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1 Introduction

In the case of complete markets without jumps Long (1990) and Bajeux-Besnainou
& Portait (1997) have proposed the use of the growth optimal portfolio (GOP)
as numeraire, where the corresponding pricing measure is the real world prob-
ability measure. Along these lines in Platen (2002, 2004) pricing and hedging
are performed for complete markets and jump diffusions without measure trans-
formation. Geman, El Karoui & Rochet (1995) describe how to use a tradable
numeraire for pricing when a corresponding equivalent local martingale mea-
sure exists. Under such a condition Föllmer & Sondermann (1986), Föllmer &
Schweizer (1991), Hofmann, Platen & Schweizer (1992) and Heath, Platen &
Schweizer (2001b), have used for the pricing and hedging in incomplete mar-
kets the concept of local risk minimization, which results in the identification
of a minimal equivalent martingale measure. Musiela & Zariphopoulou (2003)
have described an interesting utility maximization approach for valuing contin-
gent claims in incomplete markets. El Karoui (2003) provides an elegant pricing
methodology for utility based valuation criteria. In Elliott (2003) a duality based
valuation method is described. For a recent survey on valuation, hedging and
investing in incomplete markets we refer to Davis (2003).

This paper is based on the use of the GOP as benchmark or numeraire and
establishes a consistent pricing and hedging concept in a class of incomplete
market models with asset prices that follow jump diffusions. By avoiding the
assumption on the existence of an equivalent local martingale measure one gains
access to a wider class of models than would otherwise be the case using standard
approaches. The freedom gained is important from the practical point of view.
This is because certain realistic model classes, described in Platen (2001, 2002,
2004), cannot be covered by classical valuation approaches since for these models
an equivalent pricing measure does not exist.

For contingent claim valuation the concept of a fair value process is introduced.
Fair values, when expressed in units of the GOP, are martingales under the real
world probability measure and are shown to coincide with the minimal replicating
hedge portfolio in complete markets. The benchmarked fair price can be com-
puted as the conditional expectation of future benchmarked prices. Fair pricing
is a natural generalization of standard risk neutral pricing.

The proposed benchmark approach covers incomplete markets with securities that
are not tradable. The paper emphasizes the fact that the choice of the market
prices for risk determines the GOP and thus fair prices. As already indicated
above, many different methods are known for valuing contingent claims in incom-
plete markets. They generally result in a specific choice of the market price for
risk. This paper assumes that the market price for risk has been already modeled.
It proposes to identify the hedging strategy by minimization of the fluctuations
of the profit and loss process, which is called fluctuation minimization. This leads
to a natural hedging strategy.
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This paper introduces in Section 2 a class of incomplete benchmark models with
jumps. Pricing and hedging are studied in Section 3.

2 Incomplete Benchmark Model with Jumps

2.1 Modeling Uncertainty

In a given market the continuous uncertainty, for instance the trading noise, is
modeled by m independent standard Wiener processes W k = {W k(t), t ∈ [0, T ]},
k ∈ {1, 2, . . . , m}, m ∈ {1, 2, . . . , d}, d ∈ {1, 2, . . .}. These are defined on a
filtered probability space (Ω,AT ,A, P ) with finite time horizon T ∈ (0,∞). Event
driven uncertainty, for instance the unexpected default of a company, is modeled
by d−m counting processes pm+1, . . . , pd. Events of the kth type are counted by
the A-adapted, kth counting process pk = {pk(t), t ∈ [0, T ]}. The corresponding
intensity hk = {hk

t , t ∈ [0, T ]} is a predictable, strictly positive process with

hk
t > 0 (2.1)

for t ∈ [0, T ] and k ∈ {m+1, . . . , d}. The kth jump martingale W k = {W k(t), t ∈
[0, T ]} is defined using the stochastic differential

dW k(t) =
(
hk

t

)− 1
2

(
dpk(t)− hk

t dt
)

(2.2)

for k ∈ {m+1, . . . , d} and t ∈ [0, T ]. The jump martingales Wm+1, . . . , W d are
assumed not to jump at the same time.

We denote by A> the transpose of a vector or matrix A. The evolution of market
uncertainty is therefore modeled by the vector of independent (A, P )-martingales
W = {W (t) = (W 1(t), . . . , W d(t))>, t ∈ [0, T ]}. Here the continuous martingales
W 1, . . . , Wm are Wiener processes, whereas the jump martingales Wm+1, . . . ,
W d are compensated and normalized counting processes. The filtration A =
(At)t∈[0,T ] is taken to be the augmentation under P of the natural filtration AW ,
generated by the vector process W and fulfilling the usual conditions with A0

as trivial σ-algebra, see Protter (1990). The increments W k(t + ε) −W k(t) are
assumed to be independent of At for all t ∈ [0, T ], ε > 0 and k ∈ {1, 2, . . . , d}.

