THE GENESIS AND TECTONIC SIGNIFICANCE OF CHROMITITE-BEARING SERPENTINITES IN SOUTHERN NSW

Thesis submitted as a requirement of the Doctor of Philosophy degree,
University of Technology, Sydney
New South Wales, Australia

Ian T. Graham

1998
"I declare that the work presented in this thesis is the result of original research by the author"

Ian.T.Graham
ACKNOWLEDGEMENTS

Many people have provided help during the duration of this project and this is hereby acknowledged.

I would like to thank my co-supervisors, Adjunct Professors Brenda J. Franklin and Brian Marshall for the initiation of this project, their enthusiastic encouragement and support throughout its duration, and their numerous comments on the manuscript. They are also thanked for receiving the various grants, which were necessary to fund this research, and also, for undertaking all of the administrative work associated with these grants.

Professor Evan Leitch of the Geology Department is thanked for his comments on the manuscript, and especially, for his advice and comments on tectonics. Leightonie Hunt of the Geology Department is much appreciated for her help with the drafting of figures and tables, and most useful advice on working with Microsoft Word and Microsoft Excel.

Alan Giles of the Geology Department is thanked for his help with the production of thin-sections and polished mounts, advice on fluid inclusions, and for being a good mate. Rod Hungerford of the Geology Department is thanked for his help with the collection of samples for geochronological investigations, advice on beer, and particularly for being a good mate. Alan Buttenshaw of the Geology Department helped with computer problems and is also thanked for letting me use his laser printer. Dr Edgar Frankel of the Geology Department is very much thanked for his support and encouragement throughout the duration of this project. Dr Graziella Caprarelli of the Geology Department is thanked for her advice and comments on the Nd-Sm isotope results.

David Colchester is thanked for sharing his great practical knowledge on XRD analysis and mineralogy. Maree Anast is thanked for her advice and help with XRD analysis. Mathew Phillips and Ric Wuhrer of the Microanalysis Unit of the Faculty of Science are thanked for their advice and guidance on Scanning Electron Microscopy.
Jeff Davis from the CSIRO Division of Exploration and Mining, North Ryde is thanked for his advice and help with sample preparation and zircon grain separation. Dr John McAndrew is thanked for his advice on the mineralogy, chemistry and analysis of chromitites. Helen Waldron and Brian Garnett of Becquerel Laboratories, Lucas Heights, are thanked for their advice on Neutron Activation Analysis. Mark Fanning of the RSES, ANU, is thanked for his advice on the age-dating of the plagiogranites. Helena Basden from the Geological Survey of NSW is very much thanked for sharing her vast knowledge of the Tumut region.

Paul Jones, Dieter Bruggermann, Somaly Srey, Piers Reynolds, James Wilson, Robert Parker, Paul Cheadle and Jane Giddey, all former undergraduate students within the Geology Department of UTS, are very much thanked for their help and companionship in the field.

My sister, Tina Graham, is thanked for her help with photocopying and advice on Microsoft Word and Microsoft Excel, while my brother Paul is thanked for lending me the money when it was needed.

My friends, Andrew, Julie, Paul, Barbara, Dion, Doug, Ross, Tony, Terry and David are thanked for providing distractions when I needed a break. Scott and Martin are thanked for the distracting and competitive golf. My niece, Breannan, and nephew, Conor are also thanked for distracting me during their visits.

Funding was provided by an Australian Postgraduate Research Award. Work on the podiform chromitites was funded by a joint CSIRO/UTS co-operative research grant. The neutron activation analyses were funded by grants from ANSTO while, funding for the geochronological investigations was provided by an internal UTS research grant. Financial support for attending conferences in Australia and overseas was provided by grants from the UTS Vice-Chancellors postgraduate student conference fund, the Geology Department at UTS, and the NSW Division of the Geological Society of Australia.

Finally, most of all I would like to thank my parents, Paul and Hilary Graham, for their continual support and encouragement throughout my life, especially in times of hardship.
ABSTRACT

The Tumut Serpentinite Province consists of four major serpentinite belts and numerous small serpentinite bodies, that occupy a long narrow tract within the Lachlan Fold Belt of southern NSW. The tectonic setting of one belt, the Coolac Serpentinite Belt, has been contentious. Much of the uncertainty results from lack of a combined study on the major belts and inadequate age constraints. Resolving the uncertainty will benefit construction of a tectonic model for the evolution of the Lachlan Fold Belt.

The belts mainly comprise massive serpentinite or harzburgite, with internal shear zones of schistose serpentinite, and intrusions of plagiogranite, gabbro, basalt, pyroxenite, dunite and chromitite. The main foliation has a consistent NNW-SSE trend and is similar in the adjacent rock units. The various rock types of the serpentinite belts are geochemically akin to similar rocks from ophiolite sequences.

Podiform chromitites are geochemically, mineralogically and geometrically akin to those in the mantle sequence of most ophiolites. The different chromitite types are interpreted in terms of the degree of evolution of the MORB-type magma and hence the extent of fractionation of the source. Serpentinisation and rodingitisation occurred during progressive cooling of the chromitites and host rocks and were accompanied by systematic fracturing and remobilisation of chemical components.

Radioisotope dating gives an age of crystallisation of 412-400 Ma for the plagiogranites and leucogabbros, whilst an inherited zircon age of 430 Ma appears to be derived from Early Silurian felsic volcanic rocks of the region. As the plagiogranites, leucogabbros and other rock types within the serpentinite belts have common deformational and metamorphic histories, their crystallisation age constrains the ages of deformation and metamorphism.

The serpentinite belts are interpreted as ophiolites of the ‘embryonic’ type that formed within a back-arc basin setting in the Late Silurian-Early Devonian. Crystallisation of the MORB sequence and emplacement onto continental crust, together with metamorphism and deformation may have only spanned 20 Ma. In the Late Silurian to Early Devonian, the Tumut Serpentinite Province
differed from basins elsewhere within the Lachlan Fold Belt in that a volcanic arc was ruptured by mantle-derived MORB magmas which ascended to the surface. Their extrusion was short-lived and after the Early Devonian, the development of the Tumut region differed little from that in the rest of the Lachlan Fold Belt.

