Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility

June 18, 2011.

Certificate

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirement for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signed	Production Note:
	Signature removed prior to publication.

2810612011
 Date

\qquad

Acknowledgements

This thesis would not have been possible without the guidance and the help of several individuals who in one way or another extended their invaluable assistance.

First and foremost I would like to express my deepest appreciation to my supervisor, Carl Chiarella, whose support, patience and encouragement throughout the duration of my doctoral studies has been unwavering. Without his guidance and persistent help this thesis would not have been possible. I would also like to express my gratitude to my co-supervisor, Christina Nikitopoulos Sklibosios for her additional supervision, suggestions and invaluable comments. Her thoroughness and meticulous attention to details has come in handy, especially during the write-up phase of the thesis.

I wish to thank my fellow research students and the staff of the School of Finance and Economics at UTS for providing a pleasant environment for the completion of the research work. In particular, I wish to thank Boda Kang, Chih-Ying Hsiao, Min Zheng, Jonathan Ziveyi, Lei Shi, Ke Du and Ji-Won (Stephanie) Ough for the ideas, suggestions and assistance they have provided during the countless discussions we have held. Many thanks also to the head of the School, Tony Hall for his constant support. I am also grateful for the financial assistance I received from Quantitative Finance Research Center (QFRC), Financial Integrity Research Network (FIRN) and the School of Economics and Finance to attend various workshops and conferences.

Finally, I wish to express my appreciation to my wife Christine whose dedication, love, sacrifice and persistent confidence in me, has taken the load off my shoulder and for having single handedly taken care of daughter Sara. My gratitude also goes to our parents for their unconditional support.

Contents

Glossary of Notations xii
Abstract xv
1 Introduction 1
1.1 Motivation 2
1.2 Literature Review 4
1.2.1 Structural Models 4
1.2.2 Intensity Models 6
1.2.3 Markovian HJM Term Structure Models 8
1.2.4 Stochastic Volatility Models 10
1.2.5 Regime Switching in Term Structure Models 11
1.3 Thesis Structure 12
1.3.1 Markovian Models with Diffusion-Driven Stochastic Volatility 13
1.3.2 Markovian Models with Regime-Switching Stochastic Volatility 15
2 Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility 17
2.1 Introduction 18
2.2 The Model Setup 21
2.2.1 Embedding Stochastic Volatility within the Defaultable HJM framework 26
2.2.2 Correlation Structure 28
2.2.3 Risk-Neutral Dynamics 31
2.3 The Markovian Term Structure Models with Stochastic Volatility 37
2.3.1 Finite Dimensional Realisations in Terms of Defaultable Forward Rates 41
2.4 Numerical Experiments 43
2.4.1 Model Inputs 43
2.4.2 Simulation Results 45
2.4.3 Discussion 51
2.5 Summary 54
3 Pricing Defaultable Securities under Humped Volatility 56
3.1 Introduction 56
3.2 A General Defaultable Term Structure Model 60
3.3 A Specific Volatility Structure 69
3.4 Pricing of Credit Default Swaps and Swaptions 78
3.4.1 CDS with no Counterparty Risk 78
3.4.2 CDS with Counterparty Risk 83
3.4.3 Credit Default Swaptions 85
3.5 Pricing Put Options on Defaultable Bonds 96
3.5.1 Pricing Methodology for a Knocked-Out Put Option 101
3.6 Summary 105
4 Defaultable HJM Class of Models with Regime-Switching Volatility 107
4.1 Introduction 107
4.2 The Model Setup 111
4.2.1 Markov Chain Framework 111
4.2.2 Defaultable HJM Model with Markov Chain Volatility 114
4.3 Hull-White-Extended-Vasicek Model with Regime-Switching 122
4.3.1 Model Formulation 122
4.3.2 Defaultable Bond Pricing 129
4.4 Option Pricing under Regime-Switching 137
4.4.1 Finite Difference Methods: Theta Scheme 140
4.5 Summary 145
5 Conclusion and Discussion 147
5.1 Summary of Findings 147
5.1.1 Markovian Defaultable HJM Class of Models with Unspanned Stochas- tic Volatility 149
5.1.2 Markovian Defaultable HJM Class of Models with Regime-Switching Stochastic Volatility 152
5.2 Directions for Future Research 153
Appendix I 156
A. 1 Doléans-Dade Exponential Formula 156
A. 2 Proof of Proposition 2.5 on Bond Price Dynamics with Stochastic Volatility 159
A. 3 Proof of Proposition 2.6 on Bond Pricing under Risk-Neutral Dynamics 164
A. 4 Proof of Proposition 2.7 on the Existence of the Risk-Neutral Measure 165
A. 5 Credit Spread Drift Restriction Condition. 167
A. 6 Proof of Lemma 2.10 167
A. 7 Proof of Corollary 2.11 169
A. 8 Proof of Proposition 2.14 171
A. 9 Proof of Proposition 2.15 172
A. 10 Proof of Proposition 2.17 176
Appendix II 179
B. 1 Proof of Proposition 3.2 on the Defaultable Forward Rate 179
B. 2 Proof of Proposition 3.5 for the Exponential Affine Bond Price formula 183
B. 3 Some Important Results for Section 3.4 184
B.3.1 Pseudo-Bond Price Formula 184
B.3.2 Simplifying Relations for Standard Running CDS 185
B.3.3 Proof of Proposition 3.6 for Standard CDS 186
B.3.4 Simplifying Relations for Postponed Running CDS 187
B.3.5 Proof of Proposition 3.7 for Postponed Running CDS 188
B.3.6 Proof of Proposition 3.8 on Swaption Price 189
B. 4 Proof of Result (3.74) on the Price of a Put Option on a Defaultable Bond 192
B. 5 Proof of Proposition 3.9. 193
B. 6 Proof of Proposition 3.11 on the Integral Transform. 194
B. 7 Proof of Proposition 3.12 197
Appendix III 199
C. 1 Proof of Proposition 4.4 199
C. 2 Proof of Proposition 4.5 on the two-factor Hull-White type model 202
C. 3 Proof of Proposition 4.7 205
Bibliography 206

