A Smart Wheelchair System using a Combination of Stereoscopic and Spherical Vision Cameras

By

Jordan Son Nguyen

Submitted to the Faculty of Engineering and Information Technology

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at the University of Technology, Sydney

November 2012

Certificate of Authorship / Originality

I, Jordan Son Nguyen, certify that the work in this thesis has not previously been submitted for a degree, nor has it been submitted as part of the requirements of a degree, except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research work and in the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

November 2012

Acknowledgements

First of all, I would like to thank my supervisors, Dr. Steven Su and Professor Hung Tan Nguyen, for giving me the opportunity to pursue postgraduate research on this project at the University of Technology, Sydney. I have an immeasurable amount of passion for this research and its purpose, so your ongoing support and guidance has meant so much to me and has played a huge role in focussing my work and helping me get through this thesis on time.

I would like to thank Ray Clout, Dr. Greg Hunter, Dr. Tuan Nghia Nguyen, and Dr. Tuyen Hoang Trieu for their help over the years with various aspects of the hardware and software designs in the TIM smart wheelchair. I greatly appreciate having known and worked with all of you, and I hope this will continue again in the near future.

Thanks to Dr. Yvonne Tran and Professor Ashley Craig at the Royal Rehabilitation Centre in Ryde for assisting me in gaining access to the facilities there for testing and for the all the help in gaining valuable contacts for the experimental studies on the wheelchair.

I would also like to thank Gunasmin Lye, Phyllis Agius, Craig Shuard, Pym Bains, Juliana Chea, and Racheal Laugery for their constant willingness to help and provide guidance with the many formal procedures related to this thesis. The never-ending thesis-related forms, travel documents, human ethics approval documents, and so on, would have taken up many more valuable hours if I were not lucky enough to be able to call or visit you wonderful people when stuck. Not to mention I always enjoyed just dropping in for a chat at the same time.

To my colleagues at the Centre for Health Technologies, I have very much appreciated working in the same environment as all of you. Each of you are kind-hearted and insanely skilled in various areas, and I wish you all the very best.

Many thanks to everyone involved in the experimental studies, whether undertaking the tests or helping out, each of you have contributed significantly to the results in this thesis.

To the lovely people in MCU marketing and FEIT marketing, you have all made my time during this thesis an unforgettable experience. You have contributed greatly to my many media appearances with the TIM smart wheelchair, but most important of all you have all been great friends to me.

To all of my friends who have kept me sane and contributed largely to the fun I have had over these past years in uni, I thank you all. Work is always better when I know I have people who are always there to support me the way I am for them.

And last but not least, I would like to thank my amazing family. The greatest credit of all goes to you because none of this would have ever been possible without having you wonderful people in my life. My dad Hung has been my lifelong inspiration and mentor, and my mum Lesley has always been the light that guides me, she means everything to me. My sister and brothers Zohara, Alexander and Tristan are much more than siblings, we support and look out for one another and nothing will ever come between us. My grandparents Shirley and Rob are always there for me and I only hope to make you proud. I love you all more than words can describe and your constant love, support, and guidance over the years have allowed me to become the person I am today.

To all who have helped

Table of Contents

List of Figures	IV
List of Tables	XI
Nomenclature	XIII
Abstract	XV
Chapter 1: Introduction	1
1.1 Problem Statement	1
1.2 Aims	4
1.3 Thesis Contributions	8
1.4 Publications	10
1.5 Structure of Thesis	11
Chapter 2: Review of Literature	14
2.1 Introduction	14
2.2 Disability	17
2.2.1 Physiological Information on Spinal Cord Injury	17
2.2.2 Disability Statistics	22
2.3 Autonomous Mobile Robotic Systems	24
2.3.1 Common Artificial Sensors Introduction	24
2.3.2 Obstacle Avoidance Techniques	29
2.3.2.1 Obstacle Avoidance Techniques with Prior Environmental Information	n29
2.3.2.2 Obstacle Avoidance Techniques in Unknown Environments	
2.3.3 Computational Intelligence	
2.4 Smart Wheelchairs and Shared Control Strategies	
2.4.1 User Interfaces for Wheelchair Control	
2.4.2 Smart Wheelchair Review	40
2.4.2.1 Smart Wheelchairs Requiring Prior Environmental Information	41
2.4.2.2 Smart Wheelchairs for Navigation in Unknown Environments	45
2.5 Proposed Smart Wheelchair System	54
2.5.1 Research Gap	54
2.5.2 Stereoscopic Vision	55
2.5.3 Spherical Vision	
2.6 Discussion	61