2.2 Primary Securities

We introduce one riskless and d risky primary security accounts with values S(j)(t)
at time t ∈ [0, T ] for j ∈ {0, 1, . . . , d}. A primary security account is an invest-
ment account, consisting only of units of this type of security with all proceeds
reinvested. Such account holds units in the corresponding primary security, for
instance shares, as well as accrued income such as dividends or interest. A pri-
mary security account may describe the value process of a security that is not
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traded. In this case, values may be determined by modeling demand and supply
or applying other valuation rules. Such a valuation rule can be given, for instance,
by some utility maximization criterion. Since not all primary security accounts
are traded, some cannot be used for hedging purposes. This makes the market in
a practical sense incomplete. Note however that for all primary security accounts
the dynamics are uniquely determined.

To be specific, we assume that the jth primary security account value S(j)(t) at
time t is nonnegative and satisfies the Itô stochastic differential equation (SDE)

dS(j)(t) = S(j)(t−)

(
aj(t) dt +

d∑

k=1

bj,k(t) dW k(t)

)
(2.3)

for t ∈ [0, T ] with initial value S(j)(0) > 0, j ∈ {0, 1, . . . , d}, see Protter (1990).
The 0th primary security account S(0) = {S(0)(t), t ∈ [0, T ]} denotes the savings
account that continuously accrues interest according to the predictable short term
interest rate process r = {r(t), t ∈ [0, T ]}. For the savings account S(0)(t) we
obtain from (2.3)

a0(t) = r(t) (2.4)

and
b0,k(t) = 0 (2.5)

for all t ∈ [0, T ] and k ∈ {1, 2, . . . , d}. Here the processes aj, bj,k, r and hk

are predictable and such that a strong, unique solution of the system of SDEs
(2.3) exists, see Protter (1990). Therefore, the unique vector process S = {S(t) =
(S(0)(t), . . . , S(d)(t))>, t ∈ [0, T ]} determines the evolution of the primary security
accounts.

2.3 Portfolios

In this setting portfolios are formed as weighted combinations of primary security
accounts. All value and wealth processes are assumed to be portfolios, which
are characterized by strategies. A predictable stochastic process δ = {δ(t) =
(δ(0)(t), . . . , δ(d)(t))>, t ∈ [0, T ]} is called a strategy if δ is S-integrable, see Protter
(1990). The jth component δ(j)(t) of the strategy δ denotes the number of units
of the jth primary security account, held at time t ∈ [0, T ] in the corresponding
portfolio, j ∈ {0, 1, . . . , d}. For a strategy δ we denote by S(δ)(t) the value of the
corresponding portfolio at time t, that is

S(δ)(t) = δ(t)> S(t) (2.6)

for t ∈ [0, T ]. To quantify the notion of conservation of value within a portfolio
we introduce the following definition.
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Definition 2.1 A strategy δ and corresponding portfolio process S(δ) = {S(δ)(t),
t ∈ [0, T ]} are called self-financing if

dS(δ)(t) =
d∑

j=0

δj(t) dS(j)(t) (2.7)

for all t ∈ [0, T ].

In the remaining part of this paper we will only consider self-financing strategies
and the corresponding self-financing portfolios. Therefore, we omit from now on
the word “self-financing”.

It makes sense to consider only models, where one cannot generate from zero
initial capital some strictly positive wealth. Otherwise, if this were not the case,
then one would have a form of basic arbitrage. Let us give a more precise definition
of such a notion.

Definition 2.2 A nonnegative portfolio process S(δ) provides basic arbitrage
if there exist stopping times τ and σ with 0 ≤ τ < σ ≤ T such that

S(δ)(τ) = 0 (2.8)

and
P

(
S(δ)(σ) > 0

∣∣Aτ

)
> 0 (2.9)

almost surely.

Precluding basic arbitrage means that one cannot generate by using a nonnegative
portfolio process strictly positive terminal wealth when starting from nothing. In
the literature there exist many arbitrage definitions. For instance, the fundamen-
tal theorem of asset pricing in Delbaen & Schachermayer (1995, 1998) provides
an important link between the existence of an equivalent risk neutral measure
and the, so called, no free lunch with vanishing risk no-arbitrage condition.

One way that basic arbitrage can arise is to have portfolio processes with the
same martingale terms in their SDEs but with different drift terms. To exclude
such kind of arbitrage opportunities the following natural assumption is made.