List of Figures

2.1 Distribution of defaultable bond price and normalised bond returns under varying ρ_{12}. 46
2.2 Distribution of defaultable bond price and normalised bond returns under varying ρ_{13}. 47
2.3 Distribution of defaultable bond price and normalised bond returns under varying ρ_{23}. 49
2.4 Distribution of defaultable bond price and defaultable bond returns under varying σ^{V}. 50
2.5 Distribution of defaultable bond price and defaultable bond returns under varying κ^{V}. 50
2.6 Distribution of defaultable bond price and defaultable bond returns under varying default intensity $\tilde{h}(t)$. 51
2.7 A set QQ-Plots of Bond Price quantiles. 52
2.8 Bond Price and Returns Distribution with varying Maturities. 53
3.1 A sample evolution of the defaultable forward curve surface 74
3.2 Pseudo bond price surface 77
3.3 Payoff diagrams for payer and receiver options. 86
3.4 Credit Swaption Prices with different strikes, K and correlation $\rho^{f \lambda}$. 92
3.5 Credit Swaption Prices with different strikes, K and correlation $\rho^{f V}$. 93
3.6 The value of an ATM swaption as a function of time to maturity of the option under varying maturity of the defaultable bond 93
3.7 The value of an ATM swaption for varying time to maturity of the option and recovery 94
3.8 Credit Swaption Prices with different strikes, K and different volatility of forward CDS spread values. 94
3.9 The value of a credit default swaption for varying volatility of the Forward CDS Spread. 95
3.10 The Timeline for an option on defaultable bond 96
4.1 Defaultable forward rate dynamics and the modulating Markov chain. 125
4.2 Comparison between regime-switching defaultable short rate and a non- switching term structure 129
4.3 An evolution of default free short rate, defaultable short rate and defaultable bond price under regime-switching dynamics 136
4.4 Effect of transition intensity on the kurtosis and skewness of the normalised defaultable short rate and normalised defaultable bond price distributions 137