Chapter 3: Adaptive Real-time Vision Mapping System Utilising Sta	ereoscopic
Cameras	64
3.1 Introduction and Aims	64
3.2 Instrumentation	66
3.3.1 Stereoscopic Vision Background	71
3.3.2 Local Environment Mapping Process	
3.3.3 Wheelchair Odometry Change Calculations	
3.3.4 Real-time Environment Map Construction	
3.4 Advanced Methods for Optimising Intelligent Vision Mapping Performance	
3.4.1 Environmental Lighting Type Categories	
3.4.2 Neural Network Classification for Adaptive Stereo Parameter Selection	
3.4.3 Correction of Wheel Measurement Parameters for Memory Map Rectific	ation 115
3.5 Experimental Results	
3.5.1 Depth Mapping Calculation Accuracies	119
3.5.2 Real-time Environment Mapping Results	
3.5.3 Adaptive Stereo Parameter Selection Results	
3.5.4 Results for Correction of Wheel Measurement Parameters	
3.6 Discussion and Chapter Conclusion	

4.1 Introduction and Aims	143
4.2 Instrumentation	145
4.3 Spherical Vision Image Processing Strategies	148
4.3.1 Distortions in Spherical Vision	151
4.3.2 Parallax Variances in Sequential Imaging	153
4.4 Advanced Methods for Real-time Dynamic Obstacle Detection	158
4.4.1 Obstacle Detection using Neural Networks	158
4.4.2 Improved Obstacle Detection Method	165
4.5 Performance Results	175
4.5.1 Parallax Variance Approach Results	175
4.5.2 Performance of Neural Network Obstacle Detection Methods	180
4.5.2.1 Performance of Initial Method Design	180
4.5.2.2 Performance of Improved Method Design	183
4.5.3 Real-time Interface Results	187
4.6 Discussion and Chapter Conclusion	189

Chapter 5: Real-time Operational Performance of a Hands-free Smart System using a Unique Camera Configuration Biologically Inspired Vision	Wheelchair by Equine 191
5.1 Introduction and Aims	191
5.2 Instrumentation and Final Stage Prototype Design	193
5.2.1 Biological Inspiration: Equine Vision System	193
5.2.2 TIM Smart Wheelchair Hardware Design and Camera Combination	195
5.3 Software System Design	
5.3.1 Software Architecture	
5.3.2 System Integration with Hands-free Control Technology	204
5.4 Advanced Real-time Obstacle Avoidance System	
5.5 Experimental Study Protocol	214
5.6 Results	
5.6.1 Advanced Real-time Obstacle Avoidance System	
5.6.2 Experimental Study Results	
5.6.2.1 'Static Course' Test Results	
5.6.2.2 'Dynamic Course' Test Results	239
5.6.2.3 Test Statement Review	246
5.6.2.4 Post-study Survey Results	249
5.7 Discussion and Chapter Conclusion	253
Chapter 6: Conclusion and Future Work	256
6.1 Discussions and Conclusion	
6.2 Future Work	
Bibliography	264
Appendices	276
Appendix A: Publications	277
Appendix B: C++ Dynamic Link Library Code	
Appendix C: LabVIEW Main Program Code Excerpts	
Appendix D: Experimental Study Results	
Appendix E: Human Research Ethics Application Documents	

List of Figures

Figure 2-1: General Overall Design Architecture of a Smart Wheelchair System	15
Figure 2-2: Spinal Cord Divisions, Vertebral Levels, and General Functions Affected	18
Figure 2-3: Effects of Spinal Injury	19
Figure 2-4: Typical Sonar Sensor (SRF05)	25
Figure 2-5: Typical Sonar Sensor Operation	25
Figure 2-6: Infrared Sensor System	26
Figure 2-7: Sensor Diagram for a Sharp GP2D12 IR Sensor	26
Figure 2-8: Laser Rangefinder Examples: SICK LMS 291 and Hokuyo URG 04 LX	27
Figure 2-9: Example of Camera Sensor: Point Grey Research Flea 3 Compact Camera	28
Figure 2-10: 2D Cartesian Histogram Grid	31
Figure 2-11: Converted 1D Polar Histogram	31
Figure 2-12: Structure of a Two Perceptron-layered Feed-forward Neural Network	34
Figure 2-13. Analog Joystick Controller	36
Figure 2-14: Finger Drive Controller	37
Figure 2-15: Touch Pad Controller	37
Figure 2-16: Chin Drive Controller	37
Figure 2-17: Analog RIM Head Actuated Controller	38
Figure 2-18: Digital Head Control System	39
Figure 2-19: Sip'n'Puff Hands-free Drive Controller	39
Figure 2-20: RobChair Smart Wheelchair Prototype	41
Figure 2-21: Collaborative Wheelchair Assistant (CWA) Prototype	43
Figure 2-22: SENA Robotic Wheelchair	44
Figure 2-23: NavChair Assistive Wheelchair Navigation System Prototype	46
Figure 2-24: Functional diagram of the NavChair prototype's hardware components	47
Figure 2-25: The Bremen Autonomous Wheelchair "Rolland"	49
Figure 2-26: The Hephaestus Smart Wheelchair System prototype	51
Figure 2-27: Hephaestus Smart Wheelchair Sensor Hardware System	52
Figure 2-28: FRIEND System	53
Figure 2-29: Matching Points between Stereoscopic Left and Right Images	56
Figure 2-30: Microsoft Xbox Kinect	57
Figure 2-31: Kinect Person Pose Recognition	58
Figure 2-32: Spherical camera; images captured; panoramic conversion	60

