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2.15 (ᾱ, λ)-plot for pairs of log-returns with reference to Spain, Sweden,

UK and USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.16 Cluster analysis plot for the log-returns of the EWI104s in different

currency denominations based on the estimated dependence parame-

ter � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.17 1000 bivariate realizations simulated from the Gaussian copula (left

panel) and Student-t copula (right panel) with identical Student-t

marginal distributions with four degrees of freedom (upper panel)

and Gamma(3,1) marginal distributions (lower panel), and identical

correlation θ = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.18 Estimated copula dependence parameter for 190 pairs of currency

denominations and different copula models, together with box-plots . 84

2.19 Estimated copula dependence parameters for 190 pairs of currency

denominations and two mixture copula models: mixture Clayton &

survival Clayton and mixture Clayton & Gumbel . . . . . . . . . . . 85

2.20 Estimated copula dependence parameters for 190 pairs of currency de-

nominations and two mixture copula models: mixture survival Clay-

ton & survival Gumbel and mixture Gumbel & survival Gumbel . . . 86

vii



2.21 Copula dependence parameter for denominations of the EWI104 in

Euro and USD; estimated using a Student-t copula with Student-t

marginals for the log-return data from 02 January, 1973 to 10 March,

2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.22 Log-returns of denominations of the EWI104s in Euro and USD at

maximal dependence on 11 October, 1977 (left panel) and minimal

dependence on 30 September, 1985 (right panel) . . . . . . . . . . . . 89

3.1 The MCI and five equi-weighted indices: EWI1 (market), EWI10

(industry), EWI19 (supersector), EWI41 (sector), EWI114 (subsector). 94

3.2 The MCI and five equi-weighted indices in log-scale: EWI1 (market),

EWI10 (industry), EWI19 (supersector), EWI41 (sector), EWI114

(subsector). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3 Logarithms of MCI, EWI114 without transaction cost and EWI114ξ

with transaction costs of 5,40,80,200 and 240 basis points. . . . . . . 104

3.4 EWI114m reallocated daily and every 2, 4, 8, 16 and 32 days. . . . . . 104

3.5 Simulated benchmarked primary security accounts under the Black-

Scholes model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.6 Simulated NP, EWI and MCI under the Black-Scholes model . . . . . 112

3.7 Simulated benchmarked NP, EWI and MCI under the Black-Scholes

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.8 Simulated benchmarked primary security accounts under the Heston

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.9 Simulated squared volatility under the Heston model . . . . . . . . . 116

3.10 Simulated NP, EWI and MCI under the Heston model . . . . . . . . 116

3.11 Simulated benchmarked NP, EWI and MCI under the Heston model . 117

3.12 Simulated benchmarked primary security accounts under the ARCH-

diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.13 Simulated squared volatility under the ARCH-diffusion model . . . . 120

3.14 Simulated benchmarked NP, EWI andMCI under the ARCH-diffusion

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.15 Simulated benchmarked primary security accounts under the MMM . 123

3.16 Simulated squared volatility under the MMM . . . . . . . . . . . . . 123

viii



3.17 Simulated NP, EWI and MCI under the MMM in log-scale . . . . . . 124

3.18 Simulated benchmarked NP, EWI and MCI under the MMM . . . . . 124

4.1 Logarithm of a well diversified world stock index MCI . . . . . . . . . 128

4.2 Log-returns of the MCI . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Average autocorrelation function for log-returns of the MCI in differ-

ent currency denominations . . . . . . . . . . . . . . . . . . . . . . . 129

4.4 Average autocorrelation function for the absolute log-returns of the

MCI in different currency denominations . . . . . . . . . . . . . . . . 130

4.5 Logarithms of empirical density of normalized log-returns of the MCI

and Student-t density with 3.5 degrees of freedom . . . . . . . . . . . 131

4.6 Estimated volatility from log-returns of the MCI . . . . . . . . . . . . 134

4.7 Logarithms of normalized discounted MCI (upper graph) and its

volatility (lower graph) . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.8 Logarithms of normalized discounted S&P500 (upper graph) and VIX

(lower graph) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.1 Logarithm of the discounted MCI and linear fit . . . . . . . . . . . . 151

4.2 Normalized MCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.3 Estimated trajectory of the market activity M . . . . . . . . . . . . . 152

4.4 Quadratic variation of the square root of the estimated trajectory of

1
M

with linear fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.5 Histogram of market activity M with inverse gamma fit . . . . . . . 155

4.6 Market activity time . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.7 Calculated volatility of the discounted MCI for daily observations . . 158

4.8 Logarithm of the discounted S&P500 and linear fit . . . . . . . . . . 159

4.9 Normalized S&P500 . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.10 Estimated market activity process M for the S&P500 from daily data 160

4.11 Logarithms of scaled VIX and calculated volatility of the discounted

S&P500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.12 Simulated path of M . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.13 Simulated τ -time, the market activity time . . . . . . . . . . . . . . . 164

4.14 Simulated trajectory of the normalized index Yτt . . . . . . . . . . . . 164

4.15 Simulated volatility of the index and simulated scaled volatility . . . 164

ix



4.16 Logarithm of the simulated and calculated volatility . . . . . . . . . . 165

4.17 Differences of the logarithms of the simulated and calculated volatility 165

4.18 Estimated market activity of the simulated index . . . . . . . . . . . 165

4.19 Quadratic variation of the square root of the inverse of estimated

market activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.20 Log-returns of the simulated index . . . . . . . . . . . . . . . . . . . 167

4.21 Average autocorrelation function for log-returns of the simulated index168

4.22 Average autocorrelation function for the absolute log-returns of the

simulated index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.23 Logarithm of empirical density of normalized log-returns of the sim-

ulated index and Student-t density with 3.2 degrees of freedom . . . . 169

4.24 Estimated volatility of the simulated index . . . . . . . . . . . . . . . 171

4.25 Logarithm of simulated index with linear fit . . . . . . . . . . . . . . 172

4.26 Logarithms of simulated normalized index and its estimated volatility 172

4.27 Differences of the logarithms of the simulated and estimated volatility 172

4.28 Boxplots of correlation coefficient obtained by methods 1-3 . . . . . . 173

x



Abstract

The objective of this thesis is to study and model the dynamics of aggregate wealth,

that is, the dynamics of the market capitalization weighted world stock index in

different currency denominations. In order for the considered model to be valid

over long time periods, it turns out that it needs to be formulated in a general

financial modeling framework, the benchmark approach. In order to visualize and

test the proposed aggregate wealth dynamics, exact and almost exact simulation

techniques for multi-dimensional stochastic processes have been developed. More-

over, the model specification is preceded by a detailed study of the distribution

of log-returns of world stock indices in different currency denominations. Various

types of world equity indices are constructed and systematically studied, in par-

ticular, equi-weighted indices. When the number of constituents is increasing and

the given investment universe is well securitized the Naive Diversification Theorem

states that a sequence of equi-weighted indices approximates the growth optimal

portfolio, which is also the numéraire portfolio.

Finally, by conjecturing for the normalized world stock index the dynamics of a

time transformed square root process, and by establishing a list of stylized empirical

facts, a two-component index model has been proposed. This model is very par-

simonious and driven only by the non-diversifiable risk of the market. Via almost

exact simulation this model is shown to reflect well all listed empirical stylized facts

and is difficult to falsify.

xi



Introduction

0.1 Brief Survey of Results

This section focuses on the main results presented in this thesis. The subject of

the thesis is the modeling of diversified equity indices. The presentation of the con-

ducted research is divided into four chapters, each linked to some published article

or articles. Chapter 1 surveys and develops exact simulation methods for solutions

of several classes of multi-dimensional stochastic differential equations, aiming to

avoid numerical error propagation that may arise otherwise. Chapter 2 deals with

an empirical study of world stock indices in different currency denominations. The

objective of Chapter 3 is to approximate the numéraire portfolio by naive diversifica-

tion. The final chapter models the typical dynamics of equity indices by conjecturing

the affine nature of aggregate wealth dynamics and establishing respective empirical

evidence.

Some of the new results of this thesis have already appeared in six refereed

publications. There is also one extended, recent working paper from which at least

one publication will follow and another working paper that is expected to generate

another article. Below, most of these papers are put into the context of the thesis.

A main result of the first part of the thesis in Chapter 1 is the development

and application of exact simulation methods for multi-dimensional stochastic dif-

ferential equations, see Platen & Rendek (2009, 2010). The main classes of matrix

stochastic processes that we consider are: the matrix Ornstein-Uhlenbeck processes,

the Wishart processes and the matrix affine processes. Further examples for the

simulation of matrix stochastic processes, e.g. matrix Lévy processes, are consid-

ered in the corresponding publication Platen & Rendek (2009). As an application

of the proposed exact simulation technique we consider the Wonham filter problem

and the resulting Zakai equation for hidden Markov chain filters. This application

1



shows that the issue of numerical stability can be circumvented in filtering when it

is possible to simulate exact or almost-exact solutions of the Zakai equation at the

observation points. This study is extracted from Platen & Rendek (2010), which

illustrates the usefulness of almost-exact solutions from the practical point of view.

Chapter 2 presents other important result of this thesis published in Platen &

Rendek (2008) and Ignatieva, Platen & Rendek (2011). These concern the iden-

tification of the uni- and multi-variate distributions of log-returns of world stock

indices in different currency denominations. The estimated univariate distribution

of log-returns of such indices turn out to be very close to the Student-t distribution

with approximately four degrees of freedom. This result emerges when searching

within the large family of generalized hyperbolic distributions and analyzing differ-

ently constructed world stock indices, see Platen & Rendek (2008). Since this result

is established at a very high level of significance, it can be regarded as a stylized

empirical fact. Moreover, a copula approach is applied to analyze the log-returns of

one of the constructed indices, the EWI104s, in different currency denominations,

see Ignatieva, Platen & Rendek (2011). Based on the findings corresponding to

distributional properties of the marginals, the paper models the dependency of log-

returns of currency denominations of the EWI104s using time-varying copulas. It

has been shown that when compared to the Gaussian copula, the Student-t copula

captures better the dependence structure, observed in the return data.

The Naive Diversification Theorem (NDT) is the major theoretical result of

Chapter 3 and has been published in Platen & Rendek (2012b). It states that the

equi-weighted index (EWI) approximates the numéraire portfolio (NP) of a given

set of stocks when the number of constituents is large and the given investment uni-

verse is well securitized. The latter essentially means that the risk factors driving

the underlying risky securities are sufficiently different. The practical contribution

of this chapter is the construction of the EWI, which is the best performing in-

dex in terms of growth among all indices included in this thesis. Additionally, this

part of the thesis raises the practically important question, whether a significantly

better performance can be detected for the EWI when compared to the market

capitalization weighted index (MCI) for market models where the constituents are

strict supermartingales? A corresponding simulation study demonstrates that the

2



convergence of the EWI towards the NP appears to be remarkably robust, see also

Platen & Rendek (2012c). For the interesting case of the minimal market model,

where the primary security accounts when expressed in units of the NP are strict

supermartingales, the EWI outperforms in the long run the MCI significantly. This

can be explained by the fact that the benchmarked MCI, as the sum of strict su-

permartingales, yields a strict supermartingale, whereas, the benchmarked NP is

simply the constant one.

The final part of this thesis considers in Chapter 4 the modeling of diversified

equity indices and follows Platen & Rendek (2012a). It is conjectured that typi-

cal dynamics of aggregate wealth can be recovered from the limiting dynamics of

the sum of the values of many independent economic activities and ”projects” over

small time periods. The main contribution of this chapter is, therefore, the identi-

fication of a parsimonious index model involving the power of a time transformed

affine diffusion, a square root process. A very realistic, parsimonious one-factor,

two-component model emerges by modeling via the transformed time the human

behavior, which exaggerates the reactions in volatility to ups and downs of the in-

dex. These exaggerations are modeled through the transformed time via another

(fast moving) square root process, which is driven by the same non-diversifiable un-

certainty that drives already the fluctuations of the index. Due to its almost exact

simulation, we can verify a number of stylized empirical facts pertaining to diversi-

fied equity indices. The proposed model is parsimonious with only six parameters.

To demonstrate its applicability it has been applied also for the S&P500 and its

volatility index VIX.

0.2 Research Motivation and Strategy

The main motivation for the need of better modeling of diversified equity indices

are the discrepancies between the observed stylized empirical facts in financial data

and typically available models, see e.g. Platen & Rendek (2008), Ignatieva, Platen

& Rendek (2011) and Platen & Rendek (2012a). The thesis notices and explains

the fact that currency denominations of a world stock index (the total wealth in

the global equity market) have more clearly identifiable empirical properties than,

say, an exchange rate. For instance, it is well observed that the average volatility

3



of a currency denomination of a world stock index is significantly smaller than the

average volatility of an exchange rate. Clear statistical properties of log-returns

of a world stock index in different currency denominations, which we will identify,

suggest that such financial quantities are better objects for modeling than e.g. ex-

change rates or stock prices. Moreover, a world stock index, denominated in a given

currency, is primarily driven by the nondiversifiable uncertainty of the market with

respect to that currency as denominator. This fact makes it possible to potentially

identify a parsimonious model, driven only by one source of uncertainty, as will be

demonstrated in this thesis.

The main reason for the proposed modeling of equity indices is the, in Platen &

Rendek (2012a) conjectured, theoretical affine nature of aggregate wealth dynamics.

The apparent deadlock in the modeling of financial quantities seemed to be the ab-

sence of a theoretical argument that explains the potential nature of the dynamics

of aggregate wealth. We conjecture the typical dynamics of aggregate wealth from

studying the limiting dynamics of the sum of the values of many independent eco-

nomic activities and ”projects” over small time periods. In a first approximation, the

variance of the increments of aggregate wealth turns theoretically out to be propor-

tional to the number of these activities and ”projects”. This means that the variance

is proportional to the aggregate wealth itself. Therefore, the normalized aggregate

wealth itself follows approximately a time transformed square root process. With

respect to transformed time the inverse of this square root process is then the result-

ing squared volatility. A realistic, parsimonious, one-factor, two-component model

emerges by modeling via the transformed time human behavior, which exaggerates

the reactions in volatility to ups and downs of the index. These exaggerations are

modeled through the derivative of the transformed time via another (fast moving)

square root process. This process is driven by the same nondiversifiable uncertainty

of the market since there seems to be no justifiable reason to include any other

source of uncertainty into the dynamics of the world stock index.

In order to be able to verify the stylized empirical facts and understand some of

the effects of the proposed estimation techniques for equity indices in different cur-

rency denominations, see Platen & Rendek (2012a), the need became overwhelming

for reliable exact or almost exact simulation techniques. Many simulation tech-
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niques have been developed over the years, in particular those that use discrete

time approximations. However, some stochastic differential equations (SDEs) can

be problematic in terms of simulation. Their extreme events may not be well cap-

tured by discrete time approximations and also their long term behavior, including

their transition density may be badly approximated. Therefore, it is necessary to

understand and avoid the problems that may arise during the simulation of solutions

of such SDEs, see Platen & Rendek (2009). During the research it became of crucial

importance to identify extremely accurate simulation methods for various nonlinear

types of SDEs and also for multi-dimensional SDEs. This thesis emphasizes the

fact that the problem of non-Lipschitz continuous coefficients can be circumvented

for some important SDEs, where we can simulate exact or almost exact solutions,

see Platen & Rendek (2010). Fortunately, the class of affine diffusions that the

conjectured wealth dynamics describes allows almost exact simulations.

Finally, the Naive Diversification Theorem, see Platen & Rendek (2012b), pro-

vides a way of interpreting a well diversified equity index as proxy for the numéraire

portfolio of the given investment universe. This motivates us to construct and ana-

lyze various diversified world stock indices within this thesis, see Platen and Rendek

(2008, 2012b, 2012c). By interpreting the analyzed indices as numéraire portfolio

and fitting the proposed parsimonious model it followed clearly that the classical

no-arbitrage financial modeling approach is too narrow for capturing reality, in par-

ticular, the long term dynamics of indices. The benchmark approach, see Platen &

Heath (2010) and Platen (2011) generalizes classical no-arbitrage pricing toward a

much richer modeling world and pricing under the real world probability measure

with the numéraire portfolio as numéraire. The central building block of this pric-

ing environment is the benchmark, the numéraire portfolio, which is also the growth

optimal portfolio, see Long (1990) and Kelly (1956). This portfolio is employed as

the fundamental unit of value in the analysis. It is in reality a well diversified index

with clear statistical properties that can be parsimoniously modeled.

The numéraire portfolio is the strictly positive portfolio which, when used as

benchmark, turns all benchmarked nonnegative portfolios into supermartingales.

The pricing of derivatives under the benchmark approach applies the real world

pricing formula, which yields the minimal possible price, that is, the benchmarked
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derivative price is observed as the real world conditional expectation of the corre-

sponding benchmarked payoff. Consequently, real world pricing leads to the minimal

possible price and, thus, often to lower prices then suggested by classical pricing ar-

guments. Moreover, since the existence of the equivalent risk neutral probability

measure is not required, this financial framework allows for a wider and, thus, more

realistic range of models in contrast to the classical approaches. The proposed model

demonstrates that this modeling freedom is essential to obtain index models that

remain realistic over long periods of time and fit the observed stylized empirical

facts.

0.3 Related Literature

This section provides links to literature related to the main results of this thesis,

which are in the areas: simulation of stochastic differential equations, analysis of

the distributions of log-returns of equity indices, approximation of the numéraire

portfolio and modeling the dynamics of diversified equity indices.

Simulation of Stochastic Differential Equations

Accurate scenario simulation of solutions of stochastic differential equations (SDEs)

is widely applicable in stochastic analysis and its areas of application, in particular,

in finance and filtering, see Kloeden & Platen (1999) and Kallianpur (1980). Mono-

graphs in the direction of stochastic numerical methods include Glasserman (2004),

Jäckel (2002), Kloeden & Platen (1999), Kloeden, Platen & Schurz (2003), Milstein

(1995) and Platen & Bruti-Liberati (2010).

There is a wide range of literature which deals with the problem of numerical

stability. In particular, implicit and predictor-corrector methods are used to con-

trol the propagation of numerical errors. We refer here to papers e.g. by Alcock

& Burrage (2006), Bruti-Liberati & Platen (2008), Hernandez & Spigler (1993),

Higham (2000), Higham, Mao & Yuan (2007), Klauder & Petersen (1985), Kloeden

& Platen (1992), Milstein (1988), Milstein, Platen & Schurz (1998), Platen & Shi

(2008), Saito & Mitsui (1993) and Talay (1982). The issue of numerical stability

can be circumvented when it is possible to simulate exact or almost exact solutions.

Beyond the Wiener process and its direct transformations, including the geomet-

6



ric Brownian motion and the Ornstein-Uhlenbeck process, the family of square root

and squared Bessel processes is probably the most frequently used diffusion model

in applications. In general, it is a challenging task to obtain efficiently a reasonably

accurate trajectory of a square root process using simulation, as is documented in

an increasing literature on this topic. This literature includes the use of the bal-

anced implicit method introduced in Milstein, Platen & Schurz (1998), the adaptive

Milstein scheme of Kahl (2004), the balanced Milstein methods of Alcock & Burrage

(2006) and Kahl & Schurz (2005). Additionally, various other methods have been

designed to approximate the square root process. Here we refer to Alfonsi (2005),

Andersen (2008), Berkaoui, Bossy & Diop (2005), Bossy & Diop (2004), Broadie &

Kaya (2006), Deelstra & Delbaen (1998), Diop (2003), Lord, Koekkoek & van Dijk

(2006) and Smith (2007).

In finance and beyond finance the systematic construction and investigation of fil-

ters for hidden Markov chains has became an important area of research, which goes

back to Fujisaki, Kallianpur & Kunita (1972), Wonham (1965) and Zakai (1969).

The stochastic filtering theory is the subject of a seminal monograph by Kallianpur

(1980). Later the question of finding discrete-time approximations for optimal fil-

ters was considered by Clark & Cameron (1980), Kloeden, Platen & Schurz (1993),

Newton (1986), and Newton (1991). Moreover, the application of the balanced im-

plicit method to SDEs in filtering has been considered in Fischer & Platen (1999).

The paper Platen & Rendek (2010) contributes to the line of research on filtering,

whereas the paper Platen & Rendek (2009) provides very accurate long term simu-

lation tools in finance that became crucial for the study of the proposed model and

can be interpreted as a contribution to the area of simulation of SDEs even beyond

finance.

Distribution of Log-Returns of Equity Indices

Some of the most promising financial instruments, for which one may identify clearly

a particular type of log-return density, turn out to be diversified stock indices. This

observation is made in the thesis. Studies on log-returns for indices that do not

emphasize this view but perform inference in this direction include the two papers

by Markowitz & Usmen (1996a, 1996b), analyzing S&P500 log-returns in a Bayesian

framework. These authors considered the rich family of Pearson distributions and
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identified the Student-t distribution with about 4.5 degrees of freedom as the best

fit to daily log-return data of the S&P500. Independently, Hurst & Platen (1997)

reached a similar conclusion by studying daily log-returns of the S&P500 and other

regional stock market indices using a maximum-likelihood approach. Their research

was focused on a large family of normal-variance mixture distributions, see Clark

(1973), which included the log-return distributions generated by several important

models proposed in the literature. These distributions included among others the

normal, see Samuelson (1957) and Black & Scholes (1973); the alpha-stable, see Man-

delbrot (1963); the Student-t, see Praetz (1972) and Blattberg & Gonedes (1974);

the normal-inverse Gaussian, see Barndorff-Nielsen (1995); the hyperbolic, see Eber-

lein & Keller (1995) and Küchler et al.(1999); the variance gamma, see Madan &

Seneta (1990); and the symmetric generalized hyperbolic distribution, see Barndorff-

Nielsen (1978) and McNeil, Frey & Embrechts (2005). In Hurst & Platen (1997)

the Student-t distribution with 3.0-4.5 degrees of freedom was determined as the

best fit to daily, regional stock market index log-returns. This complemented and

generalized Markowitz’s and Usmen’s findings by the use of an alternative statistical

methodology and a wider range of stock market indices. Fergusson & Platen (2006)

employed a maximum likelihood ratio test, see Rao (1973), in a similar class of sym-

metric generalized hyperbolic distributions as mentioned above. They studied the

log-return distribution of a world stock index, whose constituent weights were de-

termined by market capitalization, and considered different currency denominations

of such an index. These authors concluded, at a high level of significance, that the

log-returns of their index exhibited a Student-t behavior with approximately four

degrees of freedom.

For multivariate log-returns there exists an advanced statistical methodology for

identifying particular generalized hyperbolic distributions as described in McNeil,

Frey & Embrechts (2005). These authors showed in the application of their results

to indices, exchange rates and stocks that Student-t type log-return distributions are

often likely to fit the data. Usually, they did not quantify any level of significance

and did not focus on diversified indices.

Breymann, Dias & Embrechts (2003), Dias & Embrechts (2004) and Dias &

Embrechts (2008) analyzed the dependence structure within two-dimensional high
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frequency data of exchange rate returns. They have shown that the data can be fitted

best using the Student-t copula, which can be thought of as representing the de-

pendence structure implicit in a multivariate Student-t distribution, see Embrechts,

McNeil & Straumann (2001). Along the above lines of research, but focussed on in-

dices, the papers Platen & Rendek (2008), Ignatieva, Platen & Rendek (2011) and

Platen & Rendek (2012a) identify with high significance the Student-t distribution

and the Student-t copula for log-returns of diversified indices.

Approximation of the Numéraire Portfolio

The ground breaking work of Markowitz (1952) heralded considerable advances in

asset allocation by deriving a methodology for allocating wealth across risky invest-

ments when investors base their strategies on the means, variances and covariances

of asset returns. The resulting Markowitz mean-variance approach to investing has

been generalized in many ways; see Campbell & Viceira (2002) for a survey.

A recent paper by DeMiguel, Garlappi & Uppal (2009) evaluated in detail the

out-of-sample performance of sample based mean-variance asset allocation strate-

gies, relative to the naive equal value weighted counterpart. The outcome being that

of the 14 estimation procedures evaluated across seven empirical datasets, no strat-

egy consistently outperformed the naive equal value weighted strategy in terms of

Sharpe ratio and other common performance criteria. The authors concluded that

the theoretical gain from classical sample based mean-variance asset allocation is

more than offset by estimation errors. They demonstrated that, for a portfolio of 50

assets, the estimation window needed to outperform the naive equal value weighted

portfolio is about 500 years.

A basic assumption of the final part of the current thesis is concerned with

the existence of the numéraire portfolio (NP), which has been studied in many pa-

pers including Long (1990), Bajeux-Besnainou & Portait (1997), Becherer (2001),

Platen (2002), Bühlmann & Platen (2003), Platen (2006), Platen & Heath (2010),

Karatzas & Kardaras (2007) and Kardaras & Platen (2008). The NP also appears

in the literature as the Kelly portfolio or growth optimal portfolio, see Kelly (1956),

which maximizes the expected logarithmic utility from terminal wealth. There is

an extensive literature on the growth optimal or Kelly portfolio, which includes

Markowitz (1976), Latané (1959), Breiman (1961), Hakansson (1971), Thorp (1972),
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Merton (1973), Rubinstein (1976), Cover (1991), Luenberger (1998), Ziemba & Mul-

vey (1998), Browne (1999), Stutzer (2000), Platen & Heath (2010) and MacLean,

Thorp & Ziemba (2011). In the long run the NP outperforms pathwise any other

nonnegative portfolio; see e.g. Platen (2004). This is a model independent and

fascinating property, which makes the NP an ideal candidate for long term asset

allocation. Moreover, as shown in Merton (1973), the Markowitz-efficient frontier

for a market, consisting of portfolios of stocks plus a risk-free security, can be gen-

erated by considering portfolio combinations of the NP and the risk-free security.

According to the Intertemportal Capital Asset Pricing Model (ICAPM), see Merton

(1973), the Sharpe ratios of all portfolios on the efficient frontier are theoretically

the same, including that of the market portfolio. Since the NP plays such a key role

in asset management and financial modeling the paper Platen & Rendek (2012b)

provides a convenient, model independent way of approximating the NP via naive

diversification.

Modeling of Diversified Indices

The standard continuous market model for an equity index has been the Black-

Scholes model, see Black & Scholes (1973) and Merton (1973), which employs the

exponential of a time transformed Brownian motion to describe the index dynamics,

resulting in its standard version in constant volatility and Gaussian log-returns. Its

historical popularity is due to its tractability and simplicity. Several shortcomings

of this model became apparent since its introduction. Most striking is the obser-

vation that, in reality, the volatility of an equity index is stochastic and its return

distribution is leptokurtic.

Streams of literature aiming for improvements on the standard market model

by modeling volatility as a stochastic process, include the broad literature on au-

toregressive conditional heteroscedastic (ARCH) models and its generalizations, ini-

tiated by Engle (1982). The reader can find a systematic introduction into the

extremely rich literature on continuous time stochastic volatility models, for in-

stance, in Cont (2010). An important class of volatility models has been studied

in the literature on local volatility function models; see for instance Dupire (1992)

and Derman & Kani (1994b). This popular type of continuous stochastic volatility

model generalizes the constant elasticity of variance (CEV) model, which goes back
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to Cox (1975) and Cox & Ross (1976). The proposed model in this thesis has some

similarity to CEV type models, and also to those that employ some random market

activity time in the sense of subordination; see Clark (1973) and Bochner (1955).

More recently, Lévy processes and jump diffusion processes have been used in as-

set price and index modeling, see e.g. Madan & Seneta (1990), Eberlein & Keller

(1995), Barndorff-Nielsen & Shephard (2001) and Kou (2002). However, by model-

ing the wold stock index, driven by the continuous non-diversifiable uncertainty of

the market, the thesis demonstrates that one can avoid the modeling of jumps in a

first approximation of the long term dynamics of the world stock index in currency

denomination. The working paper Platen & Rendek (2012a) proposes a model for a

diversified stock index, which involves a time transformed square root process and

a random market activity that is also determined by a square root process, which

is fast moving. The proposed parsimonious model fits well a list of major empirical

stylized facts. It seems to be difficult to falsify the model empirically, whereas many

other popular models are clearly not consistent with observed data. The model

dynamics are described under the real world probability measure, and its fit leads

outside the classical no-arbitrage pricing theory. Still, the model is covered under

the benchmark approach, see Platen & Heath (2010). In the very recent working

paper Du, Platen & Rendek (2012) the modeling of a commodity, oil, instead of a

currency has been performed. Similar results as for currencies emerge. However,

the random market activity moves opposite to the one employed for the modeling

of a diversified index in currency denomination.
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Chapter 1

Exact Scenario Simulation for
Selected Multi-dimensional
Stochastic Processes

Accurate scenario simulation methods for solutions of multi-dimensional stochas-

tic differential equations find applications in stochastic analysis, the statistics of

stochastic processes and many other areas, in particular, in finance. They have

been playing a crucial role as standard models in various areas and dominate of-

ten the communication and thinking in a particular field of application. Within

this thesis we will repeatedly employ exact or almost exact simulation methods to

demonstrate reliability and accuracy of our findings. In Platen & Rendek (2009)

such simulation methods have been derived. We will survey in this chapter those

methods that will become useful tools in this thesis.

Various discrete time simulation methods have been developed over the years.

However, the simulation of solutions of some stochastic differential equations can

be problematic due to systematic errors and numerical instabilities. In particular,

one encounters often problems when simulating trajectories over long time periods

or when analyzing rare events or tails of transition densities, as we will do in later

chapters. Therefore, it is valuable to identify multi-dimensional stochastic differen-

tial equations with solutions that can be simulated exactly or almost exactly. This

avoids several of the theoretical and practical problems encountered by those simu-

lation methods that use discrete time approximations, see Kloeden & Platen (1999).

This chapter provides a brief survey of known and new methods for the exact simula-

tion of paths of some multi-dimensional solutions of stochastic differential equations

including Ornstein-Uhlenbeck, square root, squared Bessel and Wishart type pro-
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cesses. Moreover, an application of exact simulation in filtering is demonstrated in

the last section, illustrating the wide applicability of the methods. This chapter is

intended as a preliminary chapter and introduction to multi-dimensional solutions

of stochastic differential equations, where exact or almost exact simulations are pos-

sible. It is based on the two papers Platen & Rendek (2009) and Platen & Rendek

(2010).

1.1 Multi-dimensional Itô Formula

We will start our discussion by recalling some basic facts from stochastic analysis,

including the multi-dimensional Itô formula. Given some family of explicitly solv-

able multi-dimensional stochastic differential equations (SDEs), one can obtain by

application of the multi-dimensional Itô formula another family of explicitly solvable

multi-dimensional SDEs. This results in a wide range of multi-dimensional SDEs

that can be simulated exactly. In this section we illustrate this property by simu-

lating a 2-dimensional Black-Scholes model. The Black-Scholes model, see Black &

Scholes (1973) is the standard asset price model in finance.

Vector of Independent Wiener Processes

Let us consider an m-dimensional Wiener process

W = {W t = (W 1
t , . . . ,W

m
t )�, t ∈ [0,∞)}. (1.1)

Here aT denotes the transpose of a vector. We assume that the components of

this vector stochastic process W , are independent. The increments of the Wiener

processes W j
t −W j

s for j ∈ {1, 2, . . . , m}, t ≥ 0 and 0 ≤ s ≤ t are then independent

Gaussian random variables with mean zero and variance equal to t− s. Therefore,

one obtains the vector increments of the standard m-dimensional Wiener process

W t−W s ∼ Nd(0, (t− s)I) as a vector of zero mean independent Gaussian random

variables with variance t− s. Here Nd(·, ·) refers to the corresponding multivariate

Gaussian distribution with dependence on mean vector and covariance matrix. I

denotes here the identity matrix. We obtain for the values of the trajectory of the

standard m-dimensional Wiener process at the discretization times ti = iΔ, i ∈
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{0, 1, 2, . . .}, with Δ > 0 the following iterative formula

W 0 = 0 (1.2)

W ti+1
= W ti +

√
ΔN i+1,

where N i+1 ∼ Nm(0, I) is an independent standard Gaussian random vector and 0

denotes the corresponding vector of zeros.

Multi-dimensional Itô Formula

Let be given the m-dimensional Wiener process W = {W t = (W 1
t , . . . ,W

m
t )�, t ∈

[0,∞)}, a d-dimensional drift coefficient vector function a : [0, T ]×	d → 	d and a

d×m-matrix diffusion coefficient function b : [0, T ]×	d → 	d×m. In this framework

we assume that we have already a family of explicitly solvable d-dimensional SDEs

given as

dXt = a(t,Xt)dt+ b(t,X t)dW t, (1.3)

for t ∈ [0,∞), X0 ∈ 	d. This means that the kth component of (1.3) equals

dXk
t = ak(t,X t)dt+

m∑
j=1

bk,j(t,X t)dW
j
t . (1.4)

For a sufficiently smooth vector function U : [0, T ]×	d → 	k of the solution X t of

(1.3) we obtain a k-dimensional process

Y t = U(t,X t). (1.5)

The expression for its pth component, resulting from the application of the Itô

formula, satisfies the SDE

dY p
t =

(
∂Up

∂t
+

d∑
i=1

ai
∂Up

∂xi
+

1

2

d∑
i,j=1

m∑
l=1

bi,lbj,l
∂2Up

∂xi∂xj

)
dt (1.6)

+

m∑
l=1

d∑
i=1

bi,l
∂Up

∂xi
dW l

t ,

for p ∈ {1, 2, . . . , k}, where the terms on the right-hand side of (1.6) are evaluated

at (t,X t). It is a trivial but valuable observation that also the paths of the solution

of the SDE (1.6) can be exactly simulated since X ti can be obtained exactly at all

discretization points and, by (1.5), Y ti is simply a function of X ti .
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Vector of Correlated Wiener Processes

Let us now define a d-dimensional continuous process W̃ = {W̃ t = (W̃ 1
t , W̃

2
t ,

. . . , W̃ d
t )

�, t ∈ [0,∞)} such that its components W̃ 1
t , W̃

2
t , . . . , W̃

d
t are transformed

scalar Wiener processes. In vector notation, such a d-dimensional transformed

Wiener process can be expressed by the linear transform

W̃ t = at+BW t, (1.7)

where a = (a1, a2, . . . , ad)
� is a d-dimensional vector, B is a d × m-matrix and

W = {W t = (W 1
t ,W

2
t , . . . ,W

m
t )�, t ∈ [0,∞)} is anm-dimensional standard Wiener

process. By the application of the multi-dimensional Itô formula one obtains

dW̃ k
t = akdt+

m∑
i=1

bk,idW
i
t , (1.8)

for k ∈ {1, 2, . . . , d}. This means that W̃ k
t , k ∈ {1, 2, . . . , d}, is constructed as a

linear combination of components of the vector W t plus some trend.

From the properties of Gaussian random variables, the following relation results

W̃ 0 = 0, (1.9)

W̃ ti+1
= W̃ ti + aΔ+

√
ΔÑ i+1,

for ti = iΔ, i ∈ {0, 1, . . . } with Δ > 0. For each i ∈ {0, 1, 2, . . . } the random vector

Ñ i+1 ∼ Nd(0,Σ) is here a d-dimensional Gaussian vector with correlation matrix

Σ = BB�.

Multi-dimensional Geometric Brownian Motions

Now, we describe multi-dimensional geometric Brownian motions that could yield

a Black-Scholes model. This model emerges when taking the exponent of linearly

transformed Wiener process. Denote by St a diagonal matrix with jth diagonal

element Sj
t , j ∈ {1, 2, . . . , d}, representing the jth asset price at time t ∈ [0,∞).

Then the SDE for the jth Black-Scholes asset price Sj
t is defined by

dSj
t = Sj

t

(
ajtdt+

d∑
k=1

bj,kt dW k
t

)
(1.10)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. Here W k, k ∈ {1, 2, . . . , d}, denotes an indepen-

dent standard Wiener process. Note that the Zakai equation for the Wonham filter
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is of a similar form, see Kallianpur (1980) and Section 1.5, involving multiplicative

noise. To represent the above SDE in matrix form we introduce the diagonal matrix

At = [Ai,j
t ]di,j=1 with

Ai,j
t =

{
ajt for i = j
0 otherwise

(1.11)

and diagonal matrix Bk
t = [Bk,i,j

t ]di,j=1 with

Bk,i,j
t =

{
bj,kt for i = j
0 otherwise

(1.12)

for k, i, j ∈ {1, 2, . . . , d} and t ∈ [0,∞). If all these diagonal matrices commute in

the sense

ABl = BlA and BlBk = BkBl (1.13)

for all k, l ∈ {1, 2, . . . , m}, then we can write the SDE (1.10) as matrix SDE

dSt = AtStdt+

d∑
k=1

Bk
tStdW

k
t (1.14)

for t ∈ [0,∞). Consequently, we obtain for the jth asset price the explicit solution

Sj
t = Sj

0 exp

{∫ t

0

(
ajs −

1

2

d∑
k=1

(bj,kt )2

)
ds+

d∑
k=1

∫ t

0

bj,ks dW k
s

}
(1.15)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. When taking the above exponential elementwise,

the explicit solution of (1.10) can be expressed as the exponential

St = S0 exp

{∫ t

0

(
As − 1

2

d∑
k=1

(
Bk

s

)2)
ds+

d∑
k=1

∫ t

0

Bk
sdW

k
s

}
(1.16)

for t ≥ 0. Additionally, if the appreciation rates and volatilities are piecewise con-

stant, then we can simulate exact solutions of the SDE (1.10). The main advantage

of the multi-dimensional Black-Scholes model, which also made it so popular, is that

it is highly tractable. It provides an explicit solution for the market dynamics and

allows a range of explicit formulas for functionals.