Assumption 2.3 We assume that the generalized volatility matrix b(t) =
[bj,k(t)]dj,k=1 is for Lebesgue-almost-every t ∈ [0, T ] invertible.

This allows us to introduce the market price for risk vector

θ(t) = (θ1(t), . . . , θd(t))> = b−1(t) [a(t)− r(t)1] (2.10)
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with appreciation rate vector a(t) = (a1(t), . . . , ad(t))> and unit vector 1 = (1, . . .,
1)> for t ∈ [0, T ]. Without loss of generality, by using (2.10) we can rewrite the
SDE (2.3) in the form

dS(j)(t) = S(j)(t−)

(
r(t) dt +

d∑

k=1

bj,k(t) (θk(t) dt + dW k(t))

)
(2.11)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. For k ∈ {1, 2, . . . ,m} the quantity θk(t) is the
market price for risk at time t with respect to the kth Wiener process W k, see
Karatzas & Shreve (1998). Additionally, we have for k ∈ {m + 1, . . . , d} another
type of market price for risk, which can be interpreted as the market price for
kth event risk. Note that besides generalized volatilities bj,k, j, k ∈ {1, 2, . . . , d}
and the short rate r the market prices for risk θk, k ∈ {1, 2, . . . , d}, are the only
quantities that need to be specified. We assume that these processes have such
integrability properties that the stochastic integrals and conditional expectations
that we will form are finite.

Note that not all values for the market prices for event risk can be permitted.
In the next section it will become clear that certain arbitrage opportunities arise
for those market prices for event risk that lead to an infinite growth of some
portfolios. This kind of arbitrage will be excluded by the following condition.

Assumption 2.4 We assume that
√

hk
t > θk(t) (2.12)

for all t ∈ [0, T ] and k ∈ {m + 1, . . . , d}.

As we will see below, this assumption allows us to identify the growth optimal
portfolio (GOP), which will become the benchmark or numeraire for our model.

2.4 Growth Optimal Portfolio

For a given strictly positive portfolio process S(δ) let πj
δ(t) denote the correspond-

ing jth proportion of its value that is invested at time t in the jth primary security
account. This proportion is defined by the relation

πj
δ(t) = δ(j)(t)

S(j)(t)

S(δ)(t)
(2.13)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. Furthermore, by (2.6) the proportions always
add to one, that is

d∑
j=0

πj
δ(t) = 1 (2.14)
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for t ∈ [0, T ]. Using the vector of proportions πδ(t) = (π1
δ (t), . . . , πd

δ (t))
>, see

(2.13), we obtain for the portfolio process S(δ)(t) with (2.7), (2.11), (2.5) and
(2.13) the SDE

dS(δ)(t) = S(δ)(t−)

(
r(t) dt +

d∑

k=1

βk
δ (t−) (θk(t) dt + dW k(t))

)
, (2.15)

with kth portfolio volatility

βk
δ (t) =

d∑
j=1

πj
δ(t) bj,k(t) (2.16)

for k ∈ {1, 2, . . . , d} and t ∈ [0, T ].

Note from (2.15) and (2.2) that the process S(δ)(t) with S(δ)(0) > 0 remains
almost surely strictly positive after a jump if and only if

βk
δ (t−)√

hk
t

> −1 (2.17)

for all k ∈ {m + 1, . . . , d} and t ∈ [0, T ]. By application of the Itô formula it
follows that the logarithm of a strictly positive portfolio S(δ)(t), with portfolio
volatility βk

δ satisfying (2.17), is governed by the SDE

d log(S(δ)(t)) = gδ(t) dt +
m∑

k=1

βk
δ (t) dW k(t)

+
d∑

k=m+1

log

(
1 +

βk
δ (t−)√

hk
t

) √
hk

t dW k(t) (2.18)

with growth rate

gδ(t) = r(t) +
m∑

k=1

(
βk

δ (t) θk(t)− 1

2

(
βk

δ (t)
)2

)

+
d∑

k=m+1

(
βk

δ (t)

(
θk(t)−

√
hk

t

)
+ log

(
1 +

βk
δ (t)√
hk

t

)
hk

t

)
(2.19)

for t ∈ [0, T ]. From the first term in the last sum on the right-hand side of
equation (2.19) it follows that for all nonnegative portfolios the growth rates are
bounded by a predictable process if Assumption 2.4 is satisfied.

