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T.
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N(t): Marked point Process at time t.

h(t): Intensity of a Marked point process at time ¢ under the real world probability
measure; ?a(t): Intensity of a Marked point process at time ¢ under the risk-neutral

probability measure.

R(t): Fractional recovery process at time (.

7;: Random default time.
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FW(t), FN(t), FX(t) Filtrations generated at time ¢ by the Wiener process, Marked
point process and Markov chain respectively.

pio = p¥*: Correlation between stochastic volatility and short term credit spread
processes; p13 = p¥/: Correlation between stochastic volatility and default-free short
rate processes; pa3 = p/: Correlation between short term credit spread and default-free
short rate processes.
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A
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Abstract

Empirical evidence strongly suggests that interest rate volatility is stochastic and correlated
to changes in interest rates. In addition, the intensity process has been shown to generate
heavy-tailed behavior and this has been attributed to stochastic volatility. A good credit risk
model should incorporate the correlation between the short rate and credit spread processes
as changes in interest rates can directly affect and change the credit spread or indirectly

influence the market’s perception of default risk which has an impact on credit spreads.

The objective of this thesis is to model credit risk within a Markovian Heath, Jarrow, and
Morton [1992] (hereafter HIM) term structure model with stochastic volatility by extending
the defaultable framework developed in Schénbucher [1998]. Adapting the HIM framework to
include default risk results in a generalised framework that incorporates all the information on
the current risk free term structure as well as the credit spread curve. Under some conditions
on the specification of the volatility functions, the model admits finite dimensional Markovian
realisations and as a result, the default-free yield curve as well as the credit spread curves

can be calculated with low computational cost at any given time.

The main contributions of this thesis are:

& Markovian Defaultable HIM Term Structure Models with Unspanned Stochastic Volatil-
ity - Chapter 2. Stochastic volatility is introduced into the Schonbucher [1998] model
and we generalise it to allow for a correlation structure between the default-free forward
rate, the forward credit spread and stochastic volatility. Under certain level dependent
volatility specifications, we derive a Markovian representation of the defaultable short
rate in terms of a finite number of state variables which we then express in terms of
economic quantities observed in the market, specifically in terms of discrete tenor for-
ward rates. A numerical experiment is then conducted to investigate the distributional

properties of the defaultable bond price and bond returns which reveals the existence

XV



Abstract Abstract

of a left tail.

¢ Credit Derivative Pricing under a Markovian HIM Term Structure Model with (Dif-
fusion Driven) Humped Volatility - Chapter 3. We verify that under the assumption
of a humped volatility specification, the defaultable forward rates admits finite dimen-
sional affine realisations. The default of the underlying reference entity is modelled
as a Cox process and we derive exponential affine bond price formulas in the presence
of stochastic volatility. We then investigate the pricing of single-name credit default
swaps both in the presence and absence of counterparty risk and derive formulas for the
valuation of credit default swaptions within the framework. On relaxing the level de-
pendency assumption within the humped volatility specification, we price knocked-out

put options on defaultable bonds using the Fourier transform approach.

¢ Valuation of Bond Options under a Defaultable HIM Class of Models with Regime-
Switching Volatility - Chapter 4. We allow the defaultable forward rate volatility to
depend on the current forward rate curve as well as on a modulating continuous time
Markov chain making use of the results in Valchev [2004] and Elhouar [2008]. Stochas-
ticity is then introduced to the volatility function by a separable volatility specification
which guarantees finite-dimensional Markovian realisations under regime switching. A
special case of the short rate class of models, the Hull-White-Extended-Vasicek type
of model is obtained in the defaultable setting from which an explicit bond pricing
formula is derived. We then apply finite difference methods to price European options

under two-state regimes.

We give a summary of all the thesis findings in Chapter 5 where we also present the concluding

remarks and directions for future research work.
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