Before we consider more complicated SDEs let us give a simple example for a

two-dimensional Black-Scholes model with

B1 =

(
b1 0
0 b2�

)
and B2 =

(
0 0

0 b2
√
1− �2

)
. (1.17)

Here we obtain the following exact solution

S1
t = S1

0 exp

{(
a1 − 1

2
b21

)
t + b1W

1
t

}
, (1.18)

S2
t = S2

0 exp

{(
a2 − 1

2
b22

)
t + b2

(
�W 1

t +
√

1− �2W 2
t

)}
, (1.19)
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Figure 1.1: Trajectory of a two-dimensional Black-Scholes model with parameters
S1
0 = S2

0 = 1, a1 = a2 = 0.1, b1 = b2 = 0.2 and � = 0.8

for t ∈ [0,∞). The trajectory of this two-dimensional model is illustrated in Fig.1.1

for the parameter choice S1
0 = S2

0 = 1, a1 = a2 = 0.1, b1 = b2 = 0.2 and � = 0.8.

One notes the high correlation between the two paths.

1.2 Matrix Ornstein-Uhlenbeck Processes

In this section we will show how to simulate matrices of Ornstein-Uhlenbeck (OU)-

processes. This can be performed by using matrices of time changed Wiener pro-

cesses. Therefore, we will first introduce matrix Wiener processes and show how to

simulate time changed matrix Wiener processes.

Matrix Wiener Processes

Let us define a d × m standard matrix Wiener process W = {W t = [W i,j
t ]d,mi,j=1,

t ∈ [0,∞)}. This matrix stochastic process can be obtained by the following con-

struction

W 0 = 0 (1.20)

W ti+1
= W ti +

√
ΔN i+1,

for the times ti = iΔ, i = {0, 1, . . . }, with Δ > 0 and d×m-matrix 0 of zero elements.

Here N i+1 ∼ Nd×m(0, Im ⊗ Id) is a matrix of zero mean Gaussian distributed
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Figure 1.2: 2× 2 matrix Wiener process with both correlated rows and columns

random variables. The covariance matrix Im ⊗ Id is an m ×m block matrix with

d× d block matrices as its elements, that is,

Im ⊗ Id =

⎛⎜⎜⎜⎝
Id 0 . . . 0
0 Id . . . 0
...

...
...

...
0 0 . . . Id

⎞⎟⎟⎟⎠ , (1.21)

were Id denotes the d× d identity matrix. Moreover, similar to the vector case, we

are able to define a transformed matrix Wiener process W̃ = {W̃ t = [W̃ i,j
t ]d,mi,j=1, t ∈

[0,∞)} using the above matrix Wiener process W as follows:

W̃ t = M t +Σ1W tΣ
�
2 , (1.22)

where M is a d × m matrix and Σ1 and Σ2 are nonsingular d × d and m × m

matrices, respectively. Values of such a matrix stochastic process can be obtained

at the discrete times ti = iΔ by the following recursive computation:

W̃ 0 = 0 (1.23)

W̃ ti+1
= W̃ ti +MΔ+

√
ΔÑ i+1,

for i ∈ {0, 1, . . . } and independent Ñ i+1 ∼ Nd×m(0,Σ2 ⊗Σ1). Here, the covariance

matrix Σ2 ⊗Σ1 is an m×m block matrix of the form

Σ2 ⊗Σ1 =

⎛⎜⎜⎜⎝
σ2
1,1Σ1 σ2

1,2Σ1 . . . σ2
1,mΣ1

σ2
2,1Σ1 σ2

2,2Σ1 . . . σ2
2,mΣ1

...
...

...
...

σ2
m,1Σ1 σ2

m,2Σ1 . . . σ2
m,mΣ1

⎞⎟⎟⎟⎠ , (1.24)
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where Σ1 = [σ1
i,j ]

d
i,j and Σ2 = [σ2

i,j ]
m
i,j.

In Fig.1.2 we illustrate a 2×2 matrix transformed Wiener process W̃ for � = 0.8,

which was obtained from the standard 2 × 2 matrix Wiener process W by the

following transformation:

W̃ t = Σ1W tΣ
�
2 , (1.25)

where

Σ1 = Σ2 =

(
1 0

�
√

1− �2

)
. (1.26)

We note in Fig. 1.2 the correlation effect on the trajectories on both the elements of

the columns and the rows of such a 2×2 matrix valued transformed Wiener process.

Time Changed Wiener Processes

Instead of multiplying the time by some constant to scale the fluctuations of the

Wiener paths, one can introduce time dependent scaling by a, so called, time change

process ϕ = {ϕ(t), t ≥ 0}. Let us now consider a vector of time changed standard

independent Wiener processes W = {W ϕ(t) = (W 1
ϕ(t), . . . ,W

m
ϕ(t))

�, t ∈ [0,∞)}.
Given the time discretization ti = iΔ, i ∈ {0, 1, 2, . . .}, with time step size Δ > 0

we obtain the corresponding time changed Wiener process at discretization times

by the following iterative formula:

W ϕ(0) = 0 (1.27)

W ϕ(ti+1) = W ϕ(ti) +
√

ϕ(ti+1)− ϕ(ti)N i+1,

where the vector N i+1 ∼ Nm(0, I) is formed by independent standard Gaussian

vector random variables. Here I is the m × m identity matrix. Obviously, it is

possible to apply different time changes to different elements of the vector W . For

instance, let us define

ϕj(t) =
b2j
2cj

(e2cjt − 1) (1.28)

for t ∈ [0,∞), bj > 0, cj > 0 and j ∈ {1, 2, . . . , m}.
In order to obtain a time changed vector Wiener process, whose elements are

correlated time changed Wiener processes, it is sufficient to define a new vector

W̃ = {W̃ ϕ(t) = (W̃ 1
ϕ(t), . . . , W̃

d
ϕ(t))

�, t ∈ [0,∞)} by the following transformation

W̃ ϕ(t) = BW ϕ(t), (1.29)
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Figure 1.3: Matrix valued time changed Wiener process

where B is a d×m-matrix of coefficients and W = {W ϕ(t) = (W 1
ϕ(t), . . . ,W

m
ϕ(t))

�,

t ∈ [0,∞)} is an m-dimensional time changed Wiener process with independent

components.

Additionally, let us define a d×m standard time changed matrix Wiener process

W = {W ϕ(t) = [W j,k
ϕ(t)]

d,m
j,k=1, t ∈ [0,∞)}. Here, the independent elements of the

matrix W ϕ(t) are such that

W j,k
ϕj,k(ti+1)

−W j,k
ϕj,k(ti)

∼ N (0, ϕj,k(ti+1)− ϕj,k(ti)) , (1.30)

where W k,j
ϕk,j(0)

= 0, ti = iΔ, i ∈ {0, 1, . . . } and j ∈ {1, 2, . . . , d}, k ∈ {1, 2, . . . , m}.
For instance, we may define the (j, k)th time transformation by

ϕj,k(t) =
b2j,k
2cj,k

(
e2cj,kt − 1

)
(1.31)

for t ∈ [0,∞), bj,k > 0, cj,k > 0, and j ∈ {1, 2, . . . , d}, k ∈ {1, 2, . . . , m}. In order to

obtain a time changed matrix Wiener process with correlated elements we can use

the formula (1.22).

In Fig. 1.3 we display a time changed matrix Wiener process for d = m = 2 with

the covariance matrix I ⊗Σ1, where Σ1 is as in (1.26), � = 0.8 and the parameters

in the time change equal bj,k =
√
2 and cj,k = 1 for j, k ∈ {1, 2}. That is, the same

time change is applied to each of the elements of this matrix Wiener process. More

precisely, we construct W̃ by the relation

W̃ ϕ(t) = Σ1W ϕ(t)I. (1.32)
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Figure 1.4: Matrix valued Ornstein-Uhlenbeck process

In this case we obtain a time changed matrix Wiener process W̃ whose rows have

independent elements, while its columns have dependent elements.

Multi-dimensional Ornstein-Uhlenbeck (OU)-Processes

Let us now consider vector and matrix valued OU-processes. We will here construct

multi-dimensional OU-processes as time changed and scaled multi-dimensional Wiener

processes. Note that given the following two functions

st = exp{−ct} and ϕ(t) =
b2

2c
(e2ct − 1) (1.33)

for t ∈ [0,∞), b, c > 0, a scalar OU-process Y = {Yt, t ∈ [0,∞)} can be represented

in terms of a time changed and scaled scalar Wiener process, that is

Yt = stWϕ(t), (1.34)

where W = {Wϕ, ϕ ≥ 0} is a standard Wiener process in ϕ-time. By Itô’s formula

we obtain

dYt = Wϕ(t)dst + stdWϕ(t) = −Yt

st
cstdt+ st

b

st
dW̃t (1.35)

= −cYtdt+ bdW̃t,

where dWϕ(t) =
b
st
dW̃t, with W̃ denoting a standard Wiener process in t-time.

It is straightforward to obtain a vector OU-process by

Y t = stW ϕ(t), (1.36)
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Figure 1.5: Matrix valued geometric OU-process

that is, Y j
t = sjtW

j
ϕj(t)

for j ∈ {1, 2, . . . , d} and t ≥ 0. The generalization to a matrix

OU-process is obvious. The construction of this process starts by forming a time

changed d×m matrix Wiener process. It is then scaling each element of this matrix

by a function sj,kt for j ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . , m}. Hence, the elements of

such a matrix can be expressed by the relation Y j,k
t = sj,kt W j,k

ϕj,k(t)
for j ∈ {1, 2, . . . , d}

and k ∈ {1, 2, . . . , m}.
We illustrate in Fig. 1.4 the matrix OU-process, obtained from the time changed

matrix Wiener process in Fig. 1.3. Since, the time changed matrix Wiener process

has correlated rows and independent columns, the resulting OU-process, shown in

Fig. 1.4, shares this feature.

Multi-dimensional Geometric Ornstein-Uhlenbeck Processes

The Itô formula provides a general tool to generate a world of exact solutions of

SDEs based on functions of the solutions of those SDEs with exact solutions we

have already considered. As an example, let us generate explicit solutions for a

geometric OU-process. Here each element of a matrix valued OU-process is simply

exponentiated. More precisely, when denoting by X t = [Xj,k
t ]d,mj,k=1 a d ×m matrix

OU-process value and by Y t = [Y j,k
t ]d,mj,k=1 the corresponding d×m matrix geometric

OU-process value at time t, then we obtain the elements of the matrix Y t by

Y j,k
t = exp{Xj,k

t } (1.37)
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for t ∈ [0,∞).

In Fig. 1.5 we illustrate a 2 × 2 matrix geometric OU-process obtained from

the matrix OU-process in Fig. 1.4 by application of (1.37) to each of its elements.

More complex applications of the Itô formula for generating exact solutions will be

considered in the next section.

1.3 Wishart Processes

In this section we will discuss the exact simulation of Wishart processes, see Bru

(1991). These are matrix valued stochastic processes where their one-dimensional

version is generating squared Bessel processes. Therefore, we will start by describing

the exact simulation of a squared Bessel process, which later will be generalized to

its matrix equivalent, the Wishart process.

Squared Bessel Processes

A squared Bessel process (BESQδ
x) X = {Xϕ, ϕ ∈ [ϕ0,∞)}, ϕ0 ≥ 0, of dimension

δ ≥ 0 and with initial value x > 0, see Revuz & Yor (1999), is a fundamental

stochastic process which appears in various ways in theory and applications, for

instance, in financial modeling. This process can be described by the SDE

dXϕ = δ dϕ+ 2
√
|Xϕ| dWϕ (1.38)

for ϕ ∈ [ϕ0,∞) with Xϕ0 = x ≥ 0, where W = {Wϕ, ϕ ∈ [ϕ0,∞)} is a standard

Wiener process starting at the initial ϕ-time, ϕ = ϕ0, δ > 0. This means, for

ϕ ∈ [ϕ0,∞) one has as increment of the quadratic variation of W the difference

[W ]ϕ − [W ]ϕ0 = ϕ− ϕ0

for all ϕ ∈ [ϕ0,∞). Furthermore, if we fix the behavior of Xϕ at the boundary zero

as reflection, then the absolute sign under the square root in (1.38) can be removed,

and Xϕ remains nonnegative and has a unique strong solution, see Revuz & Yor

(1999).

The solution of the above SDE can be simulated exactly for the case when the

dimension of this process is an integer, that is δ ∈ {1, 2, . . . }. More precisely, for

δ ∈ {1, 2, . . .} and x ≥ 0 the BESQδ
x process X can be expressed as the sum of the
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Figure 1.6: Wishart process

squares of δ independent Wiener processes W 1,W 2, . . . ,W δ in ϕ-time, which start at

time ϕ = ϕ0 in w1 ∈ 	, w2 ∈ 	, . . . wδ ∈ 	, respectively, such that x =
∑δ

k=1(w
k)2.

We can now construct the solution of (1.38) as

Xϕ =
δ∑

k=1

(wk +W k
ϕ)

2 (1.39)

for ϕ ∈ [ϕ0,∞). Applying the Itô formula we obtain

dXϕ = δdϕ+ 2

δ∑
k=1

(wk +W k
ϕ)dW

k
ϕ (1.40)

for ϕ ∈ [ϕ0,∞) with X0 =
∑δ

k=1(w
k)2 = x. Furthermore, by setting

dWϕ = |Xϕ|− 1
2

δ∑
k=1

(wk +W k
ϕ)dW

k
ϕ (1.41)

we obtain the SDE (1.38). Note that we have for Wϕ the quadratic variation

[W ]ϕ =

∫ ϕ

ϕ0

1

Xs

δ∑
k=1

(wk +W k
s )

2ds = ϕ− ϕ0. (1.42)

Hence, by the Lévy theorem the process Wϕ is a Wiener process in ϕ-time.

Wishart Process

The matrix generalization of a squared Bessel process is a Wishart process originally

introduced in Bru (1991). The m×m matrix valued Wishart process with dimension
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δ ∈ {1, 2, . . .} is the matrix process S = {St, t ≥ 0} with

St = W�
t W t (1.43)

for t ∈ 	+ and initial matrix s0 = W�
0 W 0. Here W t is the value at time t ≥ 0 of

a δ×m matrix Wiener process. Itô calculus applied to the relation (1.43) results in

the following SDE

dSt = δIdt+ dW�
t W t +W�

t dW t, (1.44)

where I is the m×m identity matrix. It can be shown that W̃ t expressed by

dW̃ t =
(√

St

)−1

W�
t dW t (1.45)

is an m × m matrix Wiener process. Here
√
St represents the symmetric positive

square root of St, while
(√

St

)−1
is the inverse of the matrix

√
St. Note also that

dW̃
�
t = dW�

t W t

((√
St

)−1
)�

= dW�
t W t

((√
St

)�)−1

(1.46)

= dW�
t W t

(√
S�

t

)−1

= dW�
t W t

(√
St

)−1

,

since St is a symmetric matrix. Therefore, (1.44) can be rewritten in the following

form

dSt = δIdt+
√

StdW̃ t + dW̃
�
t

√
St (1.47)

for t ∈ 	+.

In Fig. 1.6 we plot a 2 × 2 Wishart process of dimension δ = 2. The matrix

Wiener process in this example was obtained by assuming the covariance matrix

I ⊗Σ1, where Σ1 is as in (1.26), with � = 0.8.

1.4 Affine Matrix Processes

Another group of matrix valued stochastic processes that can be simulated exactly

is that of matrices of affine processes, see Duffie & Kan (1994) or for the one-factor

case Filipović (2001). This family of stochastic processes has as its special case a

matrix of square root (SR) processes, which are directly linked to Wishart processes.

They also can be obtained from matrices of OU-processes. Both methods of exact

simulation are described below.
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Figure 1.7: Matrix valued square root process

SR-Processes Generated via OU-Processes

Let us first consider δ standard OU-processes, that is

dX i
t = −cX i

tdt+ bdW i
t (1.48)

for t ∈ [0,∞), with X i
0 = x0, c, b ∈ 	 and independent standard Wiener processes

W i for i ∈ {1, 2, . . . , δ}. The square of such an OU-process has the Itô differential

d(X i
t)

2 = (b2 − 2c(X i
t)

2) + 2bX i
tdW

i
t , (1.49)

for t ∈ [0,∞) and i ∈ {1, 2, . . . , δ}. Furthermore, we can form the sum of the δ

squared OU-processes, that is,

Yt =
δ∑

i=1

(X i
t)

2 (1.50)

for t ∈ [0,∞). The SDE for Yt turns out to be

dYt =

δ∑
i=1

(
b2 − 2c(X i

t)
2
)
dt+ 2b

δ∑
i=1

X i
tdW

i
t (1.51)

for t ∈ [0,∞). In order to simplify the above SDE we introduce another Wiener

process W̄ = {W̄t, t ∈ [0,∞)} defined as

W̄t =

∫ t

0

dW̄s =

δ∑
i=1

∫ t

0

X i
s√
Ys

dW i
s (1.52)
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Figure 1.8: Time changed Wishart process in log-scale

for t ∈ [0,∞). It can be shown that the quadratic variation of W̄ equals

[W̄ ]t =

∫ t

0

n∑
i=1

(X i
s)

2

Ys

ds = t. (1.53)

Hence, by the Lévy theorem we see that W̄ is a standard Wiener process. Therefore,

we obtain an equivalent SDE for the square root process Y in the form

dYt = (δb2 − 2cYt)dt+ 2b
√

YtdW̄t (1.54)

for t ∈ [0,∞) with Y0 = δ(x0)
2. Note that this process is an SR-process of dimension

δ ∈ {1, 2, . . . }. It is well-known that for δ = 1 the value Yt can reach zero and is

reflected at this boundary. For δ ∈ {2, 3, . . . } the process never reaches zero for

x0 > 0.

Matrix Valued Squares of OU-Processes

Kendall (1989) and Bru (1991) studied the matrix generalization for squares of OU-

processes. Denote by X t a δ ×m matrix solution of the SDE

dXt = −cXtdt+ bdW t, (1.55)

for t ≥ 0, with X0 = x0. Here W t is a δ ×m matrix Wiener process and x0 is a

δ ×m deterministic initial value matrix; b, c ∈ 	. By setting

St = X�
t X t, s0 = x�

0 x0 (1.56)
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and denoting dW̃ t =
√

S−1
t X�

t dW t we obtain an m ×m matrix SR process S of

dimension δ = {1, 2, . . . }. Note that the elements of W̃ t can be correlated. Then

St solves the SDE

dSt = (δb2I − 2cSt)dt+ b(
√

StdW̃ t + dW̃
�
t

√
St) (1.57)

for t ≥ 0, S0 = s0. Here St corresponds to a continuous-time process of stochastic,

symmetric, positive definite matrices, while
√
St is the positive symmetric square

root of the matrix St, see Gouriéroux & Sufana (2004). Furthermore, S−1
t is the

inverse of the symmetric positive definite m × m matrix St and
√

S−1
t its square

root.

Note that for m = 1 the transform (1.56) simplifies to equation (1.50). We

illustrate in Fig. 1.7 the matrix SR-process obtained from the matrix OU-process.

Note that not all non-diagonal elements of such a matrix process remain always

positive. In particular, the elements S1,2 and S2,1 are identical and, in general, not

positive. However, the diagonal elements S1,1 and S2,2 are correlated SR-processes,

which are always positive.

SR-Processes Generated via Squared Bessel Processes

Using squared Bessel processes one can derive SR-processes by certain transforma-

tions. For this reason let c : [0,∞) → 	 and b : [0,∞) → 	 be given deterministic

functions of time. We introduce the exponential

st = s0 exp

{∫ t

0

cu du

}
(1.58)

and the ϕ-time

ϕ(t) = ϕ(0) +
1

4

∫ t

0

b2u
su

du (1.59)

for t ∈ [0,∞) and s0 > 0. Note that we have an explicit representation for the

function ϕ(t) in the case of constant parameters bt = b̄ �= 0 and ct = c̄ �= 0, where

ϕ(t) = ϕ(0) +
b̄2

4c̄s0
(1− exp{−c̄t}) (1.60)

for t ∈ [0,∞) and s0 > 0. Furthermore, if ϕ(0) = − b̄2

4c̄s0
, then this function simply

equals

ϕ(t) = − b̄2

4c̄s0
exp{−c̄t} (1.61)

28



for t ∈ [0,∞), s0 > 0, b̄ �= 0 and c̄ �= 0.

Given a squared Bessel process X of dimension δ > 0, using our previous no-

tation, we introduce the SR-process Y = {Yt, t ≥ 0} of dimension δ > 0 via the

relation

Yt = st Xϕ(t) (1.62)

indexed by time t ≥ 0, see also Delbaen & Shirakawa (1997).

Furthermore, by (1.38), (1.58), (1.59) and (1.62) and the Itô formula we can

express (1.62) in terms of the SDE

dYt =
(δ
4
b2t + ct Yt

)
dt+ bt

√
Yt dUt (1.63)

for t ∈ [0,∞), Y0 = s0Xϕ(0) and

dUt =

√
4st
b2t

dWϕ(t).

Note that Ut forms by the Lévy theorem a Wiener process, since

[U ]t =

∫ t

0

4sz
b2z

dϕ(z) = t. (1.64)

The same time-change formula can be applied in the more general matrix case.

Given the Wishart process X it can be shown that the matrix square root process

can be obtained from the Wishart process by the following transformation

Y t = stXϕ(t), (1.65)

where st and ϕ(t) are as in (1.58) and (1.59), respectively. By (1.47), (1.58), (1.59)

and (1.65) and the Itô formula we can express (1.65) in terms of the matrix SDE

dY t =

(
δ

4
b2tI + ctY t

)
dt+

bt
2

(√
Y tdU t + dU�

t

√
Y t

)
(1.66)

for t ∈ [0,∞), Y 0 = s0Xϕ(0) and where dU t =
√

4st
b2t
dW ϕ(t) is the stochastic

differential of a matrix Wiener process.

In Fig.1.8 we display the trajectory of the elements of a 2×2 matrix time changed

Wishart process Xϕ(t) in log-scale. Here the off-diagonal elements do not show any

value for the time periods when the argument of the logarithm becomes negative.

Such periods do not arise for the diagonal elements which are of main interest.
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We now construct a trajectory of a 2 × 2 matrix SR-process obtained as time

changed Wishart process by the use of formula (1.65). Note that this matrix SR-

process is identical to the matrix SR-process in Fig. 1.7 obtained via squares of

OU-processes. In Fig. 1.7 we see that the off-diagonal elements have near the time

t = 7 indeed negative values.

Multi-dimensional Affine Processes

Let us now transform further the above obtained multi-dimensional SR-process in

order to obtain multi-dimensional affine processes, see Duffie & Kan (1994). These

processes have affine, that is linear drift and linear squared diffusion coefficients. In

order to obtain members of this class of multi-dimensional processes we can simply

shift the multi-dimensional SR-process by a nonnegative, differentiable function of

time a : [0,∞) → [0,∞), defined through its derivative

a′t =
dat
dt

(1.67)

for t ∈ [0,∞) with a0 ∈ [0,∞). More precisely, we define the process R = {Rt, t ∈
[0,∞)} such that

Rt = Y t + atI (1.68)

for t ∈ [0,∞). It is also possible to obtain more general affine processes by shifting

the matrix valued SR-process by a matrix At of nonnegative differentiable functions

of the type (1.67), that is,

Rt = Y t +At (1.69)

for t ∈ [0,∞). In this case Rt solves the following matrix SDE

dRt =

(
δ

4
b2tI +A′

t − ctAt + ctRt

)
dt (1.70)

+
bt
2

(√
Rt −AtdW̃ t + dW̃

�
t

√
Rt −At

)
,

for t ∈ [0,∞). Here A′
t denotes the matrix of the derivatives of the type (1.67)

for the shifts of each element. Obviously, we applied here the Itô formula to the

equation (1.69).

We considered above the exact simulation of solutions of multi-dimensional SDEs

driven by vector or matrix Wiener processes. The simulation methods described can

be adapted also to multi-dimensional SDEs when these are driven by more general
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vector or matrix valued Lévy processes. In principle, one can substitute the Wiener

processes by some Lévy processes. For details of such simulation method we refer

to Platen & Rendek (2009).

It remains to emphasize that advanced software packages, as Matlab and Math-

ematica, provide routines that generate a range of random variables with various

distributions that are needed in the above described simulations. For some multi-

dimensional distribution functions it is possible by using such software to sample

corresponding vector random variables. These are directly available for computation

and should have exactly the requested multivariate transition distribution function.

The above presented exact and almost exact simulation methods for multi-

dimensional SDEs lead to accurate scenario simulations that are reliable over long

periods of time. This is important for various applications, for instance, the pricing

of insurance and pension contracts. Typically arising numerical stability problems

are simply avoided by exact simulation. Finally, we remark that there is no major

problem introducing further jump effects into the considered type of dynamics via a

jump-adapted time discretization, see Platen (1982). This enlarges significantly the

class of processes that allow exact simulation.

1.5 Quasi-exact Approximation of Hidden

Markov Chain Filters

This section studies the application of exact simulation methods to SDEs with multi-

dimensional multiplicative noise as appear in filtering. Filtering problems arise, for

instance, when fitting adaptively regime switching models in finance. Parameters

in the model may change according to a hidden Markov chain. Filtering provides

an adaptive method to estimate the hidden parameter and evaluate on this basis

derivatives and other functionals. The methods described in this section can be

employed for randomizing the parameters in the model we will derive for diversified

indices in Chapter 4. SDEs with multiplicative noise naturally occur as Zakai equa-

tion in hidden Markov chain filtering. This section proposes a quasi-exact or almost

exact approximation method for hidden Markov chain filters, which can be applied

when discrete time approximations, such as the Euler scheme, may not be adequate

in practice.
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Hidden Markov Chain Filters

First we introduce filters for hidden, continuous time, finite state Markov chains. Let

(Ω,AT ,A, P ) with A = (At)t∈[0,T ] and T ∈ [0,∞) be the underlying filtered proba-

bility space and suppose that the hidden state process ξ = {ξt, t ∈ [0, T ]} is a contin-
uous time, homogeneous Markov chain on the finite state space X = {a1, a2, . . . , ad},
d ∈ {0, 1, . . .}. Its d-dimensional probability vector p(t) = (p1(t), . . . , pd(t))

� at time

t, with components

pi(t) = P (ξt = ai) (1.71)

for each ai ∈ X , satisfies then the vector ordinary differential equation (ODE)

dp(t)

dt
= Ap(t), (1.72)

where A is the intensity matrix. The initial probability vector equals p(0) = p0.

The solution of the vector ODE (1.72) is then of the form

p(t) = exp{At}p0. (1.73)

Here exp{·} denotes the matrix exponential defined as

exp{A} =

∞∑
k=0

Ak 1

k!
. (1.74)

In addition, suppose that the m-dimensional observation process W = {W t, t ∈
[0, T ]} is the solution of the SDE

dW t = h(ξt) dt+ dW ∗
t (1.75)

for t ∈ [0, T ] with W 0 = W ∗
0 ∈ 	m, m ∈ {1, 2, . . . }. This type of disturbance of a

signal by a Wiener process is called a Wonham filter problem, see Wonham (1965).

In the SDE (1.75) the noise process W ∗ = {W ∗
t , t ∈ [0, T ]} with W ∗

0 = 0 is an

m-dimensional standard Wiener process with respect to the real world probability

measure P . The Wiener process W ∗ is assumed to be independent of the hidden

state process ξ. Finally, let

Yt = σ {W s, s ∈ [0, t]}

denote the observation sigma-algebra generated by the observationsW s for s ∈ [0, t].

This means, Y = (Yt)t∈[0,T ] is the filtration that represents the release of observed
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information, whereas A = (At)t∈[0,T ] with At = σ{ξs,W s : s ∈ [0, t]} expresses the

evolution over time of the total information.

Our task is to filter as much information about the hidden state process ξ as we

can from the observation process W . More precisely, we shall evaluate for a given

function g : X → 	 the Wonham filter, which is the conditional expectation

πT (g) = E
(
g(ξT )

∣∣YT

)
with respect to the real world probability measure P . The function g(·) could

be chosen, for instance, as an indicator function 1{ξT=ai}, which yields πT (g) as a

probability. It could also represent a power function (ξT )
q, which leads to πT (g)

describing the qth moment of the hidden Markov chain.

By application of the Girsanov transformation one obtains a probability measure

Ṗ , where

dṖ = L−1
T dP (1.76)

with

LT = exp

{
−1

2

∫ T

0

|h(ξs)|2 ds+
∫ T

0

h(ξs)
� dW s

}
(1.77)

such that W is a Wiener process with respect to Ṗ , while L is assumed to be a

martingale. Here LT = dP
dṖ

is the corresponding Radon-Nikodym derivative. Note

that we express in this situation the real world probability measure P in terms of

the new probability measure Ṗ for which W is a standard vector Wiener process

given by (1.75).

Let us introduce the unnormalized conditional probability σ(ξt)
i for the state

ai ∈ X at time t by the conditional expectation

σ(ξt)
i = Ė

(
1{ξt=ai}Lt

∣∣Yt

)
(1.78)

with respect to the new probability measure Ṗ for i ∈ {1, 2, . . . , d} and t ∈ [0, T ].

It follows from the Kallianpur-Striebel formula, see Fujisaki, Kallianpur & Kunita

(1972), that the conditional probabilities of ξt given in Yt are

P
(
ξt = ai

∣∣Yt

)
= E

(
1{ξt=ai}

∣∣Yt

)
=

σ(ξt)
i∑d

k=1 σ(ξt)
k

(1.79)

for ai ∈ X and t ∈ [0, T ]. Here the d-dimensional process σ(ξ) = {σ(ξt) =

(σ(ξt)
1, . . . , σ(ξt)

d)�, t ∈ [0, T ]} of unnormalized conditional probabilities satisfies

33



the Zakai equation

σ(ξt) = p(0) +

∫ t

0

Aσ(ξs) ds+

m∑
k=1

∫ t

0

Dk σ(ξs) dW
k
s (1.80)

for t ∈ [0, T ]. This is a homogeneous linear Itô SDE. In (1.80)Dk is the d×d diagonal

matrix with ith component hk(ai) for i ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . , m}.
The least-squares estimate at time t for g(ξt) with respect to the given observa-

tions at time t, that is with respect to the sigma-algebra Yt, is then the Wonham

filter, which is given by the conditional expectation

πt(g) = E
(
g(ξt)

∣∣Yt

)
=

∑d
k=1 g(ak) σ(ξt)

k∑d
k=1 σ(ξt)

k
(1.81)

for t ∈ [0, T ].

Quasi-exact Filters

Let us consider the following d-dimensional multiplicative noise SDE

dXt = AX tdt+

m∑
k=1

DkX tdW
k
t , (1.82)

with a solution that is representing a vector geometric Brownian motion, where

X = {X t = (X1
t , X

2
t , . . . , X

d
t )

�, t ∈ [0,∞)}, A = [ai,j]di,j=1 and Dk = [dk,i,j]di,j=1,

k ∈ {1, 2, . . . , m}. Here, W k, k ∈ {1, 2, . . . , m}, are the elements of the vector SDE

(1.75), that describes the observation process.

It turns out that if the matrices A,D1,D2, . . . ,Dm are constant and commute,

that is, if

ADk = DkA and DkDn = DnDk (1.83)

for all k, n ∈ {1, 2, . . . , m}, then an explicit solution of the SDE (1.82) can be

expressed by the relation

Xt = ΨtX0, (1.84)

for t ∈ [0,∞). Here, Ψt is the matrix exponential

Ψt = exp

{
At− 1

2

m∑
l=1

(
Dl
)2

t +
m∑
r=1

DrW r
t

}
, (1.85)

for t ∈ [0,∞).
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The proof follows from the Itô formula applied to (1.84). Note that

dXt = d (ΨtX0) = d

(
exp

{(
A− 1

2

m∑
l=1

(
Dl
)2)

t+
m∑
r=1

DrW r
t

})
X0

= d

(
exp

{(
A− 1

2

m∑
l=1

(
Dl
)2)

t

}
m∏
r=1

exp {DrW r
t }
)
X0,

(1.86)

since the matrices (
A− 1

2

m∑
l=1

(
Dl
)2)

t and
m∑
r=1

DrW r
t (1.87)

commute for all t ∈ [0,∞). Therefore,

dXt = d

(
exp

{(
A− 1

2

m∑
l=1

(
Dl
)2)

t

})
m∏
r=1

exp {DrW r
t }X0 (1.88)

+ exp

{(
A− 1

2

m∑
l=1

(
Dl
)2)

t

}
d

(
m∏
r=1

exp {DrW r
t }
)
X0

=

(
A− 1

2

m∑
l=1

(
Dl
)2)

exp

{(
A− 1

2

m∑
l=1

(
Dl
)2)

t

}

×
m∏
r=1

exp {DrW r
t }X0dt+

+

m∑
k=1

Dk exp

{(
A− 1

2

m∑
l=1

(
Dl
)2)

t

}
m∏
r=1

exp {DrW r
t }X0dW

k
t

+
1

2

m∑
k=1

(
Dk
)2

exp

{(
A− 1

2

m∑
l=1

(
Dl
)2)

t

}

×
m∏
r=1

exp {DrW r
t }X0d[W

k]t.

This equation simplifies to

dXt = AX tdt+

m∑
k=1

DkX tdW
k
t , (1.89)

since the quadratic variation of the kth observation process equals

[W k]t =

∫ t

0

ds = t, (1.90)

for k ∈ {1, 2, . . . , m}.

35



The above derivation shows that an SDE of the type (1.80) has an explicit solu-

tion if the matrices A,D1, . . . ,Dm commute. Note that D1, . . . ,Dm in (1.80) are

diagonal matrices, and, thus, commute with each other. However, the matrix A is

not commuting with the other matrices. Therefore, we do not have an exact explicit

solution of the Zakai equation (1.80). Nevertheless, as will be illustrated later, if we

formally take the matrix exponential (1.85) in the product (1.84), then one obtains

a proxy of the solution of the corresponding Zakai equation. It turns out that this

quasi-exact solution provides in many cases an excellent approximation of the exact

solution, as we will confirm numerically. This is a practically valuable observation.

The solution will be exploited to solve approximately and efficiently the Wonham

filter problem. What, of course, needs to be done is to show for given matrices

A,D1, . . . ,Dm and initial vector X0 that the quasi-exact solution is close to the

exact solution. This can be achieved by comparing the proposed approximation via

discrete time simulation with a very accurately obtained numerical approximation

using an extremely small time step size, see Kloeden & Platen (1999).

To prepare this type of comparison, let us now introduce the following equidistant

time discretization 0 = τ0 < τ1 < · · · < τn = T , such that τi = iΔ, for i ∈
{0, 1, . . . , T

Δ
}. Denote by Y Δ

τi
at time τi the quasi-exact approximation of the solution

σ(ξτi) of the Zakai equation (1.80), expressed by the recursive equation

Y Δ
τi+1

= exp

{
AΔ− 1

2

m∑
l=1

(
Dl
)2

Δ+

m∑
r=1

DrΔW r
τi+1

}
Y Δ

τi
, (1.91)

at the equidistant discretization points, where the ΔW r
τi+1

are increments of the rth

element of the vector observation process W . That is, we have

ΔW r
τi+1

= W r
τi+1

−W r
τi
, (1.92)

for r ∈ {1, 2, . . . , d} and i ∈ {0, 1, . . . , T
Δ
}.

We will consider later an example of the observation processes given by the SDE

dW r
t = ξtdt+ dW r∗

t , (1.93)

for t ∈ [0, T ]. We then add for such a scenario simulation all jump times of the

continuous time Markov chain to the equidistant time discretization to obtain a

jump adapted time discretization 0 = t0 < t1 < · · · < tnT
= T with maximum time
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step size Δ > 0, see Platen (1982). Note that nT is now a random integer. The

increments of this observation process at jump adapted discretization points can be

obtained by exact simulation given the value of the hidden Markov chain ξti at time

ti. That is,

W r
ti+1

−W r
ti
= ξti(ti+1 − ti) +

√
ti+1 − tiZ

r
i+1 (1.94)

for r ∈ {1, 2, . . . , d} and i ∈ {0, 1, . . . , nT − 1}. Here Zr
i+1 ∼ N (0, 1) is a standard

Gaussian random variable, for r ∈ {1, 2, . . . , d} and i ∈ {0, 1, . . . , nT −1}. Note that
this process is a drifted Wiener process with piecewise constant random drift. The

simulation of the increments of W r is straightforward, since we have via simulation

at our disposal the values of W r at the times ti for i ∈ {0, 1, . . . , nT}.

Approximate Filters

In practice, it is impossible to detect W continuously on [0, T ]. One may, however,

approximate increments of observations of W in integral form of the type∫ τ1

τ0

dW j
s , . . . ,

∫ τn+1

τn

dW j
s , . . . ,

∫ τ1

τ0

∫ s2

τ0

dW j
s1
dW k

s2
, . . .

for each j, k ∈ {1, 2, . . . , m}, τn = nΔ and n ∈ {0, 1, . . . , T
Δ
}. We shall see later on

that with such integral observations it is possible to construct strong discrete-time

approximations Y Δ with time step size Δ of the solution σ(ξ) of the Zakai equation

(1.80). For the given function g this allows then to form the approximate Wonham

filter

πΔ
t (g) =

∑d
k=1 g(ak) Y

Δ,k
t∑d

k=1 Y
Δ,k
t

(1.95)

for t ∈ [0, T ].

We shall say that a discrete-time approximation Y Δ with time step size Δ con-

verges on the time interval [0, T ] with strong order γ > 0 to the solution X of the

corresponding SDE if there exists a finite constant K, not depending on Δ, and a

δ0 ∈ (0, 1) such that

Ė
(∣∣σ(ξτn)− Y Δ

τn

∣∣) ≤ KΔγ (1.96)

for all Δ ∈ (0, δ0) and τn ∈ [0, T ]. Note that the expectation in (1.96) is taken with

respect to the probability measure Ṗ under which the observation process W is a

Wiener process.
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Analogously, we say that an approximate Markov chain filter πΔ
τnt

(g) with time

step size Δ converges on the time interval [0, T ] with strong order γ > 0 to the

optimal filter πτnt
(g) for a given test function g if there exists a finite constant K,

not depending on Δ, and a δ0 ∈ (0, 1) such that

E
(∣∣∣πτnt

(g)− πΔ
τnt

(g)
∣∣∣) ≤ KΔγ (1.97)

for all Δ ∈ (0, δ0) and t ∈ [0, T ]. In contrast with (1.96), the expectation in (1.97)

is taken with respect to the original probability measure P . In Kloeden, Platen &

Schurz (1993) the following convergence result was derived.

