)e (wi +63HT t)jl -l—m(—“f—)

e
[2— e~ IHT=0 (3 — (] 4+ (T = (2 = (6] + DT - 1) ]},

Al
2" rapiboi | anibii AT =
] Doy (T — ) = 2 (22 4 ) (1 - (=170,

.52
Tl &5
P ai:bi; by (el RN 1)
Dq?lm(T_”:_K{(ﬁ{_i_ﬂ?){((al]ibli‘l‘ H{ )(bﬂi"zr‘:{-{.ng\)(l € )
+2b3(T - e~ DT =0},
P aribii —(f AT —t
D T )= - 2] el ! ),
@0 ( ) ( ¥ n &?) K.{ ( )
zh by -l (T-1)
Dg, (T —1)= — [(bﬂ, + k-f )ah(F —tle ]
HI n‘
zf\‘ aﬂibﬂi altb]i — f{T_p)
- = Lt _ 1-— Ky £
| Dayy (T = 1) n{ o .\)2)( )
and finally we have
( b 1 b ( 1 bm‘)( kA (T—1) —kMT—1)
==} [+ = — i -1 T-—1t i )
Dg, (T — 1) (K’:\) ( ’\+bh)[ fsg‘+bu € )"’( Je ]
by bii (b0i)*\ | —ax>(T—1)
) = — 0 ,—2K; —1
chm(T t) ({K/_\)z) [(2(5?)2 + E;,\ T 2by; )(L )
(bn +bu) Je 2R (T=1) bl;(T )% —2;;;‘(7'-:)]1
by —KMT-t) _
Dm0 = (35) (5 + o) 7 - ), (3.9
i lée .
D‘plﬁ (T _ t) _ ( biB ) [(bh bﬂl) (6—2:‘;? (T—t) _ 1) + bli(‘r I t)e—2n;\(T—t):|!
A
1 /by —2KMT— z; b kM (T —t
D@lSi(T_t)=_§(::7) (e 2 t)_1)= Dnge(T_t)z ) (l_e o ))‘
Az
Z: b‘ i —n‘?‘ _
Dd:zoi(T'_t) = "‘K,\l (]‘ —€ T t})‘

\ i

Proof: See Appendix B.2. |
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Figure 3.2 illustrates the price surface for defaultable bonds with maturity T = 10 years

using (3.49).

Defaultable Bond Price Surface

i~
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Pseudo Bond P
o
o
1

0.85
400

Time, t Time-to-Maturity (Months)

Figure 3.2: Price surface for the pseudo bond for a possible evolution of the state variables
z;i(t) and ®;;(t) for T = 2 years.

The default-free bond price can be expressed in terms of 8n = 7n + n state variables while
the defaultable bond price can be expressed in terms of 24n = 23n + n state variables, where
the n state variables are associated with n stochastic volatility variables. Both the default-
free and defaultable bond prices are exponential affine functions of these state variables
and the 7n state variables driving the default-free prices constitute a common set for both
default-free and defaultable bond prices. Even though the dimensions of the state space are
relatively large, the driving sources of uncertainty of the entire state space are only 3n. Thus
assessing the model’s flexibility and suitability for estimation or calibration applications, this
Markovian defaultable model can be computationally moderate. Note that the model can
be easily adjusted to accommodate exponentially decaying volatility functional forms for the
forward rates and credit spreads resulting in a Markovian system with lower dimension state

space as shown in Chapter 2.
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The proposed defaultable term structure model will be used next to explicitly price credit
derivatives, for instance, credit default swaps and swaptions. In addition, we demonstrate
in Section 3.5 that by excluding the level dependence on the forward rate and credit spread
volatility specifications, semi-closed solutions for options of defaultable bonds can be de-
rived. Pricing options on defaultable bonds under the broad volatility specifications in
Assumption 3.3.1 is perfomed only numerically via Monte Carlo simulations, see for instance
Chiarella et al. [2011], where a defaultable term structure is developed with level dependent

volatilities yet without stochastic volatility.

3.4 Pricing of Credit Default Swaps and Swaptions

In this section, we derive pricing formulas for single-name credit default swaps (CDS) and
default swaptions. For simplicity, the main focus is on the case where there is no counterparty

risk although we also show that this could also be incorporated into the pricing model.

3.4.1 CDS with no Counterparty Risk

A CDS contract involves three parties, the insurance buyer or insured party, the insurance
seller or insurer and the reference obligor. A CDS contract with maturity 7" allows the
insured party to receive protection, up to time 7', from the insurer against default of the
reference obligor. The insured party pays a regular fee = (premium) to the insurer in return
of a protection payment upon default. In the absence of counterparty risk, default time
7 < T represents the time that the reference obligor fails to make the required payments on
the structured reference bonds. When ¢ < 7 < T', then the insurer has to make a protection
payment (1 — R) at default time 7, where R is the recovery rate prevailing at the default

time 7, which we assume to be given.?! Then the discounted payoff of the protection leg,

21We note that although we use R for the recovery rate of the underlying risky asset, this is not the
recovery rate as used in Section 3.3.
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under the physical settlement assumption,® at ¢ < 7 is

Wr(t) = e 5 7041 — R) Ly rary. (3.54)

The insured party pays the premium 7 at times ¢;,7 = 1,2, ...., N until either the contract
maturity iy = T, if no default occurs, or until default, if 7 < 7. By denoting as §; = t;_ —{;,
then the value at time ¢ < #; of the premium leg, including the accrual payment for the

fraction of time in which default occurs, is given by
N ) _
Wprm(L) = ?TZ 5@8_ J".‘ T(ﬁ)dsl{?—)t‘-} + ?T(T - t-r_l]e_ J“ rtﬂd&]l{t(,—{'}‘}: (3.55)
i=1
where ¢; is the first premium payment date and ¢,_; is the last premium payment date ¢,

before default time 7.

For notational simplicity, we assume that the default intensity (under the risk-neutral mea-
sure) is h(t,dg) = h(t). Under no-arbitrage pricing, the value of the CDS can be expressed

under the risk-neutral probability measure as

CDSH(t) = E[Wire(t) = Wi (1)

7. (3.56)

The fair premium rate 7(¢), the so called CDS spread, is the rate that will make the value

of the CDS equal to zero.

Proposition 3.6 When the contract is settled (that is, the protection payment is made)

22Default can be settled physically where A and B exchange one of the specified reference bonds at its par
value or alternatively as a cash-settlement as is the common market practice. In this case, several independent
dealers are asked to provide quotes on the defaulted bond, and party B pays party A the difference between
the average quoted value and the par bond value. In a CDS, the protection buyer is effectively long on a
delivery option which gives the buyer the right to deliver the ‘cheapest-to-deliver’ asset to the protection
seller.
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immediately on default of the reference obligor, the CDS spread is given by

T (1 - R)ftT]E [ix(u)e’ff(r[sHﬂ(des .Ftw} du
7(t) = e = - . (3.57)
]1{7>t} Ei-_l 51-Pd(t, ti) + E (T - tr—l)e_ff T(s)ds]l{mr‘('r} Ft]
Proof: See Appendix B.3.3. [ |

Instead of allowing the protection payment to be made on default time 7, the protection
payment could be deferred to the first premium payment date ¢; following default time
(t; > 7). This gives rise to the postponed running CDS whose main advantage is that the
absence of accrued-interest term in (7—t,_;) ensures that all payments occur at the canonical

grid of the {;’s. We then have the following result.

Corollary 3.7 By assuming that the protection payment is postponed to the first premium

payment date t; following default time, the CDS spread can be approximated by

o 1-R) N, [Pd(t,ti_l) —P“(t,t%—)]
. SN (b — i) Pt L)

(3.58)

Proof: Work along the lines of Brigo and Morini [2005]. See also Appendix B.3.5. |

Numerical Study - CDS

The shape of the credit curves is influenced by the demand and supply for credit protection
in the CDS market and reflects the credit quality of the reference entities. Unless otherwise
stated, we assume the parameter values given in Table 3.2 with N = 400 and a maturity

T = 2 of the underlying defaultable bond.

| ao ann | b by |V V1 kv [ ep | k[ p pl | p* ]

G
[0.158 ] 0.0139 [ 0.021 | 0.0139 | 0.7542 | 0.6 | 2.1476 | 0.8 | 0.95 | 0.2720 | 0.4615 | -0.40 |

Table 3.2: The parameter values used in simulating CDS and CDS option.



81 3.4 Pricing of Credit Default Swaps and Swaptions

In Table 3.3, we give the simulated results of the CDS spread for a contract on a default-
able zero coupon bond obtained from (3.58), given a recovery rate of 40%,%® under varying
correlation p/* € {—0.8,0.8} between short term credit spread and the short interest rates.
Although Krekel and Wenzel [2006] argued that the effect of this correlation is not very
significant and need not be considered when calculating CDS spread, our results suggests

the contrary.

o -08-06/-04(-02] 0 |02]04]06]08
#(t), (Bps) | 412 | 391 | 381 | 379 | 384 | 393 | 408 | 430 | 462

Table 3.3: Numerical results on the CDS spread under varying correlation p/*.

We observe that varying the correlation p/ from negative to positive leads to an increase in
the CDS spread, after an initial decline. However, increasing the correlations p¥* and p%¥/
leads to a decrease in the CDS spread. Table 3.4 illustrates the effect of varying p¥/ while
holding p/* = —0.4 and p¥* = 0.2720.

oY -08[-06[-03] 0 [03]06]08]
#(t), (Bps) | 414 | 407 | 398 | 391 | 384 | 379 | 378 |

Table 3.4: Numerical results on the CDS spread under varying correlation pV.

We also investigated the effect of the volatility of volatility &f‘;, (7 = 1,2,3) on the CDS
spread. For simplicity, we assumed that 6}, = &), = .5 while the correlation parameters
are given by p¥/ = 0.4615, p* = —0.4 and p¥* = 0.2720 and the stochastic volatility process
parameters are given by V = 0.0857 and ky = 0.45. From Table 3.5, we observe that an
increase in the volatility of volatility initially leads to a a decrease in the CDS spread but
after a certain threshold is exceeded, further increase in the volatility of volatility leads to

an upswing in the CDS spread.

The effect of increasing maturity on the the CDS spread is shown in Table 3.6. The resulting

shape from CDS spread for varying maturities is typical for volatile market conditions where

#3We adopt recovery assumptions as proposed in Pan and Singleton [2008].
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715, (=1,2,3) [ 0.0 [ 0.1 [03]0.5 0.7 1.0
7i(t),(Bps) | 399|395 | 389 | 383 | 379 | 374

Table 3.5: Numerical results of CDS spread under varying volatility of volatility, 5‘1{*;-, J=
1,2,3).

the higher cost of short-term protection leads to the inverted CDS curve. This implies that
a firm faces a greater chance of defaulting within a short term period than in the long
term. In addition, fears of a sharp rise in the rate of high-yield corporate defaults could

prompt investors to seek more short-dated credit protection in a bid to reduce risk.>* For

Maturity, T | 0.25 [ 050 | 1 | 2 3 5 7 10]
7(t), (Bps) | 659 | 540 | 427 | 381 | 427 | 443 | 478 | 509 |

Table 3.6: Numerical results on the CDS spread with increasing maturity.

a certain recovery assumption, say 40%, ?° the fair CDS rate increase can be thought to be
a consequence of the decreasing survival probability leading to widening spreads. Typically,
the slope of the CDS spread curve is flatter for higher premium levels and steeper for lower
premium levels. Any changes in the shape and perceptions of the fair premium for credit
default swap protection are reflected in the spreads observed in the market. A curve of the
survival probability for a reference entity can be inferred from the CDS curve and can be seen
to be a decreasing function to maturity. As expected, we observed that higher recovery rates

implied by different ratings classes gave rise to lower the CDS spread as shown in Table 3.7.

When using CDS spreads as a default risk indicator®, it is important to note that spreads

24This result shows the robustness of the model in its ability capture various shapes on CDS spread
curves. Under nonvolatile market conditions, the cost of protection over a longer term is usually higher as it
is difficult to predict cash flows and future events that affect the profitability of a firm over a longer period.
This would give rise to an increasing credit default swap curve.

25As highlighted in Pan and Singleton [2008], the CDS price under the recovery of market value (RMV)
framework is given as a product of the loss given default L = LGD and the default intensity h(f) in the
sense that CDSTMV(#) = g(h(t)L) for some function g. This implies that the default intensity and the
loss given default cannot be identified separately using defaultable bond data alone. Under the recovery of
face value (RFV) framework, these two play distinet roles and the CDS pricing relationship is of the form
CDS®*FV(ty = Lf (h(2)). This has the immediate consequence that under RFV, the explicit dependence of
CDS(t) on LGD implies that the ratio of two CDS spreads on contracts of different maturities does not
depend of LGD but contains information about A(t). We adopt this model of recovery in our formulation.

%6Grossman and Hansen [2010] show that to estimate the default risk implied by CDS spreads at a given
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Recovery rate, R 0.10 | 0.40 | 0.70 { 0.90
CDS spread, 7(t), (Bps) | 572 | 381 | 191 | 64

Table 3.7: Effects of recovery rate on CDS spread for bonds with 2—year maturities.

can be driven by several factors that may not be directly related to the reference entity’s
fundamental credit worthiness which include leverage interest in CDS trading, counterparty

risk and risk-aversion of market participants.

In practice, questions arise on the ability of the protection seller to fulfil its obligation to make
compensation payment at the end of the settlement period, given that its credit quality may
have deteriorated due to contagion effects that may arise from the default of reference bond.
Whereas counterparties tend to be of high credit quality, it has been observed that their
credit quality can deteriorate, sometimes almost in parallel with the firms for which they
provide credit protection with some protection sellers actually defaulting on their obligations

from credit derivatives contracts.

3.4.2 CDS with Counterparty Risk

To determine the fair CDS rate in the presence of counterparty risks, the inter-dependent
default risk structures between these parties should be considered simultaneously.?” It was
shown in Jarrow and Yu [2001] that a CDS may be significantly overpriced if the default
correlation between protection seller and reference entity is ignored. Hull and White [2001]
argue that if the default correlation is positive, then the default of the counterparty will

result in a positive replacement cost for the protection buyer.

point, the average spread for the entity is calculated and then converted to a Probability of Default (PD)
value using the formula: PD(1 year) = CDS spread {annualized)/Loss Severity(1 — R). It has however been
noted that while using annualised spreads to imply annual PD, if the market perceives an entity’s default to
be definite then the resulting PD could exceed 100%. The approach is however tractable, intuitive and can
be directly related to the credit performance of the underlying credit reference entity.

27If the insurance seller defaults before the reference obligor the insured party is left without any protection
and they would be forced to go into the marketplace and purchase protection on the reference obligor from
another insurance seller at an additional cost (at the current market spread level). Conversely, the insured
party themselves may also default before the reference obligor. In this case the insurance seller’s obligations
to make a contingent payment cease, but on the other hand the positive impact of the fee payments is also
lost.
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Following Chen and Filipovie [2007], we let 71, 72, 73 be the default times of the reference
obligor, the insured party and the insurance seller, respectively. The insured party pays the
premium 7 at times £; only given the events that happened in the preceding periods. At time
t; < 1 N\ T3 A 73, the insured party pays to the seller the fixed rate « if no default has taken
place. If the reference obligor has defaulted in the period (¢;—1,¢;], that is t;_; <7 < ;
and the insured party has not defaulted by time ¢;_;, 72 > t;_; and the insurance seller has
not yet defaulted by time ¢; with 73 > ¢;, then the seller pays (1 — R) and the contract
terminates. Otherwise if either the insured party or the insurance seller defaults before then,
there is no payment and the contract terminates. The protection payment is therefore made

only on the occurrence of event 7, and zero otherwise.
Assuming a postponed running CDS, the discounted payoff at time ¢ < ¢; of the premium

leg is given by

N
wer (1) = ﬂ-z 5«;{’,_th‘ T(S)dsﬁ{'rlf\'rza\mx,-}; (3.59)

prm
i=1

and similarly, we can express the discounted payoff of the protection leg as

N
H!;f;{t) = (1 - RJ Ze_ftiT(Sstﬂ{ii—l<‘|"‘.Sti}1{72>ta_1}I‘{-’:Dt:‘}' (360)

i=1

The fair CDS spread 7.,-(t), in the presence of counterparty risk, at time ¢ < ¢; is the fixed

rate which guarantees that the value of the CDS is zero, namely,

CDSo(t) = PE[W“‘”’(t) —wer (t)i.ﬁ] —o, (3.61)

prt prm

and is expressed as

T ) (1 _ R) E:\il E[e_ d ?.(S)ds(ﬂ{”)‘*é—l} - ﬂ{n>"-i})ﬂ{'r'2>f=' 1}11{‘*'3>¢i}
?Tcpr t == v - i |
) E?‘:l E \:e_ [ r{s)dsl{ﬁ AraATsSE) ft]

7| |

(3.62)
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The CDS spread in (3.62) can be approximated by a ratio of pseudo bonds of various ma-
turities, similarly to expression (3.58). It was however noted in Schonbucher [2003] that the
default correlation levels that can be reached through this approach are typically too low
when compared with empirical default correlations in the addition to the level of complex-
ity involved in deriving and analysing the resulting dependency structure. In Schénbucher
and Schubert [2001], the authors propose an extension of the intensity-based approach to
incorporate default correlations using copulas which have been shown to generate realistic
time-distribution of the default times. Since the dependency structure is completely de-
scribed by the copula function, there is liberty in the specification of the copula used in the
model which allows for reproduction of various dependency structures between the default

times.

3.4.3 Credit Default Swaptions

Credit default swaptions allow investors to hedge risk or to express a directional view on
credit spreads. A payer option gives the right to buy credit protection at a pre-specified level
(the strike) on a future date. This can be considered as put option on credit or as a call
option on credit spread. The investor will profit if credit default spreads widen sufficiently to
recover the premium paid for the option. It has been noted (see Merrill-Lynch {2006b]) that
buying a payer option is an expensive way to short credit but is often more appropriate for
an investor with a bearish outlook, who also believes that there is a significant probability

that he/she will be wrong and that spreads may tighten.

Alternatively, an investor may buy a payer option for hedging against the risk that spreads
will widen significantly. In this case, he/she buys a deep out-of-the-moncy payer option to
insure against a worst case scenario. The various payoff diagram at the maturity date for

the different strategies on the payer option are given in Figure 3.3(a).

A receiver option gives the right to sell credit default protection at a pre-specified level
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Payoff diagram for a Payer Option
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Figure 3.3: Panel (a) illustrates the payoff diagram for a payer option (buy or sell the right

to buy protection) while Panel (b) gives the payoft for a receiver option (buy or sell the right
to sell protection). The figures are adapted from Merrill-Lynch [2006b, page 177].
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(strike) on a future date. In this case, the investor profits if spreads tighten through the
strike by enough to recuperate the option premium but if the spreads widen, the option
expires worthless and the investor loses the premium paid. It can also be used to hedge
against downside loss should the spreads tighten for an investor who already owns credit
default protection. A receiver option is therefore a call option on credit since the buyer
gains when credit quality improves but it may also be considered as a put option on spreads,
because spreads tighten when credit quality improves. Figure 3.3(b) illustrates the payoff

diagrams for the various strategics on the receiver option at the expiry date.

From Figure 3.3, we observe that selling a receiver option has a different payoff than buying
a payer option, even though both express bearish views. Whereas the buyer of a payer option
pays money upfront (negative carry) and profits if the spreads widen sufficiently, the seller
of a receiver option receives money upfront (positive carry) and profits as long as spreads do

not tighten.

Most contracts contain knockout provisions. A receiver option becomes worthless following
a credit event. The buyer of a receiver contract does not exercise, because he would sell
credit default protection and immediately owe par minus recovery which would result in an
overall loss. Instead, the buyer of a receiver option loses the premium paid to the seller. A
payer option becomes worthless following a credit event only if there is a knockout provision
specifying that the option contract automatically terminates following a credit event, with
the buyer losing the premium paid to the seller. If there is not a knockout provision, the
buyer of a payer option exercises. The buyer receives par, delivers a physical bond (or cash
settlement at the recovery rate) and earns (1 —R) times the notional amount of the contract,

less the premium paid. The seller keeps the premium but loses (1 —R) times the notional.?®

?8In case there is no knockout provision in the contract, the value of the contingent payment due on the
occurrence of the credit event must be considered. However, this is only relevant for a payer swaption since
if there is severe deterioration in the credit quality of the underlying reference credit (widening spreads), the
payer could be faced with a default of the underlying prior to the options expiry. In that case, the payer
receives a payment in the event of default of the underlying prior to the expiry of the option. The contingent
payment does not apply to a receiver since as the owner of the call option, the receiver has value when
spreads contract but does not have any on worsening credit quality.



88 3.4 Pricing of Credit Default Swaps and Swaptions

In practice, the most liquid options are 3-month and 6-month options which arc commonly
bought or sold on the 5 year CDS (from the transaction date). Options with expiry dates

that match standard maturities on the CDS index or single-name CDS have better liquidity.

Credit default swaptions (hereafter CDS options) are options written on CDS contracts.
More precisely, a plain-vanille CDS option with maturity 7,, is a European option on a
forward credit default swap (hereafter forward CDS). The underlying forward CDS is a CDS
contract issued at time s with a start date T,,, and maturity 7', with s < T,,, < T, see Bielecki
et al. [2007] for a formal definition. This contract gives default protection over the future
interval [T,,,, T'] but if the reference obligor defaults before the start date, that is 7 < T}, the
contract is terminated and no payments are made. The value of the forward CDS at time
t € [s,T,,) under the risk-neutral measure is given by

CDSy(t,77) = E| W]

pri

(t) — 7 W (1) ‘]«}] , (3.63)

where, Wp{_,,(t) is the value of the CDS protection leg and wfﬁ;{,m(t) = W;;’:_m(t) is the value

of the CDS premium leg. In addition, we define the forward CDS spread, 7¢(t, T, T), as

the variable which will makes the value of the forward CDS contract to be zero at time i.

We consider a payer CDS option with a strike rate K and maturity 7, on a forward CDS
maturing at 7" and with tenor payment dates t} = T,, + 4, to =T,,, + 20, ..., ty = T, + N,
with 6 = (T — T,,)/N. Upon the option’s exercise, which will occur if the reference obligor
does not default before T,,, this is 7 > T,,, the strike spread K is the fixed rate to be
paid (instead of the CDS spread m¢(7,,)) on the tenor payment dates t;,7 = 1,2,..., N,
in exchange of the CDS default protection. If the reference obligor defaults before 7, the

contract will terminate with no payments exchange. Therefore the payoff V(7,,,) of the payer
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CDS option®® at the option maturity 7}, is given by
, ~ +
V(T) = Lrory (CDS) (T, K) = CDSy(T, 74(T))) (3.64)

where, by definition, CDS¢(Tpm, 7;(T,,)) = 0. As the option will be only exercised if 7 4(T7,) >
K, by using (3.63), the payoff function can equivalently be written as

V(Tw) = 1son (]E [Wzﬂt(Tm)F*] - KE [‘Wm(Tm)|f*D+ (3.65)

_ ™ f AR
= 11{T>Tm}ﬂ{ﬁf(Tm);K}E[Wm(Tm)‘Ft] - K]]-{'.-')Tm}]]-{i“rf(Tm)>K}E[Wﬁfrm(Tm)!}_t]'

Alternatively, by substituting the values CDS¢(T,,, K) and CDS¢(T,., 7%(T,,)) of the for-
ward CDS contracts from (3.63) into the payoff function (3.64), we obtain an expression for

the payoff of the payer CDS option in terms of spreads as
V(T) = Lot B [Wio(To) | FY | (8, To) = K) (3.66)

As noted in Bielecki et al. [2008], we observe from (3.64) and (3.66) that a call option with
zero strike on the value of the forward CDS with spread K is equivalent to a call option on
the forward CDS rate K. The value of the CDS option Cy,p(t) at any time ¢ € [s,T,,| can

then be expressed under the risk neutral measure as a discounted payoff, namely,

T

Cautlt) = Ly B [ K7 OB V(T,)| 7] (3.67)

When the payoff function is given by (3.65), the expectations in (3.67) can be calculated
using Monte-Carlo simulations to give the default swaption price. Applying the techniques

used in Section 3.4.1 to the expectations in (3.65) gives the following result.

From the Banc of America Securities, Guide to Credit Default Swaptions, we quote the following:
“Credit default swaptions use the lingo payer and receiver, instead of put and call: a payer option is both a
put option on credit quality - a bet that credit will deteriorate - and a call option on spreads - a bet that
spreads will widen”.
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Proposition 3.8 The price at time t of a credit default swaption on a forward CDS with a

strike rate K and maturity date T,, can be approzimated *° by

R
Cowpt(t) & Loy LGD Y Pt ti ) Pry  (u(Tn) > In K)

i=1

N (3.68)
~Lirsy »_ PUt ) (6K + LGD) Pri (w(Ty) > In K),

i=1

where Pry (u(T,,) > In K) is the conditional probability of the event {u(T,,) > In K} based
on the S—forward measure Q° induced on P by the price of the zero recovery, zero-coupon

bond issued at time t and LGD = (1 —R).