We can now search for a GOP, which is a portfolio with maximum growth rate,
as described in the following definition.
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Definition 2.5 A GOP is a strictly positive portfolio process S(δ) = {S(δ)(t),
t ∈ [0, T ]} with

S(δ)(0) = 1 (2.20)

and maximum growth rate gδ(t) such that

gδ(t) ≥ gδ(t) (2.21)

for all t ∈ [0, T ] and strictly positive portfolio processes S(δ).

There is an increasing literature on the GOP. We refer to Kelly (1956), Long
(1990), Karatzas & Shreve (1998) and Goll & Kallsen (2003) for more information
on this topic. As a consequence of Assumption 2.4 the market price for the kth
event risk θk(t) at any time t ∈ [0, T ] cannot be equal to or larger than the square

root
√

hk
t of the kth jump intensity for all k ∈ {m+1,m+2, . . . , d}. This allows

us to introduce a particular portfolio S(δ∗) with proportions of the form

πδ∗(t) = (π1
δ∗(t), . . . , π

d
δ∗(t))

> =
(
βδ∗(t)

> b−1(t)
)>

(2.22)

and kth portfolio volatility

βk
δ∗(t) =





θk(t) for k ∈ {1, 2, . . . , m}
θk(t)

1− θk(t)√
hk

t

for k ∈ {m + 1, . . . , d} (2.23)

for t ∈ [0, T ]. Note that the form of the portfolio volatility βk
δ∗(t), k ∈ {m +

1, . . . , d} for the kth event risk is asymptotically the same as would apply for
continuous uncertainty if the corresponding jump intensity hk

t tends to infinity.
Because of Assumption 2.4 relation (2.17) is for S(δ∗) satisfied and the portfolio
is therefore almost surely strictly positive.

By (2.15) and (2.23) it follows that the portfolio value S(δ∗)(t) satisfies the SDE

dS(δ∗)(t) = S(δ∗)(t−)

(
r(t) dt +

m∑

k=1

θk(t) (θk(t) dt + dW k(t))

+
d∑

k=m+1

θk(t)

1− θk(t)√
hk

t

(θk(t) dt + dW k(t))


 (2.24)

for t ∈ [0, T ], where we set
S(δ∗)(0) = 1. (2.25)

We can now prove the following result.

Corollary 2.6 There exists a unique GOP given by the portfolio S(δ∗) that
satisfies the SDE (2.24).
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Proof: Under Assumption 2.4 it follows by the first order conditions for iden-
tifying the maximum of the growth rate (2.19) that the optimal portfolio volatil-
ities βk

δ∗(t) are given by (2.23). Consequently, by (2.16) the optimal proportions
π1

δ (t), . . . , π
d
δ (t) need to solve the system of linear equations

d∑

`=1

π`
δ(t) b`,k(t) = βk

δ∗(t) (2.26)

for all k ∈ {1, 2, . . . , d}. Due to the invertibility of the generalized volatility ma-
trix b(t), see Assumption 2.3, the optimal proportions πδ(t) = πδ∗(t) are uniquely
determined and so is the GOP. The SDE (2.24) is then by (2.15), (2.22), (2.23)
and (2.16) the governing equation for the GOP. ¤

2.5 Benchmarked Portfolio Processes

Let us now use the GOP S(δ∗) as benchmark or numeraire and call the above
model a benchmark model. Furthermore, values, when expressed in units of S(δ∗),
are called benchmarked values. Thus, we can consider for any portfolio S(δ) its
benchmarked value

Ŝ(δ)(t) =
S(δ)(t)

S(δ∗)(t)
(2.27)

at time t ∈ [0, T ]. We then obtain the following result.

Corollary 2.7 Any benchmarked portfolio process Ŝ(δ) = {Ŝ(δ)(t), t ∈ [0, T ]}
is an (A, P )-local martingale.

Proof: By application of the Itô formula together with (2.15) and (2.24) we
obtain the SDE

dŜ(δ)(t) = Ŝ(δ)(t−)

{
m∑

k=1

(
βk

δ (t)− θk(t)
)
dW k(t)

+
d∑

k=m+1

(
βk

δ (t−)

(
1− θk(t)√

hk
t

)
− θk(t)

)
dW k(t)

}
(2.28)

for t ∈ [0, T ]. Since this SDE is driftless it follows that Ŝ(δ) is an (A, P )-local
martingale, see Protter (1990). ¤

Corollary 2.7 shows that any appropriately stopped benchmarked portfolio pro-
cess is a martingale. This means that all benchmarked price processes behave
locally in time in some sense like martingales. In our incomplete benchmark
model the market prices for risk can be quite general predictable processes that
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need only to satisfy Assumption 2.4 and natural integrability conditions. There-
fore, they can capture changing demand and supply conditions, adjustments to
an agents’s utility function or the choice of an equivalent martingale measure.

