LOCALISATION OF WIRELESS SENSOR NETWORK
WITH MOBILE BEACON BY DYNAMIC PATH

By
Songsheng Li

Major: Computer and Communication
Supervisor: Dr. Xiaoying Kong
Co-supervisor: Prof. David Lowe

Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

22 April 2013
© 2012 by Songsheng Li
STATEMENT OF ORIGINALITY

I, Songsheng Li, declare that I am the author of this document and that I have not used fragments of text from other sources without proper acknowledgment, and that theories, results and designs of others that I have incorporated into my report have been appropriately referenced and all sources of assistance have been acknowledged.

Signature:
Date: 22 April 2013
ABSTRACT

Small size and low-cost sensors are practicable because of evolution of the semiconductor field, which is led by increasing miniaturisation. They are still limited in processor capacity, memory size and energy resources; however, ubiquitous wireless is added to extend their communication capacity. Wireless sensor networks (WSN) are formed by large numbers of such sensors and can be used to monitor a field of interest in military and civilian areas.

The resulting data are only meaningful when combined with geographical position information of the sensors. Both the Global Positioning System (GPS) and the Global System for Mobile Communication (GSM) are hungry for energy and expensive, and are not suitable to be used extensively in every sensor. But localisation is essential in WSN, which should be implemented with help of some beacons that are equipped with GPS or GSM.

A mobile beacon (MB) is the replacement of many static beacons; it is movable and flexible and can be powerful so that some heavy computational mathematical methods (such as probability and graph theory) could be applied in an algorithm of localisation.

The walking path of a MB will determine the rate of coverage and accuracy of localisation. The static path is planned before action and is suitable for regular terrain; whereas, the dynamic path is decided in real-time action depending on the demand of unknown sensors, and is more efficient than the static path.

Concentrating on the algorithm of dynamic path to reach a better result in terms of accuracy, coverage, and trajectory of localisation in WSN, a framework of dynamic path of mobile beacon (DPMB) is proposed first, and then reinforcement learning (RL) is fit to the DPMB as the inner controller to improve the performance. Finally, direction is employed to assist the MB to find a better next position instead of distance in the DPMB. Simulations demonstrate that the performance is improved gradually.
ACKNOWLEDGEMENTS

I wish to express my gratitude to my supervisors Dr. Xiaoying Kong and Prof. David Lowe for their suggestions, logical way of thinking, encouragement and generous support. I would be lost without their guidance.

I would like to extend my appreciation to the administrative officers of the FEIT and UGS for their friendly support.

Finally, I wish to express my deepest gratitude to my family for helping me get through the difficult times. Without their encouragement, it would have been impossible for me to complete this research work.
CONTENTS

STATEMENT OF ORIGINALITY .. II

ABSTRACT .. III

ACKNOWLEDGEMENTS .. IV

CONTENTS .. V

LIST OF FIGURES .. VIII

LIST OF TABLES .. XI

LIST OF ABBREVIATIONS .. XII

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. Topic overview .. 1

1.2. Motivation and Objectives ... 3

1.2.1. Motivation .. 3

1.2.2. Objectives .. 3

1.2.3. Research methodology ... 5

1.3. Thesis Overview ... 5

1.4. Related Publications ... 7

CHAPTER 2 ... 9

LITERATURE REVIEW: ... 9

LOCALISATION OF WIRELESS SENSOR NETWORK 9

2.1. Wireless Sensor Networks ... 9

2.2. Elements of Localisation ... 11

2.2.1. Beacon ... 13

2.2.2. Mobile Beacon .. 13

2.2.3. Distance Estimation ... 14

2.2.4. Position Computation ... 18

2.3. Algorithm of Localisation ... 21

2.3.1. Centralised Localisation .. 23

2.3.2. Range-based Localisation ... 24

2.3.3. Range-free Localisation .. 28

2.4. Localisation with a Mobile Beacon ... 31

2.4.1. Geometry ... 32

2.4.2. Perpendicular Bisector ... 35

2.4.3. Probability .. 38
5.3. Simulation .. 129
 5.3.1. R_m and Density .. 130
 5.3.2. Starting Point ... 132
 5.3.3. VCS vs. DPMB ... 133
5.4. Summary .. 136

CHAPTER 6 ... 137
COMPARISON OF ALGORITHMS ... 137
 6.1. Method .. 137
 6.2. Results ... 139
 6.3. Comparison with static path algorithms .. 140

CHAPTER 7 ... 143
CONTRIBUTIONS AND FURTHER RESEARCH ... 143
 7.1. Contributions ... 143
 7.2. Limitations ... 144
 7.3. Future research ... 145
REFERENCES ... 147
LIST OF FIGURES

