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ABSTRACT 

 

Hypoglycaemia is the most acute and common complication of type 1 

diabetes. Physiological changes occur when blood glucose concentration falls to a 

certain level. A number of studies have demonstrated that hypoglycaemia causes 

electrocardiographic (ECG) alteration.  

 The serious harmful effects of hypoglycaemia on the body motivate 

research groups to find an optimal strategy to detect it. Detection of hypoglycaemia 

can be performed by puncturing the skin to measure the blood glucose level. 

However, this method is unsuitable as frequent puncturing may produce anxiety in 

patients and periodic puncturing is difficult to conduct, not to mention inconvenient, 

while the patient is sleeping. Therefore, a continuous and non-invasive technique 

can be considered for hypoglycaemia detection. Several techniques have been 

reported, such as reverse iontophoresis and absorption spectroscopy.  

Another approach to hypoglycaemia detection is based on the physiological 

effects of hypoglycaemia on the various parts of the body such as the brain, heart 

and skin. Physiological effects of hypoglycemia to the brain are studied by 

investigating electroencephalography (EEG) features. Hypoglycemic effects to the 

heart include alteration of electrocardiographic (ECG) parameters such as heart rate, 

QT intervals and T-wave amplitude alteration. 

Several algorithms were developed to process ECG parameters for 

hypoglycemia detection. The algorithms include neural network and fuzzy system 

based intelligent algorithms. Furthermore, hybrid systems were also developed, 

such as fuzzy neural network and genetic-algorithm-based multiple regression with 

fuzzy inference systems.   

So far, hypoglycaemia detection systems which are based on the 

physiological effects still require extensive validation before they can be adopted 

for worldwide clinical practices. 



xix

The research in this thesis introduces several ECG parameters especially 

which relate to the repolarization phase and  could contribute to hypoglycaemia 

detection. Furthermore, this research aims to  introduce novel computational 

intelligent techniques for hypoglycaemia detection. The detection is based on 

electrocardiographic (ECG) parameters. A support vector machine (SVM) is the 

first algorithm introduced for hypoglycaemia detection in this research. The second 

algorithm is a hybrid of SVM with particle swarm optimization (PSO), which is 

called an SSVM algorithm. This algorithm is intended to improve the performance 

of the first algorithm. PSO is an evolutionary technique based on the movement of 

swarms. It is employed to optimize SVM parameters in order that the SVM perform 

well for hypoglycaemia detection. The third algorithm is for the improvement of the 

second algorithm where a fuzzy inference system (FIS) is included. This algorithm 

involves SVM, FIS and a PSO, which is called SFSVM. The FIS is used to process 

some ECG parameters to find a better performance of hypoglycaemia detection. FIS 

is an effective intelligent system which employs fuzzy logic and fuzzy set theory. 

Its frameworks are based on the concepts of fuzzy set theory, fuzzy if-then rules, 

and fuzzy reasoning. In addition, the proposed algorithms are compared with the 

other algorithms. All the algorithms are investigated with clinical 

electrocardiographic data. The data is collected from a hypoglycaemia study of type 

1 diabetic patients. 

This study shows that the selected ECG parameters in hypoglycaemia differ 

significantly from those in nonhypoglycaemia (p<0.01). This difference might 

consider that the ECG parameters are part of repolarization, in which repolarization 

prolongs hypoglycaemia. It implies that the ECG parameters are important parameters 

which possibly contribute to hypoglycaemia detection. Therefore, the ECG parameters 

are used for inputs of hypoglycaemia detection in this study.  

The result also shows that the hypoglycaemia detection strategy which uses 

SSVM performs better than that which uses SVM (80.04% vs. 73.63%, in terms of 

geometric mean). Furthermore, the SFSVM performs better than the SSVM 

(87.22% vs. 80.45% in terms of sensitivity and 79.41% vs. 79.64% in terms of 

specificity). In summary, SFSVM performs better than the other two algorithms 

(SVM and SSVM), with  acceptable sensitivity, specificity and geometric mean of 

87.22%, 79.41% and 83.22%, respectively.  
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CHAPTER 1.
INTRODUCTION

Hypoglycaemia is the most acute and common complication of type 1 

diabetes (The Diabetes Control and Complications Trial Research Group, 1997). Its 

serious harmful effects on the body motivate the efforts to find an optimal strategy 

to detect it early (Klonoff, 2001). Thus, hypoglycaemia detection is an important 

issue in health technologies. As an introduction, this chapter begins with the 

background of this doctoral research. The next two sections present the problem 

statement and the objectives of the research. Contributions and the structure of the 

thesis are described in the following two sections. At the end, this chapter lists the 

publications presented during the doctoral course.    

1.1 BACKGROUND

Hypoglycaemia is a disease where the glucose level in the body is 

abnormally low (<3.0 mmol/l). It is a consequence of the limitation in glycaemic 

control on diabetes. Thus, it is a fear for all people living with diabetes. In diabetic 

management, a diabetic patient needs to control the body’s blood glucose level to be 

stable in the normal range (about 4.0 mmol/l). Unfortunately, hypoglycaemia can 

still often happen in diabetic management, which causes hypoglycaemic 

complications (The Diabetes Control and Complications Trial Research Group, 

1997). 
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A study showed that prevalence of hypoglycaemia in patients with type 1 

diabetes was 82% and was lower in patients with type 2 diabetes, which was 45% 

(Donnelly et al., 2005). Estimation of the prevalence of people with diabetes 

worldwide is 2.8% in 2000 (171 million people) and higher in 2030 which is 4.4% 

(366 million people)  (Belegundu and Chandrupatla, 2011a). The increase of 

diabetes could increase hypoglycaemic cases.    

Severe hypoglycaemia is a serious problem resulting in significant 

morbidity, even death. In correlation with cardiovascular complications, it could 

cause atrial fibrillation (Sommerfield et al., 2003, Braak and Stades, 2009), 

ventricular ectopics, ventricular fibrillation and sustained ventricular tachycardia. 

Hypoglycaemia also affects the brain in which regional blood flow within the brain 

is altered acutely. The serious neurological consequence of severe hypoglycaemia is 

coma. 

Extreme hypoglycaemia is suggested as a factor of death in diabetic 

patients. Hypoglycaemia of a type 1 diabetic patient, which happens during sleep, is 

associated with the cause of the “dead in bed” syndrome (Tattersall and Gill, 1991). 

Moreover, the Diabetes Control and Complications Trial (DCCT) estimates that 

around 55% of severe hypoglycaemia episodes occur during sleep (The DCCT 

Research Group, 1991).  

To prevent or minimize hypoglycaemic morbidities and mortalities, actions 

are necessary to obtain a normal blood glucose level soon after a hypoglycaemic 

event happens. This could be achieved by consuming sugar, such as candy or by 

taking glucose tablets to raise the blood glucose level. For more severe 

hypoglycaemia, and where there is a problem taking sugar orally, an injection of 

glucagon or intravenous glucose may be needed. To take action, patients obviously 

have to know when hypoglycaemia is happening, and therefore, an early warning  is 

important for this (Osareh and Shadgar, 2008). In other words, an alarm for 
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hypoglycaemia is important for a blood glucose control for diabetic patients 

(Klonoff, 2001).  

Detection of hypoglycaemia can be performed by puncturing the skin to see 

the blood glucose level. Microblood sampling is conducted by puncturing one or 

more finger tips (Graaff et al., 1999). Efforts have been made to improve the 

convenience of this method, such as by reducing blood sample volume and by 

choosing a less painful area of the body. However, the puncturing method is still 

unsuitable while it is conducted frequently and periodically, especially during 

manual activities or sleeping. Therefore, noninvasive –or minimally invasive– and 

continuous methods can provide the solution. Studies have been conducted with the 

aim that hypoglycaemia detection systems can be used continuously without pain. 

Amaral and Wolf (2008) provided a review of the approaches for noninvasive 

glucose monitoring. The approaches include reverse iontophoresis, absorption 

spectroscopy, photoacoustic spectroscopy, polarimetry, fluorescence, Raman 

spectroscopy, metabolic heat conformation, bioimpedance, electromagnetic, 

ultrasound and spectroscopy. The review also presented the available devices of 

noninvasive blood glucose monitoring in the market with their technologies.  

Another approach of hypoglycaemia detection is based on the physiological 

effects of hypoglycaemia on the body. Based on this approach, several studies have 

investigated hypoglycaemia detections by means of hypoglycaemic effects on the 

heart (Alexakis et al., 2003, Nguyen et al., 2008, Ling and Nguyen, 2011), brain 

(Nguyen and Jones, 2010, Laione and Marques, 2005, Claus B. Juhl, 2010) and skin 

(Johansen et al., 1986). This hypoglycaemia detection approach utilized intelligent 

algorithms to process hypoglycaemic physiological effects. In other words, this 

hypoglycaemia detection approach concerned about two things. The first concern 

identifies physiological aspects which significantly respond to hypoglycemia. The 

second one explores intelligent algorithms which can process these physiological 
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effects and yield a powerful hypoglycemic detection system.       

 

 

During the past decade, several studies investigated electrocardiographic 

(ECG) parameters which contributed to  hypoglycaemia detection. Ghevondian et 

al. (1997) and Hastings et al. (1998) developed a hypoglycaemia detection system 

which used the inputs of heart rate and skin impedance. The inputs were then 

completed with QT interval, which is the interval from the Q point to the end of the 

T-wave of an electrocardiogram (Nguyen et al., 2006, Nguyen et al., 2007). The 

difference between two consecutive heart rates and the difference between two 

consecutive QT intervals were introduced for hypoglycaemia detection in 2011 

(Ling and Nguyen, 2011). Another research group studied hypoglycaemia detection 

using different ECG parameters: RT interval, T wave amplitude, T wave skewness 

and T wave kurtosis (Alexakis et al., 2003). Three years later, they investigated 

hypoglycaemia detection using two ECG parameters, which are T wave amplitude 

and RT interval (Alexakis et al., 2006).  

 

The above studies of hypoglycaemia detection developed algorithm 

techniques to process ECG parameters. Ghevondian et al. (1997) and  Hastings et 

al. (1998) implemented fuzzy neural network and self-organizing fuzzy estimator, 

respectively, for hypoglycaemia detection. Alexakis et al. (2003) and Alexakis et al. 

(2006) developed artificial neural network and knowledge-based system, 

respectively, for their hypoglycaemia detection system. Nguyen et al. (2006) and 

Nguyen et al. (2007) employed a neural network. Genetic-algorithm-based multiple 

regression was introduced for hypoglycaemia detection by (Ling and Nguyen, 

2011).    
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1.2 THE PROBLEM STATEMENT

Klonoff (2005) presented a review of several continuous glucose monitoring 

devices. Some of the devices have been approved by the U.S. Food and Drug 

Administration (FDA) or CE marking (Europe). Alarm for indicating 

hypoglycaemia was included in the devices. In the review, the Guardian Continuous 

Monitoring (Medtronic MiniMed) provided a hypoglycaemia alarm of glucose level 

 70 mg/dl with 67% sensitivity1, 90% specificity2 and 47% false alert3. The review 

also presented the performance of a hypoglycaemia alarm of the continuous glucose 

monitoring system (CGMS) Gold with different threshold values; using the glucose 

level threshold  60 mg/dl the sensitivity and specificity were 49% and 42%, 

respectively.  The GlucoWatch G2 Biographer (GW2B) was also reviewed with 

23% sensitivity and 49% specificity in the glucose setting  60 mg/dl. In summary, 

the performances of the hypoglycaemic alarms still need improvement. 

The hypoglycaemia detection devices based on physiological effects which 

correspond to the fall of low blood glucose levels have been reported. The Sleep 

Sentry™ provides an alarm for hypoglycaemia considering to a fall in skin 

temperature and electrical conductance. In the study of 24 type-1 diabetic patients 

the Sentry generated 150 alarms without evidence of hypoglycaemia (Hansen and 

Duck, 1983). Eight of eighteen insulin-dependent diabetic subjects failed to activate 

the hypoglycaemia alarm of the Sentry despite a mean plasma glucose of 50.5  8.2 

mg/l (Clarke et al., 1988). Another device, HypoMon®, which is from AiMedics 

Pty Ltd, detects hypoglycaemia based on skin impedance, heart rate and QTc 

interval (Nguyen et al., 2006, Nguyen et al., 2009) and is still in the investigation 

stage. So far, to the best of my knowledge, hypoglycaemia detection systems which 

are based on the physiological effects still require further validation and clinical 

1 Sensitivity refers to ability of  a test to correctly identify those patients with the disease. 
2 Specificity refers to ability of a test to correctly identify those patients without the disease. 
3 A false alert is a detection alert which is issued when a defined disease does not exist. 
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studies of the devices, before they can be adopted for worldwide clinical practices. 

In addition, research regarding this issue is still being investigated (Remvig et al., 

2012, Nguyen et al., 2012). 

As described above several ECG parameters have been tested for 

hypoglycaemia detections. There are the other ECG parameters which could 

contribute to hypoglycaemia detection, such as the width of electrocardiographic T– 

wave (Koivikko ML et al., 2008) and the QT interval corrected using Fridericia 

(Lee et al., 2005). However, these ECG parameters are not yet investigated for a 

hypoglycaemia detection system. Thus, questions arise in relation to the 

performances of hypoglycaemia detection systems which employ the ECG 

parameters. 

A further question arises in relation to algorithms which, as yet, have not 

been investigated for hypoglycaemia; a study is necessary to investigate the 

algorithms for hypoglycaemia detection. Support vector machine (SVM) is an 

algorithm which, as yet, has not been applied to  hypoglycaemia detection.  SVM is 

a classification technique which is successfully employed in many applications 

(Barakat et al., 2010), including a cardiac signal classification (Georgoulas and 

Stylios, 2006). It also showed good generalization as a classifier, even with a small 

size sample in the training (Duin, 2000). Therefore, because of these advantages, 

SVM is selected as a classification technique for this research. Furthered 

investigation is to be conducted in relation to a hybrid system which employs SVM. 

Questions arise in relation to the contribution of the hybrid system to the 

improvement in performance of the hypoglycaemia detector.  

1.3 OBJECTIVES

Considering the problem statement above, the main purpose of this research 

is to introduce novel computational intelligent techniques for hypoglycaemia 

detection. The detection is based on electrocardiographic (ECG) parameters. Hence, 
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two main objectives are explored. 

 

The first objective identifies ECG parameters which significantly respond to 

hypoglycemia. The ECG parameters include the parameters which relate to the 

repolarization phase. The identification is used to find potential ECG parameters 

which contribute to the performance of hypoglycaemia detection.  

The second objective is to introduce several intelligent algorithms for 

hypoglycaemia detection. The support vector machine (SVM) classifier is the first 

algorithm introduced for hypoglycaemia detection in this research. The second 

algorithm is a hybrid of SVM with particle swarm optimization (PSO), which is 

intended to improve the performance of the first algorithm.   PSO is an evolutionary 

technique based on the movement of swarms and is inspired by the social behavior 

of bird flocking and fish schooling (del Valle et al., 2008). The swarm optimization 

is employed to optimize SVM parameters in order that the SVM perform well for 

hypoglycaemia detection. The third algorithm is the improvement of the second 

algorithm where a fuzzy inference system (FIS) is included.  This algorithm 

involves SVM, FIS and a swarm optimization. The FIS is used to process some 

ECG parameters differently to find a better performance of hypoglycaemia 

detection. FIS is an effective intelligent system which employs fuzzy logic and 

fuzzy set theory (Ly et al., 2009). Its frameworks are based on the concepts of fuzzy 

set theory, fuzzy if-then rules, and fuzzy reasoning. The advantages of FIS include 

its ability to handle linguistic concepts and a universal approximator, performing a 

nonlinear relationship between inputs and outputs. In general, the proposed 

algorithms are implemented using MATLAB. This objective yields models for 

hypoglycemia detection which are realized in the form of software.  In addition, the 

proposed algorithms are compared with the other algorithms, including genetic-

algorithm-based multiple regression with fuzzy inference system (Ling and Nguyen, 
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2011), artificial neural network (Alexakis et al., 2003) and linear discriminant 

analysis (Alexakis et al., 2006). 

All the algorithms are investigated with clinical electrocardiographic data. 

The data is collected from a hypoglycaemia study of type 1 diabetic patients.           

1.4 CONTRIBUTION OF THE DOCTORAL RESEARCH 

This doctoral research has provided contributions to hypoglycaemia 

detection models. Novel algorithms and ECG parameters have been introduced for 

hypoglycaemia detection. Considering the results provided by this doctoral 

research, several papers have been presented, either in journal paper or conference 

papers mentioned in Section 1.6. It  is published by the Biomedical Engineering 

Society™ (www.bmes.org). The full–reviewed conference papers are presented in 

conferences organized by IEEE Engineering in Medicine & Biology Society 

(www.embs.org) and IEEE Computational Intelligence Society (www.ieee-cis.org).  

The contributions of this doctoral research can be described in the 

following:  

(i) The doctoral research has introduced a hypoglycaemia detection model which 

employs SVM. The model is presented in Nuryani et al. (2010b). The models 

with different SVM parameters and different kernel functions are tested and 

their performances are presented in Chapter III.      

(ii) The doctoral research also has introduced a hypoglycaemia detection model 

which employs a hybrid of swarm optimization and SVM (SSVM). This 

model is presented in Nuryani et al. (2012a) and Nuryani et al. (2011). This 

model includes a swarm optimization to optimize SVM parameters to find an 

optimal hypoglycaemia detection. The model has been tested with different 

inputs and its performance has been compared with the other models, as 

described in Chapter IV.     

(iii) A novel hybrid swarm optimization, fuzzy inference system (FIS) and SVM 
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(SFSVM) model has been investigated for hypoglycaemia detection. The 

model is presented in Nuryani et al. (2012b). This hybrid system includes FIS 

to process some inputs and its outputs are fed to SVM. Swarm optimization in 

this hybrid system is used to optimize FIS and SVM parameters.  Chapter V 

of this dissertation describes the model. 

(iv) Ventricular repolarization parameters: the interval from Q-point to the end of 

T-wave (QTpc), T-wave interval or the interval from the beginning of T-wave 

to the end of T-wave (ToTec), the interval from R-peak to the paek of T-wave  

(RTpc) and the interval from the peak of T-wave to the end of T-wave (TpTec) 

are introduced for hypoglycaemia detection (Nuryani et al., 2012a, Nuryani et 

al., 2010a). The parameters are investigated in experiments using different 

algorithms, as presented in Chapter III – Chapter V.     

1.5 STRUCTURE OF THE DISSERTATION

The dissertation consists of 6 chapters, appendix and reference. The contents 

are organized sequentially from the first chapter until the last chapter. The contents 

commence with the introduction of hypoglycaemia and finish with the conclusion 

of the dissertation.    

Chapter II presents a review of literature relevant to hypoglycaemia 

detection. It includes hypoglycaemia, physiological effects of hypoglycaemia, 

relation of hypoglycaemia to cardiac dysrhythmia. The existing techniques of 

hypoglycaemia detection are also presented in this chapter. The techniques include 

hypoglycaemia detections which use ECG parameters from its initial research until 

recent developments. This chapter is finalized by a brief outline of the proposed 

hypoglycaemia detection strategy.  

 Chapter III describes the hypoglycaemia detection model which uses SVM 

with the input of an electrocardiogram. Initially, the description is of the general 

construction and is then followed by more details of the parts of the construction. 
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The parts include ECG acquisition, feature extraction and SVM. Several 

experiments of hypoglycaemia detections with different SVM parameters are 

presented. The presentation of this chapter is completed with a discussion and 

conclusion.  

 Chapter IV presents a hypoglycaemia detection model employing a hybrid 

of particle swarm optimization (PSO) and SVM (called SSVM). SSVM, essentially, 

is to improve the performance of the SVM by finding the optimal SVM parameters. 

Thus, by using the optimal parameter, the SSVM could perform well. Several 

variations on SSVM are developed to find the best one. The variations include 

SSVM with different kernel functions and SSVM with different inputs. In addition, 

the performance of SSVM is also compared with the other methods. This chapter is 

completed with a discussion and conclusion. 

Chapter V presents a hypoglycaemic detection strategy by including a fuzzy 

inference system (FIS) to SSVM, which emerge as SFSVM. SFSVM provides 

different process for ECG parameters which provide a new input for the SVM part 

of the SFSVM. Variation of the inputs and different membership functions are 

investigated in the experiments. The related discussion and conclusion are presented 

in the end of this chapter.  

Chapter VI provides discussion and conclusion. The discussion includes the 

comparison of the three hypoglycaemia detection models (SVM, SSVM and 

SFSVM). The discussion also presents the future research for hypoglycaemia 

detection and the limitation of this research. Conclusion is presented in the end of 

this chapter.   

1.6 PUBLICATIONS PRESENTED DURING THE DOCTORAL RESEARCH

The following journal and conference papers have been published during the 

doctoral research: 
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Journal paper: 

Nuryani, N., Ling, S. & Nguyen, H. 2012a, 'Electrocardiographic Signals and 

Swarm-Based Support Vector Machine for Hypoglycaemia Detection', 

Annals of Biomedical Engineering, vol. 40, no. 4, pp. 934-945. (ERA4 rank: 

A*; Impact Factor: 2.374)    

 

Conference papers: 

Nuryani, N., Ling, S. S. H. & Nguyen, H. T., 2012b, ‘Hybrid Particle Swarm - 

based Fuzzy Support Vector Machine for Hypoglycaemia Detection, in 

Proceedings of the IEEE World Congress on Computational Intelligence, 

pp. 450 - 455 (ERA rank: A).  

Nuryani, N., S. Ling, and H. T. Nguyen, 2011, ‘Ventricular repolarization 

variability for hypoglycaemia detection’, in Proceedings of the 32nd Annual 

International Conference of the IEEE Engineering in Medicine and Biology 

Society, pp. 7961-7964 (ERA rank: A) 

Nuryani, N., S. H. Ling, and H. T. Nguyen, 2010a, ‘Hypoglycaemia detection for 

type 1 diabetic patients based on ECG parameters using fuzzy support vector 

Machine,’ in Proceedings of the IEEE World Congress on Computational 

Intelligence, pp. 2253 - 2259. (ERA rank: A) 

Nuryani, N., S. Ling, and H. T. Nguyen, 2010b, ‘Electrocardiographic T-wave 

peak-to-end Interval for hypoglycaemia detection,’ in Proceedings of the 

32nd Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society, pp. 618-621. (ERA rank: A)  

S. H. Ling, N.,  Nuryani and H. T. Nguyen, 2010, ‘Evolved fuzzy reasoning model 

for hypoglycaemic detection’, in Proceedings of the 32nd Annual 

International Conference of the IEEE Engineering in Medicine and Biology 

Society, pp. 4662 - 4665. (ERA rank: A) 

4 ERA: The Excellence in Research for Australia (www.arc.gov.au/era/) 



12

CHAPTER 2.
LITERATURE REVIEW

The review of literature about hypoglycaemia and the existing 

hypoglycaemia detections provides the justification of the proposed model. The 

description of hypoglycaemia and its effects on the heart is provided to give us an 

understanding of how electrocardiograms could be used for hypoglycaemia 

detection. Presentation of the existing hypoglycaemia detections could provide the 

idea for a novel strategy which provides an alternative in hypoglycaemia detection 

technologies. The proposed strategy for hypoglycaemia detection is presented in the 

last part of this chapter.   