Due to a result in Ansel & Stricker (1994), a nonnegative (negative), local mar-
tingale is a super-(sub-)martingale. This leads to the following result.

Corollary 2.8 Any benchmarked, nonnegative (negative) portfolio process Ŝ(δ)

is an (A, P )-super-(-sub-)martingale, that is

Ŝ(δ)(t)
(≤)

≥ E
(
Ŝ(δ)(τ)

∣∣At

)
(2.29)

for all τ ∈ [0, T ] and t ∈ [0, τ ].

Corollary 2.8 shows that there is no nonnegative benchmarked portfolio which
generates unbounded expected returns. This appears to be a realistic and desir-
able property for a benchmark model.

2.6 Basic Arbitrage

The above arguments indicate that basic arbitrage is excluded in any benchmark
model, as is confirmed by the following theorem.

Theorem 2.9 There exists no basic arbitrage in the sense of Definition 2.2.

Proof: By Corollary 2.8 any nonnegative benchmarked portfolio process Ŝ(δ)

is an (A, P )-supermartingale. For a nonnegative benchmarked portfolio Ŝ(δ) it
follows from its supermartingale property and the optional stopping theorem, see
Protter (1990), that

E
(
Ŝ(δ)(σ)

∣∣Aτ

)
≤ Ŝ(δ)(τ) = 0

for all stopping times τ ∈ [0, T ] and σ ∈ [τ, T ]. Consequently, if S(δ)(τ) = 0, then
there is zero probability that S(δ)(σ) is strictly positive, that is

P
(
S(δ)(σ) > 0

∣∣Aτ

)
= P

(
Ŝ(δ)(σ) > 0

∣∣Aτ

)
= 0.

This shows that basic arbitrage, as described in Definition 2.2, does not exist in
a benchmark model. ¤
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3 Pricing and Hedging

3.1 Fair Contingent Claim Valuation

Let us now consider the pricing and hedging of contingent claims for the given
benchmark model.

Definition 3.1 We call an Aτ -measurable payoff Hτ , which matures at a stop-
ping time τ ∈ [0, T ], a contingent claim if

E

( |Hτ |
S(δ∗)(τ)

∣∣∣∣At

)
< ∞ (3.1)

for t ∈ [0, τ ].

Obviously, by Corollary 2.8 the value of any portfolio S(δ)(τ) satisfies condition
(3.1) and is thus a contingent claim. Furthermore, values of contingent claims at
earlier times are usually called derivative prices. These exist in many forms in real
markets. Besides standard traded derivative instruments they can be insurance
contracts, real options and over-the-counter agreements. As we will see later on,
the following interpretation of what constitutes a fair value appears to be natural.

Definition 3.2 A value process whose benchmarked values form an (A, P )-
martingale is called fair.

Note that for a contingent claim Hτ the benchmarked conditional expectation
ÛHτ = {ÛHτ (t), t ∈ [0, τ ]} with

ÛHτ (t) = E

(
Hτ

S(δ∗)(τ)

∣∣∣∣At

)
(3.2)

forms an (A, P )-martingale. Therefore the corresponding value process UHτ =
{UHτ (t), t ∈ [0, τ ]} is by Definition 3.2 fair, where

UHτ (t) = ÛHτ (t) S(δ∗)(t) (3.3)

for t ∈ [0, τ ].

By using (3.2) and (3.3) the fair value UHτ (t) at time t of a given contingent claim
Hτ is uniquely determined by the fair pricing formula

UHτ (t) = E

(
S(δ∗)(t)

S(δ∗)(τ)
Hτ

∣∣∣At

)
(3.4)

for all t ∈ [0, τ ]. Note that the expectation in (3.4) is taken under the real world
probability measure P . We remark that other notions of “fair” prices have been
suggested in the literature, for instance, in Davis (1997) or Karatzas & Shreve
(1998). These are typically linked to the existence of an equivalent risk neutral
measure. As mentioned above, this assumption is not required under the proposed
benchmark approach.
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3.2 Risk Neutral Pricing

In the case when an equivalent risk neutral martingale measure P̃ exists, then it
is characterized by the Radon-Nikodym derivative process Λ = {Λ(t), t ∈ [0, T ]}
with

Λ(t) =
S(δ∗)(0)

S(δ∗)(t)

S(0)(t)

S(0)(0)
=

Ŝ(0)(t)

Ŝ(0)(0)
=

dP̃

dP

∣∣∣∣
At

(3.5)

for t ∈ [0, T ]. We can therefore rewrite the fair pricing formula (3.4) in the form

UHτ (t) = E

(
Λ(τ)

Λ(t)

S(0)(t)

S(0)(τ)
Hτ

∣∣∣∣At

)

= Ẽ

(
S(0)(t)

S(0)(τ)
Hτ

∣∣∣∣At

)
(3.6)

for all t ∈ [0, τ ]. Here Ẽ denotes the expectation with respect to the equivalent
risk neutral martingale measure P̃ . Note that relation (3.6) is the standard risk
neutral pricing formula.

