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Abstract

A joint model of commodity price and interest rate risk is constructed analogously to the

multi-currency LIBOR Market Model (LMM). Going beyond a simple “re-interpretation” of

the multi-currency LMM, issues arising in the application of the model to actual commodity

market data are specifically addressed. Firstly, liquid market prices are only available for

options on commodity futures, rather than forwards, thus the difference between forward

and futures prices must be explicitly taken into account in the calibration. Secondly, we

construct a procedure to achieve a consistent fit of the model to market data for interest

options, commodity options and historically estimated correlations between interest rates

and commodity prices. We illustrate the model by an application to real market data and

derive pricing formulas for commodity spread options.

Keywords: Commodity modeling, LIBOR Market Model, commodity futures, interest rate

risk, spread options

1 Introduction

Traditionally, market risks in different asset classes such as FX, fixed income or commodities,

have been modelled separately, though modelling approaches incorporating several sources of
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2 Introduction

market risk are becoming increasingly popular. The aim of this paper is to contribute to the more

integrated approach by applying the multi-currency LIBOR Market Model (LMM) as presented

in Schlögl [19] jointly to interest rates and commodities. The domestic fixed income market will

be interpreted in the usual way for the LMM, i.e. with a given bond market paying in a certain

currency (say USD), whereas the foreign market will be associated with a commodity market (e.g.

crude oil), with the physical commodity as its currency, and the “convenience yield” as its rate

of interest. The contribution of this paper goes beyond a simple “re-interpretation” of the multi-

currency LMM in that issues arising in the application of the model to actual commodity market

data are specifically addressed. Firstly, liquid market prices are only available for options on

commodity futures, rather than forwards, thus the difference between forward and futures prices

must be explicitly taken into account in the calibration. Secondly, we construct a procedure to

achieve a consistent fit of the model to market data for interest rate options, commodity options

and historically estimated correlations between interest rates and commodity prices. This is

achieved in a two–stage process, calibrating first to the interest rate and commodity markets

separately, followed by an orthonormal transformation of the commodity volatility vectors to

“rotate” the commodity volatilities relative to the interest rate volatilities in such a manner as

to achieve the desired correlations between the two markets. Thirdly, we illustrate the use of

the model on actual market data and demonstrate a way of efficiently calculating commodity

spread options.

For the market data illustration, we chose WTI Crude Oil as the commodity and US dollars as

the “domestic” currency. Thus the “exchange rate” is the WTI Crude Oil price, i.e. the WTI

Crude Oil futures quotes — when converted to forward prices using an appropriate convexity

correction — can be interpreted as forward exchange rates between the US dollar economy and

an economy where value is measured in terms of units of WTI Crude Oil (and where convenience

yields play the role of interest rates). In this example, the model is calibrated to USD at–the–

money caplets and swaptions, as well as WTI Crude Oil futures and ATM options on futures.

The model presented here builds on the prior literature on the LMM, starting from the sem-

inal work of Miltersen, Sandmann and Sondermann [13], Brace, Gatarek and Musiela [3] and

Jamshidian [9]. The model construction follows Musiela and Rutkowski [15] and the calibration

method builds on the approach first proposed by Pedersen [16] for the basic LMM.

The earliest work combining commodity and interest rate risk (based on dynamics of the con-

tinuously compounded short rate, without reference to a full model calibrated to an initial

term structure) goes back to Schwartz [20]. Subsequently, models for commodity price dynam-

ics incorporating stochastic convenience yields have been constructed by a number of authors,

for example Gibson and Schwartz [7], Cortazar and Schwartz [5], Schwartz [21], Miltersen and

Schwartz [14], and Miltersen [12]. These models are typically constructed on the basis of a

Heath, Jarrow and Morton [8] term structure model with generalised (possibly multi-factor)

Ornstein/Uhlenbeck dynamics, i.e. continuously compounded convenience yields (and possibly

interest rates rates) are normally distributed. While in theory these models allow some freedom

to calibrate to market data, the published work does not contain much evidence as to whether
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an effective calibration to available commodity and interest rate options — even at the money

— can be achieved. This type of fit to observed market prices, in particular to at–the–money

options, is a strength of the LIBOR Market Models, which we exploit in the present paper.

The paper is organised as follows. The basic notation, the results of the single– and multi-

currency LMM and their interpretation in the context of commodities are presented in Section

2. In Section 3 the calibration of the commodity part of the Commodity LMM to plain vanilla

options is discussed. In all major commodity markets, only options with the same maturity as

the underlying forward are traded liquidly. Hence, no volatility term structure for a particular

forward commodity price can be extracted only from the options written on this forward. To

overcome this problem, option prices for all maturities are used to calibrate simultaneously a

volatility term structure, which is desired to be as time–homogeneous and smooth as possible.

In keeping with the assumptions of the LMM, we thus focus on the volatility term structure

only, i.e. with time dependence but no strike dependence. In Section 4 the relationship between

futures and forwards in the model is presented, which permits calibration of the model to futures

as well as forwards. The calibration of the interest rate part of the hybrid Commodity LMM

will not be discussed in detail in this paper, because this problem has already been addressed by

many authors and most methods should be compatible with our model. However, in Section 5

we discuss how both separately calibrated parts – the interest rate and the commodity part – of

the model can be merged in order to have one underlying d-dimensional Brownian motion for the

joint model and still match the market prices used for calibration of the particular parts. Section

6 illustrates the application of the Commodity LMM to real market data. Finally, Section 7

addresses the pricing of commodity spread options in the model.

2 The Commodity LIBOR Market Model

2.1 The Interest Rate Market

The construction of the LMM for the domestic interest rate market follows the presentation in

Musiela and Rutkowski [15]. Assume a given probability space (Ω, {Ft}t∈[0,T ∗],P), where the

underlying filtration {Ft}t∈[0,T ∗] coincides with the P-augmentation of the natural filtration of

a d-dimensional standard Brownian motion W . Let T ∗ be a fixed time horizon, then a family of

bond prices is any family of strictly positive real-valued adapted processes B(t, T ) for t ∈ [0, T ],

with B(T, T ) = 1 for every T ∈ [0, T ∗]. The bond price B(t, T ) for T ∈ [t, T ∗] is the amount

that has to be invested at time t to receive one unit of the domestic currency at time T .

Corresponding to the assumptions (BP.1) and (BP.2) in Musiela and Rutkowski [15], we have

that the bond price B(t, T ) for t ≤ T ≤ T ∗ is a strictly positive special semi-martingale (see

Musiela and Rutkowski [15], p. 263 for the definition) and that the forward process

FB(t, T, T ∗) :=
B(t, T )

B(t, T ∗)
(1)
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follows a martingale under the T ∗-forward measure P. Equivalently, the bond price process

satisfies

B(t, T ) = EP

[ B(t, T ∗)

B(T, T ∗)

∣

∣

∣Ft

]

(2)

for all t ∈ [0, T ].

We present some conclusions from these assumptions, which will be of use later and can be

found in Musiela and Rutkowski [15]. Firstly, there exists a Rd-valued process γ(t, T, T ∗), such

that the forward process has the representation

dFB(t, T, T ∗) = FB(t, T, T ∗)γ(t, T, T ∗) · dWT ∗(t). (3)

By Itô’s formula and Girsanov’s theorem it follows, that for any given S, T ∈ [0, T ∗] the dynamics

of FB(t, S, T ) for t ∈ [0, S ∧ T ] can be written as

dFB(t, S, T ) = FB(t, S, T )γ(t, S, T ) · dWT (t), (4)

with

γ(t, S, T ) = γ(t, S, T ∗) − γ(t, T, T ∗),

dWT (t) = dWT ∗(t) − γ(t, T, T ∗)dt. (5)

Hence, FB(t, S, T ) is an exponential (local) martingale under the PT measure, and since both,

P and PT , are absolutely continuous, the Radon-Nikodým derivative is given by the Doléans

exponential

dPT

dP
= ET

(

∫ ·

0
γ(u, T, T ∗) · dWT ∗(u)

)

, PT − a.s.

The measure PT is usually denoted as T -forward measure, and PT ∗ = P additionally as terminal

measure.