Theorem 1.5.1 (Kloeden-Platen-Schurz). An approximate Markov chain filter πΔ(g)

with time step size Δ converges for t ∈ [0, T ] with strong order γ > 0 to the optimal

filter π(g) for a given bounded function g if the discrete-time approximation Y Δ

used converges on [0, T ] to the solution σ(ξ) of the Zakai equation (1.80) with the

same strong order γ.

Now, we derive discrete-time strong approximations Y Δ that are converging with

a given strong order γ > 0 to the solution σ(ξ) of the Zakai equation (1.80), which

can be used to build a corresponding approximate filter.

Given an equidistant time discretization of the interval [0, T ] with step size Δ =

T
N

for some N ∈ {1, 2, . . .}, we define the partition sigma-algebra

P1
N = σ{ΔW j

i−1 : i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , m}} (1.98)

as the sigma-algebra generated by the increments

ΔW j
0 =

∫ Δ

0

dW j
s , . . . ,ΔW j

N−1 =

∫ NΔ

(N−1)Δ

dW j
s (1.99)

for all j ∈ {1, 2, . . . , m}. Thus, P1
N contains the information about the increments

of W for the given time discretization.

The simplest discrete-time approximation is obtained from the Euler scheme. It

has for the Zakai equation (1.80) the form

Y Δ
τn+1

= [I +AΔ+Gn]Y
Δ
τn (1.100)

with

Gn =

m∑
k=1

Dk ΔW k
n (1.101)
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and initial value Y0 = σ(ξ0), where I is the d× d unit matrix. The scheme (1.100)

converges with strong order γ = 0.5 under the given assumptions. For a general

SDE this is the maximum order of strong convergence that can be achieved under

the partition sigma-algebra P1
N , as was shown in Clark & Cameron (1980). However,

some commutativity property of the Zakai equation (1.80) follows from the diagonal

structure of its volatility matrices, see Kloeden & Platen (1999). This allows the

strong order γ = 1.0 to be attained with the information given by P1
N .

The Milstein scheme, which is of strong order γ = 1.0 has for the Zakai equation

(1.80) the form

Y Δ
τn+1

=

(
I +BΔ+Gn

(
I +

1

2
Dn

))
Y Δ

τn , (1.102)

where

B = A− 1

2

m∑
k=1

(Dk)2. (1.103)

Newton (1986) searched for a scheme which is asymptotically the “best” in the class

of strong order γ = 1.0 schemes in the sense that it has the smallest leading error

coefficient in an error estimate similar to (1.96), see Kloeden & Platen (1999). In

practice, the numerical stability of discrete-time approximations for filters is highly

important. Fischer & Platen (1999) studied the application of the balanced implicit

method in hidden Markov chain filtering when the time between observations is

rather large. They obtained quite reliable results for the balanced implicit scheme

even for large step sizes. In the following we consider an example of a Wonham filter

considered also by Fischer & Platen (1999). We show that our quasi-exact approxi-

mation of the Zakai equation performs remarkably well, even though the matrix A

does not fully commute with the matrices D1, . . . ,Dm in the Zakai equation.

Wonham Filter Example

The unobservable signal process ξ = {ξt, t ∈ [0, T ]} in our example is a time homoge-

neous, continuous time, real valued Markov chain with the set X = {a1, a2, . . . , ad}
of states. The scalar observation process W = {Wt, t ∈ [0, T ]} is given by the

relation

Wt =

∫ t

0

h(ξs)ds+W ∗
t , (1.104)
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Figure 1.9: Simulation of the signal and observation processes for Δ = 1
500
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Figure 1.10: q1t - obtained by the quasi-exact approximation for Δ = 1
500

for t ∈ [0, T ]. One can say that W represents the time integral over the signal

process that is corrupted by a Wiener process W ∗. We estimate the hidden state of

the Markov chain ξ by observing only the values of the process W .

It is convenient to consider a d state continuous time Markov chainX = {Xt, t ∈
[0, T ]} that is identical to ξ under a transformation of the state space, see Elliott,

Aggoun & Moore (1995). We choose as the state space for X the set {e1, . . . , ed} of

unit vectors in 	d, with e1 = (1, 0, 0, . . . , 0)�, e2 = (0, 1, 0, . . . , 0)� and so on. Then

we write,

ξt = X�
t a (1.105)

with a = (a1, a2, . . . , ad)
� ∈ 	d. Let A = [ai,j]di,j=1 be the constant intensity

matrix associated with the homogeneous, continuous time Markov chain X, so that
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Figure 1.11: Difference between q1t obtained by the quasi-exact approximation and
the Euler scheme for Δ = 1

500
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Figure 1.12: q1t - obtained by the quasi-exact method with Δ = 1
20

p(t) = E(X t) satisfies the vector ODE

dp(t)

dt
= Ap(t), (1.106)

for t ∈ [0, T ], with given initial probability vector p(0). H is the diagonal d ×
d matrix that has the elements of the vector a as diagonal elements and is zero

elsewhere.

Denote by Yt the observation sigma-algebra generated by W up to time t. The

Wonham filter for X at time t is then given as

X̂ t = E(X t

∣∣Yt).

As we have seen previously, the theoretical solution to the problem of calculating

X̂ t involves the unnormalized filter for the conditional distribution of X , which is
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Figure 1.13: q1t - obtained by the Euler method with Δ = 1
20

denoted by σ(X) = {σ(X t), t ∈ [0, T ]} and satisfies the Zakai equation

dσ(Xt) = Aσ(X t) dt+D σ(X t) dWt (1.107)

for t ∈ [0, T ]. The Wonham filter for X is then computed as

X̂ t = E(X t

∣∣Yt) =
σ(X t)

σ(X t)� 1
(1.108)

for t ∈ [0, T ], see (1.81).

Let us now assume that our observation process W is a one-dimensional stochas-

tic process of the form

dWt = ξtdt+ dW ∗
t , (1.109)

for t ∈ [0, T ]. The exact simulation of this process was already discussed above.

Moreover, the parameters of the Markov chain X, or equivalently ξ, are chosen

to give a realistic multiplicative noise term in the Zakai equation (1.107). The

simulated hidden Markov chain X is chosen to have three states, with the vector a

taken to be a = (5, 0,−5)�. Numerical experiments have shown that using more

states does not change the nature of the results that we obtain. The intensity matrix

A of the hidden Markov chain is chosen to be of the simple form

A =

⎡⎣ −1.0 1.0 0
0.5 −1.0 0.5
0 1.0 −1.0

⎤⎦ . (1.110)

This describes how the Markov chain jumps with prescribed intensities to neighbor-

ing states. For instance, the intensity to jump from level 0 to level 5 is 0.5 per unit

of time.
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Now, let us investigate the approximate calculation of the Wonham filter. We

simulate the scenario for the signal and observation processes over the time interval

[0, T ] with T = 10 using the exact simulation method (1.94). The simulated output

can be seen in Fig. 1.9.

Let us now consider the probability

qit = X̂
�
t ei = E

(
X�

t ei

∣∣Yt

)
(1.111)

which, for i ∈ {1, 2, 3}, denotes the filtered probability that the hidden Markov

chain X is in the ith state. For illustration let us focus on q1t , which corresponds to

the level ξ = 5, that is i = 1.

To obtain the quantity q1t we have to solve the SDE (1.107). In order to do

so we use our quasi-exact approximation described in this section. Applying it to

the equation (1.107) and denoting by Y Δ
τi

the approximate solution of the Zakai

equation at time τi, we obtain the following quasi-exact approximation

Y Δ
τi+1

= exp

{
AΔ− 1

2
DΔ+DΔWτi+1

}
Y Δ

τi
, (1.112)

where ΔWτi+1
is obtained using (1.94). Additionally, D is a diagonal matrix with

elements

D =

⎡⎣ 5 0 0
0 0 0
0 0 −5

⎤⎦ . (1.113)

In order to calculate the matrix exponential in (1.112) we use an implementation

in Matlab. If a given matrix has a full set of eigenvectors V with corresponding

eigenvalues E, then the matrix exponential of this matrix is

V exp{diag(E)}V −1. (1.114)

Note also that the matrix exponential of the diagonal matrix is a diagonal matrix,

whose diagonal elements are exponents of diagonal elements of the underlying ma-

trix. If this calculation is not possible to apply, Matlab’s implementation uses the

Padé approximation with scaling and squaring, see Higham (2005).

Additionally, we compare our quasi-exact approximation to the results obtained

via two numerical schemes: the Euler scheme and the Milstein scheme, as described

previously. When the step size Δ was chosen extremely small with about 1
500

, then

all three approximations produced virtually identical results. Fig. 1.10 displays a
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plot of q1t as calculated by the quasi-exact approximation with Δ = 1
500

. This is

compared to the result obtained by the Euler scheme for the same time step size in

Fig. 1.11. In this figure we show the difference between q1t obtained by the quasi-

exact approximation and the Euler scheme for Δ = 1
500

. We remark that small errors

occur, most likely, due to the approximate nature of the Euler scheme as well as

the Padé approximation of the matrix exponential used in the quasi-exact method.

When using the Milstein scheme the results were practically the same. Differences

between the schemes become apparent when the time step size Δ is chosen to be

larger.

We emphasize that such a fine time discretization for the observation process as

employed in our test, however, is often not available in real world filtering problems.

Using the same realizations of the observation and signal processes that were given

in Fig. 1.9, we display in Figs. 1.12 and 1.13 the plots of the filtered probability q1t ,

see (1.111), calculated by the proposed quasi-exact approximation and the Euler

method when using the larger step size Δ = 1
20
. For this step size we can see that

the only acceptable approximation appears to be the proposed quasi-exact approxi-

mation of the hidden Markov chain filter. In the other case we even obtain negative

“probabilities” and other unrealistic estimates as filter values. This undesirable ef-

fect is due to numerical instabilities of the Euler scheme. In the given example also

the Milstein scheme does not yield a useful filter.

We have proposed a quasi-exact approximation of hidden Markov chain filters.

It turns out that, even though the drift matrix in the Zakai equation does not

perfectly commute, the quasi-exact method is rather successful in approximating

hidden Markov chain filters also for large observation time steps.

The results of our experiments demonstrate that discrete time approximations,

such as the Euler scheme, cannot be used as reliably as the proposed quasi-exact

method. When the available observations are rare the quasi-exact method can pro-

vide useful approximations where other standard methods fail.
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Chapter 2

Empirical Study of a World Stock
Index in Different
Currency Denominations

Before modeling theoretically the dynamics of indices it is important to develop a

reasonable view on their real world dynamics. Therefore, the aim of this chapter is

to document some empirical facts related to log-returns of diversified world stock

indices when these are denominated in different currencies. The chapter estimates

univariate distributions of log-returns for a range of world stock indices over long

observation periods. The Student-t distribution with about four degrees of freedom

is identified as the typical estimated log-return distribution of such indices. Ow-

ing to the observed high levels of significance, this result can be interpreted as a

stylized empirical fact. The Student-t distribution is also found as the bivariate

joint distribution, which suitably fits daily log-returns of a world stock index when

denominated in various currencies. In the class of bivariate symmetric generalized

hyperbolic distributions the maximum likelihood estimates for the tail parameters

cluster in the neighborhood of those values that characterize the Student-t distribu-

tion. This empirical feature is very strong for relatively separated economies and is

less pronounced for pairs of currencies involving one leading currency, such as the

US dollar, or a neighboring currency such as for pairs of Scandinavian currencies. If

one takes into account that the central banks of many countries influence through

deliberate trading the exchange rates with respect to the US dollar or the currencies

of their main trading partners, then these observed effects may be explained. Moti-

vated by these findings, this chapter will also model the dependency in log-returns of

denominations of the world stock index using time-varying copula, aiming to iden-
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tify the best fitting copula family. We find that the Student-t copula is generally

superior to e.g. the Gaussian copula, where the dependence structure relates to the

multivariate normal distribution. We show that merely changing the distributional

assumption for the marginals from normal to Student-t leads to significantly better

performance. Furthermore, the Student-t copula with Student-t marginals is able

to better capture dependent extreme values, which can be observed in index log-

returns of different currency denominations. This chapter follows and extends the

results in the following two papers: Platen & Rendek (2008) and Ignatieva, Platen

& Rendek (2011).

2.1 Index Construction

This section focuses on a methodology for the construction of diversified world stock

indices. Such indices are usually formed for asset allocation purposes or in order to

measure the general market performance and general market risk, see Basle (1996).

Market capitalization weighted indices are widely used as benchmarks in investment

management. Some of the following indices also have a more theoretical motivation

under the benchmark approach; see Platen & Heath (2010) and Platen & Rendek

(2012b). We construct in this chapter portfolios that are all strictly positive, self-

financing portfolios.

The data selected for the d ∈ N = {1, 2, . . .} constituents of the indices consist of
daily data for the period from 1973 to 2006. We construct world stock indices from

regional stock market indices and from world sector market indices. The regional

stock market indices represent market capitalization weighted stock indices as con-

structed and provided by Thomson Reuters Datastream (Datastream). World sector

indices are also constructed and provided by Datastream, and reflect the worldwide

evolution of respective industries. The regional or the world sector indices are used

in our study as constituents of the newly constructed indices.

Portfolio Generating Functions

We emphasize in this study four main types of indices, market capitalization weighted

indices (MCIs), diversity weighted indices (DWIs) as described by Fernholz (2002),

equally weighted indices (EWIs), and some type of world stock indices (WSIs) in-
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troduced in Le & Platen (2006).

We assume that all the constituents of our constructed indices are capable of

unbounded positive jumps and negative jumps leaving constituents arbitrarily close

to zero. This reflects the fact that, in principle, any of the constituents Sj
t , j ∈

{1, 2, . . . , d}, can almost default at any time. Therefore, since we consider only

strictly positive portfolios in our study, their fractions of wealth always need to

remain nonnegative.

In order to eliminate short sales, and to have a systematic way of generating

nonnegative fractions using a wide range of methods; we introduce the notion of a

portfolio generating function (PGF), which has been inspired by a similar construct

described in Fernholz (2002). More precisely, a PGF A : 	d → [0, 1]d maps a given

vector of fractions πδ,t = (π1
δ,t, π

2
δ,t, . . . , π

d
δ,t)

� ∈ 	d, into a vector of nonnegative

fractions

π̃δ,t = (π̃1
δ,t, π̃

2
δ,t, . . . , π̃

d
δ,t)

� = A(πδ,t) ∈ [0, 1]d (2.1)

such that
∑d

j=1 π̃
j
δ,t = 1 for all t ∈ 	+. Note that the given vector of fractions πδ,t

may contain negative components. These components can be obtained by any kind

of method, including the use of statistical estimates of optimal fractions. Estimates

provided by experts or economically based theoretical predictions can also be used.

These fractions are then translated into nonnegative fractions by a PGF. Note that

we do not include the savings account in a PGF. This is also typical for most

commercial indices.

Market Capitalization Weighted Indices

For an MCI we define the fraction of wealth held in the j-th constituent at time t

as follows:

πj
δMCI ,t

=
δjtS

j
t∑d

i=1 δ
i
tS

i
t

, (2.2)

j ∈ {1, 2, . . . , d}. Here δjt is the number of units of the jth constituent of the portfolio

Sδ
t at time t, which is typically held constant over certain periods of time.

Diversity Weighted Indices

The so called diversity weighted indices (DWIs) are theoretically and practically

interesting indices, which were proposed in Fernholz (2002). Here the PGF is a
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Figure 2.1: Indices constructed from regional stock market indices

function of the MCI fractions πδMCI ,t, given in (2.2), and has the form

π̃j
δ,t =

(πj
δMCI ,t

)p∑d
l=1(π

l
δMCI ,t

)p
(2.3)

for some choice of a real number p ∈ [0, 1], j ∈ {1, 2, . . . , d}, t ∈ 	+. The DWI has

been designed to outperform the market portfolio, that is the MCI, see Fernholz

(2002).

Equally Weighted Indices

An almost ideally diversified index is obtained by setting all fractions equal. The jth

fraction of the equally weighted index or equi-weighted index (EWI) is then simply

given by the constant

πj
δEWI ,t

=
1

d
(2.4)

for all j ∈ {1, 2, . . . , d}, where d is the number of constituents. The main advantage

of this index is that it forms, in some sence, the ”best” diversified portfolio and does

not need the calculation of its fractions from data or other sources. We will show

in this chapter that EWIs do not only exhibit excellent long term performance but

also have very clear distributional properties. These distributional features, as well

as their excellent long term growth rate, make EWIs important tools for theoretical

investigations and practical applications. We will see in Chapter 3 that this type of
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Figure 2.2: Indices constructed from sector indices based on 35 industries

portfolios approximates asymptotically the, so called, numéraire portfolio, see Long

(1990).

A Family of World Stock Indices

There have been many attempts in the literature and in practice to construct in-

vestment portfolios with outstanding performance, e.g. expected growth rate or

expected returns. It is evident from estimation theory, see for instance DeMiguel,

Garlappi & Uppal (2009), that, in principle, hundreds of years of data are necessary

to estimate risk premia with any reasonable level of significance. Such long data

sets are not available. Additionally, the risk premia cannot be expected to remain

constant over sufficient long periods of time. This makes it very difficult to use

any statistical method successfully in investment portfolio construction. Despite

the mentioned empirical difficulties, various stock indices were studied e.g. by Le &

Platen (2006) with the aim of approximating the growth optimal portfolio (GOP),

which is also the numéraire portfolio (NP), by using standard statistical estimates of

risk premia and volatilities. No significant advantage in performance was reported

for these constructed indices, as will be confirmed in this chapter.

We will study world stock indices (WSIs) as special cases in a family of indices

which also include the MCI, DWI and EWI. The PGF used for the construction of
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Figure 2.3: Indices constructed from sector indices based on 104 industries

this general family of indices is given by

π̃j
δ,t =

(πj
δ,t + μt)

p∑d
l=1(π

l
δ,t + μt)p

, (2.5)

for all j ∈ {1, 2, . . . , d} and t ∈ 	+, where p ∈ [0, 1] is some real number. This

construction is slightly more general than what has been suggested in Fernholz

(2002); see (2.3). Essentially, the above PGF keeps the ranking of the fractions

πj
δ,t intact and transforms the original fractions into other positive fractions. We

obtain the fractions of a DWI if πj
δ,t = πj

MCI,t and μt = 0 for all t ∈ 	+. The

GOP is the portfolio that maximizes expected logarithmic utility, see Kelly (1956).

Theoretically one obtains the fractions of the GOP of the stock market in the form

πδ∗,t = Σ−1
t (at − rt1) (2.6)

for t ∈ 	+, see Merton (1973), Platen & Heath (2010) or Filipović & Platen (2009).

Here Σt denotes the covariance matrix of returns and at the vector of expected

returns of the constituents, while rt is the short rate.

It is very common to estimate the covariance matrix Σt from the observation

of daily returns, say, of the most recent one year period. Despite our reservations

about the low significance of any estimates for the expected return vector at, we

may nevertheless try to estimate it in a standard manner from daily returns over the
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same one year period. This is what, in principle, is often performed in active fund

management when following the sample based Markowitz approach. The resulting

estimated suggested fractions of the GOP vary in an extreme manner and can be

largely negative. To make the fractions positive via a PGF we set

μt =
∣∣ inf

j
πj
δ,t

∣∣+ μ, (2.7)

for some choice μ ≥ 0, t ∈ 	+. The WSI used in this thesis was obtained as in Le

& Platen (2006).

Comparison of Constructed Indices

Figs.2.1-2.3 display indices constructed along the lines as described above. In Fig.2.1

they are constructed from 38 regional stock market indices. In Fig. 2.2 they use 35

industry sector indices as constituents. Finally, in Fig.2.3 they employ 104 industry

sector indices. For all three types of constructed indices, MCIs, DWIs, EWIs and

WSIs, we observe that MCIs always perform worse than DWIs, which again perform

worse than EWIs and WSIs. This is a common feature of both regional and industry

sector based indices. In particular, the EWI and the EWI104s perform extremely

well. It can be noticed that the performance of well diversified indices is generally

much better than that of less diversified indices. The diversification theorems in

Platen (2005a) and Platen & Rendek (2012b), see Chapter 3, provide an explanation
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for this phenomenon by stating that well diversified portfolios are likely to be better

proxies for the GOP, that is, the NP. Since the GOP is known almost surely to

have the best long term growth rates, see Platen & Heath (2010), this appears to

be supported by the displayed constructed indices.

Furthermore, we note that the EWI and the WSI are almost identical when

setting p = 0.5. This is due to the fact that the resulting WSI fractions are very close

to those of the EWI. On the other hand, the fractions of the WSI are still flexible and

make it possible for the WSI to outperform the EWI slightly. This, however, comes

with a significant computational cost and a decreasing level of diversification. The

real question is whether the suggested fractions for the GOP have some statistical

information that is readily exploitable. Unless this is the case, it is unlikely that a

WSI outperforms an EWI significantly in the long run.

In Fig.2.4, we now plot on a logarithmic scale the best performing indices, which

are the EWI, based on 38 regional stock market indices, and the EWI104s, with 104

world industry sectors as constituents. This graph shows that historically sometimes

the EWI and on other occasions the EWI104s performs slightly better. They are

both well diversified indices and, therefore by the above mentioned diversification

theorems, can be expected to be good proxies of the GOP. This raises the question

as to whether there are clear empirical features that make one of these indices better

suitable as proxy of the NP. We clarify this question by studying the distribution of

their log-returns.

2.2 A Class of Multivariate Log-return

Distributions

This section introduces a rich class of multivariate symmetric generalized hyperbolic

(SGH) densities, which covers a wide range of possible tail shapes. Several authors

have proposed widely researched models that generate log-returns within the class of

SGH densities, originally introduced in Barndorff-Nielsen (1978). The SGH density

results as a normal-mixture density when the mixing density of the variance is a

generalized inverse Gaussian (GIG) density.

More precisely, the random vector X is said to have a d-dimensional normal
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variance mixture distribution if

X ∼
√
WAZ, (2.8)

where the k-dimensional vector Z ∼ Nk(0, Ik) has a k-variate standard normal

distribution. W ≥ 0 is a non-negative, scalar valued random variable, independent

of Z; and A ∈ 	d×k is a matrix. It follows that E(X) = 0 and Cov(X) = E(W )Σ,

where Σ = AA� when the mixing variable W has finite variance. Conditioned

on the random covariance matrix WΣ, X can be interpreted as a d-dimensional

conditionally Gaussian random vector.

The GIG distribution used for the mixing variance W ∼ GIG(λ, χ, ψ) is a three

parameter distribution. The density of W equals

f(x) =
χ−λ

(√
χψ
)λ

2Kλ

(√
χψ
) xλ−1 exp

{
−1

2

(
χx−1 + ψx

)}
(2.9)

for x > 0, where Kλ(·) denotes a modified Bessel function of the third kind with

index λ, see Abramowitz & Stegun (1972). Here, the parameters satisfy χ > 0,

ψ ≥ 0 if λ < 0; χ > 0, ψ > 0 if λ = 0 and χ ≥ 0, ψ > 0 if λ > 0.

Consequently, the multivariate SGH density has the following representation

f(x) = c
Kλ−(d/2)

(√
(χ+ x�Σ−1x)ψ

)
(√

(χ+ x�Σ−1x)ψ
)(d/2)−λ

, (2.10)

where the normalization constant is

c =

(√
χψ
)−λ

ψd/2

(2π)d/2 det(Σ)1/2Kλ(
√
χψ)

. (2.11)

To simplify our analysis we consider the bivariate SGH density with zero mean

and variance equal to one as model for the log-returns. These properties arise

from centralizing and scaling the log-return data for each currency. To express the

dependence structure of pairs of log-returns we introduce the matrix

Σ =

(
1 �
� 1

)
, (2.12)

which can be interpreted as the correlation matrix of a pair of conditionally Gaussian

random variables, conditioned on some independent generalized inverse Gaussian

random variance. Here we use in the conditionally Gaussian interpretation the
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parameter � ∈ (−1, 1) to measure the dependence. However, we need to emphasize

that in our general context � is no longer the correlation. It measures, more generally,

some dependence and will be called dependence parameter.

It turns out that the following (ᾱ, λ)-parametrization, which focuses on the two

tail parameters of the SGH distribution, is rather convenient and illustrative. Here

we set α =
√
ψ, δ =

√
χ and ᾱ = αδ. In this parametrization the bivariate SGH

density function of the vector of log-returns X = (X1, X2)
� is of the form

f(x1, x2) =
1

δKλ(αδ)
√
1− �2

α

2π

(
1 +

x2
1 − 2�x1x2 + x2

2

(1− �2)δ2

) 1
2
(λ−1)

(2.13)

×Kλ−1

(
αδ

√
1 +

x2
1 − 2�x1x2 + x2

2

(1− �2)δ2

)
,

where λ ∈ 	, α, δ ≥ 0 and � ∈ (−1, 1) is a dependence parameter, see McNeil, Frey

& Embrechts (2005).. We set α > 0 if λ > 0 and δ > 0 if λ ≤ 0. Kλ(·) is the

modified Bessel function of the third kind with index λ. Here, the variances of X1

and X2 equal one, that is,

1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ2

−2(λ+1)
if α = 0 for λ < 0,

2λ
α2 if δ = 0 for λ > 0,

δ2Kλ+1(ᾱ)

ᾱKλ(ᾱ)
otherwise.

(2.14)

The above bivariate SGH density is, therefore, a three parameter density. The

two shape parameters for the tails were chosen as λ and ᾱ = αδ. The third parameter

� ∈ (−1, 1) determines the degree of dependence between the log-returns.

Within the class of bivariate SGH densities we will describe in the following

four special cases of SGH densities that are related to the log-return densities of

important asset price models:

In Praetz (1972) and Blattberg & Gonedes (1974), models were proposed with

log-returns following a Student-t density with degrees of freedom ν > 2. This kind

of log-return density can also be estimated for the minimal market model, proposed

in Platen (2001). The Student-t density follows from the above SGH density for the

parameters λ = −1
2
ν < 0, α = 0 and δ =

√
ν − 2, that is, for the shape parameters

λ = −1
2
ν and ᾱ = 0. Using these parameter values the Student-t density function
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for the log-return vector X = (X1, X2)
� has then the form

f(x1, x2) =
Γ(1

2
ν + 1)√

(ν − 2)(1− �2)πΓ(1
2
ν)

(
1 +

x2
1 − 2�x1x2 + x2

2

(1− �2)(ν − 2)

)− 1
2
ν−1

, (2.15)

where Γ(·) is the gamma function.

Equation (2.15) expresses the bivariate probability density of a Student-t dis-

tributed random variable with ν degrees of freedom. The above bivariate Student-t

density is a two parameter density. The dependence between the two log-returns is

governed by the dependence parameter � ∈ (−1, 1). Note that � is here not simply

the correlation of the random variables X1 and X2 because these are not Gaussian.

The degree of freedom ν = −2λ is the shape parameter, with smaller ν indicating

larger tail heaviness for the Student-t density. Furthermore, when the degree of free-

dom increases, that is ν → ∞, then the marginal Student-t density asymptotically

approaches the standard Gaussian density.

In Madan & Seneta (1990) and Geman, Madan & Yor (2001) it has been proposed

that log-returns may be distributed according to a normal-variance gamma mixture

distribution. This case of the variance gamma (VG) model is obtained when the

parameters are set to λ > 0, δ = 0 and α =
√
2λ. This means that one has the

shape parameters λ > 0 and ᾱ = 0. Using these parameter values the bivariate VG

density function for the log-return vector X = (X1, X2)
� has then the form

f(x1, x2) =
λ

π2λ−1Γ(λ)

(
2λ (x2

1 + 2x1x2�+ x2
2)

1− �2

) 1
2
(λ−1)

(2.16)

×Kλ−1

⎛⎝√2λ (x2
1 − 2x1x2�+ x2

2)

1− �2

⎞⎠ ,

with

f(0, 0) =
λ

π2λ−1Γ(λ)
2λ−2Γ(λ− 1). (2.17)

The resulting bivariate VG density is a two parameter density. The dependence

parameter � acts here differently than in the case of the bivariate Student-t density

(2.15). The parameter λ is the shape parameter with smaller λ implying larger tail

heaviness. Furthermore, when λ → ∞, the marginal VG density asymptotically

approaches the standard Gaussian density.

In Barndorff-Nielsen (1995) log-returns were proposed to follow a normal-inverse

Gaussian (NIG) mixture distribution. The corresponding density arises from the
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SGH density when the shape parameter λ = −1
2
is chosen. The resulting bivariate

NIG density is a two parameter density. The parameter ᾱ is the shape param-

eter with smaller ᾱ implying larger tail heaviness. Furthermore, when ᾱ → ∞
the marginal NIG densities can be shown to asymptotically approach the standard

Gaussian density.

In Eberlein & Keller (1995) and Küchler, Neumann, Sørensen & Streller (1999)

models are proposed, where log-returns appear to be hyperbolically distributed.

This occurs for the choice of the shape parameter λ = d+1
2

in the d-variate SGH

density. The bivariate hyperbolic density that results is a two parameter density

with λ = 1.5. The parameter ᾱ is the shape parameter with smaller ᾱ implying

larger tail heaviness. Furthermore, when ᾱ → ∞ the marginal hyperbolic densities

asymptotically approach the standard Gaussian density.
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Figure 2.5: Log-scale plots of: (a) VG density; (b) hyperbolic density; (c) Student-t;
(c) NIG

By choosing the parameters according to the estimates, as they result from the

maximum likelihood estimation below, we illustrate in Fig. 2.5 four special cases of

the bivariate SGH density, where the dependence parameter � is chosen to be equal

to 0.8: (a) VG density for λ = 4; (b) hyperbolic density for λ = 1.5, ᾱ = 1; (c)

Student-t density for λ = −2 and (d) NIG density for λ = −1/2, ᾱ = 4. In this

illustration we choose the parameters ᾱ, λ so that (2.14) is satisfied and the marginal
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variances equal one. One notes the heavy tails in each of the bivariate distributions

for the extreme values, in particular, for the Student-t distribution.

Likelihood Ratio Test

In order to test the hypothesis that a candidate log-return distribution is acceptable

or not, we follow the classical maximum likelihood ratio test; see Rao (1973). The

likelihood ratio is defined by the expression

Λ =
L∗

model

L∗
nesting model

, (2.18)

here L∗
model represents the maximized likelihood function of the specific nested den-

sity, while L∗
nesting model represents the maximized likelihood function of the nesting

density. Here the likelihood is defined as the product of the marginal densities.

For example, we will later choose in some cases the SGH density as nesting model

and the symmetric Student-t density as one of the nested models. Note that in the

process of maximizing the likelihood, we optimize with respect to the parameters of

the given parameterized distribution. Hence we obtain both the optimal parameters

and the optimal value of the likelihood function. It can be shown that for increasing

number of observations n → ∞ the test statistic

Ln = −2 ln(Λ) (2.19)

is asymptotically distributed as a chi-square distribution; see Rao (1973). Addition-

ally, the degrees of freedom of this chi-square distribution are determined by the

difference between the number of parameters of the nesting and the nested mod-

els. Specifically, the bivariate SGH density is a three-parameter density, while the

four special cases we consider: the symmetric variance gamma, Student-t, hyper-

bolic and generalized inverse Gaussian densities are two-parameter densities, which

implies that their test statistic is chi-square distributed with one degree of freedom.

Note that asymptotically it can be shown that

P (Ln < χ2
1−α,1) ≈ Fχ2(1)(χ

2
1−α,1) = 1− α, (2.20)

where Fχ2(1) denotes the chi-square distribution with one degree of freedom and

χ2
1−α,1 is its 100(1−α)% quantile. We cannot reject on a 90% level of significance the

hypothesis that the suggested density is the true underlying density, if the relation

Ln < χ2
0.1,1 ≈ 0.015791 (2.21)
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Figure 2.6: Log-histogram of the EWI104s log-returns and Student-t density with
four degrees of freedom

is satisfied. We then reject the hypothesis that the suggested density is the true

underlying density at the 99% level of significance if the following relation is not

satisfied

Ln < χ2
0.01,1 ≈ 0.000157. (2.22)

If we require greater precision, then the hypothesis is not rejected at the 99.9% level

of significance if

Ln < χ2
0.001,1 ≈ 0.000002. (2.23)

To conclude the above discussion, we call the density with the smallest test statistic

Ln the best fit in the given family of distributions.

2.3 Fitted Univariate Log-return Distributions

This section is devoted to the analysis of the univariate log-returns of twelve world

stock indices. We distinguish between the world stock indices constructed from the

regional stock market indices, the world sector indices based on the 35 industry

indices, and the world sector indices based on the 104 industry indices mentioned

previously. The region based indices consist of the: MCI, DWI, EWI and WSI,

while the sector based indices are represented by the: MCI35s, DWI35s, EWI35s

andWSI35s, as well as, the MCI104s, DWI104s EWI104s andWSI104s. We use daily
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Table 2.1: Empirical moments for log-returns of the EWI104s in various currency
denominations
Country μ̂y σ̂y β̂y κ̂y

Australia 0.000565 0.008573 1.255285 38.042243
Austria 0.000423 0.008932 -0.560596 9.818562
Belgium 0.000473 0.008616 -0.572222 8.617690
Brazil 0.000774 0.010628 0.470175 15.449772
Canada 0.000519 0.007150 -0.655434 11.930284
Denmark 0.000491 0.008637 -0.493104 10.819425
Finland 0.000524 0.008646 -0.305966 9.590003
France 0.000512 0.008546 -0.522862 8.826783
Germany 0.000426 0.008627 -0.611260 8.901389
Greece 0.000867 0.009325 0.530904 27.355595
Hong Kong 0.000600 0.007379 -0.709914 16.946884
India 0.000698 0.008086 0.260450 20.710839
Ireland 0.000554 0.008863 -0.359713 35.363948
Italy 0.000622 0.008481 -0.504651 9.270888
Japan 0.000394 0.008151 -0.742019 9.827505
Korea S. 0.000593 0.009045 0.453250 36.812322
Malaysia 0.000533 0.007845 -0.664893 15.829299
Netherlands 0.000439 0.008558 -0.598923 8.979067
Norway 0.000502 0.008365 -0.431793 10.298253
Portugal 0.000714 0.009343 0.168636 13.568042
Singapore 0.000499 0.007228 -1.116746 17.150500
Spain 0.000594 0.008756 0.204594 16.586917
Sweden 0.000560 0.008372 0.256363 17.623515
Taiwan 0.000502 0.007456 -0.956096 16.691994
Thailand 0.000634 0.009012 1.861305 62.413554
UK 0.000536 0.008165 -0.593624 9.567338
USA 0.000501 0.007004 -0.819822 14.237813

Table 2.2: Results for log-returns of the EWI104s
SGH Student-t NIG Hyperbolic VG

σ 0.9807068 0.7191163 0.9697258 0.9584118 0.9593693
ᾱ 0.0000000 0.9694605 0.7171357
λ -2.1629649 1.4912414
ν 4.3259646
ln(L∗) -285796.3865295 -285796.3865297 -286448.9371892 -287152.0787956 -287499.8259143
Ln 0.0000004 1305.1013194 2711.3845322 3406.8787696

data from 1973 to 2006, provided by Datastream, for all the components underlying

our indices. In the following, we mainly report the results for the log-returns of the

EWI104s when denominated in 27 currencies.

A summary of the main empirical moments of the log-returns of the EWI104s

when denominated in different currencies, is presented in Table 2.1. Note that

we obtain here the average empirical mean μ̂y = 0.000557, the average empirical

standard deviation σ̂y = 0.008437, the average sample skewness β̂y = −0.213288

and the average sample excess kurtosis κ̂y = 17.823402. We do not remove any

extreme values as potential outliers from our data set, hence market crashes and

other sudden market corrections are not discarded. Removing outliers would also not

be appropriate, as the proper modeling of extreme log-returns is of great importance

in risk management.

First, to get a visual impression of the shape of the log-return density of the
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Figure 2.7: Log-likelihood function based on the EWI104s

EWI104s, we exploit all log-returns that we observe from this index in all 27 cur-

rency denominations. For this purpose we combine appropriately shifted and scaled

log-returns of all currency denominations. More precisely, for each currency denom-

ination of the index we shift all the obtained log-return values so that their sample

mean becomes zero, and scale them in order to obtain a sample variance of one. In

Fig. 2.6 we present the resulting histogram of the total cohort of shifted and scaled

log-returns on a logarithmic scale. Note that this histogram is based on 214, 658

observations, which makes it very reliable. Additionally, in Fig. 2.6 we show in log-

scale the theoretical Student-t density for ν = 4 degrees of freedom. We observe

visually an excellent fit of the log-returns of the EWI104s to the Student-t density.

For the other constructed indices, a similar visual impression is obtained, with the

EWI104s seeming to fit best.

The maximum likelihood methodology is then employed to estimate the parame-

ters of the SGH density. Note that in our analysis we do not take the autocorrelation

of the log-returns into account. In fact, we are more interested in the identification
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Figure 2.8: (ᾱ, λ)-plot for log-returns of indices in 27 different currencies constructed
from regional stock market indices as constituents

of the stationary density resulting for the underlying model of the normalized equity

index. This will be further clarified in Chapter 4 of this thesis. In Chapter 4 we will

perform similar likelihood analysis for the simulated trajectory of the equity index

and find that the simulated log-returns exhibit similar distributional behavior when

obtained from the in this thesis developed equity index model.