Figure 3-1: Invacare 'TDX A' Power Wheelchair
Figure 3-2: PGR Bumblebee XB3 Stereoscopic Camera System
Figure 3-3: Overall Stage 1 Prototype Hardware Design Using Stereoscopic Cameras70
Figure 3-4: TIM Stage 1 Prototype: Integrated Wheelchair Hardware with Stereoscopic Cameras
Figure 3-5: Edge Examples
Figure 3-6: Local Gradient Changes
Figure 3-7: Raw Image and Edge Image Comparison73
Figure 3-8: Epipolar Geometry74
Figure 3-9: Basic Block Diagram for Stereo Images to Disparity Image Process
Figure 3-10: Stereoscopic Main Processing Steps
Figure 3-11: Stereoscopic Raw Left and Right Images of Example Scene Setup79
Figure 3-12: Correlation of two 3x3 pixel neighbourhoods along corresponding epipolar lines
Figure 3-13: Produced Disparity Image of Example Scene Setup
Figure 3-14: Disparity Image Creation Process
Figure 3-15: Image and World Coordinate Systems
Figure 3-16: Created 3D Point Map of Example Scene Setup
Figure 3-17: Example Scene Setup 3D Point Map Rotated 45 Degrees to the Right
Figure 3-18: Example Scene Setup 3D Point Map Rotated 45 Degrees to the Left
Figure 3-19: Example Scene Setup 3D Point Map Rotated 90 Degrees to the Right
Figure 3-20: Example Scene Setup Comparison Photo taken from Same Angle as Figure 3-19
Figure 3-21: Example Scene Setup 3D Point Map Rotated 90 Degrees to the Left
Figure 3-22: Example Scene Setup Comparison Photo taken from Same Angle as Figure 3-21
Figure 3-23: Example Scene Setup 3D Point Map Rotated to Bird's Eye View from Above.88
Figure 3-24: Example Scene Setup 2D Bird's Eye View Map Representation
Figure 3-25. Illustration of Movement
Figure 3-26. Illustration of Position Change
Figure 3-27: Coordinate Changes of TIM Relative to Environment
Figure 3-28: Updating Position of Objects Relative to TIM
Figure 3-29: Contrast for Two Cases: (a) Areas of Similar Size, and (b) Areas of Different Size
Figure 3-30: Category 1: General Illumination Contrast Areas Example
Figure 3-31: Category 2: Extreme Illumination Contrast Areas Example

Figure 3-32: Category 3: Consistent Dark Example	. 105
Figure 3-33: Category 4: Consistent Bright Areas Example	. 106
Figure 3-34: Neural Network Input Setup: Grey-scale Step	. 107
Figure 3-35: Neural Network Input Setup: Grid overlay Step	. 107
Figure 3-36: Neural Network Input Setup: Reduced-resolution Step	. 108
Figure 3-37: Example Test Patterns of Category 1: General Illumination Contrast Areas	. 113
Figure 3-38: Example Test Patterns of Category 2: Extreme Illumination Contrast Areas .	. 113
Figure 3-39: Example Test Patterns of Category 3: Consistent Dark Areas	. 114
Figure 3-40: Example Test Patterns of Category 4: Consistent Bright Areas	. 114
Figure 3-41: Bi-directional Square Path Experiment, UMBmark method	. 116
Figure 3-42. Memory Depth Map Construction Test: Position 1	. 121
Figure 3-43. Memory Depth Map Construction Test: Position 2	. 121
Figure 3-44. Memory Depth Map Construction Test: Position 3	. 121
Figure 3-45. Memory Depth Map Construction Test: Position 4	. 122
Figure 3-46. Memory Depth Map Construction Test: Position 5	. 122
Figure 3-47. Memory Depth Map Construction Test: Position 6	. 122
Figure 3-48. Memory Depth Map Construction Test: Position 7	. 123
Figure 3-49. Memory Depth Map Construction Test: Position 8	. 123
Figure 3-50: Plot of Optimal Number of Hidden Neurons Analysis for Training Validating	and . 127
Figure 3-51: Early Stopping Method Employed for Optimisation of Training and Valida	ation . 128
Figure 3-52: UMBmark Experiment Results Prior to Wheel Parameter Correction	. 136
Figure 3-53: UMBmark Experiment Results After Wheel Parameter Correction	. 138
Figure 3-54: UMBmark Run (A) Before and (B) After Wheel Parameter Correction	. 139
Figure 3-55: Mapping Results (A) Before and (B) After Wheel Parameter Correction	. 139
Figure 4-1: PGR Ladybug2 Spherical Vision Camera System	. 145
Figure 4-2: Ladybug2 Dimensional Drawings.	. 145
Figure 4-3: Overall Stage 2 Prototype Hardware Design Using Spherical Vision Cameras	. 147
Figure 4-4: TIM Stage 2 Prototype: Integrated Wheelchair Hardware with Spherical V Cameras	ision . 147
Figure 4-5: Spherical Vision Camera Configuration (Left) and Fields of View (Right) Above	from . 149
Figure 4-6: Individual Surrounding Camera Views of the Spherical Vision System	. 150
Figure 4-7: Spherical Vision – 360° Stitched Panoramic View	. 150
Figure 4-8: Angle Allocation for Spherical Vision Relative to Camera System from Above	e152