2.1 HYPOGLYCAEMIA

Blood glucose is essential for the body to function properly as a whole. 

Typically, the glucose level in the body is maintained in the normal range by a 

homeostasis system. If the blood glucose level in the body is lower than the normal 

level (called hypoglycaemia) a mechanism in the body works to return the blood 

glucose level to a normal range.  However, this mechanism is not working properly 

in patients with type-1 diabetes. 

Hypoglycaemia is a common complication in patients with type 1 diabetes. 

Type-1 diabetes is a disease with an attribute of absolute insulin deficiency resulting 

in hyperglycaemia  (Braak and Stades, 2009). The deficiency of absolute insulin is 

caused by autoimmune-mediated destruction of the pancreatic -cells. The 
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pancreatic -cell is a cell which normally produces insulin. Type-1 diabetes mellitus 

(T1DM) is also called insulin-dependent diabetes mellitus (IDDM). A T1DM 

patient is dependent on insulin which is necessary to maintain the blood glucose 

level.     

The definitions of hypoglycaemia were presented in several studies. The 

blood glucose level of 3.9 mmol/l (70 mg/dl) is proposed by the American Diabetes 

Association as a threshold to represent hypoglycaemia (American Diabetes 

Association Workgroup on Hypoglycemia, 2005). A different definition was 

provided by the Diabetes Control and Complications Trial (DCCT). DCCT defines 

hypoglycaemia by considering the ability of the affected individual to treat 

hypoglycaemia. Using the definition, there were mild and severe levels of 

hypoglycaemia. Mild hypoglycaemia was indicated by the ability to self-treat, while 

severe hypoglycaemia was indicated by the requirement of external assistance to 

induce recovery of the affected individual (The Diabetes Control and Complications 

Trial Research Group, 1997). 

Hypoglycaemia could be caused by a mismatch between the blood glucose 

level and insulin. The mismatch occurs because there is either too much injected 

insulin compared to the meal or not enough meal compared to insulin. Injected 

insulin decreases the blood glucose level, contrary to the meal which increases the 

blood glucose level. Extra physical activity also leads to hypoglycaemia through 

accelerated absorption of insulin and depletion of muscle glycogen stores. Another 

cause of hypoglycaemia is alcohol which enhances the risk of prolonged 

hypoglycaemia by inhibiting hepatic gluconeogenesis. Strachan (2007) listed six 

causes of hypoglycaemia in type-1 diabetes: (i) inappropriate insulin injection, (ii) 

inadequate exogenous carbohydrate, (iii) increased carbohydrate utilization, (iv) 

decreased endogenous glucose production, (v) increased insulin sensitivity and (vi) 

decreased insulin clearance. 
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In glycaemic control, people with type-1 diabetes reduce their high level of 

blood glucose to find a normal glycaemia. This reduction has been of benefit in 

preventing or delaying microvascular complications and macrovascular events, 

whereby T1DM patients have the possibility of increasing life expectancy and 

improving the quality of life. However, error of dosage or timing of insulin 

administration is common in glycaemic control and can happen in several ways. For 

example, the ambient temperature and injection depth could affect the profile of an 

insulin time-action. DCCT suggested that the incidence of severe hypoglycaemia in 

the intensively treated group was threefold of that in a conventionally treated group 

(The Diabetes Control and Complications Trial Research Group, 1997).  

Physiological changes occurred when blood glucose concentration fell to a 

 
Figure 2.1: Counterregulatory mechanisms including hormones 
secretion and onset of physiological, symptomatic and cognitive 
changes in response to different blood glucose level thresholds 
(Frier and Fisher, 2007).         
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certain level (Frier and Fisher, 2007). These changes are a counterregulatory to 

hypoglycaemia, and become the mechanism for raising blood glucose levels to 

normal levels (Figure 2.1). When a falling of blood glucose level is detected, a 

mechanism to modulate insulin secretion is activated. This is followed by the 

secretion of glucagon and epinephrine hormones, activated by the brain. This 

secretion stimulates the peripheral autonomic nervous system, particularly the 

sympathoadrenal system. In the liver, glucagon stimulates glycogenolysis and 

gluconeogenesis.  
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2.2 EFFECT OF HYPOGLYCAEMIA ON THE ELECTRICAL ACTIVITY OF THE HEART

In recent years, a number of studies have demonstrated that hypoglycaemia 

causes ECG alteration. The ECG alteration was indicated by the alteration of 

several selected ECG parameters. Table 2.1 lists seven ECG parameters altered by 

hypoglycaemia, reported by several studies. The alteration of ECG parameters by 

hypoglycaemia could happen in patients with type-1 diabetes (Heger et al., 1996); 

type-2 diabetes (Marques et al., 1997) or healthy subjects (Robinson et al., 2002). 

Moreover, both hyperinsulinemic hypoglycaemia and spontaneous 

hypoglycaemia could result in ECG alteration. In hyperinsulinemic hypoglycaemia 

Table 2.1: Studies of alterations in ECG during hypoglycaemia. a, b, c, 
d, e, f, g, h, i, j represent the studies as listed in the bottom of the table. 
x  is to show that the associated ECG parameter is significant to 

indicate hypoglycaemia in the associated study. 

ECG  parameter a b c d e f g h i j 

HR x      x    

QTcb   x x x x  x x x  

QTcf       x  x  x 

T-wave amplitude       x x   

T-wave area       x x   

R-wave amplitude        x   

R-wave area        x   
a : Heger et al. (1996)        with 24 T1DM and 7 health participants 
b : Marques et al. (1997)    with 8 T1DM and 7 T2DM participants  
c : Robinson et al. (2002)   with 17 healthy participants  
d : Robinson et al. (2003)   with 10 healthy participants  
e : Murphy et al. (2004)     with 44 T1DM participants 
f : Lee et al. (2005)            with 8 T1DM participants 
g: Koivikko et al. (2008)   with 16 T1DM and 8 healthy participants 
h : Laitinen et al. (2008)    with 18 healthy participants 
i : Christensen et al. (2010) with 21 T1DM participants 
j : Lipponen et al. (2011)  with subject of 13 T1DM and 9 healthy participants 
 HR:       heart rate 
 QTcb: The corrected QT interval with Bazett formula 
 QTcf: The corrected QT interval with Fridericia formula 
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the plasma insulin concentration was acutely raised and maintained at a level by a 

continuous infusion of insulin. Meanwhile, the plasma glucose concentration was 

held constant at the hypoglycaemic level by a variable glucose infusion. For 

example, in the study of (Lee et al., 2005) insulin (Human Actrapid; Novo Nordisk 

Pharmaceuticals, Crawley , UK) was infused to maintain the blood glucose level of 

the subjects in the level of 2.5 mmol/l. Spontaneous hypoglycaemia was the 

hypoglycaemia which happens without excessive insulin. For example, in the study 

of Robinson et al. (2004), blood glucose levels were taken at hourly intervals from 

the subjects of the study while they are sleeping and following their normal routine, 

without an excessive infusion of insulin. It was suggested that the ECG change 

provoked by spontaneous hypoglycaemia was smaller than that by hyperinsulinemic 

hypoglycaemia (Robinson et al., 2004, Marques et al., 1997).  

As presented in Table 2.1, the corrected QT interval (QTc) indicates 

significant differences in hypoglycaemia as against euglycaemia. QT interval 

represents the duration of ventricular depolarization and subsequent repolarization 

Figure 2.3: QT interval in an electrocardiogram 

Figure 2.2: QT interval in an electrocardiogram 



18

to occur. In the heart's electrical cycle, the interval is from the start of the Q wave to 

the end of the T wave (Figure 2.3). The QT interval includes the QRS interval, 

representing depolarization of ventricles, and the T wave, representing 

repolarization of the ventricles. Essentially, the QT interval relates to action 

potentials of the heart muscles, necessary for the electrical conduction system of the 

heart. The relation is illustrated in Figure 2.4. The electrical activity detected in 

surface ECG is the normal coordinated electrical functioning of the whole heart, 

which is attributed to action potential in individual cardiac cells.  

Marques et al. (1997) investigated a QTc change by hypoglycaemia in 8 

type-1 and 7 type-2 diabetic subjects. To make sure that the QTc change was not 

caused by heart disease, none of the type-1 diabetic patients had evidence of 

microvascular complications. The subjects did not have autonomic neuropathy. All 

subjects had a normal ECG and did not have symptoms of cardiovascular diseases. 

In the study, the blood glucose level was clamped for two hours for hypoglycaemia 

 
Figure 2.4: Schematic of a human heart accomplished with typical 
action potential waveforms in different regions and an 
electrocardiogram (Nerbonne and Kass, 2005). 
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at around 3.0 mmol/l and euglycaemia at 5.0 mmol/l. The result showed that QTc in 

hypoglycaemia was longer than in the baseline. At 60-minute hypoglycaemic clamp 

QTc of type-1 diabetes was 583(425-620) ms, against 421(362-436 ms) in 

euglycaemia. 

Robinson et al. (2003) studied the mechanism of QTc interval prolongation 

affected by hypoglycaemia. A subject group of the study underwent two 

euglycaemic and two hypoglycaemic clamps. One euglycaemic and one 

hypoglycaemic clamp were with -blockade, and another two clamps were without 

-blockade. -blockade is a sympatholytic drug that binds the action of the 

sympathetic nervous system of the heart. In pharmacology it is prescribed to a 

patient with cardiac arrhythmia. In the study, -blockade was given by pre-treating 

a patient for seven days with atenolol 100 mg daily before one euglycaemic clamp 

and one hypoglycaemic clamp. The result of the study was that QTc increased 

significantly in the hypoglycaemia without -blockade but insignificantly in 

hypoglycaemia with -blockade. The result indicates that -blockade could prevent 

the QTc prolongation. As the characteristic of -blockade, the prevention was by 

counteracting the sympathoadrenal activation. In other words, sympathoadrenal 

activation was responsible for the QTc prolongation during hypoglycaemia. 

Two studies (Christensen et al., 2010, Koivikko et al., 2008) presented the 

impact of two correction formulas which were Bazett and Fridericia formulas for 

QT interval prolongation during hypoglycaemia. In the two studies, during 

hypoglycaemia, the QT interval corrected by Bazett formula (QTcb) increased 

statistically significantly, but the QT interval corrected by Fridericia formula (QTcf) 

was not associated with a statistical change. However, in another study, the QT 

interval corrected by Fridericia formula statistically significantly increased during 

hypoglycaemia (Lipponen et al., 2011).  Using the Bazett formula, QT is corrected 

by dividing it by the square root of the electrocardiographic RR interval; QTcb = 
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QT/(RR)1/2 (Moss, 1993). Using the Fridericia formula, QT is corrected by dividing 

it by the cube root of the electrocardiographic RR interval; QTcf = QT/(RR)1/3 

(Fridericia, 2003). 

Effects of hypoglycaemia on T-wave amplitude and T-wave of 

electrocardiogram (Figure 2.5) were investigated by Koivikko et al. (2008). The two 

ECG parameters represent the shape of the T-wave. The subjects of the study were 

16 IDDM aged 32±8 years and 8 healthy participants aged 34±10 years. The 

diabetic duration of the subjects was 13 years (range 2 – 29 years). All subjects had 

normal ECGs and none of them had heart disease. The result showed that the area 

and the maximum amplitude of T-wave were significantly lower in hypoglycaemia 

than those of euglycaemia. The hypoglycaemia and euglycaemia were clamped in 

2.0–2.5 mmol/l and 4.5–5.5 mmo/l, respectively.      

2.3 EXISTING STRATEGIES OF HYPOGLYCAEMIA DETECTION 

Early warning of a hypoglycaemia event can play a significant role in 

preventing hypoglycaemia. Garg et al. (2006) studied the effectiveness of glucose 

monitoring in 91 subjects with Type 1 diabetes. They found that subjects who wore 

the glucose monitor spent 21% less time in hypoglycaemia, compared with the 
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Figure 2.5: Illustration of T-wave interval, T-wave amplitude 
and T-wave area in an electrocardiogram 



21

control subjects.  

Hypoglycaemia can be detected by a glucose monitor with an alarm system. 

The alarm system was active when a detected blood glucose level passes a defined 

threshold of hypoglycaemia. An important stage of glucose monitoring technologies 

was to be found in the Ames Reflectance Meter (Oliver et al., 2008). The Ames 

Reflectance Meter was the first glucose meter which can automatically assess the 

color change of enzyme-based reagent strips. The color wasinfluenced by the 

glucose concentration. The assessed color can result in a number which indicates a 

blood glucose concentration. Before the advent of the Ames Reflectance Meter, 

blood glucose level was measured by reading the color change according to a chart 

(by eye).  

Following the Ames Reflectance Meter, various methods for hypoglycaemia 

detection were developed. Klonoff (2005) presented five continuous glucose 

monitors (CGMs) approved by FDA or CE mark, as in Table 2.2. FDA (Food and 

Drug Administration) is an agency of the United States Department of Health and 

Human Services, and CE mark (abbreviation of French: Conformité Européenne) is 

a mandatory mark for products sold on the European market. Four of the five 

CGMs are with the alarm which is active when the measured blood glucose level 

passes a defined threshold.  

Regarding the frequency of measurement, generally there are two types of 

blood glucose measurement techniques: point sample and continuous. The point 

sample or intermittent measurement of blood glucose uses a finger-prick glucose 

meter or urine test. Glucose-level intermittent-measurement is not properly suitable 

for hypoglycaemia detection because of its limited frequency of measurement. In 

this case the continuous method is more suitable. It varies in invasiveness, from 

non-invasive, to minimally invasive or invasive. In the continuous method, there are 

two options which are transdermal and optical methods. Further variants of the 
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glucose measurement techniques are described in Figure 2-5, adopted from Oliver 

et al. (2008). 

Another method of hypoglycaemia detection was through measuring the 

physiological responses of hypoglycaemia on the body. Hypoglycaemia detections 

which used this method mostly used a noninvasive technique. Some of them have 

been available on the market, and their performances are being studied. Others are 

Table 2.2: Specification of continuous glucose monitoring [adopted from 
Klonoff (2005)] 

Product Continuous 
Glucose 

Monitoring
System Gold 

GlucoWath 
G2

Biographer 

Guardian 
Telemetered

Glucose 
Monitoring

System 

GlucoDay Pendra 

FDA approved Yes Yes Yes No No 

CE marked Yes Yes Yes Yes Yes 

Year first 
approved or 
marked 

1999 2001 2004 2001 2004 

Sensor type Minimally 
invasive 

Minimally 
invasive 

Minimally 
invasive 

Minimally 
invasive 

Non-invasive 

Sensor 
mechanism 

Enzyme-
tipped catheter 

Reverse 
iontophoresis 

Enzyme-
tipped catheter

Microdialysis Impedance 
spectroscopy 

Sensor 
location 

Subcutaneous 
abdomen 

External on 
arm or 

forearm 

Subcutaneous 
arm 

Subcutaneous 
abdomen 

External on 
wrist 

Sensor 
warmup 

2 2 2 0 1 

Calibrations 
per lifetime of   
sensor 

12 1 12 1 20 

Sensor 
lifespan (h) 

72 13 72 48 3 months 

Frequency of 
testing (min) 

5 10 5 3 1 

Time of blood 
glucose data 
display 

Retrospective Real time Retrospective Real time 
retrospective 

Real time 

Alarm No Yes Yes Yes Yes 
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still in the clinical study stage or in research development before going to market.  

The following is the description of noninvasive techniques for 

hypoglycaemia detection. It presents one method of transdermal which is 

iontophoresis and one method of optic which is near-infrared spectroscopy. The 

other presented techniques are those which employed the following physiological 

effects: skin temperature, skin conductance, electroencephalography and 

electrocardiography.   

 
Figure 2.6: Methods of glucose sensor [adopted from (Oliver et al., 
2008)]. 
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2.3.1 Iontophoresis technique 

Essentially, an iontophoresis measured glucose concentration by measuring 

the glucose extracted across the skin. The extraction was conducted by introducing 

a low electric current to the skin (Leboulanger et al., 2004). The introduction of the 

electric current was to enhance the extracted glucose at much greater rates through a 

passive permeability mechanism. The schematic diagram of reverse iontophoresis is 

described in Figure 2.7. The concept of a glucose meter based on reverse 

iontophoresis was introduced in 1993 by G. Rao, et al (G Rao et al., 1993) using in 

vitro, and followed by an in vivo study in 1995 (Rao et al., 1995).    

GlucoWatch® was the market product for the glucose level meter which 

works using the principle of reverse iontophoresis. GlucoWatch was worn on the 

wrist like a wrist watch (Figure 2.8). It, however, had some limitations, which 

include: two hours for warming-up; sensitivity to an excessive sweating of the skin; 

reduction of performance by temperature change. It also needed a standard finger-

stick meter for a predefined set of measurements, which means that it wasinherently 

an invasive device. Another limitation is that it provides only three readings per 

hour, consequently, it is unsuitable as a continuous hypoglycaemic alarm.  

 
 

 
 

Figure 2.7: Schematic diagram of reverse iontophoresis for glucose 
extraction through the skin(Sieg et al., 2005). 
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2.3.2 Near-infrared spectroscopy (NIR) technique 

The Glucose meter, using NIR, works  on the basis of  optical method using 

interrogation of light absorbed by an objected tissue, such as the skin. The basic 

principle of the optical method was that the light absorbed by the objected 

substance is in parallel with the concentration of the substance. The light was 

mostly in the near infrared region. Because the object of detection is glucose, the 

method is designed whereby the absorbed light was in parallel with the 

concentration of glucose in the substance. One of the optical methods uses dermis 

as the objected substance (Maruo et al., 2003) as in Figure 2.10.  

Limitations of the optical method using near infrared light for blood glucose 

level measurements was  in the technical difficulties to be realized as a commercial 

instrument. These limitations included calibration bias, time lag and sampling 

problems. Another issue is the existence of other substances in the skin affecting the 

measured signal.    

 
 

Figure 2.8: GlucoWatch G2 Biographer; Cygnus, Inc., Redwood 
City, CA (Takahashi et al., 2008) 
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2.3.3 Hypoglycaemia detection using skin temperature and skin 

conductance

The Sleep Sentry™ (or with its new name of Diabetes Sentry), Figure 2.9, 

performed an alarm for hypoglycaemia with a base of a fall in skin temperature and 

change in skin resistance (or skin conductance). According to Hansen and Duck 

(1983), Sleep Sentry was a wristwatch-like device, utilized with a stainless steel-

plated thermistor to monitor the skin temperature. An alarm was activated when the 

thermistor detects a fall of 2.30C from baseline. The skin resistance was associated 

with sweat production. A fall from 300 k  to 190 k  in the skin resistance activates 

the alarm.  

 

Figure 2.9: A wristwatch-like Diabetes Sentry (Miller and Evans, 
2006) 
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Clarke et al. (1988) reported the performance of Sleep Sentry according to a 

study involving eighteen IDDM subjects in a hospital room. The subjects wore the 

Sleep Sentry on their wrists, for 20 minutes before the insulin infusion. The result 

showed that the Sleep Sentry alarm was activated by only 10 (55.6%) of the 

eighteen subjects despite the plasma glucose of all the subjects not being 

significantly different. The lowest plasma glucose of the 10 subjects was 52.8±13.8 

mg/dl, whereas that of the other 8 subjects was 50.5±8.2 mg/dl. The study also 

reported that falling plasma glucose to as low as 30 mg/dl did not decrease by 20C. 

Hansen and Duck (1983) studied the Sentry with 24 type-1 diabetic patients. In the 

study the Sentry generated 150 alarms without evidence of hypoglycaemia. In 

another investigation on 22 adults with insulin treated diabetes, Sleep Sentry 

showed performances 67% and 69% in terms of sensitivity and specificity, 

respectively (Johansen et al., 1986). Ghevondian et al. (1997) presented a 

correlation between blood glucose levels and skin resistance (or skin impedance) in 

patients with type-1 diabetes, and healthy subjects, as depicted in Figure 2.11. The 

graph shows that the skin impedance is lower in hypoglycaemia. The change in skin 

   
Figure 2.10: Schematic diagram to measure glucose concentration 
using near infrared wave (Maruo et al., 2003). 
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impedance wasinfluenced by sweating. Sweating is an autonomic response of 

hypoglycaemia (Hepburn et al., 1991).     

2.3.4 Hypoglycaemia detection using electroencephalogram 

A blood glucose level of the body in the normal range is necessary to the 

functioning of the brain. Hypoglycaemia, which is an abnormally low blood glucose 

level, can cause a disturbance in the brain function. A falling blood glucose level to 

below normal can cause impaired cognitive function.  Memory systems are affected 

significantly by acute hypoglycaemia, particularly working memory and delayed 

memory (Sommerfield et al., 2003). Electroencephalography (EEG) is a system 

which measures the electrical function of the brain. An abnormal pattern of EEG 

can be used to interpret a dysfunction in the brain (Tatum, 2007).  

EEG changes caused by insulin-induced hypoglycaemia were investigated 

 
Figure 2.11: Relation of skin impedance and blood glucose level in 
healthy subjects (group A) and patients with type 1 diabetes (group 
B) (Ghevondian et al., 1997).  
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by Pramming et al. (1988). The investigation involved 13 patients with type-1 

diabetes. At a blood glucose level of 2.0 mmol/l electroencephalographic alpha 

activity decreased abruptly, and simultaneously the theta activity increased. The 

EEG at different blood glucose levels are presented in Figure 2.12. Laione and 

Marques (2005) developed a hypoglycaemia detection using EEG. They evaluated 

the EEG-based hypoglycaemia detection by involving 8 type–1 diabetic patients.  In 

this study, the difference of hypoglycaemic and nonhypoglycaemic EEG is 

presented, as shown in Figure 2.13. Using artificial neural network (ANN) training 

 
Figure 2.12: EEG of a patient with different blood glucose levels in 
the study of Pramming et al. (1988). 
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on EEG recorded from the subjects, the classification results of this study are 49%, 

76% and 32.5% in terms of accuracy, sensitivity and specificity.  

In 2010, H.T. Nguyen and T.W. Jones studied the use of EEG signals for 

hypoglycaemia detection (Nguyen and Jones, 2010). This study used 2-second 

epochs EEG, with spectral analysis of four frequency bands: delta (0.5-3.0 Hz), 

theta (3.5-7.5 Hz), alpha (8-13 Hz) and beta (13.5-45 Hz). The developed 

hypoglycaemia detection obtained a performance with 78% and 55% in terms of 

sensitivity and specificity, respectively.  