Proof: See Appendix B.3.6.

By using the expression (3.66) for the payoff function, the expectation in (3.67) can be
reduced to a Black’s formula, as proposed by Rutkowski and Armstrong [2009]. By an
appropriate choice of the numeraire that depends on the value of the premium leg and the
survival process of 7 Pr(r > f,lFtW), Rutkowski and Armstrong [2009] define an equivalent

probability measure ©, and show that the price of the CDS option can be expressed as
éswpt(t) = ‘I—{'rbf.]»"gi("i)]:_E [(ﬁf(t} Tm) - K) ]l{ﬁ'f(Tm))K} l}_{] 3 (369)

where E is the expectation under the Q measure and

At) = Prir > L\FtW)E[Wp{,m(Tm)]}}} (3.70)

In addition, under this new measure, the forward CDS spread, 7 ;(t, T1,), is an (F, Q)—martingale

and its dynamics follow the driftless stochastic differential equation

dit(t, Tn) = 0§ ()7 (L, Trn)dW (8), (3.71)

rti timi .
30We use the approximation em JiiT(Ms o o= JT r(s)ds made in (B.3.8) whose error is of a very small
order for small values of d.
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where W is a Q—Brownian motion. If we assume that the volatility o}’ for different tenor
dates is a constant, the value of a credit default swaption with strike K and maturity 7}, is

given by the Black’s formula®!
équt(t) = ]l{'r).".}.[‘E‘:[W;{nu(i:n)l]:t] (ﬁf (’5; T;n)N(dl) - K*N(d2))1 (372)

where

- Va2
In (Ff(f;{T'")) E (g‘;) (T, — t) v
dl = a}/ T_m — and d2 - d] - JJ" ’I-;u - ;"J (3-73)

and cr}/ is the only parameter to be inferred from market data. Although the model is not
easily calibrated to quoted data if the market is illiquid, it provides a platform where prices of
different options can be translated into implied volatilities thereby giving more information
on the market. In addition as noted in Brigo and Morini [2005], the computation of the
implied volatilities allows us to assess the implications of different models on the classic

strike volatility curve (smile or skew).

Numerical Study - CDS Options

To illustrate the model, we compute the swaption prices based on (3.72) for varying pa-
rameter values. To calculate IEI[WPW(J‘.)‘.H] in (3.72), we use the approximations made in
Corollary 3.7. At time ¢ = 0, we calculate the price of a swaption with maturity 7,,, = 0.5
issued on a credit default swap that has a defaultable bond (based on the framework de-
veloped in Section 3.3) with a maturity of 7 = 2 years as its underlying and the default
protection is required for the period [0.5,2.5]. In addition, we use the following parameters

for the simulation: recovery rate R = 40%, volatility of the forward CDS rate O’}/ =04%

31t was remarked in Brigo and Morini [2005] that this distributional assumption is inspired by standard
models used to model equity and interest rate markets. Jabbour et al. [2008] however rejected this hypothesis
by showing that the log forward CDS spreads exhibit large positive skewness and excess kurtosis.

321t was noted in Schénbucher [2004] that the value of the volatility &(t) = 0.4 is of an acceptable level
for simulation purposes.
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with N = 400.

Figure 3.4 gives the credit default swaption price under varying strike rates and correlation
p'* between short rate and short term credit spread®®. We observe that increasing K leads to

Value of Credit Default Swaption under varying K and correlation pﬂ‘

2 | [ L R T T
| 3 p*=—06
—p%=06 |
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Figure 3.4: Credit swaption prices given by equation (3.72) under varying strikes and corre-
lation p’* between interest rate r(t) and short term credit spread c(t).

a decrease in the credit default swaption price which is in line with the market behavior that
deep in-the-money options trade higher than at-the-money and out-of-the-money options.
For deep in-the-money options, negative correlation p* is seen to produce lower swaption

prices.

However, from Figure 3.5 we observe that negative correlation p/V produces higher swaption
prices for deep in-the-money options as compared to positive correlation although the overall

swaption prices are lower when compared to the values produced in Figure 3.4.

In Figure 3.6, the value of an at-the-money payer swaption is shown as a function of its
time-to-maturity. Similar simulation parameters as in Figure 3.4 were used in addition to
varying the maturity of the defaultable bond for which default protection is required after

0.5 years using the forward CDS. As expected, we observe that when protection is sought for

33We recall that in this case, the short term credit spread coincides with the default intensity given that
we are considering the pre-default bond price.
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Value of Credit Default Swaption under varying K and correlation p"v
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Figure 3.5: Credit swaption prices given by equation (3.72) under varying strikes and corre-
lation p/¥ between interest rate r(t) and stochastic volatility V(t).

bonds with shorter maturities, we have lower swaption prices and this is lower, the further
we are from the maturity of the option. The recovery rate R enters implicitly into (3.72)

Value of ATM Swaption as a function oft and varying Bond’s Maturity, T
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Figure 3.6: The value of an ATM swaption as a function of time to maturity of the option
under varying maturity of the defaultable bond for which CDS protection is required.

through the current forward CDS rate 7#(t). Figure 3.7 investigates the time sensitivity of
the swaption and we observe that the credit swaption becomes more sensitive to changes in

the recovery assumption the longer the time-to-maturity. A similar observation was made
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in the model by Hull and White [2003]>*.

Value of ATM Swaption as a function oft and varying Bond’s Recovery, R
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Figure 3.7: The value of an ATM swaption for varying time to maturity of the option and
different recovery values for the defaultable bond.

In Figure 3.8, the value of the CDS swaption price is given as a function of the volatility
of volatility, afj, (j=1,2,3). We observe that increasing the volatility of volatility leads to a
decrease in the swaption price, with the effect being more for deep in the money options.

Value of Credit Default Swaption under varying K and Volatility of Volatilityc1j
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Figure 3.8: Credit swaption prices under varying strikes and volatility of volatility a}/j,
(j=1,2,3).

34Their results also showed that this increasing percentage impact does not become very large.
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Finally, in Figure 3.9 we investigate the effect of varying the volatility of the forward CDS

spread on the swaption price where we observe that increasing a}' leads to a decrease in the

swaption price.

Value of Credit Default Swaption under varying K and Volatility of Forward CDS Spread
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Figure 3.9: Panel (a) gives the value of a credit default swaption for varying strikes and
different volatilities of the forward CDS spread while panel (b) gives the value of an ATM
swaption for varying time-to-maturity of the option and different volatilities of the forward

CDS spread.
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3.5 Pricing Put Options on Defaultable Bonds

In this section, we focus on the evaluation of options on a defaultable bond. Such an
evaluation could include cases where there is no default risk on the option as well as where
the option is also subject to default risk. In the latter case, a simplifying assumption would
be that the default of the writer of the vulnerable option and the default of the issuer of the
defaultable underlying asset are independent events. If the writer’s default occurs before the
option’s maturity, then the buyer would suffer fractional loss of the option’s market value
and the writer would pay back the residual value. In this case, the vulnerable option can be
valued in a similar manner as a defaultable bond. Our study however will exclude vulnerable

options with a risky asset or risk frec asset as the underlying.

A European put option with maturity 7y and exercise price K on a defaultable zero coupon
+
bond with maturity 7" and time ¢ price P(t,T) has a payoff (K — PYT, T)) , given that

Ty < T and if the option is knocked out on default, then its payoff given by
P +
Loz (K = PUTT))

where 7 is the default time of the underlying defaultable bond. The option protects the
k\}ycr against risks that arise from interest rates, credit spreads and default and that could

cause the price of the defaultable bond to fall below the strike level K.

Bond’s Timeline I

Option’s Timeline

Figure 3.10: The Timeline for an option on defaultable bond.
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If we assume that there is no default risk with the issuer of the option, then the price of the

put option is given by *°

P, r" T; Ty, K) =K [3— S0 r(uydu ( K — PYT,, T)) + ‘ 7 ] ’

- ]E:[e— Jire rd{u)du(K - }Sd(Jb}T))TE] +KP(LTy) — PULT) (3.74)
“E[e 100 (5 - Py, 1) | R,

where P%(t, T) is the pre-default value of the defaultable bond. In this case, the post-default
price behavior will also come into consideration. The bond could continue being traded with
a market price dropped to the recovery multiplied by the pre-default market value of the
debt. Alternatively, the procecds from recovery can be reinvested at the default-free rate and
rolled over until expiry. If the credit option survives a credit event, default risk and spread
risk are transferred between the counterparties but if it is knocked out on default, only the

spread risk is transferred.

A put option on a defaultable bond can be decomposed into default protection and price
protection components (See Schonbucher [2000] and Appendix B.4). If the option is knocked
out at default, then it has only the value of the price protection component. If the put is
knocked out at default (zero recovery assumption), then the put price at time ¢ < Tj is given

by
Plt,rd, T;Tp, K) = ]fni[ﬁ'_ft]-U r{u)du (K — PYTy, T))+‘-Ft] (3.75)

We can apply Monte Carlo methods to easily compute the expectation in (3.75) over paths
of stochastic process r%(t) since the pseudo bond price P4(Tp, T) is given in closed form by

(3.49) thereby saving on the computational time.

However, the presence of level dependence in the volatility specification of Assumption 3.3.1
makes it hard, if not impossible, to obtain a closed form solution for the option prices. In this

last section, we make the following simplifying assumption on the structure of the humped

35The proof follows from Schénbucher [2000, lemma 3.5], which we give in Appendix B.4 for completeness.
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volatilities.

Assumption 3.5.1 For 1 <1 < n, the volatility functions are of the form

ol (t, T, Vi) = laoi + ani(T — )]/ Vi(t)e ™ (-1, (3.76)
oML, T,V;) = [boi + bu(T — O)]\/Vi(t)e ™ T1), (3.77)

where K.{, n:‘, agi, A1, bg; and by; are constants.

Proposition 3.9 The defaultable bond price dynamics satisfy the stochastic differential

equation

% = r(t)dt — ;di(n T)VVi(O)dWi(t) — dM (w;), (3.78)

where for i =1,...,n we define the deterministic functions

Eli(t:T) + 62'5("": T)s fOT‘i =1,...,n

di(t,T) =14 (3.79)
{33;'(5,’}1), fOT'?‘.:ﬂ—'.—l,...,Qﬂ,'
given that
Bri(t,T) = a—{?(i —e ”{(T"t}) + 0_1;' [%(1 - e_"{(T_”)) —(T - t)e_"’{(T_t)],
K3 i
boi —kMT—t brirl —RMT- —KkMT~
¢ Bu(t,T) =2} (n?(l—e dT-9) 4 n—?-h—:\(l —e TDY (T — )emel ﬂ] ,  (3.80)
Balt,T) = 2 (iﬂg( —eRNT-0Y 4 % -0y (7 - :)e—n:‘ﬂ‘—”}).

In addition, the pseudo bond price dynamics follow the stochastic differential equation

dPi(t,T) _
BT r(t)dt — Zd (t, T)\/Vi(t)dWi(t). (3.81)

Proof: See Appendix B.5 for the details. |
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The first term on the right hand side of (3.78) represents the risk-neutral drift of the default-
able bond price. The Wiener terms W;(t) introduce the interest rate uncertainty into the
price dynamics through the bond price volatility. The last term with the jump martingale
models the credit risk associated with the jump time and jump size. At the jump time 7; for

i € N, M jumps to one and the defaultable bond jumps down by the fraction g.

We define the log price process for the pseudo bond with maturity T, by X4(¢t,T,) =
logP%(t, Tp) and from It6’s lemma, we can write the dynamics for the log bond price X%(, Tp)

as

dX4(t, Ty) :( —22032 (t, To)V; )dt—ng(t To)VVit)dW(t), (3.82)

and the pseudo bond price is given by
1 2n
By vy ;
PUt,Tp) = cxp([?‘(t) - 521: d?(t, To)V;(t)] dt — Zd (t, To)/ Vi (£)dWi( g)) (3.83)
From Girsanov’s theorem, we introduce a Radon-Nikodym derivative X\(7p), such that its

stochastic exponential is a uniformly integrable martingale. Application of It6’s lemma to

(3.83) leads to

[D‘(T“ = Zd t, To)\/Vi(t)dW(t

2n Ty
and if the Novikov’s boundedness condition IE[ = epo (] df(s,T{))%(s]dsLﬁ)} <
; i
is satisfied, then
pe
5

A XNTo),

defines a forward probability measure PT? equivalent to P. Furthermore, the process Wi(t)

is expressed as

dW;(t) = AW (t) — dy(t, To)\/Vi(t)dt, (3.84)
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where dﬁff"’ (t) is a P’ _Brownian motion. The log price dynamics for the zero recovery

bond with maturity 7 under the P —forward measure can written as

axe(t,1) = (n(t ——Zdth +Zm:rn (L TIVi(1) ) dt
2n
=Y di(t, T)Vi(t)dW ] (1). (3.85)
=1

P4, T)

We define a random variable X (¢, T, Tp) = log(w
y 40

) Then, from (3.85)

dX(t,T,Tp) = dX%t,T) — dX(t,Tp).

2n 2n (38())
- _% S (d,-(z,fr) — di(t, TD))Qvg(t)dt -3 (di(t, T) — d;(t, TU)) Vi) dw (1),
=1 =1

Assumption 3.5.2 For1 <i <n and j = 1,2.3, the volatility function &; (t V;) is of the

form

a3y (t, Vi) = a5V Vi), (3.87)

where 5.

i 15 a constant.

Using (3.84), the stochastic volatility dynamics in (3.30) under the forward measure can be

written as

dvi(t) = &) (t, Vi) dr+}: YA Vi)aw L (3.88)

i=1

where the drift term is given by
3
ay (t,Vi) = of (£, Vi) + D (bg-nymsi(t) — di(t, To)) 33 /Vi(0). (3.89)
j=1

For simplicity, we will assume that on specifying the market price of risk @(;_1)n4i(t), the

drift function given in (3.89) coupled with Assumption 3.5.2 can be simplified to the general
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form &} (V; — V;) and (3.88) could be written as

3
dVi(t) = & (Vi = Vi)dt + > 5y Vi) dW L (0). (3.90)
i=1

3.5.1 Pricing Methodology for a Knocked-Out Put Option

We observe from (3.74) and (3.83) that both the discount factor and the payoff functions
depend on the same stochastic process r(t). We therefore cannot evaluate the expectations
separately and then multiply them afterwards as would be the case with deterministic dis-
count rates. There is a need to derive the solution under joint stochastic dynamics. Given
that the discount factor has an exponential affine representation, we can use a generalised
characteristic function. It is well known that expressing a probability via its characteristic
function is equivalent to expressing the probability via density functions and if the stochas-
tic process consists only of one variable, then the characteristic function is just the Fourier

transform of the particular transition density function.

From Bakshi and Madan [2000], the characteristic function can be interpreted as a hypo-
thetical contingent claim. When the state-price density, given by ﬂ(v)exp( — f " rd(u)du)
is known and tractable, the option valuation problem is significantly simp]il%ed because
although the state-price density may at times be complicated, its characteristic function
remains uncomplicated and a closed-form formulation of the latter is all that is needed
for derivative-security valuation. Whereas probability functions (on solving the respective
partial differential equations) and consequently derivative prices can be hard to obtain in
some instances due to discontinuous terminal conditions, the solution for the particular
general characteristic function can be recovered since their terminal conditions are smooth,
infinitely differentiable with ‘finite algebraic moments of all orders’ and therefore mathemat-
ically tractable. This arises, amongst many reasons, due to the one-to-one correspondence

between the characteristic function and its distribution, guaranteeing a unique form of the
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option pricing formula.

We recall from (3.75) that the price of a put option at time ¢ < Ty
~ — +
P(t,1%, T5To, K) = E[e™ 1" 700 (K — P, 7)) | 7], (3.91)

and this could be expressed as

P(t, ,rdl‘ T; TD, K) _ f . t’ro ré(u)du (K _ Pd(T[j, T))ﬂ(’b‘)d‘l.‘, (3‘92)
X

where 9(v)* is the risk-neutral joint density function of the future uncertainty v =
To

([ rd(u]du,P“’(To,T)) and x = {P%(t,T) < K} is the exercise region of the put op-
t

tion.

A put option is in the money at maturity Ty if P(75, T) < K and the pricing formula in

(3.91) can be written as

" — [To pd(y)du D 1
P(t,1%, T3 T, K) = By o™ I 000 (K — PUTY, 1)) 1 pucr, myery
& [~ [0 ri(u)du i [ S0 r(u)dut X4(To,T) (3.93)
= KE,[e | Lixamm<e) — Be[e™ Lixam<e))

where in addition, we have defined the log strike price £ = log(K). However, these expecta-

tions are not Arrow-Debreu securities in the sense of:

Definition 3.10 An Arrow-Debreu security is a contingent claim that pays one unit of
money at the maturity date T, if and only if, a specified state A occurs. In this case,

the value of an Arrow-Debreu security under a probability measure Q is given by
AD(z4,1,To) = E2(14),

where x; is the vector of the underlying processes.

36See Bouziane [2008] and Bakshi and Madan [2000].



103 3.5 Pricing Put Options on Defaultable Bonds

Then starting from the risk-neutral bond price dynamics in (3.83) and the generalised put
price formula (3.93), we express the price of an option on a defaultable zero coupon bond as

follows.

Proposition 3.11 The price of a European put option with maturity Ty and strike K on a

defaultable bond with maturity T that is knocked-out on default is given by
P(t,r", T; To, K) = KPYt, To)[1 — I (€)] — G(t, To, T)[1 — Ty(€)], (3.94)

where I1,(t, To) and Iy(t, Ty) are exercise probabilities, P%(t, Ty) is the price of the defaultable
zero coupon bond and

(;(?‘ TD- T) = ]Er' [e—-f:‘o rd(u]du—}—)_{'d(TO.T):l

18 the scaled forward price, representing the time t price of a commitment to deliver at time

To the quantity X*(Ty,T). In addition, the risk-neutral probabilities are given by

I (¢) = % ;1 fw Re[e_wgff(t’ﬂ“ ‘f’)} do, j=1,2 (3.95)

T Jo+ Zé

where f;(t, Top) are the characteristic functions for each security defined by

fl (t, TU} (f)) — I_’d[t, TO)_II::: [E_J"BTU rd(u)du+i¢)_(d{’1'o‘TJ} i (3.96&)
Folt, To; 6) = G(t, To, T)'E, [ I rdut (i) X4To.1)). (3.96b)
Proof: See Appendix B.6. |

To calculate these probabilities, it remains to solve for the associated characteristic functions

and to this end we introduce a transform

\IJ(Z) = ]Et e~ JrfT{J Td(“Jdu+sz(Tn,T):| .
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From (3.96a) and (3.96b) we note that the characteristic functions can be expressed as

U(e) U(1 +ig)
t,Ty; 0) = =—= and t,To; ) = ————=.
f‘l( 0 Qﬁ) Pd(t,T(}) anc f?( 0 ¢') G(t,TOT) (397)
In particular, we observe that we can write this transform in a more general form ¥(a-+i¢), for
a = {0, 1}. Following the approach used in Repplinger [2008], by changing to the 7, —forward
measure we can write the transform
e S0 v (u)du

U(z) = PU(t, To)E, [“T)W

XD i P T)T(2), (3.98)
where the function Y,(z) is defined by

Ti(z) = EP [2X (T0T)], (3.99)

The cumulative probabilities in (3.95) of Proposition 3.11 can then be written as

11 [T (ig)e ]
Hl(é)_§+}/0 Re[T]d(b‘ ( |
_ 1 1/ Pt Ty) Yo(1+id)e % 3.100
H2(£)—§+;/U Re[G(t,Tg,T) i¢ ]da‘;.

It has been shown (see Keith and Stuart [1994]) that the integrals in (3.100) are well defined

and convergent over the interval ¢ € [0, 00).

Proposition 3.12 The expectation for Yi(z) in (3.99) takes an exponential affine form

Ty(2) = exp (zX(t) +A(LZ)+ YOt z)v;(t)), (3.101)

where the deterministic functions A(t,z) and Ci(t,z), 1 = 1,2,...,2n solve the system of
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ordinary differential equations

(
dC(t 2) _ Z( T¥)2 31, 2) + (wY +zZ(d(t T) - di(t, To))oy ) Cilt, 2)
i=1
| +%(z 2%) (di(t)T)—di(t,Tg))z, (3.102)
dA(t, z) 2n _
P —i_ZlC,;(t, 2)ky Vi,

.

subject to the boundary conditions Pd(Tg To) =1 and A(Ty, z) = Ci(Tp, z) =

Proof: See Appendix B.7.

We observe that the first ordinary differential equation in (3.102) (or equivalently (B.7.6))
are of the Riccati type with complex coefficients. It was noted in Tahani [2004] that al-
though closed-form solution for such a system can be derived, it usually involves complex
algebra with Whittaker and hypergeometric functions and a numerical approach was shown
to provide far more efficient and accurate solutions at a lower computational cost. The char-
acteristic functions can then be inverted to give the desired cumulative probabilities IL;(, @)
since the integrand in (3.95) is smooth and decays rapidly. Repplinger [2008, Section 7.2.2]
derived an explicit solution for a system of ordinary differential equations similar to (3.102)

in the default-free framework by making use of degenerate hypergeometric-functions.

3.6 Summary

In this chapter, we have developed a Markovian HJIM model for the defaultable term structure
where the volatility function is dependent on the time to maturity, default-free short rate,
short term credit spread and volatility. This class of volatility functions allow for a high
degree of flexibility in modelling the wide range of shapes of the yield curve in addition to
allowing for dependence on the driving stochastic variables. Making the short rate process

Markovian has great computational advantage since any Markov process can always be
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mapped into a recombining lattice whose number of nodes grows linearly with the number of
time steps. The dependence of the defaultable forward rate volatility function on the path

enters through its dependence on the short rate and the credit spread processes.

We obtain a generalisation that expresses the defaultable forward rate curve as an affine
function of a set of state variables which summarises the history of the forward rate curve
evolution. This an extension of the work in Chiarella and Kwon [2003] to the defaultable HJM
framework where we adopt the humped volatility specification. We then derived a closed
form formula for the defaultable zero coupon bond prices, expressing them as an exponential
affine function of state variables. We then demonstrated how the framework can be applied to
price credit default swaps and swaptions and derived some approximating formulas for single-
name CDS prices and show how this could extended to include counterparty risk. From the
conducted numerical simulations, we observed that the model captures the stylistic features
of the credit default swaps and swaptions with respect to the assumptions on the recovery

of the defaultable bond as well as the time to maturity of the option.

The model is finally applied to price options on a defaultable asset, in this case, a defaultable
bond with a knock-out provision. We made a simplifying assumption by relaxing level depen-
dence in the structure of the volatility functions to facilitate the computation of a closed-form
solution. We solve the coupled system of differential equation that arise when calculating
the cumulative probabilities using numerical integration (Fourier transform methods) from

which we derive a semi-closed option pricing formula.



Chapter 4

Defaultable HJM Class of Models

with Regime-Switching Volatility

In this chapter, we present a model for pricing defaultable bonds within the regime-switching
HJIM class of models under fractional recovery. We follow two approaches to incorporate
regime-switching within our model. In the first case, stochasticity is introduced to the
volatility function by a modulating Markov chain via the separable volatility specification.
Some special cases of short rate models are then obtained, from which explicit bond price
formulas are derived. We then look at the general case where the volatility function of the

stochastic volatility process is modulated by an underlying Markov chain.

4.1 Introduction

Due to the close relationship between income growth (which fluctuates with the business
cycle) and the demand and supply for money, the time series of interest rates exhibits
cyclic patterns. Early empirical evidence as documented in Hamilton [1989] suggests that

economies experience recurrent shifts between distinct regimes of the business cycles whose

107
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expansion and recession have regime-switching effects on nominal interest rates as well as
changes in monetary policy and exchange rate regime. The distinct regimes allow for the
underlying processes to follow different dynamics while in different states of the world; for
example ‘good’ and ‘bad’ economic environments. Lam and Li [1998] combined a first order
Markov process and a stochastic volatility model and found that the volatility of the S&P
500 can be well captured by a two-state regime-switching, stochastic volatility model whereas
Sola and Driffill [1994] and Garcia and Perron [1996] investigated regime shifts in real interest
rates. As noted in Wu and Zeng [2005], it is most likely that Markov regime shifts represent
a systematic risk that should be priced in term structure models. This implies that the bond
risk premium consists of risk arising from both the diffusion risk and regime-switching risk
where the latter stems from systematic risk of periodic shifts on interest rates and/or bond

prices as a result of changing regimes.