The development of oceanic crust within the Tumut Serpentinite Province and the generation of granitic magmas within the central and eastern parts of the Lachlan Fold Belt are symptomatic of the same Late Silurian to Early Devonian tectonothermal event. An important aspect of this is that oceanic and crustal rocks need not form from different events or in substantially different tectonic settings.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
ABSTRACT v

CHAPTER 1: INTRODUCTION 1
1.1 General statement 1
1.2 Objectives/Aims 2
1.3 Location and access 4
1.4 Physiography, vegetation and climate 5
1.5 Previous work 9

CHAPTER 2: THE LACHLAN FOLD BELT AND REGIONAL GEOLOGICAL FEATURES OF IMPORTANCE 11
2.1 The Lachlan Fold Belt 11
 2.1.1 Introduction 11
 2.1.2 Lithology and structural/metamorphic evolution 11
 2.1.3 Problems with tectonic models for the Lachlan Fold Belt 15
2.2 Regional geological features of importance 20
 2.2.1 The Tumut Trough 20
 2.2.2 The Mooney Mooney Fault System 28
 2.2.3 The Gilmore Fault Zone 33

CHAPTER 3: THE COOLAC SERPENTINITE BELT 35
3.1 Introduction 35
3.2 The western contact and abutting rocks 36
 3.2.1 The Honeysuckle Beds 36
 3.2.2 The North Mooney Complex 38
3.3 The eastern contact - Young Granodiorite 41
3.4 General features of the Coolac Serpentinite Belt 46
 3.4.1 Surface outcrop of rock types 46
 3.4.2 Internal features 47
3.5 Petrography and textural/structural evolution 50
 3.5.1 Harzburgites 50
 3.5.2 Dunes 53
 3.5.3 Pyroxenites/wehrlites/hornblendites 58
 3.5.4 Serpentinites 61
 3.5.5 Talc-carbonate rocks 64
 3.5.6 Gabbros 65
 3.5.7 Plagiograrnites and albitites 69
 3.5.8 Rodingites 70
 3.5.9 Other rock types 74
3.6 Structure of the Coolac Serpentinite Belt 78
 3.6.1 Primary layering in the main harzburgite mass 78
 3.6.2 Serpentinite foliations 82
 3.6.3 Summary of the main structural elements of the Coolac Serpentinite Belt 85
CHAPTER 4: THE WAMBIDGEE SERPENTINITE BELT

4.1 Introduction 87
4.2 The western contact and abutting rocks 88
 4.2.1 The Jindalee Beds 90
 4.2.2 The Frampton Volcanics 96
4.3 The eastern contact - Young Granodiorite 97
4.4 General features of the Wambidgee Serpentinite Belt 103
 4.4.1 Surface outcrop of rock types 104
 4.4.2 Internal structure 104
4.5 Petrography and textural/structural evolution 106
 4.5.1 Primary ultramafic rocks 106
 4.5.2 Serpentinites 112
 4.5.3 Talc-carbonate rocks 113
 4.5.4 Tremolite-rich metaserpentinites 116
 4.5.5 Gabbros 117
 4.5.6 Plagiogranites 119
 4.5.7 Amphibolites 121
 4.5.8 Tremolite/Actinolite rocks 123
 4.5.9 Chlorite rocks 123
 4.5.10 Other rock types 124
4.6 Structure of the Wambidgee Serpentinite Belt 129
 4.6.1 Primary layering 129
 4.6.2 Serpentinite foliations 133

CHAPTER 5: THE GUNDAGAI SERPENTINITE BELT

5.1 Introduction 134
5.2 The western contact and abutting rocks 135
 5.2.1 The Jones Creek Diorite and breccia 136
 5.2.2 The Wandeen Formation 138
5.3 The eastern contact and abutting rocks 139
 5.3.1 The Jackalass Slate 139
5.4 General features of the Gundagai Serpentinite Belt 141
 5.4.1 Surface outcrop 141
 5.4.2 Internal structure 142
5.5 Petrography and textural/structural evolution 142
 5.5.1 Primary ultramafic rocks 142
 5.5.2 Serpentinites 145
 5.5.3 Talc-carbonate rocks 148
 5.5.4 Chlorite rocks 150
 5.5.5 Felsic plutonic rocks 151
 5.5.6 Other rock types 153
5.6 Structure of the Gundagai Serpentinite Belt 157
 5.6.1 Serpentinite foliations 157
CHAPTER 6 THE TUMUT PONDS SERPENTINITE BELT

6.1 Introduction 159
6.2 Nature of contacts 161
6.3 Petrography and textural/structural evolution 163
 6.3.1 Primary ultramafic rocks 163
 6.3.2 Serpentinites 164
 6.3.3 Talc-carbonate rocks 167
 6.3.4 Gabbro 168
 6.3.5 Rodingites 169
 6.3.6 Metabasalts 169
 6.3.7 Chlorite rocks 170
6.4 Structure of the Tumut Ponds Serpentine Belt 172
 6.4.1 Serpentinite foliations 172

CHAPTER 7: OTHER SERPENTINITE BELTS OF THE REGION

7.1 The Eurongilly Serpentine Belt 173
 7.1.1 Nature of contacts 173
 7.1.2 Petrography and textural/structural evolution 174
7.2 The Darbalara Serpentine Belt 176
 7.2.1 Nature of contacts 177
 7.2.2 Petrography and textural/structural evolution 177
7.3 The Western Wambidgee Serpentine Melange 178
 7.3.1 Nature of contacts 179
 7.3.2 Surface outcrop 179
 7.3.3 Petrography and textural/structural evolution 181
 7.3.4 Classification as a tectonic melange unit 188

CHAPTER 8: GEOCHEMICAL CHARACTER OF THE SERPENTINITE BELTS AND ASSOCIATED UNITS

8.1 Primary ultramafic rocks 189
 8.1.1 Major and minor element geochemistry 189
 8.1.2 Variation diagrams 194
 8.1.3 REE and trace element geochemistry 199
 8.1.4 Discussion 205
8.2 Serpentinites 211
 8.2.1 Major and minor element geochemistry 211
 8.2.2 Variation diagrams 211
 8.2.3 REE and trace element geochemistry 216
 8.2.4 Discussion 216
8.3 Talc-carbonate rocks 219
 8.3.1 Major and minor element geochemistry 219
 8.3.2 Variation diagrams 221
 8.3.3 REE and trace element geochemistry 221
 8.3.4 Discussion 223
8.4 Gabbros 226
 8.4.1 Major and minor element geochemistry 226
 8.4.2 Variation diagrams 226
8.4.3 REE and trace element geochemistry
8.4.4 Discussion

