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ABSTRACT 

The Tumut Serpentinite Province consists of four major serpentinite belts and numerous small 

serpentinite bodies, that occupy a long narrow tract within the Lachlan Fold Belt of southern NSW. 

The tectonic setting of one belt, the Coo lac Serpentinite Belt, has been contentious. Much of the 

uncertainty results from lack of a combined study on the major belts and inadequate age constraints. 

Resolving the uncertainty will benefit construction of a tectonic model for the evolution of the 

Lachlan Fold Belt. 

The belts mainly comprise massive serpentinite or harzburgite, with internal shear zones of 

schistose serpentinite, and intrusions of plagiogranite, gabbro, basalt, pyroxenite, dunite and 

chromitite. The main foliation has a consistent NNW-SSE trend and is similar in the adjacent rock 

units. The various rock types of the serpentinite belts are geochemically akin to similar rocks from 

ophiolite sequences. 

Podiform chromitites are geochemically, mineralogically and geometrically akin to those in the 

mantle sequence of most ophiolites. The different chromitite types are interpreted in terms of the 

degree of evolution of the MORB-type magma and hence the extent of fractionation of the source. 

Serpentinisation and rodingitisation occurred during progressive cooling of the chromitites and host 

rocks and were accompanied by systtlmatic fracturing and remobilisation of chemical components. 

Radioisotope dating gives an age of crystallisation of 412-400 Ma for the plagiogranites and 

leucogabbros, whilst an inherited zircon age of 430 Ma appears to be derived from Early Silurian 

felsic volcanic rocks of the region. As the plagiogranites, leucogabbros and other rock types within 

the serpentinite belts have common deformational and metamorphic histories, their crystallisation 

age constrains the ages of deformation and metamorphism. 

The serpentinite belts are interpreted as ophiolites of the 'embryonic' type that formed within a 

back-arc basin setting in the Late Silurian-Early Devonian. Crystallisation of the MORB sequence 

and emplacement onto continental crust, together with metamorphism and deformation may have 

only spanned 20 Ma. In the Late Silurian to Early Devonian, the Tumut Serpentinite Province 
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differed from basins elsewhere within the Lachlan Fold Belt in-that a volcanic arc was ruptured by 

mantle-derived MORB magmas which ascended to the surface. Their extrusion was short-lived and 

after the Early Devonian, the development of the Tumut region differed little from that in the rest of 

the Lachlan Fold Belt 

The development of oceanic crust within the Tumut Serpentinite Province and the generation of 

granitic magmas within the central and eastern parts of the Lachlan Fold Belt are symptomatic of 

the same Late Silurian to Early Devonian tectonothermal event. An important aspect of this is that 

oceanic and crustal rocks need not form from different events or in substantially different tectonic 

settings. 
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