Figure 4-9: Angle Breakdown for Spherical Vision Panoramic Image152
Figure 4-10: Sequential Imaging from Spherical Camera #2 and Combination View154
Figure 4-11: Sequential Time-step Scene Panorama When Moving Forward155
Figure 4-12: Combined Scene Panoramas Displaying Parallax Variances155
Figure 4-13: Sequential Time-step Scene Panorama When Turning Right156
Figure 4-14: Combined Scene Panoramas Displaying Parallax Variances156
Figure 4-15: Phase-corrected Combined Scene Panoramas Displaying Parallax Variances .157
Figure 4-16: Wheelchair 'Traffic Light' Zones and Vision Range Segmentation for Obstacle Detection
Figure 4-17: 'Traffic Light' Zones and Vision Range Segmentation Photo Display161
Figure 4-18: Associated Spherical Vision Panoramic Segmentation Photo Display161
Figure 4-19: S1/S4 Panoramic Image Segments Prepared for Processing and Classification162
Figure 4-20: S2/S3 Panoramic Image Segments Prepared for Processing and Classification162
Figure 4-21: 8-bit Grey-scaling Step Example (Left - S1/S4, Right - S2/S3)163
Figure 4-22: Resolution Adjustment Step Example (Left - S1/S4, Right - S2/S3)163
Figure 4-23: Example S1/S4 Category 'Red Zone' Images164
Figure 4-24: Example S1/S4 Category 'Yellow Zone' Images164
Figure 4-25: Example S1/S4 Category 'Green Zone' Images164
Figure 4-26: Example S2/S3 Category 'Yellow Zone' Images165
Figure 4-27: Example S2/S3 Category 'Green Zone' Images165
Figure 4-28: Advanced Obstacle Detection Processing: Panoramic Scene166
Figure 4-29: Advanced Obstacle Detection Processing: Brightness and Contrast Adjustment
Figure 4-30: 2D Gaussian Function
Figure 4-31: Advanced Obstacle Detection Processing: 3x3 Gaussian Filter Blur Affect168
Figure 4-32: Kuwahara Filter 5x5 Example169
Figure 4-33: Advanced Obstacle Detection Processing: 15x15 Kuwahara Filter170
Figure 4-34: Improved Prewitt Edge Detection Directions Template171
Figure 4-35: Edge Detection Example: Original Images with Random Noise172
Figure 4-36: Edge Detection Example: Traditional Prewitt Edge Detection172
Figure 4-37: Edge Detection Example: Improved Prewitt Edge Detection Results172
Figure 4-38: Advanced Obstacle Detection Processing: Improved Prewitt Edge Detection .173
Figure 4-39: Advanced Obstacle Detection Processing: Edge Overlay on Smoothed Colour Image
Figure 4-40: Advanced Obstacle Detection Processing: Edge Overlay on Smoothed Grey- scale Image