8.5 Metabasaltic rocks
8.5.1 Major and minor element geochemistry
8.5.2 Variation diagrams
8.5.3 REE and trace element geochemistry
8.5.4 Discussion

8.6 Amphibolites
8.6.1 Major and minor element geochemistry
8.6.2 Variation diagrams
8.6.3 REE and trace element geochemistry
8.6.4 Discussion

8.7 Plagiogranites
8.7.1 Major and minor element geochemistry
8.7.2 Variation diagrams
8.7.3 REE and trace element geochemistry
8.7.4 Discussion

8.8 Chlorite rocks
8.8.1 Major and minor element geochemistry
8.8.2 Variation diagrams
8.8.3 REE and trace element geochemistry
8.8.4 Discussion

8.9 Rodingites
8.9.1 Major and minor element geochemistry
8.9.2 Variation diagrams
8.9.3 REE and trace element geochemistry
8.9.4 Discussion

8.10 Unusual rock types
8.10.1 Major and minor element geochemistry
8.10.2 Variation diagrams
8.10.3 REE and trace element geochemistry
8.10.4 Discussion

8.11 Conclusions

CHAPTER 9: GEOLOGY AND GENESIS OF THE PODIFORM CHROMITITE DEPOSITS

9.1 Introduction
9.2 Field relationships
9.2.1 Mount Lightning Adit (MLA) deposit
9.2.2 Quilter's Open-Cut (QOC) deposit
9.2.3 Mount Miller (MM) deposit
9.2.4 Observations from other deposits

9.3 Textural studies
9.3.1 Mesoscale observations
9.3.2 Micro-scale observations

9.4 Bulk chemistry of the chromitites and associated dunitic wallrocks

9.5 Probe chemistry of the chromite grains
9.6 Primary inclusion mineralogy 313
9.7 Fracture-fill mineralogy 317
 9.7.1 Metallic phases 317
 9.7.2 Oxide phases 321
 9.7.3 Silicate phases 324
9.8 Previous models for the genesis of podiform chromitite deposits 326
9.9 Features of the Tumut Serpentinite Province chromitite deposits 330
that must be explained by any genetic model 330
9.10 A genetic and evolutionary model for the Tumut Serpentinite Province chromitites 331
 9.10.1 Discussion 331
 9.10.2 The proposed model 339
9.11 Conclusions 341

CHAPTER 10: GEOCHRONOLOGICAL INVESTIGATIONS 342
10.1 Introduction 342
10.2 U/Pb zircon isotope studies 342
 10.2.1 Introduction 342
 10.2.2 Sample collection 343
 10.2.3 Geology of the sample sites 343
 10.2.4 Petrography 345
 10.2.5 Sample preparation and analytical procedure 346
 10.2.6 Results 346
10.3 Nd/Sm isotope investigations 353
 10.3.1 Introduction 353
 10.3.2 Sample selection 353
 10.3.3 Geology of the sample sites 353
 10.3.4 Petrography 362
 10.3.5 Sample preparation and analytical procedure 367
 10.3.6 Results 367
10.4 Discussion 370
10.5 Conclusions 375

CHAPTER 11: DISCUSSION, INTERPRETATION AND CONCLUSIONS 376
11.1 The serpentinite belts: a summary 376
11.2 Are the serpentinite belts ophiolitic fragments? 380
11.3 How may the U-Pb SHRIMP data be interpreted? 387
11.4 How else can the serpentinisation, metamorphism and deformation 389
 of the serpentinite belts and associated rock units be constrained? 389
11.5 The genesis and evolution of the serpentinite belts within the 391
 Tumut Serpentinite Province 391
11.6 Conclusions 400

REFERENCES 402
APPENDICES 435
LIST OF PLATES

1.1 View of the rugged topography within the southern half of the study region. The range of hills in the central portion of the photograph is occupied by the Tumut Ponds Serpentinite Belt. 5

1.2 Distinctive vegetation, exemplified by Xanthorrhoea glauca (Grass Tree or Black Boy) on the Coolac Serpentinite Belt. 6

3.1 Typical topography of the Coolac Serpentinite Belt, forming the Honeysuckle Range. View from the southern slope of Mount Lightning, looking south. 35

3.2 Fresh harzburgite exhibiting a pseudoporphyritic porphyroclastic texture. Sample No ML032 51

3.3 Moderately serpentinised harzburgite exhibiting a pseudoporphyritic porphyroclastic texture. Sample No ML027 52

3.4 Completely serpentinised harzburgite exhibiting a mesh texture. Sample No ML028 52

3.5 Elongate aligned olivine grains within partially serpentinised harzburgite. Sample No ML037 54

3.6 Fresh dunite exhibiting a granoblastic texture. Sample No 123 56

3.7 Serpentinised dunite exhibiting a well-developed mesh texture. Sample No 85 57

3.8 Amphibole grains within metapyroxenite with pale green cores and dark brown rims. Sample No BF92/51 59

3.9 Serpentine cores in hornblende within metapyroxenite. Sample No BF92/51 60

3.10 Tremolite/actinolite fringes on hornblende within metapyroxenite. Sample No BF92/51 60

3.11 Cumulus gabbro exhibiting a post-cumulus space-fill texture. Sample No 238b 66

xii
3.12 Granular gabbro exhibiting an allotriomorphic granular texture.
Sample No 156c

3.13 Brown hornblende surrounding cores of colourless diopside within gabbro.
Sample No BF92/53

3.14 Bent and micro-faulted plagioclase twin lamellae within gabbro.
Sample No 238c

3.15 Strongly sutured grain boundaries in quartz and albite within plagiogranite.
Sample No BF91/20

3.16 Zoisite-dominant rodingite exhibiting a granoblastic texture.
Sample No 73

3.17 Grossular rodingite veinlets within schistose serpentinite.
Sample No 98

3.18 Hornblende-diopside-plagioclase-epidote amphibolite exhibiting a banded texture.
Sample No BF92/43

3.19 Amygdaloidal metabasalt.
Sample No BF92/49

3.20 Bent plagioclase twin lamellae and fracture-fill chlorite veinlets within felsic granitoid.
Sample No BF92/44

3.21 Outcrop of primary layering within harzburgite. Bold relief consists of orthopyroxene-rich layers while negative relief consists of olivine-rich layers.