List of Tables

2.1. Input values for simulation experiment in Chapter 2 44
2.2 Effect of correlation ρ_{12} between short term credit spread and stochastic volatility with change in the kurtosis and skewness of defaultable bond price and bond returns. 47
2.3 Effect of correlation ρ_{13} between short rate and stochastic volatility with change in the kurtosis and skewness of defaultable bond price and bond returns. 48
2.4 Effect of correlation ρ_{23} between the short rate and the short term credit spread on the change in kurtosis and skewness of defaultable bond price and bond returns. 48
3.1 Input values for simulating forward rate and price surfaces 73
3.2 Input values for simulation results in Section 3.4 80
3.3 Numerical results on the CDS spread under varying correlation $\rho^{f \lambda}$. 81
3.4 Numerical results on the CDS spread under varying correlation $\rho^{f \mathrm{~V}}$ 81
3.5 Numerical results of the CDS spread under varying volatility of volatility, $\bar{\sigma}_{1 j}^{\mathrm{V}}$, ($j=1,2,3$). 82
3.6 Numerical results on the CDS spread with increasing maturity 82
3.7 Effects of recovery rate on CDS spread for bonds with 2-year maturities 83
4.1 Effect of varying ρ on pseudo-bond price and defaultable short rate in the presence of regime-switching. 136
4.2 Effect of varying ρ on pseudo-bond price and defaultable short rate in the absence of regime-switching. 137
4.3 Effect of increasing the transition intensity, \tilde{h}_{12}^{X} on pseudo-bond price and
defaultable short rate. 137

Glossary of Notations

- ATM $=$ At-the-money.
- $\mathrm{CIR}=$ Cox-Ingersoll-Ross.
- $\mathrm{HJM}=$ Heath-Jarrow-Morton model.
- $\mathrm{CDS}=$ Credit Default Swaps.
- $\mathrm{HW}=$ Hull-White model.
- $\mathrm{ODE}=$ Ordinary differential equation.
- $\mathrm{OTM}=$ Out-the-money.
- $\mathrm{PDE}=$ Partial differential equation.
- $\operatorname{SDE}=$ Stochastic differential equation.
- SIE $=$ Stochastic integral equation.
- $B(t), B_{t}$: Money market account at time t, bank account at time t.
- $P(t, T, \cdot)$: Price at time t of a default-free zero coupon bond with maturity T.
- $\bar{P}^{d}(t, T, \cdot)$: Pre-default price at time t of a defaultable zero coupon bond with maturity T.
- $P^{d}(t, T, \cdot)$: Price at time t of a defaultable zero coupon bond with maturity T.
- $f(t, T, \cdot)$: Instantaneous default-free forward rate of interest prevailing at time t for instantaneous borrowing at T.
- $f^{d}(t, T, \cdot)$: instantaneous defaultable forward rate of interest prevailing at time t for instantaneous borrowing at T.
- $r(t, \cdot)$: Instantaneous default free short rate of interest at time t.
- $r^{d}(t, \cdot)$: Instantaneous defaultable short rate of interest at time t.
- $\lambda(l, T, \cdot)$: Instantaneous forward credit spread.
- $c(t, \cdot)$: Instantaneous short term credit spread at time t.
- $N(t):$ Marked point Process at time t.
- $h(t)$: Intensity of a Marked point process at time t under the real world probability measure; $\tilde{h}(t)$: Intensity of a Marked point process at time t under the risk-neutral probability measure.
- $\mathcal{R}(t)$: Fractional recovery process at time t.
- τ_{i} : Random default time.
- $q\left(\tau_{i}\right)$: Loss rate on the bond's face value at each default time τ_{i}.
- $V(t)$: Stochastic volatility process at time t.
- $W(t)=\left\{W^{f}(t), W^{\lambda}(t), W^{V}(t)\right\}$: Wiener Process at time t under the real world measure;
$\tilde{W}(t)$: Wiener Process at time t under the risk-neutral measure;
- $X(t)$: Markov chain Process at time t.
- τ_{i}^{x} : Jump times of the Markov chain.
- $\mu(\omega ; d t, d q)$: Random measure associated with the Marked point process, N.
- $h_{i, j}^{X}(t), \tilde{h}_{i, j}^{X}(t)$: Transition intensity at time t of a Markov chain from state i to j.
- $\mathcal{F}^{W}(t), \mathcal{F}^{N}(t), \mathcal{F}^{X}(t)$ Filtrations generated at time t by the Wiener process, Marked point process and Markov chain respectively.
- $\rho_{12} \equiv \rho^{V \lambda}$: Correlation between stochastic volatility and short term credit spread processes; $\rho_{13} \equiv \rho^{V f}$: Correlation between stochastic volatility and default-free short rate processes; $\rho_{23} \equiv \rho^{\lambda f}$: Correlation between short term credit spread and default-free short rate processes.
- $\phi(t)$: Market price of diffusion risk; $\psi(t)$: Market price of jump risk.
- $\kappa^{f}, \kappa^{\lambda}, \kappa^{V}$: Speeds of mean reversion for the risk-free short rate, the short term credit spread and the stochastic volatility processes, respectively.
- $\mathcal{P}\left(t, r^{d}, T ; T_{0}, K\right)$: Price at time t for the put option with maturity T_{0}, strike K that is knocked out on default of an underlying defaultable bond with a maturity T, under stochastic volatility.
- $\mathcal{C}\left(t, \bar{P}^{d}, X(t)\right)$: Price at time t of a call option under regime-switching stochastic volatility.
- $\pi_{f}(t), \tilde{\pi}_{f}(t), \bar{\pi}_{f}(t), \pi_{c p r}(t)$: Price at time t of a credit default swap.
- $\mathcal{C}_{\text {swpt }}(t), \tilde{\mathcal{C}}_{\text {swpt }}(t)$: Price at time t of a credit default swaption.
- $[X]_{t}$: Quadratic variation at time t of the process $X ;[X, Y]_{t}$: Quadratic covariation of two processes, X and Y.
- $\langle\mathbf{a}, \mathbf{b}\rangle=\left\langle\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right\rangle=\sum_{i=1}^{n} a_{i} b_{i}$: Inner product.