For practical purposes it is often convenient to use a discrete-tenor version of the LMM1. There-

fore, we assume that the time horizon T ∗ = Nδ is a multiple of a fixed period δ. Then, the

LIBOR forward rate L(t, T ) as seen at time t, for an investment of one currency unit at time T

with payoff B(t, T )/B(t, T + δ) at T + δ, can be written as

dL(t, T ) = L(t, T )λ(t, T ) · dWT (t), (6)

for t ∈ [0, T ]. The volatility function of LIBOR relates to the volatility function of the forward

process by

γ(t, T, T + δ) =
δL(t, T )

1 + δL(t, T )
λ(t, T ). (7)

To shorten notation, define Ti = iδ (for 0 ≤ i ≤ N).

1Where an extension to continuous tenor is required, it is typically more practical to start with a discrete-tenor

version of the LMM and extend it using "interpolation by daycount fractions" as in Schlögl [18] in order to avoid

the infinite-dimensional state variables resulting from the continuous-tenor extensions proposed by Brace, Gatarek

and Musiela [3] and Musiela and Rutkowski [15].
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2.2 The Commodity Market

The approach incorporating a commodity as followed in this section parallels the multi-currency

LMM introduced by Schlögl [19]. The commodity market can naturally be considered as a

"foreign interest rate market", where the currency is the physical commodity itself, e.g. as in our

example in Section 6, the value of any asset is measured in units (barrels) of crude oil instead

of dollars. The bond prices C(t, T ) quote (as seen at time t) the amount of the commodity

that has to be invested at time t to physically receive one unit of the commodity at time T .

Corresponding LIBORs can be interpreted in the same way, i.e. the yield of C(t, T ) is the

convenience yield (adjusted for storage costs, if applicable). Although these rates have a natural

interpretation, they are usually not traded (liquidly) for most of the commodities. We will

discuss below how this model still can be calibrated to the instruments commonly traded in the

commodities market.

Some assumptions are required with regard to the commodity market. Firstly, all assumptions

made in constructing the LMM on the domestic interest rate market in the previous section, are

assumed to be true for the commodity market as well. This in particular includes the process

C(t, T ) for 0 ≤ t ≤ T ≤ T ∗ to be adapted to the filtration {Ft}t∈[0,T ∗]. We will denote the

corresponding Ti-forward measures, Brownian motions and volatility functions by P̃Ti
, W̃Ti

and

γ̃(t, Ti, Ti+1), respectively.

Secondly, we postulate the existence of a spot exchange rate process X(t), which is a positive

special semi-martingale under PT ∗ . X(t) is the spot price of the commodity at time t.

A commodity bond C(t, T ) converted by the spot exchange rate is then a traded asset in the

domestic market (denominated in domestic currency), and hence its forward value,

X(t, Ti) =
C(t, Ti)X(t)

B(t, Ti)
, (0 ≤ i ≤ N), (8)

is a martingale under PTi
and is called Ti-forward exchange rate and in the present context

this is the forward price of the commodity. If the dynamics of the forward exchanges rates are

written in terms of

dX(t, Ti) = X(t, Ti)σX(t, Ti) · dWTi
(t), (0 ≤ i ≤ N), (9)

in which the volatility functions are not necessarily deterministic, then it is shown in Schlögl

[19], that under no-arbitrage restrictions the volatility functions must satisfy the relation

σX(t, Ti−1) = γ̃(t, Ti−1, Ti) − γ(t, Ti−1, Ti) + σX(t, Ti), (1 ≤ i ≤ N). (10)

This leaves generally two ways to link the interest rate and commodity markets in order to have

an arbitrage free multi-currency LMM. The first one would be to calibrate the single-currency

LMM models separately, i.e. determining the volatility functions γ(t, Ti, Ti+1) and γ̃(t, Ti, Ti+1)

(or λ(t, Ti) and λ̃(t, Ti) equivalently) for i = 1, . . . , N−1, and then calibrate the forward exchange
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rate volatility σX(·, Ti) for one arbitrary forward time Ti. Using (10) all other forward exchange

rate volatilities σX(·, Tj) for 1 ≤ j 6= i ≤ N can be derived. This approach seems especially

appropriate when linking two (real) interest rate markets (like USD and AUD), because LIBORs

(or similar) and currency forwards are liquidly traded for all major currencies.

In order to link an interest rate market with a commodity market, the second approach seems to

be more appropriate. The fixed income market volatilities γ(t, Ti, Ti+1) (or equivalently λ(t, Ti))

are calibrated as for a single–currency LMM — in our example in Section 6, this will be the USD

market calibrated to at–the–money caplets and swaptions. Then, for all forward times T0, . . . , TN

volatility functions σX(·, Ti) are calibrated to the commodity options market (in Section 6, we

specifically consider options on WTI Crude Oil futures), i.e. the forward commodity prices are

assumed to follow lognormal dynamics under the appropriate probability measure, rather than

the simple–compounded convenience yields.2 The volatility functions γ̃(t, Ti, Ti+1) and λ̃(t, Ti)

can now be derived from relations (10) and (7), respectively.

Remark 2.1 If a deterministic volatility function σX is chosen for the commodity forward

process, it will be shown in Section 4 that the corresponding futures process is not log-normally

distributed, apart from the futures price at maturity. Nevertheless, the difference between forward

and futures prices can be expressed in terms of volatilities for the commodity forwards and

forward interest rates.

3 Calibration with Time Dependent Volatilities

Since the Commodity LMM is based on commodity forwards, we have to calibrate to forward

implied volatilities or plain vanilla option prices written on forwards. However, commodities

futures rather than forwards are most liquidly traded (consider, for example, the WTI Crude

Oil futures in the market data example in Section 6) and thus forward prices have to be deduced

from the futures. As we are specifically concerned with integrating commodity and interest rate

risk, it is not adequate to equate forward prices with futures prices, as is still common among

practitioners. The following Section 4 describes how to approximate the difference between

futures and forwards as well as the implied forward volatilities, in order to apply the calibration

methods proposed in the present section.

We first make some notational conventions and modify slightly the notation in Section 2, adapted

from the prior literature. Since in our setup the forward exchange rate X(t, T ) is a commodity

forward, we will write F (t, T ) instead, where t is termed process time (aka calendar time) and T

as forward time. Accordingly, the volatility of the forwards will be denoted by σ(t, T ), instead

of σX(t, T ), and is the instantaneous volatility at time t of the forward with forward time T .

We assume to have forward processes F ( · , T1), . . . , F ( · , TN ) with expiries T1, . . . , TN and we

further think of T0 as "now". Times to maturity for an arbitrary calendar time t ≥ 0 are given

2Assuming the convenience yields to be lognormal also does not appear reasonable in light of the fact that,

empirically, convenience yields can become negative.
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by xi = Ti − t for i = 0, 1, . . . , N . Finally, market prices for call options on F ( · , Ti) with payoff

[F (Ti, Ti) − K]+ are assumed to be available and denoted by Cmkt
i for i = 1, . . . , N .