2.3.5 Hypoglycaemia detection employing electrocardiogram 

There are at least two main objects explored in hypoglycaemia detection 

research which employ the electrical activity of the heart. The two objects are (i) 

ECG parameters which are used for the input of the hypoglycaemia detection 

system and (ii) the strategy to process the ECG parameters. The appropriate inputs 

and strategy need to be investigated to find a hypoglycaemic detection with high 

performance. 

Inputs of the electrocardiogram (ECG) based-hypoglycaemia detection 

 
Figure 2.13: Output of neurone in hypoglycaemic and 
nonhypoglycaemic state(Laione and Marques, 2005) 
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Hypoglycaemia detections with a base of ECG parameter changes in 

relation to hypoglycaemia were studied by several research groups. Table 2.3 lists 

ECG parameters, and the associated intelligent techniques, employed for 

hypoglycaemic detection. Initially, the idea of using heart rate for hypoglycaemia 

detection was presented in 1997. Three years later, QT interval was issued to be 

used for hypoglycaemia detection. After that, various studies developed 

hypoglycaemia detections using other ECG parameters. At the same time during the 

decade, methods using intelligent techniques were developed to classify ECG 

parameters for hypoglycaemia detection systems. 

 



32

The idea of heart rate to be used for input of hypoglycaemia detection was 

presented in 1997 (Ghevondian and Nguyen, 1997). A more comprehensive study 

using heart rate for hypoglycaemia detection was conducted in 2001 (Ghevondian et 

al., 1997). This hypoglycaemia detection system used two inputs which were heart 

rate and skin impedance. In this study, using heart rate as the input for 

hypoglycaemia detection, the relation between heart rate and BGL in 

hypoglycaemia study is considered. The relation is shown in Figure 2.14, which 

was obtained from a hypoglycaemia study on 6 healthy and 6 type 1 diabetic 

subjects aged 26±3 years. The study used hyperinsulinemic hypoglycaemia, in 

Table 2.3: ECG parameter and algorithm used for hypoglycaemia detection 

ECG Parameters Method 

Heart rate (Ghevondian and Nguyen, 1997) (Hastings et al., 
1998) 

Fuzzy system 

Heart rate (Ghevondian et al., 1997) Fuzzy neural network 

QT interval (Harris et al., 2000)  

RT interval, T wave amplitude, T wave skewness and T wave 
kurtosis (Alexakis et al. 2003) 

Artificial neural networks 
 

Heart rate, QT interval (Nguyen et al., 2006) Neural-Network 

T wave amplitude and RT interval (Alexakis et al. 2006) 
 

Knowledge-Based 
Electrocardiogram 

Heart rate, QT interval (Nguyen et al., 2007) Bayesian neural network 
algorithm 

Heart rate, QT interval (Ling and Nguyen, 2011) Genetic-alghorithm-based 
multiple regression 

Heart rate, QT interval (Chan et al., 2011b) Neural network based rule 
discovery system 

  



33

which hypoglycaemia in the body happened on account of infused insulin (instead 

of naturally occurring hypoglycaemia). The graph in Figure 2.14 shows that heart 

rate increases in relation to the decreasing BGL. 

The study found that the mean heart rate of healthy and diabetic subjects 

increased by 11 and 21 beats per minute (bpm), respectively. The increasing heart 

rate in response to hypoglycaemia was confirmed by a previous study (Hilsted et 

al., 1984). The study involved seven healthy men aged 22±0.6 years. In the study, 

heart rate increased significantly in the nadir of BGL after 30 minutes insulin 

infusion (Figure 2.15). 

 
 

 
Figure 2.14: Relation of heart rate and BGL in healthy subjects 
(group A) and patients with type 1 diabetes (group B) (Ghevondian 
et al., 1997).  
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Harris et al. (2000) studied QT interval in relation to hypoglycaemia In the 

study, QT interval alteration in relation to naturally occurring hypoglycaemia 

(BGL<3.5 mmol/l) of 14 type–1 diabetic patients was investigated. The patients 

were attached to an ECG monitor and were asked to find blood glucose at 23:00, 

03:00 and 07:00 hours during the day of the study. As indicated in Figure 2.16, the 

study reported that QT interval was altered during hypoglycaemia. QT interval was 

also studied by another research group for input of hypoglycaemia detection 

(Nguyen et al., 2006) and (Nguyen et al., 2007). In the study, QT interval increased 

 

Figure 2.15: Heart rate in relation to insulin induced hypoglycaemia of 
healthy subjects (Hilsted et al., 1984).  
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during hypoglycaemia                                                (1.09±0.09 vs 1.02±0.07). 

  ECG parameters which relate to electrocardiographic T–waves were 

examined for hypoglycaemia detection (Alexakis et al. 2003), (Alexakis et al. 

2006). The ECG parameters involve T wave amplitude, T wave skewness and T 

wave kurtosis. Skewness measures the degree to which a distribution is 

asymmetrical. The skewness value of a normal distribution is 0. Shown in Figure 

2.17, the left graph has a positive skewness and the right graph has a negative 

skewness. Kurtosis measures the degree of peakedness of a distribution. For 

example, distributions in Figure 2.18 have different kurtosis; kurtosis of the left 

 
Figure 2.16: Alteration of QTc relating to BGL in a diabetic patient 
participating in the study (Harris et al., 2000) 

 

Figure 2.17: A positive and negative skewness 
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distribution is larger than kurtosis of the right one. In other words, kurtosis is a 

dimensionless measure that compares the T-wave with a Gaussian distribution 

curve. A positive kurtosis indicates that the T-wave is more pointed and has higher 

amplitude than predicted from a Gaussian distribution. A negative kurtosis indicates 

that the T-wave is flatter than a Gaussian distribution curve, with longer tails in 

each end of the wave. Kurtosis and skewness could be used for reference values of 

electrocardiographic repolarization (Garg et al., 2006).  

 Intelligent techniques for ECG based-hypoglycaemia detection 

The above studies developed algorithm techniques to process ECG 

parameters to find a hypoglycaemia detection. A fuzzy system (Figure 2.19) was 

introduced for ECG-based hypoglycaemia detection in 1997 (Ghevondian and 

Nguyen, 1997). The fuzzy system had three inputs, which were heart rate, snoring 

and sweating (or skin impedance).  The output of the fuzzy system is a 

hypoglycaemic state. A fuzzification with three membership functions was used. 

The membership functions were normal, high and very high. Three hypoglycaemic 

levels were created, which were normal, light hypoglycaemia and heavy 

hypoglycaemia. The MAX-MIN fuzzy reasoning method was used for the fuzzy 

inference system, and Mamdani’s minimum operation was used in the 

defuzzification. The illustration of the experimental result is presented in Figure 

2.20. A modification of the fuzzy system was developed by creating a self–

Figure 2.18: Distributions with different kurtosis; kurtosis of 
the left distribution is larger than kurtosis of the right one.    
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organizing fuzzy estimator (Hastings et al., 1998). In the self-organizing fuzzy, 

membership function was created to match each patient.      

A fuzzy neural network estimator, FNNE (Figure 2.21), was developed 

using a parallel combination of fuzzy inference mechanism (FIM) and multilayered 

neural network (NN) (Ghevondian et al., 1997). The FNNE was examined using 

 
 

Figure 2.19: Fuzzy system for hypoglycaemia detection with input 
of ECG parameter and the output of hypoglycaemic state. 
(Ghevondian and Nguyen, 1997) 

 
Figure 2.20: Example of experimental result of hypoglycaemia 
detection using input of ECG parameter and the output of 
hypoglycaemic state. (Ghevondian and Nguyen, 1997) 
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two inputs, which were heart rate and skin impedance, and the output was estimated 

BGL. The artificial neural network (ANN) algorithm was also studied for 

hypoglycaemia detection using three ECG parameters, which are heart rate, QT 

interval and skin impedance. Another hypoglycaemic detection used ANN with 

inputs of electrocardiographic RT interval, T wave amplitude, T wave skewness and 

T wave kurtosis. A furthered ANN technique which is Bayesian neural network 

(BNN) algorithm was developed for hypoglycaemia detection by (Nguyen et al., 

2007). Training in BNN adjusts weight decay parameters automatically to optimal 

values to find the best generalization. Compared to conversional ANN, the 

computationally intensive search in BNN for the weight decay parameters is no 

longer needed.   

Alexakis et al. (2006) developed an algorithm with the name of knowledge-

based system (KBS). A KBS is based on a set of rules generated from the 

observation of ECG changes altered by hypoglycaemia, within guidelines provided 

by clinical experts. An example of rule among the eight rules was: 

IF (T-amplitude is flattened) and (previous T-amplitude) is flattened and 

(RT interval is prolonged) and (previous RT interval is prolonged) THEN 

(diabetic state is hypoglycaemic).      

2.4 THE PROPOSED STRATEGY OF HYPOGLYCAEMIA DETECTION 

Several ECG parameters have been investigated for the development of 

hypoglycaemia detection. Heart rate, QT interval, T-wave amplitude and so on have 

shown a contribution in hypoglycaemia detection, as presented in section 2.3.5. 

However, the investigation might still need  further work as not all ECG parameters 

have been examined for hypoglycaemia detection. Thus, this research proposes new 

ECG parameters for hypoglycaemia detection. Integrating the new one with those 

which have  been tested might provide a good performance in hypoglycaemia 

detection. The ECG parameters proposed in this research might already be available 
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in other research, but these parameters are new in hypoglycaemia detection. This 

idea is also supported by a study which stated that the QT interval is not the one and 

only repolarization parameter for a long QT syndrome predictor (Benhorin et al., 

1990); there are other ECG parameters which could indicate a long QT syndrome 

and are independent of the QT interval.  

Furthermore, another important point in the ECG based–hypoglycaemia 

detection is the processing of ECG parameters. The processing should yield the 

hypoglycaemia detection which provides the correct output considering the ECG 

parameter in the input. A computational intelligence plays an important role in the 

processing. Fuzzy system, fuzzy neural network and other computational 

intelligences have been investigated for ECG-based hypoglycaemia detection, as 

presented in section 2.3.5.2. However, the innovation of computational intelligence 

in hypoglycaemia detection might still need further study as the research in the field 

of computational intelligence keeps developing. This research introduced a 

 
Figure 2.21: Architecture of fuzzy neural network for 
hypoglycaemia detection with input of heart rate and skin 
impedance (Ghevondian et al. 1997b 
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computational intelligence based on support vector machine (SVM) for the ECG-

based hypoglycaemia detection. 

SVM has proved to be mostly good for classification performance in varied 

applications, for both real and artificial standard benchmarking data (Meyer et al., 

2003). SVM also performed well in medical fields. Osowski et al. (2004) presented 

heartbeat recognition using SVM on the basis of ECG waveform. Nollo et al. 

(2008) developed an automatic system for the analysis and classification of atrial 

fibrillation form intracardiac electrograms. Application of SVM for automatic 

recognition of obstructive sleep apnea syndrome based on ECG was studied by 

Khandoker et al. (2009).  

SVM has been compared with other algorithms for some applications. For 

pathologies detection in brain magnetic resonance images (MRI), SVM outperforms 

an adaptive neuro-fuzzy inference system (ANFIS) (Lahmiri and Boukadoum, 

2011). ANFIS is a hybrid algorithm which combines the computational power of 

neural network and fuzzy inference systems. It is an algorithm based on a fuzzy 

inference model in which its membership function and the associated parameter are 

controlled by neural network training method. For the application of the intrusion 

detection in computer networks, SVM outperforms a neural network (Osareh and 

Shadgar, 2008). 

The concept of SVM is firstly introduced in 1992 in the Fifth Annual ACM 

Conference on Computational Learning Theory (COLT 1992), Pittsburgh, PA, 

USA; Boser et al. (1992) presented this concept. Three years later Vapnik (1995) 

wrote the well-known textbook on statistical learning theory with a special 

emphasis on support vector machine. SVM was developed from a theoretical 

background then to implementation and experiments. In the beginning of the SVM 

theoretical development, SVM was unnoticed. However, serious attention was 

given to SVM in many different fields after its excellent performances indicated in 
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practical benchmarks.        

Boser et al. (1992) described a training algorithm for classification by 

maximizing the margin (or distance) between the training data points and the 

decision boundary. The decision boundary is the boundary which optimally 

separates two class data. The training technique which is conducted by maximizing 

the margin has the advantage of easily identifying outliers or meaningless patterns. 

On the contrary, another classifier technique which performs training by 

minimizing the mean square error quietly ignores atypical patterns (Boser et al., 

1992).  

In general the proposed hypoglycaemia detection is presented in Figure 

2.22. The input of the detection is electrocardiogram. The output is a binary 

hypoglycaemic state, which is hypoglycaemia or nonhypoglycaemia. The detection 

is based on SVM. Hybrid techniques on SVM are developed to find a high 

performance of the detection. 

 

 

 

 

 

 

Figure 2.22: The general structure of the proposed hypoglycaemia 
detection employing SVM  
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CHAPTER 3.
ELECTROCARDIOGRAPHIC BASED HYPOGLYCAEMIA 
DETECTION STRATEGY EMPLOYING SUPPORT 
VECTOR MACHINE

SVM is a classification tool which has good generalization. Its powerful 

capability in classification has been indicated in many applications. Duin (2000) 

presented the advantage of SVM for its generalization capability. SVM utilizes 

procedure for reducing the training data points which participates in defining 

discriminant function. Thus, the participating data points, which are called support 

vectors, are minimized. Data points which do not participate in defining a classifier 

are ignored. This can reduce noise and, consequently, can improve the 

generalization capability.   

SVM has proved mostly good performance for classification in varied 

applications, both for real and artificial standard benchmarking data (Meyer et al., 

2003), including applications in medical fields with the basis of ECG. Osowski et 

al. (2004) presented heartbeat recognition using SVM on the basis of ECG 

waveform. Nollo et al. (2008) developed an automatic system for the analysis and 

classification of atrial fibrillation form intracardiac electrograms.  The superiority of 

SVM in the automatic classification of ECG is presented in (Melgani and Bazi, 

2008). Application of SVM for automatic recognition of obstructive sleep apnea 

syndrome based on ECG was studied by Khandoker et al. (2009).  

This chapter presents a novel hypoglycaemia detection model which 
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employs SVM. Its input is ECG parameters. The model provides output of binary 

glycaemic levels (hypoglycaemia or nonhypoglycaemia) according to the ECG 

signal fed to its input. The construction of the model is presented. Its details which 

include ECG acquisition, delineation of ECG fiducial points, feature extraction and 

SVM classification are described. Furthermore, the influences of the SVM 

parameters to the performance of the detection algorithms are presented and 

discussed. 

3.1 THE HYPOGLYCAEMIA DETECTION MODEL BASED ON SUPPORT VECTOR 

MACHINE (SVM)

The development of hypoglycaemia detection which employs SVM is 

constructed as in Figure 3.1. The construction consists of three main parts, namely 

ECG acquisition, feature extraction and SVM classification. The first part, ECG 

acquisition, captures the ECG signal from a subject. The ECG signal is the 

electrical activity generated by the heart and measured on the body surface. The 

second part, feature extraction, is developed to find the ECG parameter (such as 

heart rate and QT interval) from the ECG signal. Thirdly, the ECG parameter is then 

classified by SVM. The output of the SVM classification is a binary glycaemic level 

(hypoglycaemia or nonhypoglycaemia). Thus, the final output of the construction is 

a state of hypoglycaemia or nonhypoglycaemia of a subject.  

 

 
Figure 3.1: General structure of hypoglycaemia detection which 
employs a support vector machine and inputs of ECG  
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3.1.2 Electrocardiographic acquisition 

The ECG signals of subjects were recorded using the data recorder from 

Compumedics (www.compumedics.com) which was the Siesta. The Siesta is a 

device which provides amplified channels for physiological signal collection. It 

employs a computer based technology. For the ECG acquisition the Siesta was 

connected to a personal computer (PC), as shown in Figure 3.2. The software of 

Profusion PSG was installed in the PC to operate the Siesta for the ECG acquisition. 

An appearance of the software can be seen in Figure 3.3. Using the software, the 

obtained ECG signals were exported to a file in the form of text (*.txt), as indicated 

in Figure 3.3. This text file was then processed in the feature extraction stage 

(section 3.1.3). The sampling rate of the ECG acquisition was 512 Hz. The ECG 

acquisition used a single lead, which was lead II. During the acquisition, blood 

glucose levels of the subjects were measured every five minutes using the blood 

glucose meter from Yellow Spring Instruments (www.ysi.com) 

 

Figure 3.2: The ECG acquisition from the patients 
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3.1.3 Feature extraction 

The ECG signals (in the text file format) obtained from the ECG acquisition 

were processed in the feature extraction. The feature extraction is to extract an 

electrocardiogram to find the ECG parameter, which was ready to be used for the 

SVM classification. The extraction was developed in Matlab. Two main steps were 

conducted in the feature extraction, namely delineation (or marking) on the 

electrocardiogram to find ECG fiducial points, and finding the ECG parameters 

considering the fiducial points. ECG fiducial points are the points in an 

electrocardiogram used for references to find ECG parameters. Typical ECG 

fiducial points are the points of Q, R, S and so on.        

 

Figure 3.3: The facility for exporting ECG data in Profusion PSG 2 
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Delineation of ECG fiducial points 

Delineation of ECG fiducial points was necessary to find the ECG 

parameter. In this research work the ECG parameter indicates a time interval 

between two ECG fiducial points. The delineation is to find the positions (in time) 

of ECG fiducial points. The ECG fiducial points are described in Figure 3.4, which 

consists of: 

- Q:  the start of QRS complex, 

- R:  the peak of QRS complex, 

- S:  the end of QRS complex, 

- To: the starting point of T-wave, 

- Tp: the peak of T-wave and 

- Te: the end of T-wave; 

where QRS complex represents ventricular depolarization of the heart, and T-wave 

represents ventricular repolarization of the heart.  

 
 
 

 

Figure 3.4: ECG fiducial points of Q, R, S, To, Tp and Te 
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Before the delineation, the ECG signals were filtered to omit noise. Because 

the resulting ECG signals from the Siesta had relatively low noise, a basic signal 

processing (Figure 3.5) was enough to tackle the noise. The ECG signals were 

filtered by using a low pass filter with cut-off frequency of 80 Hz, to omit high 

frequency noise. An ECG signal is often contaminated by high frequency noise, such as 

electromyography and instrumentation noise (Chang et al., 2010). Power line interference, 

which is noise from power line, usually contaminates an ECG signal. To remove this a 50 

Hz notch filter was employed. The signals were also filtered using a high pass filter 

with cut-off frequency (fc) of 0.7Hz, particularly to omit baseline wander. Baseline 

wander is mainly caused by the patient breathing and moving (Zhao and Chen, 2006). The 

filters employed a Butterworth type filter.  

The R point of each beat of the ECG signals was obtained by finding the 

 
Figure 3.6: Delineation of R point. 

Tp

Threshold

 
Figure 3.7: Delineation of Tp (the peak of T-wave) 

 

Figure 3.5: Filtering the ECG signals 
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maximum amplitude which is higher than a threshold value (Manriquez and Zhang, 

2007), as presented in Figure 3.6. A similar method was used to obtain the T-wave 

peak Tp of each beat of the ECG signals. As presented in Figure 3.7, Tp was 

marked by obtaining the maximum amplitude which was higher than a threshold 

value in the segment on the right side of the R peak (Schneider et al., 2006) .  

 The Q point was determined using a continuous wavelet transformation (Di 

Virgilio et al., 1995, Di Marco and Chiari, 2011). Using the continuous wavelet 

transformation with the scale of 30 (WL30), the Q point was referred to the 

minimum of WL30 which was located in the nearest left side of the R peak (Figure 

3.8). Similar to the Q point determination, S point was marked by the minimum of 

the wavelet signal with the scale of 21 (WL21) which was located in the nearest 

right side of the R peak (Figure 3.8).      

The T-wave end Te was determined using the Philips QT Interval 

Measurement Algorithm (Sophia et al., 2009). In the algorithm, a line segment L 

was drawn from Tp forward in time to a point in the ECG signal, and the Te was a 

point that has the maximum vertical distance between the point and the line 

segment (Figure 3.9). The beginning of T-wave To was obtained by a similar 

method to find Te with the difference that the used line segment was in the left side 

of the Tp. If a U wave presented before the T wave returned to baseline, the end of 

the T wave was the nadir between T and U waves. 
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Finding the ECG parameters   

Based on the fiducial points obtained from the delineation, the ECG 

parameters were calculated. The ECG parameters were the time intervals between 

two fiducial points, as described in Figure 3.10. The ECG parameters used in this 

work were:  

- TpTec:  the interval from the peak of T-wave Tp to the end of T-wave Te, 

- ToTec: the interval from the beginning of T-wave To to the end of T-wave 

Te,  

- RTpc : the interval from R point to the peak of T-wave Tp, 

- QTec : the interval from Q point to the end of T-wave Te, 

- QTpc : the interval from Q point to the peak of T-wave Tp, 

- SToc : the interval from S point to the beginning of T-wave To and 

- HR :  Heart rate that is 60/RR.  

Index of c in the parameters indicates that the intervals are corrected by heart rate 

using the Bazett’s formula (Moss, 1993). Using this formula, the intervals are 

 

Figure 3.9: Delineation of Te using the Phillips method; a line segment 
was drawn from Tp forward in time to a point, and the Te is a point that 
has the maximum vertical distance between the point and the line 
segment (L). 

 
 

Figure 3.8: Q and S points are found using wavelet transformation 
using wavelet scale of 30 (WL30), for Q point, and wavelet scale of 
21 (WL21), for S point. Q and S points are at the same time 
position with the minimum of WL30 and WL21, respectively. 
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normalized using the square root of RR interval. For example, QTc = QT/(RR)1/2.  

To reduce patient-to-patient variability, normalization was performed. In a 

patient, the ECG parameters were normalized using the patient’s ECG parameter 

which was in the beginning of the study, when the euglycaemia phase just started 

(Nguyen et al., 2008). As mentioned above, the euglycaemia phase started after one 

hour of the baseline phase. During the study, each subject relaxed on a bed in a 

clinical research room in Princess Margaret Hospital in Perth, Australia. In the more 

detailed calculation of the normalization, supposing that an ECG parameter at time i 

is xi and the ECG parameter at the beginning study is x0, normalized ECG parameter 

 equals to xi/x0. The resulted ECG parameters were arranged to a matrix form 

which has rows representing data point number and columns representing ECG 

parameters, such as QTec. Each row (or data point) was the average of 30 

consecutive-beats of the ECG.  

3.1.4 SVM classification 

In the proposed hypoglycaemia detection, SVM is employed for the 

Figure 3.10: ECG parameters of RR, QT, RTp, STo, TpTe and ToTe
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classification of the ECG parameters. The output of the classification is a binary 

state, which is hypoglycaemia or nonhypoglycaemia.  

