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Abstract

Improvements in technology have led to a relentless deluge of information
that current data mining approaches have trouble dealing with. An extreme
example of this is a problem domain that is referred to as“non-classical”.
Non-classical problems fail to fulfill the requirements of statistical theory:
that the number of instances in the sample set be much greater than the
number of dimensions. Non-classical problems are mainly characterized by

many dimensions (or features) and few noise-affected samples.

Microarray technology provides one source of non-classical problems, whi-
ch typically produces data sets with a dimensionality exceeding ten thousand
and containing just a few hundred instances. A risk with such a data set is
building a model that is significantly influenced by coincidental correlations
between the inputs (or the model’s features) and the output. A classical
strategy for managing this risk is reducing the dimensionality without sig-
nificantly affecting the correlation between the remaining features and the
model’s output. However this strategy does not explicitly consider the impact

xlil
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of poor data quality (or noise) and having few data samples.

In order to actively manage noise—a feature selection strategy is needed
that not only considers the correlation between the features and the output,
but also the quality of the features. It is proposed that feature quality, or
simply the feature’s “trustworthiness”, should be incorporated within feature
selection. As the trustworthiness of a feature increases, it is expected that
the ability to accurately extract the underlying structure of the data will
also increase. Another characteristic of non-classical problems is significant
feature redundancy (where information provided within one dimension is also
present in one or other dimensions). This research postulates that the use of
feature trustworthiness and redundancy provides an opportunity to actively
reduce the noise associated with the selected feature set, while still finding
features that are well correlated with the model’s output.

Two fundamental contributions are provided by this thesis: the notion of
feature “trustworthiness” and how trustworthiness can be integrated within
feature selection. Trustworthiness provides a flexible approach for evaluating
the quality of a feature’s sample data and in certain cases, the quality of the
test data. This flexibility encourages the use of prior knowledge about the
specific problem and in particular, how the quality of the data is best esti-
mated. Traditionally feature selection implicitly assumes that every instance

of data, supplied by preprocessing, has the same quality. Trustworthiness
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also provides an opportunity for incorporating a measure of the changes ap-
plied to the data set as a result of data cleaning.

Using an area of computational learning, a theoretical justification was
constructed that showed the difficulty of building an accurate model for a
non-classical problem. The justification showed how a modest data quality
problem can result in insufficient sample data to permit successful learning. It
also showed how selecting less noisy data, or sufficiently trustworthy features,
can enable successful learning using the available data points.

This thesis presents two methodologies that incorporate a measure of
data quality within feature selection: one methodology only uses training
data, while the other also incorporates test data while evaluating feature
trustworthiness. The two methodologies are contrasted with each other and
with a traditional feature selection methodology, which does not consider
data quality.

A number of data sets were used to test these methodologies, with the
main data sets being: synthetic data, childhood leukaemia and chronic fa-
tigue syndrome. In most cases the three feature selection methodologies
achieved similar accuracy however there were clear differences in the features
selected by each. Using heat maps to visualize the clarity of the separation
of the class labels by the selected features—showed dramatic differences.

The two methodologies that incorporate trustworthiness provided a clearer



xvi ABSTRACT

separation, while the traditional methodology was substantially inferior and
appeared to be heavily influenced by artifacts. Using Gene Set Enrichment
Analysis (GSEA), a widely used resource for evaluating the biological mean-
ingfulness of gene sets (Subramanian, Tamayo, Mootha, Mukherjee, Ebert,
Gillette, Paulovich, Pomeroy, Golub, Lander, and Mesirov, 2005), showed
that the two proposed methodologies selected genes that were more bio-
logically meaningful than those selected by a traditional feature selection
methodology.

The experiments also evaluated the sensitivity of trustworthiness to dif-
ferences in the data set. By evaluating the trustworthiness of every feature,
it was shown that considerable changes occurred across data folds. This
result agrees with findings in the literature, such as (Ein-Dor, Kela, Getz,
Givol, and Domany, 2005) and provides one explanation for the difficulty of

modeling non-classical problems.



Contributions to knowledge

1. Two approaches for estimating data quality

This thesis describes two approaches for estimating the quality of a
feature’s data set, one using a measure of signal-to-noise and the other,
only a measure of noise. The latter approach permits the use of test
data within the estimate of a feature’s utility. In calculating the quality
of a feature’s data set, both approaches use prior knowledge about the

data set.

2. Definition and measure of feature trustworthiness

This thesis defines “trustworthiness” as an overall measure of the qual-
ity of a feature. Trustworthiness is required since each item of data
associated with a feature has a unique level of quality. As a feature’s
trustworthiness increases, its utility approaches the estimated informa-

tion it provides.

Xvil
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3.

CONTRIBUTIONS TO KNOWLEDGE

Definition and measure of feature utility

Feature selection methodologies typically evaluate a feature’s useful-
ness according to the feature’s inherent information. However, noise
may falsely increase its information; hence reduce the feature’s trust-
worthiness. This thesis describes a measure of a feature’s usefulness
called “feature utility”, which is a function of information provided by

the feature and the noise present within its data set.

Two feature selection methodologies based on feature utility

This thesis develops and evaluates two feature selection methodologies
based on feature utility. The methodologies, “Feature Utility Rank-
ing 17 and “Feature Utility Ranking 27, use respectively, a signal-to-

noise ratio and a noise-only measure of quality.

The methodologies were evaluated using computational learning theory,
a series of synthetic data experiments and three biomedical data sets,
which are characterized by high dimensionality, few samples and sig-
nificant noise. The biomedical data experiments consist of leukaemia
cell type classification, leukaemia treatment outcome prediction and

chronic fatigue syndrome prediction.
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5. Mechanism for using data quality information collected during

data cleaning

A mechanism for merging data cleaning outcomes within feature selec-
tion is explored. This approach allows the degree of change imposed

by data cleaning to be incorporated in a feature’s utility.
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