3.22 S-C fabric within serpentinite defined by subparallel bands of fibrous chrysotile and magnetite veinlets.
Sample No ML036

4.1 Typical low-lying topography of the Wambidgee Serpentinite Belt. Fontenoy chromite mine, west of Wombat. Viewed from the south, looking north.

4.2 Folded micaceous quartzite from the Jindalee Beds.
Sample No 58

4.3 Cross-cutting tremolite grains in marble from the Jindalee Beds.
Sample No PJ2

4.4 Enclave of Jindalee Beds quartzite within foliated Young Granodiorite. Warreney, west of Wombat. Viewed from the south, looking north.
4.5 Bent and micro-faulted plagioclase twin lamellae within Young Granodiorite.
Sample No 223

4.6 Strongly sutured grain boundaries of large quartz grains within
mylonitised Young Granodiorite.
Sample No 200

4.7 Bent muscovite grains within Young Granodiorite.
Sample No 223

4.8 Layering within serpentinised layered peridotite defined by bastitised
orthopyroxene-rich layers (bold relief) and serpentine-rich layers
(negative relief). Warrenoy, west of Wombat.

4.9 Serpentinitised dunite exhibiting a mesh texture.
Sample No BF92/10b

4.10 Bastitised orthopyroxene grains within serpentinised harzburgite.
Sample No BF91/27a

4.11 Coarse-grained hornblendite exhibiting a post-cumulus space-fill texture.
Sample No 65

4.12 Cumulus texture of weakly serpentinised layered peridotite.
Sample No 65 (L)

4.13 Cross-cutting tremolite within serpentinised layered peridotite.
Sample No 225B

4.14 View of the West Main Pit, Thuddungra Magnesite Mine.
Viewed from the north, looking south.

4.15 Talc+magnesite rich metaserpentinite exhibiting a granoblastic decussate texture.
Sample No BF92/73

4.16 Magnesite porphyroblast within magnesite-rich metaserpentinite.
Sample No BF92/69

4.17 Cross-cutting tremolite within tremolite-rich metaserpentinite.
Sample No BF91/32d

4.18 Cross-cutting tremolite/actinolite within clinopyroxene gabbro.
Sample No BF92/3

4.19 Phlogopite grains within hornblende gabbro.
Sample No 182b
4.20 Enclaves of amphibolite within plagiogranite.
Sample No BF91/33f

4.21 Contact between plagiogranite (left) and amphibolite enclave (right).
Sample No 33Fa

4.22 Cross-cutting narrow cataclasite zones within plagiogranite.
Sample No BF91/33f

4.23 Fine-scale layering within layered amphibolite.
Sample No 190b

4.24 Micro shear zone defined by aligned chlorite grains within chlorite rock.
Sample No BF91/28c

4.25 Fine-grained almandine and cross-cutting actinolite within metabasalt.
Sample No BF92/16b

4.26 Lepidoblastic decussate texture within actinolite-chlorite rock.
Sample No BF91/32c

4.27 Fine-scale layering within chlorite-zoisite-talc rock.
Sample No BF92/72

4.28 Brecciated diopside grains within rodingite.
Sample No BF91/26c

4.29 Porphyroblastic olivine within olivine-amphibole-chlorite hornfels.
Sample No BF92/8

4.30 Layering defined by bastitised orthopyroxene-rich and serpentine-rich layers within completely serpentinised layered peridotite.
Locality 224, Fontenoy.

5.1 Outcrop of the Jones Creek Diorite breccia on Flowers Hill, north of Gundagai. Viewed from the north-west, looking south-east.

5.2 Rounded fragments of hornblende andesite within Jones Creek Diorite breccia on Flowers Hill, north of Gundagai.

5.3 Bent and micro-faulted diopside grains with fracture-fill of antigorite+talc within meta-clinopyroxenite.
Sample No 203

5.4 Bent and micro-fractured diopside grains within metapyroxenite.
Sample No 216 (b)
5.5 Feathery decussate texture of antigorite within massive serpentinite.
Sample No BF92/63
5.6 S-C fabric within serpentinite defined by discontinuous
 fibrous chrysotile veinlets.
Sample No 215 (b)
5.7 Sub-mesh texture of matrix within nodular serpentinite.
Sample No 273a
5.8 Cross-cutting tremolite veinlets within nodular serpentinite.
Sample No 273b
5.9 Overprinting magnesite and talc within metaserpentinite.
Sample No BF92/57
5.10 Micro kink bands within talc schist.
Sample No BF91/38c
5.11 Zoisite overprinting chlorite within massive chlorite rock.
Sample No BF91/38d
5.12 Blue-green hornblende overprinting brown-green hornblende in tonalite.
Sample No BF92/65
5.13 Bent and micro-faulted plagioclase twin lamellae in tonalite.
Sample No BF92/65
5.14 Albite+zoisite+chlorite+epidote metamorphic assemblage in metabasalt.
Sample No 179
5.15 Bent hornblende in gabbro.
Sample No 283
5.16 Bent and micro-faulted hornblende within amphibole rock.
Sample No 202 (a)
5.17 Laminar banded texture in meta ash fall tuff.
Sample No 221
5.18 Fractured sulfide grain in chlorite matrix within hybrid felsic/mafic rock.
Sample No BF92/60
6.1 Typical rugged terrain occupied by the Tumut Ponds Serpentinite Belt.
Locality 157, looking north.
6.2 Tremolite fringes around blue-green actinolite within meta-clinopyroxenite.
Sample No 249