For the same sample used to produce the histogram in Fig. 2.6, we exhibit the

log-likelihood function for the SGH in Fig.2.7 as a function of the parameters λ and

ᾱ. One notes a clear, flat global maximum around the point ᾱ = 0 and λ = −2,

which refers to a Student-t distribution with four degrees of freedom. We then apply

the maximum likelihood method to the log-returns of the EWI104s for four special

cases of the SGH distribution. These cases concern the Student-t density, the NIG

density, the hyperbolic density and the VG density. We maximize the corresponding

log-likelihood functions with respect to the parameters σ, ᾱ, λ and ν of the SGH, as

shown in Table 2.2, and display their estimates in its second column. Additionally,
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Figure 2.9: (ᾱ, λ)-plot for log-returns of indices in 27 different currencies constructed
from 35 sector indices as constituents

row six of Table 2.2 contains the estimated parameters and maximized values of the

log-likelihood functions for the SGH density and each of the four considered special

cases. In the last row of Table 2.2 we calculated the value of the test statistic Ln.

The almost zero value obtained for Ln suggests a very good fit of the Student-t

distribution with ν ≈ 4.3 degrees of freedom to our set of data in the class of SGH

distributions. The extremely small value of the test statistic, Ln = 0.0000004, allows

us to conclude that the H0 hypothesis of a Student-t fit to the EWI104s cannot be

rejected at least on a 99.9% level of significance, since χ2
0.001,1 ≈ 0.000002. We

emphasize that this is an extremely high level of significance. Note also that the

estimated parameter value ᾱ = 0 for the SGH density suggests that a Student-

t density already represents the best fit to the log-returns of the EWI104s when

searching among the family of SGH densities.

For all the components underlying our indices we now again use daily data from

1973 to 2006, provided by Datastream. Furthermore, we denominate all twelve
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Figure 2.10: (ᾱ, λ)-plot for log-returns of indices in 27 different currencies con-
structed from 104 sector indices as constituents

constructed indices in 27 different currencies and study their log-returns for each

of the denominations separately. Note that the denomination of a diversified world

stock index in a given currency reflects in its fluctuations the general market risk

with respect to this currency, see Platen & Stahl (2003a). We mention that the data

for all exchange rates were not available from 1973. For instance, the time series for

the Brazilian real starts only in 1995.

For convenience, we shift and scale the log-returns in order to obtain sample

means equal to zero and sample standard deviations equal to one for all currency

denominations. This does not change the generality of our analysis, but standardizes

the testing procedure.

We first apply the maximum likelihood estimation methodology for both the

generalized hyperbolic (GH) and the SGH distributions for the log-returns of each

index and for each currency denomination. The GH distribution contains the ex-

tra parameter γ ∈ 	, which represents the level of skewness of this distribution.
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Table 2.3: Ln test statistic of the EWI104s for different currency denominations
Country Student-t NIG Hyperbolic VG ν
Australia 0.000000 76.770817 150.202282 181.632971 4.281222
Austria 0.000000 39.289103 77.505683 102.979330 4.725907
Belgium 0.000000 31.581622 60.867570 83.648470 4.989912
Brazil 2.617693 5.687078 63.800349 60.078395 2.713036
Canada 0.000000 47.506215 79.917741 104.297607 5.316154
Denmark 0.000000 41.509921 87.199686 114.853658 4.512101
Finland 0.000000 28.852844 68.677271 88.553080 4.305638
France 0.000000 26.303544 57.639325 80.567283 4.722787
Germany 0.000000 27.290205 52.667918 71.120798 5.005856
Greece 0.000000 60.432172 104.789463 125.601499 4.674626
Hong.Kong 0.000000 42.066531 100.834255 122.965326 3.930473
India 0.000000 74.773701 163.594078 198.002956 3.998713
Ireland 0.000000 77.727856 136.505582 170.013644 4.761519
Italy 0.000000 25.196598 55.185625 75.481897 4.668983
Japan 0.000000 37.630363 77.163656 102.967380 4.649745
Korea.S. 0.000000 120.904983 304.829431 329.854620 3.289204
Malaysia 0.000000 79.714054 186.013963 221.061290 3.785195
Netherlands 0.000000 26.832761 51.625813 71.541627 5.084056
Norway 0.000000 42.243851 89.012090 115.059003 4.472349
Portugal 0.000000 61.177624 137.681039 165.689683 3.984860
Singapore 0.000000 36.379685 77.600590 98.124375 4.251472
Spain 0.000000 56.694545 109.533768 138.259224 4.517153
Sweden 0.000000 77.618384 143.420049 178.983373 4.546640
Taiwan 0.000000 41.162560 96.283628 115.186585 3.914719
Thailand 0.000000 78.250621 254.590254 267.508143 3.032038
UK 0.000000 26.693076 55.937248 80.678494 4.952843
USA 0.000000 40.678242 79.617362 100.901197 4.636661

Our study, however, reveals that the estimated parameter values for γ are of the

order 10−6 or less. Since γ and μ turn out to be extremely small we do not report

the statistical findings for the GH distribution and just concentrate on the SGH

distribution, which appears to be almost identical to what we reported previously.

In order to visualize the fitted log-return distributions of our twelve constructed

indices, we plot the estimated parameter λ versus the estimated parameter ᾱ in

Figs. 2.8, 2.9 and 2.10 for each constructed index, respectively, in all 27 currency

denominations. Fig. 2.8 presents the results for each of the MCI, DWI, EWI and

WSI for 27 currency denominations. Note that the estimated values of ᾱ are in most

cases close to zero, which already confirms the Student-t property. Furthermore, the

estimated values of the parameter λ range from around −2.5 to −1.0. This indicates

that the best fit can be expected for Student-t distributions with degrees of freedom

of about ν = −2λ ranging from around 2 to 5. This is emphasized by the cluster of

points in Fig. 2.8 located on the negative λ axis near −2.

Note that in the group of indices shown in Fig. 2.8 the log-returns of the MCI

seem to fit visually the Student-t distribution best. There are just nine points which

do not sit on the negative λ axis. It can be also noticed that the range of the

estimated values of λ in the case of the EWI and WSI is narrower for ᾱ = 0.
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Fig. 2.9 illustrates the estimated parameters of the SGH distribution for the

indices constructed on the basis of 35 world industry sectors as constituents. Here

we used the observed log-returns of the MCI35s, DWI35s, EWI35s and WSI35s for

the estimation of the log-return distribution. Similarly, as for the case of regional

stock index based indices as constituents, we obtain estimates of ᾱ that are close to

zero and values for λ, which range from approximately −1.0 to −2.5. In the case

of these sector based indices in 27 currencies we observe an even better fit of the

Student-t distribution. This is, in particular, visible in Fig. 2.9 for the EWI35s and

the WSI35s. In these two cases, only the log-returns denominated in the Brazilian

real do not exhibit a proper Student-t fit, as the estimate of ᾱ is not zero in this

case but is approximately equal to 0.25. This is probably a consequence of the short

length of our data series on the Brazilian exchange rate. It is obvious that data sets

of sufficient length are necessary in order to obtain a proper fit to the underlying

true distribution.

In Fig. 2.10 we analyzed log-returns of the MCI104, DWI104s, EWI104s and

WSI104s, based on 104 world industry sector indices as constituents. We again

obtain estimates for the parameters ᾱ and λ, which indicate a good Student-t fit to

the observed log-returns of all four indices considered. We note that the improved

diversification of the indices in Fig. 2.10 did not greatly improve the Student-t fit

when compared with Fig.2.9. The best fits are here again obtained for the EWI104s

and the WSI104s.

In conclusion, in all three figures the estimated (ᾱ, λ) points are localized near

the negative λ-axis, which indicates an approximate Student-t density. Moreover,

one can notice that the Student-t density represents a better fit for two types of the

world industry sector based indices: It fits very well in the case of the EWI35s, as

well as the EWI104s. These fits are remarkable and can be interpreted as a stylized

empirical fact.

In the second column of Table 2.3 we show only six digits for the Student-t test

statistics, which is sufficient to decide whether these values are less than the 99.9%

quantile 0.000002 of the chi-square distribution with one degree of freedom. We

emphasize that the estimated degrees of freedom of the Student-t density obtained,

are in the range of around 3 to 5, with a concentration near 4, as can be concluded
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from the last column of Table 2.3.

One possible explanation of the above documented empirical facts is that the

above diversified indices are driven by the nondiversifiable uncertainty of the mar-

ket, which generates Student-t log-returns with four degrees of freedom for a well

diversified index. There are many continuous time models thinkable that would

generate such log-returns. For instance, the minimal market model (MMM), in-

troduced in Platen (2001) and further described in Platen & Heath (2010), is one

of such models. The MMM models the discounted GOP by a time transformed

squared Bessel process of dimension four. The squared volatility of this process is

the inverse of a square root process, which has as its stationary density a gamma

density with four degrees of freedom. Therefore, the mixing density for the variance

of the returns of the GOP is that of the inverse of a gamma distributed random

variable. Consequently, log-returns generated by the MMM, when estimated over

a sufficiently long time period, would appear to be Student-t distributed with four

degrees of freedom. Chapter 4 will propose even more realistic model that exhibits

this property.

2.4 Fitted Bivariate Log-return

Distributions

To clarify further in which direction a realistic model for a diversified world index

should go, we focus in this section on the bivariate distribution of log-returns of

the EWI104s when denominated in different currencies. In the previous section and

Platen & Rendek (2008) the univariate Student-t distribution was identified for all

these currency denominations. In fact, we could not reject the Student-t hypothesis

for the log-returns of the EWI104s at the high 99.9% level of significance in all cases

considered above.

We now apply the maximum log-likelihood methodology to pairs of log-returns

of the EWI104s in different currency denominations. At first, let us consider the

bivariate SGH densities that are estimated when considering Australian dollar log-

returns of the EWI104s in conjunction with log-returns of the EWI104s denominated

in other currencies. Table 2.4 summarizes for the Student-t, the NIG, the hyperbolic

and the VG model the resulting test statistics. For the Student-t model the second
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Table 2.4: Test statistics for Australian dollar denomination of the EWI104s paired
with other currency denominations

AU vs LStudent−t
n LV G

n Lhyperbolic
n LNIG

n ν �

Austria 0.00274025 236.55845406 173.09166361 61.14818639 3.90382049 0.51958549
Belgium 0.00268553 189.22777798 135.47978607 42.43451789 3.90270597 0.52975278
Canada 0.00945525 383.63742806 302.15085711 138.52025651 3.99853063 0.78240493
Denmark 0.01071392 317.88771606 242.54225166 94.98967385 3.83420592 0.64844959
Finland 6.10051720 141.10617451 109.77042154 13.91296972 3.41369825 0.58007350
France 0.00201669 192.18917100 136.03978111 39.29902652 3.82551267 0.53854522
Germany 0.00343527 179.94846900 129.68118003 44.50772697 4.00381705 0.52056947
India 0.00174492 474.64922765 407.03338053 139.81107398 3.32763559 0.71795534
Ireland 0.00059705 281.18124814 224.12702161 87.33135209 3.76171049 0.55436625
Italy 0.12204592 158.81412998 115.04959011 24.11820486 3.65327244 0.56227292
Japan 0.06537189 277.21608865 212.11667266 77.10560911 3.81720949 0.62409861
Malaysia 0.01542705 555.36165251 477.97086928 145.05643860 3.14328556 0.75017320
Netherl. 0.00361761 178.40304644 124.10893727 37.29233197 3.94087465 0.52899993
Norway 0.00235773 285.96573474 218.37037709 78.84324303 3.77162766 0.66697989
Portugal 0.00021500 300.31208740 239.27207897 69.18348116 3.47527269 0.54116762
Spain 0.00106233 204.61053444 161.12945242 41.20480843 3.48860083 0.57467597
Sweden 0.00089575 361.00317250 294.34436968 123.46493060 3.78422621 0.67659006
UK 0.00064994 254.75967167 193.25178409 81.62402590 4.06922065 0.66731532
USA 0.03393279 266.78659148 227.97996642 63.55741960 3.33472650 0.79242332

Table 2.5: Test statistics for US dollar denomination of the EWI104s paired with
other currency denominations

USA vs LStudent−t
n LV G

n Lhyperbolic
n LNIG

n ν �

Australia 0.03393297 266.78659099 227.97996643 63.55741957 3.33446659 0.79242332
Austria 0.00256224 134.73059219 97.71377792 35.73898997 4.32153080 0.67294050
Belgium 3.27984294 77.85490511 48.95878079 11.14186455 4.36981718 0.68569372
Canada 7.40430763 120.01666437 74.73407431 15.18540666 4.22211760 0.91527388
Denmark 0.00323445 149.30811831 108.10201571 41.11709989 4.28846201 0.67495392
Finland 2.95289908 107.01498821 85.36523117 21.10238174 3.87650221 0.73612270
France 3.64652056 86.96479253 56.22828540 13.16659792 4.24625684 0.69863871
Germany 2.77322928 75.27644297 46.50740906 10.95284501 4.47611255 0.67756222
India 40.40298515 705.21429964 970.99037909 20.04038067 1.88004348 0.95479770
Ireland 0.00225433 178.45506759 149.01226074 68.77685881 4.15355644 0.70489287
Italy 6.76679376 62.97646549 42.03537752 6.75574398 4.10152450 0.72286305
Japan 3.96736350 112.53857499 78.32095430 16.36172747 3.97418294 0.67690443
Malaysia 1.02180400 1327.00601731 1784.37475954 228.41900838 1.94684216 0.96582832
Netherl. 3.28833251 75.82687729 45.23534025 9.22019399 4.45911761 0.68774633
Norway 0.00319992 152.67795003 104.21581327 35.19242207 4.27513262 0.71233960
Portugal 0.00631108 294.32335669 255.16166144 100.62776920 3.73382193 0.71223257
Spain 0.00297697 109.70420788 95.09407429 33.04763827 3.88099965 0.73704326
Sweden 0.00158380 233.42505334 178.66537682 82.95266849 4.28756905 0.71095526
UK 5.55822674 68.41485288 40.24352898 6.09768583 4.36293689 0.71860250

last column provides the estimate for the degrees of freedom and the last column

the estimated dependence parameter �. A similar study is summarized in Table

2.5 for the log-returns of the EWI104s denominated in US dollar paired with other

currencies.

We highlight those pairs of log-return denominations for which the Student-t
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Figure 2.11: (ᾱ, λ)-plot for pairs of log-returns with reference to Australia, Austria,
Belgium and Canada
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Figure 2.12: (ᾱ, λ)-plot for pairs of log-returns with reference to Denmark, Finland,
France and Germany

hypothesis cannot be rejected at the 90% level of significance by writing the cor-

responding test statistic in bold numbers. For the Australian dollar denomination

paired with other currency denominations we cannot reject the Student-t hypothesis

in fifteen out of nineteen cases at the 90% level of significance. While, for the US

dollar denomination paired with other currency denominations we cannot reject the
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Figure 2.13: (ᾱ, λ)-plot for pairs of log-returns with reference to India, Ireland, Italy
and Japan
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Figure 2.14: (ᾱ, λ)-plot for pairs of log-returns with reference to Malaysia, Nether-
lands, Norway and Portugal

Student-t hypothesis in seven out of nineteen cases at the 90% level of significance.

Additionally, as shown in the second last column in Tables 2.4 and 2.5, the bivari-

ate Student-t density fitted to pairs of log-returns has approximately three to four

degrees of freedom. For the US dollar pairings a dependence parameter � of about

0.7 to 0.9 resulted. For the Australian dollar pairings a lower dependence parameter

69



0 0.2 0.4 0.6 0.8
−3

−2.5

−2

−1.5

−1

−0.5

0
Spain

α

λ

0 0.2 0.4 0.6 0.8
−3

−2.5

−2

−1.5

−1

−0.5

0
Sweden

α

λ

0 0.2 0.4 0.6 0.8
−3

−2.5

−2

−1.5

−1

−0.5

0
UK

α

λ

0 0.2 0.4 0.6 0.8
−3

−2.5

−2

−1.5

−1

−0.5

0
USA

α

λ

UK

Norway, Denmark
Sweden

Japan

Austria
Italy

Germany
Finalnd

Netherlands
Belgium
France
Spain
Ireland

Portugal

Portugal

Ireland USA
Germany

Netherlands
Belgium

Italy
France
Austria
Finland
Japan
Spain

UK, Italy
Netherlands, Canada

Germany, Belgium

France, Japan

Finland

India

Figure 2.15: (ᾱ, λ)-plot for pairs of log-returns with reference to Spain, Sweden, UK
and USA
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Figure 2.16: Cluster analysis plot for the log-returns of the EWI104s in different
currency denominations based on the estimated dependence parameter �

value of approximately 0.5 to 0.7 was typically estimated. This reflects the lead role

of the US currency by being closely linked to many currencies. On the other hand,

the Australian currency is not so closely linked to most other currencies.

It may be important to note that when assuming an unperturbed currency dy-

namics yileds a Student-t joint distribution for log-returns of diversified indices,
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then a more freely floating currency, as the Australian dollar, would show more test

statistics that support the Student-t hypothesis than the US dollar, which is heavily

targeted by many central banks as reference currency. The central bank interven-

tions could, for instance, reduce the occurance of extreme log-returns in exchange

rates.

Now, it is of interest to see the results for other pairs of log-returns. For pairs of

EWI104s log-returns related to different currencies, the estimated values of the shape

parameters ᾱ and λ from the bivariate SGH density are displayed in Figs. 2.11-2.15

in (ᾱ, λ)-scatter plots, generating a point for each of the analyzed currency pairs.

Interestingly, the estimated (ᾱ, λ)-points are approximately located near the neg-

ative λ-axis. It is the Student-t density that arises for the (ᾱ, λ)-parameter points

that can be found near the negative λ-axis. Most clusters for the estimated pa-

rameter points are located rather close to the coordinates ᾱ = 0 and λ = −2. As

previously, these parameters refer to the Student-t distribution with four degrees of

freedom. For comparison, a VG density is reflected by (ᾱ, λ)-parameter points near

the positive λ-axis. None of such points have been estimated. The NIG density

refers in Figs. 2.11-2.15 to the horizontal line with λ = −0.5. There were several

pairs of related currencies that generated such points. The hyperbolic density gives

estimated parameters at the horizontal line λ = 1.5. For this case no currency pair

showed any reasonable likelihood.

Our results visually suggest that the observed log-returns appear to be pairwise

bivariate Student-t distributed with only a few exceptions. The clustering near

λ = −2 and ᾱ = 0 is strongest for relatively independent economies, as can be seen

in Fig. 2.11 for Australia, but also in Fig. 2.13 for India and also for Malaysia in

Fig. 2.14. All these countries have rather independent economies and other central

banks are unlikely to target the above three currencies in their trading activities

to stabilize their own currencies via the exchange rate. In the case of European

countries, as well as the USA, Canada and Japan, we observe some distortion from

an ideal bivariate Student-t fit. This phenomenon could be due to the trading

activities of the central banks of the respective countries, when they aim to remove

extreme moves of the respective exchange rates. This trading activity then makes

the joint distribution less leptokurtic, which means that estimates can be expected
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in the (ᾱ, λ)-plot more to the right from the negative λ-axis and slightly above −2 for

the ᾱ parameter. This is indeed the case for most of the currencies of close trading

partners. If one wishes, then can even identify in the Figs. 2.11-2.15 groupings of

currencies, as those of the European countries, the Scandinavian countries without

Finland and the North American countries.

Let us now study in a broader manner the dependence structure of the considered

currencies. Note that, as the log-returns are not Gaussian correlation may not be

ideal to measure dependence. For instance, a zero correlation does, in general, not

imply independence. We perform now a cluster analysis based on the estimated

values of the dependence parameters. This is not the same as if one performs a

standard correlation analysis. The resulting cluster graph is displayed in Fig. 2.16.

In this figure we can see that all the currencies are linked to some degree. They

all depend on each other. The dependence is clearly noticeable for the European

countries including: Germany, Netherlands, Belgium, France, Austria, Italy, Ireland,

Finland, Spain and Portugal. This cluster is seen to be linked in Fig. 2.16 with

another cluster which is the one of the Scandinavian countries including: Denmark,

Norway and Sweden. Interestingly, Finland seems to be closer linked to the already

mentioned European countries. Furthermore, these two clusters are linked with the

UK. Additionally, we can distinguish the cluster of Canada, India, Malaysia and

the USA. Interestingly, Australia and Japan seem to form their own two additional

clusters.

Note that these findings are consistent with the statistical results obtained pre-

viously for pairings of currencies. For instance, in the case of India and Malaysia in

Figs.2.13 and 2.14, we note that most of the pairings result in the bivariate Student-

t fit except for the USA and Malaysia when paired with India, as well as the USA

and India when paired with Malaysia. Similarly, we observe that the Student-t

fit is distorted for pairs of the European currencies, which form a large cluster in

Fig. 2.16. Note, when performing a standard cluster analysis based on correlation

the dependencies are not as clearly identified as shown in Fig. 2.16. The reason is

not likely that the Student-t bivariate density fits better the historical dependence

structure than the Gaussian bivariate density.

We have examined the properties of pairs of log-returns of the EWI104s when
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denominated in different currencies. As a result of this study we identify the bi-

variate Student-t distribution with about four degrees of freedom for the pairs of

log-returns. This feature of log-returns is, however, distorted for related economies.

The inconsistencies with the bivariate Student-t distribution may be caused by the

trading of central banks with the aim to influencing exchange rates.

2.5 Copulas and Dependence

We aim now to further clarify empirical properties of log-returns of diversified indices

in different denominations. This section refers to results in Ignatieva, Platen &

Rendek (2011). When modeling a joint distribution of a random vector of risk

factors, one has to take into account both, the marginal behavior of individual risk

factors, as well as their dependence structure. The copula approach provides a way

to measure the dependence structure by separating it from modeling the marginal

distribution. Copulae define the multivariate distribution functions on the unit cube

[0, 1]d, which allows to connect their one-dimensional uniform-[0,1] marginals to the

joint cumulative distribution function; see Nelsen (1998) for the formal definition.

According to Sklar’s theorem, every distribution function can be decomposed

into its marginal distribution and a copula. On the other hand, every distribution

function can be obtained by coupling marginal distributions with the dependence

structure given by a copula. More precisely, Sklar’s theorem states that if F is a

d-dimensional distribution function with marginals F1 . . . , Fd, then there exists a

copula C with

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (2.24)

for every x1, . . . , xd ∈ [−∞,∞]. If F1, . . . , Fd are continuous, then C is unique. On

the other hand, if C is a copula and F1, . . . , Fd are distribution functions, then the

function F defined in (2.24) is a joint distribution function with marginals F1, . . . , Fd.

A proof of Sklar’s theorem can be found e.g. in Joe (1997).

Thus, for a random vector X = (X1, . . . , Xd)
� with a joint distribution X ∼ FX

and continuous marginals Xj ∼ FXj
, j ∈ {1, . . . d}, one defines the multivariate

copula using Sklar’s theorem, as the distribution function CX of u = (u1, . . . , ud)
� ∈

[0, 1]d, where uj = FXj
(xj):

CX(u1, . . . , ud) = FX{F−1
X1

(u1), . . . , F
−1
Xd

(ud)}. (2.25)
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For an absolutely continuous copula C one can define the copula density as

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . .∂ud
. (2.26)

If X = (X1, . . . , Xd)
� has an absolute continuous distribution function F and a

copula CX , then the density cX is obtained by differentiating CX in (2.25). That is,

cX(u1, . . . , ud) =
f{F−1

X1
(u1), . . . , F

−1
Xd

(ud)}∏d
j=1 fj{F−1

Xj
(uj)}

, (2.27)

where f is the joint density of FX and fj is the density of FXj
. The density function

of X is then given by

f(x1, . . . , xd) = cX(u1, . . . , ud) ·
d∏

j=1

fj(xj)

with xj = F−1
Xj

(uj).

Sklar’s identity (2.24) can also be applied to a, so-called, survival copula. If F is

the distribution function of the random vector X = (X1, . . . , Xd)
� with marginals

F1 . . . , Fd, then there exists a copula C∗ with

F (x1, . . . , xd) = C∗{F 1(x1), . . . , F d(xd)}, (2.28)

where F (x1, . . . , xd) = P (X1 > x1, . . . , Xd > xd) and F i(xi) = P (Xi > xi), i ∈
{1, . . . d}. C∗ is the survival copula related to C. In particular, for the bivariate

case the survival copula can be defined as

C∗(u1, u2) = 1− u1 − u2 + C(1− u1, 1− u2), (2.29)

see Nelsen (1998).

Dependence and Tail Dependence

Common approaches to model dependency among random variables include the

Pearson correlation coefficient r, Spearmann’s ρ and Kendall’s τ , see e.g. McNeil,

Frey & Embrechts (2005). While Pearson’s linear correlation depends on the distri-

bution of the univariate marginals (i.e., keeping the dependence structure constant,

different marginals might lead to different values for the joint distribution; see Dias

(2004)), the other two rank correlations are independent of the univariate marginal

distributions. For properties of dependence measures one can refer to Embrechts,

McNeil & Straumann (2001).
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While the above coefficients consider only linear dependence among random vari-

ables, tail dependence coefficients allow to measure the extreme dependence in the

tails of the multivariate distribution. These appear to be particularly useful in insur-

ance and risk management when modeling the joint (dependent) risk; see e.g. Wang

(1997) and Embrechts, McNeil & Straumann (2001). The concepts of lower and

upper tail dependence refer to the study of the dependence between extreme values

in the lower and in the upper tails. The notion of tail dependence in relation to

copula first appeared in Joe (1997). For the bivariate case, the upper and the lower

tail dependence coefficients can be defined as follows: If (U1, U2) is a pair of uni-

form variables on the unit square [0, 1]2, then the upper tail dependence coefficient

λu ∈ [0, 1] is defined as

λu = lim
u→1−

P (U1 > u|U2 > u) = lim
u→1−

C∗(u, u)
1− u

. (2.30)

Similarly, the lower tail dependence coefficient λl ∈ [0, 1] is defined as

λl = lim
u→0+

P (U1 ≤ u|U2 ≤ u) = lim
u→0+

C(u, u)

u
. (2.31)

If the upper tail dependence coefficient λu falls into the interval (0, 1], then U1 and

U2 are said to be asymptotically dependent in the upper tail, and if λu = 0, then

U1 and U2 are said to be asymptotically independent in the upper tail. Similarly,

if λl ∈ (0, 1] or λl = 0, then U1 and U2 are said to be asymptotically dependent or

independent, respectively, in the lower tail. For properties of the lower and the upper

tail dependence coefficients the reader is referred to Embrechts, McNeil & Straumann

(2001) and McNeil, Frey & Embrechts (2005). Hu (2006) reviews dependence and

tail dependence measures for mixture copula models. The following result for the

Student-t copula, as well as the derivations for other copula models can be found in

Embrechts, McNeil & Straumann (2001) and McNeil, Frey & Embrechts (2005).

Copula Examples

This section will concentrate mostly on two popular copula families: the elliptical

copula family and the Archimedean copula family. Some d-dimensional copula from

these parametric copula families, with copula parameter controlling the degree of

dependence, are presented below. Further copula models, in particular, Ali-Mikhail-

Haq and Plakett copula, can be found e.g. in Joe (1993) and Nelsen (1998).
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Elliptical copula families, see Lindskog, McNeil & Schmock (2001), have a depen-

dence structure generated by elliptical distributions, which include among others the

normal and Student-t distributions, as well as the stable distribution class discussed

in e.g. Rachev & Mittnik (2000) and Rachev & Han (2000). For the modeling of

dependencies using elliptical distributions one can refer to Hult & Lindskog (2001),

Fang, Fang & Kotz (2002) and Frahm, Junker & Szimayer (2003). Its applications

in finance and risk management are discussed, for instance, in Breymann, Dias &

Embrechts (2003), McNeil, Frey & Embrechts (2005) and Dias & Embrechts (2008).

In the following we consider the Gaussian copula and the Student-t copula.

The Archimedean copula family includes, for instance, the Gumbel, Clayton and

Frank copula, which have simple closed forms and have been studied e.g. in relation

to the modeling of portfolio credit risk in McNeil, Frey & Embrechts (2005), Dias

(2004) and Wu, Valdez & Sherris (2007).

In addition to the one-parametric copula, the current section will consider some

mixture copula models of the Archimedean copula as introduced in Joe (1993).

Here the distribution function has the form of a convex combination of two or more

copula. Denoting by CA and CB copula with dependence parameters θ1 and θ2,

respectively, the mixture copula model has the form:

CX(u1, . . . , ud, θ) = θ3C
A
X(u1, . . . , ud, θ1) + (1− θ3)C

B
X(u1, . . . , ud, θ2), (2.32)

where θ3 ∈ [0, 1]. The following will consider four mixture models studied in Dias

(2004). These include Clayton & survival Clayton, Clayton & Gumbel, survival

Clayton & survival Gumbel and Gumbel & survival Gumbel copula. Dias (2004),

Angel Canela & Pedreira Collazo (2012) and Hu (2006) study mixture models for

modeling dependencies across international financial markets.

Gaussian Copula

The Gaussian copula expresses the dependence structure of the multivariate normal

distribution, i.e. normal marginal distributions are combined with a Gaussian copula

to form a multivariate normal distribution. If Yj ∼ N(0, 1) and Y = (Y1, . . . , Yd)
� ∼

Nd(0,Ψ), where Ψ denotes a correlation matrix, then an explicit expression for the

Gaussian copula is given by

CGa
Ψ (u1, . . . , ud) = FY {Φ−1(u1), . . . ,Φ

−1(ud)} (2.33)
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Figure 2.17: 1000 bivariate realizations simulated from the Gaussian copula (left
panel) and Student-t copula (right panel) with identical Student-t marginal dis-
tributions with four degrees of freedom (upper panel) and Gamma(3,1) marginal
distributions (lower panel), and identical correlation θ = 0.7

=

∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(ud)

−∞
2π− d

2 | Ψ |− 1
2 exp

(
−1

2
r�Ψ−1r

)
dr1 . . . drd.

Defining ζj = Φ−1(uj), ζ = (ζ1, . . . , ζd)
�, the density of the Gaussian copula can be

written as

cGa
Ψ (u1, . . . , ud) = | Ψ |− 1

2 exp

{
−1

2
ζ�(Ψ−1 − Id)ζ

}
. (2.34)

Student-t Copula

The Student-t copula inherits the dependence structure from the multivariate Student-

t distribution. Let X = (X1, . . . , Xd)
� ∼ td(ν, μ,Σ) have a multivariate Student-t

distribution with ν degrees of freedom, mean vector μ and positive-definite disper-

sion or scatter matrix Σ. The copula remains invariant under a standardization of

the marginal distributions1. This means that the copula of a td(ν, μ,Σ) distribution

1In fact, it remains invariant under any series of strictly increasing transformations of the
components of the random vector X ; see Nelsen (1998).
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is identical to that of a td(ν, 0,Ψ) distribution, where Ψ is the correlation matrix

associated with Σ. The unique Student-t copula is the copula CX = Ct
ν,Ψ. For

u = (u1, . . . , ud)
� ∈ [0, 1]d, it is given by

Ct
ν,Ψ(u1, . . . , ud) = tν,Ψ{t−1

ν (u1), . . . , t
−1
ν (ud)}, (2.35)

where t−1
ν is the quantile function of the univariate t-distribution with ν degrees of

freedom. The density of the t-copula is given as

ctν,Ψ(u1, . . . , ud) =
tν,Ψ{t−1

ν (u1), . . . , t
−1
ν (ud)}∏d

j=1 tν,Ψ{t−1
ν (uj)}

. (2.36)

With ζj = t−1
ν (uj) the density of the t-copula can be expressed as

ctν,Ψ(u1, . . . , ud) = | Ψ |− 1
2
Γ(ν+d

2
)
{
Γ(ν

2
)
}d−1 (

1 + 1
ν
ζ�Ψ−1ζ

)− ν+d
2{

Γ(ν+1
2
)
}d∏d

j=1

(
1 + 1

ν
ζ2j
)− ν+1

2

. (2.37)

The Student-t copula generates symmetric tail dependence. Its tail dependence

coefficients, as defined in equations (2.30) and (2.31), take the following relatively

simple form:

λu = λl = 2tν+1

√
(ν + 1)(1− ρ)/(1 + ρ). (2.38)

Here tν denotes the Student-t distribution function, ν is the number of degrees

of freedom, and ρ is the correlation coefficient. Figure 2.17 shows 1000 bivariate

realizations simulated using two different dependence structures. Both models use

identical marginal distributions, the Gamma(3,1) distribution in the upper panel

and the Student-t distribution with four degrees of freedom in the lower panel,

where both have identical dependence coefficient θ = 0.7. However, the Gaussian

copula is applied to model the dependency in the left panel and the Student-t copula

is used to model the dependency in the right panel. We observe that the second

model favors the simultaneous occurrence of extreme values, which is from the point

of view of risk management the more dangerous case. Since extreme losses have a

tendency to occur simultaneously in log-returns, it appears also to be more realistic

just from this observation alone. However, the standard RiskMetrics methodology,

which assumes a Gaussian copula, assumes only very few extreme losses to appear

jointly, similar as shown in the upper left panel of Figure 2.17.
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Clayton Copula

The Clayton copula with the dependence parameter θ ∈ (0,∞) is defined as

Cθ(u1, . . . , ud) =

{(
d∑

j=1

u−θ
j

)
− d+ 1

}−1/θ

(2.39)

with density:

cθ(u1, . . . , ud) =
d∏

j=1

{1 + (j − 1)θ}u−(θ+1)
j

(
d∑

j=1

u−θ
j − d+ 1

)−(1/θ+d)

. (2.40)

As the copula parameter θ tends to infinity, the dependence becomes maximal and

as θ tends to zero, one has independence. The Clayton copula can mimic lower tail

dependence but no upper tail dependence.

Gumbel Copula

The Gumbel copula with the dependence parameter θ ∈ [1,∞) is of the form:

Cθ(u1, . . . , ud) = exp

⎡⎣−{ d∑
j=1

(− log uj)
θ

}1/θ
⎤⎦ . (2.41)

For θ > 1 this copula generates an upper tail dependence, while for θ = 1 it reduces

to the product copula (i.e. independence): Cθ(u1, . . . , ud) =
∏d

j=1 uj. Maximal

dependence is achieved when θ tends to infinity.

2.6 Copula Estimation

The following section focuses on the estimation of parametric copula, including the

estimation of the marginal parameters, as well as the dependence structure given by

the dependence parameter. Consider a vector of random variables X = (X1, ..., Xd)
�

with parametric univariate marginal distributions FXj
(xj, δj), j ∈ {1, ..., d}. Fur-

thermore, let a copula belong to a parametric family C = {Cθ, θ ∈ Θ}. From Sklar’s

Theorem the distribution of X can be expressed as

FX(x1, . . . , xd) = C{FX1(x1; δ1), . . . , FXd
(xd; δd); θ} (2.42)

and its density as

f(x1, . . . , xd; δ1, . . . , δd, θ) = c{FX1(x1; δ1), . . . , FXd
(xd; δd); θ}

d∏
j=1

fj(xj ; δj), (2.43)
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where

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . .∂ud
(2.44)

is a copula density. For a sample of observations {xt}Tt=1, where xt = (x1,t, . . . ,

xd,t)
�, and a vector of parameters α = (δ1, . . . , δd, θ)

� ∈ R
d+1 the likelihood function

is given by the product

L(α; x1, . . . , xT ) =

T∏
t=1

f(x1,t, . . . , xd,t; δ1, . . . , δd, θ) (2.45)

and the corresponding log-likelihood function is the sum

�(α; x1, . . . , xT ) =

T∑
t=1

ln [c{FX1(x1,t; δ1), . . . , FXd
(xd,t; δd); θ}]

+

T∑
t=1

d∑
j=1

ln [fj(xj,t; δj)] . (2.46)

The objective is to maximize this log-likelihood function numerically. The es-

timation can be performed, for instance, in the following three different ways, em-

ploying the exact maximum likelihood (EML), the inference for marginals (IFM)

and the canonical maximum likelihood (CML) method.

Exact Maximum Likelihood (EML)

The exact maximum likelihood (EML) method is well-known and straightforward.

It estimates the parameter α in one step through maximizing the log-likelihood func-

tion �(α). The estimates α̃EML = (δ̃1, . . . , δ̃d, θ̃)
� solve then the first order condition

(∂�/∂δ1, . . . , ∂�/∂δd, ∂�/∂θ) = 0. (2.47)

The drawback of the EML method is that with an increasing scale of the problem

the algorithm becomes computationally challenging.

Inference for Marginals (IFM)

In the inference for marginals (IFM) method parameters for marginals and copula

are estimated separately, which represents a sequential two-step maximum likeli-

hood method; see e.g. McLeish & Small (1988) and Joe (1997). The parameters δj

from the marginal distributions are estimated in the first step and the dependence
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parameter θ is estimated in the second step after the estimated marginal distribu-

tions have been substituted into the copula. For j ∈ {1, . . . , d} the log-likelihood

function for each of the marginal distributions is given by

�j(δj) =

T∑
t=1

ln (fj (xj,t; δj)) (2.48)

and the estimated marginal parameter obtained as �j(δj). The pseudo log-likelihood

function

�(θ, δ̂1, . . . , δ̂d) =

T∑
t=1

ln
(
c{FX1(x1,t; δ̂1), . . . , FXd

(xd,t; δ̂d); θ}
)

(2.49)

is maximized over θ to obtain the estimator θ̂ for the dependence parameter θ. The

estimates α̂IFM = (δ̂1, . . . , δ̂d, θ̂)
� solve the first order condition

(∂�1/∂δ1, . . . , ∂�d/∂δd, ∂�/∂θ) = 0. (2.50)

Canonical Maximum Likelihood (CML)

In contrast to the EML and IFM methods, where one has to make an assumption

about the parametric form of the marginal distributions, the canonical maximum

likelihood (CML) method maximizes the pseudo log-likelihood function with empir-

ical marginal distributions in the form:

�(θ) =

T∑
t=1

ln
(
c{F̂X1(x1,t), . . . , F̂Xd

(xd,t); θ}
)
. (2.51)

Here the empirical marginal cumulative distribution function is given by

F̂Xj
(x) =

1

T + 1

T∑
t=1

1{Xj,t≤x}, (2.52)

see Genest & Rivest (2002). Using this method, the parameter can be estimated in

one step by using the estimate �(θ).