Research to investigate the impact of switching regimes on the yield curve has involved
incorporating hidden Markov chains into the stochastic processes of the state variables and
pricing kernels. Empirical evidence indicates that the yield curve shows varying properties
across regimes and therefore changing regimes affect bond returns. Landén [2000] considered
a diffusion type model for the short rate with both the diffusion and drift parameters being
modulated by an underlying Markov process and derived a closed form solution for bond
prices under the risk-neutral measure. Kalimipalli and Susmel [2004] introduced regime-
switching in a 2-factor stochastic volatility model and modelled the volatility of short-term
interest rates as a stochastic volatility process whose mean is subject to shifts in regime. Their
in-sample results favor regime-switching stochastic volatility (RSV) model as compared to
a single-state stochastic volatility model or a GARCH family of modecls. However, their
out-of-sample results were mixed and provided weak support for regime-switching stochastic

volatility models.

Wu and Zeng [2005] obtained closed form solution of the term structure of interest rates

under an affine-type (CIR) model and showed that with regime-switching risk, the model
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captures the empirical features in the term structure of interest rates. This was further
extended in Wu and Zeng [2006] who proposed a regime-dependent jump-diffusion model of
the term structure of interest rates to capture the effects of discrete jumps in the interest
rates coupled with the shifts in policy regime that induce systematic risk. Elliott and Wilson
(2007, Chapter 2] model the short rate as a random process where they assume the mean-
reverting level follows a finite-state, continuous-time Markov chain that switches to different
levels producing a cyclical pattern in the short rate. The randomness of the Markov chain

prevents the business cycle lengths and intensities from being predictable.

There is less literature that focusses on the dynamics of the term structure of volatility
of the forward rates as a function of maturity. In the deterministic volatility Heath et al.
[1992] (HJM) models, the volatility curve is fixed and the volatility of a specific forward rate
moves along the curve. Thus, there is a deterministic motion along a fixed curve. However,
to be able to describe the volatility curve effectively, there is need for a process with both
deterministic and jump movements. Jump diffusion models are not adequate to capture

these as they generate jumps too frequently.

A class of piecewise-deterministic Markov processes was introduced in Davis [1984] which
allows deterministic motion and random jumps. This class, which includes as special cases,
various non-diffusion models provides a broad modelling framework for problems of this
nature and is closely related to a class of stochastic jump processes for which stochastic
calculus tools are readily available. Valchev [2004] introduced a continuous-time Markov
chain parameterizations of volatility within the HJIM model. This specification allows for
jump discontinuities as well as other deformations of the term structure of volatilities and
provides an extension of the class of deterministic volatility HJM models to a wider class of

models with piecewise-deterministic volatility.

Elhouar [2008] investigated the HIM models with regime-switching stochastic volatility and
established the necessary and sufficient conditions on the volatility that guarantee finite

dimensional realizations. The forward rate volatility is allowed to depend on the current
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forward rate curve as well as on a Markov chain with finite number of states. Valchev and
Elliott (2004] provided regime-switching stochastic volatility extensions of the LIBOR market
model where the instantaneous forward LIBOR volatility is modulated by a continuous time
homogeneous Markov chain. Jeanblanc and Valchev [2004] developed a pricing model for
defaultable bonds by assuming that the default intensity is driven by a Markov chain which

accounts for both default and liquidity risks.

There are three main contributions of this chapter: Firstly, we establish the conditions
on the defaultable forward rate volatility that would lead to finite dimensional Markovian
realisations of the defaultable short rate dynamics in the presence of regime-switching. By
considering a choice of exponentially decaying volatility functions modulated by a continuous
time Markov chain which is independent of the driving Wiener processes, we derive a two-
factor Hull-White-Extended-Vasicek type of model. In addition to offering better calibration
to market data, the model can be automatically calibrated to the currently observed yield

curve due to the inherent advantages of the underlying HJM framework.

Secondly, by expressing the defaultable bond price in an exponentially affine form we solve
the regime-switching bond pricing partial differential equation and derive a semi-closed form
solution for the price of the bond. This is achieved by numerically solving a coupled sys-
tem of ordinary differential equations. Using Monte Carlo simulation, we investigated the
distributional properties of both the defaultable short rate and bond price dynamics under
regime-switching volatility. Thirdly, we consider option pricing within this framework. In
particular, we price a European call option on a defaultable bond with a knock-out provision
for the special case of 2-states regimes. By applying finite difference (theta scheme) methods
to the coupled option pricing partial differential equations, we approximate the option price

on a discretely space-time grid.

The structure of this chapter is as follows: In Section 4.2, we give a brief review of the
key mathematical tools in the theory of Markov chains that we will use in this chapter.

Section 4.2.2 introduces the defaultable HJIM framework with regime-switching. This can be
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seen as a variation of the framework developed in Chapter 2 to allow for regime-switching
stochastic volatility. In Section 4.3, we develop a Markovian HJM framework in the presence
of regime-switching and derive a semi-explicit bond price formulation under the special case of
two-state regimes. In Section 4.4 we investigate the option pricing problem in the presence of
regime-switching stochastic volatility for the special case of two-state regimes and Section 4.5
concludes the chapter. We then provide the proof of some of the technical results in Appendix

1L

4.2 The Model Setup

We consider an arbitrage-free bond market modelled on a filtered probability space
(Q, F, (Fi)o<t<r, P) where P is the real world probability measure. The augmented and
right continuous filtration is given by F, = F}¥ vV F}¥ v F; where the filtrations 7" and F,"
are generated by the observations of the Wiener process and counting process respectively
and are as defined in Chapter 2 whereas F;* is the filtration generated by the Markov chain

to be introduced in Section 4.2.1 satisfying the usual conditions.

4,2.1 Markov Chain Framework

Following Elliott et al. [1994], we let X (t), t > 0 be a finite state Markov chain with state
space 8 = {s1, 8, ..., sn} defined on the above probability space. The s;’s are points in
RY and can be used to model factors of the economy which for simplicity can be identified
with unit vectors {ej, es,...,ex} with ¢; = (0,...,0,1,0, ..., 0)" € RY. At any given time ¢,
the state X (¢) of the Markov chain is one of the unit vectors, e, e, ...,ex. For any real
valued function of X (t), say g(X(t)), with g; = g(e;) and g = (g1, g2, ..., gn) ', We have that

g(X(t)) = (g, X(t)) where (-,-) denotes the scalar product in R".
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The unconditional distribution of X (t) is the vector E[X (t)] = p, = (p}, p?, ....,pY), where
pi=P(X(t) =€) =E[(e;, X(t))], for 1<i<N.

Likewise, the K —dimensional row vector py = [po(i)]1<i<y = [P{X(0) = i}]1<i<nv denotes

the initial probability distribution for the Markov chain X (¢) under measure P.

Definition 4.1 A two-parameter family P(s,t), s,t € Ry, s < t of stochastic matrices is
called the family of transition probability matrices for the F;X —Markov Chain X if, for every
-'5',-‘- (S R+,S St

P(Xtr-j!X,;:i):pg-j(s,t], V@,]ES.

and in particular, the equality P(s,s) = I is satisfied for every s € Ry. In addition, P(s,t)

satisfies the Chapman-Kolmogorov equation

P(s,t) =P(s,u)P(u,t), V0<s<u<t.

Let P(s,t+ /At) be right continuous at AL = 0. It has been shown®” that right continuity
of the family implies its right-hand differentiability at At = 0. More specifically, the finite
limit
pij ('L‘, t + Af;) — 553'

At ’

h:g(f) = f'.':?n&tw

exists where
1 ifi=j,
0 otherwise.

Given that hfg (t) > 0 for arbitrary i # j,

N N
X . pi(t,t +At) -1 . Dizj -1 Pig(ht+ At) Z X .
hi‘i (t) = Eim&ﬂ—ﬁ At - ‘_hnl_&tlﬂ At = - o 1»“1,!'3,' (t). (4.1)
tFELI=

37For instance, Theorem 8.1.2 in Rolski et al. [1998]
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The variable h;;(- (t) is called the transition intensity from state ¢ to j of the Markov chain
and the function H(t) = {hfg(t)}lg‘jg\r denotes the infinitesimal generator matrix (also
called the intensity matrix) associated with the time homogenous Markov chain. For any

two arbitrary states ¢, j € §, the Chapman-Kolmogorov equation yields

pij(s,t + At) = ipik(s, tpri(t, t + At), 0<s<t<t+ AL
k=1
It then follows that,
MMJW“+ﬁf%“”=gm@mﬁm
which is the forward Kolmogorov equation
% =P(s, t)H(t), P(s,s)=1. (4.2)

It can be shown that P(s, ) also satisfies the Kolmogorov backward equation

dpé‘;’t) = —H(s)P(s,t), P(t,t)=1. (4.3)

For the time homogenous Markov chain, we have the following:

Definition 4.2 A one-parameter family P(t), t € R, of stochastic matrices is called the

family transition probability matrices for the F;X—Markov chain X if, for every s,t € R.,

P(Xs-i—t:j]Xs:i) :pij(t)! Vﬁs.} €S.

The transition intensity process can then be shown to satisfy

Copy®) —py0) . ) =8y
hﬁmmﬁiL&Q:mM&%—%wh%:—zﬁ.

t Kl
i#)
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In this case, the Kolmogorov forward and backward equations are given by

i? —P(W)H, P(0)=1, (44)
% = HP(t), P(0)=1, (4.5)

respectively and have the same unique solution

o ()"
P(t)=¢e¥ =]+ ; -, VieR,. (4.6)
N
The generator matrix H = Z hfg uniquely determines all the relevant probabilistic prop-
ij=1

erties of the time homogenous Markov chain.

A well known result (see Elliott et al. [1994]) is that X (¢) admits a semi-martingale repre-

sentation of the form
t
X(1) = X(0) = / HX(s)ds + MX (1), (@7)
0

where M*(t) is an F;* —martingale such that E[M*(¢)|FX] = M*(s). A function of the

Markov chain X (t) € S can be represented by a vector g(t) = (g1(t), ..., gn(t)) so that

’

g(t. X () = g(t)" - X(t) = (9(t), X (2))-

4.2.2 Defaultable HIM Model with Markov Chain Volatility

Similar to Definition 2.3, the default time 7; corresponds to the i-th jump (the i-th default) of
amarked point process N(t) which is characterized by a general intensity process h™ (¢, dq) :=
hN(t). This intensity is independent of previous defaults and the default time is a totally
inaccessible stopping time. The default intensity is also assumed to be independent of the

transition intensity h*(t) of the Markov chain X (¢) and as in Chapter 2, we assume that
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on default, a firm is reorganized and the debt re-floated allowing for multiple defaults and
recoveries where the recovery rate R(t) is a measure of the expected fractional recovery on

default. At maturity, the defaultable bond has a final payoff

R(I) = [[(—a(n), R(@) €01, (4.8)

Ti gT
where R(T') is the product of the face reductions ¢(7;) after all defaults until maturity 7".

We denote as P(t,T, X (1)) the price at time ¢ of the default-free zero coupon bond with
maturity 7 > t and P%(¢,T, X (t)) the price at time t of the defaultable zero coupon bond
with maturity 7 > t. The following definition on the default-free forward rate, defaultable
forward rate and forward credit spread is an analogue of Definition 2.1 and Definition 2.2

modified to incorporate regime switching.

Definition 4.3 1. The instantaneous default-free forward rate of interest prevailing at

time L for instantaneous borrowing at T', is defined as

f(t,T,X{t))z—%InP(t,T,X(L)), for all te[0,T). (4.9)

2. The instantaneous defaultable forward rate of interest prevailing at time { with maturity

T >t is defined by

f'd(t,T,X(t)):—%lnPd(t,T,X{t)), for all t€0,T). (4.10)

3. In addition, we define the continuously compounded instantaneous forward credit spread

LT, X(0) = F4 T, X(0) - £(6,T, X (2)). (4.11)

4. The instantaneous default-free short rate is defined as r(t, X (t)) = f(t,t, X (¢)), the in-
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stantaneous defaultable short-rate is defined by r(t, X (t)) = f4(t,t, X (t)) and following
(4.11), the short-term credit spread is defined by c(t, X (t)) = A(t, ¢, X(t)).

We adopt the approach used in Schénbucher [1998] who showed that a model of the spread
for the defaultable forward rates over the default free forward rates may be used to add a

default-risk module to an existing default-free model of forward rates.

The pre-default price P%(t, T, X (t)) at time ¢ of a defaultable zero-coupon bond with maturity
T, a so-called ‘pseudo’ bond, is the price of the defaultable zero-coupon bond given that it

has not defaulted before time ¢ and is given by

T
Pt T, X(t) = exp( - ] et v, X(t))d'v). (4.12)
i
The price of the defaultable bond can then be written as

Pt T, X(t)) = R(t)P(¢, T, X(t)). (4.13)

We assume that f(¢, T, X (¢)) and A(¢, T, X(t)) are the unique strong solutions to the stochas-

tic integral equations

ft, T, X(t) :f(o,’r)+/; af(u,T,X(u))du+fﬂto'f(u,if',X(u))dW'f(u), (4.14a)

At T, X(2) = A0,T) + /t o u, T, X (u))du + ft o (u, T, X (u))dW™ (u), (4.14b)
0 0

respectively, where we have dropped the dependence on X, in the initial curves f(0,T) and
X0, T) for notational simplicity, with the driving Wiener processes W/ (t) and W*(t) being

correlated under the real world probability measure P. Setting 7" = ¢, equations (4.14a) and
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(4.14b) yield the short rate and short term credit spread dynamics

r(t, X (t)) = f(0,¢) + ~/: of (u, t, X (u))du + ,/0 of (u, t, X (u))dW ' (u), (4.15a)
c(t, X(t)) = M0, t) + /0 aMu, t, X (u))du + ]D oMu, t, X (u))dWA(w), (4.15b)
respectively.

To apply the techniques of Heath et al. [1992], it is convenient to replace the correlated
Wiener processes W/ (t) and W*(¢) with uncorrelated processes. We define uncorrelated

Wiener processes W(t), i = 1,2 such that

dw!(t) _ | dWi(t) (4.16)

dWA(t) as Ao dWs(t)

where the (a;;)’s, 7,7 = 1,2 are chosen so as to preserve the correlation structure of the
Wiener processcs W/ (t) and W*(t). A possible characterisation that yields a system with
2 noise processes driving the defaultable dynamics and 1 noise process for the default-free

dynamics is made by
aip =1, a;p=0, an=p, ap=+1-7p%
from which it follows that

dW/(t) = dWi (1), (4.17a)

AW () = pdWy(t) + /1 — p2dWs(1). (4.17b)

The forward rate and forward credit spread stochastic integral equations (4.14a) and (4.14b)
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can be expressed as

t 2 gt
F(t,T,X(t)) = f(0,T) +/0 of (u, T, X (u))du +Z/ﬂ & (u, T, X (w))dW; (u), (4.18a)

t 2 t
MET, X(8)) = A0, T) + / oM, T, X(w))du+ 3 / FNu, T, X(w)dW;(u),  (4.18b)
0 im1 0
where
& (t, T, X(t) = o (t, T, X (), &5t T, X(t)) =0, (4.19)
M, T, X(t)) = po(t, T, X(t)) and &3(¢, T, X(t)) = V1 — p2a*(t, T, X(t)). (4.20)

Using equations (4.11), (4.18a), (4.18b) and the transformation in (4.16), the defaultable

forward rate follows stochastic integral equation
t 2 1
fU T, X (1) = £40,T) +/ o (u, T, X (u))du + Z/ 68 (u, T, X (u))dWi(u), (4.21)
0 = Jo
where the drift and the volatility functions are given by

A, T, X(t)) = ol (t, T, X (1)) + o (£, T, X (1)),

G T, X (1) = &1 (t, T, X (1)) + 52 (¢, T, X (1)),

respectively, for i = 1,2. For T' = ¢, the defaultable short rate dynamics satisfy the stochastic

integral equation

r(t, X (1)) = f40,t) + fot a(u, t, X (u))du + Z/ﬁ 5% (u, t, X (u))dWi(u). (4.22)

Substituting (4.21) into (4.10) then applying the stochastic Fubini theorem and [t6’s lemma,
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we observe that the defaultable bond price satisfies the stochastic differential equation®

AP, T, X (t))
Pi(t— T, X (t-))

= pl(t, T, X (t)dt + Y 65,(t, T, X (t)dW;(t) — / qu(dt,dq), (4.23)
JE

i=1

where

(e, T, X (1)) = ri(t, X (1) + (8, T, X (1)),

[~

BT, X(0) = —ah(t, T, X() + 5 3 (6546, T, X (1),
=t (4.24)

T
o (4, T, X (t)) = / ad(t, v, X (t))dv,

G5t T, X(t) = — /T &3(t, v, X (t))dv.

{ ¢

As in Chapter 2, we note that the absence of arbitrage opportunities implies that there
exists an equivalent probability measure P, namely the risk-neutral measure. For every finite
maturity 7°, there exists a 3-dimensional predictable process ®(t) = {¢1(t), ¢2(t),t € (0,77}

and a strictly positive measurable function (¢, ¢) satisfying the integrability conditions
t t
/ l|¢i(u)|[’du < 00, for i=1,2, / f |2(u, g)h(u, dg)|du < oo, (4.25)
0 0 JE
such that
dWi(t) = dW;(t) — ¢5(t)dt, for i=1,2 (4.26)
is a P-Wiener process and the default indicator process N(t) has a P-intensity
h(t,dq) = (t, q)h(t,dg). (4.27)

This market price of risk incorporates the market prices of interest rate and credit spread

38 A detailed formulation of this result follows the approach given Appendix A.2 although in the Chapter 2
we had dependence on the stochastic volatility process.
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risks. It should be noted that the regime-switching risk will feature in the stochastic dynamics
for the Markov chain through the modified compensator process H under the risk-neutral
measure. In this case, the corresponding HJM defaultable forward rate drift restriction

condition is given by

(5]

ot T, X (1) = Z (t, T, X(t (Q)i(t,) - /T &f(t,s,X(t))ds). (4.28)

Following Heath et al. [1992] and Schonbucher [1998] who derive the no-arbitrage, drift-
restriction conditions for the default-free and defaultable forward rate respectively, we ob-
serve that under the risk-neutral measure P the defaultable forward rate follows the stochastic

integral equation®

t.T, X)) = f40,7) + Z[ (u,T, X[R))/ (u, v, X (u))dvdu
4 t T
+E ] M u, T, X (u)) / M u, 1!,X(u-))dvdu+z /ﬂ Mu, T, X (u)) f & (u, v, X (w))dvdu
+ Z/ 'f(u T, X (u)) [ (u, v, X (u))dvdu
n 2 t -
+Z fo 5! (u,T,X(u))de(u)+§: fD &) (u, T, X (u))dWi(w). (4.29)

Similarly, using the no-arbitrage drift restriction condition derived in Pugachevsky [1999],

the forward credit spread satisfies the stochastic integral equation
2 ¢ T
At T, X (1)) =/\({],T)+Zf 5$(u.,T,X(u))f &M, v, X (u))dvdu
i=1v0 u

2 t T 2 ¢ T
+ Z/ &{[u.‘ T, X {(u)) / 6’3(11,, v, X (u))dvdu + Z/ &Mu, T, X(u))/ &;r(u,'u, X (u))dvdu
=170 u =170 U

2 t
+z fu Mu, T, X (u))dW,(u). (4.30)

By setting 7' = t in (4.29), we find that the instantaneous defaultable short interest rate

39This mirrors the approach that we employed in Section 2.2.3.
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dynamics follow the stochastic integral equation

ri(t, X(t)) = 40, :,)+Z/(; 5'{(11.,t,X(u))f &f(u,u,X(u))dvdu
2 t t
+E/0 &;‘(u,t,X{u))/ 7 (u, v, X (u))dvdu
; td U u t&f u, v ) )dvdu 3 t&"r uw u 563‘ W, v ) jdvdu
+ 30 [ sttt Xy [ ot X @i 3 [5G0t X [ 5200, X )
+ 3 [t x@a + Y [ a2t Xw)abiw, (4.31)

whereas the short term credit spread satisfies

2 t t
e(t, X (£)) = A(0,1) + Z/ Mu, b, X (u)) f &M, v, X (u))dvdu
i=10 u
3 t 13 2 t
+ ; j; FMu, t, X (1)) ] 57 (u, v, X (w))dvdu + \;; fﬂ ! & (u, t, X (u)) . [n M u, v, X (u))dodu

2 + _
+Z} fo M, t, X () dW(u). (4.32)

The Markov chain X (¢) in (4.7) represents N distinct regimes taking on values 1,2, ..., N.

We can write its dynamics in differential form under the risk neutral measure as
dX(t) = HX (t)dt + dM*(2), (4.33)

where MX(t) is a martingale under the risk-neutral measure P. By making the assumption

that the market price of regime-switching risk is zero, the transition intensity remains the
N

same under both measures since the generator is given by H = Z htXJ As in (2.55), the

i,4=1
defaultable bond price in this case can be shown to satisfy the expectation

PUt, T, X (1)) = I@I[exp( - ]T r{u, X(u))du)R(T)

4

J—}]

. (4.34)

~ Loy B] [ RO (u,do)e FOXO ot 7],
t

where the filtration F;/ = F}V v FX contains all other information except information on
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default. Monte Carlo simulation can be used to price the defaultable bond using (4.34).

4.3 Hull-White-Extended-Vasicek Model with Regime-

Switching

In this section, we extend the results in Valchev [2004] to the defaultable HJM framework.
We assume that the volatility functions o/ (¢, T, X (t)) and o*(t, T, X(t)) are modulated by
the same Markov chain X (¢) which could be a vector incorporating different states. For
notational simplicity, we suppress the dependency of the defaultable forward rate, defaultable

short rate, forward credit spread and short term credit spread on the Markov chain X (t).

4.3.1 Model Formulation

Let 7, ..., 7, ... denote the jump times of the Markov chain and 7, the total number of jumps
by time ¢. A general volatility function o(t,7,-) takes any of the N possible values corre-
sponding to the states of the Markov chain. Given that e; = {0,..,0,1,0....,0}, we observe
that o(t, T, X(t)) = (0(t,T.e1),.....,0(t,T,ex))" and the volatility functions o (¢, T, X (t))

and o*(t,T, X (t)) can be represented as
o (T, X(1) = (6/(¢, 1), X(1)) and o MLT,X(1)) = (6*(6.T), X (1))-
Assumption 4.3.1 We shall assume the particular functional forms

5f(t, T) = (g—f(el)e—xf(m)(i‘—t)) ''''' : Uf(eN)E_Ef(eN)(’i‘_t))}

Mt T) = (J’\(el)e_""(“‘)(T_t), ooy 0 (e )TN ENT ‘))‘

Between any two jump times t € [0, 7p..[, given that the coefficients of (Xoz), oM X )
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£i(Xrz) and £ (X5z) are piecewise constant, the volatility functions are piecewise-deterministic

and of the form

ol (4, T, X () = of (X2 )e ™ KR, (4.35a)

k

oAb, T, X (1)) = oM Xog)e X0, (4.35b)

By substituting (4.35a) and (4.35b) into (4.29), the defaultable forward rate can be written

as

t T
FULT) = U T) + of (X )P / eI )T / eI gy gs

Tk

+oM(Xre)? ] =) ] T e gy g

T

+V1- PQUI(XTE)J*(XTE)U
¢ vk s (4.36)
+ / oA X2 )(T=s) f e-n;(xT;)(u—s)duds]

x

k

¢ . T
o Xp )@ —s)] e X u=s) g o

k

i . N
+ f ((,f(XTf)e—n;(XT,-fxT—s) + po( Xfr)e—mxf,f)(r—s))dwl(s)
TZ

k

t . ~
=+ 1 /1 — 92] UJ\(XT;)B_‘A(XTE_’)(I_'s)dwz(s),
Tk
from which the defaultable short rate process dynamics are given by
¢ ¢
‘l"d{t) _ fd(Tf,t) + Jf(er)zf e_"'f(xrf)(t—s)/ e—"f(xrg)(“—-“)duds

TE
i t
+oN(Xyr)? f oA X)) ] oK) u=s) g

Tk

i i
+v1- ngf(XT: )JA(XT:)[f e (Xrg)lt=9) f e X)) s
Tic s

t t
+/ e—m(Xr;)(i—S)-/ e—-“f(XTf)(ﬂ—S}duds]

k

(4.37)

e~ Xog )(t_s)) dWi(s)
4 &

t
+v1-— ,ogf oM Xrz)e A s)dWJ(s).
7

i i
+[ (Gf(XTg)e"’:f(Xff)(t‘s}_'_mA(XTf)/
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Figure 4.1 illustrates the evolution of the defaultable forward rate curve together with its
modulating Markov chain over 500 time-steps for an economy with high and low volatility
regimes given by the parameters of = [0.02,0.04], op = [0.01,0.02], x; = [0.6,0.8] and
Ky = [0.7,0.9]. In addition, we assume a constant initial forward curve f(0,7) = 0.07 while

the transition probability matrix is given by

0.99 0.01
P= , (4.38)
0.01 0.99
with an initial distribution
0.5
Po = (4.39)
0.5

Such a specification of transition probability matrix guarantees that h{\, = h3, which implies
the same transition intensities for a given state. In addition, we choose the values in (4.38)

to ensure that the frequency of regime switching remains low.