For calibration we further need to determine vectors of calendar times tc = (0, t1, . . . , tnc) and

times to maturity xf = (x0, x1, . . . , xnf
), which define a grid for V = (vi,j)1≤i≤nc,1≤j≤nf

, the

matrix of piecewise constant instantaneous volatilities. The entry vi,j represents the volatility

corresponding to forward F (t, T ) with ti−1 ≤ t < ti and xj−1 ≤ T − t < xj. The number

of forward times nf in the volatility matrix need not to coincide with the number of traded

forwards N , and especially in regions of large forward times a rougher spacing can be chosen

for xf , since volatilities tend to flatten out with increasing forward time. Let ν(t, T ) denote the

(annualized) implied volatility as seen at time t for forward time T , then the relation between

time-dependent instantaneous and implied volatilities is given by

1

T − t

∫ T

t
σ2(s, T ) ds = ν2(t, T ). (11)

Identity (11) is utilized to compute a (model) option price Cmod
i (for i = 1, . . . , N) from the

volatility matrix V with Black’s formula [1]. Note, that the assumption of deterministic volatili-

ties for commodity forwards made in the previous section permits us to apply Black’s formula in

a consistent manner. In Appendix A we show how to compute the integral when volatilities are

piecewise constant. Now, the first calibration criterion measures the quality of fit by considering

the squared differences between market and model call prices. In order to weight the various fit

criteria we assign different weights η to each of them,

q = ηq

N
∑

j=1

(Cmkt
j − Cmod

j )2. (12)

As already mentioned in the introduction, in commodity markets typically only options with

maturities coinciding with the maturity of the underlying forward exist. In order to construct a

full volatility term structure for a particular forward, it is necessary to use information gained

from other options on forwards expiring before the particular one. Following Pedersen [16], to

this end several heuristic concepts can be employed, which more or less rely on market practice

and experience. We will refer to these as smoothness criteria. The first one is time-homogeneity,

which assumes that the (unknown) volatility at future calendar time t = T2 − T1 of a forward

F ( · , T2) having then time to maturity T1 and time to maturity T2 now, will be "similar" to

the (known) volatility the forward F ( · , T1) with time to maturity T1 has now. In other words,

under strict time–homogeneity σ(t, T ) can be expressed as a function of time to maturity T − t

only. This is usually too restrictive to be able to fit the model to the market in general, so

instead of enforcing strict time–homogeneity, we penalise departures from time–homogeneity in

the first smoothness criterion. In terms of the volatility matrix V , this means that volatilities

with different calendar times but the same time to maturity should not differ too much, so the
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penalty function is

s1 = η1

nf
∑

j=1

nc−1
∑

i=1

(vi+1,j − vi,j)2. (13)

Another typical characteristic is the so-called Samuelson effect, which states that forward volatil-

ities tend to decrease with increasing time to maturity. In order to be consistent with this be-

havior, the volatility matrix has to be monotonically decreasing in forward time, and violations

of this property are penalised by

s2 = η2

nc
∑

i=1

nf −1
∑

j=1

(max{vi,j+1 − vi,j , 0})2. (14)

Finally, we enable a criterion which imposes the volatility term structure to be smooth in time

to maturity for each fixed calendar time. Assigning a large weight to this criterion would force

the volatility to be flat in the forward time direction, which is usually not desirable, however,

with a small weight this criterion contributes to a smoother volatility surface,

s3 = η3

nc
∑

i=1

nf −1
∑

j=1

(vi,j+1 − vi,j)
2. (15)

For minimising of the objective value q + s1 + s2 + s3 a least-squares optimisation method is

used; one that allows for the non-linear dependencies between model parameters and objective

function values.

Remark 3.1 The quality–of–fit criterion q and the smoothness criteria s1, s2, s3 are constructed

such that absolute squared differences between model and market option prices and between neigh-

boring volatilities, respectively, are minimised. Alternatively, relative deviations could be used

for minimisation, but we did not experience substantial differences in the quality of fit or the

smoothness of volatilities when doing so.

Remark 3.2 Regarding the relationship between calendar times and forward times of the volatil-

ity matrix and the times to maturity of the available options on forwards, two important points

should be noted. Firstly, to be able to price options on all of the forwards, the maturity of the

longest available forward has to be smaller or equal to the latest calendar time and the longest

time to maturity, TN ≤ min{tnc , xnf
}. Here, we assume that all options mature at the same

time as their underlying forwards. Secondly, in context of the integral in (11), volatilities σ(t, T )

at any calendar time t with forward time T > TN , or equivalently t + x > TN , have no impact

on the price of any plain vanilla option used for calibration. In terms of the piecewise constant

volatility matrix this means that volatilities vi,j with ti−1 + xj−1 > TN have no contribution to

the quality of fit criterion and are therefore determined only by smoothness criteria.
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We want to conclude this section by briefly describing the concept of volatility factor decompo-

sition and factor reduction, which can either be included in the calibration process, or applied to

the final volatility matrix after calibration. As it will be demonstrated in the following Sections

4 and 5, the volatility factor decomposition has to be included in the calibration process when

calibrating to futures and options on futures. The method has to be applied separately for every

calendar time, which is therefore fixed to arbitrary ti in the following, and let vi denote the

ith row (corresponding to calendar time ti) of V , written as column vector. Together with the

exogenously given correlation matrix C, which is assumed to be constant over calendar time,

the covariance matrix is calculated by

Σ = (viv
⊤
i ) ⊙ C, (16)

where ⊤ means transposition and ⊙ multiplication by components (Hadamard product). Σ

is symmetric and positive definite, hence can be decomposed into Σ = RD1/2(RD1/2)⊤. The

columns of R = (rj,k)1≤j,k≤nf
consists of orthonormal eigenvectors and the diagonal matrix

D = (ξj,k)1≤j,k≤nf
of the eigenvalues of Σ. This representation allows us to reduce the number

of stochastic factors, because usually the first d eigenvalues (when ordered decreasingly in D

and the columns of R accordingly) account for more than around 95% of the overall variance,

with d substantially smaller than nf . Hence, R and D can be reduced to matrices R ∈ Rnf ×d

and D ∈ Rd×d by retaining only the first d columns in R and the upper d × d sub-matrix in D,

respectively. Instead of vi we now use the a matrix U = (uj,k)1≤j≤nf ,1≤k≤d (the calendar time

index i has been skipped for notational convenience) with entries uj,k = rj,k
√

ξk, which relates

to vi by

v2
i,j =

d
∑

k=1

u2
j,k =

d
∑

k=1

r2
j,kξk (j = 1, . . . , nf ). (17)

The computation of the variance in (11), as described in Appendix A, allows also for represen-

tations of the volatilities in decomposed form.

Remark 3.3 The correlation matrix C in (16) is the correlation matrix of the forward returns,

not of the futures returns.3 However, for the convexity adjustment suggested in Section 4 both

correlation matrices coincide.

Remark 3.4 When used as in (16), the calculation of a correlation matrix from a historical time

series should be consistent with the forward time concept of the volatility matrix. That means, if

the volatility matrix is given for calendar times t and absolute forward times T , the correlations

should be calculated from instruments with the same absolute maturity times. Correspondingly,

if the volatility matrix is given for calendar times t and times to maturity x, the correlations

should be calculated from instruments with the same times to maturity. Typically, futures are

3Strictly speaking, it is the matrix of quadratic covariation of the forward processes.
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quoted in the market for absolute maturity times and forwards (if they are quoted at all) have

constant times to maturities.

Although in practice both methods typically do not exhibit substantial differences, an interpolation

could be performed before estimating the correlations in order to switch from absolute maturity

times to times to maturity or vice versa. For a discussion of different correlation concepts and

their effect on calibration and pricing in the context of the LMM, see [4].

4 Futures/Forward Relation and Convexity Correction

The calibration method in Section 3 is applicable only when forwards and options on forwards

are available. This section presents the approximate conversion of futures prices to forward

prices for all relevant data for calibration, in order to apply the methods of the previous section

when only futures and options on futures are available (such as in the case of WTI Crude Oil

as considered in the market data example in Section 6).