Figure 1-1: Evolution to dynamic path of mobile beacon ... 2
Figure 1-2: Standard research flow ... 6
Figure 2-1: \(V_a \) and \(V_b \) in polar coordinate .. 14
Figure 2-2: TDoA .. 16
Figure 2-3: Position estimation with messages ... 18
Figure 2-4: Position computation using simultaneous equations of trilateration ... 18
Figure 2-5: The ideal and realistic result of trilateration .. 19
Figure 2-6: Multilateration .. 19
Figure 2-7: Bounding boxes .. 20
Figure 2-8: Triangulation .. 21
Figure 2-9: PinPoint ToA .. 24
Figure 2-10: Implementation of AoA .. 25
Figure 2-11: DV-distance in APS ... 27
Figure 2-12: Euclidean in APS ... 27
Figure 2-13: From beacon table to combined table ... 30
Figure 2-14: SCAN in APIT aggregation ... 31
Figure 2-15: ADO and moving pattern ... 33
Figure 2-16: RSS ... 34
Figure 2-17: Coordinate estimation ... 34
Figure 2-18: RSS moving pattern ... 35
Figure 2-19: Beacon point selection ... 36
Figure 2-20: Position of unknown sensor ... 37
Figure 2-21: RSSI as function of distance ... 38
Figure 2-22: PDF as function of distance when RSSI=77 ... 38
Figure 2-23: Evolution of position estimation .. 40
Figure 2-24: Four static paths ... 45
Figure 2-25: Reference movement ... 47
Figure 2-26: Candidate area for two references .. 47
Figure 2-27: Candidate area for only one reference ... 48
Figure 2-28: Trajectory for BRF .. 50
Figure 2-29: Trajectory for BTG .. 50
Figure 3-1: Six next positions ... 54
Figure 3-2: Work flow .. 60
Figure 3-3: First triple positions .. 61
Figure 3-4: Unique position .. 66
Figure 3-5: No new target .. 70
Figure 3-6: Choice of next position ... 72
Figure 5-12: DPMB for $R_m=10$... 135
Figure 6-1: DPMB vs. RL vs. VCS .. 140
Figure 6-2: Steps for different algorithms ... 142
LIST OF TABLES

Table 2-1: Comparison of two particle algorithms ... 43
Table 2-2: Performance of the four static paths ... 45
Table 3-1: Message .. 55
Table 3-2: MBP .. 58
Table 3-3: Neighbour (NB) ... 58
Table 3-4: Heard .. 59
Table 3-5: Weight .. 69
Table 3-6: P and T matrix .. 72
Table 4-1: RL and DPMB ... 92
Table 4-2: Receiver (R) ... 96
Table 4-3: Average steps and settled number ... 109
Table 5-1: Receivers (R) in VCS .. 119
Table 5-2: Starting from the corner .. 130
Table 5-3: Starting from the centre ... 131
Table 5-4: VCS vs. DPMB in $R_m=10$.. 133
Table 6-1: Comparison of three algorithms .. 137
Table 6-2: Results of three algorithms in $R_m=10$.. 139
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADO</td>
<td>Arrival and Departure Overlap</td>
</tr>
<tr>
<td>AoA</td>
<td>Angle of Arrival</td>
</tr>
<tr>
<td>AoS</td>
<td>Area number of the Sensor</td>
</tr>
<tr>
<td>APIT</td>
<td>Approximate Point in Triangulation Test</td>
</tr>
<tr>
<td>APS</td>
<td>Ad Hoc Positioning System</td>
</tr>
<tr>
<td>BTG</td>
<td>Backtracking Greedy</td>
</tr>
<tr>
<td>BRF</td>
<td>Breadth-First</td>
</tr>
<tr>
<td>CoM</td>
<td>Count of Message</td>
</tr>
<tr>
<td>DPMB</td>
<td>Dynamic Path of Mobile Beacon</td>
</tr>
<tr>
<td>DV</td>
<td>Distance Vector</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communication</td>
</tr>
<tr>
<td>GSW</td>
<td>Group Similarity Weight</td>
</tr>
<tr>
<td>LMB</td>
<td>Localisation with a Mobile Beacon</td>
</tr>
<tr>
<td>MB</td>
<td>Mobile Beacon</td>
</tr>
<tr>
<td>MBAL</td>
<td>Mobile Beacon-Assisted Localisation</td>
</tr>
<tr>
<td>MBP</td>
<td>Mobile Beacon Position</td>
</tr>
<tr>
<td>MDS</td>
<td>Multidimensional Scaling</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimation</td>
</tr>
<tr>
<td>QoN</td>
<td>Quantity of Neighbours</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability Distribution Function</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RL</td>
<td>Reinforcement Learning</td>
</tr>
<tr>
<td>RSS</td>
<td>Radio Signal Strength</td>
</tr>
<tr>
<td>RSSI</td>
<td>Received Signal Strength Indicator</td>
</tr>
<tr>
<td>SDP</td>
<td>Semidefinite Programming</td>
</tr>
<tr>
<td>SMC</td>
<td>Sequential Monte Carlo</td>
</tr>
<tr>
<td>ToA</td>
<td>Time of Arrival</td>
</tr>
<tr>
<td>TDoA</td>
<td>Time Different of Arrival</td>
</tr>
<tr>
<td>VCS</td>
<td>Vector Cosine Similarity</td>
</tr>
<tr>
<td>WSN</td>
<td>Wireless Sensor Networks</td>
</tr>
</tbody>
</table>