Modeling Dependency by Dynamic Copulae

As argued in Platen & Stahl (2003b), a diversified world stock index is very suit-

able for measuring the general market performance and general market risk; see

Basel (1996) as well as more recent documents on Besel II and Solvency II. Such

indices are widely used as benchmarks when evaluating investment strategies. The
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study of diversified world stock indices is motivated by the benchmark approach;

see Platen & Heath (2010), which puts a well diversified portfolio into the center

of financial modeling. By diversification theorems in Platen (2005b) and Platen

& Rendek (2012b), a diversified portfolio can be interpreted as a good proxy for

the growth optimal portfolio (GOP), which is in many ways the best performing

portfolio, see also Chapter 3. As mentioned earlier, it can be characterized as the

portfolio maximizing the expected log-utility from terminal wealth. It is the port-

folio with almost surely maximal long-term growth rate. It outperforms pathwise

in the long run almost surely the trajectory of any other strictly positive portfolio.

The equally weighted index of a given investment universe can be regarded, under

minor regularity assumptions, as a good proxy for the GOP, as will be shown in the

next chapter.

Data

An equally weighted index is an almost ideally diversified index, all fractions are

equal, that is, πδEWI ,t =
1
d
with

∑d
j=1 πδEWI ,t = 1, j ∈ {1, 2, ..., d}. The EWI104s

used previously, is also employed in the following analysis. It is based on 104 world

industry sector indices as constituents that are provided by Datastream; see Le &

Platen (2006) and Platen & Rendek (2008). Figure 2.3 plots the EWI104s denom-

inated in USD for the time period from 02 January, 1973 to 10 March, 2006. The

analysis of this section uses 20 currency denominations, the respective currencies

are determined by the availability of currency data for the entire period. These

denominations include the currencies of the following countries: Australia(Aus),

Austria(Au), Belgium(Be), Canada(Ca), Denmark(Dk), Finland(Fi), France(Fr),

Germany(Ge), India(Ind), Ireland(Ire), Italy(It), Japan(J), Malaysia(Ma), Nether-

lands(Nth), Norway(Nor), Portugal(Por), Spain(Sp), Sweden(Swe), UK, USA.

Fitting Static and Time-varying Copulae

The following study aims to fit a parametric copula, that is, it estimates the cop-

ula dependence parameter, assuming that the unknown marginal distributions are

nuisance parameters2. Following Section 2.3, we assume that the marginals have a

2For the EML and IFM method one needs to make an assumption about the parametric form
of the marginal distributions, whereas CML uses empirical marginal distributions.
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Copula model mean(θ̂1)( ˆs.e.) med(θ̂1) min(θ̂1) max(θ̂1) mean(θ̂2)( ˆs.e.) med(θ̂2) min(θ̂2) max(θ̂2) mean(θ̂3)( ˆs.e.) med(θ̂3) min(θ̂3) max(θ̂3) AIC
Clayton 3.278(2.437) 2.196 1.265 19.283 - - - - - - - - -7767.55(10)
Frank 10.96(6.824) 8.007 5.040 56.636 - - - - - - - - -8925.03(7)
Gaussian 0.810(0.082) 0.784 0.647 0.9899 - - - - - - - - -7980.49(9)
Gumbel 3.243(1.743) 2.477 1.833 15.340 - - - - - - - - -9063.73(6)
Plakett 814.9(1541) 23.61 9.984 4376.4 - - - - - - - - -8054.06(8)
Student-t 0.831(0.092) 0.809 0.631 0.9930 - - - - - - - - -10713.2(1)
Clayton & surv.Clayton 8.630(19.59) 3.296 0.698 182.5 6.720(14.46) 3.560 0.634 102.43 0.534(0.075) 0.529 0.253 0.732 -10130.44(5)
Clayton & Gumbel 1.306(1.191) 0.955 0.264 8.263 7.085(9.693) 4.118 1.010 94.970 0.320(0.100) 0.314 0.046 0.728 -10384.80(4)
surv. Clayton & surv. Gumbel 1.168(2.003) 0.608 0.010 15.36 6.344(6.278) 3.803 2.640 50.000 0.277(0.108) 0.279 0.021 0.990 -10406.78(3)
Gumbel & surv. Gumbel 9.204(11.31) 4.689 1.415 50.00 6.720(14.46) 3.560 0.634 102.43 0.534(0.075) 0.529 0.253 0.732 -10673.96(2)

Table 2.6: An average over 190 pairs of currency denominations estimating the copula dependence parameter with standard errors
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Figure 2.18: Estimated copula dependence parameter for 190 pairs of currency de-
nominations and different copula models, together with box-plots

Student-t distribution. The estimation of the dependence parameter of the Student-

t copula proceeds as follows: First, we transform the original data to the ”cop-

ula scale” by applying a probability integral transform to obtain uniformly [0, 1]-

distributed values. Then we apply the IFM method to estimate different copula

assuming that the marginals are Student-t. The estimated number of degrees of

freedom for the marginals is taken from Table 2.3 for each of the currency denomi-

nations of the EWI104s index.

A static copula is assumed to estimate the average dependence parameter us-

ing log-return data from the time interval covering the entire time period from 02

January, 1973 to 10 March, 2006. This section fixes different one parametric copula
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Figure 2.19: Estimated copula dependence parameters for 190 pairs of currency
denominations and two mixture copula models: mixture Clayton & survival Clayton
and mixture Clayton & Gumbel
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Figure 2.20: Estimated copula dependence parameters for 190 pairs of currency
denominations and two mixture copula models: mixture survival Clayton & survival
Gumbel and mixture Gumbel & survival Gumbel
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models, as well as mixture copula models summarized in Table 2.6, and uses the

20 different currency denominations listed above. It obtains 190 estimated copula

of pairs for each of the following copula models: Clayton, Frank, Gaussian, Gum-

bel, Plakett, Student-t, and mixture models Clayton & survival Clayton, Clayton &

Gumbel, survival Clayton & survival Gumbel, Gumbel & survival Gumbel. Figure

2.18 shows the estimated dependence parameter for each pair of currency denomina-

tions and one-parametric copula models. Figures 2.19 and 2.20 show the estimated

copula dependence parameters for 190 pairs of currency denominations and different

mixture copula models. Parameters θ1 and θ2 plotted in the first and the second

panels are the dependence parameters for the first and second terms of the mix-

ture, respectively, and the mixture parameter θ3 plotted in the third panel gives

the proportion of the first term. Box-plots exhibited on the bottom of each plot

show the extreme of the lower whisker (2.5%-quantile), low quartile, median, upper

quartile and the extreme of the upper whisker (97.5%-quantile) of the estimated

parameters. Not surprising, one observes high dependence between European coun-

tries and lower dependence between countries on different continents. Visually, the

Student-t copula in Figure 2.18 shows rather evenly distributed estimated depen-

dence parameters. Also the mixture Gumbel survival Gumbel copula in Figure 2.20

shows such behavior. The average estimated copula dependence parameters taken

over 190 currency pairs together with their standard errors, minimum and maxi-

mum values are given in the first three columns of Table 2.6. In the case of mixture

models, the parameters θ1 and θ2 are the dependence parameters for the first and

second terms of the mixture, respectively, and θ3 is the mixture parameter which

gives the proportion of the first term.

To judge the performance of each model fitted, the Akaike information criterion

(AIC) is provided, see Akaike (1974):

AIC = −2L(α; x1, . . . , xT ) + 2q,

where q is the number of parameters of the family of distributions fitted. AIC

combines two components: the log-likelihood L, which measures the goodness-of-fit,

and a penalty term 2q, accounting for model complexity. The better the model fits

the data, the larger is the likelihood. That means, smaller values of AIC indicate

a better fit. In the last column of Table 2.6 all models are ranked by their AIC

87



Figure 2.21: Copula dependence parameter for denominations of the EWI104 in
Euro and USD; estimated using a Student-t copula with Student-t marginals for the
log-return data from 02 January, 1973 to 10 March, 2006

(model ranking is given in parentheses). One observes that the Student-t copula

provides the best fit across different copula models, followed by the mixture Gumbel

& survival Gumbel copula. This coincides also with our previous visual impression

that these copula can well identify the specifics of the joint distributions observed.

Additionally, the time-varying dependence parameter is estimated using log-

returns corresponding to a moving window with a fixed size of n=250, corresponding

to one year of observations. A sub-sample of log-returns {X̂t}st=s−n+1 is scrolling in

time for s ∈ {n, ..., T} generating a time-series for the dependence parameter {θ̂t}Tt=n.

The static case, on the contrary, estimates the dependence parameter based on the

whole series of observations. Figure 2.21 displays the estimated time-varying depen-

dence parameter between the denominations of the EWI104s in Euro and US Dollar,

estimated using the IFM method for a Student-t copula with Student-t marginals.

The dashed line corresponds to the static case. One observes that the dependence

structure between denominations of the EWI104s in different currencies is not con-

stant but varies over time. In addition, Figure 2.22 plots the 250 observations used

for the estimation from the moving window corresponding to maximal dependence

on 11 October, 1977 (left panel) and minimal dependence on 30 September, 1985

(right panel). One notes that just before the 1987 crash the dependence was rather

low but increased dramatically with the crash. These type of empirical findings are

important for modeling diversified indices in continuous time. Advanced models
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Figure 2.22: Log-returns of denominations of the EWI104s in Euro and USD at
maximal dependence on 11 October, 1977 (left panel) and minimal dependence on
30 September, 1985 (right panel)

should reflect this type of dependency in a dynamic manner.
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Chapter 3

Approximating the Numéraire
Portfolio by Naive Diversification

As we will demonstrate in Chapter 4, the classical no-arbitrage modeling framework

is too narrow to capture realistically the long term dynamics of a well diversified

index in currency denomination. The more general benchmark approach, with its

central building block, the numéraire portfolio (NP) or growth optimal portfolio

(GOP), provides an adequate modeling framework also over long periods of time.

Within this section we approximate the growth optimal portfolio (GOP), which is

also the numéraire portfolio (NP); see Platen & Heath (2010). We significantly im-

prove the performance of the resulting proxies of the NP when compared with results

in Le & Platen (2006) and Platen & Rendek (2008) presented in Section 2.1. To

identify the exact NP one would need to have a perfect model and needs to perfectly

estimate rates of return and covariance of returns for thousands of assets. However,

estimation theory has shown, due to the limited estimation window available for real

asset data, the sample based Markowitz mean-variance approach produces unreliable

weights which fluctuate substantially over time. This chapter proposes an alternate

approach to portfolio optimization, being the use of naive diversification to approxi-

mate the NP. The NP is the strictly positive portfolio that, when used as benchmark,

makes all benchmarked nonnegative portfolios supermartingales. Furthermore, it is

the GOP and, therefore, maximizes expected logarithmic utility and outperforms

any other strictly positive portfolio in the long run. This chapter proves theoreti-

cally and demonstrates empirically for the well-securitized global equity market that

the naive equal value weighted portfolio converges to the numéraire portfolio when

the number of constituents tends to infinity. This result is model independent and,

90



therefore, very robust. The systematic construction of diversified stock indices by

naive diversification from real data is demonstrated. Even when taking transaction

costs into account, these indices significantly outperform the corresponding market

capitalization weighted indices in the long run, indicating empirically their asymp-

totic proximity to the numéraire portfolio. Finally, in time of financial crisis, a

large equi-weighted fund, carrying the investments of major pension funds and in-

surance companies, would provide important liquidity to the market. It would not

only dampen the drawdown of the market capitalization weighted index in a crisis

but would also moderate the excesses of an asset price bubble when the market is

overheated. This chapter is based on the two papers: Platen & Rendek (2012b) and

Platen & Rendek (2012c).

3.1 Diversified Indices

From an economic point of view it is intuitively appealing that only the nondiversi-

fiable risk should attract a risk premium. This view has been supported by variants

of the ICAPM, see e.g. Merton (1973), where the market capitalization weighted

index (MCI) carries the nondiversifiable risk. This chapter systematically employs

naive diversification, and captures in this way via the equi-weighted index (EWI)

nondiversifiable risk. It demonstrates empirically that EWIs perform extremely well,

and appear to approach the numéraire portfolio (NP) asymptotically, as the number

of constituents increases. The Naive Diversification Theorem, presented in Section

3.3, will explain theoretically the approximation of the NP by EWIs.

Industry Classification Benchmark

To be systematic in capturing the nondiversifiable risk of the global equity market,

the diversifiable risk is systematically removed according to the economic structure

of the market. The index constructions performed are based on common types of

economic activity, and use accordingly an industry classification, more precisely, the

Industry Classification Benchmark (ICB); see ICB (2008). This classification pro-

vides a comprehensive structure for the analysis of companies and industries, and

has been jointly created by the FTSE and Dow Jones. Four layers of classifica-

tion for each company are provided. More precisely, the ICB distinguished around
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2010/2011 10 industries, 19 supersectors, 41 sectors and 114 subsectors; covering

all major industries represented in the world stock market. For instance, industries

in the ICB structure include: Oil & Gas, Basic Materials, Industrials, Consumer

Goods, Health Care, Consumer Services, Telecommunications, Utilities, Financials

and Technology. The total number of companies covered by the ICB classifica-

tion system exceeds 60, 000. Altogether, companies from 72 countries are currently

classified. The ICB classifies a company as belonging to a subsector by using the

subsector definition that most accurately describes the nature of its business as

determined by its largest source of revenue. This chapter argues that the ICB clas-

sification system is well suited for identifying the nondiversifiable risk generated by

the main types of economic activity in the world economy. Note that other similar

industry classification systems are likely to provide analogous results. We employ

the ICB structure as it was used by Thomson Reuters Datastream (Datastream),

when evaluating their own industry, supersector, sector and subsector indices.

Datastream Indices

A representative sample of stocks is chosen by Datastream in each country, for

each of the industry subsectors applicable to that country, covering 75 to 80 per

cent of the total market capitalization. Moreover, the number of stocks in each

subsector is determined by the size of that market sector. The inclusion of a stock

by Datastream depends on its total market value and the availability of data. The

Datastream subsector and industry indices are updated regularly. This ensures

that these indices include the top stocks by market capitalization and reflect new

industries and subsectors appropriately. Delisted stocks are removed from an index

when notification of a delisting is received. Temporarily suspended stocks remain in

an index unless it is believed that the suspension is going to be long term, in which

case they are removed from an index. Datastream has a well-defined set of rules

that determines the inclusion of stocks in their indices.

The Datastream database is hierarchical and self-contained. For instance, the

world Oil & Gas subsector index was constructed from 52 country Oil & Gas sub-

sector indices as at the end of April 2011. Furthermore, each country Oil & Gas

index is available together with its constituents. Moreover, the database includes

fixed index datatypes and recalculated index datatypes. Fixed index datatypes are
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not recalculated historically when constituents change, allowing the effects of dead

stocks to be observed. The recalculated index datatypes reflect the performance of

current constituents, therefore, they avoid any distortion due to stocks entering or

leaving an index. Datastream does not provide constituent histories for their sector

indices. Consequently, to construct indices that avoid survival bias, this chapter

uses the fixed datatype, country industry subsector indices as constituents. There

are 1969 country industry subsector indices offered by Datastream, which are total

return MCIs. When forming comparable MCIs and EWIs, the same set of stocks is

used, so that the effect of naive diversification can be gauged realistically.

Index Construction

The data are observed daily. Denote by tn, n ∈ {1, 2, . . . }, the time of the nth

observation. Let Sj,k
tn denote the value of the jth industry, supersector, sector or

subsector index for the kth country at time tn, as given by Datastream. The number

of constituents at the dth classification level, d ∈ {1, 10, 19, 41, 114}, available in the

database equals
∑d

j=1 �d,j, where �d,j denotes the number of countries for which the

jth industry, supersector, sector or subsector was available.

This chapter constructs various diversified portfolios, where it applies naive di-

versification in a systematic way. In a first study it forms five indices SδEWId
tn , with

equally weighted constituents. The value of the equi-weighted index, EWId, hav-

ing d constituents, d ∈ {1, 10, 19, 41, 114}, is obtained by the following recursive

formula:

SδEWId
tn = SδEWId

tn−1

⎛⎝1 +

d∑
j=1

�d,j∑
k=1

πj,k
δEWId,tn−1

Sj,k
tn − Sj,k

tn−1

Sj,k
tn−1

⎞⎠ , (3.1)

with initial value SδEWId

0 = 100 and portfolio weights πj,k
δEWId,tn−1

= 1
d�d,j

, j ∈
{1, 2, . . . , d}, k ∈ {1, 2, . . . , �d,j}, chosen at time tn−1, for those countries which

have constituents of this type. Recall that d ∈ {1, 10, 19, 41, 114} refers to the num-

ber of constituents available at the corresponding classification level according to

the ICB structure, and �d,j is the corresponding number of countries. Note that the

number of constituents in the above indices can change over time. This has been

accommodated in the index construction by the use of time dependent fractions.
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Figure 3.1: The MCI and five equi-weighted indices: EWI1 (market), EWI10 (in-
dustry), EWI19 (supersector), EWI41 (sector), EWI114 (subsector).

Index Comparison

The resulting family of indices, denominated in US dollars, is shown in Fig. 3.1

for the period from January 1973 until April 2011, and is explained further below.

For d = 1 the EWI1 weights equally the 54 country market capitalization-weighted

indices, as provided by Datastream.

For d = 10, the ICB distinguishes between 10 industries. Here one starts with the

market capitalization-weighted country industry indices, as provided by Datastream.

For each industry, each country industry index is then equally weighted to yield a

corresponding world industry index. Then, by equally weighting the resulting 10

world industry indices, the EWI10 with value SδEWI10
tn is obtained.

Analogously, the case d = 19 considers 19 ICB supersectors and starts with

the corresponding market capitalization-weighted country supersector indices. By

equally weighting the country supersectors, one obtains world supersector indices,

which are then equally weighted to yield the EWI19. Furthermore, the case d = 41

uses 41 sectors and provides the EWI41. Finally, the case d = 114 builds on all

114 subsectors, first weighting equally all country subsector indices. It then equally

weights the resulting world subsectors to yield the EWI114 with value SδEWI114
tn .

Fig. 3.1 also displays the US dollar value of the MCI, which represents here the

Datastream fixed datatype market capitalization weighted total return world stock

index.
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Figure 3.2: The MCI and five equi-weighted indices in log-scale: EWI1 (market),
EWI10 (industry), EWI19 (supersector), EWI41 (sector), EWI114 (subsector).

In the construction of the MCI the specific risks of large industries and large

economies enjoy substantial weight. The MCI performs worst among the indices

exhibited in Fig. 3.1. A better display of earlier periods and a visualization of the

average long term growth is given by the logarithms of the above described indices,

exhibited in Fig. 3.2. One may conjecture that the MCI is exposed to significant

diversifiable risks and, therefore, may not yield such a strong average long term

growth as some better diversified portfolios. The Naive Diversification Theorem

will later provide theoretical support for such intuition. Among the EWIs displayed

in Fig. 3.1, the best performing one is the EWI114, and the worst performing one

the EWI1. The EWI10, EWI19 and EWI41 are relatively close to each other. One

observes that diversifying with more market capitalization weighted constituents

over the same investment universe, systematically enhances the average long term

growth rate. This is suggesting that smaller fractions achieve visually not only a

better diversification effect, but also a higher average long term growth rate. Ad-

ditionally, one notes from Fig. 3.2 that all EWIs are driven by almost exactly the

same continuous uncertainty. This uncertainty can be interpreted as the nondiver-

sifiable risk of the equity market. The MCI is, of course, strongly exposed to this

nondiversifiable risk. However, it carries to some extent also the uncertainties of

some economies and industries that are heavily weighted by market capitalization.

This leads to slightly different fluctuations of the MCI when compared to those of
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the EWIs, and, as will be explained by the NDT, to lower long term growth.

3.2 Law of Large Numbers and Diversification

After having observed that naive diversification works well in practice when focusing

on the different types of economic activity, it seems now appropriate to aim for a

theoretical understanding of the observed diversification effect. Consider a continu-

ous time market which trades nonnegative primary security accounts. These could

represent stocks of companies with all dividends reinvested. In this chapter we use

total return indicies of industry sectors and other market segments as primary secu-

rity accounts. As formulated in the introduction, the key assumption of the chapter

is that there exists a numéraire portfolio (NP). The following arguments employ this

strictly positive portfolio as numéraire or benchmark and denominate all primary

security accounts in its units. Denote the value of the jth benchmarked primary

security account by Ŝj
t , j ∈ {1, 2, . . . }. Since the real market has tens of thousands

of stocks, this chapter considers an infinite number of benchmarked primary security

accounts. This allows the convenient study of the asymptotic behavior of sequences

of portfolios with increasing number of constituents.

For a portfolio strategy δ = {δt = (δ1t , δ
2
t , . . . )

�, t ≥ 0} the quantity δjt describes

the number of units of the jth benchmarked primary security account held at time

t. The benchmarked value of this portfolio is given by

Ŝδ
t =

∞∑
j=1

δjt Ŝ
j
t . (3.2)

This chapter considers only strategies that are observable under the available infor-

mation and are such that the corresponding benchmarked portfolio remains finite

in finite time. Furthermore, the portfolios are assumed to be self-financing, which

means that changes in the portfolio value are due only to changes in the values of

the primary security accounts.

To introduce for the following discussion the notion of a martingale, denote by

Et(X) the conditional expectation of a random variable X under the real-world

probability measure P , given the information available at time t. If the stochastic

process Y = {Yt, t ≥ 0} satisfies the equation

Yt = Et(Ys) (3.3)
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for all s ≥ t, then it is called a martingale, see e.g. Shiryaev (1984). Intuitively, Yt

is the best forecast at time t of all future values of the process Y .

More generally, a process Z = {Zt, t ≥ 0} is called a supermartingale if

Zt ≥ Et(Zs) (3.4)

for all s ≥ t; see e.g. Shiryaev (1984) or Platen & Heath (2010) for details and exam-

ples. Intuitively, in the long term the forecast of future values of a supermartingale

is downward trending or has no trend. In the latter case, it is a martingale.

This chapter uses the NP as benchmark. A portfolio when denominated in units

of the NP is called a benchmarked portfolio. The defining property of the NP is

that the values of all benchmarked nonnegative portfolios form supermartingales.

This means that the NP performs so well that over any time period the current

benchmarked value of any nonnegative portfolio is greater than or equal to any

of its expected future benchmarked values. In this simple and specific sense the

NP is “best” performing. As in Platen & Heath (2010) one can argue that the

above supermartingale property is the central property of a benchmarked portfolio,

and several fundamental statements can be directly derived. For example, one can

deduce that the path of the NP exceeds asymptotically over time that of any other

strictly positive portfolio that starts with the same initial capital; see e.g. Platen &

Heath (2010) for a proof of this model independent result.

It should be emphasized that the assumption on the existence of the NP is satis-

fied for all arbitrage free financial market models. In particular, the condition that

a market admits an equivalent risk-neutral probability measure is a much stronger

assumption.

Given the fact that the NP is in many ways the “best” performing portfolio, it

is of great interest from a practical point of view to have direct access to such a

tradeable instrument in the global stock market. As indicated in the introduction,

the work by DeMiguel, Garlappi & Uppal (2009) has shown that it is unrealistic

to hope to identify parameters that estimate trends in asset prices with any useful

accuracy using sample-based estimation methods. On the other hand, Section 3.1

has demonstrated empirically that naively diversified portfolios perform extremely

well in the long run. This chapter will now prove under very weak technical as-

sumptions that the equi-weighted index (EWI) approximates the NP if the number
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of constituents tends to infinity. This means that there is no need to estimate the

parameters of a market model in order to construct a proxy for the NP. Instead, one

needs only to construct an EWI with many sufficiently different constituents.

To illustrate the nature of the diversification effect, consider for fixed t ∈ [0,∞)

and h > 0 the simple one period case, where the returns Rj
t,h =

Ŝj
t+h

−Ŝj
t

Ŝj
t

, j ∈
{1, 2, . . . }, of the benchmarked primary security accounts Ŝ1, Ŝ2, . . . are independent

with zero conditional mean and finite conditional variance. More precisely, assume

that

Et(R
j
t,h) = 0 (3.5)

and

Et

(
Rj

t,hR
i
t,h

)
=

{
(σj

t,h)
2 for j = i

0 otherwise,
(3.6)

where

(σj
t,h)

2 ≤ σ̄2
t,h < ∞ (3.7)

can be random. In a classical arbitrage-free continuous market, the zero mean prop-

erty (3.5) reflects the well-known fact, see Long (1990), that benchmarked primary

security accounts are martingales. If the benchmarked primary security accounts

have independent uncertainties, due to the different economic activities that they

model, then the conditions (3.6) and (3.7) are very reasonable.

The return of the benchmarked equi-weighted index ŜδEWI�
t , generated by the

first � benchmarked primary security accounts Ŝ1
t , Ŝ

2
t , . . . , Ŝ

�
t , is

RδEWI�

t,h =
1

�

�∑
j=1

Rj
t,h (3.8)

over the given period. Obviously, by (3.5), one has

Et

(
RδEWI�

t,h

)
= 0. (3.9)

Given the independence of the returns of the benchmarked primary security ac-

counts, it follows by (3.6) and (3.7) that

Et

((
RδEWI�

t,h

)2)
=

1

�2

�∑
j=1

(
σj
t,h

)2 ≤ σ̄2
t,h

�
. (3.10)

Note that for an increasing number � of constituents, the conditional variance of

RδEWI�

t,h vanishes asymptotically as � → ∞. Consequently, one obtains zero return
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for the limiting benchmarked index. Since the benchmarked returns of the NP

are trivially zero, one notes that the limiting portfolio can only be the NP itself.

Below it will become clear that this statement is a particular version of the Naive

Diversification Theorem that we will derive in the next section.

The above arguments rely on the key idea of using the NP as benchmark. Beyond

that they are, in principle, an application of the classical Law of Large Numbers.

It has been intuitively clear for almost a century that the Law of Large Numbers

plays a key role in explaining the effect of diversification. This chapter makes this

intuition precise by using the conceptual framework of the benchmark approach; see

Platen & Heath (2010). The next section removes the above restrictive assumption

on the independence of the returns of benchmarked primary security accounts. It

is already clear from the above arguments that a wide range of sequences of diver-

sified portfolios approximates the NP. As will be shown in the next section, it is

the sequence of EWIs, which requires minimal assumptions to ensure convergence

towards the NP.

3.3 Naive Diversification Theorem

The Law of Large Numbers is largely model independent and, therefore, very robust.

This applies also to the Naive Diversification Theorem (NDT), which will be derived

below in general terms. To make the following statements rigorous, stochastic cal-

culus will be applied, which has been widely used in continuous time finance since

the work in Merton (1973). In this context the notion of the quadratic variation of

a continuous stochastic process X = {Xt, t ≥ 0} is important. It can be defined as

the limit in probability of the sum of squared increments of X when choosing finer

and finer equidistant time-discretizations. For instance, the quadratic variation [X]t

of a standard Brownian motion X equals the time t, that is, [X]t = t. For ease of

presentation, this chapter focuses on continuous market models. Without any major

loss of generality the driving sources of traded uncertainty for benchmarked primary

security accounts will be modeled by the independent Brownian motions W 1,W 2,

. . . .

The jth benchmarked primary security account value Ŝj
t at time t satisfies the
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driftless Itô stochastic differential equation (SDE)

dŜj
t

Ŝj
t

=
�∑

k=1

σj,k
t dW k

t . (3.11)

One can refer to Merton (1973), Long (1990), Platen & Heath (2010) and Filipović

& Platen (2009) for the derivation of such driftless SDEs. Recall from Platen &

Heath (2010) that the NP is the growth optimal portfolio which maximizes ex-

pected logarithmic utility. It yields in a continuous market the SDE (3.11) when

used as numéraire for the jth primary security account. Assume that the volatility

processes σj,k = {σj,k
t , t ≥ 0} are such that the corresponding stochastic integrals in

(3.11) exist. Note that the driftless benchmarked primary security accounts are su-

permartingales. This does not mean that they have to be martingales, see Platen &

Heath (2010) for details on this issue. The benchmarked self-financing portfolio pro-

cess Ŝδ = {Ŝδ
t , t ≥ 0}, with strategy δ = {δt = (δ1t , δ

2
t , . . . )

�, t ≥ 0} is characterized

by the SDE

dŜδ
t =

∞∑
j=1

δjtdŜ
j
t , (3.12)

which is driftless. With the introduction of the fraction of wealth invested in the

jth primary security account,

πj
δ,t =

δjt Ŝ
j
t

Ŝδ
t

, (3.13)

where
∑∞

j=1 π
j
δ,t = 1, one can rewrite the SDE (3.12) in the form

dŜδ
t

Ŝδ
t

=
∞∑
j=1

πj
δ,t

dŜj
t

Ŝj
t

=
∞∑
j=1

πj
δ,t

�∑
k=1

σj,k
t dW k

t . (3.14)

The �th equi-weighted index (EWI�) invests the fractions

πj
δEWI�,t

=

{
1
�

for j ∈ {1, 2, . . . , �}
0 otherwise.

(3.15)

Since the benchmarked NP equals the constant one, it follows that there exists a

strategy δ∗ = {δ∗,t = (δ1∗,t, δ
2
∗,t, . . . )

�, t ≥ 0} such that

dŜδ∗
t

Ŝδ∗
t

=

∞∑
k=1

∞∑
j=1

πj
δ∗,t

σj,k
t dW k

t = 0. (3.16)

This means that the return process of the benchmarked NP equals zero.

It is now the aim to construct sequences of portfolios that approximate the

NP in a mathematically precise and practically useful sense. The limits of the
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return processes of such sequences of benchmarked portfolios should be zero. More

precisely, the return process Q̂δ = {Q̂δ
t , t ≥ 0} of a benchmarked portfolio Ŝδ, given

by the SDE

dQ̂δ
t =

1

Ŝδ
t

dŜδ
t (3.17)

for t ≥ 0 with Q̂δ
0 = 0, has to have small fluctuations to be a good proxy of the NP.

Definition 1 A sequence (Ŝδ�)�∈{1,2,...} of strictly positive benchmarked portfolios,

with initial values equal to one, is called a sequence of benchmarked approximate

numéraire portfolios if for each ε > 0 and t ≥ 0 one has

lim
�→∞

P

(
d

dt

[
Q̂δ�
]
t
> ε

)
= 0. (3.18)

The intuition is that, if one can construct a sequence of benchmarked portfolios

where the quadratic variation of the return process vanishes asymptotically, then

the limit can only be the constant one, that is, the benchmarked NP itself.

It seems reasonable to say that the returns of a benchmarked primary security

account capture its specific or idiosyncratic traded uncertainty against the market as

a whole; see Platen & Stahl (2003a). Due to the given structure of the market with

different types of economic activity in different industry sectors of the economy, it is

reasonable to assume that a particular specific uncertainty drives only the returns of

a restricted number of benchmarked primary security accounts. If this were the case,

then one could say that the securitization of the market is sufficiently developed and

a diversification effect can be expected. To capture this property of a market in a

mathematically precise manner, one can introduce the following notion:

Definition 2 A financial market is well-securitized if there exists a real number

q > 0 and a stochastic process σ2 = {σ2
t , t ≥ 0} with finite mean such that for all

�, k ∈ {1, 2, . . . } and t ≥ 0 one has

1

�

∣∣∣∣∣
�∑

j=1

σj,k
t

∣∣∣∣∣
2

≤ 1

�q
σ2
t (3.19)

P-almost surely.

Note that for independent benchmarked primary security accounts, as assumed

in the previous section, condition (3.19) is easily verified in the presence of finite

second moments for the volatility processes. If only a bounded number of bench-

marked primary security accounts is driven by the same source of uncertainty, then
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finite second moments for individual volatilities secure condition (3.19). Even if the

number of related returns of benchmarked primary security accounts grows at a rate

slower then
√
�, then the market still remains well-securitized as long as it has finite

second moments for individual volatilities.

We will show below that the proof of the main result of this chapter, the NDT,

can be based on an even weaker but slightly more technical assumption than for-

mulated in condition (3.19).

Theorem (Naive Diversification Theorem) In a well-securitized financial market

the sequence of benchmarked equi-weighted indices, with fractions given by (3.15), is

a sequence of benchmarked approximate numéraire portfolios.

We prove this result by using a lemma, which we prepare first. Note that the

return process of the �th benchmarked EWI has at time t the value

Q̂δEWI�
t =

�∑
j=1

1

�

�∑
k=1

∫ t

0

σj,k
s dW k

s . (3.20)

The quadratic variation of this return process is of the form

[
Q̂δEWI�

]
t
=

1

�

∫ t

0

�∑
k=1

∣∣∣ 1√
�

�∑
j=1

σj,k
s

∣∣∣2ds. (3.21)

As can be seen below, this particular structure allows one to use a weaker, slightly

more technical assumption, than imposed in (3.19) to guarantee a sequence of bench-

marked approximate numéraire portfolios.

Lemma Assume for all ε > 0 and t ≥ 0 that one has the limit in probability

lim
�→∞

P

(
1

�

�∑
k=1

∣∣∣ 1√
�

�∑
j=1

σj,k
t

∣∣∣2 > ε

)
= 0, (3.22)

then the sequence of equi-weighted indices is a sequence of benchmarked approximate

numéraire portfolios.

Proof of Lemma:

The statement of the above lemma is obtained via (3.18) in Definition 1, together

with (3.21) and (3.22) since for ε > 0 and t > 0 one obtains directly that

lim
�→∞

P

(
d

dt

[
Q̂δEWI�

]
t
> ε

)
= lim

�→∞
P

(
1

�

�∑
k=1

∣∣∣ 1√
�

�∑
j=1

σj,k
t

∣∣∣2 > ε

)
= 0. (3.23)

�
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Proof of the Naive Diversification Theorem:

It is straightforward to see by the well-known Markov inequality that in a well-

securitized market the assumption (3.22) is satisfied due to condition (3.19) since

lim
�→∞

P

(
1

�

�∑
k=1

∣∣∣ 1√
�

�∑
j=1

σj,k
t

∣∣∣2 > ε

)
≤ lim

�→∞
P

(
1

�q
σ2
t > ε

)
≤ lim

�→∞
1

�q
1

ε
E
(
σ2
t

)
= 0,

(3.24)

which proves the Naive Diversification Theorem. �

Note from the above derivation that if condition (3.22) does not hold, then also

the statement (3.23) cannot be true. This shows that in this case naive diversification

does not lead to convergence in probability towards the NP.

The statement of the NDT is very robust. Already, under condition (3.22),

which is weaker than (3.19), it covers a wide range of models. Essentially, one can

say that the NDT is model independent since no particular assumptions about the

underlying market model need to be made. We emphasize, the NDT, and more

generally the above lemma, are based on very few probabilistic arguments, and no

major economic assumptions have to be made. The presence of a large number

of reasonably different economic activities, securitized via stocks in the market,

is sufficient to let the sequence of EWIs automatically approximate the NP. This

provides an alternative view to economic modeling. Simply the laws of statistics are

sufficient in the naturally structured world of securitized economic activity to provide

the fact that a naively diversified portfolio should be a good proxy of the NP. The

latter portfolio forms the central building block of Platen’s benchmark approach.

This approach represents a generalization of the classical arbitrage pricing theory

and modern portfolio theory, see Platen & Heath (2010)

3.4 Transaction Costs and Reallocation

Frequency

This section demonstrates that the impact of transaction costs is almost negligible

from the perspective of large funds. The observed long term growth of the EWI114

is, in principle, obtainable by an investable portfolio. Additionally, the influence of

the length of the time between capital reallocation is studied in this section. Only

minor changes in performance are observed for the cases with time periods between
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Figure 3.3: Logarithms of MCI, EWI114 without transaction cost and EWI114ξ
with transaction costs of 5,40,80,200 and 240 basis points.
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Figure 3.4: EWI114m reallocated daily and every 2, 4, 8, 16 and 32 days.

capital reallocations of up to one month.

Transaction Cost

In the case when constructing equi-weighted indices it is necessary to reallocate

regularly capital according to the naive diversification strategy. Naive diversification

constitutes a form of hedging. To compare realistically the long term performance of

portfolios one needs to account for transaction costs incurred by reallocations. That

is, the value of an EWI at each reallocation has to be reduced by the respective

transaction cost. When forming the equi-weighted index SδEWIξ in US dollars, the
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Table 3.1: Summary for various EWI114 versions with transaction cost equal to
ξ ∈ {0, 5, 40, 80, 200, 240} basis points

Transaction cost 0 5 40 80 200 240

Reallocation terms 1
Final value 139338.64 130111.93 80543.07 46555.04 8988.23 5194.46
Annualised average return 0.1979 0.1961 0.1834 0.1689 0.1254 0.1109
Annualised volatility 0.1135 0.1135 0.1135 0.1135 0.1134 0.1134
Sharpe ratio 1.4205 1.4046 1.2930 1.1654 0.7822 0.6544

Reallocation terms 2
Final value 124542.04 119369.00 88697.63 63166.73 22808.64 16240.40
Annualised average return 0.1949 0.1938 0.1859 0.1770 0.1500 0.1411
Annualised volatility 0.1134 0.1134 0.1134 0.1134 0.1135 0.1136
Sharpe ratio 1.3955 1.3856 1.3163 1.2369 0.9987 0.9193

Reallocation terms 4
Final value 111899.82 108230.16 85698.25 65628.82 29467.48 22562.42
Annualised average return 0.1921 0.1912 0.1850 0.1780 0.1568 0.1497
Annualised volatility 0.1135 0.1135 0.1134 0.1134 0.1134 0.1135
Sharpe ratio 1.3699 1.3622 1.3080 1.2459 1.0591 0.9967

Reallocation terms 8
Final value 100505.37 97963.66 81881.57 66705.62 36055.10 29367.02
Annualised average return 0.1892 0.1885 0.1837 0.1783 0.1621 0.1566
Annualised volatility 0.1127 0.1127 0.1127 0.1127 0.1128 0.1128
Sharpe ratio 1.3531 1.3471 1.3051 1.2569 1.1119 1.0634

Reallocation terms 16
Final value 98775.24 96892.29 84677.43 72588.14 45711.97 39177.91
Annualised average return 0.1887 0.1882 0.1847 0.1806 0.1684 0.1643
Annualised volatility 0.1130 0.1130 0.1130 0.1130 0.1131 0.1131
Sharpe ratio 1.3463 1.3418 1.3102 1.2740 1.1647 1.1281

Reallocation terms 32
Final value 114592.50 112929.09 101939.59 90678.85 63804.84 56744.28
Annualised average return 0.1927 0.1923 0.1896 0.1865 0.1772 0.1741
Annualised volatility 0.1131 0.1131 0.1131 0.1131 0.1133 0.1133
Sharpe ratio 1.3797 1.3763 1.3522 1.3245 1.2408 1.2127

study assumes proportional transaction costs ξ to be charged in the following way:

S
δEWIξ

tn = S
δEWIξ

tn− −
d∑

j=1

ξ

10000
Sj
tn

∣∣∣δjEWIξ,tn
− δjEWIξ,tn−1

∣∣∣ , (3.25)

where the number d of constituents is partly suppressed in the notation, and ξ

denotes the parameter for the proportional transaction cost in basis points (bp).