In a benchmark model we may not have an equivalent risk neutral martingale
measure P̃ and the risk neutral pricing formula (3.6) breaks down. This is, for
instance, the case when the Radon-Nikodym derivative process Λ forms a strict
local martingale. For examples of this kind we refer to Heath & Platen (2002a,
2002b, 2002c, 2003).

3.3 Hedging

We say that a portfolio S(δ) replicates a contingent claim Hτ if

S(δ)(τ) = Hτ (3.7)

almost surely. As pointed out in Heath & Platen (2002a, 2002b, 2002c), there
may exist several self-financing portfolios in a benchmark model that replicate a
given contingent claim. By Corollary 2.7 benchmarked portfolio values form local
martingales. In the case of a nonnegative (negative) replicating portfolio it fol-
lows from Corollary 2.8 that its benchmarked value is a super- (sub-)martingale.
A martingale that coincides at some future date with a super-(sub-)martingale
cannot be larger (smaller) than the super-(sub-)martingale at any earlier date.
This leads to the following conclusion.

Corollary 3.3 For a nonnegative (negative) contingent claim Hτ the fair port-
folio S(δHτ ) is the minimal (maximal) portfolio that replicates the contingent
claim.
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The distinguishing feature between a local martingale and a martingale is essen-
tially an integrability property, see Protter (1990). Since local martingales behave
locally in time in some sense like martingales, from a practical perspective, for
short dated securities and realistic model parameters any reasonable pricing rule
must be close to fair pricing.

As shown by Föllmer & Schweizer (1991) under the assumption on the existence
of an equivalent risk neutral martingale measure P̃ , the hedging of a contingent
claim is naturally linked to the existence of a corresponding martingale represen-
tation under P̃ for the discounted contingent claim. In a benchmark model we
can use similar martingale representations. These are formulated under the real
world probability measure P and do not require the existence of an equivalent
risk neutral measure. For functionals of Brownian motions martingale representa-
tions are described, for instance, in Karatzas & Shreve (1991) and for Markovian
semimartingale models in Jacod, Méléard & Protter (2000). Moreover, one can
directly derive martingale representations for Markovian multi-factor benchmark
models by using the Feynman-Kac formula. The following assumption allows
us to formulate general results without specifying a particular dynamics for the
primary security accounts.

Assumption 3.4 Assume that for each contingent claim Hτ there exists a
martingale representation for its benchmarked value of the form

Hτ

S(δ∗)(τ)
= ÛHτ (t) +

d∑

k=1

∫ τ

t

xk
Hτ

(s) dW k(s) (3.8)

for all t ∈ [0, τ ] with a unique, predictable vector process xHτ = {xHτ (t) =
(x1

Hτ
(t), . . ., xd

Hτ
(t))>, t ∈ [0, τ ]}, where

∫ τ

0

d∑

k=1

(
xk

Hτ
(s)

)2
ds < ∞ (3.9)

almost surely.

We then prove the following result.

Theorem 3.5 For each contingent claim Hτ there exists a fair, replicating
portfolio S(δHτ ), which has at time t the value

S(δHτ )(t) = ÛHτ (t) S(δ∗)(t), (3.10)

see (3.2), and is determined by the vector of proportions

πδHτ
(t) =

(
βδHτ

(t)> b−1(t)
)>

. (3.11)

13



Here the vector βδHτ
(t) = (β1

δHτ
(t), . . . , βd

δHτ
(t))> has components

βk
δHτ

(t) =





xk
Hτ

(t)

ÛHτ (t)
+ θk(t) for k ∈ {1, 2, . . . ,m}

√
hk

t

(
xk

Hτ
(t)

ÛHτ
(t−)

+θk(t)

)

√
hk

t−θk(t)
for k ∈ {m + 1, . . . , d}

(3.12)

for t ∈ [0, τ ].