From Figure 4.1, we observe that when the regime switches from state 2 to 1, there is a change
in the simulated path of defaultable forward rates from high volatility to low volatility. A
key difference from a jump process is that the process does not jump to the new state at
once but drifts towards it under the new paramcters. Since the long term average varies
between regimes, this explains the changes in the drift of the forward rate process leading
to rapid shifts in the term structure after a switch although the process remains continuous.
In addition, the term structures generated over time can cross each other and therefore the
traditional static duration measures would perform badly as noted in Hansen and Poulsen

12000].
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Defaultable Forward rate
0.12 T T T a T T
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Figure 4.1: Defaultable forward rate dynamics and the modulating Markov chain.

Taking differentials in (4.37) yields the stochastic differential equation

d t r
dr(t) = [aﬂ—a(:’—x—) k- / (rff (X )rog (X, Je~ s Kride=w) —po*(er)m(er)e"‘*(x’k)“‘“))dWx(U)
Tk
i
- V1= 2o X )kA(Xr,) / e"‘*(xfk)(t‘“)sz(u)Jdt+ (07 (Xn,) + po*(Xy,))dW(t)
Tk

+ V1 = p20* Xy, )dWa(2), (4.40)

where the u(t,z) term in the drift is given by

af(X,)? 2 oMX.)? 2
ZATTR) (] o—hs(Xry ) (t—Tk) Z AT (] — emma(Xn )(E-Tk)
2o (2 T A e ()

/(X k)UA(X x) Kf(Xr,)
— el AT 1 p2(3 e (X)) (] 4 A e—r (Xr Y(E—7s)
K (Xr,)8r(X7,) ? [ ( w(Xr) +r5(X7) )

Xr)
— e~ 8 (Xn)-Tk) (1 4 ra(Xr, —ria(Xr M=) Y]
’ ( wx(Xr,) +K,f(Xn)e )]

p(t2) = fAm, 8) +

Proposition 4.4 Given that the volatility functions satisfy Assumption 4.3.1, the default-

able short rate dynamics under the risk-neutral measure P follow a two-factor Hull and White
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[1990] type of model

dri(t) = ra(Xse) [ma(t, =) — m(t, z)r(t) — ré(t)] dt
+ [0 (Xoz) + po* (Xp) | WA (E) + V1 = p20™ (X2 )dWi(2), (4.41a)

dr(t) = k7 ( X7z )[my(t, z) — r(t)|dt + af(XTg)dwl(t), for te[rg, i, (4.41b)

where the coefficients in the drift are defined by

0(t, z) b(t, z) Kf(Xoe) + ka(Xoz)
my(l, z) = . omg(t,z) = 2% and m(t,z) = h 2
( N k(X ra(Xoz)
where
( opt(t,x
O(t,x) = % + 6 (X)) (t, ) + 6a( Xz )pa(t, @),
Uf X,z 2 _ "
Op(t, ) = fo(7g,t) + ___(T_’*)(l — e rr(Xap)t Tk]) + Kaf(XT:)plf(t._ z), (4.42)
Kf(ng)
| #(t ) = Wt 2) = p(t2).
Proof: The proof is given in Appendix C.1. |

The coefficients xx(X-z), mq(t, z) and m(t, z) are functions of the modulating Markov chain
X(t) which are switching between different values with the jumps of the Markov chain. We
observe that due to path dependence on the Wiener processes W;(t), (i = 1,2) in (4.40), the
system of stochastic differential equations (4.41a) - (4.41b) is non-Markovian. We can write

the stochastic integral equation for the default-free and defaultable short rate as

r(t) = f(7¢.t) + Si(t, z) + ¢a(t, z), (4.43a)

ri(t) = fUrE )+ Silt,x) + Z oi(t, z), (4.43b)

i=1
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respectively, where we define the state variables

t t
51(ﬁ,$)=f Jf(XT:)e—Kf(XT,f)(FSJ/ Uf(XTf)eﬂf(x"f)(u_s)duds,

k

t . t .
Sa(t,z) = f AN (X g e f oM Xpe)e D g,
T 5

k
x
k

t . ‘ ¢ —k3 (X, z)(u—s
Sa(t,z) = /1 — pzf UJ’(XT:)E—NJF(:\TE)(F&)] JA(XT: Je A Xz ) (u )duds,

TE £

¢ ( —5 t —K z ) (u—s
Syt,z) = /1- p;e/ UA(XTE)S%,\\XT;)& )/ orf(Xf;)e F( Xz ) ‘)d'nds,

'r;' 5

i
o1 (t, ) :] of (X,p)e )i (),

ke

x
k

t —~
3(t,z) = /1 - p? f o (Xpe)e ) ariy o).

t
¢alt,) = p f N Xy )e DD a (),

The stochastic differential (4.40) can then be written as™

4
ari(e) = [ fir.0) + %Z Silt,7) — kg (Xog)pr (8, 7) — ~a(Xog)ia(t, )

= m(Xeg) () = 1) — 01 (02) = a(t,2) = 3 Si(0,0)) |

+ [07(Xrz) + po*(Xop) AW (E) + /1 — P2 ( Xz )dAWa(t).

The following proposition is a parallel one to Proposition 4.4.

Proposition 4.5 Using (4.43a), we can write the Markovian dynamics of the defaultable

4% Although both ¢, (¢, ) and ¢, (t, ) are driven by the same Wiener process W, (), we identify them sep-
arately since @1 (¢, z) arises from the default-free model whereas s (t, z) is from the credit spread dynamics.
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short rate as the two-factor Hull and White [1990] type model

dr'(t) = ma(Xep) [Bult, ) = Ra(Xrg)r(t) = r¥(0)]dt + (07 (Xog) + po(Xog) )W (1)
+4/1 - pza’\(XT:)dWZ(t), (4.45a)

dr(t) = kp(Xz) [é #(t.7) — r(t)]dt +of (X )dWA (8), (4.45b)

and the coefficients in the drift of the stochastic differential equations are given by

O4(t,z) + Rd(XTf}(f(T:. t) + Si(t.z))

( éd(t, .‘L‘) = KA(X—;-I) ’

' P 4 4
Oult,z) = fI(7E, ) + ra(Xoz) fUTE ) + p Z Si(t, z) + ka(Xrz) Z Si(t, ), |
\ i=1 i=1 (4.46)
K’d(XTf) o ef(t) .'.'C)
fx( Xz ) TR X))

. o
| Or(tz) = folris 1) + k(X ) F (770, 8) + g (X ) S1 (8, ) + 5516 ).

kd(Xrp) = kf(Xrg) = sa(Xrz), Ra(Xrz) = Oy(t,z)

Proof: Proof given in Appendix C.2. ||

We observe that the functions ©4(¢, 2) and ©4(t,z) in the stochastic differential equations
(4.45a) and (4.45b) are automatically calibrated to the initially observed forward curves

FU7Et) and f(7£,t) respectively.

Figure 4.2 illustrates the evolution of the defaultable short rate curve together with its
modulating Markov chain over 500 time-steps for an economy with high and low volatility
regimes. The levels of the parameters or(‘;c and oj under different regimes is given by gy =
[0.03,0.04], o5 = [0.01,0.02] whereas the speed of mean reversion are assumed to remain
constant speed irrespective of the regime, x; = 0.6 and x5 = 0.4. In addition, we are
assuming that the correlation between market risk and credit risk, p = 0.5. The effect of the
regime-switching can be observed in the short rate curve where we compare the difference in

the regime-switching defaultable short rate curve with the case where the underlying Markov
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chain does not switch given that both start from the same volatility regime.

Defaul!abls short rate

| — Without S\N’lh.hmg
| —with Sw'm:hln

o M/L\‘M
0.05+
—l i i AL A,

N N . L N
0 50 100 150 200 250 300 350 400 450 $00

Markov chain
T

18- 1

e - = - Without Switching
14~ —— With Switching

Figure 4.2: Comparison between regime-switching defaultable short rate and a non-switching
term structure.

The two-factor Hull-White type model that we have derived allows for better calibration to
market data. This forms part of the key difference of our model as compared to the models
developed in Landén [2000], Wong and Wong [2007] and Elliott and Siu [2009]. In addition,
our model also benefits from the inherent advantages of the underlying HJM framework in
that, it is automatically calibrated to the currently observed yield curve. The model is also
complete in the sense that, it does not involve the market price of risk directly (except the
transition risk which is captured within the modified generator matrix) and therefore no

assumption to that effect need to be made.

4.3.2 Defaultable Bond Pricing

In Landén [2000] and Hansen and Poulsen [2000], the problem of risk-free bond pricing with
hidden Markov models was undertaken. They considered a Vasicek [1977] short-rate type

model where the interest rate process is mean reverting towards a shifting long-term average
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with a constant speed of mean reversion « and with a constant volatility function.

Hansen and Poulsen [2000] developed probabilistic algorithms to compute the bond prices
whereas Landén [2000] used a semi-affine term structure and derived closed form solutions
by making use of Whittaker functions. Naik and Lee [1997] studied a generalization of the
model where in addition, the volatility also depends on an underlying Markov chain although

they did not obtain closed form solutions for the bond price.

We seek to derive a ‘semi-closed form’ solution for the bond price within the two factor Hull
and White [1990] model framework that we have developed. The speed of mean reversion,
the long term average and the volatility are all functions of the underlying Markov chain.
It was shown in Elhouar [2008] that the extended Vasicek Hull-White model admits finite
dimensional realisations with the choice of parameter specification that we have made. The
short rate process is mean reverting towards a shifting long term level at a shifting speed of
mean reversion with a shifting volatility function. The process however remains continuous

although the model experiences rapid shifts in its term structure.

We recall that the defaultable short rate between default times is determined by the following

system of stochastic differential equations

dré(t) = ka(Xoz) [Bult, ) — Ra(Xoe)r(t) — r4(0)]dt + (0! (Xoz) + po? (Xoz))dWi(2)

+ V1 = p2o?(Xop ) dWa(t), (4.47a)
dr(t) = k5(X.2) [O5(t, x) — r(t)]dt + of (X2 )dWA (1), (4.47b)

Since the defaultable short rate process (4.47a) is modelled directly under the risk-neutral

measure, the bond price formula
PHt, T, X (1)) = R(t)Pt, T, X(t)), (4.48)

provides a convenient way to get the prices. However, the estimation of the model parameters
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could provide a source of difficulty as one can only estimate them under the real world
probability. Elliott and Siu [2009] noted that given bond price data one might recover
the risk neutral parameters of the short rate model implied by the data. The approach is
however much easier to implement in practice if an analytically tractable formula is available

for evaluating the risk neutral valuation formula.

We observe that under the risk-neutral measure P, the price at time ¢ of a pseudo-bond with

maturity 7', denoted by P9(t, X;, T), is a function of the two underlying factors r4(t) and

r(t).

Definition 4.6 A defaultable short rate model is said to exhibit exponential affine term

structure if the pseudo-bond prices can be written as
Pi(t, X, T) = exp (A(f,, 2, T) — B(t,z,T)r — C(t, :::,T)'rd'), (4.49)
where A, B and C are deterministic functions having terminal values

A(T,2,T) = B(T,z,T) = C(T,z,T) = 0.

Applying 1t6’s differentiation rule to P?(t, X, T'), we obtain

_ op? oPt 1 9% pe
aPt =[% + (e no- +u,~a(sc )5 + 507 (Xep)?

or?
32}30’.

F X)o7 (X e MXe2)) 5 a5
+ 0! (Xop) (o (Xeg) + o (Xop)) Brord

. 9% p
+ 5 (o (Xop)? + 2007 (K)o (Xig) + 0 (Xep) )d(rd) Ja

apd or o

+ {O’f(Xﬂf) or + (Jf(X‘T:) +90'A(X J) }du/l t)+ \/l_*g A 3?“! dWQ( )

+ < P dX(t) >, (4.50)
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with time dependent coefficients

,u,,.(I, f,] = K,f(XT:) [éf(t, 3’] — T(f)],
p.,.d(ir, t) = KA(XT:) [éd(t, .’),") - Rd(X'r,f )T‘(ﬁ) - T‘d(t)].

Since P%(t, X,,T) is a martingale under the risk neutral measure, the bounded variation
terms which are not martingales in (4.50) above must sum to zero. We then have the partial

differential equation

opd aﬁd an 1 a Pd 9% pd
z Fex Mol (X = AX )
e+ g+ 50 (X (Xrg) (07 (Xop) + 90 (Xep) ) 552
Lr g A 2\ 0*P? d
+§(a (Xez)? + 2007 (X )o* (Xorp) + 0 (ka)) et <P JHX (1) >=0, (4.51)
subject to the terminal condition that P*(T, X7, T) = 1 where
N
— ~ vl T
<P HX(t)>=")_ e BrCrpx. (4.52)

ij=1

Given that the partial differential equation (4.51) is satisfied, then from the Feynman-Kac
formula, the arbitrage free price at time ¢ of a pseudo-bond P%(t, X;, T) with maturity time

T satisfies the regime-switching (partial differential) term structure equation

ap?

= TKP—riPi=0, (4.53)

subject to terminal condition Pd(T, Xr,T) = 1, where

52 pd 52 pd

apd op?
f Ay 2P
o+l (X )( (Xp) + po (XTk))arard

KP = pr—— t a5 + 5 Lol (XY

1 52 pd .
+z (0 (Xr2)? + 2007 (Xep)o* (Xg) + N Xz ) s+ < PLAX(H) >

a(r)?
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In addition, from (4.49) it follows that

9? P4 _

oP? [0A 8B 9C )., 0P _
i pti — _Bpd _ p2pd
ot [ag ot azr} o = B e =B

opP? s PPL o PP _

- = Pd. — ;2 o — /Pd.

ot = ~CPN Grap =P ga = BC

Proposition 4.7 If i = 1,2,..., N represents the states of the Markov chain, we have the

set of three ordinary differential equations for C', B and A,

oC;

v = 4,
at /\C% ; ( 543‘)
aBz i i 1 v =
ﬂat— = K,IB,' + (K’f — K ) iy (4'-)4b)
04 _ o (t,3)B; + £484(t,1)C; — ~[(0 2B} + 201 (o] + pa})CiB;
31, = KOy Ad /% i i\Ti T pa; JLs 5y

+ ((J )2+ 2p0f 0} + ( ] th e A (4.54c)

where we have defined A;(t,T) := A(t,i,T), Bi(t,T) := B(¢t,i,T) and C;(¢t,T) := C(t,:,T).

Proof: Sec Appendix C.3. n

To obtain an explicit affine bond price formula, it only remains to solve the set of ordinary dif-
ferential equations in Proposition 4.7 for the coefficients A(t, z,T), B(t,z,T) and C(¢, z,T).
We express the coefficients as A;(t,T), B;(t,T) and C;(t,T) to reflect the possible regimes

that the Markov chain visits.

Consider the special case where N = 2 such that the Markov chain switches between the
two states 1 = 1, 2 representing two different regimes. For the ordinary differential equations

in (4.54a), it follows that the solution is given by

1 o7
(T = — (1 — eT-8), (4.55)
K
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We observe that (4.54b) can be written as

aBi i i AVl =
W — fith' - (K‘f - K',\)(-’i =0 (406)

Lt

The integrating factor in this case is given by e "' which on multiplying with equation

(4.56) and solving yields

a“i} - .I"Cf\ KL (T—t) 1 —k (Tt —Ri(T—t
Bi(t, T) = =2 (79070 — 1) — = (70 = =(T-0), (4.57)

We can write explicitly the ordinary differential equations for A in (4.54c) as

9A a _ 1 .
S = F10s(t DBy + K384(t, 1)C1 - 3 [(a{ )2B? + 207 (o] + po)C1 By

+ (o)) + 2000} + (01)?) CF] - A — Rifete—h, (4.58a)
042 _ o5 24 11 f\2p2 f(f A
So = K105(t,2)B2 + K364(t,2)C2 - 5 [(02) B? + 204 (o + po3) C2Bs

+ () + 20003 + (03)?) C3| - hfet—42 — R, (4.58b)

given that the transition intensities satisfy the condition

2
Y oS =0, i=12 (4.59)
j=1
We observe that ;1{‘:1 = —szg whereas Iwzfz’g = —-f“zil. It then follows that the system of

ordinary differential equations above can be written as

0A =
=L n(t) + hfge“"z_‘ql — h‘fg =0,

ot

0A _ »
O olt) + WM I, =,

(4.60)
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where we have defined the function

7i(t) = K%04(t,4) B; + £304(t,9)C;

1 . . .
— (o282 + 20! (o] + p)CuB.+ (0! + 200l + (1) CE].

The coupled system of ordinary differential equations (4.60) is similar to the one obtained

in Landén [2000] and Elliott and Siu [2009].

We now briefly investigate the effect that correlation between credit risk and market risk
has on the normalised distribution of both the defaultable bond price and defaultable short
rate under regime switching and compare with the case when the model parameters do not
undergo regime-switching. We then investigate the effect of the transition intensities on the

distributional properties of both the short rate and bond price.

In the following simulation examples, we have assumed the same transition intensities for a
state 111‘1’& = R‘ZX ;- In addition, we take the speeds of mean reversion to be constant for both
regimes with x; = 0.6, kx = 0.4. The volatility parameters are given by o; = [0.02,0.03],
ox = [0.01,0.02], p = 0.5 and a constant initial forward curve fd('r;f , 1) = 0.07 over a 2-year
maturity horizon. To reduce the frequency and number of state transitions, we assume a

probability matrix and initial distribution given by

0.99 0.01 0.5
P= and Po = ' (461)
0.01 0.99 0.5

respectively.

Figure 4.3 shows the evolution of the default free short rate, defaultable short rate and
pseudo bond price with an underlying Markov chain where the effect of the changing volatility

regimes on the dynamics of the short rate and bond price evolution are observed.

From Table 4.1, we observe that in the presence of regime-switching, increasing the correla-
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Figure 4.3: Evolution of default free short rate, defaultable short rate and defaultable bond
price under regime-switching dynamics.

tion between credit spread and short rate increases the positive skewness in the normalised
bond price distribution. However, as Table 4.2 shows, in the absence of regime-switching, an
increase in correlation causes a bigger change in the skewness of the normalised bond price

distribution.

p | Kurtosis(Rate) | Skewness(Rate) || Kurtosis(Price) | Skewness(Price) |
-0.5 3.3249 0.0158 3.3685 0.0292
0.5 3.3276 -0.0107 3.3557 0.0980

Table 4.1: An analysis of the effect of increasing the correlation between short term credit
spread and short rate on the kurtosis and skewness of the normalised distributions in the
presence of regime-switching.

We also investigated how frequent regime switching affects the distributions. As expected,
this causes a reduction in the bond prices due to the additional volatility risk and therefore
increasing the transition intensities implies a decrease in the bond prices as investors would
require more compensation for the higher risk. From Figure 4.4 and Table 4.3, we observe

that increasing the transition intensity causes a reduction in both the kurtosis and skewness
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e

Kurtosis(Rate) | Skewness(Rate) || Kurtosis(Price) | Skewness(Price) |

-0.5

4.2145

0.0960

42778

- 0.0723

0.5

4.3424

0.0666

4.3727

0.0361

Table 4.2: Effect of increasing the correlation between credit spread and short rate on the
kurtosis and skewness of the normalised distributions in the absence of regime switching.

of the normalised bond price distribution.

" h = k3 || Kurtosis(Rate) LSkewness(Rate) ” Kurtosis(Price)ALSkewness(Price) J
0.0 4.3424 0.0666 4.3727 0.0361
0.0051 3.3276 -0.0107 3.3557 0.0980
0.4024 3.0319 0.0400 3.0239 0.0370

Table 4.3: Effect of increasing the transition intensity, h,x_7 on the kurtosis and skewness of
the distributions of the defaultable short rate and pseudo bond price.

Normaliged defaultable short rate
T v

= —

X
—— 1%, = 04024

....... =00
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Figure 4.4: Effect of transition intensity on the kurtosis and skewness of the normalised
defaultable short rate and normalised defaultable bond price distributions.

4.4 Option Pricing under Regime-Switching

In this section, we seek to derive the valuation framework for a European call option** with

maturity 7y and strike K written on a defaultable zero-coupon bond with maturity T given

#1We also assume in this case that this option is not subject to counterparty risk.
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that 0 <t <7y < T. Let C(t, P X(t),Ty) denote the price at time ¢ of a call option, which
for notational simplicity we will write as C(¢, P%, X (t)). As shown in Section 3.5, the price

at time ¢ of the call option knocked out on default of the underlying is given by
Clt, P X(0) = B[ 70 (P, 1) - K)* ]

where we use PYT,, T) = P4(Ty, X(Tp), T) to denote the defaultable zero coupon bond price
for notational simplicity. The option can also be interpreted as a defaultable investment with

zero recovery as the buyer of the option receives nothing on default of the underlying asset.

The pseudo bond price dynamics for ¢ € 77, 77, [ satisfy the stochastic differential equation
2 —~ -
dP* = pP(z, t)dt + ) of (z,8)dW,(t)+ < P, dX (t) >, (4.62)

i=]1

where the drift and volatility functions are given by

oP? oP? opt 1 o*pd
P _ g ur bl iy i (oY
iu (E, t) at + “T(x! t’) 8?‘ +ﬂ"r‘d (I,t) 8Td + 20— (X'Tk) ('3?,‘2
9*pe
+ 0/ (X;2) (Uf(XT;) + ﬂU’\(Xr;)) Brord
1 52 pd
- 5 (JI(XT: )2 + 2po'f(XTf )J)‘(Xff) + O"\(X-rf:)z) Ws
opd ap?
of (z,t) = O'f(XTf) o + (df(X,-;) + pJA(Xr;)) B
P N opd
o3 (z,t) = V1- p?o (XT:)W’

and when < P4 dX(t) > is defined in (4.33) and (4.52). Given that the pseudo bond price

satisfies an exponential affine form

Pt X (0),T) = exp (A(z, z,T) - B(t,z, T)r — C(t, w?T)rd)? (4.63)

“However, we note that the option considered in Chapter 3, (3.75) was within the stochastic volatility
framework.
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9pPd gpd ppi g2pd  H2pd d
we can evaluate the partial differentials o 0 o and P explicitly.

ot ar’ art’ or?’ 9(rd)? Orord

Let the quantity V(¢, P% X (t)), the discounted option price be defined by

V(t, P4 X (1)) = e Jo@se(t, pe, X (1)),

- Ty dyvge s = 4.64
= E{e_fo rd(h)ds(Pd(To,T) _ K)+ ( )

J—}] .

Given that

V(t, P4 = (V(i P4e), V(t, P4 ey), ..., V(t, P, eN)),
we can then express V(t, P, X(t)) = <V(t, P, X(t)). Applying It6’s rule to V we have

i t 2
V(t,Pd,X(.c))=V(0,Pd,X(t))+f a—vds—i— O ipt 4 l oy
4]

Sdy 2
s 3Pd 8(Pd)2d(Pd) + <V.,dX(t)),

(4.65)
whereas the Markov chain dynamics follow dX (t) = H X (t)dt + dMX(t).

By definition of a martingale, all time integrals sum up to zero from which we have that

(';W + uP(z,t )Bf’d + = ([ Pz, 6)? + (oF (z,1))? ]G?P]‘:]E' +(V, HX(t (t)) =0. (4.66)

Given that V = e~ o ™()ds¢ the partial differential equation in (4.66) can be written as

o°C

ac 1
5 [OT @) + (07 @ )] 555 + (€ HX®) - r'()C) =0,

ac
J' rt(s)ds P
e Jo ( + i (x.t)—apd

ot

subject to the terminal conditions C(Tp, P%, e;) = (I_’d(TO, T)— K)+.
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4.4.1 Finite Difference Methods: Theta Scheme

To solve the pricing partial differential equation in (4.68), we adopt the #-method technique as
used in Khaliq and Liu [2009] where they extended the penalty method for pricing American
options. A notable feature of our model is that to model the underlying asset, the defaultable
bond, we will also need to solve a coupled system of ODE’s in addition to the coupled PDE
arising in the option pricing problem. If the governing Markov chain occupies only two states
i = {1,2} such that we can write C = (Cth) with C; = C(t, P%e;), then C satisfies the

system of partial differential equations

ac; p0C; 1 9 P >C; dp
ot 2% de [( ay, t) + ( 23) :|d(Pd (C HP") 'C“- - U’ (468)
or equivalently
ac; P aC; 1 P2 P2 82C1- LX rd
o T ppa t el + @0 5 + ; i (C; - C) —rici =0, (4.69)

subject to the terminal conditions
Ci(To, P?) = (PUT,, T) — K)™,

for ¢ = 1,2. The option pricing problem then reduces to a problem of solving a system of

coupled partial differential equations®®

( f)Cl p 0C 1 6%C,
+“ 1 d | 9 (apd\2

ot oP 2 (0P9)

) OCs 6C2 1 9%C,

o T gpat 25(P)

(('Jrir,’l)2 + (0'2 1 ) +(C; — C) hn ric, =0,

((6F3)? + (054)%) + (Co — CL)A — riCy = 0, (4.70)

| Ci(T, Py = (PUT,, T) - K)™.