Linear support vector machine 

SVM is a classifier which works through deciding an optimal hyperplane 

which optimally separates two class data. The optimal hyperplane is also called a 

decision surface which is the surface optimally separating two groups of data 

points. Suppose there are l linearly-separable training-data xi (i = 1,2,3, …,k) and 

the associated yi {–1,+1} is a class label. yi = +1 is for the class +1 and yi = –1 is 

for the class –1. For example, the class +1 is for the data which belongs to 

hypoglycaemia, and –1 is for nonhypoglycaemia.  

In the case of two–dimensional space, as shown in Figure 3.11, two groups 

of data (circles and squares) can be separated by different hyperplanes. Two 

possible hyperplanes are shown in Figure 3.11 (a and b). In SVM, the optimal 

hyperplane is right in the middle of the two class boundaries and the distance of the 

two boundaries is maximized. The optimal hyperplane promises good classification 

while facing unseen data and provides a good generalization. In Figure 3.11 the two 

parallel lines in the left and right of the hyperplane are supporting hyperplanes. The 

supporting hyperplanes are parallel to the hyperplane. The decision surface (or 

hyperplane) and the supporting hyperplanes are defined as follow: 

 

The decision surface: w x + b = 0 3.1

Supporting hyperplane for class +1: w x + b = +1 3.2

Supporting hyperplane for class -1: w x + b = -1 3.3

 

where w is the perpendicular distance from the hyperplane to the origin, and b is 

called bias. 
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The distance between the two supporting hyperplanes is referred to as a 

margin (m). The optimization problem of SVM is to find the decision boundaries so 

that the distance between the supporting hyperplanes is as far as possible. 

Therefore, the optimization is to maximize the margin and to keep the decision 

surface equidistant from the two supporting hyperplanes. As in Figure 3.11, the 

margin is constrained by the points which are indicated by the filled circles and the 

filled squares. These points are called support vectors.  

Because the optimization problem of SVM is to find the optimal 

hyperplane, the feasible solutions to the optimization problem are all possible 

hyperplanes, with their associated supporting hyperplanes. The constraints are the 

positions of the supporting hyperplanes in order not to cross their respective class 

boundaries. Considering Figure 3.12, the margin (m) between the two supporting 

hyperplanes can be defined as (see in appendix A) 

Thus, the maximum margin m is obtained by maximizing Eq. 3.4, as 

  3.4

   3.5

Figure 3.11: Two-out-of-many separating lines; (a) with smaller 
margin and (b) with larger margin 
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or 

 
 

3.6

 Eq. 3.6 can also be stated as 

 
 

3.7

because optimizing over  is the same as optimizing |w|. Eq.  3.7 can be 

formulated as 

  3.8

As mentioned above, the constraints of the optimization problem are the 

positions of the supporting hyperplanes which do not cross their respective class 

boundaries. Mathematically, it can be formulated as 

  3.9

  3.10

Using a more compact formula, it can be stated as 

  3.11

The optimization problem in Eq. 3.8 is solved using the Lagrangian. The 

 
 Figure 3.12: Margin m between two supporting hyperplanes  
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construction of the Lagrangian for the optimization problem is  

 
3.12

where  is a Lagrangian multiplier.  This gives the Lagrangian optimization 

problem as 

 3.13

Subject to  

 3.14

which provides the Lagrangian dual optimization problem as follow:  

 
3.15

and the optimal decision surface is defined as (see Appendix B)  

  3.16

 
 3.17

Nonlinear support vector machine 

The SVM which is mentioned above is a linear SVM. The linear SVM 

needs to be extended to tackle non-linearly separable data, as data in the real world 

are, mostly, not linearly separable. The idea of the extension is by using the kernel 

 
   Figure 3.13: Illustration of mapping using a transform :         



55

trick. Using a kernel function, data in the input space is transformed to a higher-

dimensional space, which is called a feature space. In this feature space it is 

possible to separate the data using a hyperplane. The transformation is illustrated in 

Figure 3.13. In the figure (left) the data points cannot be classified by a linear 

function. After the data points are transformed in three dimensional space, a linear 

function can be used to classify the data points. In Figure 3.13 (right) a plane can 

separate the data points; two triangles are above the plane and two squares are 

below the plane.           

Using the kernel trick, the Lagrangian optimization problem is modified by 

replacing xi using a mapping function (x) as   

 

 
3.18

 

In the compact form Eq. 3.18 can be written as 

 

 
3.19

 

where k(xi  xj) is a kernel function. Kernel functions include: 

 

3.20

3.21

Polynomial,  3.22

linear,. 3.23
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Soft-margin nonlinear support vector machine 

A soft-margin classifier of SVM is useful to tackle imperfect data 

containing a noisy data point, such as that which is due to improper measurement. 

In this soft-margin SVM, a slack variable  is introduced. A slack variable measures 

how much of an error is introduced by allowing the supporting hyperplane to be 

unconstrained by a data point (Figure 3.14). By introducing a nonnegative slack 

variable, the corresponding modified constraint is  

  3.24

and the optimization problem in 3.8 becomes 

  
3.25

The introduction of the slack variable as in the form of  is to prevent the 

construction of trivial solutions; where all training points are considered as noise 

during the optimization. C is a constant, called the cost, controlling the trade-off 

between margin size and error. By this slack variable introduction, the Lagrangian 

construction of the optimization problem is (see Appendix C) 

  
3.26

This Lagrangian dual for soft-margin SVM is the same as the Lagrangian dual for 

 
 

Figure 3.14: Introducing slack variable  in soft-margin SVM 
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hard-margin SVM. Therefore the objective functions of the optimization problems 

for both SVMs are the same. The difference is in the constraint. The constraint in 

the soft-margin SVM can be stated as 

   3.27

In a case of an imbalanced data point number between two classes, different 

error weights,  and , are necessary to penalize more heavily the class with the 

smaller population (Batuwita and Palade, 2010).  

3.28

 

In summary, the decision function of support vector machine can be 

represented as follow  

 

  
3.29

 

in which  is the solution of maximizing the following Lagrangian 

 

3.30

 

Subject to constraints 

 

 

 

3.31

  3.32

 

The optimization of Eq. 3.30 uses the method based on sequential minimal 
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optimization (SMO) (Plat, 1999, Keerthi et al., 2001, Fan et al., 2005). In the 

optimization, SMO uses analytical steps, instead of numerical quadratic 

programming. In each iteration SMO chooses two Lagrangian multipliers and 

optimize these two multipliers. Two Lagrangian multipliers at every step is the 

smallest number in the optimization because the Lagrangian has to obey a linear 

equality constraint (Eq. 3.31). 

. The optimization which uses an SMO could be faster than the optimization 

which uses quadratic programming (QP). Using QP, the optimization for Eq. 3.30 

involves a matrix with a number of elements that equals to the square of the number 

of training examples. This number obviously needs a large memory and can result 

in a very slow optimization. The description of the optimization using SMO is 

presented in Appendix D.         

3.2 EXPERIMENTAL RESULT

 Three algorithms of SVM were developed. These algorithms are SVMs 

with different kernel functions. Choosing a kernel function implies defining the 

mapping from an input space to a feature space. Essentially a kernel function used 

in SVM satisfies Mercer’s condition. The typical kernel functions include Gaussian 

function, polynomial function and linear function (Li et al., 2009). There is no 

theoretical method to choose a suitable kernel function and its parameters for an 

application (Wu and Wang, 2009). Hence, the suitable kernel function needs to be 

chosen empirically, such as by a cross-validation (An et al., 2007).    

The developed algorithms were SVMR, SVMP and SVML (Figure 3.15). 

SVMR, SVMP and SVML were the SVM employing RBF (Eq. 3.20), polynomial 

(Eq. 3.22) and linear (Eq. 3.23) kernel functions, respectively. For each of the three 

algorithms, five approaches of SVM for the hypoglycaemia detection with different 

SVM parameters were investigated. The approaches are listed in Table 3.1, namely 

A1, A2, A3, A4 and A5. Using A1, SVM parameters C, , ,  were set to 1 



59

and d was set to 2. Using A2, A3 and A4, the larger values of C were examined. 

The C values were 100, 104 and 106 for A2, A3 and A4, respectively. In A1–A4 the 

ratio of  to  was 1:1. This ratio was changed in A5. In A5  was set so that 

the sensitivities of the detection algorithms were about 70%. , meanwhile, was 

set to 1. 

The performances of the detection algorithms were measured in terms of 

sensitivity, specificity and geometric mean. Sensitivity was defined as the ratio of 

correct detection of hypoglycaemic events to the actual number of hypoglycaemia 

events. Specificity was defined as the ratio of correct detection of 

nonhypoglycaemic events to the actual number of nonhypoglycaemic events. 

 

 
 

 
 
 
 

Figure 3.15: The approaches A1–A5; the hypoglycaemia detection 
employs SVM (SVMR, SVMP, SVML); the SVM parameters are 
given as presented in Table 3.1. The input is ECG parameters and 
the output is hypoglycaemia/nonhypoglycaemia
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Mathematically, sensitivity, specificity and geometric mean can be 

formulated as in the following 

  3.33

  3.34

  3.35

 

where: 

- TP (true positive) is the number of inputs which correspond to 

hypoglycaemia classified as hypoglycaemia.  

- FP (false positive) is the number of inputs which correspond to 

nonhypoglycaemia classified as hypoglycaemia.  

Table 3.1: Hypoglycaemia detection with different SVM algorithms  and 
different SVM parameters   

SVM  
Algorithm

A1 A2  A3 

SVM parameters SVM parameters  SVM parameters 

C /d 0  1 C /d 0 1  C /d 0 1 

SVMR 1 1 1 1 100 1 1 1  104 1 1 1 

SVMP 1 2 1 1 100 2 1 1  104 2 1 1 

SVML 1 - 1 1 100 - 1 1  104 - 1 1 

     SVM  
Algorithm

A4 A5   

SVM parameters SVM parameters   

C /d 0 1 C /d 0 1      

SVMR 106 1 1 1 1 1 - 1      

SVMP 106 2 1 1 1 2 - 1     

SVML 106 - 1 1 1 - - 1      
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- TN (true negative) is the number of inputs which correspond to 

nonhypoglycaemia classified as nonhypoglycaemia.  

- FN (false negative) is the number of inputs that correspond to 

hypoglycaemia classified as nonhypoglycaemia.  

The geometric mean (gm) is suitable for indicating the performance of a 

case with imbalanced data (Georgoulas and Stylios, 2006). The imbalanced data 

means that the data point number of a class is significantly more than that of 

another class, as is the data in this research.  

 

 
 

Figure 3.16: The ECG signal recorded from the study (left) and 
the associated frequency spectrum (right)

 
 

 
 

Figure 3.17: The ECG signal after the Notch filtering (left) and 
the associated frequency spectrum (right) 
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The performance of the detection algorithms is measured in trems of 

sensitivity, specificity and geometric mean, instead of a root mean square error or 

RMSE (Deeb and Goodarzi, 2010). Using sensitivity the correct detection of 

hypoglycaemic class data can be known, and using specificity the correct detection 

of nonhypoglycaemic class data can be seen. On the other hand, RMSE only 

provides one value for the correct detection of both classes, instead of one value for 

each class.    

The numbers of support vectors of the approach are presented. As described 

before, the support vector is the point which is included in the decision function of 

SVM (Eq. 3.29). In Figure 3.11, the support vectors are the points indicated by the 

filled circles and filled squares.  

3.2.1   Data set 

The data sets for the input of the developed algorithms were acquired from 

ECG of the subjects. For the ECG acquisition, the electrocardiograms of the 

subjects were recorded in an overnight hypoglycaemia study. Five patients 

voluntarily participated for the study. The subjects were patients with type 1 

diabetes, aged 16 0.7 years. The hypoglycaemia study was performed at Princess 

Margaret Hospital in Perth, Australia. The study was approved by the Women’s and 

50 100

0.5 1

50 100

0.5 1

 
Figure 3.18: The ECG signals before the high pass filtering (left) and 
after the high pass filtering (right). The inserted figures are the signals 
in frequency of less than 1 Hz. 
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Children’s Health Service, Department of Health, Government of Western 

Australia. Written informed consent was provided. Each study consisted of five 

phases approximately: one hour of baseline, three hours of euglycaemia, one hour 

of ramp, one and half hours of hypoglycaemia and four and half hours of recovery. 

During the ECG acquisition, blood glucose levels of the subjects were measured 

using Yellow Spring Instruments (www.ysi.com) in each five minutes. 

The obtained electrocardiogram was then processed to find ECG 

parameters. The process followed the procedure of the feature extraction as 

described in section 3.1.3. In general the electrocardiogram was filtered and then 

was delineated. The result of the delineation was used to find the ECG parameters.  

The obtained ECG parameters (also called data points) were randomly 

divided into three subsets, which were the same size. The three subsets were called 

training, validation and testing data sets. The training set was used in SVM training 

to find an SVM model. The SVM model was used to classify the ECG parameters. 

The performance of the SVM model was tested using the testing data set. The 

validation data set was used in the experiments in chapter IV and V. 

The feature extraction obtained 1327 and 399 data points of 

nonhypoglycaemia and hypoglycaemia, respectively. The data points were 

randomly divided into three subsets with the each subset consisting of 442 data 

points of nonhypoglycaemia and 133 data points of hypoglycaemia. 

    

3.2.2 Electrocardiogram obtained from the study 

The electrocardiograms of the 5 patients who voluntarily participated in the 

study have been obtained. The electrocardiogram was obtained from both 

nonhypoglycaemic– and hypoglycaemic–phase. An example of the 

electrocardiogram signal with its frequency spectrum is shown in Figure 3.16. As in 

the figure (left), one of the noises is a ripple in the signal. The noise is a 50 Hz 
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wave, which can be seen in the frequency spectrum with high amplitude at 50Hz, as 

in Figure 3.16 (right). The result of the filtering can be seen in Figure 3.17, in which 

the 50 Hz noise has vanished.  

Another noise is a baseline wander with low frequency (less than around 0.3 

Hz) as in Figure 3.18 (left). Using the Butterworth high-pass filter of fourth order, 

the low frequency noise can be omitted from the ECG signals as shown in Figure 

3.18 (right). It can be seen in the inserted graph in which the noise with frequency 

of less than about 0.3 Hz vanishes. 

Example of the annotation of the ECG fiducial point is shown in Figure 

3.19. As in the figure, the fiducial points Q, R, S, To, Tp and Te of the ECG have 

been correctly annotated. The result of the annotation was checked visually. The 

improper annotation, mostly because of incorrect ECG signals, was not used in this 

study. 
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The comparison between the patients’ ECG parameters obtained in the 

hypoglycaemic phase (BGL < 3.0 mmol/l), and the nonhypoglycaemic phase is 

presented in Table 3.2. The ECG parameters are presented in the form of (mean ± 

standard deviation) with the associated significance value p, which resulted from a t 

test. The comparison shows that the ECG parameters in hypoglycaemia differ 

significantly from those in nonhypoglycaemia (p<0.01) except SToc (p<0.1). SToc is 

the interval from the S point to the beginning of the T-wave To of the ECG signal. 

Those ECG parameters which differ significantly are longer in hypoglycaemia than 

in nonhypoglycaemia.  

The graph in Figure 3.20 shows the BGL profiles of the five patients. 

Euglycaemic phase (5.0–6.0 mmol/l) is around the first 50 minutes. The next 50 

Table 3.2: The comparison of the ECG parameters obtained in the 
hypoglycaemic phase against the nonhypoglycaemic phase 

ECG Parameter Nonhypoglycaemia Hypoglycaemia p-value 
HR 1.052 ± 0.061 1.197 ± 0.128 <0.0001 

QTec 1.040 ± 0.031 1.074 ± 0.054 <0.0001 

TpTec 1.031 ± 0.032 1.074 ± 0.071 <0.0001 

QTpc 1.058 ± 0.071 1.106 ± 0.096 <0.005 

ToTec 1.058 ± 0.071 1.106 ± 0.096 <0.005 

RTpc 1.044 ± 0.039 1.068 ± 0.056 <0.01 

SToc 0.994 ± 0.141 0.940 ± 0.193 <0.1 

 

Figure 3.19:  Example of the ECG fiducial points from the 
delineation
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minutes is the ramp phase or the transition phase (3.0–5.0 mmol/l). The 

hypoglycaemic phase (2.5–3.0 mmol/l) is in the last 50 minutes. At around one hour 

a baseline phase was conducted before the euglycaemic phase and around 4.5 hours 

of recovery was performed after the hypoglycaemic phase.   

3.2.3 Performances of hypoglycaemia detections using SVM 

In the approach A1, SVM parameters C, ,   and 1 were set to 1, and d 

was set to 2. The result is presented in Table 3.3. The result shows that all the 

specificities of all the SVM algorithms are more than 95%, but the sensitivities are 

low, both in the training and testing. In terms of geometric mean, SVMP performs 

the best with a geometric mean of 63.82%.  

The approach A2 differed from the A1 in its parameter C, which was set to 

be 100. The other parameters were kept the same as in A1. The result of the A2 is 

shown in Table 3.5. The sensitivities and geometric means of all the detection 

algorithms in A2 were significantly higher than those resulting in A1. The 

specificities in A2 were slightly worse than in A1. The support vector numbers 

Figure 3.20: The profiles of the blood glucose levels of the diabetic 
patients.
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found in A2 were less than those in the A1. In A2, SVMR performs the best in the 

testing with the geometric mean of 68.01%. The geometric means of the other 

algorithms were just slightly worse.  

The A3 differed from the A1 and A2 in its parameter C, which was set to be 

104. The other parameters were kept the same as in the A1 and A2. The 

performance of the approach A3 is described in (Table 3.5). It shows that the 

sensitivities and geometric means of the testing of all the algorithms are just slightly 

better than those found in the A2. The SVMR perform the best with the geometric 

mean of 69.12% in the testing, which is just slightly better than the geometric mean 

of SVMR found in the A2, which is 68.01%. The support vector numbers of the 

detection algorithms found in the A3 are worse than those found in the A2.            

 

Table 3.3: The performances of the detection algorithm using A1; all the 
parameters are set to be 1, except the degree of the polynomial kernel function d
which is set to be 2.  

Detection  
Algorithm 

C /d 0 1 ns 
Training  Testing 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

 Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

SVMR 1 1 1 1 262 19.55 98.64 43.91  18.05 97.74 42.00 

SVMP 1 2 1 1 266 39.10 96.15 61.31  42.86 95.02 63.82 

SVML 1 - 1 1 268 3.76 99.32 19.32  3.01 99.32 17.28 

Sens: Sensitivity  spec: specificity 
Gm:Geometric mean  is only for SVMR,  
d is only for SVMP ns: Support vector number 
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The result of the A4 is presented in Table 3.6. The approach A4 differed 

from the A1, A2 and A3 only in its parameter C, which is set to 106.  Compared to 

the result of the A3, the sensitivities and geometric means found in the A4 were 

lower. Thus,  increasing parameter C from 104 to 106 reduces the performances of 

the testing. It is contrary to increasing parameter C from 1 to 102 and from 102 to 

104 which increase the testing performance. The sensitivities and the geometric 

Table 3.5: The performances of the detection algorithm using Approach A3; all the 
parameters are set to be 1, except the degree of the polynomial kernel function d
which is set to be 2, and C = 104.

Detection  
Algorithm 

C /d 0 1 ns 
Training  Testing 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

 Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

SVMR 104 1 1 1 205 54.14 95.93 72.06  51.13 93.44 69.12 

SVMP 104 2 1 1 220 54.14 95.48 71.89  51.13 93.44 69.12 

SVML 104 - 1 1 220 53.38 95.48 71.39  49.62 92.99 67.93 

Sens: Sensitivity  spec: specificity 
Gm:Geometric mean  is only for SVMR,  
d is only for SVMP ns: Support vector number 

Table 3.4: The performances of the detection algorithm in A2; all the 
parameters are set to be 1, except the degree of the polynomial kernel function 
d which is set to be 2, and C = 100. 

Detection  
Algorithm 

C /d 0 1 ns 
Training  

 
Testing 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

SVMR 100 1 1 1 219 54.14 95.48 71.89  49.62 93.21 68.01

SVMP 100 2 1 1 229 50.38 95.70 69.43  47.37 93.89 66.69

SVML 100 - 1 1 223 50.38 95.70 69.43  48.12 93.67 67.14

Sens: Sensitivity  spec: specificity 
Gm:Geometric mean  is only for SVMR,  
d is only for SVMP ns: Support vector number 
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means of all three algorithms are around 48% and 66%, respectively. As in the A1–

A3, the increasing C in the A4 also reduces the number of support vector.  

The top figure is the training performance and the bottom one is the testing 

performance. In the testing, the geometric means of SVML and SVMP increase 

significantly when C changes from 1 to 100. However, the change of C from 104 to 

106 reduces the geometric mean. In the training, the increasing C always provides 

the better geometric mean of all the three algorithms. 

 

Figure 3.21: The effects of the increase in C from 1 to 106 to the 
performance in the training and the testing.  
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     In the A5  was set in such a way that the sensitivities of the detection 

algorithms were about 70%. The other parameters were set with the same values as 

in the A1. The result is presented in Table 3.7. As desired, the sensitivities found in 

this approach were about 70%. The specificities and geometric means of the 

detection algorithms were more than 70%. The support vector numbers are larger 

compared to the other approaches (A1, A2 and A3). SVMR performs the best in the 

Approach A5 with the geometric mean of the testing at 73.63%. 

Table 3.6: The performances of the detection algorithm using the approach A4; 
all the parameters are set to be 1, except the degree of the polynomial kernel 
function d which is set to be 2, and C = 106.

Detection 
Algorithm

C /d 0 1 ns 
Training  Testing 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

 Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

SVMR 106 1 1 1 186 62.41 96.83 77.74  47.37 94.34 66.85

SVMP 106 2 1 1 191 54.14 96.61 72.32  48.12 92.53 66.73

SVML 106 - 1 1 203 54.89 95.02 72.22  48.87 91.63 66.92

Sens: Sensitivity  spec: specificity 
Gm:Geometric mean  is only for SVMR,  
d is only for SVMP ns: Support vector number 

Table 3.7: The performances of the detection algorithm using the E5; was set 
in such a way that the sensitivities were about 70%. The other SVM parameters 
were set to be the same with the A1. 