We introduce the notation G(t, T ) for a futures price at time t with maturity T , and, as before,

F (t, T ) will be the corresponding forward price. From no-arbitrage theory we know F (T, T ) =

G(T, T ) and that prices of plain vanilla options on forwards and futures must coincide, whenever

the maturities of option, forward and futures are the same. This allows us to use the call prices

of options on futures for calibration of forwards, and we only have to assure that the (virtual)

forwards have the same maturities as the futures. Due to equation (9) the forward F ( · , Ti) is an

exponential martingale under the Ti-forward measure, and since it has deterministic volatility,

it is log-normally distributed under PTi
. A change of measure from the Ti-forward to the spot

risk-neutral measure relates the Brownian motions by

dWTi
(t) = η(t, Ti) dt + dWQ(t) (1 ≤ i ≤ N),

and η( · , Ti) relates to the volatility of the process FB(t, Ti, Ti + δ) by

η(t, Ti+1) − η(t, Ti) = γ(t, Ti, Ti+1) =
δL(t, Ti)

1 + δL(t, Ti)
λ(t, Ti) (1 ≤ i ≤ N − 1), (18)

with η(t, T1) = 0 if we are using "interpolation by daycount fractions" to extend the model to

continuous tenor as in Schlögl [18]. Hence, for 1 ≤ i ≤ N

F (Ti, Ti) = F (t, Ti) exp
{

∫ Ti

t
σ(u, Ti) · dWTi

(u) − 1

2

∫ Ti

t
‖σ(u, Ti)‖2 du

}

= F (t, Ti) exp
{

∫ Ti

t
σ(u, Ti) · dWQ(u) − 1

2

∫ Ti

t
‖σ(u, Ti)‖2du

}

× exp
{

∫ Ti

t
σ(u, Ti)

⊤η(u, Ti) du
}

,

where ‖ · ‖ denotes the inner product norm. Furthermore, futures follow the general relation

G(t, T ) = EQ[S(T ) | Ft], (19)
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see e.g. Miltersen and Schwartz [14] and Cox, Ingersoll and Ross [6], where S(t) is the spot

price, which satisfies by no-arbitrage constraints S(t) = F (t, t) = G(t, t) for all t. Putting these

relations together, the futures in (19) can be expressed as

G(t, Ti) = EQ[F (Ti, Ti) | Ft]

= F (t, Ti)EQ[

exp
{

∫ Ti

t
σ(u, Ti) · dWQ(u) − 1

2

∫ Ti

t
‖σ(u, Ti)‖2du

}

(20)

× exp
{

∫ Ti

t
σ(u, Ti)

⊤η(u, Ti) du
}

∣

∣

∣ Ft

]

,

and is obviously not log-normally distributed, since η(·, Ti) depends on the forward interest rates.

The difficulty here is to calculate an expectation of a random process value under a measure,

for which the process is not a martingale. Similar techniques as utilised for convexity correction

in interest rate theory can be applied in order to obtain an expression under the expectation

operator, which is a log-normally distributed random variable with respect to the Q-measure.4

A simple and widely used way is to make the second term in the expectation deterministic by

"freezing" the level-dependence of the η( · , Ti) with respect to the currently observed forward

curve, i.e. defining η̄( · , Ti) by

η̄(t, Ti+1) − η̄(t, Ti) =
δL(0, Ti)

1 + δL(0, Ti)
λ(t, Ti). (21)

Then all volatility terms in (20) are deterministic and we have

G(t, Ti) = F (t, Ti) exp
{

∫ Ti

t
σ(u, Ti)

⊤η̄(u, Ti) du
}

(1 ≤ i ≤ N). (22)

In Appendix A we show how to compute the integral in (22) when the volatility functions σ(t, T )

and η̄(t, T ) are piecewise constant.

Remark 4.1 Based on the convexity correction (22), the identity of the correlation matrices

for forward and futures returns follows immediately.

5 Merging Interest Rate and Commodity Calibrations

So far the interest rate market and the commodity market have been considered separately, with

exception of the convexity correction in (22) that involved the forward interest rate volatility. In

this section we focus on linking both volatility matrices for building a joint Commodity LMM.

The linkage is controlled by the correlation matrix between interest rate and commodity for-

wards. The whole correlation matrix, i.e. for any pair of forwards or forward rates within the set

of commodity forwards and forward interest rates, is assumed to be constant over time. Further,

4See e.g. Pelsser [17], Chapter 11, for details on convexity correction.
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we assume that the calendar time discretization, for which the matrices of piecewise constant

volatility for commodities and interest rates have been calibrated, coincide. The forward time

discretization may differ.

The method to be described has to be applied separately for every calendar time, which is

therefore fixed to some ti in the following. The same techniques as applied for factor reduction

in context of Section 3 will be employed here. We add to the notation of the aggregate volatility

matrix V from Section 3 the subscript C for "commodity" in order to distinguish it from its

interest rate equivalent, which is subscripted by I. Further, we decompose the volatility matrices

VC (obtained from the calibration in Section 3) and VI (obtained from LMM calibration, e.g.

by the method described in Pedersen [16]) to matrices

UC = (uC
j,k)1≤j≤nf ,1≤k≤dC

and UI = (uI
j,k)1≤j≤mf ,1≤k≤dI

,

where mf is the number of interest forward rates and dC and dI are the number of factors with

significant eigenvalues for commodity forwards and interest forward rates, respectively. The

columns of each matrix correspond to the stochastic factors and the rows to different forward

times. Moreover, each column vector is orthogonal to the other column vectors within the same

matrix.

We start to link both calibrations by choosing a parameter d ≥ dC , dI , which determines the

number of relevant factors for both, commodities and interest rates. d will be also the dimension

of the vector of Brownian motions in the joint Commodity LMM. If d is chosen to be greater

than dC or dI , respectively, the corresponding matrices UC ∈ Rnf ×dC and UI ∈ Rmf ×dI have to

be enlarged to matrices UC ∈ Rnf ×d and UI ∈ Rmf ×d, simply by adding zero columns at the

end. The forward interest rates now depend only on factors that relate to non-zero columns,

but it is different for commodity forwards. Our fitting procedure, presented below, subsequently

modifies UC and therefore determines which factors will have impact solely on the commodity

forwards, which will have no impact on the commodity forwards and which will contribute to

both, commodity forwards and forward interest rates, and therefore to the cross correlation.

The separate calibrations for commodities and interest rates are merged by matching the model

intrinsic cross-covariance matrix UCU⊤
I with the cross-covariance matrix calculated from the

exogenously given cross-correlation matrix CCI ,

Σtarget
CI =

√

diag{vCiv
⊤
Ci} diag{vIiv

⊤
Ii}⊤ ⊙ CCI ,

where diag (applied to a matrix) returns the diagonal of the matrix as column vector and the

square root has to be applied component-wise. As in Section 3, vCi and vIi denote the ith

row (corresponding to calendar time ti) of VC and VI , respectively, written as column vectors.

In order to achieve UCU⊤
I ≈ Σtarget

CI we exploit the property of multivariate normal distributed

random variables to be invariant to orthonormal rotations. That means we have to find a matrix

Q, satisfying QQ⊤ = Id (where Id denotes the d × d-identity matrix) which minimizes

r1 = ζ1||Σtarget
CI − UCQU⊤

I ||
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with respect to some matrix norm, e.g. the Frobenius norm. The weight factor ζ1 may be

necessary when further constraints have to be controlled by the loss function as well, as will be

discussed below. Alternatively, it is also possible to define the cross-correlation matrix to be the

target matrix and minimize

r1 = ζ1||CCI − (UCQU⊤
I ) ⊙ (diag{vCiv

⊤
Ci} diag{vIiv

⊤
Ii}⊤)− 1

2 ||,

subject to the same orthonormality constraint for Q. The exponent −1
2 has to be applied

component–wise.

As with calibration, the optimisation for obtaining a Q can be performed by any non-linear

optimisation procedure that allows for non-linear constraints, or by non-linear least–squares

algorithms like Levenberg/Marquardt, in which the distance of QQ⊤ to the identity matrix Id

is again controlled by a matrix norm,

r2 = ζ2||QQ⊤ − Id||,

ensuring that Q is as close as possible to a valid orthonormal rotation preserving the original

interest rate and commodity calibrations.

Remark 5.1 The cross–correlations between commodity forwards and interest rate forwards are

much lower than the correlations within the asset classes, and estimating from historical data

appears to be much more volatile for the cross-correlations than for the correlations within the

asset classes. For example, the structure of the cross-correlation matrix between WTI Crude

Oil forwards and USD interest rate forwards in Figure 7 of Section 6 can hardly be explained

by obvious rationales. Therefore, in practice one might wish to specify a flat cross-correlation

founded on particular market views. This can be realized in a straightforward manner in our

approach but the example in Section 6 below shows that it is also possible to adequately match a

more complicated cross-correlation structure. In the end, there is a trade-off between quality of

the cross-correlation fit and the number of stochastic factors in the model. In view of computa-

tional efficiency and model parsimony a limited number of factors is desirable and perhaps more

important than exactly fitting a given cross-correlation structure.