Proof: For a given contingent claim Hτ we use the martingale representation
(3.8). This leads us for a benchmarked hedging portfolio Ŝ(δHτ ), see (2.28), to the
replication condition

Hτ

S(δ∗)(τ)
− ÛHτ (t) =

d∑

k=1

∫ τ

t

xk
Hτ

(s) dW k(s)

=
m∑

k=1

∫ τ

t

Ŝ(δHτ )(s)
(
βk

δH
(s)− θk(s)

)
dW k(s)

+
d∑

k=m+1

∫ τ

t

Ŝ(δHτ )(s−)

(
βk

δH
(s−)

(
1− θk(s)√

hk
s

)
− θk(s)

)
dW k(s)

= Ŝ(δHτ )(τ)− Ŝ(δHτ )(t) (3.13)

for t ∈ [0, τ ]. The formulas (2.16) and (3.12) provide by direct comparison of the
integrands in (3.13) the equation

(
π>δHτ

(t) b(t)
)>

= βδHτ
(t)

for t ∈ [0, τ ]. By the invertibility of b(t), see Assumption 2.3, this proves (3.11),
and thus with (3.7) equation (3.10). ¤

3.4 Fluctuation Minimization Hedge

In general, not all primary security accounts are tradable. We fix Q ⊆ {1, 2, . . . , d}
as the set of indices that characterize the traded sources of uncertainty. The set C
denotes then the corresponding set of tradable portfolios S(δ) that can be obtained
by combining primary security accounts. By the SDE (2.15) these portfolios have
zero kth volatilities βk

δ for the indices k ∈ {1, 2, . . . , d}\Q of the martingales W k

which do not appear in the SDEs of the traded primary security accounts. Con-
sequently, by (2.3) and (2.7), for all tradable portfolios S(δ) the corresponding
kth portfolio volatility

βk
δ (t) = 0 (3.14)
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vanishes for all t ∈ [0, T ] when k ∈ {1, 2, . . . , d}\Q.

A benchmark model is called complete if all contingent claims can be replicated
by a tradable portfolio. Otherwise, the model is called incomplete. It is obvious
that if Q does not equal the set {1, 2, . . . , d} of all indices, this means that not
all sources of uncertainty are traded, then the benchmark model is incomplete.

Consider now a nonnegative contingent claim Hτ . According to (3.10) its fair
price process is given by S(δHτ ). We know by Corollary 3.3 that this price process
equals the minimal replicating portfolio in the complete market case. However,
in the given incomplete market situation S(δHτ ) may not be a tradable portfolio.

Let us denote by S(δ̄Hτ ) ∈ C a tradable portfolio that a hedger may use to hedge
the uncertainty related to Hτ . It arises then the question of how to choose the
hedge portfolio S(δ̄Hτ ). Of course, there are many possible strategies. However,
note that the hedger observes at time t the profit and loss (P&L)

CHτ ,δ̄Hτ
(t) = S(δ̄Hτ )(t)− S(δHτ )(t) (3.15)

for t ∈ [0, T ] as the difference between the hedge portfolio and the fair price.
It seems to be unreasonable and expensive to hedge general market movements,
that is changes in the benchmark. To adjust for movements in the benchmark we
consider the benchmarked P&L

ĈHτ ,δ̄Hτ
(t) =

CHτ ,δ̄Hτ
(t)

S(δ∗)(t)
(3.16)

for t ∈ [0, τ ]. The benchmarked P&L satisfies by (3.15), (3.16) and (2.28) at time
t the equation

ĈHτ ,δ̄Hτ
(t) = ĈHτ ,δ̄Hτ

(t0) +
m∑

k=1

∫ t

t0

[
Ŝ(δ̄Hτ )(s)

(
βk

δ̄Hτ
(s)− θk(s)

)

− Ŝ(δHτ )(s)
(
βk

δHτ
(s)− θk(s)

)]
dW k(s))

+
d∑

k=m+1

∫ t

t0

[
Ŝ(δ̄Hτ )(s−)

(
βk

δ̄Hτ
(s−)

(
1− θk(s)√

hk
s

)
− θk(s)

)

− Ŝ(δHτ )(s−)

(
βk

δHτ
(s−)

(
1− θk(s)√

hk
s

)
− θk(s)

)]
dW k(s))

(3.17)

for t0 ∈ [0, τ ] and t ∈ [t0, τ ].

When setting up the hedge portfolio, say, at the initial time t0 ∈ [0, τ ], it is natural
for the hedger to aim for vanishing expected benchmarked P&L. Furthermore, the
hedger is naturally concerned about the fluctuations of the benchmarked P&L. To

15



model these objectives we introduce a quadratic criterion, see also Heath, Platen
& Schweizer (2001a, 2001b), that minimizes the fluctuation

FHτ ,δ̄Hτ
(t0, t) = E

((
ĈHτ ,δ̄Hτ

(t)
)2 ∣∣∣At0

)
(3.18)

for all t ∈ [t0, τ ]. This means, we minimize the second moment of the bench-
marked P&L.