Detection 
algorithm 

C /d 0 1 ns 
Training  Testing 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

SVMR 1 1 0.280 1 439 75.94 79.19 77.55  70.68 76.70 73.63

SVMP 1 2 0.271 1 535 81.20 72.85 76.91  71.43 70.81 71.12

SVML 1 - 0.260 1 494 80.45 74.43 77.38  71.43 73.08 72.25

Sens: Sensitivity  spec: specificity 
Gm:Geometric mean  is only for SVMR,  
d is only for SVMP ns: Support vector number 
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3.3 DISCUSSION

The proposed hypoglycaemia detection has been presented. It employs 

SVM algorithm and the input of ECG parameters. Its construction (Figure 3.1) 

follows a general structure of a medical instrumentation system (Belegundu and 

Chandrupatla, 2011b). The system consists of a sensing part, signal conditioner and 

display/alarm. In this research, the sensing part is represented by the ECG 

acquisition probe. The signal conditioner is represented by the signal processing 

including feature extraction and SVM classification. Furthermore, the alarm is 

represented by the output of the SVM classifier, which is a binary value 

representing a nonhypoglycaemic or hypoglycaemic event.   

The SVM model for the hypoglycaemia detection algorithm was found from 

the SVM training. The training uses the electrocardiographic clinical data. The 

SVM model can be used to indicate whether the ECG parameter in the input 

belongs to hypoglycaemia or nonhypoglycaemia. Thus, principally this system 

could be used for hypoglycaemia detection.  

The ECG parameters are obtained from the electrocardiogram which is 

acquired through Lead II. In terms of the delineating the end of T–wave, using Lead 

II could minimize the problems with U–wave, as U–wave is less prominent in Lead 

II (Garson Jr, 1993). Therefore, Lead II is frequently used for QT interval 

measurement (Salvi et al., 2011).  According to Morimoto and Fox (2011), lead II is 

often used for QT interval measurement as the end of T–wave is most pronounced.       

The automatic delineation (section 3.1.3) for electrocardiographic fiducial 

points has been developed. It was used to mark the points of Q, R, S, To, Tp and Te. 

For the delineation of Te, the Phillips method was used. Its advantage is that the 

method suffers less from the variability caused by the arbitrariness in the ECG 

baseline choosing. Therefore, it could be less sensitive to an ECG baseline drift 

(Sophia et al., 2009). 
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To avoid the error of the ECG parameter finding, visually checking on the 

result of the delineation was performed after the automatic delineation. Only the 

correct delineation was used. The wrong delineations were mostly from the bad 

ECG signals, such as the ECG signals shown in Figure 3.22. An automatic 

delineation is preferable to manual delineation because manual  delineation may 

result in variability of the inter– and intra–individual observer. Therefore, a 

computer measurement using an algorithm to find ECG parameters is suggested to 

have more stable results and to be more reproducible (Meza, 2010).   

The time intervals for ECG parameters used in this research were corrected 

by heart rate (or by RR interval). The need for this correction is due to the 

dependency of the time interval on heart rate or cardiac cycle. The correction was 

introduced by Bazett (Dantzig, 1951). The six ECG parameters in the 

hypoglycaemia phase are significantly different from those in the 

nonhypoglycaemia phase. It implies that the six ECG parameters are important 

parameters which possibly contribute to hypoglycaemia detection. Therefore, the 

six ECG parameters are used for inputs of hypoglycaemia detection in this research. 

SToc is not significantly different in hypoglycaemic and nonhypoglycaemic phase, 

and therefore it is not used for input of hypoglycaemia detection. The longer QTc in 

hypoglycaemia is confirmed in another study (Lee SP et al., 2004). The higher heart 

 
Figure 3.22: Bad ECG signals found from the study 
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rate in hypoglycaemia is confirmed by (Heger et al., 1996). The longer values of the 

other ECG parameters (RTpc, QTpc, TpTec, QTec, and ToTec) in hypoglycaemia 

might be considered as part of repolarization, in which repolarization prolongs 

hypoglycaemia (Robinson RTCE et al., 2003).  

TpTe (a descending part of the T-wave) is suggested as transmural 

dispersion in the myocardium (Yan and Antzelevitch, 1998). The dispersion is 

caused by the deviation between endocardial and the M cells action potentials, 

during repolarization. The interval represents the differences in repolarization time 

of myocardial cells, as illustrated in Figure 3.23. Benhorin et al. (1990) reported 

that TpTe interval is an important parameter in identifying a patient with long QT 

syndrome. Furthermore, the ratio of TpTe interval to QT interval is a potentially 

significant index for an arrhythmic event (Gupta P et al., 2008).  

 
Figure 3.23 Epicardial, endocardial and the M cell action potentials 
and TpTe interval in ECG 
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ToTe or T-wave width might also have a contribution to hypoglycaemia 

detection. ToTe correlates with T-wave morphology which is possibly affected by 

hypoglycaemia (Ireland et al., 2000). T-wave begins due to the deviation between 

epicardial and the M cells action potentials. The deviation between endocardial and 

the M cells action potentials contribute to the descending part of the T-wave. The 

end of the T-wave can be found when all M cells are fully repolarized 

(Antzelevitch, 2001). The difference of ToTe and TpTe with the other four ECG 

variables is that the two variables represent repolarization only, while the other four 

variables involve depolarization and repolarization. For an evaluation of 

repolarization, exclusion of the QRS complex may be needed so that the evaluation 

is independent from depolarization (Can et al., 2002). 

The relation of hypoglycaemia with an interval from R-peak to the peak of-

T wave (RTp) is confirmed in Alexakis et al. (2006). For an estimation of 

repolarization, RTp is easier to be estimated than the other parameters. RTp is 

marked by the sharp R peak and the peak of T-wave. This easier estimation could 

reduce error for repolarization. 

SVM has been developed with output of +1, which means that a 

hypoglycaemic event is happening, and 1, which means that there is no 

hypoglycaemia. An SVM training has been conducted so that the 

electrocardiographic situation associated with blood glucose level of less than 3.0 

mmol/l is defined as hypoglycaemia, and those with more than 3.0 mmol/l are 

defined as nonhypoglycaemia. 

 Table 3.3–Table 3.7 present the performances of the detection algorithms in 

terms of sensitivity, specificity and geometric mean. The assessment, in terms of 

sensitivity, is to measure the correct detection of hypoglycaemic events. A detection 

algorithm with high sensitivity means that it can predict hypoglycaemic events well. 
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A higher specificity in a hypoglycaemic detector minimizes a false alarm, which is 

a nonhypoglycaemic event, and recognizes it as a hypoglycaemic event. 

The increase in C does not always provide improvement of the 

performances of the SVM algorithms in the hypoglycaemia detection. The reason 

could be that conceptually an increasing C value allows more points to cross the 

supporting hyperplanes of SVM (Figure 3.14). This could reduce the generalization 

performance of the detection algorithm.  

The increase in C value from 104 to 106 decreases the testing sensitivities in 

terms of geometric means. On the other hand, this increase in C raises the training 

performances in all terms –sensitivities, specificities and geometric means. The 

increase of the training performances (although the testing performance decreases) 

means that the generalization of the algorithm becomes worse. Results of the A1-

A5 also imply that C is a trade-off of performance in training and generalization. 

Too low C yields a low training performance, whereas too high C value yields a low 

generalization.  

Furthermore, increase in C in the A1–A4 reduces the number of support 

vectors. The geometric mean increases from A1 to A3, but it decreases from A3 to 

A4. Thus, it implies that an SVM model with fewer support vector numbers, does 

not always have better generalization.  

Increasing the sensitivities in the Approach A5 compared to those in 

Approach A1 relates to the decreasing  (in this case the other parameters are 

retained). The decreasing  yields the increase of the ratio 1 to . In other 

words, the increasing of the ratio  to  yields the higher sensitivities.  

Essentially, modification of  or 1 is similar to modification of C in the 

associated class. Modification of  means modification of C for the data points in 

the nonhypoglycaemic class, and modification of  means modification of C for 

the data points in the hypoglycaemic class. In the other words, modification of 
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thweight factor for a class means modification of C to that class, but it does not 

modify C in another class. In the A5, SVMR performs the best where sensitivity, 

specificity and geometric mean are 70.68%, 76.70% and 73.63%, respectively.  

3.4 CONCLUSION

The ECG parameters have been extracted from the electrocardiogram of the 

patients with type 1 diabetes. The six ECG parameters in hypoglycaemia were 

significantly different from those in nonhypoglycaemia. This indicates that the ECG 

parameters could contribute in hypoglycaemia detection. The ECG parameters were 

tested for the hypoglycaemia detection with SVM algorithms. The SVM algorithms 

with different kernel functions and different SVM parameters were investigated. 

The investigation was to explore these differences in relation to the performance of 

hypoglycaemia detection. In addition, the number of support vectors in relation to 

the performance of the detection algorithm was also presented. The SVM parameter 

C and the weight factor (  and ) could play an important role in finding the 

good performance of SVM models for hypoglycaemia detection. The best 

performance of hypoglycaemia detection found in the experiment is 73.63% in term 

of geometric mean. The best performance was found when hypoglycaemia 

detection employs SVM with the RBF kernel function, with the SVM parameters   

C =1,  = 1,  = 0.280 and 1 = 1. This performance was slightly low and hence 

a more advanced SVM is necessary to find a higher performance.      
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CHAPTER 4.                  
SWARM BASED SUPPORT VECTOR MACHINE FOR 
HYPOGLYCAEMIA DETECTION

The experimental results presented in Chapter 3 show the influence of SVM 

parameters to the performances of hypoglycaemia detections. One of the results 

shows that different values of SVM parameters can vary the sensitivity from 

18.05% to 70.68% and the geometric mean from 42.00% to 73.63%. The influence 

of SVM parameters to the performance of the SVM algorithm is also presented in 

another study (Zhou et al., 2011).Therefore, it is necessary to optimize SVM 

parameters in such a way that the performance of the detection algorithm is optimal 

for hypoglycaemia detection. 

A method to find the optimal SVM parameter is by varying the SVM 

parameters in the SVM training. This method was applied in a study by Elif Derya 

(2007). The study varies the RBF kernel width  between 0.1 and 0.6, with interval 

0.1. The study found that  = 0.4 yields the minimum misclassification rate. 

Meanwhile, the optimal parameter C was determined by varying the C value; C = 

80 was found as the optimal one. Determining the optimal SVM parameters using 

this method might not be suitable for this research as this research needs to find four 

optimal SVM parameters. Determining the four optimal-parameters should be 

conducted simultaneously, instead of individually, as together they are used in the 

SVM training. Finding one optimal-parameter in the SVM training cannot exclude 



78

the other three parameters. Furthermore, the interval used in the study (Elif Derya, 

2007) was 0.1. This interval might not guarantee that the optimization provides the 

optimal value, which might be in the smaller interval. Furthermore, if the interval is 

made smaller, for example 0.01, a larger number of experiments need to be 

conducted.                                  

Another method to find the optimal SVM parameters is by using a grid 

search technique (Devos et al., 2009). Using the technique, an objective function is 

used to evaluate all the grid points in the design space. Figure 4.1 presents grid 

points of two parameters (x and y). Each parameter from the lower bound l to the 

upper bound u consists of 5 points. Using this grid search, an objective function is 

evaluated with the points of (x1,y1), (x2,y1), …..., (x5,y5). The total points are 25. In 

general, the number of total points is np where n is the number of points in each 

parameter and p is the number of parameters. In this research, four SVM parameters 

are used. Suppose each parameter comprises 20 points, an objective function is 

evaluated by 204 = 160,000 points. This means the objective function is evaluated 

160,000 times with different parameter values; it needs a great deal of time. 

Therefore, a grid search method might not be suitable to find the optimal SVM 

Figure 4.1: A Grid with two parameters and five points in each 
parameter.  
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parameters in this research.     

In this research a particle swarm optimization (PSO) was chosen to optimize 

SVM parameters (or to find the optimal SVM parameters). By using PSO, a search 

space for SVM parameters can be made wider, rather than just 0.1–0.6 as in Elif 

Derya (2007) , and also can be made with an interval of far less than 0.1. The SVM 

parameters (C, , d, , ) could be optimized simultaneously by using PSO, 

instead of individually.  By applying PSO in the optimization of SVM parameters, 

this research developed a hybrid PSO and SVM, forming a swarm based support 

vector machine (SSVM), which is presented in this chapter. 

4.1 INTRODUCTION TO PARTICLE SWARM OPTIMIZATION (PSO)

An optimization relates to the process of maximizing or minimizing an 

objective function with a defined contraint (Belegundu and Chandrupatla, 2011a). 

In an optimization, one would like to find a global minimum or maximum of an 

objective function, subjecting to a contraint, if any. Figure 4.2 indicates the local 

and global minimum of a function. Optimization of f(X) can be stated as in the 

following: 

Find X = [x1 x2 x3 … xn] which minimizes f(X). 
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Figure 4.2: Local and global minimum of a function. 

 

Initially, in 1847, a minimization using derivatives of a function (or the 

gradient method) was presented by Cauchy; this is one of the oldest methods for the 

minimization of a general nonlinear function  (Beni and Wang, 1989). Gradient 

method or gradient descent is an iterative method with an initial point. The iteration 

of gradient descent follows the negative of the gradient in order to move toward a 

critical point, which is hopefully the minimum value.  This method is popular 

because it is easy to implement and each iteration is cheap. A disadvantage of 

gradient descent is its tendency of getting trapped in a local minimum (Kavitha et 

al., 2010). In addition, the local minimum depends on the given initial point.   This 

limitation could result in a poor training and poor generalization performance.  

   

A further three optimization methods were later presented: an optimization 

based on penalty functions (Chan et al., 2011b), maximization of linear variables 

subject to linear inequalities (Burges, 1999), the “KKT” optimality conditions for 

constrained problems (Plat, 1999). Subsequently, other methods for solving 
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nonlinear optimization problems were developed. 

In general, there are two major categories of algorithms for an optimization, 

namely, deterministic and stochastic algorithms. The main characteristic of the 

deterministic algorithm is the exact reproducibility of the steps in the optimization, 

which uses the same initial conditions for the same problem. Whereas, a stochastic 

algorithm produces samples of prospective solutions in the space, which often 

results in a different sequence of samples in different experiments, even with the 

same initial conditions. The methods which can be categorized to be deterministic 

one are grid search, covering method and trajectory-based method.   

In general, stochastic approaches generate and use random variables. The 

approaches produce estimation models for the position of the global minimum, 

which are refined using information found from the previous iterations. One of the 

advantages of the approaches is that they can be employed in a problem (or an 

objective function) where its mathematical properties are not well known.  

One type of stochastic optimization is pure random. To optimize an 

objective function in finding the optimal solution, a pure random search generates 

solutions at each iteration, and the objective function is evaluated using these 

solutions. This method needs a vast number of solutions to find an acceptable result; 

consequently, the method is inefficient. An improvement is needed to tackle the 

drawbacks of this method. One way would be to apply a method which uses a local 

search on several considered local points of solution, instead of all points. 

Alternatively, as an important improvement of the random search method, an 

algorithm inspired by a stochastic model in nature is used. It produces research 

fields such as evolutionary computation and swarm intelligence algorithms.  

Swarm intelligence optimizations are typically made up of a population 

(swarm) of individuals (or agents). The idea of swarm intelligence optimization is 

based on a simple interaction between components (or agents) of a small society 
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(swarm). This optimization works on the collective behavior of decentralized, self-

organized systems. The expression of swarm intelligence appeared in 1989 as a set 

of algorithms controlling a number of robots operating in n-dimensional space with 

distributed control (Wexler et al., 2007). There is no central controller and robots 

can only talk to others next to them. The robots are autonomous, but have to 

cooperate with the other robots to achieve some predefined goal. Thus, a swarm 

intelligence is typically made up of a population (swarm) of simple agents. 

Interactions between such agents lead to the emergence of "intelligent" global 

behavior, unknown to the individual agents. A swarm intelligence includes ant 

colony optimization, stochastic diffusion search and particle swarm optimization 

(PSO). 

PSO was introduced by Kennedy and Eberhart (1995), performing 

optimization using an evolutionary technique based on the movement of swarms. It 

was inspired by the social behaviour of bird flocking and fish schooling (del Valle 

et al., 2008). Particles of swarm (or population) fly through an n-dimensional 

solution space with adjusted velocity and position. The velocity is adjusted 

according to the history of particle best-position and the neighborhood best-

position, which are derived according to a user defined fitness function. A limitation 

of PSO or a stochastic algorithm is that it is computationally expensive (Sheikh-

Bahaei et al., 2005, Alves et al., 2006). Because the optimization in this research is 

conducted for off-line optimization, this limitation could be ignored. 

4.2 DEVELOPMENT OF A HYPOGLYCAEMIA DETECTOR BASED ON THE SWARM 

BASED SUPPORT VECTOR MACHINE
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The structure of the swarm based support vector machine (SSVM) is 

presented in Figure 4.3. The input was ECG parameters, and the output was the 

glycaemic state –hypoglycaemia or nonhypoglycaemia. The parameters of SVM 

were optimized using PSO (the optimal parameters of SVM were found using 

PSO). The SVM parameters are C, wo, ,  , d. The parameter of C deals with a 

trade-off between maximum margin and the classification error of SVM. SVM with 

high C provides perfect classification in the training phase which uses a training 

data set, but it may be poor in generalization (or bad performance in classification 

using a test data set).  On the other hand, SVM classification with low C might give 

a bad performance in the training phase. Therefore, optimal C has to be chosen in 

order to find the optimal classification. Likewise, the optimal values of parameters   

and d also need to be found to obtain the optimal performance. 

4.2.1 Optimization of SVM parameters using PSO 

Figure 4.3: Hypoglycaemia detection using swarm based support 
vector machine 
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This research utilizes the PSO algorithm to find the optimal SVM 

parameters according to a defined fitness function. Four SVM parameters are 

optimized; they are C,  (for RBF and sigmoid kernel functions) or d (for 

polynomial kernel function),  and  (weight factors for nonhypoglycaemic and 

hypoglycaemic class data, respectively).  

The optimization of SVM parameters using PSO can be described as in 

Figure 4.4. Suppose a swarm at -th iteration is z( ). It contains  particles with  

dimensions. More clearly, in this work four parameters are used, and therefore, the  

begin 

           1                  // iteration number 

         Initialize z       // z: position 

         Evaluate f(z)   // f( ): fitness function (Eq. 4.4) 

         Initialize v       // v: velocity   

         z = z     // z: personal best position 

          = z    // : global best position  

while (not termination condition) do 

         begin 

   +1 

Update position of particle  and velocity  based on Eqs. 4.1 and 

4.2, respectively. 

if v( ) > vmax , v( ) = vmax end 

if v( ) <  vmax, v( ) =  vmax end 

Evaluate f(x( ))  // f(x( )) is defined in Eq. 4.4  

Update z if the new position is better than the previous z  

Update  if the new position is better than the previous          

         end 

end 

Figure 4.4: The pseudo of the PSO for the SVM 
parameter optimization   
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is 4. The number of particles used in the optimization of this work is 50. Each 

element of the swarm is presented by , in which j = 1, 2,…,  and k = 1, 

2,…, ;  is the dimension of a particle and  denotes the number of particles in the 

swarm. The particles can be expressed as in the matrix in Figure 4.5. 

1
1z

1
2z 1

3z 1
4z

2
1z

2
2z 3

3z 4
4z

k
jz k

jz k
jz k

jz

1z 2z 3z 4z

Figure 4.5: The particles of the PSO 

 

The algorithm was initialized by generating random numbers for position 

and velocity. At iteration , the position  is determined as follow (del Valle 

et al., 2008):   

 4.1

in which the velocity (n) is defined as (del Valle et al., 2008) 

 4.2

z is the personal best position, which is the best position of the particle at iteration 

.  is the global best position which is the best position among all the particles 

from the first iteration until iteration .  is an inertia weight factor, which controls 

the convergence of the optimization behavior. c1 and c2 are the acceleration 
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constants, which control the distance moved by a particle. r1 and r2 are the uniform 

random numbers between 0 to 1. The constants c1 and c2 are set to 2; and r1 and r2 

are the random number in the range [0, 1].  

The velocity v is limited in a certain region, which is between –vmax and 

vmax. Thus, if v is more than vmax, v is set to vmax and if v is less than –vmax, v is set to 

–vmax. This strategy is called velocity clamping, which is used to limit the swarm 

particles to a search space (Siddiqui et al., 2011). For this optimization, vmax is set to 

0.2. Furthermore, the inertia weight is set as follow:  

 4.3

 where max and min are upper and lower inertia weights, respectively, and are set to 

1.2 and 0.1, respectively, N is the total iteration number and  is the iteration 

number.  

4.2.2 Fitness function for the optimization 

The objective of the PSO optimization was to maximize the performance of 

the hypoglycaemia detection. The performance was measured in terms of sensitivity 

 and specificity , as defined in Eqs. 3.3 and 3.4. Sensitivity was defined as the 

ratio of correct detection of hypoglycaemia to the actual number of hypoglycaemia 

cases. Specificity was defined as the ratio of correct detection of nonhypoglycaemia 

to the actual number of nonhypoglycaemia cases. Thus, the PSO optimization was 

essentially used to maximize sensitivity  and specificity , and then the fitness 

function was defined as 

  4.4

tr and tr were, respectively, the sensitivity and specificity of the training. v and 

v, respectively, were the sensitivity and specificity of the validation The training 

data set was used for the SVM training to find an SVM model. The validation data 

set was used to test the SVM model during the optimization.  
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The inclusion of v and v in the fitness function is to reduce the risk of 

overtraining (Astion et al., 1993). Overtraining could yield a high performance in 

the training stage, but it might provide a low performance in the testing. In the 

fitness function,  was set to 0.58 to obtain a higher sensitivity than specificity. This 

strategy is to prevent the risk of the low sensitivity of the hypoglycaemia detection. 

Furthermore, to force the detection to have high sensitivity, parameter  is given by 

using the following definition 

 4.5

By the definition of  in Eq. 4.5 the detection is forced to find sensitivity and 

specificity of more than 70% and 40%, respectively. Considering Eq. 4.4 and Eq. 

4.5, if the detection provides sensitivity and specificity of more than 70% and 40%, 

respectively, the fitness function has the value of more than 10. Conversely, if the 

detection provides sensitivity and specificity of less than 70% and 40%, 

respectively, the fitness function has the value of less than 2; in this formula the 

maximum sensitivity and specificity is 1 (or 100%).   

4.3 EXPERIMENTAL RESULTS

For comparison and analysis purposes, the following approaches were used 

to develop hypoglycaemia detection model: 

- Approach I (A1) which was the SSVM with the inputs of all six ECG 

parameters (Figure 4.6). Four kernel functions were investigated (RBF, 

polynomial, sigmoid and linear kernel functions). There were four 

algorithms: SSVMR (SSVM which employed RBF kernel function), 

SSVMP (SSVM which employed polynomial kernel function), SSVMS 

(SSVM which employed sigmoid kernel function) and SSVML (SSVM 

which employed linear kernel function). 

- Approach II (A2) which was similar to A1, but the PSO was not applied; 
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instead, the SVM parameters were generated randomly (Figure 4.7). The 

approach was called rSVM; thus, there were rSVMR, rSVMP, rSVMS and 

rSVML, which were the SVM algorithms employing RBF, polynomial, 

sigmoid and linear kernel functions, respectively, without the PSO.  