Remark 5.2 In our approach the basis transformation Q applies to the commodity volatility

matrix UC . Alternatively, on could choose the interest rate volatility matrix UI for transforma-

tion. This would not change criteria r1 and r2, because Q can also be interpreted as Q⊤ with

inverse Q, and the transformed model covariance matrix would read as UC(UIQ)⊤.

The determination of the basis transformation matrices concludes the calibration of the model,

if the market instruments are forwards and options on forwards. However, if the calibration is

carried out for futures and options on futures, the model option prices would change with any

non-trivial basis transformation, since the forward prices are modified by means of the convexity

correction (22).
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This implies that the whole calibration process has to be iterated by, firstly, refitting the volatility

matrix VC , where in each step of the optimisation the corresponding basis transformation matrix

Q has to be multiplied to the volatility decomposition UC (for each calendar time) before the

model call prices and the value of the loss function are computed. Secondly, for the refitted

VC and UC new basis transformations have to be determined in order to still match the cross-

correlations.

Both steps, the fitting of VC and Q, have to be iterated until a sufficient smoothness and quality

of fit subject to the market option prices and the exogenously given cross-correlation is reached.

For the real data example of the following section this happens already after 3 iterations in the

case with 6 stochastic factors.

For clarity we summarise the steps of the whole calibration process to futures and options on

futures:

I. Preliminary calculations applied to the LMM calibration outcome.

1. Computations for each calendar time ti (1 ≤ i ≤ nI):

(a) Computation of the covariance matrix ΣIi as in (16).

(b) Decomposition of Σi into UIi using PCA in the way described at the end

of Section 3.

II. Iteration until a sufficient quality of fit based on the criteria on match-

ing market option prices, smoothness and cross–correlation is reached.

1. Calibration of VC .

Minimisation of the penalty function given in (d):

(a) Computations for each calendar time ti (1 ≤ i ≤ nC):

i. Computation of the covariance matrix ΣCi by (16).

ii. Decomposition of ΣCi into UCi using PCA as described at the end of

Section 3.

iii. Multiplication with the basis transform Qi resulting from the previous

iteration, UCiQi; (Qi is identity matrix in the very first iteration).

(b) Computation of forward prices from market futures prices using (22).

(c) Computation of model prices for options on forwards using (17) and the

Black formula.

(d) Calculation of the loss value q + s1 + s2 + s3 as defined in Section 3.

2. Fit of the basis transformations.

Fitting {Qi}1≤i≤nc subject to the penalty function r1 + r2 as described in this

section.
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Remark 5.3 The number of factors dC can affect the number of iterations required for the

calibration process to converge satisfactorily. Equations (21) and (22) demonstrate that if the

cross–correlation is zero, futures and forward prices coincide. On the other hand, the first fit

of the volatility matrices UC is made without any consideration of cross-correlation. Hence,

(unintentionally) assigning in the computation of UC the most contributing eigenvalues and

eigenvectors of VC to those stochastic factors of the d-dimensional Brownian motion, which

also represent strong VI contributions, would generate a rather high cross-correlation in the first

calibration step at the end of step II.1 above. In this case the forward curve would tend to depart

from the futures curve. However, if the exogenous cross-correlation has a low level, the basis

transformation would modify the volatility matrix UC in a way that not only reduces the high

model cross-correlation generated in the first calibration step, but also returns the forward curve

in the direction of the futures curve by reducing the magnitude of the convexity correction.

An iteration of the procedure (as described above) will typically (in all real data scenarios that

we have considered) force the objective variables VC and Q to a balanced state with adequate

calibration results. As demonstrated in the following section, the convergence is much slower if

dC is large relative to dI , since a large dC allows for more de-correlation than a small one.

Finally, in the last iteration of the procedure described above we end up with decomposed

volatility matrices UC and transformation matrices Q for each calendar time, and assembling

these resulting nc-many matrices UCQ and UI to 3-dimensional arrays ΛC ∈ Rnc×nf ×d and

ΛI ∈ Rnc×mf ×d the calibration of the hybrid Commodity LMM is finished5. Note, that ΛI

basically consists of piecewise constant forward interest rate volatilities λ(t, T ) as occurring in

(6), obtained from the separate LMM calibration, at most modified by some interpolation on

these calibrated volatilities in order to obtain ΛI . ΛC is the result of the calibration method as

described in the previous sections, together with the transformation presented in this section in

order to match cross correlations.

This allows us to write the dynamics of the hybrid Commodity LMM as follows. Let W be a

d-dimensional Brownian motion and denote by λI
i,j, · and λC

i,j, · the d-dimensional vectors in ΛI

and ΛC of volatilities for calendar times t ∈ [ti−1, ti) and times to maturity x ∈ [xj−1, xj). Then,

the dynamics of the forward interest rates L(t, T ) as given in (6) can be written as

dL(t, T ) = L(t, T )λI
i,j, · · dWT (t),

and the dynamics of the commodity forwards F (t, T ) as given in (9) as

dF (t, T ) = F (t, T )λC
i,j, · · dWT (t),

for all maturity times T satisfying T − t ∈ [xj−1, xj) and all calendar times ti−1 ≤ t < ti (for

some 1 ≤ i ≤ nc and 1 ≤ j ≤ mf or 1 ≤ j ≤ nf , respectively).

5Since we had to equalise the calendar time discretisation for commodities and interest rates in order to be able

to fit a transformation matrix Q, the first dimension of ΛI is of size nc. The choice to adapt the forward interest

rate discretisation of calendar time to the commodity discretisation is arbitrary and any other discretisation could

be used.
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Figure 1: The commodity and interest market for calibration date May, 5th 2008. Left: The WTI

Crude Oil nearest futures between 2005 and end of 2008. The circle indicates the calibration

date. Middle: The futures curve as seen at calibration date with maturities up to five years.

Right: The 3–month USD forward rates for reset dates (expiries) between 3 months and 4 years

and 9 months.

6 Real Data Example

We demonstrate the performance and applicability of the Commodity LIBOR Market Model by

calibrating it to real data.6 We have chosen the May, 5th 2008 for calibration and WTI Crude

Oil as commodity, hence, the US Dollar (USD) forward rate as interest rate. As can be seen in

Figure 1, the nearest WTI Crude Oil future price of 119.97 USD was not too far from its peak

in July 2008. The futures curve is in ‘backwardation’ and covers a rather large range of about

10 USD within the first five years of maturity. The 3–month forward rates show a less extreme

pattern than the commodity futures. An application to 2009 data produced comparable results

to those presented in this example regarding the fit to commodity and fixed income market data,

but at the cost of a slightly rougher forward interest rate volatility surface.

The calibration of the (classical) LMM was done as proposed by Pedersen in [16]. Figure 2

shows the resulting volatility surface and the correlation matrix as used for calibration, which

has been historically estimated from the time series of forward rates covering 3 months before

May, 5th 2008. Caplets, caps and swaptions were used for calibration and the fit to market prices

is quite good, as Figure 3 demonstrates. Note, that we have to employ the forward interest rate

curve up to 6 years forward time, in order to calculate the convexity correction for a commodity

volatility surface with 3 years calendar and 3 years forward time. The calibration of the WTI

6The data was taken from the SuperDerivatives platforms SD-IR and SD-CM.
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Figure 2: Left: The calibrated volatility matrix. Right: The historically estimated correlation

matrix as used for calibration.
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Figure 3: Market prices versus model prices. The market prices are represented by crosses

connected by solid lines, the model prices by circles connected by dashed lines. Left: Caplets.

Middle: Caps. Right: Swaptions with 1 year, 2 year and 3 year tenors (from bottom to top).

Crude Oil futures was achieved by the method described in Section 3. The market instruments

are futures and options on futures traded on the New York Mercantile Exchange. Figure 4

shows the calibrated volatility surface and the historically estimated correlation matrix using 3

months of futures prices before the calibration date. Calendar and forward times go out to 3

years, and although on the exchange futures with expiries in every month are traded, we chose

the calendar and forward time vectors to be unequally spaced (while still calibrating to all traded

instruments), with 1 month difference up to 1 year, 2.4 months difference between 1 and 2 years

and 6 months difference between 2 and 3 years. This speeds up the calibration without losing

much structure in the volatility surface, since the market views futures with long maturity to have

almost flat volatility. For weighting in the calibration objective function we have chosen ηq = 1
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Figure 4: Left: The calibrated commodity volatility surface. Right: The historically estimated

correlation matrix as used for calibration.
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Figure 5: Left: The differences between futures (dashed red line) and forwards (solid blue line)

as calculated from the convexity correction. Right: Fit of model prices (red circles connected

by dashed line) to market prices (blue crosses connected by solid line).