“3We observe that Z ﬁ;g (¢ — Z hx C;+ hXe; = E fz,{f C; from which we get the coupled system
J#i 3 j
of partial differential equations in {4.70).
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It would be extremely difficult to obtain a closed-form solution to (4.70) and therefore we
resort to efficient numerical methods for the solution of the coupled partial differential equa-

tions.

Let P¢  be the maximum possible bond price chosen as the upper bound (we could take

TraxT

this to be P2 = 1if Ty = 7). Equation (4.69) can be written as

nar

f IC; aC; | , 0%C; = x ~
('3 + MP Hpd + 5[(”1,1') + (%{i)ﬂw - (Tf — k3 )Ci + ; hfgcj =0,

Ci(P4Ty) = (PUTy, T) - K.
(P, 1) = (PYTo, T) ) (@)
C,P,im,t)—[)

C(Ph 1) = e @0 (Pt k),

TaxT? )

.

where C;(P?,t) is the solution of (4.71). The quantity (P2, — K ) is always positive since

the strike K < P2,

If P* = P,

MR

the option is worthless and therefore the option’s lower bound is Ci( P2, , Tp) =

0. To discretize the domain (P%t) € [P¢
d

let AP = ﬁ?”i:zl and At =

for notational simplicity we define 52 = (o D7+ (082

d ] % [0,Ty], for positive integers M and N we

min ’

Ty _
7 be the grid sizes for P* and ¢ respectively. In addition,

For0 <m <M +1,0<n <N +1 and states i = {1,2}, we let C["" = C;(mAP? nAt).
The grid coordinates (m,n) allow us to compute the solution at discrete points. This point
corresponds to time nAt, forn = 0,1,2,..., N+1 and bond price AP*form =0,1,2,.... M+
1.

Then using discretization and #—methods (see Topper [2005]) we have the system of equa-
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tions
C:n,n-l—l _ C:n ,n 1 gdgc:n 4l ( dgc:ﬂ N 96 C:n Jn+l ( )5 Cm 7
At T30 Ay O apy +a (AP) (AP)
_ _ (4.72)
_(r:t _ ht)f [QC_;n'n-"—l + (1 _ m n + Z [ch n+1 (1 _ S)C;n,n] _ 0.'
J#Fi
where
6§C:n.n _ C:n-}-l,n . QC:n,n + C:rn-—l,n1
(4.73)

C;n,n — C‘;’n‘{‘l'“ — C;.m‘n, fOl" 0 S 6 S 1.

On simplification, (4.72) can be written as

1+ 1= OWMC™ = 0LPC " 4 [1 — oWr)er ™ 4 gFrmem T (1 g)Lrer

+ (1= O)F"CI0" + ALY T RXC ™ + (1 - g)Cn, (4.74)
J#i
where
L7 = a5}, W =2a57+Bul + (r! —h¥)At and F™ = a5?+ fuF,
ith o = At and 8 = At Equation (4.74) can further be simplified as
w1 = — 1C Jall si as
2(APY? N P

OLTCI " + (1= W™ + 6 Fre i + oAty REer e
J#i

m m—l,n+1 my o+l mpoam-+1lndl X pmn+1
= 0L}'C; + (1 —owmer Tt + 9FmC; +0ALY " hECmH
J#i

(4.75)

where we have defined 6, = (6 — 1).

For each regime i = 1,2, we define the vector C = [C}"",C>", ..., C}"™T such that (4.75)
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can be written in vector form as

AC} + 0,0 )  RECH =BGl + 04t Y RECTH 4 gt (4.76)

i i

where the tridiagonal square matrices A; and B; which arise from central difference approx-

imations to the spatial derivatives are given by

1—,W}  6F 0 - 0o |
0L2  1-0,W?  6F? 0
0 oL} 1-W? 6.F° 0 o
A= . , (4.77)
: g - g 0
6, L;M_l 1-6; W{M_l 6 F;-'M_l
|0 0 0 oLy  1-ewM |
and
r 1 1
1-60W}  OF 0 e 0
L?  1-6W?  9F? 0
0 oL}  1-6W? 6F® 0 o
B; = . . . , (4.78)

0

LMt 1-gwM-1  gpM-!

0 0 e 0 LM 1-owM

respectively with

grtt = : . (4.79)

F;_Me-rd(';‘g —t) (Pd

mar

- K)
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For the special case of 2—state regimes, we let

Cy
cr = : (4.80)
Cy

A 8, A ALL
A— : 2 , (4.81)

BAXALL A,

B,  6h5AL
B = i : (4.82)
91 h.‘le Atl B;g

where I denotes the 2 x 2 unit matrix and

g?‘H—l
gtl=1| " e (4.83)
g
Then (4.76) can be written as the system
AC" = BC™"*! 4 gnt1, (4.84)

with n = N + 1, N, .., 1,0, and terminal condition CV*' determined by the option’s payoff
(P* — K)™. The scheme therefore requires solving an M x 2 linear system of equations at

each step.

If for j # ¢ we replace C;*" with C;“’”“, then (4.75) can be reduced to a similar form

OLLYCI " + (1= 6,WMC™" + 0, Fme "

_ GL?CW_LH-'—I + (1 _ gwim)c;m,n+1 i Gﬂmcs?’l.+l,n+l + g.ﬂﬁ Z E?L_’Cv_n,n-i-l’ (485)

T ¥ ]
J#i
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or equivalently;

ACP=BCiH + AtY RECH 4 gr =12, (4.86)
I

with CI = [C1",CP", ....,CM"™T. The equations in (4.86) can be solved separately yielding

T

a variant of the system in (4.84), namely

AC" = BC"t! 4 gt (4.87)
where A is given by
_ A,
A= . (4.88)
A,

It is well known that the f—methods include the forward Euler (fully implicit) method with
# = 1, the backward Euler (fully explicit) method for # = 0 and the Crank-Nicholson method
for 6 = —; as special cases. In addition, explicit finite difference schemes are conditionally
stable** whereas the implicit and Crank-Nicholson methods are both unconditionally stable.
The convergence of a particular scheme is known to depend fully on its stability and this is
more or less the main benefit offered by the latter schemes over the former as opposed to

their accuracy.

4.5 Summary

In this chapter, we have extended work by Valchev [2004] to the defaultable HIM term struc-
ture model. By choosing an exponentially decaying volatility function whose parameters are

modulated by the Markov chain, we derived a defaultable two-factor Hull-White-Extended-

A scheme is said to be stable if the eigenvalues of A~! are less than 1 in absolute value.



146 4.5 Summary

Vasicek type model. By construction, this model can be automatically calibrated to the
currently observed defaultable and default-free forward curves. The parameters in both the
drift and volatility functions are modulated by a continuous time Markov chain which implies
that the speed of mean reversion, long-term average and volatility vary between the different
regimes. The default-free and defaultable short rate processes are mean reverting towards a
shifting long term average level at a shifting speed of mean reversion with a shifting volatility

function.

We then express the defaultable bond price in an exponential affine formula, linear in both the
default-free and defaultable short rate processes for the special case of two regimes, although
the results still hold for more regimes. “This is achieved by solving the regime-switching bond
pricing partial differential equation which further requires solving numerically, a coupled
system of ordinary differential equations. Some numerical results to illustrate the response
of the bond price density to changes in the correlation between the credit spreads (which
gives the market perception of the default risk) and interest rate and also due to the increase
in the frequency of regime changes were also presented. In particular, we observed that
increasing the correlation between the market risk and credit risk increases the skewness of
the bond price distribution in the presence of regime switching. In addition, we observed
that increasing the transition intensity and therefore the frequency of regime switching leads
to a decrease in the kurtosis of the defaultable bond price distribution as investors demand

more compensation for the additional source of risk.

We then investigated the option pricing problem on the defaultable bond in the presence of
regime switching using finite difference methods. Our method follows the approach used by
Khaliq and Liu [2009] where they applied the theta-adaptive methods to pricing American
options in the presence of regime switching. This yields a system of equations which when
solved subject to the boundary conditions gives the price of a call option on a defaultable

bond under the fully implicit, fully explicit and the Crank-Nicolson schemes.



Chapter 5

Conclusion and Further Directions for

Research

5.1 Summary of Findings

As a result of the diverging pros and cons of the two main classes of modern credit derivatives
models, namely the structural and reduced form models, there is no standard model for credit
and the choice is dependent on what the model is to be used for. Within the reduced form
class of models (wherein this thesis falls), the likelihood of default and/or downgrade is
modelled directly. In some cases, the ‘forward curve’ of default probabilities which may be
used to price instruments of varying maturities can also be modelled. These probabilities
play the central role in the distribution of credit losses and to estimate them, models of
investor uncertainty and evolution of the available information over time are needed as well

as the definition of the default event.

To price credit sensitive instruments, in addition to a model on default probabilities, one
needs a model for the default-free interest rates, a model of recovery given default and a model

of the premium (spread) that investors require as compensation for bearing systematic credit

147



148 5.1 Summary of Findings

risk. Empirical evidence indicates that the time series of the default free rates and credit
spreads exhibit mean reversion and fat tails and D’Souza et al. [2004] attributed the latter to
the existence of stochastic volatility dynamics. Default-free interest rates as state variables
affect the credit spread of the defaultable bonds as changes in interest rates compel investors

to re-evaluate their assessment of the default probabilities of all risky bonds.

To model credit risk, we have adopted the Markovian defaultable HJM framework where
a model for spread of the defaultable interest rates over default-free interest rates adds a
default risk module to an existing model of the default free interest rates. By extending the
HJM framework to include default risk, we obtain a generalised framework that fully incor-
porates all the information on the current risk free term structure as well as the credit spread
curve. By imposing restrictions on the forward rate and forward credit spread volatility, the
defaultable HIM admits finite dimensional realisations making the class of models compu-
tationally tractable. The default process has been specified using a marked point process

thereby using the mark of the point process to model the uncertainty in the recovery rate.

We have explored two broad ways of incorporating stochastic volatility within the defaultable
HJM term structure class of models. The first approach was covered in Chapter 2 and
Chapter 3 where the stochastic process governing the volatility dynamics was driven by a
Wiener process independent of the Wiener processes driving the forward rate and forward
credit spread dynamics. In Chapter 2, we made the assumption that the volatility function
is exponentially decaying as a function of maturity and is level dependent (on the short rate
or credit spread and stochastic volatility) and obtained exponential affine defaultable bond
prices. In Chapter 3, we assumed the hump volatility specification and verified that the
defaultable forward rates admits finite dimensional affine realisation and showed that the
defaultable bond prices are exponentially affine in some state variables. We then applied the
framework developed to the pricing of credit derivatives and in particular to pricing credit
default swaps, credit default swaptions and bond options, the latter under some further

simplifying assumptions on the hump volatility specifications.
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In the second approach covered in Chapter 4, we allowed for stochasticity to be introduced
to the defaultable forward rate volatility using a Markov chain with a finite number of states.
We then discussed the conditions on the defaultable forward rate volatility that would lead
to finite dimensional Markovian representations of the defaultable short rate dynamics in the
presence of regime-switching. We then applied the framework developed pricing defaultable
securities with special focus on pricing defaultable bonds and call options on the defaultable

bonds.

5.1.1 Markovian Defaultable HIJM Class of Models with Un-

spanned Stochastic Volatility

In Chapter 2, we established a defaultable HJM framework based on Schénbucher (1998]
that incorporates a correlation structure between the forward rate, forward credit spread
and stochastic volatility processes. This was motivated by the evidence in Heston [1993]
where the effects of the correlation between stochastic volatility and short rate on the bond
price were investigated. In addition, Jarrow and Turnbull [2000] showed that the correlation
between the short rate (forward rate) and the short credit spread (forward credit spread)

represents the empirically observed correlation between market risk and default risk.

By adapting the volatility specifications of the type developed by Chiarella and Kwon [2000b],
Bjork et al. [2004] and Filipovic and Teichmann [2002] to the Schénbucher [1998] model, we
established the necessary and sufficient conditions on the volatility structure that allow
the defaultable term structure model with stochastic volatility to admit finite-dimensional-
realisations in the defaultable short rate dynamics. The volatility functions were a product of
a quasi exponential function of the time-to-maturity and an arbitrary function of the forward
rate and the volatility process. We also showed that the defaultable bond prices across all
maturities can be expressed in terms of the default-free short rate, the short term credit

spread and a set of Markovian state variables. We expressed these Markovian state variables
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in terms of defaultable forward rates of a number of fixed tenors thereby establishing a
connection between the defaultable bond price and market observable quantities. In addition,
we derived an expression for the defaultable forward rate of any maturity in terms of the

fixed tenor forward rates.

By performing simulations in Chapter 2, we investigated the distributional properties of the
closed form solution for the defaultable bond price. In particular, we focused on the effects
of the correlations in our model and stochastic volatility on the distribution of defaultable
bond prices and returns. It was shown that increasing the correlation between the stochastic
volatility process and the credit spread or short rate processes from negative to positive
increases the negative skewness of the defaultable bond price distribution (conditional on
the stochastic volatility process). In addition, increasing both correlations yields higher
(excess) kurtosis on the distribution of the normalised defaultable bond returns. We also
observed that increasing the corrclation between the short-term credit spread and the short
rate process leads to a decrease in both the kurtosis and the (negative) skewness of both
the defaultable bond price and normalised returns distributions. This correlation conveys
information about the co-variation between default-free discount rates and the market’s

perception of default risk.

The simulation results also indicated that the presence of stochastic volatility in the model
affects the skewness and the kurtosis of the defaultable bond price distribution. In particular,
when the model state variables (short rate, short term credit spread and stochastic volatility)
are uncorrelated, increasing the volatility of volatility, and so the stochastic volatility, leads
to an increase in the negative skewness in the defaultable bond price distribution. However,
when the state variables are correlated and noting in particular that following the observa-
tion made in Longstaff and Schwartz [1995b] and Duffee [1998], that the correlation between
the short-term credit spread and the short rate processes is negative for investment-grade
noncallable corporate bonds, increasing the stochastic volatility increases the positive skew-

ness in the defaultable bond price distribution. In addition, we observed that this leads to
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an increase in the excess kurtosis of the normalised bond returns.

By building on the framework developed in Chapter 2, we developed in Chapter 3 a gen-
eralised volatility specification that allows for hump-shaped shocks, state dependency and
unspanned volatility. This class of volatility functions gives rise to a higher degree of flexi-
bility in modelling the wide range of shapes of the yield curve by virtue of the polynomial
in the deterministic part. The hump-shaped shocks are essential in matching interest rate
derivatives empirically. We then expressed the defaultable forward rate process as an affine
function of some state variables which are jointly Markovian from which we showed that the

defaultable bond price is exponential affine in the state variables.

This extended framework was then applied to price credit derivatives. We first derived the
approximating pricing formulas for single-name credit default swaps and swaptions within
the model. The simulation results showed that the valuation formulas derived from our
class of models capture the stylised empirical facts on credit default swaps and swaption
prices. A notable observation is that the correlation between short term interest rate and
short term credit spread has an impact on the fair credit default swap rate and consequently
the swaption prices. By applying Fourier transform methods, we derived a semi-closed form
solution to the pricing problem of a put option with a knock-out provision on default of
the underlying defaultable bond. We achieved this by making a simplifying assumption
on the nature of the hump volatility specification wherein we relaxed the requirement of
level dependency. We then solved the resulting coupled system of differential equations that
arises when calculating the exercise probabilities using numerical integration to obtain a

semi-closed form solution.
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5.1.2 Markovian Defaultable HIM Class of Models with Regime-

Switching Stochastic Volatility

In Chapter 4, we presented a defaultable HJM framework that introduced stochastic volatil-
ity into the defaultable forward rate volatility functions using a continuous time Markov
chain with a finite number of states. Following Valchev [2004] and Elhouar [2008], we pro-
vided the necessary and sufficient conditions on the volatility function that gnarantees finite
dimensional Markovian realisations in the presence of regime-switching. We observed that
we can reduce the Markovian dynamics of the defaultable short rate to a two-factor Hull

and White [1990] type model that allows for better calibration to market data.

By solving the regime-switching bond pricing partial differential equation (which required
solving a coupled system of ordinary differential equations numerically), we derived an ex-
ponential affine defaultable bond price formula with linearity in both the default-free and
defaultable short rate processes for the special case of two regimes, although the results
would still hold for more regimes. Chapter 4 also presented some numerical results to illus-
trate the response of the defaultable bond price distribution to changes in the correlation
between the short term credit spread (which gives the market perception of the default risk)
and the interest rate. We demonstrated that as in Chapter 2, increasing this correlation
implied an increase in the negative skewness of the defaultable bond price distribution in the
presence of regime switching stochastic volatility. In addition, it was noted that an increase
in the transition intensity and therefore the frequency of regime switching led to a decrease
in the kurtosis of the defaultable bond price distribution, a result that can be attributed to

investors demanding more compensation for the additional sources of risk.

In conclusion, Chapter 4 also presented results on the option pricing problem in the presence
of regime switching volatility. To price a European call option on a defaultable bond with
a knock-out provision (for the special case of 2-states regimes), we applied finite difference

(theta scheme) methods to the resulting, coupled option pricing partial differential equations
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and approximated the option price on a discrete space-time grid.

5.2 Directions for Future Research

The results presented in this thesis lead to several possible avenues for future research.
The stochastic volatility models developed in Chapter 2 and Chapter 3 are similar to their
counterpart in Heston [1993] and Hull and White [1987]. These are known to be incomplete
as they involve the market price of risk that arises from the independent Wiener process
driving the stochastic volatility process. It would be of interest to investigate how the
complete Markovian stochastic volatility model introduced in Hobson and Rogers [1998] and

Chiarella and Kwon [2000a] can be extended to the defaultable HJM setting.

Throughout the thesis, we have consistently worked with the assumption of fractional recov-
ery on default on the risky entity. We noted in Chapter 2 that this framework is not broad
enough to capture a bond’s downgrades or upgrades over time. The pricing model within
a multiple defaults and recovery framework is therefore weakened because following default
and subsequent repackaging and recovery, a bond issue would ideally receive a downgrade in
its credit ratings. Another possible extension would be to consider working within the affine
Markov chain (AMC) model for the multifirm credit migration framework proposed in Hurd
and Kuznetsov [2007], which was shown to extend easily to the multiple firm framework in
addition to allowing for up/downgrading of the risky names. The AMC model could also
be a good candidate for modelling default correlation of any two names since as we noted
in Chapter 3 and also by Schonbucher [2003, Chapter 10], the default correlation levels that
could be achieved within our framework are typically too low when compared with empirical
default correlations in addition to the level of complexity involved in deriving and analysing
the resulting dependency structure. In addition, this extension could also incorporate jumps
within defaultable term structure and thereby allow the for defaultable rates to jump in the

event of default.
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The option pricing models developed in Chapter 3 and Chapter 4 could also be applied to
complex payoff functions, in addition to investigating pricing within the American options
context. The latter would constitute an interesting formulation problem especially in the
framework of Chapter 4 given the existence of default uncertainty and regime switching
risk as well as the early exercise complication. Throughout the thesis, with the exception
of Section 3.4.2, we have assumed the absence of counterparty risk. The rapid growth in
the OTC derivatives market has pushed to the fore the problem of counterparty credit risk
(CCR). Setting limits against future credit exposures and verifying potential trades against
these limits has the downside of rejecting trading opportunitics with large exposures that
exceed the set limits. Credit value adjustment (CVA), being the market value of CCR
allows financial institutions to dynamically price CCR directly into new trades. Research on
this pertinent topic remains an ongoing concern. In addition, given that credit options are
predominantly over-the-counter financial contracts where there is no guarantee from a third
party such as a clearing house, another possible topic of study would involve investigating
option pricing in the case of vulnerable options within the framework developed in Chapter 3.
Little work has been done in this arca, and to the best of our knowledge, none within the

defaultable HJM framework.

In the simulation experiments that we conducted in the thesis, we relied on parameters
values estimated within the default-free HIM framework by several authors and used them
to ‘approximate’ what would be ‘reasonable’ parameter values in the defaultable setting. An
empirical study conducted within the our framework would go a long way in filling the gap
that exists in this area and yield parameter values that could further assist in deepening
research within the defaultable HIJM framework. A prominent feature of the stochastic
volatility model is that the likelihood function is expressed by a high dimensional integral
which cannot be analytically solved as a result of the latent volatility process and one has to
revert to numerically integrating out the latent volatility process using importance sampling

techniques followed by numerical maximisation of the approximate likelihood function as in
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Sandmann and Koopman [1998] and Durham [2006].

The model we have developed in this thesis offers a general yet tractable framework for
analysing and measuring the extent to which volatility can be spanned in credit risk market.
To our knowledge there is no empirical study on this very important feature of the credit
risk volatility which plays a vital role in credit derivative hedging and pricing. Trolle and

Schwartz [2009] studied this within a default-free setting.

Given that the CDS spread can be driven by several factors that may not be directly related
to the reference entity’s fundamental credit worthiness including leverage interest in CDS
trading, counterparty risk and risk-aversion of market participants, another possible research
topic would be to investigate the extent to which the volatility of CDS spreads is an indicator
of default risk. During the recent financial crisis, it was noted (see Grossman and Hansen
12010, Fitch Ratings Research on Credit spreads and Default risk|) that although widening
CDS spreads normally imply deterioration in the credit quality followed by default, there
exists what has come to be referred to as ‘false positives’ when the spreads widen but there
are no subsequent defaults. In this case, the spreads overstate the subsequent realised default
experience of corporate issuers, imposing significant costs on market participants who rely

on them as default risk indicators.



Appendix I

A.1 Doléans-Dade Exponential Formula

In this appendix, we provide this key result and sketch the proof. For a more detailed proof,
the reader is referred to Jacod and Shiryaev [2003, Theorem 4.61, pg.59] and Klebaner 2005,
Theorem 8.33 and Section 9.3].

Theorem A.1 Let the process X be a semi-martingale. Then the stochastic equation
t
R(t) =1 +/ R(s—)dX(s), (A.1.1)
0
has a unique solution, the stochastic exponential of X, that is given by

E(X)(t) := R(t) = XO-XO)-3X.X]*(0) [] 1+ Aax(s))e 25 (A.1.2)

s<t

We note that (A.1.1) can equivalently be written as dR(t) = R(t—)dX (¢), R(0) = 1 and in

this thesis, we have specified the process X by

dX(t) = —/O qu(dt, dg), (A.1.3)
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or alternatively,

X0 =X0) - [ [ au(as,do). (A1)

Given that X is a semi-martingale, the infinite product in (A.1.2) is almost surely absolutely
convergent, since Z (!lX(s))2 < [X, X]: < oo. The process £(X) in (A.1.2) is called the
Doléans-Dade expi)itential of X. When X is continuous, we get an exponential martingale
E(X)(t) = XO-XO3IXXIM) 1f X i5 a process with local finite variation, then [X° X, =0
and its continuous part can be shown to satisfy dX°(t) = dX(¢) — AX(s). In addition, given
that X(¢) = X(¢) — X(0) — Z AX(s), the stochastic exponential in (A.1.2) can be written

s<t
as

R(t) =OT] (1+AX(s)). (A.1.5)

s<t

If the continuous part X° = 0, the formula (A.1.13) reduces to an identity and from (A.1.4),

we have

R =[] (1 - a). (A.1.6)

Proof: To check if R(t) is a solution, we let Z(t) = X (¢) — X(0) — %[X, X1°(t) and Y(¢) =

H (1+AX(s))e **® such that R(t) = PV (1).

s<t

By applying Ité’s lemma to R(¢) we have that

R(t) =1+ R(t-) Z(t) +Z4) . Y (t) + %R(t—) (25, 2¢%

+ Y [AR(s) — R(s—)AZ(s) — e2GTAY (5)]. (A.1.7)

s<t
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We know from the definition of Z that Z¢ = X° from which it follows that

1
2() + 312°, 2% = X(t) - X(0). (A.1.8)
Similarly, we know that
Y () =) " e”CIAY (s), (A.1.9)
s<t

since the process Y is of pure jump type. Moreover,
AR(s) = eZEITAZEY (s ) (1 + AX(s))e 2XE — 267y (5) = R(s—)AZ(s), (A.1.10)

since AX(s) = AZ(s). Substituting (A.1.8), (A.1.9) and (A.1.10) into (A.1.7), it follows

that

R(t) =1+ R(t=)(X(t) — X(0)) =1+ R(t—) - X (¢). (A.1.11)

To prove uniqueness, we let R be an arbitrary solution and Y = Re ? where we suppress

dependence on time for notational simplicity. On applying [t6’s lemma, we have that

Y-1l=e% -R-Y_.-Z+ %Y_ X X —eT P X, RIF+ D {AY +Y_AZ — 77 AR}

1 .
=Y. -X-Y_ - X+ %y_ X X]T DY XX - Yo (XX +> {AY +Y_AX - Y_AX}

=Y AY.