We obtain then from (3.15) - (3.18) for the fluctuation the expression

FHτ ,δ̄Hτ
(t0, t) =

(
Ŝ(δ̄Hτ )(t0)− Ŝ(δHτ )(t0)

)2

+

∫ t

t0

{
m∑

k=1

E

( [
Ŝ(δ̄Hτ )(s)

(
βk

δ̄Hτ
(s)− θk(s)

)

− Ŝ(δHτ )(s)
(
βk

δHτ
(s)− θk(s)

)]2 ∣∣∣At0

)

+
d∑

k=m+1

E

( [
Ŝ(δ̄Hτ )(s−)

(
βk

δ̄Hτ
(s−)

(
1− θk(s)√

hk
s

)
− θk(s)

)

− Ŝ(δHτ )(s−)

(
βk

δHτ
(s−)

(
1− θk(s)√

hk
s

)
− θk(s)

)]2 ∣∣∣∣∣At0






 ds

(3.19)

for t ∈ [t0, τ ]. To minimize the fluctuation (3.19) the hedger can exclude the
terms that are due to traded uncertainty by choosing the generalized portfolio
volatility

βk
δ̄Hτ

(t) =
S(δHτ )(t)

S(δ̄Hτ )(t)

(
βk

δHτ
(t)− θk(t)

)
+ θk(t) (3.20)

for all k ∈ Q ∩ {1, 2, . . . , m} and

βk
δ̄Hτ

(t) =

[
S(δHτ )(t)

S(δ̄Hτ )(t)

(
βk

δHτ
(t)

(
1− θk(s)√

hk
s

)
− θk(t)

)
+ θk(t)

](
1− θk(s)√

hk
s

)−1

(3.21)
for k ∈ Q ∩ {m + 1, . . . , d} and t ∈ [0, τ ]. Since by (3.14) we have

βk
δ̄Hτ

(t) = 0 (3.22)

for all k 6∈ Q and t ∈ [0, τ ] we get then from (3.17), (3.20) and (3.21) for the
benchmarked P&L the SDE

dĈHτ ,δ̄Hτ
(t) = −

∑

k 6∈Q

(
Ŝ(δHτ )(t−) βk

δHτ
(t−) + θk(t) ĈHτ ,δ̄Hτ

(t−)
)

dW k(t)) (3.23)
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for t ∈ [0, T ]. This shows that with the choice (3.20) - (3.21) only nontraded
uncertainty remains in the benchmarked P&L. To determine the initial condition
for setting up the hedge at time t0 it follows from the minimization of the first
term of the right hand side of (3.18) that we should set

(
Ŝ(δ̄Hτ )(t0)− Ŝ(δHτ )(t0)

)2

= 0. (3.24)

By (3.24) and (2.27) the initial value is therefore the fair price

S(δ̄Hτ )(t0) = S(δHτ )(t0). (3.25)

Since the fluctuations of the benchmarked P&L are minimized by the resulting
hedging portfolio S(δ̄Hτ ), we call this the fluctuation minimization hedge. It is
important to note that the corresponding proportions can be directly computed
from (2.16).

Corollary 3.6 For the fluctuation minimization hedge the proportions of the
hedge portfolio at time t satisfy the relation

πδ̄Hτ
(t) =

(
βδ̄Hτ

(t)> b−1(t)
)>

(3.26)

for t ∈ [0, τ ], where the volatility vector βδ̄Hτ
(t) = (β1

δ̄Hτ
(t), . . ., βd

δ̄Hτ
(t))> of the

hedge portfolio S(δ̄Hτ ) is given by (3.20) - (3.22) and the initial value for the hedge
portfolio equals the fair price (3.25).

Obviously, in the case when the market is complete, then one obtains the same
hedge portfolio as described in Theorem 3.5 and the fluctuation is zero. In the
incomplete market case the benchmarked P&L is an (A, P )-martingale. There-
fore, its actual value is the best forecast of the terminal benchmarked P&L. This
hedging approach operates relative to the benchmark and appears to be natural
and constructive. It simply removes from the benchmarked P&L the tradable
part. Furthermore, the P&L tends to zero as the market is completed. The fair
price of the contingent claim arises as the natural initial price for setting up a
fluctuation minimization hedge. Since the benchmark is the GOP it can be in-
terpreted as the best performing portfolio. Under fluctuation minimization the
deviations of the P&L from zero are minimized relative to this benchmark.
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