6.3 Fracture-fill tremolite within diopside in meta-clinopyroxenite.
Sample No 249

6.4 Relict chrome spinel within schistose serpentine.
Sample No BF92/22

6.5 Bastised orthopyroxene grains within massive serpentine.
Sample No 258

6.6 Cross-cutting chrysothile/chlorite veinlets within massive serpentine.
Sample No 258

6.7 Magnesite and talc overprinting serpentine within talc-magnesite rock.
Sample No 245

6.8 Bent and micro-faulted diopside grains with fracture-fill chlorite and zoisite within gabbro.
Sample No BF92/24

6.9 Albite-epidote-chlorite-zoisite metamorphic assemblage in metabasalt.
Sample No BF92/26

6.10 Actinolite-chlorite veinlets in meta-andesitic tuff.
Sample No BF92/21

7.1 Actinolite-chlorite veinlet within lherzolite.
Sample No BF91/41g

7.2 Feathery decussate texture of antigorite within serpentine.
Sample No BF91/44b

7.3 Metapyroxenite exhibiting a granoblastic texture along with fracture-fill of Mg-chlorite.
Sample No 171

7.4 Pseudoporphyritic decussate sub-mesh texture of massive serpentine.
Sample No BF92/17c

7.5 Fractured relict chrome spinel within talc schist.
Sample No BF92/17a

7.6 Kink bands in tremolite/actinolite pseudomorph after hornblende within gabbro.
Sample No 170a
7.7 Contact between plagiogranite (left) and metabasalt enclave (right).
Sample No 169a

7.8 Narrow cataclasite zone within plagiogranite.
Sample No 169b

7.9 Albite-epidote-zoisite-chlorite metamorphic assemblage in metabasalt.
Sample No BF92/15b

7.10 Laminar banded texture of meta-dacitic tuff.
Sample No WW4 (b)

9.1 Typical outcrop of the podiform chromitite deposits. Outcrops are serpentinised harzburgite. Locality 37, near Pettits. Viewed from the east.

9.2 Chromitite fragments within rodingite dyke of the MLA deposit. Viewed from the north-east.

9.3 Quilter’s Open-Cut, viewed from the north-east. Outcrop on the walls consists of blocks of unsheared harzburgite within serpentinised dunite.

9.4 Diffuse-margined core of unsheared harzburgite within serpentinised dunite. QOC deposit, viewed from the north-west.

9.5 Small tabular chromitite body within serpentinised dunite. QOC deposit, viewed from the west.

9.6 Chromitite veins within serpentinised dunite. QOC deposit, viewed from the west.

9.7 Disseminated chromitite from the MLA deposit.
Sample No MLA019

9.8 Aggregates of chromite within disseminated chromitite from the MLA deposit.
Sample No MLA013

9.9 Banded disseminated chromitite from the MLA deposit.
Consists of an upper dunite layer, and underlying chromite-rich band passing downward into disseminated chromitite.
Sample No MLA017

9.10 Nodular chromitite from the MLA deposit.
Sample No MLA011

9.11 Massive polycrystalline chromitite from the MLA deposit.
Sample No MLA018
9.12 Compact microbreccia from the QOC deposit.
Sample No QOC003

9.13 Chromite-olivine pseudo net texture from the MLA deposit.
Sample No MLA014

9.14 Well-developed massive polycrystalline chromitite from the MLA deposit.
Sample No MLA010

9.15 Orthogonal systematic fracturing within massive polycrystalline chromitite from the MLA deposit.
Sample No MLA018

9.16 Cataclasis with negligible fracture offset from the MLA deposit.
Sample No MLA007

9.17 Tiny prismatic subhedral heazlewoodite grain (arrowed) in fracture-fill chrysotile within chromite. MLA deposit.
Sample No MLA006

9.18 Crush microbreccia from the QOC deposit.
Sample No QOC003

9.19 Dilation without significant fragment rotation within chromitite breccia from the QOC deposit.
Sample No QOC001

9.20 SEM image of PGE-bearing pentlandite inclusions within chromite from McAlpine’s chromitite deposit.
Sample No DBChrom

9.21 SEM image of Al-spinel inclusions within Cr-rich chromite.
Sample No 133

9.22 SEM image of euhedral pargasitic amphibole inclusion in chromite.
Sample No 36

9.23 SEM image of sharp contact between the pargasitic amphibole inclusion and host chromite.
Sample No 36

9.24 Composite silicate/Ni-sulfide inclusion in chromite.
Sample No 138d

9.25 SEM image of discrete grains of awaruite in fracture-fill serpentine between chromite grains.
Sample No 69h
9.26 SEM image of composite awaruite (white)/trevorite (dark grey)/magnetite (light grey) grain within fracture-fill.
Sample No MC015

9.27 Discrete grain of subhedral equant millerite (arrowed) within fracture-fill.
Sample No MLA007

9.28 SEM image of euhedral prismatic heazlewoodite in fracture-fill.
Sample No MLA008

9.29 SEM image of palladian gold (bright white) within fracture-fill.
Sample No 69

9.30 Fracture-related replacement of primary chromite (grey) by ferritchromit (pitted yellow-white).
Sample No MLA007

9.31 SEM image of fracture-related replacement of primary chromite (dark grey) by ferritchromit (pitted white).
Sample No 138b

9.32 SEM image of fracture-related replacement of primary chromite (dark grey) by ferroan chromite (light grey) and ferritchromit (pitted white).
Sample No 138b

9.33 SEM image of intergrowth of ferritchromit (white) and serpentine (black).
Sample No 138b

9.34 SEM image of reaction front of ferritchromit (white) replacement of primary chromite (grey).
Sample No 138b

9.35 Fracture-fill diopside (dark grey) and serpentinised olivine (black) within chromite (light grey).
Sample No 137b

9.36 SEM image of replacement of fracture-fill diopside (light grey) by serpentine (black) within chromite (white).
Sample No 69b