Figure 4-41: Advanced Obstacle Detection Processing: Edge Overlay on Grey-scale Original Image
Figure 4-42: Parallax Variance Approach: Forward Movement Panoramic Image at Time t176
Figure 4-43: Parallax Variance Approach: Forward Movement Panoramic Image at Time <i>t</i> +1
Figure 4-44: Parallax Variance Approach: Forward Movement Panoramic Images Correlation Result
Figure 4-45: Parallax Variance Approach: Panoramic Images Correlation Result Overlay . 177
Figure 4-46: Hidden Neurons Analysis Plot for Initial S1/S4 'Traffic Light' Zone Classification
Figure 4-47: Hidden Neurons Analysis Plot for Improved S1/S4 'Traffic Light' Zone Classification
Figure 4-48: User Interface Visual Panoramic Video Feed with Real-time 'Traffic Light' Zone Results
Figure 5-1: Horse Grazing; Photo Showing the General Position and Orientation of Horse's Eyes
Figure 5-2: Visual System of a Horse; Inspired Vision System of the TIM Smart Wheelchair
Figure 5-3: Overall Final Stage Prototype Hardware Design
Figure 5-4: TIM Final Stage Prototype
Figure 5-5: TIM Final Stage Prototype Hardware Dimensional Measurements: Front View198
Figure 5-6: TIM Final Stage Prototype Hardware Dimensional Measurements: Side View 198
Figure 5-7: TIM Final Stage Prototype Hardware Dimensional Measurements: Rear View 199
Figure 5-8: TIM Final Stage Prototype Opening Design
Figure 5-9: TIM Software Architecture
Figure 5-10: TIM Software Main Loop Overview Flowchart
Figure 5-11: Wireless Head Movement Controller Developed at UTS 204
Figure 5-12: 'Aviator' EEG Device Prototype Developed at UTS; User Wearing the Prototype
Figure 5-13: Screenshot of Initial (Discrete) Graphical User Interface Design for Controlling TIM
Figure 5-14: Screenshot of Final (Continuous) Graphical User Interface Design for Controlling TIM
Figure 5-15: TIM Representation Reduction and Correlating Object Expansion
Figure 5-16: 'Static Course' Experimental Study Map with Check Point Zones
Figure 5-17: 'Static Course' Experimental Study Setup: TIM Smart Wheelchair at the Start Zone
Figure 5-18: 'Static Course' Experimental Study Setup: Start Zone to CP1

Figure 5-19: Experimental Study Setup: CP1 to CP2219
Figure 5-20: Experimental Study Setup: CP2 to CP3 to CP4
Figure 5-21: Experimental Study Setup: CP4 to End Zone
Figure 5-22: 'Dynamic Course' Experimental Study Map with Check Point Zones
Figure 5-23: Creation of TIM-VPH Binary Histogram from Polar Histogram with Threshold Function
Figure 5-24: Photos of Cluttered University Office Space Obstacle Avoidance Test
Figure 5-25: Map Produced from University Office Space Obstacle Avoidance Test
Figure 5-26: Photos of the RSU at the Royal Rehabilitation Centre, Sydney; and Corridor Testing
Figure 5-27: Obstacle Avoidance Corridor Test at the Royal Rehabilitation Centre, Sydney
Figure 5-28: University Testing Map: Joystick Control (Pink) vs BCI+TIM (Blue) Paths Executed
Figure 5-29: Photos of Open and Highly-dynamic University Environment Obstacle Avoidance Test
Figure 5-30: Participant 9 (Non-AB) Static Course using HMC Only Map230
Figure 5-31: Participant 9 (Non-AB) Static Course using HMC+TIM Map230
Figure 5-32: Participant 9 (Non-AB) Static Course using HMC Only Control Efforts231
Figure 5-33: Participant 9 (Non-AB) Static Course using HMC+TIM Control Efforts231
Figure 5-34: Static Course using HMC Results – Check Point Time Averages by Participant Groups
Figure 5-35: Static Course using HMC Results – Check Point Time Averages
Figure 5-36: Participant 9 (Non-AB) Static Course using BCI Only Map234
Figure 5-37: Participant 9 (Non-AB) Static Course using BCI+TIM Map234
Figure 5-38: Participant 9 (Non-AB) Static Course using BCI Only Control Efforts
Figure 5-39: Participant 9 (Non-AB) Static Course using BCI+TIM Control Efforts
Figure 5-40: Static Course using BCI Results – Check Point Time Averages by Participant Groups
Figure 5-41: Static Course using BCI Results – Check Point Time Averages
Figure 5-42: Static Course Total Time Averages for All Control Modes
Figure 5-43: Participant 9 (Non-AB) Dynamic Course using HMC Only Map239
Figure 5-44: Participant 9 (Non-AB) Dynamic Course using HMC+TIM Map239
Figure 5-45: Participant 9 (Non-AB) Dynamic Course using HMC Only Control Efforts240
Figure 5-46: Participant 9 (Non-AB) Dynamic Course using HMC+TIM Control Efforts240
Figure 5-47: Dynamic Course using HMC Results – Check Point Time Averages by Participant Groups