(fit to call prices), η1 = 0.1 (time homogeneity, i.e. smoothness in calendar time direction),

η3 = 0.01 (smoothness in forward time direction) and η2 = 0.1 (decreasing monotonicity in

forward time direction). As initial guess we have interpolated the implied volatilities to the

forward time grid for the first calendar time t1 and then used constant extrapolation to all other

calendar times.

The model fit to the commodity call prices is very good, as illustrated in the right graph of

Figure 5. The left graph shows the difference between futures and forwards as calculated by the

convexity correction.

In Figure 6 particular slices of the forward volatility structure are examined. The left graph

shows the term structure of volatilities for certain calendar times, whereas the right graph
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Figure 6: Left: Forward volatility structures at different calendar times (solid black = 0 (calibra-

tion date), dotted-dashed blue = 6 month, dashed red = 1 year, dotted green = 2 years). Right:

Evolution of forward volatilities over lifetime (solid black = forward with 3 years maturity,

dashed-dotted blue = 2 years, dashed red = 1 year, dotted green = 6 month).

illustrates the evolution of volatilities over the lifetime of different forwards.

Finally, we link both separately calibrated volatility matrices to one set of stochastic factors.

Table 1 shows how much of the overall variance, i.e. of the sum of variances over all factors, can be

explained by the leading factors, when the factors are sorted according to decreasing contribution

to total variance of the commodity forwards. The first two factors already account for more

than 99% of the overall variance, hence a reasonable choice would be dC = 2. Since Pedersen’s

calibration method for the LMM part of the model already includes a spectral decomposition

of the interest forward rates covariance matrix, it is not meaningful to do it again here, because

the number of factors with reasonably large contribution should be the same as the number of

factors chosen for the LMM calibration. If it is necessary to interpolate the forward interest rate

volatility matrix in order to match the calendar times of the commodity volatility matrix, the

forward rate covariance matrix will change and, hence, eigenvalue decompositions of the calendar

time adjusted covariance matrices yield different results than an eigenvalue decompositions of

the original covariance matrices as used for calibration. However, these differences should not be

substantial as long as the calibrated volatility matrix is sufficiently smooth in calendar time. For

the LMM calibration we have chosen the number of factors to be dI = 4, which again covered

about 99% of the overall variance.

We now have to determine the parameters for the final cross-correlation fit. First, we choose

the total number of factors in the joint model to be d = 6 and allow the commodity volatility

matrix to disperse over all six factors, whereas the interest rate volatilities should remain on

the first four factors, since we apply the basis transform to the commodity volatilities (see

also Remark 5.2). Figure 7 demonstrates the result of the transformation. The left graph

shows two surfaces, the exogenously given target cross-correlation matrix (as calculated from
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No. of Factors 1 2 3 4 5 6 . . . 19

Percentage of
98.138 99.835 99.957 99.979 99.988 99.992 . . . 100

Overall Variance

Table 1: Results of the eigenvalue decomposition of the commodity forward covariance matrix

for the first calendar time t1. The maximum number of factors coincides with the number of

forward times greater zero. The second row shows for the ith factor the percentage of overall

variance that can be generated by the first i factors.
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Figure 7: The cross-correlation fit with dC = d = 6. Left: The target cross-correlation matrix

(colored) as estimated from historical futures returns and the cross-correlation matrix for the

calendar time that fitted worst (gray). Right: Differences between target and fitted cross-

correlations.

the historical time series covering 3 months before the calibration time) and the transformed

correlation matrix for the particular calendar time that fitted worst with respect to the Frobenius

norm. The right graph illustrates the absolute differences between target cross-correlation and

the fitted cross correlation matrix of the left graph. For optimisation we applied a non-linear

Levenberg/Marquardt algorithm with scale parameters ζ1 = 1 (quality of fit) and ζ2 = 10

(orthonormality of transformation matrix). Without the application of a basis transformation,

i.e. by optimising only subject to the quality of fit and smoothness criteria, the cross–correlation

ranges between 0.5 and 1 for all commodity and interest rate forwards over all calendar times.

By construction, the aggregated commodity volatility matrix, as shown in the left graph of

Figure 4, does not change. How the decomposed factors change is illustrated in Figure 8. The

left graph shows only the first four factors of the original calibration without considering cross–

correlations, since the other are very close to zero. The right graph demonstrates how the basis

transformation spreads the contribution of the relevant factors of the original calibration to all

available factors in order to match the cross–correlation coefficients.
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Figure 8: The factorised commodity volatilities of the first calendar time t1. Left: The first

four factors from the initial calibration, without considering cross relations. The 5th and 6th

factors are not shown since they are almost zero. Right: All six factors after applying the basis

transformation in order to match the cross correlations. The 5th and 6th factors are represented

by those two lines that have the largest value at forward time closest to zero.
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Figure 9: The cross–correlation fit with dC = d = 12. Left: The target cross-correlation

matrix (colored) as estimated from historical futures returns and the cross-correlation matrix

for the calendar time that fitted worst (gray). Right: Differences between target and fitted

cross-correlations.

The quality of the cross-correlation fit can be substantially improved by increasing dC and hence

d. Allowing for 6 more factors, i.e. setting dC = d = 12 results in cross-correlation fits as shown

in Figure 9.

The choice of dC −dI = 8 independent factors for the commodity forwards allows the fitted basis

transformation matrices in the very first iteration to have a strong de-correlation effect. This

is especially true compared to the high cross-correlation (between 0.5 and 1.0) obtained from
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dC = 6

Iteration 1 2 3 4 5 6

ℓ1 0.0261 0.0265 0.0263 – – –

min{ℓ2i} 0.2373 0.2409 0.2414 – – –

max{ℓ2i} 0.3544 0.3922 0.3972 – – –

dC = 12

Iteration 1 2 3 4 5 6

ℓ1 0.0261 0.9852 0.9550 0.7856 0.7828 0.6816

min{ℓ2i} 0.2004 0.2005 0.2005 0.2000 0.2000 0.2000

max{ℓ2i} 0.2551 0.2636 0.2543 0.2879 0.2868 0.2539

Iteration 7 8 9 10 11 12

ℓ1 0.6367 0.6301 0.6327 0.5090 0.4146 0.3992

min{ℓ2i} 0.2001 0.2000 0.2000 0.2001 0.2012 0.2012

max{ℓ2i} 0.2538 0.2537 0.2537 0.2538 0.2539 0.2537

Table 2: Calibration with dC = 6 and 3 iterations compared to dC = 12 and 12 iterations. The

value ℓ1 denotes the final loss function value of the VC optimization in step II.1. The value ℓ2i

denotes the Frobenius norm of the difference between model and target cross-correlation matrix

for calendar time ti as induced by the fitted Qi in step II.2.

fitting VC without any consideration of cross-correlation in step II.1 of the very first iteration.

Table 2 demonstrates that for dC = 12 more iterations are required to find a balance for the fits

of VC and the cross–correlation matrix.

Figure 10 shows the forward prices and the fit to the market call prices for both calibrations.

Whereas the forwards almost coincide, the fit to market call prices seems to be worse in the

case of dC = 12, especially for options with long maturities. The left graph of Figure 11, which

is a detail of the right graph in Figure 10, confirms this and explains the larger loss value ℓ1.

The smoothness of the volatility matrix VC is lower for dC = 12 as is demonstrated in the right

graph of Figure 11. This further contributes to a higher ℓ1.

7 Pricing Spread Options

This section examines an approximation approach in order to price spread options on forwards

and futures following Kirk [10]. Spread options can be used to hedge the risk of roll over costs, i.e.

the price difference between two futures or forwards with different maturities. Moreover, spread

options depend on the correlation and the difference between the volatilities of the involved

futures or forwards, hence, can be employed to reduce risk generated by these parameters. We

will first consider forwards and then sketch an analogous derivation for futures.

