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ABSTRACT 
 

A new industrial process is being developed to allow the commercial recovery of oil 

from oil shales. As part of this process, a rotating kiln is used to pyrolyse the organic 

component of the oil shales. The configuration and application of this rotating kiln is 

unique and hence previous rotating kiln models cannot be used to predict the solid 

behaviour in the current processor. It is the aim of this work to develop 

mathematical models which allow the prediction of mixing, segregation and heat 

transfer in industrial rotating kilns, especially with respect to the new rotating kiln 

technology trialed in the oil shale industry. 

 

Experiments were developed to observe and measure the mixing and segregation 

behaviour of solids in rotating drums. These experiments used image analysis and 

provided quantitative results. Further experiments were carried out to allow suitable 

scaling parameters to be developed. 

  

All the mixing experiments followed a constant mixing rate until the bed became 

fully mixed. The mixing rate and the final amount of mixing depended on the 

rotational velocity, the drum loading, the particle size and the material ratio. The 

segregation dynamics occurred too fast to be measured. However the final segregated 

state was measured and depended on the rotational velocity and the differences in 

particle sizes. Scaling parameters were developed that related the mixing and 

segregation results to the operational variables of the rotating kiln. 

 

Mathematical models were derived for the mixing and segregation of solids in a 

rotating kiln and these models included the developed scaling parameters so that 

these models would be useful for the prediction of the solid behaviour in industrial 

rotating kilns. The mathematical models were applied to independent experiments 

and it was found that they predicted the mixing and segregation to within the 



Industrial Rotating Kiln Simulation – Page iv. 
 

experimental error, even for different sized drums indicating that the developed 

scaling parameters were suitable. 

 

A computational simulation of the industrial rotating kiln processor was developed 

by combining the mathematical models of the mixing and segregation with heat 

transfer modelling applicable to this industrial rotating kiln. A case study was 

completed to study the behaviour of the industrial rotating kiln by changing 

operational variables, such as the rotational speed and the particle size. 

 

The developed simulation can be used to predict the dynamic behaviour of the 

rotating kiln used in the emerging oil from oil shale industry. This simulation can 

assist in further commercialisation of this new industrial process. 
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