Figure 5-48: Dynamic Course using HMC Results – Check Point Time Averages
Figure 5-49: Participant 9 (Non-AB) Dynamic Course using BCI+TIM Map242
Figure 5-50: Participant 9 (Non-AB) Static Course using BCI+TIM Control Efforts
Figure 5-51: Dynamic Course using BCI Results – Check Point Time Averages by Participant Groups
Figure 5-52: Dynamic Course using BCI Results – Check Point Time Averages
Figure 5-53: Dynamic Course Total Time Averages for All Control Modes
Figure C-1: Virtual Instuments (VI) Heirarchy in the Main Program
Figure C-2: List of Main SubVIs
Figure C-3: Main TIM Control Program Front Panel
Figure C-4: Main TIM Control Program Block Diagram
Figure C-5: TIM Automated Guidance Control Program Front Panel
Figure C-6: TIM Automated Guidance Control Program Block Diagram
Figure C-7: Steer Control Front Panel
Figure C-8: Steer Control Block Diagram

List of Tables

Table 2-1: Activities of Daily Living in Relation to Level of Spinal Injury (C-1 to C-6)21
Table 2-2: Activities of Daily Living in Relation to Level of Spinal Injury (C-7 to S-5)22
Table 3-1: Invacare 'TDX A' Power Wheelchair Main Specifications
Table 3-2: PGR Bumblebee XB3 Stereoscopic Camera System Main Specifications
Table 3-3: Pixel Window Matching Algorithms for Stereo Image Correlation 77
Table 3-4: Stereo Processing Parameter Value Ranges 102
Table 3-5: Category 1 Stereo Processing Parameter Values 103
Table 3-6: Category 2 Stereo Processing Parameter Values 104
Table 3-7: Category 3 Stereo Processing Parameter Values 105
Table 3-8: Category 4 Stereo Processing Parameter Values 106
Table 3-9: Stereoscopic Camera Depth Mapping – Object Calculated vs Actual Distances (m)
Table 3-10. Memory Depth Map Calculations vs Actual Feature Measurements 124
Table 3-11: Table of Optimal Number of Hidden Neurons Analysis for Training and Validating 126
Table 3-12: Neural Network Final Optimised Learning Parameter Settings 127
Table 3-13: Neural Network Results Table
Table 3-14: Neural Network Testing Results for Environmental Category Classification131
Table 3-15: Analysis of Testing Results for Environmental Category Classification
Table 3-16: Improved Neural Network Test Results for Environmental Category Classification
Table 3-17: Analysis of Improved Test Results for Environmental Category Classification 133
Table 4-1: PGR Ladybug2 Spherical Vision System Main Specifications 146
Table 4-2: Optimising Number of Hidden Neurons for Initial S1/S4 'Traffic Light' Zone Classification 180
Table 4-3: Neural Network Optimised Learning Parameter Settings for Initial S1/S4 Classification 181
Table 4-4: Neural Network Testing Results for Initial S1/S4 'Traffic Light' Zone Classification 182
Table 4-5: Analysis of Testing Results for Initial S1/S4 'Traffic Light' Zone Classification182
Table 4-6: Optimising Number of Hidden Neurons for Improved S1/S4 Classification184
Table 4-7: Neural Network Optimised Learning Parameter Settings for Improved S1/S4 Classification .185

Table 4-8: Neural Network Testing Results for Improved S1/S4 'Traffic Ligh Classification	nt' Zone
Table 4-9: Analysis of Testing Results for Improved S1/S4 'Traffic Light' Zone Class	sification
Table 4-10: Real-time Test: Category Numbers	187
Table 5-1: Total Time and Average Velocity for University Environment Obstacle A Tests	voidance 228
Table 5-2: Experimental Study: Basic Clinical and Demographic Character Participants	istics of 229
Table 5-3: Static Course Overall Total Time Results (Seconds)	237
Table 5-4: Dynamic Course Overall Total Time Results (Seconds)	245
Table 5-5: Excerpts from the QUEST 2.0 Survey	249
Table 5-6: QUEST 2.0 'Device' Results by Question	250
Table 5-7: QUEST 2.0 'Device' Examples of Comments	251
Table 5-8: QUEST 2.0 'Device' Results by Participant	252
Table D-1: Experimental Study Results	330