10.1 Cathodoluminescence image of zircon grains 1 and 2 from sample BF91/20.

10.2 Cathodoluminescence image of zircon grains 4, 6 and 14 from sample BF91/33f.

10.3 Cathodoluminescence image of zircon grains 6, 7 and 8 from sample 238.

10.4 Cathodoluminescence image of zircon grain 9 from sample 238.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Location of the Tumut Serpentinite Province, Fifield Platinum Province, Lucknow ultramafic occurrences and Cambrian greenstone occurrences.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>The Tumut Serpentinite Province.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>The northern and central portions of the study region.</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>The southern portion of the study region.</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Location of the Lachlan Fold Belt (from Scheibner 1993).</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of granitic rocks within the Lachlan Fold Belt (from Johnson et al. 1994).</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Middle Silurian basins (the extensional features) of the Lachlan Fold Belt (from Scheibner 1985).</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Early Silurian continent-ocean convergent setting of the Lachlan Fold Belt (from Gray 1997).</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Location of the Tumut Trough (from Stuart-Smith 1990).</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Tumut Trough stratigraphy of Basden (from Warner et al. 1992).</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Tumut Trough stratigraphy of Stuart-Smith et al. (1992).</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Tumut Trough stratigraphy of Warner et al. (1992).</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>The Coolac Ophiolite Suite of Ashley et al. (1979) (from Basden et al. 1987).</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Location of the Mooney Mooney Fault System (from Stuart-Smith et al. 1992).</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>Movement histories for the Mooney Mooney Fault System.</td>
<td>31</td>
</tr>
<tr>
<td>a)</td>
<td>Stuart-Smith (1990)</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Warner et al. (1992)</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Location of the Gilmore Fault Zone (from Basden et al. 1987).</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Location and extent of the Honeysuckle Beds along the western contact of the Coolac Serpentinite Belt (adapted from Basden 1990).</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Location and extent of the North Mooney Complex (adapted from Basden 1990).</td>
<td>39</td>
</tr>
</tbody>
</table>
Figure 3.3 Location and extent of the Young Batholith (from Basden et al. 1974). 42

Figure 3.4 Location and extent of the Coolac Serpentinite Belt (adapted from Basden 1990). 47

Figure 3.5 Location and extent of the Western Tectonic Melange Zone of the Coolac Serpentinite Belt. 50

Figure 3.6 Strip-map showing the distribution of massive and schistose serpentinite along the crest of Mount Lightning. 62

Figure 3.7 Poles to major structural elements of the Coolac Serpentinite Belt (equal area projection) (data from this study; Jeffreson 1982; Lohan 1982; Warner et al. 1992). 80

Figure 3.8 Type I S-C mylonites (from Lister & Snoke 1984). 83

Figure 4.1 Location of the Wambidgee Serpentinite Belt (adapted from Fitzpatrick 1976). 88

Figure 4.2 Geology of the southern portion of the Wambidgee Serpentinite Belt (adapted from Fitzpatrick 1976). 89

Figure 4.3 The northern portion of the Wambidgee Serpentinite Belt (adapted from Fitzpatrick 1976). 90

Figure 4.4 Distribution of the Jindalee Beds (adapted from Fitzpatrick 1976). 91

Figure 4.5 Distribution of the Frampton Volcanics (adapted from Fitzpatrick 1976). 96

Figure 4.6 Distribution of the Young Granodiorite along the eastern contact of the Wambidgee Serpentinite Belt (adapted from Fitzpatrick 1976). 98

Figure 4.7 Extent and distribution of the Wambidgee Serpentinite Belt (adapted from Fitzpatrick 1976). 103

Figure 4.8 Location of main outcrops of talc-magnesite rocks within the Wambidgee Serpentinite Belt (adapted from Fitzpatrick 1976). 114

Figure 4.9 Location of the Fontenoy region of the Wambidgee Serpentinite Belt (adapted from Fitzpatrick 1976). 129

Figure 4.10 Sketch of finely-layered serpentinitised peridotite from the Fontenoy region of the Wambidgee Serpentinite Belt (locality 224). 131

Figure 5.1 Location and extent of the Gundagai Serpentinite Belt (adapted from Basden 1990). 134
Figure 5.2 Geology of the Gundagai Serpentinite Belt and adjoining units (adapted from Basden 1990).

Figure 5.3 Distribution of the Jones Creek Diorite breccia and nodular serpentinite (Giddey 1995).

Figure 5.4 Poles to small scale internal shear zones within serpentinite of the Gundagai Serpentinite Belt (equal area projection).

Figure 6.1 Location and extent of the Tumut Ponds Serpentinite Belt (from Degeling 1977).

Figure 6.2 Poles to small-scale internal shear zones within serpentinite of the Tumut Ponds Serpentinite Belt (equal area projection).

Figure 7.1 Location and extent of the Eurongilly Serpentinite Belt.

Figure 7.2 Location and geology of the Darbalara Serpentinite Belt (adapted from Basden 1990).

Figure 7.3 Simplified geology at G.R. 108 231: Darbalara Serpentinite Belt.

Figure 7.4 Location and extent of the Western Wambidgee Serpentinite Melange.

Figure 7.5 Simplified geology of the Western Wambidgee Serpentinite Melange (adapted from Wilson 1993).

Figure 7.6 Outcrop geology of traverse WW3: Western Wambidgee Serpentinite Melange.

Figure 8.1 Mg# vs SiO₂ diagram for the primary ultramafic rocks of the Tumut Serpentinite Province (data from Tables 8.1, 8.2 and 8.3).

Figure 8.2 Mg# vs CaO diagram for the primary ultramafic rocks of the Tumut Serpentinite Province (data from Tables 8.1, 8.2 and 8.3).

Figure 8.3 Cr vs SiO₂ diagram for the primary ultramafic rocks of the Tumut Serpentinite Province (data from Tables 8.1, 8.2 and 8.3).

Figure 8.4 Ni vs SiO₂ diagram for the primary ultramafic rocks of the Tumut Serpentinite Province (data from Tables 8.1, 8.2 and 8.3).

Figure 8.5 CN-REE diagram for the dunites, harzburgites and peridotites (data from Table 8.4).

Figure 8.6 CN-REE diagram for the pyroxenites, wehrlites and hornblendite (data from Table 8.4).
Figure 8.7 CN-REE diagram for the lherzolites and clinopyroxenites (data from Table 8.4).

Figure 8.8 Mg# vs SiO₂ diagram showing the fields for harzburgite, fresh dunite and serpentine (data from Tables 8.1, 8.2 and 8.5).

Figure 8.9 CN-REE diagram for the serpentinates (data from Table 8.6).

Figure 8.10 Mg# vs SiO₂ diagram for the serpentinates and talc-carbonate rocks (data from Tables 8.5 and 8.7).

Figure 8.11 CN-REE diagram for the talc-carbonate rocks (data from Table 8.8).