Note that one has δjEWIξ,tn
= 1

d
in (3.25). In the above formula Sj

tn denotes the value

of the jth primary security account in US dollars at time tn. Furthermore, S
δEWIξ

tn−

denotes the value of the EWI in US dollars just before reallocation takes place at

time tn, whereas S
δEWIξ

tn equals its value after reallocation and after accounting for

transaction costs. Note that the results are, in principle, the same if one uses another

base currency.

This section studies only indices constructed similarly to the EWI114 but with

different values for the transaction cost parameter ξ. Later different time intervals

between capital reallocations will be allowed. In general, one expects larger transac-
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tion costs to yield lower average long term growth. Indeed, this can be observed in

Fig. 3.3, which displays the logarithms of the MCI, the EWI114 and the EWI114ξ,

constructed for the transaction cost parameter values ξ ∈ {5, 40, 80, 200, 240} under

daily capital reallocation. The EWI1145 has only marginally lower values than the

EWI114 and both are almost indistinguishable. In the long run the MCI is located

approximately between the EWI114200 and the EWI114240, suggesting that it takes

roughly between 200 and 240 bp in proportional transaction costs to bring the long

term growth of the EWI114ξ down to that of the MCI when reallocating daily.

Transaction costs of 200 bp are significantly beyond those charged to large funds.

Note in Fig.3.3 that all EWIs are driven by almost exactly the same nondiversifiable

risk factor. The MCI is exposed to some additional risk factors since it does not

always move perfectly parallel to the EWIs.

Impact of Reallocation Frequency

Let us now study, first without transaction costs, the resulting EWIs when reallo-

cating every 2,4,8,16 and 32 days. Fig. 3.4 displays these indices together with the

EWI114. Denote by EWI114m the index which reallocates every m days without

transaction costs. The EWI114m does not outperform the daily reallocated EWI114,

for m ∈ {2, 4, 8, 16, 32}. However, if the reallocations are less frequent, then by

chance occasional outperformance of the EWI114 by such constructed indices can

be expected. The Naive Diversification Theorem predicts that in the long-run the

EWIs with sufficiently frequent capital reallocations should approximate well the

NP and, thus, outperform other indices.

Further below, this chapter studies the combined impact of different transaction

cost parameters and different time intervals between reallocations. Table 3.1 displays

the final value of the respective indices, the estimated annualized expected return μ̂,

the estimated annualized volatility σ̂ and the resulting Sharpe ratio ŝ = μ̂−r̂
σ̂
. The

Sharpe ratio is here evaluated as the ratio of the difference between the annualized

sample mean of the returns minus an assumed average US short rate r̂ of 0.05, over

the annualized sample standard deviation σ̂. Recall that the MCI has the estimated

volatility of 0.134 and the estimated expected return of 0.108, which yields a Sharpe

ratio of 0.537.

The results for the indices constructed with different days m ∈ {1, 2, 4, 8, 16, 32}
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between capital reallocations and with transaction cost parameter ξ ∈ {0, 5, 40, 80,
200, 240} are displayed in Table 3.1. In this table the estimated volatilities remain

very close to each other up to quarterly reallocations. With an annualized value of

approximately 0.11 they are clearly smaller than the estimated volatility of 0.13 for

the MCI. The largest Sharpe ratio reported in Table 3.1 with value 1.42 is that of the

EWI114 with daily reallocations and without transaction costs. The Sharpe ratio

of the EWI114m seems to decline for increasing m ∈ {1, 2, 4, 8, 16}. Even with very

realistic transaction costs of 80 bp the Sharpe ratios of the different equi-weighted

indices remain in this table above twice the Sharpe ratio of the MCI. In summary,

we see in Table 3.1 that less frequent reallocations and higher transaction costs

diminish, in general, the Sharpe ratio.

This chapter aims to give a better understanding of the basic principle underpin-

ning the well-observed phenomenon of diversification, fundamental to fund and risk

management. It approximates the numéraire portfolio, which is in many ways the

“best” performing portfolio, by a sequence of naive (equi-weighted) portfolios with

increasing number of constituents. The Naive Diversification Theorem has been es-

tablished, which states that a naively diversified portfolio with many constituents

is a good proxy for the numéraire portfolio of a well-securitized market. By apply-

ing naive diversification on real equity data, this chapter identifies an equi-weighted

index, formed by equi-weighted country subsector indices, as a good proxy of the

numéraire portfolio of the global stock market. This proxy turns out to be the best

performing index in the family of diversified portfolios constructed in this chapter.

Its outstanding long term performance has been predicted by the Naive Diversifica-

tion Theorem. An equi-weighted index should show an excellent average long term

growth rate due to its proximity to the numéraire portfolio.

This chapter demonstrates that naive diversification resolves practical difficulties

encountered with the sample-based Markowitz mean-variance approach to portfolio

optimization. There is no need for estimating drift parameters. Even if one accounts

for transaction costs in the construction of an equi-weighted index, it still shows a

significantly higher Sharpe ratio when compared to the one of the corresponding

market capitalization weighted index. The proposed approach of approximating the

numéraire portfolio by naive diversification is robust and also very general. With the
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possible construction of an investable proxy for the numéraire portfolio, this chapter

opens new lines of research. The numéraire portfolio is not only in several ways the

“best” performing portfolio, it is also the natural numéraire for derivative pricing

under the real-world probability measure, see Platen & Heath (2010). Furthermore,

as a consequence of the Naive Diversification Theorem it captures the nondiversiable

risk of the market. This general market risk is highly relevant for risk measurement

and risk management. Moreover, when equi-weighted world indices of the proposed

type would become major investment vehicles in the financial market architecture

used by large pension funds and insurance companies, they would have a stabilizing

effect. In time of financial crisis they would provide liquidity to those asset classes

under stress. On the other hand, in the case of an asset bubble they would moderate

the excesses by selling highly priced assets. This goes along with the intuitive

reasoning behind naive diversification, which always sells high and buys low.

3.5 Simulation of Diversified Portfolios in

Continuous Financial Markets

By using techniques and results that we prepared in Chapter 1 on scenario sim-

ulation, this section analyzes the simulated long-term behavior of well diversified

portfolios in continuous financial markets. For simulated markets we know exactly

the numéraire portfolio and can compare it with other portfolios. We focus on the

equi-weighted index and the market portfolio, and rely on results in Platen & Ren-

dek (2012c). This section will illustrate that the equai-weighted index constitutes a

good proxy of the numéraire portfolio. The multi-asset market models considered

include the Black-Scholes model, the Heston model, the ARCH diffusion model and

a multi-asset version of the minimal market model. All these models are simulated

exactly or almost exactly over an extremely long period of time to analyze the long

term growth of the respective portfolios. This section illustrates the robustness

of the diversification phenomenon captured by the Naive Diversification Theorem

when approximating the numéraire portfolio by the equi-weighted index. Significant

outperformance in the long run of the market capitalization weighted portfolio by

the equi-weighted index is documented for different market models.

We will see that under the multi-asset minimal market model the equi-weighted

108



index outperforms remarkably well the market portfolio. In this case the bench-

marked market portfolio is a strict supermartingale, whereas the benchmarked equi-

weighted index is a martingale. Equal value weighting overcomes the strict super-

martingale property that the benchmarked market portfolio inherits from its strict

supermartingale constituents under this model.

For given market dynamics the study simulates for the long period of T = 150

years the benchmarked trajectories of d = 1000 primary security accounts, sampling

100 times per year. For simplicity, the interest rate is set to zero, therefore, the

inverse of the benchmarked savings account provides the numéraire portfolio (NP)

when denominated in units of the domestic currency, that is,

Sδ∗
t = (Ŝ0

t )
−1. (3.26)

The product of the NP with the jth benchmarked primary security account yields

the value of the jth primary security account denominated in domestic currency,

that is,

Sj
t = Ŝj

t S
δ∗
t , (3.27)

for j ∈ {0, 1, . . . , d}.
In reality, the market capitalization of stocks is very different from each other.

Statistical analysis of market data suggests that the size of companies and simi-

larly the market capitalization of their stocks seem to be Pareto distributed; see

e.g. Simon & Bonini (1958). To generate realistic market capitalization weighted

indices (MCIs) in the following simulations, the initial values Sj
0, j ∈ {0, 1, . . . , d},

of primary security accounts follow here a Pareto distribution

Fj(x) = 1−
(x0

x

)λ
(3.28)

with the parameters λ = 1.1 and x0 =
λ−1
λ
; see Simon & Bonini (1958).

The simulations below will be performed by first simulating the benchmarked

primary security accounts including the benchmarked savings account according to

a given market model. Then the benchmarked EWI and the benchmarked MCI are

obtained from these benchmarked constituents by choosing appropriate fractions,

see Section 2.1. Since the NP is the inverse of the benchmarked savings account, the

EWI (MCI) is simply equal to the NP times the benchmarked EWI (benchmarked

MCI).
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Black-Scholes Model

When using discrete time numerical schemes for the simulation of solutions of SDEs,

as studied in Kloeden & Platen (1999), there may be issues arising when dealing

with non-Lipschitz continuous drift or diffusion coefficients. Furthermore, problems

concerning numerical stability may emerge for long-term simulations or even nega-

tive values could be simulated by standard discrete time approximations for strictly

positive price processes; see Platen & Bruti-Liberati (2010). In the following sections

exact and almost exact simulations of various market models are described. These

avoid the above indicated numerical problems in scenario simulations when using

standard discrete time approximations. For the following simulation studies market

models have been selected where exact or almost exact simulations are possible.

A contribution of this section is, therefore, also the description of highly accurate

scenario simulation methods for several frequently used market model classes in

finance.

Recall first the simulation under the standard market model, which is the multi-

asset version of the Black-Scholes model; see Black & Scholes (1973). Under this

model the benchmarked primary security accounts satisfy the following vector SDE

dŜt =

d∑
k=0

BkŜtdW
k
t , (3.29)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ0
t , Ŝ

1
t , . . . , Ŝ

d
t )

�, t ∈ [0,∞)} is a vector of bench-

marked primary security accounts, andBk = [Bk,i,j]di,j=0 is a (d+1)×(d+1) diagonal

volatility matrix, with elements

Bk,i,j =
{ bj,k for i = j

0 otherwise
(3.30)

for k, i, j ∈ {0, 1, 2, . . . , d}. Note that the benchmarked primary security accounts

Ŝj, j ∈ {0, 1, 2, . . . , d}, represent under this model martingales.

The multi-asset Black-Scholes model can be simulated exactly. The vector SDE

(3.29) has an explicit solution. The jth benchmarked primary security account is

represented by the exponential

Ŝj
t = Ŝj

0 exp

{
−1

2

d∑
k=1

(
bj,k
)2

t +

d∑
k=1

bj,kW k
t

}
. (3.31)
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Figure 3.5: Simulated benchmarked primary security accounts under the Black-
Scholes model

Throughout all simulation studies this section employs the equi-distant time dis-

cretization 0 = t0 < t1 < . . ., where ti = iΔ, i ∈ {0, 1, . . .}, Δ > 0. For simplicity,

the simulation of benchmarked primary security accounts is performed for the case

of independent benchmarked primary security accounts. However, for most of the

market models the case of dependent benchmarked primary security accounts can

be handled analogously, as shown in Platen & Rendek (2009) and Section 1.1. For

the jth independent benchmarked primary security account one obtains at time ti+1

under the Black-Scholes model the exponential

Ŝj
ti+1

= Ŝj
0 exp

{
−1

2

(
bj,j
)2

ti+1 + bj,j W j
ti+1

}
, (3.32)

for j ∈ {0, 1, . . . , d}.
The phenomenon of diversification is now illustrated by simulating in a Black-

Scholes market the NP, the EWI and the MCI. This simulation can be exactly

performed without generating any error by using the explicit expression described

above. The study simulates d = 1000 benchmarked primary security accounts over

150 years, each with volatility bj,j = 0.2 for j ∈ {1, . . . , 1000}. The first 20 simulated

trajectories are displayed in Fig.3.5. Note that these benchmarked primary security

accounts are modeled by martingales. As mentioned earlier, the independent initial

values Ŝj
0 are generated using a Pareto distribution. Consequently, there is great

variety in the market capitalization of stocks.

Fig 3.6 shows the resulting simulated trajectories of the NP, the EWI and the

MCI denominated in domestic currency. In this case the EWI approximates rather
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Figure 3.6: Simulated NP, EWI and MCI under the Black-Scholes model

well the NP, which is also the GOP, and the differences between both portfolio values

are even difficult to see, in particular, in the earlier parts of the trajectories. We see

in Fig.3.7 that the MCI seems to be initially a reasonable proxy of the NP, however,

after some time it diverges from the NP due to its lower long term performance.

As can be seen in Fig. 3.5, large total values for some stocks are observed in the

simulated market. The resulting large fractions of these stocks in the MCI are

likely to distort its long run performance because the market portfolio appears to

be not well diversified in the sense of this chapter. The emerging fractions of the

corresponding primary security accounts are probably too large to be acceptable as

those of a diversified portfolio. This phenomenon becomes even clearer in Fig. 3.7,

which displays the constant benchmarked NP, Ŝδ∗
t = 1, as well as, the benchmarked

EWI and the benchmarked MCI. Note that initially, sometimes the benchmarked

EWI and sometimes the benchmarked MCI performed better. However, in the

long run the benchmarked EWI fluctuates around the benchmarked NP, while the

benchmarked MCI diverges downwards. Additionally, one notes in this figure that

the benchmarked MCI has much larger volatility than the benchmarked EWI. This

is typical also for the other market models considered and for the real market as

well. The described simulation has been repeated many times for other scenarios.

The better performance in the long run of the EWI over the MCI was similarly

evident.
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Figure 3.7: Simulated benchmarked NP, EWI and MCI under the Black-Scholes
model

Heston Model

The multi-asset version of the Heston model, see Heston (1993), can be described

by a set of two vector SDEs in the form

dŜt = diag
(√

V t

)
diag

(
Ŝt

)(
AdW̃

1

t +BdW̃
2

t

)
, (3.33)

dV t = (a−EV t) dt + Fdiag
(√

V t

)
dW̃

1

t , (3.34)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ0
t , Ŝ

1
t , . . . , Ŝ

d
t )

�, t ∈ [0,∞)} is a vector of

benchmarked primary security accounts, which are local martingales but not nec-

essarily martingales; see Platen & Heath (2010). Additionally, W̃
1
= {W̃ 1

t =

(W̃ 1,0
t , W̃ 1,1

t , . . . , W̃ 1,d
t )�, t ∈ [0,∞)} and W̃

2
= {W̃ 2

t = (W̃ 2,0
t , W̃ 2,1

t , . . . , W̃ 2,d
t )�,

t ∈ [0,∞)} are independent vectors of correlated Wiener processes. That is, one has

W̃
k

t = CkW k
t , (3.35)

where Ck = [Ck,i,j]di,j=0, and with W k = {W k
t = (W k,0

t ,W k,1
t , . . . ,W k,d

t )�, t ∈
[0,∞)} for k ∈ {1, 2}, denoting again a vector of independent Wiener processes.

Additionally, A = [Ai,j]di,j=0 is a diagonal matrix with elements

Ai,j =
{ �i for i = j

0 otherwise,
(3.36)

and B = [Bi,j]di,j=0 is a diagonal matrix with elements

Bi,j =
{ √

1− �2i for i = j
0 otherwise.

(3.37)

113



Moreover, V = {V t = (V 0
t , V

1
t , . . . , V

d
t )

�, t ∈ [0,∞)} is a vector of squared volatili-

ties, a = (a0, a1, . . . , ad)
�. E = [Ei,j]di,j=0 is a diagonal matrix with elements

Ei,j =
{ κi for i = j

0 otherwise,
(3.38)

and F = [F i,j]di,j=0 is a diagonal matrix with elements

F i,j =
{ γi for i = j

0 otherwise.
(3.39)

One method for the exact simulation of the Heston model has been suggested in

Broadie & Kaya (2006). The study in the current section uses a slightly different,

possibly more convenient, almost exact simulation for benchmarked primary security

accounts under the Heston model. The method involves exact simulation of the

squared volatility processes and some almost exact simulation of the independent

benchmarked primary security accounts. The latter simulation is conditional on

the exactly simulated trajectories of the squared volatilities; see Platen & Rendek

(2009) and Section 1.4.

One obtains the value of the jth squared volatility V j
ti+1

at time ti+1, i ∈
{0, 1, . . .}, by sampling directly from the noncentral chi-square distribution χ

′2
νj
(λj)

with νj degrees of freedom and noncentrality parameter λj, that is,

V j
ti+1

=
γ2
j (1− exp{−κjΔ})

4κj

χ
′2
νj

(
4κje

−κjΔ

γ2
j (1− e−κjΔ)

V j
ti

)
, (3.40)

where νj =
4aj
γ2
j

. Details on sampling from noncentral chi-square distributions can

be found, for instance, in Glasserman (2004). The resulting simulation method for

the jth squared volatility V j is exact.

It remains to describe the almost exact simulation of the vector of the logarithms

of benchmarked assets. By following first Broadie & Kaya (2006), the jth value

Xj
ti+1

= ln
(
Ŝj
ti+1

)
at time ti+1 can be represented in the form

Xj
ti+1

= Xj
ti +

�j
γj

(
V j
ti+1

− V j
ti − ajΔ

)
+

(
�jκj

γj
− 1

2

)∫ ti+1

ti

V j
u du

+
√
1− �2j

∫ ti+1

ti

√
V j
u dW

2,j
u . (3.41)

Furthermore, the distribution of the integral increment∫ ti+1

ti

√
V j
u dW

2,j
u , (3.42)
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Figure 3.8: Simulated benchmarked primary security accounts under the Heston
model

given the path of V j, is conditionally Gaussian with mean zero and variance∫ ti+1

ti
V j
u du, since V

j is independent of the Brownian motion W 2,j for all j ∈ {0, 1, 2,
. . . , d}. Moreover, one needs to evaluate the variance

∫ ti+1

ti
V j
u du conditioned on the

path of the process V j. The proposed almost exact simulation method uses as an

approximation via the trapezoidal rule∫ ti+1

ti

V j
u du ≈ Δ

2

(
V j
ti + V j

ti+1

)
. (3.43)

It is well-known that this quadrature rule generates by its symmetry excellent ap-

proximations; see Kloeden & Platen (1999). Consequently, one has the approximate

conditionally Gaussian random variable∫ ti+1

ti

√
V j
u dW

2,j
u ≈ N

(
0,

Δ

2

(
V j
ti + V j

ti+1

))
(3.44)

to compute. This approximation can be achieved with practically negligible error

by using a sufficiently small time step size. Since the aim here is to illustrate the

diversification effect, this section omits any particular error analysis. The above

approximation converges in distribution when the time step size decreases, as can

be deduced from (3.44). For the above multi-asset Heston model this results in an

efficient, almost exact simulation technique. Alternatively, one could have used the

Broadie & Kaya (2006) exact simulation method, which leads from the perspective

of this section to the same conclusions.

Benchmarked primary security accounts are simulated under the multi-asset He-

ston model. Fig. 3.8 displays the first 20 simulated benchmarked primary secu-
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Figure 3.9: Simulated squared volatility under the Heston model
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Figure 3.10: Simulated NP, EWI and MCI under the Heston model

rity accounts. These benchmarked primary security accounts are nonnegative local

martingales and, thus, supermartingales. The parameters in (3.40) are chosen ac-

cording to market data, see Gatheral (2006). The jth squared volatility process

is simulated according to (3.40) for the initial value V j
0 = 0.0174, aj = 0.0469,

κj = 1.3253, γj = 0.3877, j ∈ {1, . . . , 1000}. The correlation parameter is here set

to �j = −0.7165 in order to reflect the typically observed leverage effect, see Black

(1976). The initial values Ŝj
0 are again generated from the Pareto distribution men-

tioned earlier. For illustration, Fig. 3.9 displays a typical trajectory of the squared

volatility process V j under the Heston model, simulated exactly according to the

formula (3.40).

Fig 3.10 exhibits the simulated NP, EWI and MCI under the Heston model. Also
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Figure 3.11: Simulated benchmarked NP, EWI and MCI under the Heston model

here the EWI provides an excellent proxy for the NP, and it is difficult to distinguish

both trajectories. The MCI, however, does not perform as well as the EWI. Finally,

Fig. 3.11 illustrates the constant benchmarked NP Ŝδ∗
t = 1, the benchmarked MCI

and the benchmarked EWI. This plot shows the closeness of the benchmarked EWI

to the benchmarked NP. Note that, the benchmarked MCI has a larger volatility

than the benchmarked EWI and fluctuates in the long run significantly.

ARCH-diffusion Model

Some continuous time limits of popular time series models in finance, including

several ARCH and GARCH models, can be captured by the multi-dimensional

ARCH-diffusion model that is considered below. The class of ARCH and GARCH

time series models was initiated in Engle (1982). The ARCH-diffusion model is ob-

tained as a continuous time limit of the innovation process of the GARCH(1, 1) and

NGARCH(1, 1) models; see Nelson (1990) and Frey (1997). The ARCH-diffusion

model can be described by the following two vector SDEs

dŜt = diag
(√

V t

)
diag

(
Ŝt

)(
AdW̃

1

t +BdW̃
2

t

)
, (3.45)

dV t = (a−EV t) dt + Fdiag (V t) dW̃
1

t , (3.46)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ0
t , Ŝ

1
t , . . . , Ŝ

d
t )

�, t ∈ [0,∞)} denotes again

a vector of benchmarked primary security accounts, where one knows that these

are local martingales and, thus, supermartingales. Furthermore, W̃
1
= {W̃ 1

t =

(W̃ 1,0
t , W̃ 1,1

t , . . . , W̃ 1,d
t )�, t ∈ [0,∞)} and W̃

2
= {W̃ 2

t = (W̃ 2,0
t , W̃ 2,1

t , . . . , W̃ 2,d
t )�,
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t ∈ [0,∞)} are independent vectors of correlated Wiener processes. Addition-

ally, A = [Ai,j ]di,j=0 is a diagonal matrix with elements as in (3.36), and B =

[Bi,j]di,j=0 is a diagonal matrix with elements given in (3.37). Moreover, V = {V t =

(V 0
t , V

1
t , . . . , V

d
t )

�, t ∈ [0,∞)} is a vector of squared volatilities, a = (a0, a1, . . . , ad)
�

is a vector; E = [Ei,j ]di,j=0 is a diagonal matrix with elements as in (3.38); and

F = [F i,j]di,j=0 is a diagonal matrix with elements as in (3.39).

In the given case one can simulate the jth squared volatility process V j, j ∈
{0, 1, 2, . . .}, almost exactly by approximating the time integral via the trapezoidal

rule in the following exact representation

V j
ti+1

= exp

{(
−κj − 1

2
γ2
j

)
ti+1 + γjW

1,j
ti+1

}
(3.47)

×
(
V j
t0 + aj

i∑
k=0

∫ tk+1

tk

exp

{(
κj +

1

2
γ2
j

)
s− γjW

1,j
s

}
ds

)
.

This yields the approximation

V j,Δ
ti+1

= exp

{(
−κj − 1

2
γ2
j

)
ti+1 + γjW

1,j
ti+1

}
(3.48)

×
(
V j
t0 + aj

Δ

2

i∑
k=0

[
exp

{(
κj +

1

2
γ2
j

)
tk − γjW

1,j
tk

}

+exp

{(
κj +

1

2
γ2
j

)
tk+1 − γjW

1,j
tk+1

}])
for i ∈ {0, 1, . . .}.

The following describes the almost exact simulation of the logarithms of stocks

Xj
ti+1

= ln
(
Ŝj
ti+1

)
, j ∈ {0, 1, 2, . . . , d}. One can represent the value of Xj

ti+1
at time

ti+1 as

Xj
ti+1

= Xj
ti −

1

2

∫ ti+1

ti

V j
u du+

2�j
γj

(√
V j
ti+1

−
√
V j
ti

)
(3.49)

−2�j
γj

∫ ti+1

ti

(
aj

2
√
V j
u

−
(
κj

2
+

γ2
j

8

)√
V j
u

)
du

+
√

1− �2j

∫ ti+1

ti

√
V j
u dW

2,j
u .

Furthermore, the distribution of ∫ ti+1

ti

√
V j
u dW

2,j
u , (3.50)

conditioned on the path of V j, is conditionally Gaussian with mean zero and variance∫ ti+1

ti
V j
u du because V j is independent of the Brownian motion W 2,j for all j ∈
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{0, 1, 2, . . . , d}. Moreover, it is possible to approximate
∫ ti+1

ti
V j
u du given the path of

the process V j . One can use here again the trapezoidal approximation∫ ti+1

ti

V j
u du ≈ Δ

2

(
V j
ti + V j

ti+1

)
(3.51)

to obtain the conditionally Gaussian integral increment∫ ti+1

ti

√
V j
u dW

2,j
u ≈ N

(
0,

Δ

2

(
V j
ti + V j

ti+1

))
. (3.52)

Similarly, it is possible to approximate the second integral on the right hand side of

(3.49) given in the form∫ ti+1

ti

(
aj

2
√
V j
u

−
(
κj

2
+

γ2
j

8

)√
V j
u

)
du ≈ (3.53)

Δ

2

⎛⎝ aj

2
√

V j
ti

−
(
κj

2
+

γ2
j

8

)√
V j
ti +

aj

2
√
V j
ti+1

−
(
κj

2
+

γ2
j

8

)√
V j
ti+1

⎞⎠ .

This approximation can be achieved with high accuracy when the time step size is

small by using again the trapezoidal quadrature formula. In this manner one obtains

an efficient almost exact simulation technique for the multi-asset ARCH-diffusion

model, which converges in distribution as the time step size decreases.

Now, benchmarked primary security accounts are simulated as multi-dimensi-

onal ARCH diffusions. For simplicity, the same squared volatility process is used for

all benchmarked primary security accounts, where a = 0.0469, κ = 1.3253, γ = 1

and V0 = 0.0174, similar as for the Heston squared volatility model. Furthermore,

the driving noise of each of the benchmarked asset prices is correlated with � =

−0.7165 to the noise that drives the squared volatility process. The extra Wiener

processes that drive the benchmarked asset prices are independent from each other.

Fig. 3.12 shows the first 20 simulated benchmarked risky primary security accounts

with Pareto distributed initial values. A typical trajectory of the squared volatility

under the ARCH-diffusion model is displayed in Fig. 3.13.

Fig. 3.14 shows the constant benchmarked NP, the benchmarked EWI and the

benchmarked MCI. Also here the EWI appears to be an excellent proxy of the NP,

while the MCI diverges from the NP in the long run. Also here one notes the smaller

volatility of the benchmarked EWI compared to the benchmarked MCI.
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Figure 3.12: Simulated benchmarked primary security accounts under the ARCH-
diffusion model
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Figure 3.13: Simulated squared volatility under the ARCH-diffusion model

Stylized Minimal Market Model

The previous models can be interpreted as rather direct generalizations of the Black-

Scholes model, obtained by introducing some stochastic volatility process. In most

versions of these models, when applied in practice, the benchmarked primary se-

curity accounts are martingales or rather close to martingales. Consider now the

stylized minimal market model (MMM), which is similar to the version of the MMM

described in Platen (2001) and Platen & Heath (2010). This model generates by

its nature strict supermartingales as benchmarked primary security accounts out of

scalar diffusion processes. Each benchmarked primary security account is the inverse

of a time transformed squared Bessel process of dimension four and, thus, a strict

supermartingale; see Revuz & Yor (1999). The MMM models the jth benchmarked
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Figure 3.14: Simulated benchmarked NP, EWI and MCI under the ARCH-diffusion
model

primary security account by the expression

Ŝj
t =

1

Y j
t α

j
t

, (3.54)

where αj
t = αj

0 exp{ηjt}, j ∈ {0, 1, . . . , d}. Here ηj is the jth net growth rate for

j ∈ {0, 1, . . . , d}, and Y j
t is the time t value of the square root process Y j , which

satisfies the SDE

dY j
t =

(
1− ηjY j

t

)
dt+

√
Y j
t dW̃

j
t (3.55)

for t ∈ [0,∞), where Y j
0 = 1

ηj
for j ∈ {0, 1, . . . , d}. Here W̃ = {W̃ t = (W̃ 0

t , W̃
1
t , . . . ,

W̃ d
t )

�, t ∈ [0,∞)} is a vector of correlated Wiener processes. Obviously, there are

similarities with the square root processes we considered in Section 1.4. Note also

the similarity of the equation (3.55) and the equation (4.3) describing the affine

nature of the normalized aggregate wealth dynamics in Chapter 4.

Note that under the MMM, Sj(ϕj(t)) = Y j
t α

j
t is a squared Bessel process of

dimension four in the, so called, ϕj-time. That is, one has the SDE

dSj(ϕj(t)) = 4dϕj(t) + 2
√
Sj(ϕj(t))dW̄ j(ϕj(t)) (3.56)

for t ∈ [0,∞), where

ϕj(t) =
αj
0

4ηj
(
exp{ηjt} − 1

)
(3.57)

and

dW̄ j(ϕj(t)) = dW̃ j
t

√
dϕj(t)

dt
. (3.58)
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The inverse Ŝj(ϕj(t)) of the jth squared Bessel process of dimension four in

ϕj-time satisfies the SDE

dŜj(ϕj(t)) = −2
(
Ŝj(ϕj(t))

) 3
2
dW̄ j(ϕj(t)) (3.59)

for t ∈ [0,∞). Note that, Ŝj is a local martingale. More precisely, it can be shown

that Ŝj is a nonnegative strict local martingale and, thus, a strict supermartingale,

see Revuz & Yor (1999).

It remains to explain the exact simulation of benchmarked primary security

accounts under the MMM. Given the time discretization 0 < t0 < t1 < . . ., where

ti = iΔ, i ∈ {0, 1, . . .}, one first generates by (3.57) for j ∈ {0, 1, . . . , d} the ϕj-time

at the physical time ti.

The next step is to simulate four independent Wiener processes W̄ k,j, k ∈ {1, 2, 3,
4}, in ϕj-time. This can be achieved by calculating

W̄ k,j
ti+1

= W̄ k,j
ti +

√
ϕj(ti+1)− ϕj(ti)Z

k
i+1, (3.60)

where Zk
i+1 ∼ N (0, 1) is a standard Gaussian random variable. Here k ∈ {1, 2, 3,

4}, j ∈ {0, 1, . . . , d} and i ∈ {0, 1, . . .}.
Then the jth benchmarked primary security account at time ti+1 is obtained by

the expression

Ŝj
ti+1

= Ŝj
(
ϕj(ti+1)

)
=

1∑4
k=1

(
wk + W̄ k,j

ti+1

)2 , (3.61)

for i ∈ {0, 1, . . .}, where Ŝj
0 =
∑4

k=1(w
k)2.

Now, one can simulate the independent benchmarked risky primary security

accounts according to the MMM dynamics. The simulation uses the net growth rate

ηj = 0.09 and the scaling parameter αj
0 = 0.05. Fig. 3.15 plots the first 20 simulated

benchmarked primary security accounts. These processes are strict supermartingales

and one clearly observes their systematic long run downward trend. Remarkable are

the extreme values of benchmarked asset prices that typically appear from time to

time under the MMM. The jth volatility equals under the MMM at time ti the

expression Ŝj
tiα

j
ti . Fig. 3.16 plots a typical path of the squared volatility under the

MMM.

The constant benchmarked NP, benchmarked EWI and benchmarked MCI are

shown in Fig. 3.18. The EWI represents a good proxy for the NP. In this case the
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Figure 3.15: Simulated benchmarked primary security accounts under the MMM
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Figure 3.16: Simulated squared volatility under the MMM

benchmarked MCI does by far not reach the long run performance of the bench-

marked EWI. One observes a qualitative difference between these two processes.

This difference is explained by the fact that the benchmarked MCI, as the sum of

strict supermartingales, is a strict supermartingale. It, therefore, exhibits a signifi-

cant long run downward trending mean. On the other hand, the return process of

the EWI, by keeping the fractions constant, makes the expected quadratic variation

of the square integrable benchmarked EWI finite, whereas that of the benchmarked

MCI is infinite. It follows from the Naive Diversification Theorem that the return

process for the benchmarked EWI tends for the increasing number of constituents

to zero, which makes its benchmarked value a constant. Equal value weighting can

be interpreted as a form of hedging. It turns out that one needs to hedge to avoid
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Figure 3.17: Simulated NP, EWI and MCI under the MMM in log-scale
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Figure 3.18: Simulated benchmarked NP, EWI and MCI under the MMM

the strict supermartingale property of the constituents to be inherited by the re-

sulting benchmarked portfolio. It is not enough to diversify over the constituents

as is achieved by the MCI. The exposure to each source of uncertainty needs to be

controlled by some kind of hedging. In this section the hedging is facilitated by

equal value weighting.

The important observation of this section is that if benchmarked primary security

accounts are, in reality, strict local martingales, then portfolio management should

construct well diversified portfolios that when benchmarked form martingales. These

portfolios when appropriately diversified would perform in the long run better than

the market capitalization weighted portfolio, which is then a strict supermartingale.
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Chapter 4

The Affine Nature of Aggregate
Wealth Dynamics

This chapter derives a parsimonious two-component affine diffusion model for a

world stock index to capture the dynamics of aggregate wealth. The observable

state variables of the model are the normalized index and the inverse of the stochas-

tic market activity, both modeled as square root processes. The square root process

in market activity time for the normalized aggregate wealth emerges from the affine

nature of aggregate wealth dynamics, which will be derived under basic assump-

tions and does not contain any parameters that have to be estimated. The proposed

model employs only three well interpretable structural parameters, which determine

the market activity dynamics, and three initial parameters. It is driven by the

continuous, nondiversifiable uncertainty of the market and no other source of un-

certainty. The model, to be valid over long time periods, needs to be formulated in

a general financial modeling framework beyond the classical no-arbitrage paradigm.

It reproduces a list of major stylized empirical facts, including Student-t distributed

log-returns, which we observed in Chapter 2, and typical volatility properties. Ro-

bust methods for fitting and simulating this model are demonstrated.

4.1 Dynamics of Aggregate Wealth

To obtain an idea what type of stochastic process may be well suited for modeling a

normalized world stock index, we ask the question, what would be the type of limit-

ing diffusion process that may likely emerge for the aggregate wealth of an economy?

We consider normalized units of wealth such that the long term exponential growth

of the economy is taken out on average and some kind of equilibrium may be ob-
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served. For simplicity, consider a multi-period discrete time setting, and assume at

time τi = iΔ, i ∈ {0, 1, . . . }, 0 < Δ < 1, that the economy has accumulated the total

wealth Y Δ
τi
, each wealth unit worth

√
Δ, Y Δ

0 = Y0 > 0. This means, one has about
Y Δ
τi√
Δ

wealth units at time τi. During the period until time τi+1 = τi +Δ each wealth

unit invests in a ”project” or pursues some economic activity, which ”consumes”

on average ηΔ units of wealth, η > 0. Furthermore, β
√
Δ new wealth units are

generated, on average, during this time period, β > 0. This means, the mean of the

increment of aggregate wealth for the time period equals (β − ηY Δ
τi
)Δ.

Most important for understanding the nature of aggregate wealth dynamics is the

fact that, in a first approximation, it is appropriate to assume that the outcomes of

the ”projects” and economic activities are independent of each other. This means, if

we assume for simplicity that each ”project” and economic activity generates in the

period [τi, τi+1) wealth with variance υ2Δ
3
2 , then the variance of the increment of the

aggregate wealth amounts to υ2Y Δ
τi
Δ, since one has about

Y Δ
τi√
Δ

wealth units at time

τi. Obviously, its deviation is then υ
√
Y Δ
τi
Δ. Note that, very naturally, a square

root of aggregate wealth appears in the deviation of aggregate wealth. Note that it

does not matter much what type of distribution the individual wealth outcomes have

when these are generated by different ”projects” or economic activities. Intuitively,

by the Central Limit Theorem the increment Y Δ
τi+1

− Y Δ
τi

of aggregate wealth is for

Δ → 0 asymptotically conditionally Gaussian distributed with the above mean and

variance. Moreover, the difference equation

Y Δ
τi+1

− Y Δ
τi

=
(
β − ηY Δ

τi

)
Δ+ υ

√
Y Δ
τi
ΔWτi , (4.1)

with ΔWτi denoting a random variable with approximately mean zero and variance

Δ, resembles an Euler scheme, see Kloeden & Platen (1999), of the square root

process Y = {Yτ , τ ≥ 0} with stochastic differential equation (SDE)

dYτ = (β − ηYτ) dτ + υ
√
YτdW (τ), (4.2)

τ ≥ 0, Y0 > 0. Here W = {W (τ), τ ∈ [0,∞)} is a standard Brownian motion. Along

the lines of Alfonsi (2005) and Diop (2003) it follows under general assumptions,

that for vanishing time step size Δ → 0 the aggregate wealth process Y Δ converges

in a weak sense, see also Kloeden & Platen (1999), to the affine diffusion process

Y = {Yτ , τ ∈ [0,∞)}, satisfying the SDE (4.2). This type of process was introduced
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in Section 1.4. Note that the solution Y = {Yt, t ∈ [0,∞)} of the SDE (4.2) is a

square root process and, thus, an affine process, see e.g. Duffie & Kan (1994). More

precisely, a square root process is sometimes referred to as CIR (Cox, Ingersoll &

Ross (1985)) interest rate process. This nonnegative affine process has an explicitly

known transition density, see Revuz & Yor (1999).