Nomenclature

1D	1-Dimensional
2D	2-Dimensional
3D	3-Dimensional
AB	Able-Bodied
ADC	Analog-Digital Converter
AWF	Automatic Wall Following
BCI	Brain-Computer Interface
CAN	Controller Area Network
CCD	Charge-Couple Device
CCW	Counter-Clockwise
CNS	Central Nervous System
CPU	Central Processing Unit
CW	Clockwise
CWA	Collaborative Wheelchair Assistant
DAQ	Data Acquisition
DLL	Dynamic Link Library
DOS	Disk Operating System
DP	Door Passing
EEG	Electroencephalograph
FM	Fundamental Matrix
FN	False-Negative
FOV	Field Of View
FP	False-Positive
FPS	Frames Per Second
GOA	General Obstacle Avoidance
GPIO	General-Purpose Input/Output
GPS	Global Positioning System
GUI	Graphical User Interface
HMC	Head-Movement Controller
HIS	Hue/Saturation/Intensity
HFOV	Horizontal Field Of View
IEEE	Institute of Electrical and Electronic Engineers
IR	Infrared
LED	Light-Emitting Diode
LIS	Locked-In Syndrome
NI	National Instruments
NSW	New South Wales
PC	Personal Computer
РСВ	Printed Circuit Board
PFM	Potential Field Method
PGR	Point Grey Research
POC	Proof Of Concept
QUEST	Quebec User Evaluation of Satisfaction with Assistive Technology
RGB	Red/Green/Blue
RRCS	Royal Rehabilitation Centre, Sydney
RSU	Rehabilitation Studies Unit
SAD	Sum of Absolute Differences
SCI	Spinal Cord Injury

SD	Standard Deviation
SLAM	Simultaneous Localisation And Mapping
TFT	Thin-Film Transistor
TIM	Thought-controlled Intelligent Machine
TIM-VPH	Thought-controlled Intelligent Machine – Vector Polar Histogram
TN	True-Negative
TOF	Time-Of-Flight
TP	True-Positive
USB	Universal Serial Bus
UTS	University of Technology, Sydney
VFF	Vector Force Field
VFH	Vector Field Histogram
VPH	Vector Polar Histogram
WCCP	Wheelchair Centre Point

Abstract

Reports have shown growing numbers of people who fall into the categories of the elderly or those living with some form of disability. Physical and functional impairments are broad-ranging across these groups and the causes are numerous, including strokes, spinal cord injury, spina bifida, multiple sclerosis, muscular dystrophy, and various degenerative disorders. Rehabilitation technologies are a solution to many of these impairments and aim to improve the quality of life for the people who require them. Smart wheelchair developments, in particular, have the purpose of assisting those with mobility disabilities. Providing independence in mobility can have many significant benefits to the users in their daily lives, including improved physical, cognitive, confidence, communication, and social skills.

Unfortunately for many, particularly those with tetraplegia (partial or total loss of functionality through illness or injury to all four limbs and torso), there is a serious lack of options available for adequately and safely controlling mobility devices such as wheelchairs. There are few options for hands-free controlling wheelchairs, and furthermore, there are no accessible options for intelligent assistance from the wheelchair to make hands-free control easy and safe. This is a serious issue since the limited hands-free control options available can be difficult to use, resulting in many accidents. There are also new control technology devices emerging in research, such as brain-computer interfaces (BCIs), which could potentially provide an adequate means of control for many people who cannot use currently commercial options, but require intelligent assistance from the wheelchair to make use of such a system safe.

XVI

In this thesis, the design and development of a new smart wheelchair, named TIM, is introduced to address these issues. The TIM smart wheelchair was created with the intention of providing intelligent assistance during navigation for any hands-free control technology, both currently commercial and new devices produced in research. This aims to vastly improve the options available to the people who are in need of such smart wheelchair developments.

A method of utilising stereoscopic cameras for adaptive, real-time vision mapping is presented in this thesis, as cameras are increasingly becoming a more accessible and inexpensive form of artificial sensor. The mapping process in this method involves acquisition from the left and right stereo pair of cameras, which then undergo a range of image pre-processing techniques before being stereo-processed, which includes matching and correlation algorithms, to produce a disparity image. This disparity image contains depth information about the scene, which is then converted into a 3-dimensional (3D) point map, placing all mapped pixels of the environment, and features within, into a 3D plane. Unnecessary information, such as the floor and everything above the maximum height of the TIM smart wheelchair, is removed and the remaining data extracted into a 2-dimensional (2D) bird's eye view environment map. This mapping representation assists the wheelchair in the later steps of making intelligent navigational decisions based on the relative placement of objects in the environment.

Wheel encoders on the drive wheels are also acquired during operation, and odometry change calculations are performed to facilitate the ability of the system to 'remember' mapped object points that have passed outside the vision range. This is performed frequently to construct a real-time environment map, and to remember the placement of objects that have moved out of the range of vision, in order to further avoid collisions. This is particularly useful for static environments and creating maps of the static object placements within. A wheel parameter correction process was also employed to increase the accuracy of this mapping process and successfully reduce the errors associated with drive wheel specifications, which in turn can affect the mapping process based on the wheel encoder information. Correction of these parameters helped optimise the 'memory mapping' process and reduce skewing and accumulative errors in the maps.