- Approach III (A3), similar to A1 but the inputs were the ECG parameters 

which were corrected by using the Fridericia formula (Fridericia, 2003), 

instead of using the Bazett formula. Using the Fridericia formula means that 

the ECG parameters were corrected (or divided) by RR1/3. RR was the 

interval between two consecutive R points of ECG. The approach is called 

SSVMF. 

- Approach IV (A4) which was a multiple regression with PSO (called SMR), 

Figure 4.8. SMR was the multiple regression in which their coefficients 

were optimized using particle swarm optimization. The coefficients were  

as in the following formula (Ling and Nguyen, 2011) 

  . 4.6

where yi was the output with binary levels, which were hypoglycaemic or 

 

Figure 4.6: Hypoglycaemia detection using SSVM with the input of 
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nonhypoglycaemic levels; xi represented the ECG parameters as the input 

and no represented the order of the multiple regression. This approach 

investigated linear, second order and third order multiple regression, which 

were called SMR1, SMR2 and SMR3, respectively; 

- Approach V (A5) which was the SSVM where the inputs were varied by the 

combinations of the six ECG parameters (Figure 4.9). In the figure, switches 

were used to connect or to disconnect the ECG parameters to SSVM, to 

make a combination of inputs. 

- Approach VI (A6) which was SSVM where the SVM weight parameters 

(  and ) were not optimized (SSVMw). The inputs were the six ECG 

parameters.  

 

 

Figure 4.7: Hypoglycaemia detection using SVM with its 
parameters generated randomly (Approach II) 



90

The detection of hypoglycaemia using SSVM has been conducted. SSVM 

was investigated with inputs of the six ECG parameters, namely TpTec, ToTec, 

RTpc, QTPc, QTec and heart rate (HR). PSO was used to automatically obtain the 

optimal SVM parameters C, , , , d considering to the fitness function (Eq. 

4.4). The ranges of values of the parameters were created as the following; C: 1 to 

105, , : 10-4 to 1,  : 0.01 to 100, d:  1 to 50.  

The hypoglycaemia detections employed the data of ECG parameters which 

 

SVMPSO

TpTec
ToTec

RTpc
QTpc

QTec
HR

(MR coefficient)

 

 
Figure 4.9: Hypoglycaemia detection using SSVM with inputs are 
varied by the combinations of the six ECG parameters (Approach 
V).
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were used in Chapter III. Three data sets were used: training, validation and testing 

data sets. Each data set consists of 442 hypoglycaemic data points and 133 

nonhypoglycaemic data points. The training data set was used during training to 

create a hypoglycaemia detection model. The validation data set was used to test the 

hypoglycaemia detection model during the optimization. The testing data set was 

used to test the optimal hypoglycaemia detection model obtained from the 

optimization. 

The performances of SSVM with different four kernel functions are 

presented in Table 4.1. The performances are presented in terms of sensitivity, 

specificity and geometric mean. In Table 4.1, the sensitivities and specificities in 

training, validation and testing are more than 70% and 40%, respectively, except the 

sensitivities of SSVML. The achievement of sensitivity and specificity of more than 

70% and 40%, respectively, is as desired of the optimization with definition of the 

fitness function (Eqs. 4.4 and 4.5).   

In terms of geometric mean, the performance of SSVMR is better than the 

other three algorithms, in the training, validation and testing. In the test, the 

sensitivity, specificity and geometric mean of SSVMR are 84.21%, 67.65% and 

75.48%, respectively. 

Table 4.1: The performance of the hypoglycaemia detection using different techniques 
of SSVM and using the same input that is all six ECG parameter 

Detection 
algorithm  

Training  Validation  Testing 

Sens. Spec. Gm  Sens. Spec. Gm  Sens. Spec. Gm 

SSVMR 95.49 68.10 80.64  84.96 65.38 74.53  84.21 67.65 75.48

SSVMP 87.97 68.33 77.53  83.46 64.03 73.10  78.95 63.12 70.59

SSVMS 88.72 64.93 75.90  83.46 61.76 71.80  79.70 61.31 69.90

SSVML 53.38 95.25 71.31  45.86 92.31 65.07  53.38 88.69 68.81
SSVMR: Swarm-based SVM-RBF, 
SSVMP: Swarm-based SVM-Polynomial,  

SSVMS: Swarm-based SVM-Sigmoid, 
SSVML: Swarm-based SVM-Linear. 
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For the comparison to the SSVM, the SVM algorithms which did not use 

the proposed swarm optimization were investigated. The performances of rSVMs 

are presented in Table 4.2. The presented performances of rSVM are the average of 

100 repeated detections in which the SVM parameters are generated randomly. The 

results show that in general in terms of sensitivity and geometric mean, the 

performances of the rSVMs are worse than the swarm-based SVMs. but their 

specificities are higher.  The sensitivities of all four rSVMs are less than 70%.  

The hypoglycaemia detection which used SSVMRF has been conducted. 

SSVMRF used the input of ECG parameters corrected by Fridericia formula. 

Sensitivity of SSVMRF is higher than SSVMR, but its specificity and geometric 

mean are lower (Table 4.3). The geometric mean of SSVMRF is 71.04%, in which 

the SSVMR’s geometric mean is 75.48%. 

Multiple regressions with the swarm optimization (SMR1, SMR2 and 

SMR3) have been applied for hypoglycaemia detection, and the result is presented 

in Table 4.3. In term of geometric mean, the performance of SMR3 is worse than 

that of SMR1 and SMR2. The performances of SMR1 and SMR2 are nearly same 

in term of geometric mean. Furthermore, SMR1 and SMR2 perform worse than 

SSVMR. Thus, in general the swarm based SVM performs better than the swarm 

Table 4.2: The testing performance of the hypoglycaemia detections without PSO 
(input: all six ECG parameter) 

Detection 
technique

 Testing 

 Sens. (%) Spec. (%) Gm (%) 

rSVMR  53.50 90.90 69.74 

rSVMP  49.35 94.20 68.19 

rSVMS  24.18 75.33 42.68 

rSVML  48.87 92.29 67.16 

 
rSVMR: SVM-RBF,  
rSVMP: SVM-Polynomial,  
 

 
rSVMP: SVM-Sigmoid,  
rSVMP: SVM-Linear,  
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based multiple regression. Furthermore, the SSVM which does not optimize the 

SVM weight factors (  and ), called SSVMw, provide a low sensitivity 

(49.62%) and a high specificity (94.34%), with the geometric mean of 68.42%.       

  

Table 4.3: Comparison of the performance of the swarm based  SVM with the other 
methods 

Detection 
technique

 Testing 

 Sens. (%) Spec. (%) Gm (%) 

SSVMR  84.21 67.65 75.48 

SSVMRF   86.47 58.37 71.04 

SSVMw  49.62 94.34 68.42 

SMR1  75.53 66.09 70.65 

SMR2  76.02 67.01 71.37 

SMR3  56.07 65.52 60.61 

SSVMRF: SSVMR with the input of the ECG parameters corrected by Fridericia formula 
SSVMw: SSVMR without the optimization of    
SMR1: Linear multiple regression with PSO optimization 
SMR2: Second order multiple regression with PSO optimization  
SMR3: Third order multiple regression with PSO optimization  

Table 4.4: The performance the SSVM hypoglycaemia detection 
using single input. 

Inputs 
Testing 

Sens. Spec. Gm 

HR 82.71 57.01 68.67 

QTec 75.19 57.47 65.73 

TpTec 87.97 28.05 49.68 

QTpc 78.20 49.10 61.96 

ToTec 73.68 52.04 61.92 

RTpc 78.20 57.92 67.30 
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SSVMR with the different inputs, which are all the possible combinations of 

the six ECG parameters has been investigated. There are 63 combinations (63 = 26–

1). The SSVMR performances in terms of geometric mean with 63 combinations of 

ECG parameters are presented in Figure 4.10. With the input of a single ECG 

parameter, the performance of SSVMR is presented in Table 4.4. The table 

 
 

Legend of the inputs 

1 : x1 17 : x3x5 33 : x2x3x5 49 : x1x3x4x6
2 : x2 18 : x3x6 34 : x2x3x6 50 : x1x3x5x6 
3 : x3 19 : x4x5 35 : x2x4x5 51 : x1x4x5x6 
4 : x4 20 : x4x6 36 : x2x4x6 52 : x2x3x4x5 
5 : x5 21 : x5x6 37 : x2x5x6 53 : x2x3x4x6 
6 : x6 22 : x1x2x3 38 : x3x4x5 54 : x2x3x5x6 
7 : x1x2 23 : x1x2x4 39 : x3x4x6 55 : x2x4x5x6 
8 : x1x3 24 : x1x2x5 40 : x3x5x6 56 : x3x4x5x6 
9 : x1x4 25 : x1x2x6 41 : x4x5x6 57 : x1x2x3x4x5 

10 : x1x5 26 : x1x3x4 42 : x1x2x3x4 58 : x1x2x3x4x6 
11 : x1x6 27 : x1x3x5 43 : x1x2x3x5 59 : x1x2x3x5x6 
12 : x2x3 28 : x1x3x6 44 : x1x2x3x6 60 : x1x2x4x5x6 
13 : x2x4 29 : x1x4x5 45 : x1x2x4x5 61 : x1x3x4x5x6 
14 : x2x5 30 : x1x4x6 46 : x1x2x4x6 62 : x2x3x4x5x6 
15 : x2x6 31 : x1x5x6 47 : x1x2x5x6 63 : x1x2x3x4x5x6 
16 : x3x4 32 : x2x3x4 48 : x1x3x4x5  :  

 
(x1 :HR, x2:QTec, x3:TpTec, x4:ToTec, x5:RTpc and x6:QTpc.)

 

Figure 4.10: The geometric mean of the SSVMR with different inputs.  
The x axis indicates the combinations of ECG parameters. The best 
geometric mean is 80.46% when the inputs are HR and ToTec.
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indicates that each ECG parameter shows a significant contribution to the 

performance of the hypoglycaemia detection. In the testing, the contribution is 

indicated by the detection performance with sensitivity of more than 73% and 

geometric mean of more than 49%. Among these performances, in terms of the 

geometric mean, the performance of the detection using heart rate is the highest. 

The second and the third highest performances are the detections which use RTpc 

and QTec, respectively.  

The investigation of SSVM with different inputs shows that the best 

geometric mean is obtained when the inputs are HR and ToTec. The best geometric 

mean is 80.46% (Figure 4.10). The performances in the training, validation and 

testing are presented in Table 4.5. The geometric mean of the SSVM with the inputs 

of the two ECG parameters above is higher than the geometric mean when all six 

ECG parameters are used.  

The optimal parameters of C, ,  and  of the SSVM with the inputs 

which provide the best performance are listed in Table 4.6. In general the optimal 

Table 4.6: The optimal parameters of SSVM with the input of HR 
and ToTec.

 C  0 1 

 6.37x104 87.78 0.14 1.00 

ns = Support vector number 

Table 4.5: The best performance of the hypoglycaemia detection using SSVMR 
with the inputs of HR and ToTec

Training  Validation  Testing 

Sens.
(%)

Spec.
(%)

Gm
(%)

 Sens. 
(%)

Spec.
(%)

Gm
(%)

 Sens. 
(%)

Spec.
(%)

Gm
(%)

88.72 83.94 86.3  80.45 77.6 79.01  80.45 79.64 80.04 
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 is less than the optimal  with the ratio :  of 0.14:1. The optimal C is 

6.37x104, with the associated support number of 284. 

The receiver operating characteristic (ROC) curves of the SSVM with the 

best performance is displayed in Figure 4.11. ROC is a plot for a pair of a true 

positive rate (or sensitivity) vs. a false positive rate (or one minus specificity) 

(Zweig and Campbell, 1993). The values presented in the ROC curve are in 0 to 1, 

instead of percentage 0 to 100%. The graphs show that the ROC curve is closer to 

the left top corner rather than to the diagonal line. Area under curve (AUC) can be 

used to express the performance of a diagnostic test (Zweig and Campbell, 1993). 

AUC of 0.8711 is found by the SSVM. 

4.4 DISCUSSION

The experimental results of the hypoglycaemia detections using the swarm 

based SVM algorithms have been presented. SSVMs with different kernel functions 

and different inputs have also been compared. Furthermore, the detection using 

SSVM has also been compared with the swarm based multiple regression and the 

SVM algorithms without the swarm optimization. 

The performance of SSVMR (SSVM with RBF kernel function) is better 

       

Figure 4.11: ROC of the hypoglycaemia detection using swarm 
based support vector machine 
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compared to the other three SSVMs, which employ polynomial, sigmoid and linear 

kernel functions. It is possible that the data found from the RBF mapping is more 

likely to be correctly classified by SVM than from the other kernel functions 

mappings. Furthermore, SVM-linear could be a special case of SVM-RBF (Keerthi 

and Lin, 2003), which means that SVM-RBF has more possibilities to obtain a 

better performance than SVM-linear. The better performance of the SVM based 

system which employs RBF is confirmed in another application (Song et al., 2011). 

The proposed swarm optimization can work as desired. It is indicated by the 

sensitivity and specificity of SSVM algorithms. In the proposed optimization, the 

desired sensitivity and specificity are more than 70% and 40%, respectively (Eq. 

4.5). The obtained sensitivity and specificity are more than 70% and 61%, 

respectively. As a comparison, the sensitivities of the SVM algorithm without the 

proposed optimization (rSVM) are less than 54%. The specificities of rSVM are 

higher against the SSVM. It might happen because rSVM tends to obtain the total 

sensitivity and specificity as high as possible without consideration of more than 

70% in sensitivity. Therefore, the definition of  in Eq. 4.5 (which forces the 

hypoglycaemia detection to have sensitivity and specificity of more than 70% and 

40%) can work effectively. In other words, the proposed SSVM could be suitable to 

prevent a low sensitivity in hypoglycaemia detection. A high sensitivity of a disease 

detector means it has a high true positive. The high true positive in a hypoglycaemia 

detection means that the hypoglycaemic events can be detected properly. 

In the fitness function (Eq. 4.4),  was set to 0.58. This  value was 

determined through several experiments. The important thing of  value is that the 

coefficient for the sensitivity is set higher than the coefficient for the specificity. By 

this setting a low sensitivity could be avoided. This setting is necessary because the 

data number of the hypoglycemic class is far lower than nonhypoglycemic class. 

This imbalance has the risk of low sensitivity. However, if  is too high, the 
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sensitivity could be very high and the specificity could be very low. Therefore, the  

value should be more than 0.50, but not too high. 

    The computational time required by the optimization using PSO depends 

on the iteration number provided and the time consumed in every iteration. Every 

iteration creates n SVM training to make n SVM models; n is the number particles 

of PSO. In this thesis, the iteration number is 200 and the particle number is 50. 

Hence, after 200 iterations the optimization terminates. Another termination 

criterion is the gradients of the global best during m iteration; if the gradients are 

less than a defined value, the optimization terminates. It means that if the optimal 

values do not change significantly during m iteration, the optimization terminates.      

             

  The SSVMR which includes all six ECG parameters in the input is not the 

best among the SSVMRs with different inputs. The combination of ECG parameters 

in the input which yields the best performances is HR–ToTec. Furthermore, 

considering the performances of the hypoglycaemia detections which employ single 

input, each of the six ECG parameters has shown a contribution for hypoglycaemia 

detection. This is indicated by results of the hypoglycaemia detections using single 

input, which resulted in the sensitivities of more than 73%.  

 The proposed swarm based SVM outperforms the swarm based multiple 

regression (SMR). The optimization methods of these two algorithms are the same, 

in which their parameters are optimized using the PSO. One difference of the two 

algorithms in finding the decision function is that SVM considers maximizing the 

margin between the two nearest points of the two classes in SVM, whereas SMR 

does not. The maximization of the margin could result in better generalization. The 

superiority of the SVM technique over multiple  regression is also confirmed in 

other studies (Xue et al., 2004).     

Another comparison, the performance of SSVM with input of the ECG 
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parameter corrected using the Bazett formula is better than that which is corrected 

by the Fridericia formula. Using the Fridericia formula, an ECG parameter is 

corrected using RR1/3, while using the Bazzet formula an ECG parameter is 

corrected by RR1/2. Two studies (Christensen et al., 2010, Koivikko et al., 2008) 

presented the impact of the two correction formulas to QT interval prolongation 

during hypoglycaemia. In the two studies, during hypoglycaemia, the QT interval 

corrected by the Bazett formula increased statistically significantly, but the QT 

interval corrected by the Fridericia formula was not associated with a statistical 

change.  

The optimal SVM parameters have been found in the optimization stages, as 

is presented in Table 4.6. The optimal  is higher than .  is the weight 

factor for the hypoglycaemic class. In the optimization, the weight factor is 

automatically tuned to prevent a low sensitivity. In other words, the automatic 

selection of the weight factor performs well. Regarding C values, although the C 

values are high (6.37x104) it might not be overtraining as the generalization of the 

algorithm is still good in that the testing performance does not dramatically drop, 

compared to the training and validation performance.  

The fitness functions of the optimizations used for SSVM/SFSVM  employ 

sensitivity and specificity, rather than using a root mean square error, or RSME 

(Deeb and Goodarzi, 2010). An RSME is a value to measure the difference between 

the prediction of a model (Pi) and the actual observation (Oi), or 

, where: Using RSME, the target is to 

minimize RSME, without a more attention in sensitivity. The two class data used in 

this research has a lower number in hypoglycemic class than in nonhypoglycemic 

class. This situation of data has the risk of low sensitivity in an SVM classification.  
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4.5 CONCLUSION

The detection of hypoglycaemia using a swarm-based SVM (SSVM) 

algorithm has been conducted. In SSVM, a particle swarm optimization (PSO) was 

used to optimize the SVM parameters. A fitness function was defined in the 

optimization to find a high performance of the hypoglycaemia detection, especially 

in the sensitivity. SSVM was investigated for hypoglycaemia detection using the 

clinical ECG parameters TpTec, ToTec, RTpc, QTpc, QTec and HR. The ECG 

parameters show significant contributions to hypoglycaemia detection. In 

hypoglycaemia detection, the proposed algorithm (SSVM) outperforms the swarm 

based multiple regression and the SVM without the swarm optimization. 

Furthermore, the performance of the detection using the swarm based SVM with the 

input of the ECG parameters corrected by the Bazett formula is better than that 

corrected by the Fridericia formula. Different kernel functions were investigated to 

find the suitable kernel function for the SSVM which yields a good performance in 

the hypoglycaemia detection. The SSVM which used RBF kernel function performs 

well with 80.45%, 79.64% and 80.04% in terms of sensitivity, specificity and 

geometric mean. This performance is achieved when the inputs are HR and ToTec, 

which is the interval from the beginning to the end of T–wave.  
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CHAPTER 5.
HYBRID FUZZY INFERENCE SYSTEM SUPPORT 
VECTOR MACHINE FOR HYPOGLYCAEMIA 
DETECTION

5.1 BACKGROUND

The SVMs algorithm was studied for hypoglycaemia detection in Chapter 

III. The performance was improved in Chapter IV by twofold: the optimization of 

SVM parameters and employing the most suitable ECG parameters for the input. 

The most suitable input was found by examining all the possible combinations of 

the ECG parameters for the input of the hypoglycaemia detection. In other words, in 

this stage the SVM has already employed the optimal parameters and the optimal 

input. 

A more advanced algorithm is employed in this chapter to find a further 

improvement. Essentially, the algorithm refers to a hybrid of the multiple regression 

(MR) and fuzzy inference system (FIS) developed by Ling and Nguyen (2011). For 

Figure 5.1: FMR developed in (Ling and Nguyen, 2011) 
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the simplicity the hybrid is called fuzzy multiple regression or FMR. In FMR some 

inputs (x1, x2, … , xn ) are for FIS and the others (xn+1, xn+2, …, xm) are for MR (Figure 

5.1). The study shows that FMR performs better compared to the performance 

obtained by its components (FIS and MR) 

Instead of using FIS and MR, this research proposes a novel algorithm 

which employs a hybrid of FIS and SVM for hypoglycaemia detection. Thus, SVM 

is employed in the algorithm, instead of MR. SVM differs from MR in finding the 

decision function: SVM considers maximizing the margin between the two closest 

points of the two classes data, whereas SMR does not. The maximization of margin 

could provide a good generalization in classification. The superiority of SVM over 

MR was confirmed in several applications (Xue et al., 2004, Yao et al., 2004, 

Pourbasheer et al., 2010). The superiority is also indicated in the results of  Chapter 

IV. 

5.2 SWARM BASED FUZZY SUPPORT VECTOR MACHINE (SFSVM)

A swarm based fuzzy support vector machine or the SFSVM is constructed 

as in Figure 5.2. SFSVM is composed mainly of FIS and SVM. Some inputs (x1, x2, 

…, xn) are used for the input of FIS and the others (xn+1, xn+2, …, xm) are for the 

input of SVM. The FIS is intended to find an index from the FIS inputs. This index 

is then used for the input of the SVM, together with the other inputs. FIS is an 

effective intelligent system which employs fuzzy logic and fuzzy set theory (Ly et al., 

2009). Its frameworks are the concepts of fuzzy set theory and fuzzy reasoning. The 

advantages of FIS include its ability to handle linguistic concepts and to function as 

a universal approximator, performing nonlinear relations between inputs and 

outputs.      

The proposed algorithm employs parameters which need to be optimized. 

Instead of using PSO as used for SSVM in Chapter 4, the proposed algorithm  

employs particle swarm optimization with wavelet mutation or PSOWM as 



103

developed by Ling et al. (2008). Thus, the algorithm proposed in this chapter is a 

hybrid of FIS and SVM with the optimization using PSOWM. For simplicity, the 

algorithm is called SFSVM. PSOWM is a modification of PSO by including a 

wavelet mutation to mutate a particle of swarm to reduce the risk of trapping in 

local minima. An experimental study shows that PSOWM performs better than the 

competitors in terms of convergence speed, solution quality, and solution stability 

(Ling et al., 2008). PSOWM might be more appropriate (rather than a standard 

PSO) for the optimization of SFSVM parameters as the SFSVM includes far more 

parameters to be optimized than SSVM includes. For example, the number of 

parameters existing in SFSVM with four inputs and three membership functions of 

FIS is 109.  

 Essentially, wavelet approach is a tool to model seismic signals by 

combining translations and dilations and of a simple, oscillatory function (mother 

wavelet) of a finite duration (Ling et al., 2007). The PSO’s mutating space is 

varying dynamically along the search based on the properties of the wavelet 

function. The resulting mutation operation aids the hybrid PSO to perform more 

efficiently and provides a faster convergence than the other real-value mutation.  
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5.3 HYPOGLYCAEMIA DETECTION USING SFSVM 

Hypoglycaemia detection using SFSVM follows the construction in Figure 

5.2. Some ECG parameters (x1, x2, …, xn) are used for the FIS inputs and the others 

(xn+1, xn+2, …, xm) are for the SVM inputs. The main components of SFSVM, which 

are FIS and SVM, are described in the following.         