Most important for the nature of aggregate wealth dynamics is the fact that

the diffusion coefficient turns out to be proportional to the square root of the total

wealth Yτ . This is a consequence of the independence of outcomes of ”projects”

and economic activities. The drift is here in a first approximation, and for natural

reasons, linear in Yτ , which makes Y a highly tractable affine process.

We know a wide range of important properties of this process. For example,

when assuming β > υ2

2
, the value Yτ never reaches zero; see Revuz & Yor (1999).

Note that the volatility of the limiting aggregate wealth process emerges as υ√
Yτ
.

This kind of volatility process models the well-known leverage effect without in-

volving considerations on company value to debt ratios, as e.g. suggested in Black

(1976). Under the above approach volatility emerges naturally as a consequence of

the uncertain nature of economic activity. The market capitalization weighted index

represents, in a first approximation, the aggregate wealth of the economy, which is

here modeled.

Economic and market activity change over time. People react to the observed ag-

gregate wealth evolution in their economic activity, including their trading intensity.

It is well known, see Kahneman & Tversky (1979), that human behavior exaggerates

for decisions under risk small probabilities, as described in prospect theory. This

exaggeration applies also to the above extracted ”natural” dynamics of volatility.

One may assume that the human participants in the economy overreact to the ob-

served ups and downs of aggregate wealth. When volatility should be high under

the above derived normalized index dynamics in τ -time it becomes even higher in

physical time and vice versa.

In Section 4.3 we will integrate the above revealed affine nature of aggregate

wealth dynamics in an index model, which incorporates then also the typical over-

reactions in human behavior via a random market activity time. This time will be

driven by the same nondiversifiable uncertainty that drives the index dynamics and
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Figure 4.1: Logarithm of a well diversified world stock index MCI
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Figure 4.2: Log-returns of the MCI

will exaggerate the volatility to the extent observed in reality.

4.2 Stylized Empirical Facts

According to Popper (1934) one cannot ”prove” the validity of a model. The best

one can achieve is to find that one cannot falsify the candidate model but can

falsify competing models based on empirical evidence. In this section we employ

standard statistical and econometric techniques to establish for a well diversified

equity index a list of stylized empirical facts. Deliberately, we rely on common and

robust techniques and avoid any technicalities.

We use for our empirical analysis the total market equity index (with mnemon-
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Figure 4.3: Average autocorrelation function for log-returns of the MCI in different
currency denominations

ics TOTMKWD), downloaded from Thomson Reuters Datastream in August 2012.

This index is a market capitalization weighted world stock index, and very similar

to the MSCI world index. In this chapter, we call this equity index, the market

capitalization index (MCI). Fig. 4.1 displays the logarithm of the MCI while Fig. 4.2

shows the log-returns of the MCI.

The list of stylized empirical facts, established below, will allow us to circle in a

parsimonious, tractable model that cannot be easily falsified with respect to these

facts:

(i) Uncorrelated Returns

First, we studied the MCI denominated in the 26 currencies of the countries

listed in Table 4.2. For each currency the autocorrelation of the log-returns

was calculated for each shown number of days between observations and then

averaged over the currencies, which provided in Fig.4.3 the well-known typical

graph; see e.g. Ghysels, Harvey & Renault (1996). It shows practically no

correlation between the different returns. Here the horizontal axis gives the

number of days between the observed returns. The autocorrelation function

in Fig. 4.3 is, in principle, located between the displayed 95% upper and lower

confidence bounds. In the literature this is a well accepted property of index

returns. Therefore, we formulate our first stylized empirical fact:

Index log-returns are not correlated over time.
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Figure 4.4: Average autocorrelation function for the absolute log-returns of the MCI
in different currency denominations

(ii) Correlated Absolute Returns

Similarly as above, also the autocorrelation for the absolute log-returns of

the MCI has been estimated for each currency denomination. In Fig. 4.4 the

resulting average of the estimated autocorrelation functions of the absolute

log-returns for the 26 currency denominations of the MCI is displayed in de-

pendence on the time lag in days. As known from many other studies, see

e.g. Ghysels, Harvey & Renault (1996), one observes that this sample auto-

correlation does not die away fast and remains after 100 days still far from

the 95% confidence bound for the hypothesis that there may be no autocorre-

lation. Furthermore, the decay of the average autocorrelation does not seem

to be exponential. Even for large lags of several months there is still some

not negligible autocorrelation of absolute log-returns present. Note that the

Black-Scholes model and many of its extensions, including exponential Lévy

models, do not exhibit this property. Also this is in the literature a widely

accepted empirical property of equity indices and we formulate the second

stylized empirical fact:

The sample autocorrelation of absolute log-returns does not die away exponen-

tially, and cannot be neglected for large lags.
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Figure 4.5: Logarithms of empirical density of normalized log-returns of the MCI
and Student-t density with 3.5 degrees of freedom

Table 4.1: Log-Maximum likelihood test statistic for daily, weekly and fortnightly
log-returns of the MCI

Frequency Student-t NIG Hyperbolic VG ν

Daily 3.016652 1336.306309 4453.111995 5367.048317 3.495706
Weekly 0.000000 211.666854 519.162808 701.370317 4.307228
Fortnightly 3.338603 60.216977 204.104996 47.288206 4.216611

(iii) Student-t Distributed Returns

From the 26 currency denominations with mostly 39 years of daily observations

we have a substantial dataset of log-returns available, which provide a total

observation period of about 1000 years. Similarly as in Fergusson & Platen

(2006) and Platen & Rendek (2008) as well as Section 2.3, for each of the 26

currency denominations we shifted the log-returns of the MCI so that their

average for a given currency denomination becomes zero. For each currency

denomination these shifted returns are then scaled such that a variance of one is

estimated. Finally, all shifted and scaled returns are joined in one large dataset

of 268, 684 daily normalized returns. Note, by choosing as object of study a

global benchmark, the MCI, it became possible to form such a large dataset for

log-returns where one can expect clear statistical results. The corresponding

log-histogram for the entire sample of log-returns is shown in Fig. 4.5. This
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Table 4.2: Log-Maximum likelihood test statistic for different currency denomina-
tions of the MCI

Country Student-t NIG Hyperbolic VG ν

Australia 0.000000 58.129392 144.865134 180.029220 3.918181
Austria 1.000815 41.266882 157.562238 190.955439 3.435910
Belgium 0.976188 40.671955 154.030262 189.996360 3.458126
Canada 0.000000 42.354744 94.626898 124.885496 4.454300
Denmark 0.194751 35.909603 110.311722 144.178062 3.907690
Finland 3.953519 29.507246 156.290841 176.470426 3.192224
France 2.454694 33.126251 153.720450 186.278677 3.332276
Germany 1.089218 37.984695 146.623206 178.879859 3.462573
Greece 0.087889 47.616770 159.745413 185.004929 3.368001
Hong Kong 0.955483 33.163802 142.601238 168.218205 3.293006
India 0.000000 58.935308 170.125958 208.765488 3.648135
Ireland 0.007503 66.903516 218.951365 254.213268 3.361688
Italy 3.975738 26.302040 144.201210 167.455552 3.244692
Japan 1.203367 42.032471 186.745356 218.934846 3.228296
Korea S. 0.000000 100.310795 314.042722 345.682862 3.107851
Malaysia 0.040659 66.371816 210.194378 253.251366 3.438201
Netherlands 0.900068 40.155097 151.802950 185.510512 3.474006
Norway 0.089357 39.067234 112.438014 152.293627 4.001805
Portugal 2.253549 39.426104 188.698882 209.615521 3.150901
Singapore 0.315454 27.494392 99.564426 123.186925 3.592624
Spain 0.715989 47.820695 192.030088 219.961909 3.263888
Sweden 0.000000 68.297279 159.571420 200.409252 4.020877
Taiwan 0.723684 29.571185 120.256752 140.772751 3.358707
Thailand 0.972236 43.834495 225.116046 244.468484 2.924801
UK 0.949227 19.643975 68.567717 103.504763 4.253508
USA 0.138002 46.862320 155.995200 192.490293 3.566637

figure displays also the log-density of a Student-t distribution with 3.5 degrees

of freedom. Remarkable is the excellent visual fit for the medium range of

the log-return values and also for extreme log-returns. The latter are most

important in risk management; see McNeil, Frey & Embrechts (2005). We

notice also a slightly negative skew in the log-returns when compared to the

shown symmetric Student-t log-density, which has been observed also in other

studies; see e.g. Ghysels, Harvey & Renault (1996).

To obtain an idea about the significance of the above observed Student-

t property, a standard maximum likelihood ratio test, described in Section

2.2, has been performed for the rich class of symmetric generalized hyper-

bolic (SGH) distributions, as introduced in detail in Section 2.2; see also

Barndorff-Nielsen (1977) and McNeil, Frey & Embrechts (2005). It turns out

that the log-maximum likelihood test statistics for the weekly log-returns is

with 0.00000012 < χ2
0.001,1 ≈ 0.000002 such that one cannot reject with 99.9%

significance the hypothesis that the Student-t distribution with 4.3 degrees
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of freedom is the underlying distribution, see Table 4.1. For daily and fort-

nightly log-returns the Student-t maximum likelihood test statistic is clearly

the smallest when compared to the other special cases of the SGH distribution.

A similar study was performed in Section 2.3 with an equi-weighted world in-

dex, the EWI104s, which did not include the financial crisis 2007/2008. In

that study for daily log-returns, the hypothesis that the Student-t distribution

with 4.3 degrees of freedom is the underlying distribution could not be rejected

at the 99.9% level of significance. It can be noticed in these kind of studies

on diversified world stock indices that a few extreme log-returns, e.g. those of

the recent financial crisis, can slightly distort the otherwise perfect Student-t

fit. We conclude that it is difficult to identify with extreme significance the

distribution and the exact parameters from the available data. However, the

Student-t distribution as best fit for well diversified equity index log-returns

appears to be a stylized fact.

We studied also separately daily log-returns of the MCI when denominated in

each of the 26 different currencies with the results listed in Table 4.2. This

table reports the log-maximum likelihood test statistics for different currency

denominations of the MCI. In 5 out of the 26 currency denominations the hy-

pothesis that the Student-t density is the true density, when nested in the class

of SGH densities, cannot be rejected on a significance level of 99.9%. Models

generating the following respective log-returns can be rejected for all currency

denominations: the normal inverse Gaussian (NIG) density, appearing e.g. in

asset price models of Barndorff-Nielsen (1997); the hyperbolic density, result-

ing from models e.g. in Eberlein & Keller (1995); and the variance gamma

(VG) density, typical for models developed in Madan & Seneta (1990) and

Carr et al. (2004). Additionally, in the last column of Table 4.2 we report the

estimated degrees of freedom for the Student-t density, which range between

2.9 and 4.5. Here we emphasize again that a few extreme log-returns in a more

than 30 year daily dataset can bring the estimate for the degrees of freedom

easily down by half a degree.

Also other authors estimated the Student-t distribution from returns of equity

indices; see e.g. Markowitz & Usmen (1996a, 1996b) and Hurst & Platen
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Figure 4.6: Estimated volatility from log-returns of the MCI

(1997). Recently, Alparslan, Tessitore & Usmen (2012) compared the best

of the Pearson family of distributions with the best of the family of stable

distributions. Their results strongly support the Student-t distribution for

index log-returns when using a Bayesian approach.

We summarize the third stylized empirical fact:

Short and longer term log-returns appear, when estimated, as being Student-t

distributed with about four degrees of freedom, exhibiting a slight negative skew.

(iv) Volatility Clustering

It is well-accepted that the volatility of an index is stochastic and clusters

occasionally over time; see e.g. Ghysels, Harvey & Renault (1996) and the log-

returns of the MCI displayed in Fig. 4.2. A standard estimation of volatility

from the daily observed discounted MCI in US dollar denomination is shown in

Fig.4.6, where the squared volatility was estimated via a moving average with

weight α
√
Δ = 0.0569 to each newly observed squared log-return, α = 0.92,

Δ = 1
261

. This figure confirms for the MCI that its volatility is stochastic and

shows clusters of higher values during some time periods. Furthermore, it is

reasonable to conclude from the available observations of the MCI in different

currency denominations that the volatility has approximately a stationary

density. One has to acknowledge the fact that empirically one has so far only

access to some moving average type estimate, as shown in Fig.4.6. The hidden
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accurate theoretical volatility path of an index is almost impossible to observe.

A volatility index, like the VIX, shown in Fig. 4.11 for the S&P500, gives a

market perspective on some quantity closely related to the hidden volatility of

the index.

The already mentioned wide range of literature on volatility modeling, includ-

ing the ARCH and GARCH literature, which originated with Engle (1982),

agrees on stochasticity, stationarity and clustering of volatility. The observ-

able stationarity property is not reflected by CEV type models, see e.g. Cox

(1975). Also models like the popular SABR model, see Hagan et al. (2002),

which uses geometric Brownian motion to model volatility, are not consistent

with volatility observations over long time periods. We formulate the fourth

stylized empirical fact:

Volatility appears to be stochastic, exhibiting approximately stationary dynam-

ics, with occasional clusters of higher volatility.

(v) Long Term Exponential Growth

For long term risk management, as required for pensions and insurance con-

tracts, the long term average growth of securities is important. In Fig. 4.1

the logarithm of the MCI, discounted by the US savings account, has been

displayed. It seems to be reasonable to fit in Fig. 4.1 a trend line. Its slope

measures the long term average growth rate of the discounted MCI. By remov-

ing this observed average growth from the logarithm of the discounted MCI

one obtains the logarithm of the resulting normalized discounted MCI, which

is displayed as upper graph in Fig. 4.7. It is reasonable to expect that the

normalized discounted MCI could be modeled by a stochastic process that has

approximately a stationary density. Many popular models are not consistent

with the above mentioned stationarity property, e.g. generalizations of the

Black-Scholes model, including popular stochastic volatility models like the

Heston model, see Heston (1993). We summarize our observation in the fifth

stylized empirical fact:

The discounted index exhibits in the long term on average exponential growth,

and the accordingly normalized index appears to have approximately a station-
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Figure 4.7: Logarithms of normalized discounted MCI (upper graph) and its volatil-
ity (lower graph)

ary density.

(vi) Leverage Effect

It has been well documented since the work of Black (1976) and Rubinstein

(1976) that the volatility of a normalized equity index appears visually to be

negatively correlated with its volatility. Fig. 4.7 visualizes this property by

plotting as upper graph the logarithm of the normalized discounted MCI and

as lower graph the logarithm of the estimated volatility, previously shown in

Fig. 4.6. Visually one notes that both processes appear to fluctuate mostly in

opposite directions. Note that the logarithm of the volatility fluctuates in a

much wider range. Despite the visual impression of strong negative ”depen-

dence”, the estimated correlation between the increments of both processes

amounts only to −0.1. As has been made clear in recent work by Ait-Sahalia,

Fan & Li (2012), and as will be confirmed later via simulation, the hidden the-

oretical volatility can be perfectly negatively correlated with the normalized

index, but the estimated volatility may show only minor negative correlation

with the normalized index. Given the strong visual negative ”dependence” of

the MCI and its volatility, this makes it difficult to identify any other source

of uncertainty than the nondiversifiable uncertainty, which from an economic

perspective may well drive both, the index fluctuations and the volatility fluc-

tuations.
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Figure 4.8: Logarithms of normalized discounted S&P500 (upper graph) and VIX
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That there may be only one driving noise for the index and its volatility,

is supported by the following fact: Strong negative correlation is detectable

for equity indices and their volatility index, as long as the latter is available.

Fig. 4.8 shows the logarithm of the normalized discounted S&P500 together

with the logarithm of its volatility index, the VIX. The estimated correlation

between their increments is−0.71. This shows that there is significant negative

correlation between these two trajectories. Note that visually there is not much

difference between Fig.4.7 and Fig.4.8. Simulations of an index with perfectly

correlated volatility will later show that the estimated correlation is of similar

magnitude as observed for the S&P500 and the VIX. We summarize the above

observations in the sixth stylized empirical fact:

The dynamics of an index shows the leverage effect, where the volatility moves

visually up when the normalized index moves down and vice versa. Both are

potentially driven by the nondiversifiable uncertainty of the market.

(vii) Extreme Volatility at Major Market Downturns

In Fig. 4.7, similarly as in Fig. 4.11, one observes at major market downturns,

e.g. in 1987 and 2007/2008, that the logarithm of volatility increases substan-

tially more than the logarithm of the discounted index moves down. However,

in periods of more moderate index movements, the magnitudes of volatility

and index movements have been more in line. This means, in times of crises
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the increase of the volatility is much stronger than could be typically explained

by, say, a simple function of the normalized index as model for volatility. On

the other hand, there is a significant increase in trading activity observed in

times of index decline, which contribute to increased volatility see e.g Ané &

Geman (2000). This leads to the seventh and final stylized empirical fact in

our list:

At major index downturns volatility increases significantly; more than a func-

tional link between volatility and normalized index could explain. Moreover,

market activity increases substantially during sharp index declines, which seems

to contribute to increased volatility.

Any reasonably accurate model for the dynamics of the discounted MCI needs to

reflect the above described stylized empirical facts. There may not exist too many

parsimonious one- or two-component continuous diffusion models that could reflect

to a sufficient degree all the above mentioned stylized empirical facts. For identifying

the most suitable model class it would be extremely valuable to understand the

nature of the index dynamics in a stylized manner. In Section 4.1 we conjectured

a particular affine diffusion process, which theoretically should capture well the

normalized aggregate wealth dynamics. We propose in the following a more general

and still reasonably tractable class of parsimonious models that we will confront

with the observed stylized empirical facts. The data should then tell us which

specification of this model seems to be most likely.

4.3 Index Model

This section considers an index model, which leans on the theoretically derived

normalized aggregate wealth dynamics. It employs two Markovian components: a

square root process for modeling the normalized index in some market activity time;

and the inverse of a faster moving square root process for modeling the respective

market activity. The normalized index and the market activity are driven by the

same Brownian motion, which is modeling the nondiversifiable continuous market

uncertainty.

Based on the above derived theoretical normalized aggregate wealth dynamics
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we propose a continuous time two-component model for the discounted index. De-

note by St the discounted value of a (total return) index in calendar time t ≥ 0,

denominated in units of the domestic savings account. This discounted index will

be expressed by the product

St = Aτt(Yτt)
q (4.1)

for t ≥ 0. An exponential function Aτt of a given τ -time, the market activity time

(to be specified below), models the long term average growth of the discounted index

as

Aτt = A exp{aτt} (4.2)

for t ≥ 0.

We use in (4.2) the initial parameter A > 0 and the long term average net

growth rate a ∈ 	 with respect to market activity time. One could interpret Aτt

as the average value function, along which aggregate wealth of the economy evolves

over time and to which the discounted index reverts back in the long run. We refer

to Fig. 4.1, exhibiting the logarithm of the discounted MCI and its trendline, as

some visual support for this assumption. It reflects part of the stylized empirical

fact (v) on long term exponential growth.

Normalized Index

As a consequence of equation (4.1), the ratio (Yτt)
q = St

Aτt
denotes the normalized

index at time t. This normalized index is assumed to form an ergodic diffusion

process evolving according to τt-time. This means it represents a scalar diffusion

process with stationary probability density. This property accommodates the re-

maining part of the stylized empirical fact (v), which requests a normalized index

with stationary density. Fig. 4.2 shows the normalized MCI. It seems indeed real-

istic to model its dynamics by an ergodic process in the above described manner.

Motivated by the arguments of Section 4.1, the dynamics of the normalized index

are modeled by the qth power, q > 0, of a square root process Y = {Yτ , τ ≥ 0}
in τ -time; given by the SDE (4.3) below. We assume that the square root process

has dimension δ > 2 to keep it strictly positive. The square root process Y , as a
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component of the model, is highly tractable. We assume that it satisfies the SDE

dYτ =

⎛⎝δ

4
− 1

2

(
Γ
(
δ
2
+ q
)

Γ
(
δ
2

) ) 1
q

Yτ

⎞⎠ dτ +
√

Yτ dW (τ), (4.3)

for τ ≥ 0 with Y0 > 0. Only the two parameters δ > 2 and q > 0 enter the SDE

(4.3) together with its initial value Y0 > 0. Note that the reference level for the

square root process Y equals δ
2

(
Γ( δ

2)
Γ( δ

2
+q)

) 1
q

, which is then also its long run mean and

one has asymptotically

lim
τ→∞

1

τ

∫ τ

0

Ysds =
δ

2

(
Γ
(
δ
2

)
Γ
(
δ
2
+ q
)) 1

q

P-a.s.. (4.4)

Here Γ(·) denotes the gamma function and W = {W (τ), τ ≥ 0} denotes a

Brownian motion in τ -time, which we specify further below.

Similarly, as discussed for the SDE (4.2), the choice of a positive power of the

square root process Y in equation (4.1) creates a leverage effect in a simple and

robust manner. This accommodates the stylized empirical fact (vi) on the leverage

effect. The power of the square root process in the model has similarities to variants

of the constant elasticity of variance (CEV) model, see Ross (1976). However, the

volatility of the CEV model is not an ergodic process. The proposed model is a

generalization of the minimal market model, see Chapter 13 in Platen & Heath

(2010). It falls also into the wider category of local volatility function models, see

Dupire (1993) and Derman & Kani (1994a).

The stationary density of the quantity (Yτ )
q is explicitly given by the formula

pY q(y) =
Γ
(
δ
2
+ q
) δ

2q

qΓ
(
δ
2

) δ
2q

+1
y

δ
2q

−1 exp

{
−
(
Γ
(
δ
2
+ q
)

Γ
(
δ
2

) y

) 1
q
}

(4.5)

for y ≥ 0, see e.g. Platen & Heath (2010). The parametrization in (4.3) is chosen

such that the long run mean for the process (Y )q equals one. More precisely, one

obtains by the ergodic theorem

lim
τ→∞

1

τ

∫ τ

0

(Ys)
qds = 1 P-a.s. (4.6)

The stationary density of the square root process Y is a gamma density with δ

degrees of freedom and long run mean given in (4.4). This density generates for the

normalized index and, thus, for the index, long term log-returns that when estimated
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appear to be Student-t distributed with δ degrees of freedom. This Student-t dis-

tribution results as a normal mixture distribution, where the inverse of the variance

of the log-returns is proportional to Yτ . The square root process has a stationary

gamma density with δ degrees of freedom. In this manner, the qth power of the

square root process in (4.1) accommodates the part of the empirical stylized fact

(iii), which concerns the observed Student-t distribution for longer term returns.

Due to the negative ”dependence” between normalized index and its volatility in τ -

time one models automatically the observed slight negative skewness of log-returns,

expressed in the stylized empirical fact (iii).

The first component of the model, the qth power of the square root process Y

describes how the normalized index reverts in τ -time back to its long term mean.

This process models in τ -time the overall long term feedback mechanism of the

normalized index, which brings in the long run the aggregate wealth back into the

range of its long term average level. Furthermore, it ensures that the variance of

increments of aggregate wealth is in τ -time proportional to total wealth.

Market Activity Time

Let us now focus on the second component of the model. According to the stylized

empirical fact (iii), a Student-t distribution has to be obtained also when fitting

short term index returns. Therefore, we introduce in this subsection market activity

to reflect human behavior in economic activity and trading, which exaggerates the

movements of volatility in reaction to moves of the normalized index.

The market activity process M = {Mt, t ≥ 0}, reflects also the observation

expressed in the stylized empirical fact (vii), where the market reacts to a major

decrease in the level of the normalized index with significantly increased market

activity. Trading activity is known to increase in relative terms when an index is

falling and to decrease when it is rising, see e.g. Ané & Geman (2000). This results

in speeding up or slowing down, respectively, the time scale under which the above

discussed natural normalized index moves. To model conveniently the cumulative

effect of speeding up and slowing down market activity, the above mentioned τ -time

has been introduced, which is integrated market activity and called market activity

time.

More precisely, we model the market activity time τt via the ordinary differential
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equation

dτt = Mtdt (4.7)

for t ≥ 0 with τ0 ≥ 0. Here we call the derivative of τ -time with respect to calendar

time t the market activity dτt
dt

= Mt at time t ≥ 0. We will later see that Mt is, in

reality, a fast moving process when compared to the square root process Yτt . The

stylized empirical fact (iii) requests that not only longer term log-returns but also

short term returns of an index are estimated as being Student-t distributed. As we

can see in Fig. 4.2, the overall long term feedback mechanism of Yτt moves relatively

slowly. Therefore, the market activity Mt needs to evolve such that it generates,

via a mixture of normals, short term log-returns that when estimated indicate a

Student-t distribution. Consequently, the market activity process M needs to have

as stationary probability density an inverse gamma density.

Additionally, we argued earlier that potentially only the continuous nondiversi-

fiable uncertainty should drive both the normalized index and the market activity.

The squared volatility with respect to τ -time equals 1
Yτ
, where Yτ is the square root

process in (4.3). According to the stylized empirical fact (vii) the moves of the

volatility in τ -time are in t-time exaggerated. Therefore, we model market activity,

similarly to squared volatility, as the inverse of a square root process. More precisely,

the process 1
M

= { 1
Mt

, t ≥ 0} is assumed to be a fast moving square root process in

t-time with the dynamics

d

(
1

Mt

)
=

(
ν

4
γ − ε

1

Mt

)
dt+

√
γ

Mt
dWt, (4.8)

for t ≥ 0 with M0 > 0, where γ > 0, ν > 2 and ε > 0. The Brownian motion

W = {Wt, t ≥ 0} in t-time models the continuous nondiversifiable uncertainty of

the market in t-time, and will be linked below in relation (4.11) to W (τt), which is

the respective Brownian motion in τ -time. It is straightforward to confirm that the

stationary density of the resulting market activity process M is an inverse gamma

density with ν degrees of freedom. The resulting stationary density is given by the

formula

pM(y) =

(
2ε
γ

) 1
2
ν

Γ
(
1
2
ν
) y− 1

2
ν−1 exp

{
− 2ε

γ

1

y

}
, (4.9)

for y ≥ 0; see e.g. Section 12.4 in Platen & Heath (2010). As the result of normal

mixing, this density generates short term index log-returns that when estimated,
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appear as being Student-t distributed with about ν degrees of freedom. One can

show in the given parametrization that the long term average level for the inverse

of market activity equals ν
4
γ
ε
, that is,

lim
t→∞

1

t

∫ t

0

1

Ms
ds =

ν

4

γ

ε
P-a.s. (4.10)

The Brownian motion W (τ), which models in market activity time the long term

nondiversifiable uncertainty driving Yτ , is linked to the standard Brownian motion

W = {Wt, t ≥ 0} in t-time in the following manner:

dW (τt) =

√
dτt
dt

dWt =
√

MtdWt (4.11)

for t ≥ 0 with W0 = 0.

The proposed index model is a Markovian two-component model, driven only

by one Wiener process W = {Wt, t ≥ 0}. The two components are Yτt and
1
Mt

that

solve the SDEs (4.3) and (4.8), respectively. When substituting in the SDE (4.3)

formally τ by τt, to characterize together with the SDE (4.8) the dynamics of the

two-dimensional state variable (Yτt ,
1
Mt

), the model is only driven by the Brownian

motion W = {Wt, t ≥ 0}. The full specification of the dynamics of the model is,

therefore, given by the two SDEs (4.3) and (4.8) together with the respective initial

conditions, where W = {Wt, t ≥ 0} models nondiversifiable uncertainty in t-time.

We can now study and apply the proposed model in many ways. First, let us

study the resulting expected rate of return and volatility of the discounted index.

Expected Rate of Return

By application of the Itô formula one obtains from (4.1), (4.2), (4.3), (4.7) and (4.8)

for the discounted index St the SDE

dSt = St (μtdt+ σtdWt) (4.12)

for t ≥ 0, with initial value S0 = A0(Y0)
q and expected rate of return

μt =

⎛⎝ a

Mt
− q

2

(
Γ
(
δ
2
+ q
)

Γ
(
δ
2

) ) 1
q

+

(
δ

4
q +

1

2
q(q − 1)

)
1

MtYτt

⎞⎠Mt. (4.13)

Obviously, short term index log-returns are approximately uncorrelated, as requested

by the stylized fact (i); see also Fig. 4.21.
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Volatility

The volatility with respect to t-time emerges in the form

σt = q

√
Mt

Yτt

. (4.14)

Obviously, it is a function of the two square root processes Yτt and
1
Mt

.

Autocorrelation

Due to the volatility (4.14), the absolute returns of S near time t are on average

approximately proportional to
√

Mt

Yτt
. Consequently, since Y is slow moving the

correlation for two absolute log-returns near time t and t + T , respectively, is for

small T determined by the correlation between
√
Mt and

√
MT , which can be shown

to decline exponentially fast since M is a fast moving scalar diffusion process; see

(4.8). On the other hand, when the time lag T is relatively large, then the corre-

lation between the respective absolute returns is approximately that between 1√
Yτt

and 1√
Yτt+T

. As we have discussed earlier, 1√
Yτt

is moving rather slowly and the re-

sulting correlation remains substantial even after several months. Similar to Fig.4.4

the Fig. 4.22 shows the average autocorrelation of absolute returns under the pro-

posed model obtained from simulated data, which confirms the above remarks. This

reflects the stylized empirical fact (ii), where the correlation of absolute log-returns

does not die out fast and is also not exponentially declining.

Obviously, the volatility is stochastic and generates under the model clusters of

outbursts of volatility, as will be also confirmed when simulating paths of the index

and its corresponding volatility in Section 4.5; see e.g. Fig. 4.15. This property

accommodates the stylized empirical fact (iv).

3/2 Volatility Model

Of particular interest for the long term dynamics of squared volatility under the

proposed model is by relation (4.14) the inverse 1
Yτ

of the square root process with

respect to τ -time. By (4.3) one obtains via the Itô formula the SDE

d

(
1

Yτ

)
=

⎛⎝1

2

(
Γ
(
δ
2
+ q
)

Γ
(
δ
2

) ) 1
q
1

Yτ

+

(
1− δ

4

)(
1

Yτ

)2
⎞⎠ dτ −

(
1

Yτ

) 3
2

dW (τ) (4.15)
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for τ ≥ 0. This means that the factor 1
Yτ

in the formula for squared volatility

σ2
t =

q2Mt

Yτt

, (4.16)

see (4.14), follows in τ -time a 3
2
-volatility model, which was suggested e.g. in Platen

(1997). Some versions of 3
2
-volatility models appeared, for instance, in Lewis (2000)

and more recently in Carr & Sun (2007). Interestingly, the latter authors provided

arguments from the perspective of volatility derivative pricing and hedging which

support the choice of a 3
2
-volatility model for a diversified index. We will see in

Section 4.5 that our model is in line with empirical evidence on volatility deriva-

tives. Note that the long term average level for 1
Yτ

can be calculated and equals

2
δ−2

(
Γ( δ

2
+q)

Γ( δ
2)

) 1
q

. One obtains by the ergodic theorem

lim
τ→∞

1

τ

∫ τ

0

1

Ys
ds =

2

δ − 2

(
Γ
(
δ
2
+ q
)

Γ
(
δ
2

) ) 1
q

P-a.s.. (4.17)

Finally, we recall that due to the perfect negative ”dependence” between the

normalized index and its volatility the log-returns of the index exhibit under the

model a slight negative skew, which has been mentioned under the stylized empirical

fact (iii).

Market Activity

By the fact that Mt has an inverse gamma density with ν degrees of freedom and

negative first moment ν
4
γ
ε
, the mean of Mt is explicitly known. By the ergodic

theorem this mean amounts to

lim
t→∞

1

t

∫ t

0

Msds =
4

ν − 2

ε

γ
P-a.s. (4.18)

Hence, for the proposed model one obtains the asymptotic relation

lim
h→∞

τt+h − τt
h

=
4

ν − 2

ε

γ
P-a.s. (4.19)

for t ≥ 0. Thus, increments of market activity time can be approximated asymp-

totically over long time periods h in t-time by the formula

τt+h − τh ≈ 4

ν − 2

ε

γ
h (4.20)
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for h sufficiently large, h ∈ (0,∞). Therefore, when quantifying long-term effects,

as is the case for many long dated derivatives, it may turn out to be sufficient to

employ only average τ -time by using the approximation

τt ≈ τ0 +
4

ν − 2

ε

γ
t, (4.21)

t ≥ 0. This is a convenient property of the model. Essentially, in the long run

we have only to deal with a one component model, characterized by the square

root process Y , which is highly tractable and runs then in average τ -time for long

dated contracts. For short term index derivatives the market activity is relevant and

cannot be neglected.

Due to the volatility formula (4.14) and the SDEs (4.3) and (4.8) the fluctua-

tions of both processes 1
Yτt

and Mt are similarly driven by the fluctuations of the

same Brownian motion, W = {Wt, t ≥ 0}. Consequently, one obtains a much

stronger reaction of the volatility process to extreme moves of the nondiversifiable

uncertainty W than would be typical for standard scalar diffusion models or sub-

ordinated stochastic volatility models with independent subordinator. The product

of two scalar diffusions in the formula (4.14) for the volatility makes the proposed

model very realistic, as will be confirmed in Section 4.4. It encapsulates the fact

that there is a close relationship between the random moves of the normalized index

value Yτt , that is, the index itself and those of the market activity Mt, which is

largely driven by the behavior of market participants.

The proposed model can easily be made more flexible via extensions, e.g. al-

lowing parameters to be time dependent, including a more flexible local volatility

function, introducing a second Brownian motion or adding jumps. However, in Sec-

tion 4.4 we will be able to demonstrate when fitting the model that we can reduce

the number of flexible parameters and extract a parsimonious stylized model, which

represents the affine aggregate wealth dynamics conjectured in Section 4.1.

Now, we are going to discuss the proposed model in a financial modeling frame-

work that goes considerably beyond the currently widely used classical no-arbitrage

framework.
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Benchmark Approach

The benchmark approach, see Platen (2011) and Platen & Heath (2010), is a general

financial market modeling framework that goes beyond the classical no-arbitrage

paradigm; see Ross (1976), Harrison & Kreps (1979) and Delbaen & Schachermayer

(1994). The approach uses the numéraire portfolio (NP), see Long (1990), as central

building block. It has been shown in Chapter 3 (see also Platen & Heath (2010) and

Platen & Rendek (2012b)) that a diversified equity index, like the MCI, is a good

proxy of the NP. Consequently, under the proposed model the SDE (4.12) could be

interpreted as the SDE describing the evolution of the discounted NP of the given

investment universe.

Due to the SDE (4.12) and the Itô formula, the dynamics for the benchmarked

savings account B̂t =
1
St
, which is the inverse of the discounted NP, is characterized

by the SDE

dB̂t = B̂t

((−μt + σ2
t

)
dt− σtdWt

)
, (4.22)

for t ≥ 0, see (4.13) and (4.14). It follows for

σ2
t ≤ μt (4.23)

for all t ≥ 0 that the benchmarked savings account B̂t forms an (A, P )-super-

martingale. This is a stochastic process where its current value is greater or equal

than its expected future values. This supermartingale property is the key property

of any benchmarked nonnegative security under the benchmark approach, see Platen

(2011). Since a nonnegative supermartingale that reaches zero will always remain

at zero, this property eliminates any possibility for, so called, strong arbitrage in the

sense of Platen (2011), which is equivalent to the notion of arbitrage in Loewenstein

& Willard (2000).

Assumptions on the Model

To guarantee almost surely in the proposed model the absence of strong arbitrage,

that is the inequality (4.23), one has by (4.13) and (4.14) to satisfy the following

two conditions:

Assumption 1. First, the dimension δ of the square root process Y needs to satisfy
the equality

δ = 2(q + 1). (4.24)
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Assumption 2. The long term average net growth rate a with respect to τ -time has
to satisfy the inequality

q

2

(
Γ (2q + 1)

Γ (q + 1)

) 1
q

≤ a. (4.25)

Assumption 1 is necessary for the supermartingale property of the benchmarked

savings account. Assumption 2 guaranties then that the long term average net

growth rate, denoted by a, is high enough to make the benchmarked savings ac-

count a supermartingale. These two assumptions guarantee jointly that the savings

account, when denominated in units of the NP, becomes an (A, P )-supermartingale

under the proposed model. This means, B̂t is then satisfying the SDE

dB̂t = B̂t

((
q

2

(
Γ (2q + 1)

Γ (q + 1)

) 1
q

− a

)
Mtdt− q

√
Mt

Yτt

dWt

)
(4.26)

with zero or negative drift for all t > 0. The latter property makes B̂ an (A, P )-

supermartingale.

Beyond Classical No-arbitrage

If equality holds in relation (4.25), then the SDE (4.26) is driftless. Note however,

that this does not mean that B̂ forms then a true martingale. It is in this case a

nonnegative strict local martingale and, thus, a strict supermartingale and not a

martingale.

In a complete market the benchmarked savings account, normalized to one at the

beginning, represents the Radom-Nikodym derivative for the risk neutral measure.