(A.1.12)

This shows that V is a purely discontinuous process of locally finite variation. In addition,
we have that

AY = RB_Z — E_Z—R_ — (R_ + AR)S—Z_—QZ o {-;_Z‘ R_
(A.1.13)

=R_{(1+AX)e X -1},



159 A.2 Proof of Proposition 2.5 on Bond Price Dynamics with Stochastic Volatility

which implies that
Y=14+Y_-A, where A=) {(1+AX)e*-1}. (A.1.14)

In addition, it was shown in Kallenberg [1997, Theorem 23.8, pg.442] that the homogenous

equation Y = Y_ - A has a unique solution, ¥ = 0. Hence the proof follows. ¢

A.2 Proof of Proposition 2.5 on Bond Price Dynamics

with Stochastic Volatility

The proof of (2.34) in the first part of the proposition mirrors the derivation in the original
Heath et al. [1992] paper as the stochastic volatility does not enter directly into the formula-
tion. An idea of the proof is given in Appendix A.3 and we therefore omit it and proceed to
derive the result for the second part, which follows the idea in Schénbucher [1998|, Theorem

2, equation 44.

From the definition of the defaultable bond in (2.14) we recall that
P, T, V) =R(t)Pt, T, V), (A.2.1)

where P%(t,T,V), the pseudo-bond is as defined in (2.13) and R(t) is the remainder of all
fractional default losses at time t. We observe that the pre-default value of the bond is given

by
Pit—,T,V) = R(t=)Pt,T,V), (A.2.2)

where P4(t,T, V) is a continuous function as per the definition of the pseudo-bond.
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Applying Itd’s lemma to (A.2.2) yields
dPYt,T,V) = PU(t,T,V)dR(t) + R(t—)dP(t, T,V) + dR(t)dP(t,T, V),
which is equivalent to

dPYt, T, V) = R(t—)dP*(t, T, V) + dR(t)(P*(t, T,V) + dP*(t,T,V)),
= R(t=)dP(t,T,V) + P*(t,T,V)dR(t).
The last equation can be written as

dPe(t, T, V)
Pd(t—T,V)

+ P, T, V)R(t—)d—R@

dPYt,T,V) = R(t—)P(t—,T,V) R{—)’

and given that P(t—, T, V) = P%(t,T,V) this reduces to

pd
dPUt,T,V) = PU(t-,T,V) -af,——d((% +P(t=.T,V) ;ﬁf_ﬂ) (A.2.3)
‘:A 1 -

It remains to derive the stochastic differential equation for the pseudo-bond Pd(m T,V).

On substituting (2.31) into (2.13) we have
T T pt 3 T pt
P, T, V) = exp( -~ /: 140, s, Vp)ds — /t /0 o?(u, s, V)duds — ; /£ /0 % (u, s, V)dwf(u)ds)
(A.2.4)
In addition, following (2.31) we observe that

/:‘ fi(t,s,V)ds = ./tT 140, s, Vo)ds + /;T /: a’(u, s, V)duds + i/f At G} (u, 5, V)dW;(u)ds.

(A.2.5)

On using stochastic Fubini’s theorem in the term in brackets on the RHS of (A.2.4), we find
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that

T T t T 3 t pT
f fot,s,V)ds = f 40, s, Vp)ds + / / a(u,s,V)dsdu+ ) / f 5 (u, s, V)dsdW;(u).
t t 0 Jt i— Y0 Jt

(A.2.6)

This can be written as

T T t T 3 t pT
] [t s,V)ds = f 40, s, Vp)ds + f / a(u, s, V)dsdu + Zf ] 5% (u, s, V)dsdW;(u)

t t ot 3 t ot
— / 140, s, Vp)ds —] / a?(u, s, V)dsdu — Z/ f 53 (u, s, V)dsdW;(u).
0 0 Ju i=1v0 Ju

(A.2.7)

We recall from (2.33) that the defaultable short rate follows the stochastic integral equation

t 3 t
V) = F40, L, V) + f at(u,t, V)du+ Y / 5,1, V)dWi (), (A.2.8)
] i—1 Y0
which on integrating from 0 to ¢ yields
t t t ps 3 t gps
/rd(s,V)ds:/ f“(O,s,V@dsﬂ—] f ad(u,t,V)duds+Z] / 5% (u, t, V)dW;(u)ds.
0 0 0o Jo — Jo Jo
(A.2.9)

Following Fubini’s theorem and change of the limits of integration, (A.2.9) can be expressed

as

t t t pt Lot
/rd(s,V]ds:f 140, s, V[])d.‘}-f-] / o (u,t, V)dsdu—l—] f 53 (u, t, V)dsdW;(u).
0 0 0 Ju 0 Ju
(A.2.10)
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On substituting (A.2.10) into (A.2.7), we have the expression

T i t T
f fUt, s, V)ds = —InPY0,T, Vp) — / (s, V)ds + / / a?(u, s, V)dsdu
t 0 0 Ju

+§/0t/:&§(u,s, V)dsdWi(u), (A.2.11)

where we have used the definition of the defaultable bond as a function of the pseudo-bond
to show that

P%0,T,Vp) = R(0) P40, T, Vo) = PO, T, Vp).

We define the log pseudo bond price B4(t,T,V) = lnPd(t, T,V). Then, using equations
(A.2.11) and (2.13) the log pseudo bond price can then be expressed as the stochastic integral

equation

t t T
Bt T, V) = / r(s, V)ds + InP%0,T, V,) — f ] o(u, s, V)dsdu
a Ju

Q

3 t pT
-3 ] f 5 (u, 5, V)dsdWi(u). (A.2.12)
i=1 V0 Ju

Equivalently, this can be expressed as the stochastic differential equation

3
dBY(t, T, V) = [r*(t, V) — ob(t, T, V)|dt + > &5,(t, T, V)dWi(t), (A.2.13)

i=1

where

T T
ol (u, T, V):/ a(u,s,V)ds, and &%;(u,T, V):—/ 6%(u,s,V)ds. (A.2.14a)
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[t can then be seen that the pseudo-bond dynamics satisfy the stochastic differential equation

dPY(t, T, V) = Pt, T,V)(r*(t, V) + b%(t, T, V))dt + PU(t,T, V) Zom(z T, V)dWi(t),

=1
(A.2.15)
where the coefficients in the drift and diffusion are given by

13
bH(LT, V) = —ah(t.T,V) + 5 ST (E5 T V) (A.2.16)

i=1

T
65, T,V) = / ai(t,s,V)ds. (A.2.17)
i

Substituting (A.2.15) into (A.2.3) then yields the stochastic differential equation for the
defaultable bond
Pt T.V) .
At T i, T, (1Y) .
P(t— T, V) ( (&, V) + (L, T, V) dt + ZO’B (6, T, V)dWi(t) qu(dt,dq)

=1

(A.2.18)

Equivalently, we note that dM(w,t) = f qu(dt, dq) — / qu(dt,dq) such that M(w,t) is a
E E

local martingale. The defaultable price dynamics can alternatively be written as

dP(t, T, V)

PU—T.V) = (r(, V) + 0T, V) - f gh(dt, dQ))d£+ZJBt(£ T, V)YdW,(t) — dM (w, 1),

(A.2.19)

where we have used (2.9), with v(w;dt, dq) = h(w;t, dg)dt. Hence the proof follows. o}
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A.3 Proof of Proposition 2.6 on Bond Pricing under

Risk-Neutral Dynamics

We only provide the idea of the proof to this key result. For the complete proof, the reader

is referred to the original paper by Heath, Jarrow, and Morton [1992].

Using (2.2) and the stochastic integral equation equivalent to (2.29a), then by applying Ito’s

lemma and simplifying we find the corresponding stochastic differential equation for the bond

price to be
dP(t,T,V) )
PETV) ((tV) LT, V) + = Z(agttTV) )dt+ZoH;tTVdW(t)
(A.3.1)
where the coefficients are given by
T
ok (t, T, V) = / ol (t, s, V)ds, (A.3.2)
‘or
st T V) = = [ a5 V)is (A3.3)
t

Following the hedging argument, in order that there not exist riskless arbitrage opportuni-
ties between bonds of different maturities then the instantaneous excess bond return, risk
adjusted by its maturity must equal the market price of interest rate risk. It then follows

that
3 1 3
>0k (6 T.V) — o (LT V) + 537 (65(L.T.V) =0, (A.3.4)
=1 =1
which on integrating with respect to maturity and re-arranging yields

3 T
o (LT, V) = = 36l T V) (a0 - / 5(t.5.V)ds), (A.35)

i



165 A.4 Proof of Proposition 2.7 on the Existence of the Risk-Neutral Measure

the forward rate drift restriction which as was shown by HJM is a necessary and sufficient

condition for the absence of riskless arbitrage opportunities.

We observe that under the risk neutral measure, the forward rate dynamics follow the stochas-

tic integral equation

0

t 3 gt 3t R
[T, V) = f(0,T,V) + ] of (u, T, V)du + " ]0 $i(w)a] (uw,T,V)du+ Y /U &7 (u, T, VYdW; (u),
i=1 i=1

(A.3.6)

and on substituting (A.3.5) into (A.3.6) yields

3 t T 3 t
f&,7,V) = f(0,T,V) + Zf &f(u‘ T, V)/ 5! (u, s, V)duds + Z/ 55(11,? T, V)dW;(u).
i=1 70 u i=1 Y0

(A.3.7)

Similarly, using the drift restriction condition (A.3.1) in (A.3.1) and simplifying gives

dP(t,T.V) = P(t,T.V)r(t,V)dt — P(t,T,V) S (fT 5l (t, s, V)ds)dWi(t). (A.3.8)

i=1

Hence the proof to Proposition 2.6 follows. ¢

A.4 Proof of Proposition 2.7 on the Existence of the

Risk-Neutral Measure

From the version of the Girsanov’s Theorem presented in Bjork et al. [1997] (Theorem 3.12)

which there is applied to the default-free framework, the defaultable bond price dynamics in
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equation (2.36) under the risk-neutral measure can be written as

APt T,V)

PU—TV) = (rie, vy + b4, T, V})dt—}—Zo-Bg(t T, V) [dWi(t) + ¢:(t)dt]

_ ( ]E guldt, dg) — jE gh{dt, d,q)dt) - [E gh(dt, dg)dt. (A.4.1)

This can be written as

dPe(t, T, V) p . N )
Pa(t—,T,V) (-r (t, V) +b%(t, T, V]+§w(t)ag,i(t,'r, V)-[th(dg,dq))dt

(6T V)AW(t) — dM (w, t), (A.4.2)

IMw

where dM(w,t) is a local martingale under the risk-neutral measure.

From the fundamental theorem of asset pricing we know that a measure P is a risk-neutral
measure if and only if the discounted bond price is a martingale such that the bond dynamics

are of the form
dPY(t, T, V) = Pt,T,V)r(t,V) + dV(t), (A.4.3)

where V is a P—local martingale. Then, comparing the drifts of equations (A.4.2) and (A.4.3)

we observe that we require
3 i~
rlt, V) + 0T V) + Y 6i(t)ah (4T, V) — f qh(dt,dg) = r(t, V),
i=1 E

inorder that the discounted defaultable bond price is a martingale. Hence the proof follows.

¢
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A.5 Credit Spread Drift Restriction Condition.

By using Equation (2.32), the drift restriction condition (2.45) can be expanded to

3
a(t, T,V Zqﬁz(f (t,T, V)= > i)} (t, T, V)
i=1
T
*Za’r(t T, V)f (t,s,V) ds+Zcr t,T, V)/ GMt, s, V)ds

i=1

T
+Z&;\(t,’}”, V)/t s, V)ds+2&;‘(t,1”, V)jz #t s, V)ds. (A5.1)
i=1 i=1

Substitute (2.23) and (2.32) into equation (2.45) and use the condition in (A.5.1) to obtain

Equation (2.46). ¢

A.6 Proof of Lemma 2.10

By using equations (2.31), (2.39) and the drift restriction condition (2.46), the defaultable

forward rate risk-neutral dynamics becomes
3 t T
[T, V) = f40,T, V) + Z/ 55(?1,, T,V) / &f(u, s, V)dsdu
—i—Z/ uTV)[ usV)dsdu-i—Zf uTV]/ ! (u,s,V)dsdu
~f =\
+ o (u, T,V ] o (u, s, V)dsdu
Z / W ,V) [ 5usV)
3 + _ 3 i _
+Z/ & (u, T, V)dW;(u) +Zf M u, T, V)dW;(u). (A.6.1)
i=1 Y0 i=1 70
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On setting T =t in (A.6.1) it follows that the instantaneous defaultable short rate dynamics

r?(t, V) under the risk neutral measure are given by the stochastic integral equation

ri(t, V) = fd(o¢vu)+2/ f(utV)/ ueV)dsdu+Z/a(u,t,V/ Mu, s, V)dsdu
+Zf )‘(utV)./ f(usVdsdu—kZ/ "f(utV/ Mu, s, V)dsdu

+Z;](; & (u,t, V)dﬁ/@(u)+;/0 M, t, V)dW,(u). (A.6.2)

By using the state variables of Definition 2.9 this can be written as

rt, V) = f40,t, V) +ZS (t, V)+Zu (t, V), (A.6.3)

j=1

whose differential form is given by

dré(t, V) = [f£(0,¢, V) +Z = Si(ts V)]dt+2dwj (t, V). (A.6.4)

i=1

Similarly, from condition (2.46) the forward credit spread dynamics A(¢,7,V) in Equa-

tion (2.29b) can be written as
T
At, T, V) = X0,T, Vp) +Z] aMu, T, V) f M u, s, V)dsdu

3 t T
I Z/[; &' (u, T, V)f &Mu, s, V)dsdu + Z/; aMu, T, V)/ &f(u,s,V)dsdu
i=1 u i=1 u

3
+ ) FNE V)WL), (A.6.5)

i=1

Setting 7" = ¢ in (A.6.5) and using (2.7), then Equation (2.53) is derived.

Furthermore, the default free instantaneous short rate in equation (2.19) follows the stochas-
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tic integral equation
r(t,V) = 0:‘1/};)+Z/ f(utV/ (u.sVdsdu+Z/ f(u,t,V)dW(u
(A.6.6)

Using the quantities defined in (2.50a) and (2.50e), Equation (A.6.6) can be expressed as
(2.52). Furthermore, recalling (2.29¢) the stochastic volatility process V(¢), will follow the

stochastic differential (2.54) under the risk-neutral measure P. )

A.7 Proof of Corollary 2.11

By using Condition 2.44, Equation (2.36) becomes

dPYt, T,V
P_d(i(—,Tk,V)) r(t, V)dt + ZJBi (t, T, V) (dW;(t) — ¢i(t)dt) — (-/Egp(dt, dq) — /E‘t,b(t, q)h(t, dq}dt),
(A.7.1)
and by making use of (2.39) and (2.40), (A.7.1) can be written as
od g _
dPLT. V) _ r(t, V)dt + ZUB: (¢, T,V)dW;(t) — dM(w;t). (A.7.2)

Pi(t— T, V)

These are the dynamics of the defaultable bond price under the risk-neutral measure in which

the process

. t t
M(w;t]:/o /Ew(w;ds,dq)—]o /;qw(s,q)h(s,dq)ds
t t _
- / f q pu(w;ds, dg) — f f qh(s,dq)ds,
0 E 0 E

is a local martingale.
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We define the relative defaultable bond price by

Pt T, V)

Z%t, T, V) = BV

t
where B(t,V) = exp(] r(s, V)ds) is the accumulated money market account. Applying
0
Itd’s quotient rule, the stochastic differential equation for Z%(¢, T, V) is

d 3 .
gf(t(i??/) Z LT, V)AWi(t) ]th(t}dq)dt- (A.7.3)

If we let E denote mathematical expectation with respect to the risk neutral probability
measure, it then follows that

E[dz4t, T,V)|F] =0

This implies that
E[ZY(T,T,V)|F] = 2%¢,T,V),

and given that P4(T,T,V) = PYT,T,V)R(T), the defaultable bond price satisfies
T
Pt T, V) = exp( f r(s, V)ds)R{T)‘}}}. (A.7.4)
t

We observe that if there is no default prior to maturity the payout is 1 whereas R(7;) is the

actual payment if there is default before 7. Equation (A.7.4) can then be written as

PYt, T, V) = [exp ( /:r(s, V)dS)R(Ti)

}-}] . (A.7.5)

T
We note that the quantity exp ( - f (s, V)ds) is the stochastic discount factor under the
t

measure P used to discount back to time ¢ the $1 payoff to be received at time 7. ¢
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A.8 Proof of Proposition 2.14

Using the stochastic integral equation dynamics (2.51) of the defaultable short rate and the
volatility specifications of Assumption 2.3.1 and taking differentials, then r?(¢, V) is found

to satisfy the stochastic differential equation

) Ny |
d’l‘"d(t, V) = [5{ f‘i(O, t, %) + Z 'a—tsj(i V) - :“wa; (t, V) — K,,\'I,L'g(t, V)]df

3
+ Z (QS;‘O'_{\/ ?"(t, V)V(t) + 02;0 54/ /\(L, V)V(ﬁ))dl’i’z(t) (Agl)
=1

Furthermore, by using the additional state variables n;,7 = 1,2, 3, as given in Definition 2.12,

Equation (A.8.1) yields

dri(t, V) = [£5(0,6, Vo) + m(£, V) = ks S1(t, V) + mu(t, V) — K3Sa(t, V)

+ 2U3(t~ V) - H’fS.'i(t: V) — K’)\S‘i(t'. V) - K"f’tpl (ta I’f) - K’)\ﬂ’?(t: V)ldt

+3 (ex05/FEVIVED + nor /AT VIV ) di(h). (A8.2)

From the short-term credit spread dynamics (2.53), the variable ¢5(¢, V') can be expressed
as

Yo(t, V) = c(t, V) = A(0,£, Vo) — 3 Si(t. V). (A8.3)

By rewriting the default free dynamics (2.52) of the forward rate, we have that

Uit V) =r(t, V) = £(0,t, Vo) — Si(t, V). (A.8.4)
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Substituting equations (A.8.3) and (A.8.4) into (A.8.2), we obtain

dri(t, V) = [f5(0.4, Vo) + £5£(0,8, Vo) + ka0, 8, Vo) +m(t, V) + ma(t, V) + 2m5(t, V)

- (ﬁf - KA)Sg(f., V) - K,ff‘(t, V) — -‘C,\C(t, V)] di

+ (Z 201 /rE VIV + Y enony/ A, V)V(t))dWi(t). (A.8.5)

This can be rearranged to yield the result in Proposition 2.14. Similarly by using the state
variables n;,7 = 1,2, 3, as given in Definition 2.12, the results for the default-free short rate

and the short-term credit spread can be obtained. ¢

A.9 Proof of Proposition 2.15

By substituting the drift condition (2.45) into the dynamics (2.31), the stochastic integral
equation for the defaultable forward rate under the risk-neutral measure may be expressed

as
3 ¢ " i
4, T, V) = f40,T, %)+Z[/ 5 (u, T, V)du,+f af(u,T,V)dm(u)], (A.9.1)
i=1 J0 0
where
.
FOTY) =0 TY) [ s Vyds (A9.2)
t

Then, from equation (2.13), the ‘pseudo’ bond is expressed as

3 T T ot
Pt T, V) =exp { - Z (f 40, s, Vy)ds + / / %% (u, s, V)duds
= \Jt t Jo

+ ]ﬁ ' /0 :, 5% (u, s, V)dﬁc-(u)ds)] . (A.9.3)
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We define a new variable [ such that
T t T t -
I :/ f % (u, s, V)duds—i—/ / 3 u, s, V)dW;(u)ds. (A.9.4)
t Jo t Jo
By applying Fubini’s theorem, this can be rewritten as

t T i T
= f f 59 (u, 5, V) dsdu + ] / 59(u, 5, V)dsdWi(w), (A.9.5)
0 i 0 t

so that, I = I; + I,. We note that for u <t < s,

T T t T s
/ Erf*(u,s,V)ds:f &f(u,s,V)f &f(u,U,V)dvds—l—] &f(u,s,V)] ¢ (u,v, V)duds,
u t

t t t

and by using (2.32) we can expand further to obtain

T T ¢ T s
/ &f‘(u,s,V)ds:/ & (u, s, V)f 5! (u,v, V)dvds+f 5{(1;:,3,‘/)/ 5! (u,v, V)dvds
t . > u , . t
+] &;\(u,s,V)/ &g\(u,ng)dvds—l—/ &g\(u,s,V]/ aMu, v, V)duds (A.9.6)
t u ¢ ¢

T t T 8
+f 5! (u, s, V)] 5w, v, V)dvds+f ar{(-u,,s,V)/ &Mu, v, V)dvods
t u t

t

T t T s
—l—f &;\(uTs,V)f 5 (u, 1J,V)di,=ds—|—] &g\(u,s,V]/ &1 (u, v, V)dvds.
t u 1

t

From (2.30) and by using the volatility specifications of Assumption 2.3.1, we obtain

T T T
] 53 (u, s, V)ds = / 51 (u,s,V)ds +/ 5Mu,s,V)ds
t

t t

= B¢(t, T)6] (u,t, V) + Ba(t, TV u, L, V), (A.9.7)
where the deterministic functions 8¢(t,7") and 8,(¢,T") defined by

T
Bt 1) = [ e an,
t

- (A.9.8)
ﬁ,\(t,T)Z/ e At gy
t
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Additionally, note that®

T 5
/ 51 (u, s, V) [ 5{(u,v,V)dvds=%[ﬁf(t,T)&{(u,t,V)F,
t t

T s
/ s, V) f 5 (u, v, V)dvds = %[Bz(t,T)&f‘(u,t, VIR, (A.9.9)
i i
T ‘ ] - (Rpt)(T-)
~f ~A . 6f(t: F) 1 —e™' ~A =f
/; a7 (u, s, V)/u i (u,v, V)dvds = ( . + PRCTETN )aé (u,t,V)a/{(u,t, V),
T t 1 — e~ (Ratrp)(T—t)
f 52 (u,5,V) f 51 (w0, Vyduds = (2D 12 )32, V)5 (u,t, V).
t u Kf rp(kp + K2)

Thus from (A.9.7) and (A.9.9), the equation (A.9.6) becomes

T t
/ 54 (u, 5, V)ds = B,(t, T)5! (u,1, V) / & (u, v, Vdv + %[5;(::, V6! (u,t, V)2
t U

+ By (t, T)3 M (L, V) f t M u, v, V)dv + %[ﬁ;(t, T)6 X (u, t, V))?

t

t
+ B¢(t, T)6{ (u,t, V) / 5 (u, v, V)dv + Ba(t, TN u, t, V) ] &7 (u, v, V)do

i uw

t, T t,T 1 1 1 — e~ (Re+ra)(T—8)
N [.Bf( ) + B¢, T) n (_._ + _) ( e )]5{(u,t, V)aru,t, V).
A Ky Kf K Kf+ K

(A.9.10)

“Note that

1

T &
1
e [ e dyds = —B(8,T) + ——
]; J K 1T) gxlkg + 82)

(1 C—(n,«+m(:r—z))‘
and
1

T 5
1
e"""(‘g_‘)] e vt guds = —B8,(¢,T) + ——o
/t A Kfﬁ’\( ) k(s +K2)

(1 _ e—(m;+nn(7’~n)_
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By substituting (A.9.7) and (A.9.10) into (A.9.5), it follows that

t t t
I= 5f(t,T)(/ &{{u,t,V)/ &7 (u,v, V)dvdu+/ Erf(u,t,V)dﬁQ(u))
0 U 0

t t i t
+,6’A(t,’1‘)(/ ag(u,t,V)/ a;\(u,a,V)dudu+/ &1 (u,t, V)/ Mu, v, V)dvdu
] ® 4] u

t i i
+ f M u,t, V) / &1 (u, v, V)dvdu + f &ﬁ(u,:,V)dW,;(u))
0 u 0

t i

&M u,t, V)/ &1 (u,v, V)dvdu
©w

i 1
_ 2 1
Br(t,T) fo N t, V) f 51 (u, v, V)dvdu + B (2, T) /0

1 1

+ [K%,ﬁf(t, T) + %,&(t, T) + (5 + R—A) (K_f i m) (1 _ e (R ”)}

i i i
& (u, t, Ve u,t,V d—u,+1 B2, T) | 627 (u,t, V)du+ B2(t,T) | 62 u,t,V)dul,
0 i i 2 I o i A o i

(A.9.11)

which by employing Definition 2.9 and (2.52) to the expression in the first box and (2.53) to

the expression in the second box of (A.9.11) allows it to be written as

I=8s(t,T)r(t, V) — £(0,t,Vo)] + Ba(t, T)[e(t, V) — A(0,t, V)]

t ¢
+ (B5(t,T) —[J‘A(t,T)]/o M u, t,V)f &f(u, v, V)dvdu+a(t.T)/0 &{(u,t,V)&?(u, t,V)du

1 ¢ ~2f ‘ .
+§[ﬁf«(t,T) fD 5.0 (u,t, V)du+ B3(t,T) fo &3 (u, t,V)du}, (A.9.12)

where

_ Bt T) . Ba(t, T) ( 1 1 )1_ e (Rp+ra)(T—2)
Ky K '

a(t, T) =
K Kt Kf+ Ky



176 A.10 Proof of Proposition 2.17

We can then write equation (A.9.3)

.y .
Pt T, V) = %m{p [ — Bs(t, T)[r(t, V) — f(0,t,Vp)] — Balt, T)[e(t, V) — A(0, ¢, V)]
3 t t
= [Bs(t,T) — Ba(t,T)) ZA &g\(u, t, V)[ E:"r{(u, v, V)dvdu

3 +
_a(t,T)ZA &1 (u, 8, V)3 (u,t, V)du
=1

Lroo ° t—2f s 2 t~2A :
. E[,jf(t,T);fo & (u,t, V)du+ﬁl(¢,1)zf0 G (u‘t,V)duH. (A.9.13)

i=1

Given (2.57a), (2.57b), (2.57¢) and (2.50c) in Proposition 2.14, the equation for the pseudo

bond above reduces to

PHLTY) = T pyeren( = A Tm(e. V) = 5836 Tm(e V) - . (e, V)
- [6f(t! T) - ﬂz\(t’ T)] 53(t= V) - Bf U’a T) [T“: V) - 1(0 t, VO)] - ﬁ»\(t; T) [C(tv V) - )‘(91 ta V())]) .