Figure 8.12 100xCaO/CaO+MgO+FeO vs SiO₂ diagram for the gabbros and rodingites of the Tumut Serpentinite Province and gabbros from the Micalong Swamp Complex (data from Tables 8.9 and 8.21; Callan 1984).

Figure 8.13 TiO₂ vs SiO₂ diagram for the gabbros and rodingites of the Tumut Serpentinite Province and gabbros from the Micalong Swamp Complex (data from Tables 8.9 and 8.21; Callan 1984).

Figure 8.14 Cr vs Ni diagram for the gabbros and rodingites of the Tumut Serpentinite Province and gabbros from the Micalong Swamp Complex and Honeysuckle Beds (data from Tables 8.9 and 8.21; Callan 1984; Basden 1990).

Figure 8.15 Cr vs Ni diagram for the various rock types of the Honeysuckle Beds and mafic dyke rocks of the North Mooney Complex (data from Table 8.13; Basden 1990).

Figure 8.16 CN-REE diagram for the gabbros (data from Table 8.10).

Figure 8.17 Zr/TiO₂ vs Nb/Y discrimination diagram of Winchester and Floyd (1977) for basalts from the Coolac, Wambidgee and Tumut Ponds serpentine belts, Jindalee Beds and Honeysuckle Beds (data from Tables 8.11, 8.12 and 8.13).

Figure 8.18 Zr/Y vs Zr discrimination diagram of Pearce and Norry (1979) for basalts from the Coolac, Wambidgee and Tumut Ponds serpentine belts, Jindalee Beds and Honeysuckle Beds (data from Tables 8.11, 8.12 and 8.13).

Figure 8.19 Ti vs Cr discrimination diagram of Pearce (1975) for basalts from the Coolac, Wambidgee and Tumut Ponds serpentine belts, Jindalee Beds and Honeysuckle Beds (data from Tables 8.11, 8.12 and 8.13).
Figure 8.20 Nb*2-Y-Zr/4 discrimination diagram of Meschede (1986) for basalts from the Coolac, Wambidgee and Tumut Ponds serpentinite belts, Jindalee Beds and Honeysuckle Beds (data from Tables 8.11, 8.12 and 8.13).

Figure 8.21 Cr vs Ni diagram for basalts and chlorite rocks from the serpentinite belts; basalts from the Honeysuckle Beds, Micalong Swamp Complex and Jindalee Beds; and mafic dyke rocks of the North Mooney Complex (data from Tables 8.11, 8.12, 8.13 and 8.19; Callan 1984; Basden 1990).

Figure 8.22 Ti/Zr vs Zr of Gamble et al. (1993) for basalts from the Tumut Serpentinite Province and Honeysuckle Beds (data from Table 11 and Dadd 1998).

Figure 8.23 CN-REE diagram for metabasalts (data from Table 8.14).

Figure 8.24 Cr vs TiO₂ diagram for amphibolites, chlorite rocks, olivine-amphibole hornfels and amphibolite-olivine-spinel hornfels from the Tumut Serpentinite Province (data from Tables 8.15, 8.19 and 8.23).

Figure 8.25 Cr vs Ni diagram for amphibolites, chlorite rocks, olivine-amphibole hornfels and amphibolite-olivine-spinel hornfels from the Tumut Serpentinite Province (data from Tables 8.15, 8.19 and 8.23).

Figure 8.26 CN-REE diagram for amphibolites and chlorite rocks (data from Tables 8.16 and 8.20).

Figure 8.27 100xNa₂O/Na₂O+K₂O vs SiO₂ diagram for plagiogranites and related rocks from the serpentinite belts, tonalites from the Micalong Swamp Complex, and granitic rocks from the Young Granodiorite (data from Table 8.17; Ashley et al. 1983; Callan 1984; Basden 1990).

Figure 8.28 100xMgO/MgO+FeO+Fe₂O₃ diagram for plagiogranites and related rocks from the serpentinite belts, and tonalites from the Micalong Swamp Complex (data from Table 8.17; Callan 1984).

Figure 8.29 CN-REE diagram for plagiogranites (data from Table 8.18).

Figure 8.30 CN-REE diagram for rodingites (data from Table 8.22).

Figure 8.31 CN-REE diagram for unusual rock types (data from Table 8.24).

Figure 9.1 Distribution of podiform chromitite deposits within the Coolac and Wambidgee serpentinite belts (adapted from Golding & Johnson 1971).

Figure 9.2 Location of the MLA, QOC, MM, Adjungbilly Sth Creek and Red Hill chromitite deposits.
Figure 9.3 Plan view of the outcrop geology of the MLA chromitite deposit. 286

Figure 9.4 Plan of the walls of the MLA chromitite deposit. 287

Figure 9.5 East wall geological section of the QOC chromitite deposit. 288

Figure 9.6 Plan of the walls of the MM chromitite deposit
(see Figure 9.2 for location in belt) 291

Figure 9.7 Compositional diagram for the Coolac and Wambidgee
serpentinite belt chromitites with reference to the podiform chromitite field
of Leblanc (1985) (data from Table 9.1). 304

Figure 9.8 Wt% TiO₂ vs (100xMgO/MgO+FeO₉⁰⁰) ratio for the Coolac and
Wambidgee serpentinite belt chromitites (data from Table 9.1). 304

Figure 9.9 Distribution of chromitite types within the Coolac Serpentinite
Belt (adapted from Golding & Johnson 1971) (data from Table 9.1). 306

Figure 9.10 Al₂O₃ (Wt%) vs Ga (ppm) diagram for the Coolac and
Wambidgee serpentinite belt chromitites (data from Tables 9.1 and 9.2). 306

Figure 9.11 Chondrite-normalised PGE graph for the chromitites.
(a) CSB chromitites (data from Table 9.4)
(b) WSB chromitites (data from Table 9.4)
(c) Other ophiolite chromitites
(chondrite values are those of Naldrett & Duke 1980). 309

Figure 10.1 Location of the sample sites for U/Pb geochronology. 344

Figure 10.2 Composite Tera-Wasserburg concordia plot for the SHRIMP
analyses of zircons from samples 238 (circles), 29 (triangles), 169 PLAG6
(inverted triangles), 189 (squares) and BF91/33f (diamonds). Analyses
plotted, uncorrected for common Pb, with one sigma bar errors. A weighted
mean of the 207Pb corrected 206Pb/238U ages for 38 analyses gives a pooled age
of 401.3 ± 3.4Ma (shaded symbols). Some 10 analyses are older at
431 ± 8Ma (striped symbols). 350