Let Ti, Tj denote two forward maturities with Ti < Tj and we set the option expiration time to

Ti. According to market practice, the spread is defined by Si,j(t) = F (t, Tj) − F (t, Ti) and the

spread call option value is given by

CFwd
Spread(0, Ti, Tj , K) = EQ[D(Ti)(Si,j(Ti) − K)+ | F0]
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Figure 10: Comparison of the calibration results for dC = 6 with 3 iterations and dC = 12

with 12 iterations. Left: The market future prices (red dashed line) and the forward prices as

calibrated with dC = 6 (blue solid line) and dC = 12 (green dotted-dashed line). Right: The

market call prices (black circles) and the model call prices for dC = 6 (solid blue line) and

dC = 12 (green dotted-dashed line).

= B(0, Ti)ETi
[(F (Ti, Tj) − F (Ti, Ti) − K)+ | F0]. (23)

From Section 2 we know that

dF (t, Ti) = F (t, Ti)σ(t, Ti) · dWTi
(t), (24)

dF (t, Tj) = F (t, Tj)σ(t, Tj)⊤

(j−1
∑

ℓ=i

δL(t, Tℓ)

1 + δL(t, Tℓ)
λ(t, Tℓ)

)

dt + F (t, Tj)σ(t, Tj) · dWTi
(t).(25)

By "freezing" the level-dependence of the L( · , Tℓ) with respect to the currently observed forward

curve as described in Section 4, both processes become geometric Brownian motions,

dF (t, Ti) = F (t, Ti)σ(t, Ti) · dWTi
(t), (26)

dF (t, Tj) ≈ F (t, Tj)σ(t, Tj)⊤Γi,j−1(t)dt + F (t, Tj)σ(t, Tj) · dWTi
(t), (27)

with

Γi,j−1(t) =
j−1
∑

ℓ=i

δL(0, Tℓ)

1 + δL(0, Tℓ)
λ(t, Tℓ). (28)

Kirk’s [10] idea is to assume that instead of F (t, Ti) in (26) F (t, Ti)+K is a geometric Brownian

motion with adjusted volatility,

d(F (t, Ti) + K) = (F (t, Ti) + K)
F (0, Ti)

F (0, Ti) + K
σ(t, Ti) · dWTi

(t). (29)
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Figure 11: Comparison of the calibration results for dC = 6 with 3 iterations and dC = 12 with

12 iterations. Left: A detail of the right graph of Figure 10. The market call prices (black

circles) and the model call prices for dC = 6 (solid blue line) and dC = 12 (green dotted-dashed

line). Right: Forward volatilities as calibrated with dC = 12 for different calendar times (solid

black = 0 (calibration date), dotted-dashed blue = 6 months, dashed red = 1 year, dotted green

= 2 years). See the left graph of Figure 6 for the corresponding volatilities calibrated with

parameter dC = 6.

This allows to apply Margrabe’s approach [11] for options to exchange one asset for another by

rewriting the payoff in (23) such that

CFwd
Spread(0, Ti, Tj , K) = B(0, Ti)ETi

[

(F (Ti, Ti) + K)
( F (Ti, Tj)

F (Ti, Ti) + K
− 1

)+ ∣

∣

∣ F0

]

. (30)

The solution of (29) is

F (t, Ti) + K

F (0, Ti) + K
= exp

{

−1

2

( F (0, Ti)

F (0, Ti) + K

)2
t

∫

0

σ(s, Ti)
⊤σ(s, Ti)ds

+
( F (0, Ti)

F (0, Ti) + K

)

t
∫

0

σ(s, Ti) · dWTi
(s)

}

,

where the right hand side is an exponential martingale which defines a Radon-Nikodým derivative

dP̂/dPTi
. Hence, the call price (30) can be written as

CFwd
Spread(0, Ti, Tj , K) = B(0, Ti)(F (0, Ti) + K)E

P̂
[(Y (Ti) − 1)+ | F0], (31)

where the dynamics of Y (t) = F (t, Tj)/(F (t, Ti) + K),

dY (t) = Y (t)
[

σ(t, Tj)⊤Γi,j−1(t)dt +
(

σ(t, Tj) − F (0, Ti)

F (0, Ti) + K
σ(t, Ti)

)

· dW
P̂
(t)

]

,
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is derived from (27) and (29) using Itô’s product rule and dW
P̂
(t) = dWTi

(t)− F (0,Ti)
F (0,Ti)+K σ(t, Ti)dt.

Standard techniques applied to (31) yield

CFwd
Spread(0, Ti, Tj , K)

= B(0, Ti)[F (0, Tj)e
∫ Ti

0
σ(s,Tj)⊤Γi,j−1(s)dsN(d+) − (F (0, Ti) + K)N(d−)], (32)

where N( · ) is the cumulative standard normal distribution function and

d± =
1

ζ

[

ln

(

F (0, Tj)

F (0, Ti) + K

)

+

Ti
∫

0

σ(s, Tj)⊤Γi,j−1(s)ds ± 1

2
ζ2

]

,

ζ2 =

Ti
∫

0

∥

∥

∥σ(s, Tj) − F (0, Ti)

F (0, Ti) + K
σ(s, Ti)

∥

∥

∥

2
ds.

Figure 12 demonstrates the applicability of this approximation approach for the market scenario

as calibrated in Section 6. The commodity forward maturities are chosen to be 1 year for Ti and

1 year plus 3 months for Tj . Since the forward interest rate maturities do not exactly match with

the commodity forward maturities, we have interpolated the commodity forward prices in order

to obtain values for F (·, Ti) and F (·, Tj). For an arbitrage-free interpolation in the maturities of

the forward interest rates we refer to [18]. The resulting prices for call spread options on these

forwards calculated by (32) and reference prices are shown for strikes between −15 and 10 in

the left graph of Figure 12. Reference prices are computed by Monte Carlo simulation using

equations (24) and (25), where both commodity forwards as well as the interest forward rates

L(t, Tℓ) in (24) were simulated by the same set of 500,000 Brownian motion paths for all strikes.

The differences between the prices calculated by (32) and the Monte Carlo prices is shown in

the upper curve of the right graph of Figure 12 and result from two approximations in the

derivation of the formula: Firstly, from "freezing" the forward interest rates in (27) in order

to make Γi,j−1(t) deterministic and, secondly, from inserting the strike K in the dynamics of

F (t, Ti) as done in (29). The lower curve in the right graph shows the error resulting from the

second approximation only. It is the difference between the prices calculated from (32) and

Monte Carlo simulated prices from the dynamics given by (25) (i.e. without "freezing" of the

forward interest rates) and by (29).

We conclude this section by sketching the derivation of the analogous spread call options formula

for futures instead of forwards. From the forward dynamics (26) and relation (22) we get for

futures the general dynamics

dG(t, Tk) = −G(t, Tk)σ(t, Tk)⊤η̄(t, Tk)dt + G(t, Tk)σ(t, Tk) · dWTk
(t) (1 ≤ k ≤ N). (33)
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Figure 12: Call spread options on forwards for the market as calibrated in Section 6. The

maturities for the commodity forwards are 1 year and 1 year plus 3 months. Left: The black

dots show Monte Carlo prices with simulated commodity forwards and simulated interest forward

rates (i.e. no "freezing"). The blue solid line indicates the prices calculated using (32). Right:

The black solid line shows the absolute difference between prices calculated by the closed-form

formula in (32) and the Monte Carlo prices, i.e. the difference between the curves in the left

graph. The dashed blue line shows the difference between the closed-form formula prices and a

Monte Carlo simulated price using (27) and (29) but without "freezing" in (28).