(A.9.14)

By using the definition of the defaultable bond in terms of the pseudo bond given in Equa-

tion (2.14), the expression for the defaultable bond yields equation (2.62). ¢

A.10 Proof of Proposition 2.17

From the definition given in (2.14) we have that

d
fit,T,V) = — 7 n PYt, T, V), forall tel0,T]. (A.10.1)
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On recalling (2.62) and integrating it with respect to 7" then taking the exponent, we see

that (A.10.1) can be written as

T
PAT) = exp |~ [ 740,8,V0)ds = G(.T) - 3D V) - SR, V) - (A102)

—a(t, T)ns(t, V) — [Br(t,T) + Ba(t, T)] S3(¢, V) = B (8, T)r (¢, V) — Ba(t, T)e(t, V)] .
Since we have that (set f%(0,7,Vy) = f4(0,T)), then (A.10.2) becomes

FUET V) = £U0,T) = —e T 1(0,8) — e T8 e~ T=08.(¢ T)p, (£, V)A(O, )
+e T8, (£ Tynp(t, V) + [ T=08, (8, T) + e T =08, (t, T) s (¢, V)
+em™ T8 4 e T=0185(+ V) 4 e T 0p(t, V) + e T0¢(y, V).
(A.10.3)

By using the deterministic functions a;(¢,7") of Definition 2.16 and the term (2.64) that
includes the information of the initial term structure of the forward rates and credit spread,

equation (A.10.3) can be expressed as
fUET, V) - f40,40,T) = AXT (A.10.4)

with the matrices A = [a;(¢,T)],i=1,2,...,6, and

X =[r(t, V)e(t. V)m(t, Vne(t, Vns(¢, V)Ss(t, V)]. Since a;(t, T) are deterministic functions,
the value of f%(t,T,V) can be expressed as a linear combination of the six state variables
r(t, V), c(t, V), Ss(t, V) and n;(¢, V) for i = 1,2,3. Then equation (A.10.4) can be used to

express the state variables as a linear combination of a finite set of six forward rates.

By working under the parameterisation of the maturity variable introduced in Brace,
Gatarek, and Musicla (1997], we let 7 = ¢ + 7 and denote Af%(t, V) := fUt,t +1,V) —

fd(O,t;O,t + 7). Then by fixing six tenors 0 < 7, < ... < 76 and setting 7 = 7;, for
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i=1,2,...,6, Equation (A.10.4) yields the system

[ r(t, V) W
i Af;i(t, V) ] [ a1 Q12 ... Qg ] c(t, V)
T = AL V) _ | o @2 ... ax m(t,V) 1 (A.10.5)
m(t, V)
i AfE(LV) | e ae ... aes | | ms(t,V)
) Alt) ~ | Ss(t,V)

where a;m, = an,,(t, T;), see Definition 2.16. Assume that the determinant of the matrix A(t)
exists and is not equal to zero i.e, detA(t) # 0, then the system of equations (A.10.5) is
invertible. If the matrix A(¢) is invertible, then the corresponding HJM model admits an
affine Markovian realization in terms of the forward rates fd(t‘ t+m7,V)fori=12..,6.
We can then write the state variables as linear combinations of forward rates f2 (¢, V), ...,

d .
(6 V) in the form,

’- r(t, V) |
e(t,V) [ A7 Y) |
mib V)| _ A(t)Y ALEY) ‘ (A.10.6)
n(t, V) :
st V) | AfatV) |
| Ss(t,V) |

By substituting the expressions (A.10.6) for the state variables into the equation (A.10.4)

and collecting like terms the equation (2.63) is obtained. ¢



Appendix II

B.1 Proof of Proposition 3.2 on the Defaultable For-
ward Rate

We recall from (3.27) that under the risk-neutral measure, the dynamics of the default-free

forward rate can be written as

n t T n t
F6T) = FO0,T)+ / 5/ (u, T, V) f 5w, s, Viydsdu + 3 f 57 (u, T, V,) dWi(u).
i=1 0 u i—1 Y0

(B.1.1)

Using the volatility specifications (3.76), the stochastic integral equation (B.1.1) becomes

S o r fro
f(6T) = F(0.T) + / r(w)Vi(u)ag: + ayi(T — u))e™ 7= / [aoi + ari(s — u)le™ " dsdu
=170

u°

+ Z t Vr(u)Vi(u)lag; + ay(T — -u)]c_’“{(T_”)dﬁ"i(u) (B.1.2)
i=1Y0

179
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By using the property T—u = (T'—t)+(t—u), and perform standard algebraic manipulations,

equation (B.1.2) becomes

a 1 -
f6,T) = FO0.T)+ > = (—f + —) [agi + ay(T — t)]e "~ T=Dy(t)
o1 Ry R G
- auau( 1 G-o;‘) ai; (a1 ax; 2] —xf(T-t)

- =+ — )+ —F|—F+200 )(T-8)+ —(T -t I Pt
;[R{ 7 an N{(ﬂf o) (T 1) i e 3i(t)
L

(ah- 2 1 ag _ J(T —t)

+ —+ . Dyt
Lo e

- Z a—? [a—lfz -+ 2ag; + 2a1;(T — t)] ~26/(T- ”‘I’ _2"'{ (T-9) Dgi(t)

K LK .
i=1 " ;) i=1 1

+ Z Zéfl [a'l’.hl “+ ay (T - t)]e_n{[rr_tjl'li (t) + Z 2{1 alz-e_‘{ (T_t)‘f’li (t} (B13)

i=1 i=1

where
z13(t) = /E \/r(u)l’}(u)e_‘{(‘—“)dﬁ@(u),
Dy,(t) —/ Vr{uw)Vi(u)(t u)e—"{“_“)dwi(u)}
Doy (2) _j r(u)lfi(u) —xd (t— “)du
Ut f
{ ®ailt) = /ﬂ r(u)Vi(w)e > =¥ dy, (B.1.4)
Dy (t) = /t r(u)Vi(u)(t — u)e”‘;'r (=) gy,
0

t
Psi(t) = / r(u)Vi(u)(t — w)e 25 9 gy,
0

i(t) = ]0 r(w)Vi () (t — )25 =) gy,

.

Thus, the forward rate process is Markovian and more specifically is affine in the state space
variables since

i 6

LT = FO.T) = 3 BT = 0au(®) + 33 Bay(T— 0850, (BL3)

i=1 i=1 j=1

where B, (T —t) and By (T —t) are given in (3.42).
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Similarly, we recall from (3.28) that the forward credit spread dynamics under the risk-

neutral measure can be written as

T
u

A, T) = zzn f & 5w, T) / T&f‘[u,s)dsdu—kf: f t (&f‘(u,T] / ! (u, 5)ds + 5/ (u, T) f ! &f‘[u,s)ds)du
i=170 u = vo u

2n t
+3 f M, T)dWi(u), (B.1.6)
i=170

Then by using the volatility specifications of Assumption 3.3.1, the drift components in

the forward credit spread representation (B.1.6) are given by (recall that z* = 1 so that

D =)

el
n g T
Z/ &M u, T]/ 5! (u, s)dsdu
i=1 70 u
B = A [ Ta@oiboi | 61iboi apiby;  ayby
- Zz'i {[ 7t 2 ! fy2
i=1 Ky (i) K (;)

(]

NT = )] T=00r(r)

agibp;  a1ibo; ayiboi  agibi; | @by ay;:b1; 2] (xS $RNY (Tt

- + ( + + T —t)+ 22X (T ¢ ]e ([ +RDT-Dg, (s
e Al G e St A w0
agiboi | @ibii\ ooy

+ + e Do;(t)
( K,;' (@)2)
ayibo;  apiby | apbyabi (6 RN (Tt

- _9 T_g]e (ki +ET =P 0. (¢
STy Y "
11:015

B ohfhe_(n{ﬂg\)(r—t)q,m(t))}1 (B.1.7)
K

13

and

2n n
L 5{(11., T) ! &3('&: -S)dsdu = zf\l
1] i
=t “ i=1

agiboi | agibii | faoibii | auboi | aubi a1;byi 2]~ (k] +xN)(T—1)
- [ ot ( ol {ﬁg)z)(f )+ 5T e Dsi(t)
biiagi | boay; | auby  auby ., —(s] +RM)(T—1)
_ [ ni‘ + K,;:\ (K.;-\)2 -2 h’,? (1 — t)]f’ q’mz(t]
a1ib1i _(of exdy(T 1) apiboi | agibii | raiboi | anby —wf(T-1)
— e i i Dqq:{t _ 4 (¢
K’? € 111{ )+ [ ."‘.'.;-}‘ + [R:-\}Q ( ﬂg\ (K;\)J)(T t):[e "I>I2t( )

(auebni + %@)e‘”{@””@m(ﬂ}s

e (B.1.8)
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and finally

-1

Zzﬂ/; &Mu, T) f’ 5w, s)dsdu = i {b_li (% + bm)[bm b(T — O]~ TDD, (1)
i=1 /0 u &N b

G ool

R
( ) ( 1 ) —kMT—t)
Bl L P Pr6:(t
+ K ﬁ?_}_blif’ 168
by b bis)?
- —; [—A + 2bg; + 2b1;(T — )} e 2T, 7.(t) — ( 1)‘) B‘QK?(T_t)‘i’lsi(f)}} (B.1.9)
K i Ki

where we introduce the additional state variables

s

t t
rilt) = / ni(u)e ™ Wy, By(t) = _/ ni(w)e~ I +HDE—w gy,
0 0
t t
Doi(t) = f ni(u)(t = we N Vdu,  Big(t) = / ni(w)(t — w)e= "I +DE=w) gy,
0 0 .
t t
®11(t) :/ ni(u)(t — u)’e (Rl R gy, D12:i(t) Z/ ?}g'(u)e_”{(*"u)du,
0 0

t " t
¢13i(t) = / ni(u}(t - u)e_"; (t_u)d'u, (1)141' (t) = f c(u)@’;(u)e_‘?(‘_”') du,
0 0

t t
Dy5:(t) = [ c(u)‘[f}(u)c”g";\“_“]du, Pi1i(t) = f c(w)V;(u)(t — u)e_"?\(‘_“)du,
0 0

t

¢
D7 (t) = / c(u)Vi(u)(t — u)c’k?(‘_“)du, Pi5i(t) = fn c(u) Vi (u)(t — u)ge_%:\(‘_“)du,
0

(B.1.10)

where 7;(t) = V;(¢)y/r(t)c(t). We note in addition that,,

E f 2w, T)dW, (u Zz’\l lboi + bis (T — t)]Je =T =Dy, (2)

n

+ Z 222 [boi + bia(T — t)]e ™™ TVzq,(t) + Z ZMb1ie ™ T8 14,(1)

i=1 i=1

-l-Zz 2byie= (T Dy (1), (B.1.11)
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where we introduce the state variables

z2i(t) = fo Ve)Vi(u)e W dWi(u),  z5(t) = fo Ve(Vilwe == dW, .i(u),

P19i(t) = /t c(u)Vi(u)(t — we AW, (w),  Dyoi(t) = /t c()Vi(u)(t — we ™ dW,, i(u).
0 0

(B.1.12)
Consequently, the forward credit spread satisfies
n 3 n 20
AET) = MO0, T)+ Y Y Be (T = )zja(t) + 3> Ba (T = )@;(t),  (B.1.13)
=1 j=2 i=1 j=T7

where the coefficients B, (T —t) and Bg (T —t) are specified in (3.43) and (3.44). It follows
from the definition f(¢,T) = f(¢,T)+ A(t, T) and (B.1.5) and (B.1.13) that the defaultable

forward rate admits finite dimensional affine realisation

n 3 n 20
FUET) = fHO,T)+ D) Be (T —taju(t) + > Y Ba, (T — )®5(t).  (B.1.14)
i=1 j=1 i=1 j=1
Hence the proof of Proposition 3.2 is established. &

B.2 Proof of Proposition 3.5 for the Exponential Affine

Bond Price formula

Straightforward application of (B.1.14) for the affine Markovian forward rate into the defi-
T
nition of the defaultable bond price formula, P4(¢,T) = exp( - / fet, s)ds) yields
t

_ PO, T n 38 T n 20 T
PULT) = ?)-m)—cxp( - ;;;rﬁ(z) /t B;,.(s — t)ds — ;;qaﬁ(t) /; Bg, (s~ t}ds).

(B.2.1)
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We proceed to integrate the deterministic functions B, , and Bg, (See Proposition 3.2) in
the exponent with respect to maturity. Substituting equations (3.50) - (3.53) into the general

exponential defaultable bond price expression (B.2.1) yields (3.49) in Proposition 3.5.

Hence the proof of Proposition 3.5 is established. ¢

B.3 Some Important Results for Section 3.4

B.3.1 Pseudo-Bond Price Formula

Given a risk-neutral measure P equivalent to P and a F,” —measurable short rate 7(t), we
assume that there exists the non-negative process fa(t] defined in Remark 2.4 and Equa-

tion (2.40) such that
t -~
f (r(s) + h(s))ds < oo, forall teR,.
0

The conditional survival probability satisfies P(r > t|FY) = E(e” b F‘(s)d5|fzw), t>0. As
noted in Jamshidian [2004], “the conditional survival probability may then be interpreted
as an agent'’s best probabilistic estimate as to whether the firm has survived up to time ¢ or
not, which agent observes everything in ]:tw, but is somehow denied the exact information
in F¥ as to whether or not default has actually occurred by time ¢.” It is also well known
that the conditional default probability is uniformly distributed on (0,1) and independent
of FV.
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Then, the arbitrage price satisfies

BleHron1

-?:t} — IL{T>¢}€-"-‘-: ﬁ(s)dsI"E [e__ J":,' r(s)dsl (r>t)

F ]

= ]l{-,->t}ef0L A(s)dsTg [8_ frs)ds g []1 {r>t:} }}‘:V]

" ] (B.3.1)

o~ Jot B(s)ds

=1 {T>t}IE [c‘ JiH(r(s)+h(s))ds

f:"] .

In this case, pricing a defaultable bond reduces to the case of pricing a non-defaultable
(pseudo) bond with an ‘adjusted’ short rate r(¢) + h(t) = r%(t). Equation (B.3.1) can then

be written as

]E [e_ J.-!ca r(s)ds]l{_r)ti}

F = 1 Pt 1), (B3.2)

B.3.2 Simplifying Relations for Standard Running CDS

The fair price of a running CDS with whose compensation is made immediately on default

is given by

(1 — ’R.)I‘E [6_ ftT T(s)dsﬂ {t<7<T}
6 Z:\il ]E I:e_.'{:.i r(s)dS]l{T)ti}

7
Ft} + ]E[(:r —t_q)e i rfs)ds]l{‘““”rﬂ] |

(t) = (B.3.3)

In addition, we note that 1(;o1y = Lizsgy Loty and Ljger<ry = Lirngy — Lizory. Following

Filipovie [2009], we remark that every F. —measurable random variable satisfies E[X|F;] =
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E[X|F] with P(r > t|FY) = P(r > {|F"), t > 0. Then,

P(t <7 <u|FY v FN) = Lirsiyelo MOBE [ (rer<uy| FL ]
oy ele RS (e_ [ h(syds _ o= f2 E(s)ds) (B.3.4)

=1y (l—e€ I E(S)d.s)'

This is the F.Y V F;" conditional distribution of 7|7 > ¢ and on differentiating (B.3.4) with
respect to u yields

Lirsgh(u)e™ MO
It then follows that we can now simplify the expectation in the numerator

I-E [6_ J';T T[S)ds]l{[.(TST}

F) =B[E[e 1 crany FY v 7Y |7
=1 [ e e s F gy 7
t
T

:]l{w-t} _/ ]E[ﬁ(u)e“Jrl.“("(s)-i-ﬁ(.s))ds
t

FJ‘"’] du. (B.3.5)

B.3.3 Proof of Proposition 3.6 for Standard CDS

Given that the fair credit swap spread is the value of 7 that makes the value of the swap

contract to be zero, from (3.55) and (3.54) it follows that

(1-R)E [6_ JEras ] erery -Ft]
7(t)

— N — t — r - - (B-3-6)
525:1 E[e_ Jr‘tT(“j)“isﬂ{-r>!.;}|}_t] + E[(T - tr—l)e_ L r{s}ds]l{tcrd“} ]'_z]

Substituting (B.3.2) in Appendix B.3.1 and (B.3.5) in Appendix B.3.2 into (B.3.6) we then

have that

N
F| = g 3 PULL),

i=1

N ~ t
> ]E[e_ Siiid TEOR
i=1
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and

T -
I’E [8_ I‘T T(S)dsj]-{t{TST} i'?‘_t] = ]1{7.)]:} / E [h(u)e_ ;‘(?'(‘5)+h{5}}d‘5 If-tw] d'u.-
i

from which (3.57) follows. Hence the proof is established. &

B.3.4 Simplifying Relations for Postponed Running CDS

We recall that the fair postponed CDS price is given by

(1 - R) Z:\;l ]E ,:SQI:‘. r(S)ds]l{is-—;<TSii}
ST B ot )

7 , (B.3.7)

7(t

The conditional expectation in the numerator can then be expressed as

[E;[e—ffé T(stsﬂ{ti_lqdi}]ﬁ] =E[E [e_f;« r(s)ds(L{T{t‘_l} _ n{m‘_}) ’}-;:v V}E\f]
= 1,04 [e— Jfir(s)ds (f,_—f:"—’ his)ds _ - [ E(s)ds)] .?-}W}

- ]Lr:u-t{@[eﬂ et 7'(5)“-'-‘8— f:i ! E(S}dﬂi}‘tw:' -E [e— J5 r'(S)d.se— I his)ds

7)

ﬁf”

=1, {‘:E [g" thti T(-")dse‘— fgti_l h(s)ds

7?]—?%Ln%.

Following Brigo and Morini [2005], by using the approximation e~ hiirds o o= 1 Peldn,

then we can write

(o= St r(s)ds o= 1" h(s)ds

1
L

E[E_ . r(s}dsﬂ{t._mmn}‘ft} = pd(t’ ti—l) = pd(t:tz‘)-

_;r:tW] = Pt . i 1),
(B.3.8)



188 B.3 Some Important Results for Section 3.4

B.3.5 Proof of Proposition 3.7 for Postponed Running CDS

In this case of postponed CDS, the value of premium leg will not have the accrual component

and can be written as
N of
Worm(t) = w8 Y e~ Jeir@dsg . (B.3.9)
i=1
The value the protection leg in this case is given by
e N t.
Wp"f (t) = (1 - R) Z e 4 r(S)dS]l{ti—l <7<t} (BSI(})
i=1
[t then follows that the pre-default fair forward credit default swap spread of a postponed

CDS at time ¢ can be expressed as

B (1-R) Z:\il ]E[e_f‘ti 'r(s)ds]l{t;-_lcrg:‘-}|ft]
B 52211 E[e_ U T(s)dsll{r:‘t,-} -E]

#(t) (B.3.11)

t; ti i
Using some results from Appendix B.3.1 and the approximation e~ /' 7545 ~ o= J; tris)ds i

Appendix B.3.4, (B.3.11) reduces to

. U-REL [Pt 162 - P2, 1)
TI'() ~ 62:11 Pd(t, tz’)

(B.3.12)

Hence the proof follows. ¢
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B.3.6 Proof of Proposition 3.8 on Swaption Price

By observing from equations (B.3.9) and (B.3.10) that we could write the values of the

premium leg and protection leg as

N
WWM(tD) = 5 Z (‘3_ fT:n T(S)ds]]' {T“}ti} H]
i=1

(B.3.13)
- N L.
WordT) = (L=R) Y e Fmnr®% 1 gy,
i=1
respectively. Hence, the price of the swaption in (3.65) can be written as
-~ T, N‘ - t.
Cowpt(t) = (1 — R)E[e_fg ™ T(Sst]]-{r}Tm}l{ﬁ'f(Tm)}K} ZJE[E_I‘T',,. r(x]d,s]l{u L<r<t} }-’T‘m] ‘f:}
— g |,
' use equation(B.3.8)
o~ T, N ~ t;
—KJE Ite_ft T{‘I‘}dsl{'r>7'm}Il{f_f;(TmbK} EE[e_ I r(s)dsl{-rm,} -}:Tm:| th:|-
i=1 “ —
! use equation(B.3.1)
(B.3.14)

Equation (B.3.14) can be approximated by 46
N - T3 - —
Couwpt(t) = (1 - R) Z]E[e‘ﬁ r(s)ds (Pd(Tm, tio1) — P"I(j{}m ti))]]_{T}Tm}l{ﬁf[j';“)>]{}|‘?'—tj|
i=1

N
~KsY E [e— L r6s BT 0T gLz (s ) [}:] .

=1

(B.3.15)

Following the argument used Appendix B.3.1, the default swaption pricing formula can then

45We use the approximation e~ Jirdds o= L7 (s pade in (B.3.8) in Appendix B.3.4.
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be reduced to
N o~ T T — —_
Csupt(t) = (1 = R)Lr5yy Z]E[e_ Jom ks (BT, 1, 1) — BT, ti))l{ﬁ,(i"m)>x}|fz'v]
=1

N
- Tm = —
— Ké_]l{f)i} E E [e_ ft [T(‘S)'ﬁ‘h(s)]dSPd{Tm’ tg)]]. {ﬁf(Tm]}K} Iffw] .
i=1

(B.3.16)

In addition, the second expectation in (B.3.16) can be written as

- Tn s h 5 5
]E[e—ff. [r(s)+h( )]dbpd(Tm,ti)ll{ﬁf(TmpK} ‘ﬂ]

Ty t) Lz ) (Ton)> K}

3 . _ —J';T’“ [r{s]+ﬁ.(s)]d513d
=Ele” ST r(s)+h(s)]ds PUT,. 1) FE ¢ - = - ( — Fil,
Efe o) hClds p(T,,, 1) | 7]
(B.3.17)
and from the tower property of conditional expectation, it can be shown that
o~ Trr 1 - -—
E[eJe "ro+hNds pi(r, ¢ F| = PUt, ;). (B.3.18)
By defining the Radon-Nikodymn derivative
t = [T [r(s)+h(s))ds pd ,
aQh e PUT, t:) (B.3.19)

P Pi(t,t;) ’
equation (B.3.17) can be then be reduced to

Tm I = - t;
E[Q—J} [T(s)+J‘z(sndﬁpnl(Tm1 ti)]l{w'r;{TmbK}l‘?:f} = Pd(t, ti)EgQ []1 (u(T)>In K}lﬁ] . (B.3.20)

where the expectation of the right hand side is taken under the Q% —forward measure with

u(Th) = In (74(Ton))-
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Similarly, we define another Radon-Nikodymn derivative

dQt-1 = KMire+hNds pdT, p )

dP Pd(i,tz‘.—l) }

which together with the argument used in (B.3.18) shows that

E[e_f*-Tm [r{S}J';’(SHdS(Pd(T;m ti1) — PU T, 1)) 15, 1y 1) | 7]

_ Pd(t,ti—l)]EQ“_l []l{u(Tm)blﬂK}l‘FL] — PY(t, ti)]EQ%- [ﬂ{u('jh))lnf(}‘ft}.