Figure 10.3 Nd/Sm sample locations within the North Mooney Complex. 356

Figure 10.4 Nd/Sm sample locations within the Wambidgee Serpentinite Belt. 359

Figure 10.5 Nd/Sm sample locations within the Coolac Serpentinite Belt. 361

Figure 10.6 Nd/Sm isochron plot for groups 2 and 3. 369
Figure 10.7 Nd/Sm isochron plot for groups 1-3 with outliers removed. 369

Figure 10.8 Nd/Sm isochron plot of intrusives (e.g. gabbro, plagiogranite, metabasalt) from all groups. 370

Figure 10.9 Published age data for rock units from the Tumut region. 374

Figure 11.1 Penrose conference defined ophiolite (adapted from Coleman 1977). 381

Figure 11.2 Vertical sections through Harzburgite (HOT) and Lherzolite (LOT) ophiolite types. Internal structures and relative thicknesses are approximate (from Nicolas 1989). 383

Figure 11.3 Summary of the tectonothermal history of the serpentinite belts. 391

Figure 11.4 Summary of geochronological data from the rock units of the region. 392

Figure 11.5 Simplified geological map of southern Chile showing the distribution of the major mafic complexes (ophiolites). Inset is a reconstruction of the major Early Cretaceous igneous-tectonic provinces (adapted from De Wit & Stern 1981). 396

Figure 11.6 Present-day plate tectonic configuration near the Bransfield Strait. Double lines denote spreading centres, aligned triangles denote a subduction zone with the triangles pointing to the overriding plate. Abbreviations on inset map are: BS - Bransfield Strait; TO - Tortuga Ophiolite; SO - Samiento Ophiolite (adapted from Keller & Fisk 1992). 398

Figure 11.7 Bathymetry and relevant geography of the Bransfield Strait and South Shetland Islands. Bathymetry is contoured in km, with exception of the dredged seamounts which are contoured at 200m intervals (adapted from Keller & Fisk 1992). 398
LIST OF TABLES

Table 3.1 XRD-determined rodingite assemblages of the Coolac Serpentinite Belt. 72
Table 6.1 Orientation data for structural elements within the Tumut Ponds Serpentinite Belt and adjoining rock units. 162
Table 8.1 Major and minor element analyses of dunites. 190
Table 8.2 Major and minor element analyses of harzburgites. 191
Table 8.3 Major and minor element analyses of other primary ultramafic rocks. 192/3
Table 8.4 Rare earth and trace element analyses of primary ultramafic rocks. 200/1
Table 8.5 Major and minor element analyses of serpentinites. 212/14
Table 8.6 Rare earth and trace element analyses of serpentinites. 217
Table 8.7 Major and minor element analyses of talc-carbonate rocks. 220
Table 8.8 Rare earth and trace element analyses of talc-carbonate rocks. 222
Table 8.9 Major and minor element analyses of gabbros. 227
Table 8.10 Rare earth and trace element analyses of gabbros. 232
Table 8.11 Major and minor element analyses of basalts. 238
Table 8.12 Major and minor element analyses of Jindalee Beds basalts. 239
Table 8.13 Major and minor element analyses of rock types from the Honeysuckle Beds. 240/2
Table 8.14 Rare earth and trace element analyses of basalts. 247
Table 8.15 Major and minor element analyses of amphibolites. 251
Table 8.16 Rare earth and trace element analyses of amphibolites. 253
Table 8.17 Major and minor element analyses of plagiogranites and related rocks. 256/7
Table 8.18 Rare earth and trace element analyses of plagiogranites. 260
Table 8.19 Major and minor element analyses of chlorite rocks. 265
Table 8.20 Rare earth and trace element analyses of chlorite rocks. 266

xxviii
Table 10.1 U-Pb isotope data for sample 238. 347
Table 10.2 U-Pb isotope data for sample 20. 348
Table 10.3 U-Pb isotope data for sample 169. 348
Table 10.4 U-Pb isotope data for sample 189. 349
Table 10.5 U-Pb isotope data for sample BF91/33f. 349
Table 10.6 List of samples used for Nd/Sm geochronology. 354
Table 10.7 Nd/Sm isotopic concentrations. 368
Table 11.1 General features of the Coolac Serpentinite Belt. 377
Table 11.2 General features of the Wambidgee Serpentinite Belt. 377
Table 11.3 General features of the Gundagai Serpentinite Belt. 378
Table 11.4 General features of the Tumut Ponds Serpentinite Belt. 378
Table 11.5 General features of the Eurongilly Serpentinite Belt. 379
Table 11.6 General features of the Darbalara Serpentinite Belt. 379
Table 11.7 General features of the Western Wambidgee Serpentinite Melange. 380
Table 11.8 Characteristics of Harzburgite (HOT) and Lherzolite (LOT) ophiolite types (adapted from Nicolas 1989). 382
LIST OF APPENDICES

Appendix A1: Whole-rock chromitite analyses 435
Appendix A2: Nd-Sm isotopic analysis 436
Appendix A3: Platinum-group element analysis 437
Appendix A4: Rare earth and trace element analysis 438
Appendix A5: XRF analysis 439
Appendix A6: U-Pb zircon analysis 440
Appendix A7: Proton microprobe trace element analysis 441
Appendix LOC: Sample Locality Data and Grid References 442
Appendix 3PD: Petrographic descriptions of rock types from the Coolac Serpentinite Belt and abutting units. 449
Appendix 4PD: Petrographic descriptions of rock types from the Wambidgee Serpentinite Belt and abutting units. 478
Appendix 5PD: Petrographic descriptions of rock types from the Gundagai Serpentinite Belt and abutting units. 507
Appendix 6PD: Petrographic descriptions of rock types from the Tumut Ponds Serpentinite Belt and abutting units. 528
Appendix 7PD: Petrographic descriptions of rock types from the other serpentinite belts of the region and abutting units. 535
Appendix 10UPBR: Zircon SHRIMP U/Pb isotope results. 539
Appendix PUB: Published papers. 563