Applying Kirk’s idea gives for the first futures with maturity Ti

d(G(t, Ti) + K) = −(G(t, Ti) + K)
G(0, Ti)

G(0, Ti) + K
σ(t, Ti)

⊤η̄(t, Ti)dt

+(G(t, Ti) + K)
G(0, Ti)

G(0, Ti) + K
σ(t, Ti) · dWTi

(t), (34)

which is the analogue to (29). For the second futures with maturity Tj we employ (5) in order

to get the dynamics under dWTi
,

dG(t, Tj) = G(t, Tj)σ(t, Tj)⊤[Γi,j−1(t) − η̄(t, Tj)]dt + G(t, Tj)σ(t, Tj) · dWTi
(t).

Using (21) we know that

Γi,j−1(t) =
j−1
∑

ℓ=i

δL(0, Tℓ)

1 + δL(0, ℓ)
λ(t, Tℓ) =

j−1
∑

ℓ=i

η̄(t, Tℓ+1) − η̄(t, Tℓ),

and the dynamics of the second futures is given by

dG(t, Tj) = −G(t, Tj)σ(t, Tj)⊤η̄(t, Ti)dt + G(t, Tj)σ(t, Tj) · dWTi
(t),
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which is the analogue to (27). Solving (34) yields the relation

G(t, Ti) + K

G(0, Ti) + K
exp

{ G(0, Ti)

G(0, Ti) + K

∫ t

0
σ(s, Ti)

⊤η̄(s, Ti)ds
}

= exp
{

−1

2

( G(0, Ti)

G(0, Ti) + K

)2
∫ t

0
σ(s, Ti)

⊤σ(s, Ti)ds +
G(0, Ti)

G(0, Ti) + K

∫ t

0
σ(s, Ti) · dWTi

(s)
}

,

in which the right hand side is an exponential martingale and defines a Radon-Nikodým deriva-

tive dP̂/dPTi
. This allows us to write the spread call option prices as

CFut
Spread(0, Ti, Tj , K) = B(0, Ti)ETi

[(G(Ti, Tj) − G(Ti, Ti) − K)+ | F0]

= B(0, Ti)ETi

[

(G(Ti, Ti) + K)
( G(Ti, Tj)

G(Ti, Ti) + K
− 1

)+ ∣

∣

∣ F0

]

= B(0, Ti)(G(0, Ti) + K)

× exp
{

− G(0, Ti)

G(0, Ti) + K

∫ Ti

0
σ(s, Ti)

⊤η̄(s, Ti)ds
}

E
P̂
[(Y (Ti) − 1)+ | F0],

now with Y (t) = G(t, Tj)/(G(t, Ti) + K). The same standard techniques as for spread options

on forwards yield

CFut
Spread(0, Ti, Tj , K)

= B(0, Ti)
[

G(0, Tj) exp
{

∫ Ti

0
σ(s, Tj)⊤η̄(s, Ti)ds

}

N(d+)

− (G(0, Ti) + K) exp
{

− G(0, Ti)

G(0, Ti) + K

∫ Ti

0
σ(s, Ti)

⊤η̄(s, Ti)ds
}

N(d−)
]

,

with

d± =
1

ζ

[

ln

(

G(0, Tj)

G(0, Ti) + K

)

+

Ti
∫

0

(

σ(s, Tj)⊤η̄(s, Ti) +
G(0, Ti)

G(0, Ti) + K
σ(s, Ti)

⊤η̄(s, Ti)

)

ds ± 1

2
ζ2

]

,

ζ2 =

Ti
∫

0

∥

∥

∥σ(s, Tj) − G(0, Ti)

G(0, Ti) + K
σ(s, Ti)

∥

∥

∥

2
ds.

8 Conclusion

In the present paper, a joint model of commodity and interest rate dynamics based on the LIBOR

Market Model approach was constructed. We demonstrated how it can be effectively calibrated

to market data, including at–the–money implied volatilities, and how less liquid instruments

such as commodity spread options can be priced relative to the market using the model.

In closing, one should note that although neither seasonal cycles in commodity prices nor mean

reversion of the commodity price process were explicitly considered in the model construction,

both of these features (well documented in the empirical literature) can be captured by the
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model, to the extent that they are reflected in current market prices: Firstly, seasonal cycles

in commodity prices are anticipated by the market and thus subsumed in the term structure of

futures (or forward) prices, to which the model is calibrated by construction. Secondly, mean

reversion is reflected in the term structure of volatility, to which the model is also calibrated, e.g.

in the presence of mean reversion of the commodity spot price process, volatility of the forward

(or futures) prices increases as time to maturity decreases. Thus the martingale approach to

the model construction does not preclude mean reversion simply because the objects considered

explicitly are driftless — in fact, the corresponding processes under the appropriate probability

measures are necessarily just as driftless in any other arbitrage–free model, including those which

make mean reversion explicit in an Ornstein/Uhlenbeck process.

The main advantage of the LMM approach lies in its calibration to the market, and the model

presented here opens up interesting avenues of further research (beyond the scope of the present

paper) in terms of calibrating the model not just in the maturity dimension, but also in the

strike dimension, along the lines of the “smile”–fitting extensions of the basic LMM discussed

in Brace [2].

A Volatility Integrals

This appendix describes the calculation of integrals as in (11) and (22) for piecewise constant

volatility matrices. We will focus on (22), since the integral in (11) can be obtained in the same

way by setting η̄ = σ. The proposed method follows the one used in Pedersen’s LMM calibration

[16] to compute cap and swaption total variances.

In Section 3 a volatility matrix UC ∈ Rnf ×dC has been calculated for each calendar time

t1, . . . , tnc , and from LMM calibration an analogous matrix UI ∈ Rmf ×dI is available for each

calendar time s1, . . . , smc . Merging over calendar times yields in each case 3-dimensional arrays

ΛC = (λC
i,j,k) ∈ Rnc×nf ×d and ΛI = (λI

i,j,k) ∈ Rmc×mf ×dI , respectively. Forward times are given

by x1, . . . , xnf
for commodity forwards and by y1, . . . , ymf

for interest forward rates. The cal-

endar times t0 = s0 = 0 and forward times x0 = y0 = 0 are added for notational convenience.

From these matrices of piecewise constant volatilities the integral in equation (22) has to be

calculated.

The first step illustrates the computation of the η̄’s and can be omitted when calculating the

integral in (11). The matrix ΛI determines the forward interest rate volatilities λ(s, s + y) as

occurring in equation (6). From these a corresponding matrix ΘI ∈ Rmc×mf ×dI with entries

η̄i,j,k is calculated by using relation (18). Unfortunately, the forward rates L(t, T ) in (18) are not

known for t > s0, but as best guess we employ the actual forward rate curve in the sense that

for all future times si > s0 an approximated forward rate curve L̄(si, T ) is given by L(s0, T ),

essentially again making use of the standard "frozen coefficient" approximation.

In the second step, the integral for a given time to maturity T in the upper integration limit is

computed. We equalize the calendar time discretisation of the volatility matrices for commodity
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forwards and forward interest rates by taking the union of t0, . . . , tnc and s0, . . . , smc . The new

calendar times will be denoted by t0 = 0, t1, . . . , tpc . The same is done for the discretisation of

times to maturity which results in a discretisation x0 = 0, x1, . . . , xpf
. The arrays ΛC and ΘI

are extended accordingly (i.e. by simply inserting lines for different calendar times and columns

for different times to maturity, respectively, but otherwise identical entries λi,j,k and η̄i,j,k), such

that ΛC , ΘI ∈ Rpc×pf ×d. The purpose of this extension is to have a twofold sum in formula (35)

instead of a fourfold sum.

Any tuple in I = {(i, j) : 1 ≤ i ≤ pc, 1 ≤ j ≤ pf } relates to a pair of σ(ti, ti + xj) and

η̄(ti, ti + xj), and in order to be relevant for the considered integral, the following inequalities

need to be satisfied for some 0 ≤ t ≤ T ,

ti−1 ≤ t < ti, xj−1 ≤ T − t < xj.

Equivalently, this can be written as

κi,j := min{ti, T − xj−1, T } − max{ti−1, T − xj} > 0.

Hence, the integral is given by

T
∫

t

σ(u, T )η̄(u, T )du =
∑

(i,j)∈J

κi,j

d
∑

k=1

λC
i,j,kη̄i,j,k, (35)

where J = {(i, j) ∈ I : κi,j > 0}.
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