X-ray Microanalysis of Insulators in a Variable Pressure Environment

M. Toth*, J.P. Craven*, M.R. Phillips**, B.L. Thiel* and A.M. Donald*

* Polymers and Colloids Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, U.K.
** Microstructural Analysis Unit, University of Technology Sydney, Broadway, NSW 2007, Australia

In a low vacuum environment, electric fields generated by ionized gas molecules and sub-surface trapped charge (Q) can alter the primary electron landing energy (ε_{DHL}). Consequent artifacts in x-ray microanalysis can be alleviated by working under conditions whereby the net electric field (~E) is dominated by the component produced by gaseous ions (~E_{ION}), and excess ions are rapidly removed via efficient ion neutralization routes. Such conditions can be attained over a wide of microscope operating parameters simply by employment of appropriate sample-electrode geometries.

In a variable pressure/environmental SEM, the electric field at each point (x,y,z) in the space between the sample and the pole piece typically consists of three distinct components:

\[\mathbf{E}(x,y,z) = \mathbf{E}(x,y,z) + \mathbf{E}^Q(x,y,z) + \mathbf{E}^{ION}(x,y,z) \] (1)

where \(\mathbf{E} \) is the field generated by a biased electrode (ie, the electron collector of a gaseous electron detector [1]) and \(\mathbf{E}^Q \) is the field produced by Q. If the specimen is an uncoated insulator, \(eDHL \) and the maximum bremsstrahlung x-ray energy (the Duane-Hunt limit, DHL) are given by:

\[eDHL = eV^A + e(\Delta V^E + \Delta V^Q + \Delta V^{ION}) = eV^A + e\Delta V \] (2)

where \(e \) is the charge of an electron, \(V^A \) is the primary electron accelerating voltage, and \(\Delta V \) is the net potential difference between the pole piece and the sample surface corresponding to \(\mathbf{E}^E \), \(\mathbf{E}^Q \) and \(\mathbf{E}^{ION} \). The sign of \(\Delta V^Q \) is determined by the net polarity of sub-surface charge, as in the case of high vacuum SEM [2,3]. However, in contrast to high vacuum SEM, \(\Delta V^{ION} \) can cause a significant increase in \(eDHL \), alter the overvoltage and compromise x-ray quantification procedures. Such increases in \(eDHL \) are illustrated by the energy-dispersive x-ray spectra shown in Fig. 1, acquired as a function of electrode bias (\(V^E \)) and gas pressure (P). The data clearly illustrate that \(eDHL \) scales with \(V^E \) and P. This behavior is attributed to the influence of \(V^E \) and P on \(\mathbf{E}^E \), \(\mathbf{E}^{ION} \) and \(\mathbf{E}^Q \), and consequent effects of \(\Delta V \) on \(eDHL \) (see Eqn. 2). We will present a detailed model of \(eDHL \) behavior in a low vacuum environment, based on knowledge of the polarity of \(\Delta V^E \) and \(\Delta V^{ION} \), obtained from simultaneous measurements of x-ray spectra and Q-induced changes in the SE emission current.

From a practical viewpoint, it is desirable to eliminate the changes in \(eDHL \) caused by \(\Delta V \) without imposition of restrictions on operating parameters such as \(V^A \), \(V^E \), working distance and gas pressure. On the basis of the aforementioned model, this can be achieved if: (i) \(\Delta V^E \) is minimized, (ii) \(\Delta V^{ION} > \Delta V^Q \), and (iii) excess ions are rapidly neutralized so that: \(\Delta V^{ION} + \Delta V^Q \approx 0 \). In a low vacuum environment such conditions can be attained simply by employment of appropriate sample-electrode geometries in the specimen chamber. Equipotentials calculated for two-dimensional representations of two such geometries are shown in Fig. 2. The effectiveness of these geometries in reducing \(\Delta V \)-induced \(eDHL \) shifts is demonstrated by the corresponding x-ray spectra also shown in Fig. 2. These results will be explained using the abovementioned model. [4]
References
[4] This work was sponsored by EPSRC (grant number GR/M90139) and FEI corporation.

FIG. 1. Energy-dispersive x-ray spectra acquired consecutively from the same region of mica, in the order shown in the figures, as a function of electrode bias (VE) and water vapor pressure (P): (a) P = 10⁻⁶ torr, (b) P = 0.2 torr. The data show that ε_DHL scales with VE and P [VE = 1 kV, working distance = 10 mm, electrode-sample separation = 4.5 mm, horizontal field width = 130 microns].

FIG. 2. X-ray spectra of mica showing differences between ε_DHL in data acquired when a ring electrode was placed 4.5 mm above the sample ("standard" geometry) and: (a) an array of grounded Cu wires was placed 0.55 mm above the specimen, or (b) the ring electrode was replaced with an off-axis plate electrode. [V^A = 2 kV, P = 0.5 torr, working distance = 10 mm, horizontal field width = 130 microns]. The insets show the electric equipotentials (broken lines) calculated for simplified two-dimensional representations of the abovementioned geometries [VE = 500 V]. The spectra show that employment of these geometries serves to reduce Duane-Hunt shifts caused by gaseous ions.
Proceedings

MICROSCOPY AND MICROANALYSIS 2002

Microscopy Society of America
60th Annual Meeting

Microbeam Analysis Society
36th Annual Meeting

Microscopy Society of Canada /
Société de Microscopie du Canada
29th Annual Meeting

International Metallographic Society
35th Annual Meeting

Québec City, Québec, Canada
August 5–8, 2002

Edited by
E. Voelkl
D. Piston
R. Gauvin
A. J. Lockley
G. W. Bailey
S. McKernan

Microscopy and Microanalysis, Volume 8, Supplement 2, 2002
ISI Master Journal List
SEARCH RESULTS

Search Terms: MICROSCOPY AND MICROANALYSIS
Total journals found: 1

The following title(s) matched your request:

MICROSCOPY AND MICROANALYSIS
Bimonthly
ISSN: 1431-9276
CAMBRIDGE UNIV PRESS, 40 WEST 20TH ST, NEW YORK, NY, 10011-4221
Microscopy and Microanalysis

Edited by
Charles E. Lyman
Lehigh University, USA

Published for the Microscopy Society of America

To view a sample of this journal click here

Microscopy and Microanalysis, a peer-reviewed bimonthly, publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both materials science and biology. The journal provides significant articles that describe new as well as existing techniques and instrumentation, and the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes brief technical communications, review articles, letters to the editor, news, and commentary of interest.