The credit default swaption formula in (B.3.16) can then be written as

N
Cswpt(t) = L5 LGD Z Pt ti 1)E? T [Liyg)sin iy [

i=1

N

Arsy Y (0K + LGD) PUt, t)E" [1 (e, yoin 3| F)
i=1

or equivalently,

N
Coupt(t) = L5y LGD > PU(t,t; 1) Pri~ (w(T;n) > In K)
i=1

N
Ly > Pt ) (0K + LGD) Pri(u(Tm) > In K).

=1

(B.3.21)

(B.3.22)

(B.3.23)

(B.3.24)

Pr{(w(T,,) > In K) is the conditional probability of the event {u(T,) > In K'} based on the

S—forward measure Q° induced on P by the price of the zero recovery, zero-coupon bond

issued at time ¢t and LGD = (1 — R).

¢
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B.4 Proof of Result (3.74) on the Price of a Put Option

on a Defaultable Bond

The proof of this result follows from Schénbucher 2000}, lemma 3.5. Let (¢, 75) = exp( —
Ty
f 7(u)du) be the discount factor using the default free rate over the period [t, Ty]. At any
i
time ¢ < Tj, the price of a put option on a defaultable bond can be expressed as the sum of

the payoffs with and without defaults

P(t,r.TyTo, K) = E[(t.To) (K - PTy, T))* | 7] (BA.1)

= E[E{T)Tu}w(t,Tg)(K - ﬁd(Tg,T))w_Ft] +]E[11{75T9}’T(ta To) (K — R(To}ﬁd(To,T))

Ft] .

(B.4.2)
Substituting 1(;<7,) = 1 — 1,57, into (B.4.2), we then have that

Pt,rd, T; Ty, K) = ]E[]l{T>TO}7(t, To)(K - I_""(TQ,T))JF‘R}

+E (. To) (K = R(Zo) PX(Ty, 1) | 73] = B[L o2&, To) (K — RATo) P4(To, T)) |7
(B.4.3)

Given that there are no defaults until Tj, then R(Tp) = 1 thus 1 (57,3 R(7o) = L{r>1,) and
(B.4.3) reduces to

P(t,r, T:To, K) = B[Lron(t, To) (K - PUTy, T))*|R] + KP(t,To) - P4(t, )

~E[Lisn (6 To) (K - PAT, T))|7]. (BA44)

By noting that the counting process is F;—measurable the above equation can then be

written as

Pt 4, T; Ty, K) = E [c_ St (g pd(ry TY)* ‘]—}] + KP(t,To) — P, T)

- ]E[e_ [Pt (g _ pA(Ty T)) ‘ft] . (B.4.5)
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Hence the proof follows. ¢

B.5 Proof of Proposition 3.9.

We recall from (3.34) that the defaultable bond price under the risk-neutral measure satisfies

the stochastic differential equation

dP%(t,T) S . -
Rl Rl S (t, T)dW;(t) — dM (w, t), 5.
Py = T+ Zl 6%,4(t, T)dWi(t) — dM (w, 1) (B.5.1)
where the volatility function is given by
T T T
55t T) = —f 5t s)ds = —(/ G, s)ds + —f a2 (t, s)ds), (B.5.2)
t t t

and the process M (w,t) is a martingale.

From Assumption 3.5.1, it follows that

f

T T
] &{(t, s)ds = \/%(t)/ [ag; + a1i(s — t)]e_"{“_t)ds, fori=1,...,n,
¢ t

T T -
\ / FMt, 8)ds = 2/ I/;-(t)/ [boi + bis(s — B)]e ™ Dds, fori=1,...,n, (B.5.3)
t ¢
T T
/ Mt s)ds = 232 v Vi(t) / [bo; + byi(s — t)]e_"?("_t)ds, fori=n+1,...,2n
\ St t

which on subsequent integration and simplification yields

( T
/ 5l (t,s)ds = /Vi(t)Bu(t, T), fori=1,... n,
t
T
| / Gt s)ds = \/Vi(t)Bas(t, T) fori=1,...,n, (B.5.4)

L,

-
/ GMt, s)ds = \/Vi(t)Bx(t,T) fori=n+1,...,2n.
\ t

Substituting the equations in (B.5.4) into (B.5.1) vields the result. ¢
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B.6 Proof of Proposition 3.11 on the Integral Trans-

form.

Using the expectations?”

F [e_ thtlh rrf(u)d‘u.lﬁ] _ Pd(t, T[)) and ]Et I:e_ L‘;-o Td(u)du-{-)?d(To,T) ‘_}C}} '

(3.93) can be written as

( o LTU rd(u}dul{xd[:r T){E}i
¢4 T Ty K) = K Pt Ty)E, p g
P(t,r*.T; Ty, K) (t, To) ‘L Pa(t, Tp) t}
_(Ta rd w)du+X4(Tp, (B-ﬁl)
o= S0 rd(u)dut X (‘{O’F)]l{)?d(To,T)<£}!_Ft:l.

E, [e— o rd(u)du+Xd(Tg,T}i|

—]Et [e_ Jl'f—() Td{u]du+.fd(7b,‘lf\) -FtJ]Et

\

This can further be simplified to yield
P(t.r", T;To, K) = KP4t To) Fy (t, Ty, T) — G(t, To, T) Fa(t, Ty, T), (B.6.2)
where
G(t, Ty, T) = B[ K7 s X40D) ), (B.6.3)

represents the time ¢ price of discounted forward pseudo bond price P4(Ty, T) whereas

Tz, T)<g)
Pd(ta TU)

e~ 0 rt(w)du+ X4 (Ty,T)

I3\ (f,T{),T) = ]E

{6_ LTU r(u)du

]:},:| )
(B.6.4)
Lixdm,r<er
E [k rant X AT D) | £

Fa(t,To,T) = }E[

ft}:

4TThis approach was followed in Bouziane [2008] and Bakshi and Madan [2000] from where we borrow
the notation.
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are some contingent claims, the Arrow-Debreu securities which can be interpreted as prob-

abilities since F;(t, Ty, T) € (0,1) for j =1,2. *

dP! exp( - _ftTo :rd(u)du)
If we choose a Radon-Nikodymn derivative s = P Ty) , then Fy(t,T5,T) is

the price of an Arrow-Debreu security under a transformed equivalent measure and satisfies

Fy(t, Ty, T) = EF l [le‘}}:. Similarly, we can define another Radon-Nikodymn derivative

JdP2 exp( - ftTo rd(u)du + X 4Ty, T))

dP G(t,To, T)

such that the second Arrow-Debreu security has a priceF5(t, Ty, T) = IE'.JF 2 []lx] , under another

transformed measure P-.

The price of a European put option that is knocked out on default of the underlying default-

able bond can then be expressed as

P(t,r", T3 To, K) = KP(t. To)E™ [1m, my<y| 2] — G (8 To, TVE (1 ez rycy | Fi]-

(B.6.9)
*Equivalently, we can express (B.6.4) in integral form as
AT T) fx cxp( - J;T" rd(u)du)?.?(v)dv (B.55)
1\t £09 = f 0.
Joexp( = [ ré(u)du)9(v)do
R To,T) fx exp( - f:ﬁo r4(u)du + X4(Tp, T))'ﬁ('u)dfu (B.64)
2\L: 40, = — 1 e
Ia exp( - ff" rd(u)du + X4(Ty, Y‘))ﬁ[v}dv
whereas the discounted forward price in (B.6.3) and pseudo bond price can also be written as
To
G(t,To,T) = / cxp( - / 74 (u)du + Xd(TO.T)) 9(v)dv, (B.6.7)
X t
Ty
Pt Ty) = / cxp( - f rd(u)a!u) Fv)dv, (B.6.8)
y) ¢

respectively, where the set x = {X*(Tp, T) < £} and ) represents the set {X%(T,,T) > 0}.
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Equivalently, this can be written as
P(t,r%,T;To, K) = KPYt, Ty) [1 — i(€)] — G(¢t, To, T) [1 — Ix(¢)] (B.6.10)
where the exercise probabilities II; and II; are given by

I (§) = E™ [1ixeerymy>er | Fe]  and  IIa(€) = EP? [1 gaer, 153 | Fi

respectively. We therefore observe that knowing the prices of four ‘primitive’ securities; the
matching discount bond, the scaled forward price and the two Arrow-Debreu securities is

equivalent to solving the option valuation problem.

The characteristic function for the exercise probability I1;(£, ¢), j = 1,2 can be represented

by f;(€) = Ef* (e“"”2 dm’ﬂ). In particular, we observe that

. re” L_’f‘u Td("‘)d‘*

f1(€, ¢) = B [#X D | £ = [ Pa(t, To)

= Py Ty B[ P e )

eicb)_(d(’l"u,']")l & J
(B.6.11)

Similarly, the characteristic function of the 2"* exercise probability can be expressed as

To

fo(€,¢) = G(t, To, T) 'E[e” f" @t (+)X4DT) 7, (B.6.12)

It can then be shown using Gil-Pelaez Inversion Theorem*®® that the time ¢ price of each

Arrow-Debreu security is given by

11 (% [0

11. P PR il 6.13

1€) 2+ﬁfw Re[ 11812 a5, (B.6.13)

for j = 1,2. Hence the proof of Proposition 3.11 follows. ¢

19See Bouziane [2008, Theorem 4.2.2].
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B.7 Proof of Proposition 3.12

Application of Ité’s theorem to (3.101) results in

th(z)

o) = [B,A(t, z)+ZdtC(t z)V(t)]dt+de(#)+ 522d[X t+ZC(r 2)dVi(t)

=1 i=1

(B.7.1)

1 ° .
+5(Cilt, 2)Y*d[Vi]s + 2 Cilt, 2)d[ X, Vi,
2 i=1
given that [X | is the quadratic variation of X (¢,To,T), Z is the conjugate of z and O A(t, 2),
0,Ci(t, z) are the derivatives with respect to t. Under the 7p—measure, the log-bond price

process can be expressed as

2n

2n
dX (¢, Ty, T) = _.;_ > (dit,T) - dats, To))zm(t)dt -3 (dé (8T) = di(t, To) ) VD W o 1)
i=1

i=1
(B.7.2)
while stochastic volatility process follows the dynamics
3
avi(t) = &) (Vi = Vi)dt + 3 5¥\/Vi(t) JAWE (B.7.3)
7=1
Substituting (B.7.2) and (B.7.3) back into (B.7.1) yields
dT( ) 2n
o) = [at (t, z)+ZC(t 2)kY Vi + (()IC(! z ——g(d(f JT) — di(t, Tp))?
- 2n
Z (dult, T) - di(t, Tp))? —an kY + = ZZ (Cilt, )5
1—1 j=1
(B.7.4)
eSS G e ) - T)ay Vit a
i=1 j=1

3

2n
+ Z (d,;(t, T) - dz'(ts Tb}) V; (t dWTO t) Z 7, V V(t dW’_I;:G l)n+z
i=1

=1
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The stochastic process d¥,(z) is driftless and a martingale if the deterministic functions

A(t, z) and Cy(t, z) solve the system of ordinary differential equations

[ 3
dC 2 =—%Z Y )2CHt, ) + (WY +zz ) — dilt, To))aY ) Cilt, 2)
‘ l(z—zz)(d (.T) - di(t, To))2, (B15)

ZCLz Ky

.

subject to the boundary conditions P4(Ty, To) = 1 and A(Ty, z) = Ci(Ty, z) = 0. By change

of variable technique with ¢ = T, — ¢, this system of differential equations can be written as

F 3
dc,é;, 2) _ 5(1- 2C2E,2) ( Z g)ag)ci(g, e %(z _ D)@
2 ) (B.7.6)
%i—'—z) = Z Ci(f, 2)xY Vi,

i—1
subject to the initial conditions A(0, z) = C;(0, z) = 1 with d;(f) = d;(T — Ty + ) — di(2).

Hence the proof follows. %



Appendix III

C.1 Proof of Proposition 4.4

For notational simplicity, we suppress the dependency of the forward rate, short rate and

bond price dynamics on the Markov chain X (¢).

Starting from the stochastic integral equation (4.36), we integrate the terms in the drift to

obtain

fd £,T) = )r-'i 7, T) — M 1 — =" Xn T—1)y2 _ 1 — e—fH{(Xr NT—7e))2
207 (X, )

A 2
B (B ) N (R ) )
A Tk

o/ (Xn)oMXn) s 5y (Xr)
_ 7 Th 1— p2|e—mr(Xn)T-0) (1 4 A7 e X {T—1)
K (X oA (Xr) . [ ( wf(Xn) + ma(Xr) )

_e—x.,\(X,.k )(T_Tk)(l + ﬂf(Xch) e—n;()(,&)(T—fk))
Ka(Xr) + w5 (X7)
+€—n;()(rk)(’1‘—t)(1+ fa(Xr,) C—N;(x,k}(T—:))
Kf(Xr) + £a(X7,)
_e—n-f(x,k)(r—rk)(l 4 KA (Xr,) e-n(xu)(r'—m)}
"CA(XT\-) +-“3f(X'rk)

t
+f (gf(er)e—n;{ka)(T—uj+pg}.(X_rk)e—n,\(x,_t)(T—u))dvvl(u)
Tk

i
+ 11— p?f oM (X Je~ A X NT=) g1y, (u). (C.1.1)
Tk

Setting T' =t in (C.1.1), the defaultable short rate dynamics between any two jump times
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t € [Tk, Tk4+1] can be written as

t
rd(t) = ud(t,z) + f (gf(xn)e—n;(xq)(z_u) + po( X,k)e‘”*(XTk)(‘-”})dWI(u)

Tk

t -—
+/1=p2 | oMXy, e ™ En)t=9) gii, (y), C.1.2
k
Tk

where

2K,f(X,m )2 25)\(ka )2

o (X )oM(Xr,) £f(Xn)

_ 7 Tkl 1 — p2|3 — e~ Xn )7 (1 4 ANk e~ R (Xr ){E-7)
& (Xn )6a(Xr) p2[ ( wx(Xr,) + w5 (Xr) )

. _ A (Xr,)
— e R Xn)t ’“(1+ AKXy e (Xo) (=) ]
ka(Xr,) + Kp(X7,) )]

(]_ — e_""f(xr;c)(t_'rk))2 + (1 — e""”)\(xm}(t'—’l‘})2

ﬂ'd(ts x) = fd(Tkv t) +

Taking differentials yields the stochastic differential equation
d t
d?‘d(t} - [W B [ o-f(XTk)K'f (XTk)e—ﬁj(ka )(t_u)dwl (u)
Tk

t ¢
- p/ aA{XTk)rc;(XTk)e“'“(xfk)(t_“)dwl[u} e p2] JA(XTk).‘cA(XT,:)e*’“(xfk)(t““}dﬁ@(u)] dt
Tk

Tk

+ (01 (Xr) + poMX)) AW (2) + V1 = p2o (X, )dWa(t). (C.1.3)

We define the coefficients p; and iy as

ol (X,,)? "
—  NTR (1 p—ep (X ) (t—Tk)
p’f(tam) 2K,Jc(XTk)2 (1 € ) 3
O')‘(X )2 2 O'f(X )JA(X )
t . - —Tk ]_ —-— _I_K'X[er)(t—‘l‘k) _ T T
pa(t, ) Zm(ch)2( e ) kp (Xo ) in( X )

_ _ ke(Xs,) v (X Ve
« /1 _pg[z_ oA (Xn )t ”‘}(1 + A o—rs (Xt Tk))
fa(Xn) + mp(Xo)

_ e—nf(xfk)a—m(l n ma(Xr,) e—mxrk)(hm)],
K‘A(X‘Fk) + K’f(XTk)

so that the short rate and short-term credit spread processes follow the stochastic integral
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equations

%
r(t) = py(t, z)dt + / o/ (Xr )e 1 X)) g1, (),

t 4
At) = pa(t, )dt + po*(Xy,) / e~ &)= G, (s) + /1 — p? f oM X, )e A EnE= g, (),

respectively. Given that pu®(t,z) = p/(t,z) + y*(¢, x), then the partial derivative of p?(, z)

with respect to t can be explicitly given by

op(t, x) _ pd g (XTJ ~Kp (X )t—74) UA(XT;GF —ra (X ) E—71)
T—fa(k,t)“m—( —e )—m(l—e )
Uf(XT o (Xr)

1— K X e "‘f(ka)ft"Tk)_l_ﬂ X — k) (Xrg ) (t—7%)
Iy VT = 7 [Fr(Xa) A(Xn)e

+ (57(X0) + Ka(Xn,)) e (B Xmdtm X e- n)}

It then follows that the SDE for the defaultable short rate process between two general jump

times ¢t € [1x, Tx41[ of the chain can be written as
2 i~
dri(t) = [B(t, z) — 854(X )1 (t) — Ka (X )/\(t)] dt+ Y ol (X, )dWile), (C.1.5)
=1

where the coefficients in the drift are given by

ot )_3ﬁ@$)

+ &p (X st 2) + ka(Xo ) pa(t, x),
o(Xn) = c/(X,) + po*(X7,) and o¥(X,) = V1 - p2o?(X,,).

Rearranging the terms in the drift of (C.1.5) yields the system of stochastic differential

equations in Proposition 4.4. &
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C.2 Proof of Proposition 4.5 on the two-factor Hull-

White type model

We recall from (4.43a) that the default-free short rate dynamics between two jump times

t € [Tk, Tk41| follow

r(t) = f(7e,t) + S1(t, 2) + ¢1(t, x).

Given that

dipy (t,3) = —k (X7 )1 (b, z)dt + of (X AW (1),

it follows that stochastic differential equation for the short rate process satisfies
dr(t) = [fg(’ng, t) + %S;(t,x) - f;f(XTk)wl(t,x)] dt + crf(XTk)d‘Wl(t).
Substituting ¢4 (¢, 2) = r(t) — f(7%,t) — Si(t, z) into (C.2.2) then yields
dr(t) = [(—) H(tz) — & f(x,_,c)fr(z)] dt + o (X, )dWi (2),

where

9 5.t ).

ef(t=x) = fQ(Tk: t) + K’f(X“rk)f(Tht) + Ef(XT)c)Sl(t: LI’IJ + It

(C.2.1)

(C.2.2)

(C.2.3)

Similarly, taking the differentials of the S;(¢, z), (i = 1,2, 3,4) in (4.44) we observe that

ol (X-,)? ( N
dSl(t .’.E) %e—ﬁf(er)Lt-—Tk) (e-ﬂf(er}ft—ﬂu — 1)dt,

A 2
ng(d', ‘T) %e_K’A{XTk)[t_Tk)(e_’{/\(x'rkj(t"rk) _ 1)d3,

dSs(t,z) = /1 — o!(Xy)o *(Xn) e~ rf (X )(t— Tk)( —rA (X7 ) (E=7) l)dt,

(XT::)

48,1, z) = /1= 2 E)T (Kn) ey W (e 1) g,

Kf( \T.\)
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In addition, the differentials for the ¢;(t, z), (i = 2,3) satisfy

dpa(t, 7) = —kA(Xz ) pa(t, T)dt + po* (X, )dWa(t), (C.2.4)
des(t, ©) = —ka(Xn )s(t, 2)dt + /1 — p20* (X, )dWi(t). (C.2.5)

Then the stochastic differential equation for the defaultable short rate dynamics in (4.43b)

satisfies

dri(t) = [fz(’?‘k,f,) + %Z Si(t,z) — k(X7 )r(t, z) — ﬂ,\(XTk)([,Qg(t.’SB) + 993(t,x))] dt

+ [07(Xa) + po™(Xo )| dWa () + /1 — p2a? (X, ) dWa(t). (C.2.6)
But from (4.43a), we observe that
4
a(t, 2) + st 2) = r(t) — fUm,t) = Y Si(t, ) — pa(t, @) (€.2:7)
i=1

Substituting (4.43a) and (C.2.7) into (C.2.6) then yields
5 & 4
dri(t) = [f2('rk, t) + P ZSi(t,J:) — kf(Xn )1t 2) — kA(Xe ) [r(t) — fU T, t) — Z Si(t, z)
i=1 i=1

- gol(t,x)]]dt + (07 (X0) + po (X)) dWa(t) + /1 = P20 (X, )dWi(t),

which on further simplification yields

4 4

d?"d(t) = [fg(Tk, f,) + %Z S@(ﬁ,x) -+ KJ)\(XH) Z S,;(f, .TC) e E,\(X,-k)f(‘?’k,i)

t=1 t=1

- (Hf(X”ﬂc) - K’:\(XT:;))Lpl(t: I) - K‘A(X‘rk)rd(t)] dt + [o-f(XTk) + pJA(XTk )] dWl(t)

+ V1 — p2o? (X, )dWa(t). (C.2.8)
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If we define the coefficients

4
Ou(t, z) = fH(1i,t) + ra(X:) f4 Tk, £) % Y Silt,7) + ka(Xa,) Z Si(t, z),
i=1 i=1

and

g(t, "1“) = (ﬁ’f(XTk) - K)\(X'm)){pl (t! 37):

then (C.2.8) reduces to a system of two-factor mean-reverting defaultable short rate model

r“(t)=[8d(t,x) g(t, z) — ra(Xz,)r (f)]dt+( HXr) + po™ (X)) dWi(2)
1 — p2o™( X, )dWa(2), (C.2.9)

dg(t, z) = —mp(X,)g(t 2)dt + [r(Xn) = ma(Xo)] 0 (X )AWA(2). (C.2.10)

It turns out that

g(t,z) = (k;(X7,) = sx (X)) (r(t) = f(7,1) = Su(t, @)

It then follows that

dri(t) = [Gd(t, z) + 64 X5) (f(1is ) + Si(t, 2)) — 64Xy )r(t) — K,)\(X.rk)?‘d(f)] dt
+ (07 (X5,) + poM(X5,))dWi (t) + /1 = p2o™ (X, ) dWa(t), (C.2.11)

where we recall that kq(X,) = (k7(X5,) —£r(X+,)). Rearranging the coefficients in the drift

of equation (C.2.11)

Bult, x) = Bult, z) + ra( ng(fi;k t) + Si(t, z))

and in (C.2.3)

ra(Xy,) 6,(t.2) = Os(t, )

Rd(er) = !‘C,\(er)‘
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then yields the result in Proposition 4.5. &

C.3 Proof of Proposition 4.7

For notational simplicity, we let P = P? Then from the partial differential equations in

(4.53) we observe the linearity of the coefficients i?)_P and % in terms of r and r¢. From
T
(4.49), it can be seen that
OP [0A 6B oC |- OP = 9P =
I (755 Ot o S S o1 — =—_BP . 2P
ot ot ot (')tT}P’ ar 5 e ’
or = PP = 9P _
o P @ri)y C and 55 = BGP

Then, we can write (4.53) as

0A OB aC = -
[E a BFT B Erd a K’f(XTk)(Bf(XTk) = T)B - EJ\(XTL-)(QC{(XT&) - Kd(XTk)T - rd)c
1 1
+ 500 (X )B4 5 (07 (Xn) + 902 (X)) + (1 = oA (X)) €

+of (X)) (0 (X)) + pJA(X,.k))BC] P+ <P AX(#)>-riP=0. (C3.1)

Matching the coefficients of %, r and the constant term we obtain

[ - %—f + kA (X7, )C — lerﬁ'

2B
at

-+

+ H’f(XTk)B T RA(XT&- )Rd(X‘Tk )C] TP

(X7.)0¢(t,2) B — k(X )B4(t, x)C*

P

+ +
R = =/
‘QJ
h S
|
=
—,

ol (X7, )2B? + o (X1, (0 (Xn,) + po* (X)) BC

+

——

o (X2, )2 + 2007 (X, oM (X, ) + 02 (X, )2])15— <P HX(l) >=0. (C.3.2)
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We note that the last term in equation (C.3.2) is shown to reduce to

N
<P AX(t)>= Y ehBr-oripX, (C33)
i,j=1
N N
o d (
ij=1 i,j=1

That is, for a fixed 7

)V
< PLHX(E »= Py o MpE (C.3.5)

=1

Substituting (C.3.5) into (C.3.2) and solving, the latter reduces to

[ -O;—C X )C - 1]?'d
+[- %‘? + 15(Xn) B + (X5 )Ra( X, )C |1
4 [92 — g (Xa)85(1,2)B — kr(Xn)Bult. 2)C
4 20 00 B + 0! (X)) (09 (Xo) + 0 (X)) BC
y
é[ H(Xn ) + 2007 (X1, )0 (Xn) + 60X (X )?] - 2_) e’*f"‘*h;-‘j} =0. (C.3.6)

If we define the states that our Markov chains visits by S = {sy, s2, ...s5 }, the Markov chain
dependent parameters switch between a set of N values such that £7(X7, ) = {x}, o - !{?T

£a(Xn) = {Kh#3, il }s I(Xs) = {of,0f,...0f} and 6X(X,) = {0},0),.....0%)}.
Substituting these values into the partial differential equation (C.3.2) and separating the
common terms yields the system of ordinary differential equations in Proposition 4.7. Hence

the proof follows. " ¢
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