Under the classical paradigm the benchmarked savings account would have to be a

true martingale; see Delbaen & Schachermayer (1994). It is important to emphasize

that we identified here a model that goes beyond classical no-arbitrage settings. It

goes even beyond the benchmark approach as formulated in Platen & Heath (2010),

where the benchmarked savings account is assumed to be a local martingale. For the

proposed model this may be only the case when equality holds in (4.23). However,

the proposed model is well covered by an extension of the benchmark approach

formulated in Platen (2011). The SDE for the benchmarked savings account does

not need to be driftless. It can have a negative drift. We will see in Section 4.4

the fit of the model to historical data, where a clear negative drift is evident for

the analyzed index. This leads the model far away from the classical no-arbitrage
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paradigm, and allows it to explain under the benchmark approach ”puzzles” and

”anomalies” that have been pointed out in the literature when applying the classical

no-arbitrage approach. The following indicates such a ”puzzle”.

Risk Premium Puzzle

By applying the Assumptions 1 and 2 to the proposed model, one obtains by (4.13)

the risk premium

μt = σ2
t +Mt

(
a− q

2

(
Γ(2q + 1)

Γ(q + 1)

) 1
q

)
≥ σ2

t (4.27)

for all t ≥ 0. Obviously, since the discounted index is the NP in our complete

market, μt can be here higher than the classical risk premium σ2
t of the NP, which

is the square of the volatility of the NP. Under the benchmark approach, described

in Platen (2011), such a higher risk premium is permitted. We emphasize that the

risk premium puzzle, see Mehra & Prescott (1985), is in our generalized benchmark

framework not a ”puzzle”. It simply states the fact that the expected return of the

NP is in reality larger than the square or its volatility. There is no economic reason to

stop the expected return to reach a certain level. The classical no-arbitrage paradigm

is making restrictive assumptions that do not coincide with reality. For empirical

reasons we will have to go in our modeling beyond classical no-arbitrage assumptions

to capture realistically the observed long term dynamics of the aggregate wealth.

Pricing of Derivatives

Under the benchmark approach one uses the NP as numéraire or benchmark. The

pricing of derivatives applies the real world pricing formula, see Platen (2011), which

yields the benchmarked derivative price as real world conditional expectation of the

corresponding benchmarked payoff. To calculate such a price for a contingent claim

that involves the discounted NP, one can employ the proposed model. The transition

density of the square root process in τ -time is a non-central chi-square density with

δ = 2(q + 1) degrees of freedom, which makes this component of the model very

tractable. For many long dated contingent claims the τ -time can be expected to be

well approximated via average τ -time, according to (4.20).

For the pricing of short dated derivatives under the proposed model, numeri-

cal techniques can be employed, e.g. similar to those described in Section 13.4 in
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Platen & Heath (2010). The proposed model can be expected to recover well the

typically negatively skewed implied volatility surface of index options. The random

fluctuations of market activity will turn out to be crucial for realistic modeling of

short dated index derivatives. They generate the observed strong curvature of the

implied volatility surface of index options near the strike and close to maturity.

The proposed model uses only one Brownian motion to drive the two diffusion

processes. The three initial and five structural parameters are: the parameter A ≥ 0

in (4.2) for fitting the initial value of the average exponential growth part; the initial

value M0 > 0 of the market activity; the initial value Y0 > 0 of the square root

process; the long term average net growth rate a > 0 (with respect to τ -time) of

the discounted index; the power q > 0 of the square root process when forming the

normalized index; the parameter q determines also the dimension δ = 2(q + 1) > 2,

see (4.24), of the square root process; the degrees of freedom ν > 2, see (4.8), of the

stationary gamma density of the inverse of the market activity; the reference level

parameter ε for the market activity, see (4.8) and (4.20); and the scaling parameter

γ > 0 in the diffusion coefficient of the SDE (4.8) for the inverse of market activity.

All eight parameters have a clear meaning and can be directly estimated from time

discrete observations of the index, as will be demonstrated in the next section.

Moreover, we will demonstrate in the next section that by reasoning, as presented

in Section 4.1, and by empirical evidence one can reduce the number of structural

parameters to three.

4.4 Fitting the Model

It is paramount that the proposed model can be easily fitted in a robust manner

to historical index data. This section illustrates a simple and robust step by step

method for fitting the proposed model to historical index data. It will turn out that

we can fix some of the parameters, which will yield a stylized version of the model.

Below we separate the estimation of the parameters into the following steps:

Step 1: Normalization of Index

A linearly regressed function of calendar t-time to the path of the logarithm of the

daily observations of the discounted MCI, as shown in Fig. 4.1, yields the straight
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Figure 4.1: Logarithm of the discounted MCI and linear fit

line 4.178+0.048t. The normalized MCI is then obtained by dividing the discounted

index by the long term approximation for the exponential function Aτt , given on the

right hand side of relation (4.28), obtained from (4.2) using (4.20). This means, we

set

Aτt ≈ A exp
{ 4aε

γ(ν − 2)
t
}
, (4.28)

for t ≥ 0, and read off from the above mentioned linear regression the estimate

4aε
γ(ν−2)

≈ 0.048. The resulting discounted MCI (Yτt)
q is plotted in Fig. 4.2 with

respect to physical t-time, where the initial parameter A = 65.21 is estimated by

making the average of (Yτt)
q approximately to one, as required by (4.6).
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Figure 4.2: Normalized MCI
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Figure 4.3: Estimated trajectory of the market activity M

Step 2: Power q

We recall our results for the normalized and scaled log-returns for the 26 currency

denominations of the MCI, the logarithm of their histogram was displayed in Fig.4.5.

Maximum-likelihood Student-t fits are provided in Table 4.1 for daily, weekly and

fortnightly log-returns. They estimate about four degrees of freedom. We empha-

sized that one needs a very large time window to estimate with high significance the

degrees of freedom. One can see later in Fig. 4.23 and Table 4.3, using simulated

data under the proposed model with δ = 4 that for 40 years of daily observations

it is only possible to estimate the degrees of freedom of log-returns with an error

where the estimate could easily yield one degree more or less than four. For instance,

the less than 40 years of daily data for the US denomination of the MCI are still

not sufficient for the task of estimating the degrees of freedom more precisely than

expecting it to be between 3 and 5. Fortunately, it will turn out in our step by step

estimation procedure that there is not much influence of the choice by the degrees

of freedom δ = 2(q + 1) on the estimated values of the other parameters when fit-

ting the model. Consequently, when following the economic arguments in Section

4.1, which conjectured asymptotically a time transformed square root process for

the dynamics of the normalized index, there is a reason for setting q = 1, which

provides the square root in the diffusion coefficient of the normalized index. There-

fore, according to the theoretically derived aggregate wealth dynamics we specify

the proposed model by fixing the power q to one. Thus, the dimension of the square

root process amounts to δ = 4 because of (4.24).
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Step 3: Observing Market Activity

In Ané & Geman (2000) it has been shown that when subordinating intraday log-

returns on observed trading activity, one obtains Gaussian distributed conditional

returns. This is what our proposed model would predict for intraday log-returns.

Intraday data were not available to us for sufficiently long time periods that we

could use to fit our model. Instead we construct an observable proxy for market

activity in the following way: By (4.3), (4.7) and an application of the Itô formula,

one obtains as time derivative of the quadratic variation for
√

Yτt the expression

d[
√
Y ]τt
dt

=
1

4

dτt
dt

=
Mt

4
, (4.29)

which is proportional to market activity. The observed market activity time τt =∫ t

0
Msds is shown in Fig. 4.6. It is a well observable process which tells us with its

slope when market activity is high or low. In order to obtain an estimated proxy

for the trajectory of the market activity process M = {Mt, t ≥ 0}, appearing in

(4.29), we perform some exponential smoothing of the empirical derivative of the

quadratic variation [
√
Y ]t. Of course, other smoothing methods could potentially

be used. However, we realized that most smoothing methods yielded very similar

outcomes. We found the standard exponential smoothing method to be sufficient

and rather robust with respect to the choice of the weight parameter α > 0, which

will be specified below.

The estimation of the trajectory of the market activity process M is performed

using daily observations. First, the ”raw” time derivative Qt =
d[
√
Y ]τt
dt

at the ith

observation time t = ti is estimated from the finite difference

Q̂ti =
[
√
Y ]τti+1

− [
√
Y ]τti

ti+1 − ti
(4.30)

for i ∈ {0, 1, . . . }. Second, exponential smoothing is applied to the observed finite

differences according to the recursive standard moving average formula

Q̃ti+1
= α
√
ti+1 − tiQ̂ti + (1− α

√
ti+1 − ti)Q̃ti , (4.31)

i ∈ {0, 1, . . . }, with weight parameter α > 0. It is clear that the above smoothing

depends on the observation frequency and the weight parameter with which new

values enter the moving average calculation. We found that a smoothing parameter
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of about α ≈ 0.92 delivered a robust estimate for the trajectory of the market

activity process. This parameter and its neighboring values provided for daily but

also for the two-day observation frequency a very similar trajectory that we use here

as proxy for the discretely observed market activity process M . Fig.4.3 displays the

resulting trajectory of Mt for daily observations, when interpreting this value as

estimate of 4 d
dt
[
√
Y ]τt , for t ≥ 0. Here an initial value of M0 ≈ 0.0175 emerged and

the time average of the trajectory of (Mt)
−1 amounted to 113.92.

The estimated trajectory of the market activity process, shown in Fig. 4.3, ap-

pears to be that of a rather “fast” moving process when compared with the trajectory

of the square root process Y , representing the normalized MCI shown in Fig. 4.2.

This means, we are dealing in our model with two different time scales. These are

the t-time and the τ -time. The “slow” moving square root process Y moves in

τ -time and is modeled according to the affine nature of aggregate wealth dynam-

ics. The “fast” moving market activity process M evolves in t-time and models the

reactions of market participants to changes in the level of the normalized index, gen-

erating some exaggerations in volatility. Changes in market activity are triggered

by observed random ups and downs of the normalized index. One can see this when

comparing Fig. 4.2 and Fig. 4.3. Market activity, when compared to the squared

volatility 1
Yτt

in τ -time, appears to move mostly together up and down. Therefore,

it appears sufficient that we assumed that, all fluctuations in the model are driven

by the nondiversifiable uncertainty of the market. It seems to be difficult to find evi-

dence that the driving uncertainty for the normalized index and the market activity

have to be different.

Step 4: Parameter γ

Now, we would like to identify the parameter γ in the diffusion coefficient in the SDE

(4.8) for the inverse 1
Mt

of the market activity process. Fig. 4.4 plots the quadratic

variation of the square root of the estimated process 1
M
. Given that 1

M
is assumed

to be a square root process, this quadratic variation should be ideally a straight line.

In a first approximation the graph in Fig.4.4 confirms this. However, as can be seen

from (4.4) and will be shown in Section 4.6 with simulated data, such discretely

formed proxy for the quadratic variation, derived from the estimated proxy of 1
M
, is

not a perfect straight line, see Fig. 4.19. The deviations result from the procedure
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Figure 4.4: Quadratic variation of the square root of the estimated trajectory of 1
M

with linear fit
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Figure 4.5: Histogram of market activity M with inverse gamma fit

of exponential smoothing when estimating the proxy for the market activity process

M . We assume now that a straight line can be fitted (by linear regression) to such

observed quadratic variation and the parameter γ can be estimated from the slope

of this line. Our estimate for the slope equals here 66.28. Since under the proposed

model we have d
dt

[√
1
M

]
t
= 1

4
γ, we obtain γ ≈ 265.12.

Step 5: Parameters ν and ε

Fig. 4.5 plots the histogram for the trajectory of the proxy of the market activity M

using daily observations. This fit appears to be realistic. The maximum likelihood

estimation of the stationary inverse gamma density of the market activity process

yields ν ≈ 3.75 degrees of freedom and mean 4ε
γ(ν−2)

≈ 0.0175; see (4.18). Since

γ ≈ 265.12 this yields ε ≈ 2.18.
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The stylized fact (iii) requests for long term and short term log-returns of the

discounted index a Student-t distribution with about the same degrees of freedom.

Therefore, we simplify the model further. For the stylized version of the model we

assume that it generates short term log-returns with the same degrees of freedom

as long term log-returns. This means, we have set in the stylized version of the

proposed model ν = δ = 4. This reduces the number of parameters to six that have

to be estimated for the stylized version of the model.

Step 6: Long Term Average Net Growth Rate

Since we have now estimated the parameters γ, ν and ε, and know that dτt
dt

≈ 4ε
γ(ν−2)

≈
0.0175, it follows from (4.29) and the slope 0.048 ≈ a 4ε

γ(ν−2)
of the trend line in

Fig.4.1 that for the long term average net growth rate we have an estimate of about

a ≈ 2.55. This estimated value of a satisfies clearly the inequality (4.25), where its

left hand side equals 1
2
Γ(3)
Γ(2)

= 1. Most importantly we observe that when the MCI

is interpreted as the numéraire portfolio (NP) under the benchmark approach, the

benchmarked savings account is by (4.25) an (A, P )-supermartingale with negative

drift under the proposed model. It seems to be far from being a local martingale,

which by (4.25) would have been the case for a parameter value a near the level one.

The fact that the estimate of the growth rate a is significantly greater than the level

one, creates a challenge for classical pricing and hedging under the fitted model.

However, one can employ the generalized version of the benchmark approach with

the real world pricing formula, which has been outlined in Platen (2011).

We have now determined all parameters needed for the stylized version of the

model. The resulting six parameter estimates are: A ≈ 65.21, Y0 ≈ 1.53, M0 ≈
0.0175, a ≈ 2.55, ε ≈ 2.18 and γ ≈ 265.12. Note that we have reduced the orig-

inally eight parameters of the proposed model to six parameters, where we fixed

q = 1.0, δ = 4.0 and ν = 4.0. Since the three parameters A, Y0 and M0 of the

model are initial parameters, the model has become rather parsimonious, with only

three structural parameters remaining. All three structural parameters have a clear

economic meaning. The resulting model is consistent with the theoretically derived

affine nature of aggregate wealth dynamics. Note that he SDE (4.3) for the normal-

ized index in τ -time has no parameter in the drift or diffusion coefficient that has to

be estimated. This means, all three parameters in the SDE (4.2) for the normalized
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aggregate wealth became identified as one. Therefore, we found that normalized

aggregate wealth in market activity time follows most likely a very particular square

root process, which is, fortunately, very tractable.

In case one restricts the dynamics of the benchmarked savings account to a

process, that is a local martingale, the case that is assumed in Platen & Heath

(2010), one is forced to set a = 1, and has only the two structural parameters ε and

γ remaining. In this case the stylized model becomes a five parameter model with

two structural parameters and three initial parameters.

One can apply the fitted stylized model in many ways. As one possible applica-

tion let us visualize for the stylized model the trajectories of the resulting market

activity time and volatility, respectively. In Fig. 4.6 we show the market activity

time, the τ -time, as it emerges from our estimation. One notes periods of high and

low market activity generating steeper and flatter slopes, respectively, of the τ -time.

The estimated τ -time is obtained directly from the observed quadratic variation of

the square root of the normalized index Y when multiplied by four. One can use

the modeled state variables Yτt and
1
Mt

for pricing and hedging of derivatives and for

measuring and managing risk under the benchmark approach, see Platen & Heath

(2010) and Platen & Bruti-Liberati (2010).

1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 2013
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.6: Market activity time

With the proposed model one can measure many quantities that are of interest

for valuation and risk management. For instance, in recent years volatility deriva-

tives became an important asset class. Their underlying is a volatility index of a

diversified index.
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Figure 4.7: Calculated volatility of the discounted MCI for daily observations

For some indices the respective volatility index is available and expresses the

market’s view on where the (hidden) volatility may be. By formulas (4.14) and

(4.29)-(4.31) the volatility of the discounted MCI equals approximately

σt ≈ 2

√
Q̃t

Yτt

. (4.32)

Fig. 4.7 plots the calculated volatility in t-time of the discounted MCI, obtained

via formula (4.32). The volatility displayed in Fig. 4.7 is obtained from daily ob-

servations, for the period from 01/01/1973 until 10/08/2012. The sample mean of

the calculated volatility in t-time equals 0.119 for the given period, which yields

an estimated average volatility of about 11.9% for the MCI. This is also what one

estimates from the observed log-returns of the MCI.

The proposed stylized model has been fitted by the same procedure to various

diversified equity indices, including the EWI11440 constructed in Section 3.4, the

EWI104s analyzed in Section 2.3-2.6 and the MSCI world index. In each case we

obtained robust results, similar to those obtained above for the MCI. By assuming

that the discounted index evolution follows also in future similar dynamics with the

estimated constant parameters, one obtains a probabilistic description for the future

dynamics of the discounted index. Additionally, one can calibrate the model to

observed index derivative prices and obtains in this case a reflection of the market’s

view on the future evolution of the index and its volatility.

To demonstrate along these lines that the proposed stylized model and fitting

procedure applies well, even to some regional index and its options, we report in
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the next section results for the S&P500, where we compare the calculated volatility

with the VIX, the volatility index of the S&P500.

4.5 Modeling the S&P500 and its Volatility Index

VIX

Let us now study the case of an important regional market capitalization weighted

equity index, the discounted S&P500. We consider the same time period from

01/01/1973 until 10/08/2012.

Fig. 4.8 plots the logarithm of the discounted S&P500 together with a linearly

regressed trendline in calendar t-time, yielding the straight line 3.95+0.0378t. This

straight line provides the estimate for the parameter A with a value of about A ≈
52.09 and the estimated net growth rate in t-time at about a level of 4εa

γ(ν−2)
≈ 0.0378,

see (4.28). The normalized S&P500 is then obtained by dividing the discounted

S&P500 by the exponential function Aτt ≈ 52.09 exp{0.0378t}, for t ≥ 0. Using

the proposed stylized model, the resulting normalized S&P500, denoted by Yτt, is

plotted in Fig. 4.9 with respect to calendar t-time, where we set Y0 = 2.27.
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Figure 4.8: Logarithm of the discounted S&P500 and linear fit

Fig. 4.10 plots the estimated market activity process M obtained from the nor-

malized discounted S&P500 with daily observations shown for the period from 1973

until 2012. The process M was obtained by the same steps and using the same

weight parameter α = 0.92 for exponential smoothing, as in the case of the MCI.

From the trajectory of the estimated market activity process M we obtain ε ≈ 2.15,

γ ≈ 172.3 and consequently a ≈ 1.5. Note that in this case the Assumption 2 is
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Figure 4.9: Normalized S&P500
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Figure 4.10: Estimated market activity process M for the S&P500 from daily data
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Figure 4.11: Logarithms of scaled VIX and calculated volatility of the discounted
S&P500

approximately satisfied, and one may use in relation (4.25) the equality sign. This

means, the benchmark approach, as described in Platen & Heath (2010), is poten-
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tially applicable for the S&P500 as proxy of the NP of the US market, and the

stylized model employs then only five parameters.

The volatility index VIX is provided by the Chicago Board Options Exchange.

It is the volatility index for the S&P500. The literature points out that the VIX

is a biased estimator of the volatility implied from index options, see e.g. Fleming,

Ostdiek & Whaley (1995). Hence, it is common to match the short term at the

money implied volatility by scaling the VIX. Typically, the VIX, which stems from

daily observations, is known to multiply the implied volatility by a factor of about

1.2; see e.g. Blair, Poon & Taylor (2001). That is, when denoting by VIXt the

value of the quoted VIX at time t, then one obtains the scaled VIX value Vt via the

formula

Vt =
VIXt

100

1

1.2
, (4.33)

for t ≥ 0, which provides approximately the at the money implied volatility of short

term S&P500 options.

Fig. 4.11 plots the calculated volatility in calendar t-time of the discounted

S&P500, calculated according to formula (4.32), and obtained from daily obser-

vations, for the period from 02/01/1990 until 10/08/2012. The sample mean of the

calculated volatility in t-time equals 0.1625 for the given period. For comparison, the

daily data for the logarithm of the scaled VIX, according to (4.33), are also shown

in Fig. 4.11. The sample mean of the scaled VIX is with 0.1707 close to that of the

calculated volatility. The logarithm of the scaled VIX behaves in Fig.4.11 very simi-

larly to the logarithm of the calculated volatility of the discounted S&P500, obtained

under the proposed stylized model. To generate the volatility, the proposed model

combines in formula (4.14) the normalized discounted S&P500, modeled by Yτt and

displayed in Fig. 4.9 with the market activity process M , displayed in Fig. 4.10. As

one can see, via formula (4.14) the proposed model recovers visually with good ac-

curacy the trajectory of the scaled VIX from the trajectories of the two observable

processes Yτt and Mt. We emphasize that the proposed stylized model is parsi-

monious by construction and uses only two constant structural parameters for its

characterization. These parameters seem to remain the same also over long periods

of time. Furthermore, the model employs only one Brownian motion, which makes

it a one-factor model with two state variables.
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Since calculated volatility recovers the VIX accurately it can be expected to

recover also well short dated, close to at the money European option prices on the

S&P500 index.

4.6 Simulation Study

This section explains the steps we propose for the simulation of the stylized version

of the model. Both square root processes 1
M

and Y are simulated jointly by sam-

pling from their non-central chi-square transition density with the same sources of

randomness, see also Platen & Rendek (2009) or Platen & Bruti-Liberati (2010).

We will see that this simulation is performed without any error for 1
M

and almost

exactly for Y . The second part of this section checks for the seven stylized empirical

facts, listed in Section 4.2.

The following illustration of the simulation of the stylized version of the model

uses the six parameter values estimated in Section 4.4 for the MCI. The simulation

is performed using the following steps:

1. Simulation of the Process 1
M

The inverse 1
M

of the market activity process we have to simulate first. It is described

by the SDE (4.8) and is a square root process of dimension ν = 4.

This process can be sampled exactly due to its non-central chi-square transition

density of dimension ν = 4. That is, we have

1

Mti+1

=
γ(1− e−ε(ti+1−ti))

4ε

⎛⎝χ2
3,i +

(√
4εe−ε(ti+1−ti)

γ(1− e−ε(ti+1−ti))

1

Mti

+ Zi

)2
⎞⎠ , (4.34)

for ti = Δi, i ∈ {0, 1, . . . }; see also Broadie & Kaya (2006). Here Zi is an independent

standard Gaussian distributed random variable and χ2
3,i is an independent chi-square

distributed random variable with three degrees of freedom. Then the right hand

side of (4.34) becomes a non-central chi-square distributed random variable with

the requested non-centrality and four degrees of freedom.

A simulated path of Mti , according to (4.34), is displayed in Fig.4.12 for a period

of 40 years using the previously estimated parameters for the MCI. It resembles

the type of trajectory shown in Fig. 4.3 with more pronounced spikes than those

observed in Fig. 4.3 that were caused by the 1987 crash and the GFC in 2007/2008.
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We will see later that the estimated market activity obtained from the simulated

index resembles strongly the estimated trajectory of the market activity of the MCI,

displayed in Fig. 4.3, which showed less peaked spikes.
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Figure 4.12: Simulated path of M

2. Calculation of τ-Time

The next step of the simulation generates the market activity time, the τ -time. By

(4.7) one aims for the increment

τti+1
− τti =

∫ ti+1

ti

Msds, (4.35)

i ∈ {0, 1, . . . }. To avoid any anticipation of future uncertainty the integral on the

right hand side of equation (4.35) is numerically approximated by the product

Mti(ti+1 − ti). (4.36)

Fig. 4.13 displays the resulting τ -time, the market activity time, which resembles

well that shown in Fig. 4.6.

3. Calculation of the Y Process

The simulation of the Y process is very similar to the simulation of the square root

process 1
M
. Both processes are square root processes of dimension four and both are

driven by the same source of uncertainty. We therefore employ in each time step

the same Gaussian random variable Zi and the same chi-square distributed random

variable χ2
3,i, as in (4.34), to obtain the new value of the Y process,

Yτti+1
=

1− e−(τti+1−τti )

4

⎛⎝χ2
3,i +

⎛⎝√ 4e−(τti+1−τti)

1− e−(τti+1−τti)
Yτti

+ Zi

⎞⎠2⎞⎠ , (4.37)
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Figure 4.13: Simulated τ -time, the market activity time
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Figure 4.14: Simulated trajectory of the normalized index Yτt
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Figure 4.15: Simulated volatility of the index and simulated scaled volatility

for ti = Δi, i ∈ {0, 1, . . . }. Note that the difference τti+1
− τti was approximated

using in (4.36) the market activity of the previous step. For small step size the

approximation of (4.35) by (4.36) is rather accurate and we say that Yτt is here
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Figure 4.16: Logarithm of the simulated and calculated volatility

0 5 10 15 20 25 30 35 40
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.17: Differences of the logarithms of the simulated and calculated volatility
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Figure 4.18: Estimated market activity of the simulated index

almost exactly simulated. This is significantly better in accuracy over long time

periods than what discrete time approximations, in the sense of Kloeden & Platen

(1999), can deliver.
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Figure 4.19: Quadratic variation of the square root of the inverse of estimated market
activity

For simplicity, we choose in the simulation the initial value Y0 = 1. The resulting

trajectory of the normalized index process Y is exhibited in Fig. 4.14, which shows

strong similarity with Fig. 4.2. Interesting is that one observes from time to time

major sharp drawdowns in the simulated path. The accurate modeling of such

drawdowns is crucial for risk measurement.

4. Calculating the Volatility Process

One obtains the trajectory of the simulated volatility σt of the index by formula

(4.14). The resulting simulated trajectory of the volatility is displayed in Fig. 4.15.

For comparison, the same figure shows also the simulated ”scaled volatility” given by

the formula
√

2ε
γYτt

, which is the volatility resulting purely from the feedback mecha-

nism of the market with respect to ”average” τ -time. One notes that the simulated

volatility deviates significantly from the ”scaled simulated volatility”. One notes

in the simulated volatility the ”exaggerated” values above and below the ”scaled

simulated volatility”. This deviation is modeling the way how market activity is

evolving. It models overreactions (underreactions) in response to each downward

(upward) move of the index.

For comparison, Fig. 4.16 shows the logarithm of the simulated volatility dis-

played in Fig. 4.15 together with the logarithm of the calculated volatility according

to formula (4.32) by using the estimated market activity, which is first calculating

Q̃ from (4.30) and (4.31). These trajectories are visually similar but not identical.

The calculated volatility is smoother and lagging behind since it results from the
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Figure 4.20: Log-returns of the simulated index

smoothing we use to obtain the estimated market activity process. Additionally,

in Fig. 4.17 we show the differences between the logarithms of the simulated and

calculated volatility.

Fig. 4.18 shows the estimated market activity from the simulated index. We see

that the extreme spikes of the simulated M in Fig. 4.12 are substantially smoothed

in the estimated market activity shown in Fig.4.18. Fig.4.18 resembles well the esti-

mated market activity of the MCI in Fig. 4.3. Moreover, we calculate the quadratic

variation of the square root of the inverse of the estimated market activity from the

simulated index and plot it in Fig. 4.19. Note the strong similarity of this figure

to Fig. 4.4. It is important to take the effects of the smoothing into account when

interpreting the dynamics of the index and these of the observed quantities.

The above simulation has shown that the proposed stylized model generates

trajectories with visually very similar properties as observed from the MCI. Below

we will confirm that all listed stylized empirical facts, which are typical for most

diversified stock indices, are captured by the stylized model.

For the proposed stylized model we will now check the seven stylized empirical

facts, listed in Section 4.2. We will see whether its properties would allow one

to falsify the model. We employ the same standard statistical and econometric

techniques as used in Section 4.2. The daily observed index is simulated, as described

above, using the estimated parameters for the MCI. Fig. 4.20 displays the daily log-

returns of the simulated index, these resemble visually well those of Fig. 4.2.
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Figure 4.21: Average autocorrelation function for log-returns of the simulated index

(i) Uncorrelated Returns

Daily observed simulations of the equity index under the proposed model pro-

vide typical graphs of the Y process similar to those shown in Fig. 4.14. As

one should expect, due to the construction of the model there is practically

no correlation detectable between the log-returns over time. Fig. 4.21 displays

the average over 26 estimated autocorrelation functions for log-returns of the

simulated index, which rapidly falls to the level zero with more than 95%

significance, similarly as observed in Fig. 4.3.

(ii) Correlated Absolute Returns
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Figure 4.22: Average autocorrelation function for the absolute log-returns of the
simulated index
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In a similar manner also the average autocorrelation for the absolute log-

returns of the simulated index has been estimated. In Fig. 4.22 the average

of 26 estimated autocorrelation functions of absolute log-returns is displayed.

Similarly, as in Fig. 4.4, one observes that this average of sample autocor-

relations does not die away fast. Moreover, as in Fig. 4.4, the decay of the

autocorrelation does not seem to be exponential. Even for large lags of more

than one month there is still some significant autocorrelation present.

(iii) Student-t Distributed Returns
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Figure 4.23: Logarithm of empirical density of normalized log-returns of the simu-
lated index and Student-t density with 3.2 degrees of freedom

By the same maximum likelihood estimation method as employed earlier we

analyzed 40 years of daily log-returns of the simulated index. As expected

from the design of the model these appear to be distributed according to a

Student-t distribution with approximately four degrees of freedom. Fig. 4.23

displays the logarithm of the empirical density of simulated normalized index

returns displayed in Fig. 4.20. This figure shows also the logarithm of the

density of the Student-t distribution, which in this case was estimated with

3.2 degrees of freedom. The fit to the simulated data seems visually similarly

good as in Fig. 4.5. Note that even though the simulation was performed with

δ = 4 the estimated degrees of freedom of the Student-t density fitted to the

simulated data can easily be almost one degree different as in Fig. 4.23.

Additionally, Table 4.3 provides, similarly to Table 4.2, the test statistics for
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Table 4.3: Log-Maximum likelihood test statistic for different outcomes of the sim-
ulated normalized log-returns

Simulation Student-t NIG Hyperbolic VG ν

1 0.008934 37.474149 102.719638 131.240780 4.012850
2 11.485226 11.175028 96.457136 132.916256 3.450916
3 0.000000 100.928524 244.190151 294.719960 3.734148
4 9.002421 35.759464 347.060676 331.014904 2.579009
5 8.767003 11.551178 121.190482 144.084964 3.170449
6 0.401429 60.570898 205.788160 252.591737 3.432435
7 12.239056 4.354888 46.411554 78.273485 3.957696
8 1.693411 23.910523 94.408789 130.623174 3.849691
9 1.232454 47.830407 202.073144 237.168411 3.236322
10 0.000000 43.037206 128.807757 162.582353 3.774957
11 0.433645 47.782681 172.736397 208.847632 3.431803
12 0.000000 56.019354 146.077121 185.624888 3.899403
13 7.137154 48.219756 579.922931 477.383441 2.293363
14 5.873948 16.515390 107.770531 135.508299 3.388307
15 0.000000 54.718046 184.112794 217.304105 3.402049
16 6.982560 3.991610 29.192198 47.105125 4.268740
17 2.966916 22.914863 108.513143 138.044416 3.553629
18 0.000000 52.066364 129.790856 160.373085 3.959605
19 0.006909 39.568695 111.398645 143.914350 3.982892
20 0.000001 56.845664 169.915512 211.260626 3.651091
21 1.674578 17.681088 61.710576 90.679738 4.265834
22 14.010840 3.279722 47.433693 73.789313 3.770825
23 11.198940 12.074044 114.888817 143.800553 3.257146
24 0.455557 27.676102 86.841704 114.452947 4.006528
25 6.658059 13.403411 90.314637 119.523602 3.502497
26 19.812830 1.360441 37.443467 59.435233 3.821602

the Student-t fit and several other symmetric generalized hyperbolic distribu-

tions for 26 cases of 40 years simulated log-returns. We note that our esti-

mation provided in many simulations less than four degrees of freedom. This

means that there is variation in the estimation of the degrees of freedom and

the stylized model based on the theoretical understanding of aggregate wealth

dynamics cannot be easily falsified on this ground.

(iv) Volatility Clustering

Obviously, under the proposed model volatility is stochastic. A moving average

estimation of volatility from the simulated index log-returns results in the

volatility shown in Fig. 4.24. One clearly notes that this observed volatility

is indeed stochastic, and it shows clusters of higher values for certain random

time periods of time. Note that the graph in Fig. 4.24 is not exactly the

volatility that we can calculate under the model, because it is estimated as a

standard moving average from the index log-returns. The logarithm of the via

moving average estimated volatility is displayed in Fig. 4.26.
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Figure 4.24: Estimated volatility of the simulated index

The proposed model agrees with the stylized empirical fact (iv), which ex-

presses the growing consensus among practitioners and academic researchers

that volatility should be modeled as a stochastic process that generates occa-

sional outbursts of volatility clusters. Note that, in reality, one cannot fully

observe the hidden exact volatility. Fig. 4.17 illustrates the potential differ-

ence between the simulated volatility and our calculated volatility. In Fig.4.27

we show the differences between the logarithm of the simulated and the es-

timated volatility from squared index log-returns. When comparing Fig. 4.17

and Fig. 4.27 one notes that the calculated volatility, we propose in Section

4.4 is, in general, closer to the simulated volatility.

(v) Long Term Exponential Growth

In Fig.4.25 the logarithm of the simulated index has been displayed with its fit

to a straight line. Here the linear regression of the logarithm of the simulated

index provided the estimates with A = 64.07, 2aε
γ

= 0.05.

The logarithm of the simulated normalized index, ln(Y ), is displayed as upper

graph in Fig. 4.26. As requested, Y has a stationary density by construction.

(vi) Leverage Effect

Fig. 4.26 is plotting the logarithm of the simulated normalized index together

with the logarithm of its via standard moving average from squared log-returns

estimated volatility. By construction, under the proposed model the simulated
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Figure 4.25: Logarithm of simulated index with linear fit
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Figure 4.26: Logarithms of simulated normalized index and its estimated volatility
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Figure 4.27: Differences of the logarithms of the simulated and estimated volatility
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Figure 4.28: Boxplots of correlation coefficient obtained by methods 1-3

volatility, as given in formula (4.14), of the simulated index is perfectly nega-

tively ”dependent” on the normalized index. We pointed already out that our

calculated volatility lags slightly behind the simulated volatility, as shown in

Fig. 4.16.

Let us now perform the following study: We simulate 1000 trajectories of the

index and its volatilities and calculate the correlation coefficient between the

increments of the logarithm of the simulated index and the increments of the

logarithms of the three types of volatilities. These volatilities are obtained by

the following three methods:

1. The simulated volatility is obtained from the proposed model by first

simulating the market activity process M and then the normalized index

Y . The volatility is then obtained via formula (4.14).

2. The estimated volatility is obtained from exponential smoothing of squared

index log-returns via a moving average.

3. The calculated volatility is obtained from formula (4.32) by first calcu-

lating Q̃ from (4.30) and (4.31).

Fig. 4.28 shows the boxplots corresponding to the correlation coefficient ob-

tained for the volatilities calculated by the three methods. It is clear that

the correlation coefficient depends clearly on the method used for the calcula-

tion of the volatility even that graphs appear to be visually very similar. We
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observe on average −0.9656(−0.9679,−0.9632), 0.000605(−0.000645, 0.0019)

and −0.1073(−0.1112,−0.1035) of correlation (with the 99% confidence in-

terval shown in the brackets) between the increments of the logarithm of the

simulated index and increments of the logarithm of the volatility obtained by

the methods 1-3, respectively. This important effect has been pointed out in

the work by Ait-Sahalia, Fan & Li (2012). We argue in this chapter that there

is no need to introduce an extra independent Brownian motion as driver of

stochastic volatility of a diversified index even if one does not seem to ob-

serve perfect negative correlation between log-returns and estimated volatility

increments.

(vii) Extreme Volatility at Major Downward Moves

In Fig. 4.26 one observes that the logarithm of the volatility increases more

than the logarithm of the simulated index moves down at major downward

moves of the index. In periods of ”normal” index fluctuations the magnitudes

of their movements have been more in line. This means, in times of crisis the

increase of the volatility is stronger under the proposed model than could be

typically generated by, say, a local volatility function model. The proposed

more complex interplay between market activity and index fluctuations reflects

well the extreme volatilities at major downward moves observed in the market.

Conclusion

In summary, one can say that the proposed model captures well all seven stylized

empirical facts, listed in Section 4.2, and cannot be easily falsified on these grounds.

This list of empirical properties and the conjecture of affine aggregate wealth dy-

namics were sufficient to identify the proposed stylized model as a two-component

diffusion model with six parameters. The thesis has shown that it is possible to iden-

tify a parsimonious model for diversified equity indices in currency denominations.

Crucial has been the idea that by considering a benchmark, in form of a diversified

index, one can disentangle the factors driving the index dynamics. The conjectured

affine nature of the aggregate wealth dynamics could be empirically not falsified.

Moreover, the market activity has been identified as an important quantity, which
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models the human behavior that exaggerates the volatility movements by making

extreme volatilities more extreme than the affine nature of wealth dynamics would

suggest. It turns out that it is a single source of uncertainty, which is sufficient to

model the nondiversifiable uncertainty of the market such that it drives the entire

index dynamics. It has to be emphasized that a two-component model with con-

stant parameters and one driving Brownian motion has been able to reflect well the

dynamics of diversified stock indices in currency denomination over long periods of

time. Important is the fact that this model lives outside the classical no-arbitrage

paradigm and clearly signals the need for a more general financial market modeling

framework in the direction of the benchmark approach.

There is significant potential to generalize the proposed model so that it can

potentially match reality even better. Most obvious is the possible inclusion of

jumps in the modeling of market activity, triggered by major drawdowns of the index.

Furthermore, one could use a local volatility function in the process Y to give more

flexibility to the implied volatility surface of index options. One could make some of

the parameters time dependent or even regime switching stochastic. However, it is

questionable whether the available data are sufficient to falsify the proposed stylized

model with constant parameters when compared with such potential generalizations.

Finally, one could apply the proposed methodology to the modeling of commodities,

stocks and other securities by exploiting the fact that not only an exchange rate but

also commodity and stock prices in currency denomination can be expressed as the

ratio of two denominations of a diversified index.
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