5.3.1 Fuzzy Inference System

As in Figure 5.2, FIS is used to find the approximating function between the 

ECG parameters in the FIS inputs and hypo index . In general, three steps are 

conducted to find the approximating function; fuzzification, inference engine and 

 

Figure 5.3 Fuzzy Inference System 

                 
Figure 5.2: SFSVM for hypoglycaemia detection with input of ECG 
parameters 
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defuzzification (Gang, 2006), as described in Figure 5.3.     

Fuzzification 

The first step is fuzzification (or fuzzifier). Generally fuzzification is the 

mapping from a real-world space to a fuzzy space (Feng, 2006). The fuzzification is 

used to find the degree of the membership function (as a fuzzy set) of the ECG 

parameters, as illustrated in Figure 5.4. Thus, the input of the fuzzification is the 

ECG parameters and the output is the degree of membership function. Each point of 

the input has associated degree of membership, which is determined using the 

Gaussian membership function. 

Using the Gaussian, the membership degree  can be expressed as (Feng 

et al., 2009) 

 

 5.1

 

Where the xj (j =1,2, …, n) are the ECG parameters (nonfuzzy input); n is the 

number of the FIS inputs or ECG parameters.   and  are the mean value and 

 
 

Figure 5.4: Fuzzy input and the associated membership degree 
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the standard deviation of the Gaussian membership function, respectively, for the 

associate input xj. k denotes the number of membership function. For example, the 

mean and the standard deviation for the heart rate with three membership functions 

can be defined as ] and .  

Inference engine 

The second step is the inference engine. The inference converts the fuzzy 

input to the fuzzy output using an IF-THEN type fuzzy rule. Generally the rule 

consists of two parts: antecedence (the IF part) and consequence (the THEN part). 

The rules are given in the following (Xiaoguang and Lilly, 2004): 

 

IF x1 is AND x2 is AND … AND xn is  THEN  is h  5.2

 

where  (j = 1, 2, …, n ) is a fuzzy set of the associated input xj. Rule  = 1, 2, …, 

r denotes the rule number; r denotes the number of rules. The number of rules is 

(mf)n ; mf  is the number of membership functions and n is the number of inputs. For 

example, for a case of four FIS inputs with three membership functions the number  

of rules is 34 = 81. h is the fuzz singleton to be optimized.       

Defuzzification 

The third step of FIS is defuzzification. Defuzzification is used to translate 

the outputs of the fuzzy rules into a real world value (Feng, 2006). The output of the 

defuzzification  is given by  

 5.3

where 
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 5.4

 

FIS parameters 

The values of mean , standard deviation  and the fuzzy sets of the 

consequent part h  are determined through an optimization. Thus, the FIS 

parameters to be optimized are  and  in Eq. 5.1 and w  in Eq. 5.2. For 

example, in a case of FIS with two inputs (such as HR and RTpc) with three 

membership functions (mf), the total parameters for the fuzzification are 12 

(comprising 3 , 3 , 3  and 3 ) and the number of the IF-THEN 

rules is 9. Thus, the total number of the parameters is 21. 

5.3.2 Hybrid particle swarm optimization with wavelet mutation 

Hybrid particle swarm optimization with wavelet mutation (PSOWM) is 

intended to optimize SFSVM parameters. SFSVM with the optimal parameters 

leads to the optimal hypoglycaemia detection. The SFSVM parameters consist of 

FIS parameters and SVM parameters. PSOWM performs optimization considering 

an evolutionary technique based on the movement of swarms and inspired by the 

social behavior of bird flocking and fish schooling with wavelet mutation. 
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A typical algorithm of PSOWM can be expressed as in the Figure 5.5. 

Suppose a swarm at the n-th iteration is Z( ). Z( ) contains  particles with  

dimensions. More clearly, for a case SFSVM with the FIS of two inputs and three 

membership functions, each data point associates 25 parameters; it consist of 21 FIS 

parameters and 4 SVM parameters. Therefore, the dimension of Z( ) is 25. The 

number of particles  used in the optimization is 50. Each element of the swarm is 

presented by , in which j = 1, 2,…,  and k = 1, 2,…, . Thus, for the 

case mentioned above, the particles can be expressed in the matrix form in Figure 

5.6.  

The optimization is started by the generation of a random swarm Z( ), as an 

initialization. The initial swarm is then evaluated for the fitness function f(Z( )). In 

begin 

          1                    // iteration number 

         Initialize Z( )     // Z( ): swarm for iteration t 

         Evaluate f(Z( )) // f( ): fitness function 

         while (not termination condition) do 

         begin 

                     +1 

Update velocity  and position particle  using Eq. 5.5 and Eq. 

5.6, respectively 

               if v( )>vmax , v( )= vmax end 

if v( )< vmax, v( )=  vmax end 

Perform wavelet mutation operation by updating  

          using Eq. 5.9–5.11. 

Reproduce a new Z( ) 

Evaluate f(Z( )) 

         end 

end 

Figure 5.5: Pseudo code of PSOWM 
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the next iteration, the swarm is updated and is then evaluated again using the fitness 

function. This procedure is repeated until the termination condition is found. 

Essentially, the updating swarm at iteration n is conducted by the addition of 

velocity  to the previous position, as in the following formula  

 

 5.5

 

in which velocity  is defined as 

 

5.6

 

where z is the personal best position of a particle, and  is the best position among 

all particles (global best). The personal best position is the position which provides 

the minimum value of the objective function (defined later). r1 and r2 are random 

functions in the range [0 1], and  is inertia weight factor.  c1 and c2 are acceleration 

constants. q is a constriction factor to ensure the system does not converge 

prematurely, which is defined as 

       

   …  …  

   …  …  

… … … … … … … 

   …  …  

… … … … … … … 

   …  …  

       

Figure 5.6: The swarm of PSOWM for the SFSVM.  
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 5.7

 

with c = c1 + c2 and c > 4.  

The particle velocity v is limited by a maximum velocity vmax. The 

maximum velocity determines the resolution of the regions to be searched, between 

the present position and the target position. The value for the maximum velocity is 

typically 0.1 to 0.2.  Furthermore, the inertia weight is set as follow:  

 5.8

 where max and min are upper and lower inertia weights, respectively, and are set to 

1.2 and 0.1, respectively, N is the total iteration number and  is the iteration 

number.  

By the mutation operation, every element of a particle has a chance to 

mutate with a probability   [0 1]. A random number between 0 and 1 is 

generated for each element of particle such that if it is less than or equal to 

 After a mutation, an element of swarm  

becomes , with the operational formula 

 5.9

where max and min are the upper and lower boundary of the element of a particle, 

respectively;  is controlled by the Morlet wavelet function:    

 5.10

This function is scaled by a which is used to enhance the searching performance. c 

is generated in the range of –2.5a to 2.5a. The parameter a is set to vary with the 

value of /N as in the following: 
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  5.11

where wm is the shape parameter of the monotonic increasing function, g is the 

upper limit of the parameter a. After the wavelet mutation, a new swarm is 

generated.  The iterative process of the optimization is terminated if the defined 

iteration number is met.   

The objective function (or fitness function) of the PSOWM is similar to the 

objective function defined in the optimization in Chapter III, as in the following 

 

 5.12

 

where tr and tr are the sensitivity and specificity, respectively, obtained from the 

hypoglycaemia detection model which is tested by using a training data set; and v 

and v are the sensitivity and specificity, respectively, obtained from the 

hypoglycaemia detection model which is tested by using a validation data set.  The 

inclusion of v and v in the fitness function is to reduce the risk of overtraining 

(Astion et al., 1993).  is set as 0.58 to avoid the risk of low sensitivity.    

To force a high sensitivity in the detection, a parameter  is given by using 

the following definition, 

 5.13

 

The definition of  in Eq. 5.13  is to force the sensitivity and specificity to 

be higher than 70% and 40%, respectively.  

5.4 EXPERIMENTAL RESULT

In general the experiment was started by the preparation of the data, as 

presented in Chapter 4. The data involves training, validation and testing data sets. 

Afterwards, the optimization of PSOWM (as presented in Figure 5.5) was 
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conducted. In the “Evaluate f(Z( ))” in Figure 5.5, an SVM model is created with 

the base of the training data set and the parameters defined by Z( ), and the model 

is tested using the validation data set. Thus, the performances of the training and 

validation were obtained. Using the performances, the fitness function values can be 

calculated using Eq. 5.12. In the end of the optimization, the optimal model was 

found. The optimal model was then tested by the testing data set and the testing 

performance was obtained.   

For comparison and analysis purposes, the following approaches were 

conducted: 

- SFSVM employing FIS with two inputs and SVM with the other four 

inputs 

- SFSVM employing FIS with three inputs and SVM with the other 

three inputs 

- SFSVM employing FIS with four inputs and SVM with the other two 

inputs 

- SFSVM employing FIS with five inputs and SVM with the other one 

input 

- FIS with six inputs (without SVM) 

- FIS with three inputs and multiple regression with the other three 

inputs (FMR). 

In each of the arrangements, all possible combinations of the FIS inputs and 

the associated SVM inputs were examined. For example, the input combination of 

the “FIS with two inputs and SVM with the other four inputs” is HR and QTc for 

the FIS and TpTec, ToTec, RTpc and QTpc for the SVM. Furthermore, on the best of 

the approaches, the SVM inputs were varied, with the same FIS inputs. 

The following additional approaches were conducted: 

- SFSVM with the fuzzification which employs five membership 
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functions, 

- SFSVM with the fuzzification which employs three triangular 

membership functions, 

- SFSVM with the fuzzification which employs five triangular 

membership functions.    

The hypoglycaemia detections using the above approaches were conducted. 

The first result is the performance of the SFSVM which employs all six ECG 

parameters with different FIS input and different SVM input. The performance in 

terms of geometric mean is presented in Figure 5.7. It involves the performances of 

the SFSVM which employs the FIS with two inputs (Figure 5.7a), three inputs 

(Figure 5.7b), four inputs (Figure 5.7c) and five inputs (Figure 5.7d). The associated 

FIS inputs are presented on each of those figures, in the right side; the rest of the 

ECG parameters are used for the SVM inputs. The inputs are written in the forms of 

x1, x2, …, x6 (x1:HR, x2:QTec, x3:TpTec, x4:ToTec, x5:RTpc, and x6:QTpc.). The inputs 

which provide the best performance of the SFSVM are indicated in Table 5.1.  The 

best performance of the SFSVM which employs two FIS inputs is 78.34%, which is 

found when the FIS inputs are QTec and RTpc and the SVM inputs are the rest. This 

performance is lower compared to the best performance obtained by the method 

which employs three, four and five ECG parameters for the FIS inputs. Using the 

three input FIS, the SFSVM find the best performance with 83.22% in terms of the 

geometric mean, when the FIS inputs are HR, TpTec and ToTec. This performance is 

nearly the same with the best performance of which employs four and five ECG 

parameters in the FIS inputs. Using the four input FIS, the best performance is 

obtained when the FIS inputs are HR, TpTec, ToTec and QTpc. In the five one, the 

best is obtained when the FIS inputs are HR, QTec, TpTec, RTpc and QTpc. 

Furthermore, the approach with all six ECG parameters for the FIS inputs performs 

the least 
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FIS input 
1 : x1x2  9 : x2x6 
2 : x1x3  10 : x3x4 
3 : x1x4  11 : x3x5 
4 : x1x5  12 : x3x6 
5 : x1x6  13 : x4x5 
6 : x2x3  14 : x4x6 
7 : x2x4  15  x5x6 
8 : x2x5     

 

1 : x1x2x3  11 : x2x3x4 
2 : x1x2x4  12 : x2x3x5 
3 : x1x2x5  13 : x2x3x6 
4 : x1x2x6  14 : x2x4x5 
5 : x1x3x4  15 : x2x4x6 
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Figure 5.7: The geometric means of SFSVM with the different ECG 
parameters for the FIS input. The rest of ECG parameters for the 
SVM inputs. (x1:HR, x2:QTec, x3:TpTec, x4:ToTec, x5:RTpc, and 
x6:QTpc.)
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(a) Two inputs in the FIS
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(b) Three inputs in the FIS
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(c) Four inputs in the FIS
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.                    A further result is obtained by the variation of the SVM input in which 

the FIS inputs are kept same, which are HR, TpTec and ToTec. The result is 

presented in Table 5.2. The variation of the SVM inputs does not provide a better 

performance.  Thus the best performance of SFSVM is found with 87.22%, 79.41% 

and 83.22% in terms of sensitivity, specificity and geometric mean. This 

Figure 5.8: The ROC curve of SFSVM with the FIS inputs are HR, 
TpTec and ToTec and the SVM inputs are QTec, RTpc and QTpc.
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Table 5.1: The input combinations which provide the best performance of 
SFSVM for each FIS input number. x1:HR, x2:QTec, x3:TpTec, x4:ToTec,
x5:RTpc and x6:QTpc (the values in %) 

FIS Input 
Training Validation Testing 

Sens. Spec. Gm Sens. Spec. Gm Sens. Spec. Gm 

x2x5 96.99 80.77 88.51 83.46 74.43 78.82 81.95 74.89 78.34

x1x3x4 96.99 81.45 88.88 91.73 77.15 84.12 87.22 79.41 83.22

x1x3x4x6 95.49 82.81 88.92 90.23 79.41 84.65 88.72 77.83 83.10

x1x2x3x5x6 94.74 84.62 89.53 87.22 79.64 83.34 83.46 82.58 83.02

x1x2x3x4x5x6 88.72 68.10 77.73 81.20 66.52 73.49 78.20 63.12 70.26
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performance is found when the FIS inputs are HR, TpTec and ToTec and the SVM 

inputs are the rest, which are QTec, RTpc, and QTpc. Using these inputs, the ROC 

curve of the SFSVM can be presented as in Figure 5.8. 

Combination of FIS and multiple regression (MR), which forms FMR, with 

three inputs for the FIS and three input for the MR is tested. The performances of 

FMR with variation in the FIS inputs are presented in Figure 5.9. The FMR with the 

FIS inputs of TpTec, RTpc and QTpc shows better performance in term of geometric 

FIS input 
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2 : x1x2x4  12 : x2x3x5 
3 : x1x2x5   13 : x2x3x6 
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7 : x1x3x6  17 : x3x4x5 
8 : x1x4x5  18 : x3x4x6 
9 : x1x4x6  19 : x3x5x6 

10 : x1x5x6  20 : x4x5x6 
 

Figure 5.9: The geometric means of FMR with the different ECG 
parameters for the FIS input. The rest of ECG parameters are for the 
SVM inputs. (x1:HR, x2:QTec, x3:TpTec, x4:ToTec, x5:RTpc, and 
x6:QTp )
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Table 5.2: The performance of SFSVM in the variation of the SVM inputs; x2:QTec,
x5:RTpc and x6:QTpc (the values in %) 

SVM inputs
Training  Validation  Testing 

Sens. Spec. Gm  Sens. Spec. Gm  Sens. Spec. Gm 

x2x5x6 96.99 81.45 88.88  91.73 77.15 84.12  87.22 79.41 83.22

x2x5 96.24 81.9 88.78  88.72 76.7 82.49  85.71 77.15 81.32

x2x6 96.99 83.03 89.74  89.47 76.24 82.59  84.21 79.86 82.01

x2x6 96.99 82.81 89.62  90.23 79.64 84.77  79.7 77.15 78.41

x5 96.24 76.7 85.91  93.23 71.95 81.9  87.22 70.81 78.59

x5x6 96.99 82.58 89.5  90.98 76.24 83.29  87.97 77.15 82.38

x6 95.49 77.6 86.08  90.23 74.66 82.07  83.46 74.43 78.82
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mean compared to which that with the other FIS inputs. Furthermore, with the 

TpTec, RTpc and QTpc for the FIS inputs, the MR inputs are varied, and the result is 

presented in Table 5.3.  The results show the best performance is the FMR when the 

SVM inputs are HR, QTec and ToTec, This best performance is worse than the 

performance found by SFSVM, and thus SFSVM performs better than FMR.   

  

Figure 5.10: The fitness function value of the global best obtained 
in the optimization of the SFSVM with 200 iterations 

0 50 100 150 200
-11.8

-11.7

-11.6

-11.5

-11.4

-11.3

Iteration number

G
lo

ba
l b

es
t

Table 5.3: The performance of FMR in the variation of the SVM inputs; x1:HR,
x2:QTec and x4:ToTec (the values in %) 

SVM inputs 
Training  Validation  Testing 

Sens. Spec. Gm  Sens. Spec. Gm  Sens. Spec. Gm 

x1x2x4 88.72 68.33 77.86  78.95 66.06 72.22  79.70 64.25 71.56

x1x2 87.22 68.33 77.20  78.95 66.97 72.71  78.20 64.71 71.13

x1x4 88.72 66.29 76.69  84.21 61.99 72.25  81.95 61.31 70.89

x2x4 90.23 48.64 66.25  84.21 46.83 62.80  84.21 50.23 65.04

x1 88.72 67.87 77.60  79.70 66.06 72.56  78.20 63.57 70.51

x2 84.96 52.71 66.92  80.45 53.62 65.68  80.45 53.17 65.40

x4 89.47 43.21 62.18  84.21 41.18 58.89  84.96 45.48 62.16
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Figure 5.11: The fitness function value of the global best obtained in 
the optimization of the SFSVM with 250 iterations 
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Figure 5.12: The fuzzy membership functions of heart 
rate, TpTec and ToTec
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The fitness function value of the global best during the optimization of the 

SFSVM is described in Figure 5.10 and Figure 5.11, with the iteration numbers of 

200 and 250, respectively. The figures show that the convergence rates (Gao and 

Xu, 2011)  of the optimizations using these two different iterations are nearly same. 

It means that these two optimizations need nearly the same iteration number to find 

the same final result, which is the optimal fitness function. The optimal fitness 

function values obtained from the two optimizations are nearly same, which are -

11.7597 and -11.7586, for the 200 and 250 iteration numbers, respectively. It shows 

that the optimization with 200 iterations is enough to find the optimal fitness 

function.  

 

Furthermore, from the optimization, the optimal Gaussian membership 

Table 5.4: The Fuzzy rule tables 
ToTec: L 

TpTec 
L M H 

HR  

L 0.6771 0.4678 0.9495 

M 0.6077 0.3567 0.3708 

H 0.1213 0.2970 0.1034 

ToTec: M 

TpTec 
L M H 

HR  

L 0.3096 0.4835 0.8976 

M 0.6323 0.6014 0.8711 

H 0.9244 0.7437 0.5857 

ToTec: H 

TpTec 
L M H 

HR  

L 0.7290 0.1007 0.3653 

M 0.7011 0.1568 0.8690 

H 0.5284 0.6631 0.3623 
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functions of HR, TpTec and ToTec are found as in Figure 5.12. Three membership 

functions are presented for each of the three inputs. The membership function 

consists of Low (L), Medium (M) and High (H). The optimized fuzzy terms of the 

IF-THEN rule are presented in Table 5.4. Considering the fuzzy terms, one of the 

fuzzy IF–THEN rules can be presented as follows 

IF HR is “H” AND TpTec is “H” AND TpTec is “H” THEN h is 0.3623. 

The optimal SVM parameters of the SFSVM obtained from the optimization 

are presented in Table 5.5. The weights  and  are 0.14 and 0.83, respectively. 

It means that the weight factor provided to the hypoglycaemia class  is higher 

than that which is provided to the nonhypoglycaemia class . These weight 

factors are determined automatically in the optimization. The number of support 

vectors is 221. Thus, the support vector number is 38.43%, which is 221 divided by 

the number of training data (575). 

The SFSVMs which employ different fuzzification are tested and the result 

is presented in Table 5.6. The SFSVM which uses five membership functions (mf) 

provides a slightly worse performance than that which employs the three. In the 

testing the performances are worse in terms of sensitivity, specificity and geometric 

mean. Using the five mf, the geometric mean is 81.19%; the three one provides 

83.22%. The other different fuzzification is in terms of the function, which is 

triangular mf. Using five triangular mf, SFSVM performs 81.78% in terms of 

Table 5.5: The optimal SVM parameters of the SFSVM with the 
input of HR, TpTec and ToTec.

 C  0 1 

 5.04x104 31.95 0.14 0.83 

ns = Support vector number 
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geometric mean. This performance is similar to the performance of that which uses 

the five Gaussian mf. Another different fuzzification tested is five triangular mf. The 

performance of this approach is the lowest, which is 74.08% in terms of geometric 

mean. 

Table 5.6: The performance of SFSVM with different fuzzification 

mf  type mf 
number 

Training Validation Testing 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

Gaussian 
3 96.99 81.45 88.88 91.73 77.15 84.12 87.22 79.41 83.22

5 96.99 83.48 89.99 88.72 76.47 82.37 84.21 78.28 81.19

Triangular 
3 96.99 84.16 90.35 89.47 79.86 84.53 84.21 79.41 81.78

5 88.72 71.95 79.89 84.96 68.33 76.19 81.95 66.97 74.08

mf: membership function 
 

The performance comparison of SFSVM to the previous algorithms, which 

are SVM (Chapter 3) and SSVM (Chapter IV) is presented in Table 5.7. SFSVM 

perform better than the other two algorithms. In terms of geometric mean, SFSVM 

provides 83.22%, where SVM and SSVM provide 73.63% and 79.81%, 

respectively. The sensitivity of SFSVM is also higher than the others. In terms of 

specificity SFSVM performs  slightly worse compared to SSVM, but better than 

SVM.   
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Table 5.7: Performance comparison of the SVM–based algorithms 

Algorithm Input Sens 
(%) 

Spec 
(%) 

Gm 
(%) 

SVM (Chapter III) HR, QTec, TpTec, ToTec, RTpc QTpc 70.68 76.70 73.63 

SSVM (Chapter IV) HR, ToTec 80.45 79.64. 80.04 

SFSVM (Chapter V) HR, QTe, TpTec, ToTec, RTpc QTpc 87.22 79.41 83.22 

     
 

 

5.5 DISCUSSION

SFSVM algorithm has been developed and investigated for hypoglycaemia 

detection. The algorithm consists of two main components: FIS and SVM. The 

input is the ECG parameter. The output is hypoglycaemia or nonhypoglycaemia. 

The swarm optimization with wavelet mutation is used to optimize the FIS and 

SVM parameters. 

In the FIS, the Gaussian and triangular fuzzy membership functions have 

been tested. Furthermore, three and five membership functions were examined for 

the two functions. The result shows that with three membership functions the 

Gaussian distribution is the most suitable for this application, in which it provides 

the best performance.  