A process for intelligent stereo processing parameter selection was designed, as the quality of disparity images, and hence the quality of environmental-mapping, is heavily dependent on the stereo processing parameters, which may work well when set for one environment but produce problems in another. The differences that affected performance between

environments were found to mostly be the lighting conditions which resulted from the varying types of environments. As such, this proposed method involves classifying environmental categories in real-time, based on image data available, and adapting the parameters accordingly. The environment types were separated into four categories to account for most encountered environmental situations, being 1) 'General Illumination Contrast', 2) 'Extreme Illumination Contrast', 3) 'Consistent Dark', and 4) 'Consistent Bright'. The proposed method successfully allowed classification in real-time of the environment categories and adaptation of the stereo processing parameters in accordance, producing a system that can change its settings 'on the fly' to suit the environment the wheelchair is navigating through.

Limited vision and trouble with dynamic objects were found to be downfalls with the stereoscopic vision, so to address these, methods of utilising a spherical vision camera system were introduced for obstacle detection over a wide vision range. Spherical vision is an extension of monoscopic cameras, producing 360° of panoramic vision. A strategy to utilise these panoramic images is presented, in which the images are separated into segments and 'Traffic Light' zones. The segments display different areas of the image representing the allocated areas around the wheelchair. The 'Traffic Light' zones within the segments are separated into three categories: 1) Red, meaning an obstruction is present around the wheelchair, 2) Yellow, indicating to take caution as an object is nearby, and 3) Green, meaning there are no objects close to the wheelchair in this segment. Image processing techniques have been assembled as a pre-processing strategy, and neural networks are used for intelligent classification of the segmented images into the zone categories. This method provides a wider range of vision than the stereoscopic cameras alone, and also takes into account the issue of detecting dynamic obstacles, such as people moving around.

A unique combination of the stereoscopic cameras and the spherical vision cameras is then introduced. This combination and system configuration is biologically inspired by the equine vision system. Horses inherently have a large vision range, which includes a wide monocular vision range around and a binocular vision overlap ahead of the horse. In accordance with this effective vision system, the camera configuration on the TIM smart wheelchair was modelled similarly and advanced software integration strategies then followed.

A method for advanced real-time obstacle avoidance is presented, which utilises algorithms in research, such as Vector Field Histogram (VFH) and Vector Polar Histogram (VPH) methods, and adapts them for use with the specified camera configuration. Further improvement upon the algorithms for this application provides safer obstacle avoidance during navigation in

unknown environments, with an added emphasis on making automated navigational decisions towards areas with more available free space. Speed and manner of obstacle avoidance is dependent upon the placement spread of objects in an environment and how close they are to the wheelchair during navigation.

Finally, the combination and integration of the automated guidance and obstacle avoidance capabilities of the wheelchair with hands-free control technologies are introduced. The aim of the TIM smart wheelchair system was to effectively provide safe navigation with automated obstacle avoidance in a manner that ultimately executes the user's intentions for travel. As such, a head-movement control (HMC) device and a brain-computer interface (BCI) device are both separately integrated with the TIM smart wheelchair, providing a display of two new options for hands-free control.

Experimental studies were conducted using these two control devices separately, to assess the performance of the TIM smart wheelchair, as well as its ability to carry out user's navigational intentions safely and effectively. Eight able-bodied participants trialled the system, including four male and four female, with ages ranging from 21 to 56 years old. All of these able-bodied participants have not previously had any experience operating a wheelchair. In addition, two male tetraplegic (C-6 to C-7) participants also completed the experimental study, aged 20 and 33. Both tetraplegic participants are wheelchair users, so these experiments were of great importance. The same tasks applied to all, and included navigating obstacle courses with the use of the head-movement control system and the brain-computer interface for control. Experiment runs were conducted for each control system with automated navigational guidance assistance from TIM, and repeated for some capable participants without the assistance from TIM. This process was also conducted in two types of obstacle courses, being 1) a 'Static Course' and 2) a 'Dynamic Course', requiring different types of challenges in obstacle avoidance. This provided results to assess the performance and safety of the TIM smart wheelchair in a range of environments and situations.

Evaluation of the results displayed the feasibility and effectiveness of the developed TIM smart wheelchair system. This system, once equipped with a unique camera configuration and reliable obstacle avoidance strategies, was able to successfully allow users to control the wheelchair with research-produced hands-free interface devices and effectively navigate safely through challenging environments. The TIM smart wheelchair system is able to adapt to people with various types and levels of physical impairment, and ultimately provide ease-of-use as well as safety during navigation.