Abstract

Empirical evidence strongly suggests that interest rate volatility is stochastic and correlated to changes in interest rates. In addition, the intensity process has been shown to generate heavy-tailed behavior and this has been attributed to stochastic volatility. A good credit risk model should incorporate the correlation between the short rate and credit spread processes as changes in interest rates can directly affect and change the credit spread or indirectly influence the market's perception of default risk which has an impact on credit spreads.

The objective of this thesis is to model credit risk within a Markovian Heath, Jarrow, and Morton [1992] (hereafter HJM) term structure model with stochastic volatility by extending the defaultable framework developed in Schönbucher [1998]. Adapting the HJM framework to include default risk results in a generalised framework that incorporates all the information on the current risk free term structure as well as the credit spread curve. Under some conditions on the specification of the volatility functions, the model admits finite dimensional Markovian realisations and as a result, the default-free yield curve as well as the credit spread curves can be calculated with low computational cost at any given time.

The main contributions of this thesis are:
\diamond Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility - Chapter 2. Stochastic volatility is introduced into the Schönbucher [1998] model and we generalise it to allow for a correlation structure between the default-free forward rate, the forward credit spread and stochastic volatility. Under certain level dependent volatility specifications, we derive a Markovian representation of the defaultable short rate in terms of a finite number of state variables which we then express in terms of economic quantities observed in the market, specifically in terms of discrete tenor forward rates. A numerical experiment is then conducted to investigate the distributional properties of the defaultable bond price and bond returns which reveals the existence
of a left tail.
\diamond Credit Derivative Pricing under a Markovian HJM Term Structure Model with (Diffusion Driven) Humped Volatility - Chapter 3. We verify that under the assumption of a humped volatility specification, the defaultable forward rates admits finite dimensional affine realisations. The default of the underlying reference entity is modelled as a Cox process and we derive exponential affine bond price formulas in the presence of stochastic volatility. We then investigate the pricing of single-name credit default swaps both in the presence and absence of counterparty risk and derive formulas for the valuation of credit default swaptions within the framework. On relaxing the level dependency assumption within the humped volatility specification, we price knocked-out put options on defaultable bonds using the Fourier transform approach.
\diamond Valuation of Bond Options under a Defaultable HJM Class of Models with RegimeSwitching Volatility - Chapter 4. We allow the defaultable forward rate volatility to depend on the current forward rate curve as well as on a modulating continuous time Markov chain making use of the results in Valchev [2004] and Elhouar [2008]. Stochasticity is then introduced to the volatility function by a separable volatility specification which guarantees finite-dimensional Markovian realisations under regime switching. A special case of the short rate class of models, the Hull-White-Extended-Vasicek type of model is obtained in the defaultable setting from which an explicit bond pricing formula is derived. We then apply finite difference methods to price European options under two-state regimes.

We give a summary of all the thesis findings in Chapter 5 where we also present the concluding remarks and directions for future research work.