In the experiment the fuzzy membership functions for FIS have been 

obtained. There are three membership functions which are for Low (L), Medium 

(M) and High (H). The mean and the standard deviation of the Gaussian 

membership functions are determined automatically during the optimization. Thus, 

the obtained membership function is the optimum, considering the data of ECG 

parameters and the desired fitness function.  

A swarm optimization is used to optimize the FIS and SVM parameters. 
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PSOWM is chosen to optimize the parameters. PSOWM is the swarm optimization 

with wavelet mutation. The mutation is needed to avoid a trap in a local minima. 

PSOWN is chosen, instead of the PSO used in SSVM in Chapter III. The reason is 

that the number of parameters to be optimized for SFSVM is far more than which is 

used by SSVM; SSVM only has four parameters to be optimized, whereas SFSVM 

with three Gaussian mf and three inputs has 49 parameters. Even, SFSVM with five 

Gaussian mf and three inputs has 159 parameters. PSOWM showed a better 

performance than the competitor in some applications in terms of convergence 

speed, solution quality and solution stability (Ling et al., 2008). 

The inputs of SFSVM are varied to find the appropriate input in order that 

the SFSVM performs well. The best performance is obtained when the SFSVM 

employs all six ECG parameters, three of them (HR, TpTec and ToTec) for the FIS 

inputs and the other three (QTec, RTpc and QTpc) are for the SVM inputs. The 

exclusion of some ECG parameters in the input results in a lower geometric mean. 

This means that all six ECG parameters might provide contribution for the 

hypoglycaemia detection using SFSVM. 

The iteration number of the optimization is 200. In each iteration 50 

parameters are used. Thus, in each iteration, 50 FIS-SVM models are created and 

tested. The iteration number of 200 could be enough for the optimization, as the 

optimization which uses 250 iterations provides nearly the same results of the 

optimal fitness values (-11.7597 vs. -11.7586). Obviously, the 200 iterations one is 

far more efficient in terms of time in the experiment than the 250 iterations one. 

Furthermore, the ripples in the graphs in Figure 5.10  and Figure 5.11 might be 

caused by the wavelet mutation approach. The ripples could be essential to avoid a 

trap in local minima. Two graphs in Figure 5.10  and Figure 5.11 only include the 

fitness values of the global best particles. Therefore, the span of the fitness values 

seems narrow, which is from around –11.55 to –11. 76. If all the fitness values are 
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included in the graphs, the span could be wider; that is, the span could be from 

around –2.0, instead of –11.55. 

 The computational effort for the optimization using the PSOWM depends 

on the iteration given number and the time consumed in every iteration. Every 

iteration creates n Fuzzy-SVM training to make n Fuzzy-SVM models; n is the 

number particles of PSO. In this thesis, the iteration number is 200 and the particle 

number is 50. Hence, after 200 iterations the optimization terminates. Another 

termination criterion is the gradients of the global best during m iteration; if the 

gradients are less than a defined value, the optimization terminates. It means that if 

the optimal values do not change significantly during m iteration, the optimization 

terminates.      

  The inclusion of FIS in SFSVMcontributes to an improved performance. 

This can be seen by comparing SFSVM with SSVM, in which the SSVM does not 

include FIS. SFSVM provides a significantly higher sensitivity than SSVM has 

(87.22% vs. 79.70%). Whereas, the specificity of SFSVM is slightly lower than 

SSVM (79.41% vs. 81.22%). In more compact terms, which is geometric mean, 

SFSVM performs better than SSVM (83.22% vs. 80.46%). Including FIS in 

SFSVM provides a new input, which is used by SVM. This new input is provided 

by the FIS. Furthermore, if only FIS is used, the performance is worse in which the 

geometric mean is 70.26%. 

5.6 CONCLUSION

A hybrid FIS and SVM with the swarm optimization (SFSVM) has been 

developed and tested for hypoglycaemia detection. SFSVM is a more advanced 

algorithm compared to the SVM and SSVM, developed in the previous chapters. In 

SFSVM, some ECG parameters are applied to the FIS part and the others are 

applied to the SVM part. The FIS with its inputs provide an index which is used for 

the additional input of the SVM part of the SFSVM. To find the appropriate inputs, 
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variations of the inputs are investigated. The variations are conducted both for the 

FIS and the SVM parts. The SFSVM with different fuzzification approaches are 

also presented. Compared to the previous algorithm, which are SVM and SSVM, 

SFSVM performs better. SFSVM which applies HR, TpTec and ToTec for the FIS 

part and QTec, RTpc and QTpc for the SVM part performs the best with  acceptable 

sensitivity, specificity and geometric mean of 87.22%, 79.41% and 83.22%, 

respectively. The optimization of the FIS and SVM parameters using PSOWM with 

the defined fitness function can perform well.  
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CHAPTER 6.
DISCUSSION AND CONCLUSION

6.1 DISCUSSION

Hypoglycaemia is a serious problem for the management of type 1 diabetes 

(Pedersen-Bjergaard, 2009). This research concerns a hypoglycaemia detection 

strategy which is an essential system to recognize a hypoglycemic episode. Three 

main algorithms are developed, namely SVM, SSVM and SFSVM. These three 

algorithms are introduced for hypoglycaemia detection. ECG parameters (such as 

heart rate) are employed as inputs for the algorithms. The algorithms are tested 

using the ECG parameters obtained from clinical electrocardiograms of patients 

with type 1 diabetes.   

The performances of the three algorithms have been presented. The SSVM 

performs better than SVM (80.04% vs. 73.63%, in terms of geometric mean). 

SSVM employs the SVM parameters which are optimized using a particle swarm 

optimization (PSO), whereas SVM does not. The better performance of SSVM 

could be as a result of the swarm optimization effectively optimizing the SVM 

parameters, and hence the SVM parameters employed in the SSVM are the optimal 

ones, whereas the SVM might employ the suboptimal ones. The concerned SVM 

parameters are C (or the cost parameter),  (the weight factors) and  (the 

RBF kernel function width). In an SVM, C is in the penalty term of  (Eq. 

3.25).  is a slack variable which is the error committed by allowing the supporting 
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hyperplane to be unconstrained by a data point.  Considering the term, the C value 

is the trade-off between the margin size and error. The larger C value could yield to 

the tendency of the SVM to have a small margin. The smaller C value could result 

in the tendency of the SVM to have a large margin, which might ignore the noisy 

points near the decision surface. Thus, the large C relates to the small margin, and 

the small C relates to the large margin. The small margin might relate to a good 

performance in the training, but it might be poor in the testing (the classification of 

the unseen data). Conversely, the larger margin might relate to the worst 

performance in the training, but it might be better in the testing. Moreover, in the 

SVM,  are used in the penalty terms of 

 (Eq. 3.28). Therefore,  are possible to provide the 

different penalties to the different class data.  

The SFSVM performs better than the SSVM; 87.22% vs. 80.45% in terms 

of sensitivity and 79.41% vs. 79.64% in terms of specificity. SFSVM differs from 

SSVM in which the SFSVM includes a fuzzy inference system (FIS), whereas the 

SSVM does not. Thus, the better performance could be as a result of the inclusion 

of the FIS. This FIS inclusion provides a new input  for the SVM part of the 

SFSVM. This input  is the output of the FIS, which has the input of ECG 

parameters. In other words, the FIS converts the ECG parameters into a new value  

using an approximation function  = g(x), obtained from the training of the FIS. 

Kosko (1994) presented a fuzzy system as a universal approximator and Zeng and 

Singh (1996) studied different classes of fuzzy systems for approximation 

functions. 

When the SVM part of the SFSVM is not included, the performance 

decreases. It means that the hypoglycaemia which employs only the FIS performs 

worse than the SFSVM. The performances of the FIS vs. the SFSVM are 78.23% 

vs. 87.22%, in terms of sensitivity, and 63.12% vs. 79.41%, in terms of specificity. 
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Thus, the combination of the FIS and the SVM which forms the SFSVM provides 

the advantage of the better performance, compared to the FIS only or the SVM 

only.   

It would be interesting to present the performances of hypoglycaemia 

detections with different algorithms used in the other studies. A linear discriminant 

analysis (LDA) provides the average performances of the hypoglycaemia detection 

of  67.79% and 50.40% in terms of sensitivity and specificity, respectively 

(Alexakis et al., 2003). In the experiment, the inputs of the LDA are RTp, the 

amplitude of T-wave, T-wave skewness and T-wave kurtosis. A study of the 

artificial neural network (ANN) for hypoglycaemia detection results in the average 

performance of 75.43% and 64.10% in terms of sensitivity and specificity, 

respectively (Alexakis et al., 2003). A multiple regression fuzzy inference system 

(FMR) is employed for hypoglycaemia detection, which uses the input of HR and 

QTec (Ling and Nguyen, 2011). The best testing performance of the FMR is 

75.86% and 50.98% in terms of sensitivity and specificity, respectively. The 

performances of those three algorithms (LDA, ANN and FMR) are worse than the 

SSVM and SFSVM. The performances of the three algorithms might not be able to 

be compared directly to the SSVM and SFSVM because the type of the 

hypoglycemic ECG parameters might be different. For example, the FMR used the 

naturally hypoglycemic ECG parameters, whereas the SSVM/SFSVM used the 

hyperinsulinemic one. The hyperinsulinemic hypoglycaemia might provoke more 

pronounced electrocardiographic alteration than the natural one does (Robinson et 

al., 2004), and hence the hyperinsulinemic one might be easier to be detected by the 

model.  

Using the same data set the FMR still performs worse than the SFSVM; 

79.70% vs. 87.22%, in terms of sensitivity, and 64.25%% vs. 79.41%, in terms of 

specificity. The FMR comprises FIS and multiple regression (MR), whereas the 
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SFSVM comprises FIS and SVM. Thus, the SFSVM differs from FMR by 

employing SVM, instead of MR. Using the six ECG parameters for the input, the 

hypoglycaemia detection which employs SVM performs better than that which 

employs MR; 75.48% vs. 71.37%, in terms of geometric mean. The better 

performances of SVM over MR are also presented in Xue et al. (2004), Yao et al. 

(2004), Pourbasheer et al. (2010).  

The objective function of the optimization of the SSVM and SFSVM 

includes the SVM weight factors: . Using the six ECG parameters for 

the input, the SSVM performs 84.21% and 67.65% in terms of sensitivity and 

specificity, respectively (if the weight factors are included), whereas it performs 

49.62% and 94.34% in the same terms if the weight factors are not included in the 

optimization (the weight factors are set to 1). The optimization of the weight factors 

in the SSVM/SFSVM is used to prevent a low sensitivity. This research has the risk 

of low sensitivity as the data number of the hypoglycaemia class is far less than the 

nonhypoglycaemia class. To tackle this type of risk, the appropriate weight factors 

should be used (Batuwita and Palade, 2010, Hwang et al., 2011). In other studies, 

Melgani and Bazi (2008), Lin et al. (2008) and (Wei et al., 2011) studied the 

optimizations of SVM parameters using a swarm technique. The optimization 

strategies used in those studies does not include the weight factors. Thus, the 

strategy might be not appropriate for the data set used in this research. Including the 

SVM weight factors in the swarm optimization is one of the novelties provided by 

this research.      

The objective of the optimization of the SSVM/SFSVM includes the 

performance of training and validation. Thus, the objective function includes an 

unseen data subset, instead of only the seen data subset which is the training data. 

Usually, the strategy of the optimization of SVM parameters does not include the 

performance based on the validation data subset. Huang and Dun (2008) and Lin et 
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al. (2008) employed the accuracy of the training performance for the fitness 

function. Melgani and Bazi (2008) employed the number of support vectors for the 

objective function based on the training data. Wei et al. (2011) considered the 

correct and false classification rates based on the training data. The inclusion of the 

validation performance in the SSVM/SFSVM has the benefit of preventing an over-

fitting.  In the other study, Cheng et al. (2012) avoids the over-fitting in the SVM 

parameter optimization by limiting the number of SVM support vectors. 

Conceptually, too many support vectors could result in a poor generalization. 

Conversely, too few support vectors could result in a poor training performance. 

Thus, the support vector is a trade-off between the model accuracy in the training 

and the model generalization. The strategy used by the SSVM/SFSVM in the 

avoiding of over-fitting is by inclusion of the validation performance. It means that 

a part of the objective of the optimization is to maximize the validation 

performance. The high validation performance means the over-fitting could be 

reduced and also a good generalization could be achieved. Although the support 

vector number is not included in the fitness function of the SSVM/SFSVM, 

indirectly the SSVM/SFSVM could achieve the appropriate support vector number 

as a good generalization is a part of the objective of the optimization.         

To find the appropriate inputs of the SSVM/SFSVM, variations of the 

inputs are tested, rather than using an optimization such as in Melgani and Bazi 

(2008). The benefit of this strategy is that the performances of the algorithms with 

the different inputs can be shown. Furthermore, the tests of the variation inputs are 

still possible to be conducted. In Melgani and Bazi (2008) the input is optimized 

and therefore the most appropriate input is determined by the optimization. 

In summary, the three algorithms with the base of SVM have been 

developed for hypoglycaemia detection. The SFSVM shows a better performance 

than the other two: SVM and SSVM. The best performances found by the SFSVM 
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are 87.22%, 79.41% and 83.22% in terms of sensitivity, specificity and geometric 

mean, respectively, with inputs of HR, QTec and TpTec for the FIS part and ToTec, 

RTpc and QTpc for the SVM part.     

Topics for further research 

Concerning the inputs, the six ECG parameters related to the ventricular 

repolarization (VR) have been investigated for hypoglycaemia detection. These VR 

parameters are in the form of the interval from a point to another point in an ECG 

signal. There are the other forms of ventricular repolarization parameters. One of 

the forms is VR variability, which is a physiological phenomenon where the 

duration of VR varies from beat-to-beat. A future work might need to investigate 

VR variability for hypoglycaemia detection. 

Recent studies show an increase of VR variability related to a variety of 

diseases, such as ventricular tachycormardia or fibrillation (Haigney et al., 2004), 

dilated cardiomyopathy (Berger et al., 1997) and myocardial Ischemia 

(Murabayashi et al., 2002). The process relating to beat-to-beat fluctuation of 

repolarization is likely mediated by stochastic behavior of ion channels (Zaniboni et 

al., 2000).  

An initial study of VR variability for hypoglycaemia detection was  

conducted in my research group (Nuryani et al., 2011). The study showed that the 

variabilities of QTec, TpTec, ToTec and RTpc in hypoglycaemia were significantly 

different from that in nonhypoglycaemia. An algorithm for hypoglycaemia 

detection with the input of VR variability was also developed. Ukena et al. (2011) 

also reported a higher VR variability in hypoglycaemia than that which is in 

normoglycaemia in a patient with type 2 diabetes. Thus, a further study of 

hypoglycaemia detection based on VR variability might contribute to the 

technology of hypoglycaemia detection.         

In terms of the algorithm employed for hypoglycaemia detection, the 
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SFSVM has showed a good performance. In the SFSVM, FIS is combined with 

SVM in which the FIS output is used for the SVM input, together with the other 

ECG parameters. A further study about the combinations of FIS and SVM might 

result in more advanced performance.  

In addition, in terms of optimization, the other optimization techniques, such 

as genetic algorithm (GA) (Goletsis et al., 2004), might be able to be investigated to 

find the optimal SVM parameters. A hybrid of PSO and fuzzy regression (PSO-FR) 

might be a potential algorithm to be applied for a hypoglycemia detection. PSO-FR 

could handle an application having a nonlinear nature, small amount of 

experimental data, existing outliers and polynomial form (Chan et al., 2011a). 

Finally, further work could also investigate the implementation of the model to a 

real time device.     

In terms of patient numbers, this research involves five patients only. 

However, the phenomenon of hypoglycaemia contributing to the alteration of an 

electrocardiogram is also supported by the other studies, such as the Heger et al. 

(1996), the Koivikko et al. (2008) and the Christensen et al. (2010), as presented in 

more detail in Chapter 2. Heger et al. (1996) studied with 24 type 1 diabetes 

mellitus (T1DM) and 7 healthy subjects. Koivikko et al. (2008) had with 16 T1DM 

and 8 healthy subjects. Christensen et al. (2010) involved 21 T1DM patients.  

In addition, the result of this work might require further validation using 

different techniques of ECG measurement. This validation might assist in finding an 

appropriate method of the ECG feature extraction which could result in a better 

performance.   

6.2 CONCLUSION

This thesis has presented the contributions to hypoglycaemia detection 

technology. The models of hypoglycaemia detection have been developed and 
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examined. The models are based on the phenomenon that hypoglycaemia alters the 

ventricular repolarization of the heart. Considering the phenomenon, several ECG 

parameters related to the ventricular repolarization have been investigated. Several 

ECG parameters were introduced for hypoglycaemia detection: the interval from Q-

point to the peak of T-wave (QTpc), T-wave interval or the interval from the 

beginning of T-wave to the end of T-wave (ToTec), and the interval from the peak 

of T-wave to the end of T-wave (TpTec). These parameters show contributions to 

the detection of hypoglycaemia.  In addition, the hybrid algorithms with the base of 

SVM were introduced and tested for hypoglycaemia detection. The main algorithms 

are support vector machine (SVM), the hybrid of SVM and a swarm optimization 

technique (SSVM) and the hybrid of fuzzy inference system (FIS), SVM and PSO 

(SFSVM). In the SSVM, all the possible combinations of the ECG parameters are 

tested for the input. The SSVM performs better than SVM. In the SFSVM, FIS and 

SVM are combined and the FIS and SVM parameters are optimized using a swarm 

technique. In terms of computational time, the three algorithms differ in the off-line 

optimization stage. The computational time can be controlled so that the time could 

still be acceptable.   In the experiment, the SFSVM performs better than the other 

two algorithms (SVM and SSVM), with the sensitivity, specificity and geometric 

mean of 87.22%, 79.41% and 83.22%, respectively.  
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Appendix A. Margin between two hyperplanes 

 
 
 

Figure A.1: Margin m between two supporting hyperplanes  

Suppose the margin is m, it can be computed as 

 
 A.1

which is the projection of (x x+) in the direction of w. The equation above can be 

rewritten as 

  A.2

Considering Eqs. 3.2 and 3.2, Eq. A.2 can be written as follows:  

 
 A.3

  A.4
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Appendix B. Lagrangian dual optimization  

Considering Eq. 3.13, the construction of the Lagrangian for the optimization 

problem is  

 B.1

 

B.2

 

This gives the Lagrangian optimization problem as 

 B.3

Subjects to  

  B.4

Since the objective function is convex and the constraint is linear, the 

solution for and b has to satisfy the following KKT conditions:  

Gradient condition  
B.5

  
B.6

Orthogonally condition  B.7

Feasibility condition  B.8

Non-negative condition  B.9

The Lagrangian optimization can be solved through the partial derivative as 
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in the following, 

 B.10

 

 

B.11

 
B.12

The Lagrangian dual optimization problem, as  

  
B.13

. 

Bias b can be determined as follow:  

  
B.14

Finally, the optimal decision surface can be defined as 

  B.15

 
 B.16
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Appendix C. Soft-margin nonlinear support vector machine 

C.1

 

The Lagrangian construction of the optimization problem is modified as 

C.2

This gives the Lagrangian optimization problem as 

C.3

Subject to the constraints, 

C.4

 C.5

 

Since the objective function is convex and the constraint is linear, the 

solution for , , w, , b has to satisfy the following KKT conditions: 

 
 C.6

 
 C.7

 
 C.8

 C.9
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 C.10

 C.11

 C.12

 
 C.13

 
 C.14

The partial derivatives are 

 
C.15

 
C.16

 
C.17

 
C.18

  C.19

 

Substituting partial derivatives above to the Lagrangian of the optimization problem  

gives the Lagrangian dual as 

  
C.20

This Lagrangian dual for soft-margin SVM is same with the Lagrangian dual for 

hard-margin SVM. Therefore the objective functions of the optimization problems 

for both SVMs are same. The difference is in the constraint. In the soft-margin 

SVM, the constraint can be stated as 

   C.21
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Appendix D. Sequential minimal optimization (SMO) for SVM  

The sequential minimal optimization (SMO) is used to find the Lagrangian 

multiplier  in Eq. 3.30, which is the solution of the following equation 

 D.1

where  

 
D.2

subjects to  

 D.3

and  

 
D.4

  

This maximization problem is equivalent to a minimization problem by multiplying 

it  by    –1,so that it becomes the following minimization problem    

 D.5

 D.6

where  
  D.7

Or  
 

 D.8

Thus, to find , minimization of  ( ) in Eq. D.8 is used. 

Eq. D.8 can be written in another form: 
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  D.9

where: 

- q = [1,…,1]T is the vector of all ones. 

-  =[ 1, 2, …, l]T 

 

-  Q is an l x l symmetric matrix (l is the number of training data), with 

components:  

-  -  D.10

 
Furthermore, the constraint defined in Eq. 3.31, , can be written in the 
other form:
 

D.11

where Y is the vector 1 x l with components yi.  

The difficulty in the minimization of ( ) is that Q is a dense matrix which 

yields a problem of memory and is time consuming (Plat, 1999). SMO solves this 

problem by decomposition such that at each step two Lagrangian multipliers  are 

optimized and update the SVM at the end of each optimization.  

The algorithm can be described as follow: Chen et al. (2006): 

a) Defining 1 for the initial solution (iteration n = 1).  

b) If n is a stationary point of the minimization of ( ), stop. Otherwise, a two–

element working set W = {i,j} is determined.  

c) Defining V {1,…,l}\W  (the set V contains all those elements of {1,…,l} 

which are not in W) 

d) Let  and  be the sub-vectors of n corresponding to W and V, 

respectively. 

e) Considering to Eq. D.9, solve for the following sub-problem with the variable 

w:    

where  
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D.12

D.13

D.14

 D.15

        

 
D.16

 
 

f) Set   to be the optimal solution of the sub-problem Eq. D.16 and 

. Set  and go to Step b. 

The index w is updated at every iteration, but for simplicity, w is used instead of wn.  

The stopping criteria consider that the feasible solution of  is a stationary 

point of Eq. D.9 (or in another form, Eq. D.10) if and only if there is a number  

and two non-negative  and  such that (Chen et al., 2006) 

 D.17

with the constraints:  

 D.18

where ( )  Q  – q is the gradient of ( ). Eqs. D.17 and D.18 result in the 

following equation: 

 D.19

Because of that yi {+1,–1}, considering Eq. D.19,  can be expressed as follow: 

 D.20

where  

 

 
D.21
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and   

 
D.22

  
- Therefore, a feasible  is a stationary point of problem in Eq. D.10 if and only 

if  

 D.23

and the stopping criteria can be defined as follow  

 D.24

where s is tolerance; typically s = 10-5.  

 

 

 

     

-  
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Appendix E. Script Implementation of the Algorithms
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-  

- % ----- swarm based fuzzy support vector machine ---- 
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-  

- % --- PSO with wavelet mutation ---- 
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-  

- % --- wavelet mutation ----- 
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