MODEL PREDICTIVE CONTROL OF ELECTROMAGNETIC TORQUE IN PERMANENT MAGNET SYNCHRONOUS MACHINES

by

Tianshi WANG, B.Eng. (Elec.)

Submitted for the Degree of Master of Engineering

at

University of Technology, Sydney

2013

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

ACKNOWLEDGEMENTS

This work was carried out at the Centre for Electrical Machines and Power Electronics (CEMPE), School of Electrical, Mechanical & Mechatronic Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney.

I wish to express my sincerest appreciation to my supervisor, Prof. Jianguo Zhu, Director of CEMPE and Head of School, for his invaluable expert technical guidance and advice throughout my study and research. Great gratitude goes to my previous supervisor Prof. Dianguo Xu for his guidance and recommendation.

I also wish to express my deep appreciation to Dr. Yongchang Zhang for his expert advice. Great gratitude also goes to Dr. Youguang Guo for his suggestion and kind help. Special gratitude goes to Dr. Greg Hunter and Mr. Jiang Chen for their technical support.

Acknowledgments go to Dr. Jack Lin and A/Prof. Hong Guang for his kind support when I met difficulties in my personal life and Dr. Yi Wang, Dr. Wei Xu and Dr. Gang Lei for their suggestions and comments. I would like to thank all my colleagues and friends, including, Prof. Qingfang Teng, Dr. Helen Lu, Dr. Yongjian Li, Dr. Jianbin Zeng, Mr. Jiefeng Hu, Mr. Md Rabiul Islam, Mr. Dung Pham, Mr. Yiying Wei, Mr. Yanqing Qu and Mr. Sonki Prasetya.

Finally, I would like to express my deepest gratitude to my wife Shuyang Liu, my father Yanqing Wang and my mother Xiaoyun Jiang for their love and financial support during my study.

TABLE OF CONTENTS

CERTIFICATION	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF SYMBOLS	vi
LIST OF FIGURES	vii
LIST OF TABLES	xiii
ABSTRACT	1
CHAPTER 1. INTRODUCTION	2
1.1 Background and Significance	2
1.2 Thesis Outline	3
REFERENCES	4
CHAPTER 2. A LITERATURE SURVEY ON PERMANENT MAGNET	6
SYNCHRONOUS MACHINES AND CONTROL STRATEGIES	
2.1 Introduction	6
2.2 The State of the Art of PMSMs	7
2.2.1 Permanent magnets on rotor	7
2.2.2 Permanent magnets on stator	8
2.3 History of Control Methods	13
2.3.1 Six-step control	13
2.3.2 Vector control	17
2.3.3 Direct torque control	19
2.3.4 Model predictive control	23
2.3.5 Qualitative comparison of control methods	26
2.4 Vector Control of PMSM	28
2.5 Direct Torque Control of PMSM	30
2.6 Conclusion	32
REFERENCES	32
CHAPTER 3. MODEL PREDICTIVE CONTROL OF PERMANENT	40
MAGNET SYNCHRONOUS MACHINES	

3.1 Introduction	40
3.2 Model of PMSMs	41
3.3 Model Predictive Control of PMSM	
3.3.1 One-step delay compensation	
3.3.2 Linear multiple horizon prediction	
3.4 Numerical Simulation of DTC and MPC	
3.4.1 Combined load test at 500 rpm	54
3.4.2 Combined load test at 1000 rpm	59
3.4.3 Combined load test at 1500 rpm	63
3.4.4 Combined load test at 2000 rpm	67
3.4.5 Deceleration test (from 1500rpm to 500 rpm)	71
3.5 Experimental Testing of DTC and MPC	74
3.5.1 Steady state responses at 500 rpm	76
3.5.2 Steady state responses at 1000 rpm	78
3.5.3 Steady state responses at 1500 rpm	80
3.5.4 Steady state responses at 2000 rpm	82
3.5.5 Start-up test	84
3.5.6 Deceleration test (from 1500rpm to 500 rpm)	87
3.5.7 2Nm load test	90
3.6 Quantitative Analysis and Comparison of Control Methods	
3.7 Conclusion	98
REFERENCES	
CHAPTER 4. MODEL PREDICTIVE CONTROL WITH DUTY RATIO	102
OPTIMIZATION	
4.1 Introduction	102
4.2 Model Predictive Control with Duty Ratio Optimization	104
4.3 Numerical Simulation of DTC and MPC with Duty Ratio Optimization	107
4.3.1 Combined simulation test of MPC with duty ratio optimization	108
4.3.2 Reversing test (from 1000rpm to -500 rpm)	111
4.4 Experimental Testing of DTC and MPC with Duty Ratio Optimization	112
4.4.1 Steady state responses	112
4.4.2 Dynamic response	114

4.5 Comparison of DTC, MPC, and MPC with Duty Ratio Optimization	117
4.6 The Influence of Variable Sampling Frequency on Drive Performance	
4.6.1 Simulation test	120
4.6.2 Experimental tests	123
4.7 Conclusion	127
REFERENCES	128
CHAPTER 5. CONCLUSIONS AND FUTURE WORK	131
5.1 Conclusion	131
5.2 Future Work	132
APPENDIX A. LIST OF PUBLICATIONS FROM THIS WORK	133

LIST OF SYMBOLS

*	Reference value
αβ	Stationary stator reference frame axes
dq	Rotary rotor reference frame axes
f	Frequency (Hz)
f _{av}	Average switching frequency (Hz)
f_{sp}	Sampling frequency
J	Inertia
$\psi_a,\;\psi_b,\;\psi_c$	Three-phase flux linkages (Wb)
ψ_{lpha} , ψ_{eta}	α - and β - axis stator flux linkages (Wb)
ψ_d , ψ_q	<i>d</i> - and <i>q</i> -axis stator flux linkages (Wb)
$ heta_r$	Angle between two stator reference frame and rotor reference
	frame
L_d , L_q	<i>d</i> - and <i>q</i> -axis inductance (H)
ψ_f	Flux linkage generated by the rotor permanent magnet (Wb)
ψ_{rip}	Flux ripple
p	Number of the machine pole pairs
u_a, u_b, u_c	Stator voltages (V)
u_{lpha} , u_{eta}	α - and β - axis stator voltages (V)
i_a, i_b, i_c	Stator currents (A)
i_{lpha} , i_{eta}	α - and β - axis stator currents (A)
i_d , i_q	<i>d</i> - and <i>q</i> -axis stator currents (A)
R _s	Per-phase stator winding resistance (Ω)
T_e	Electromagnetic torque (Nm)
T_L	Load torque applied on the rotor shaft
T_{rip}	Torque ripple

$u_0 \cdots u_6$	Space voltage vectors produced by the two level inverter (V)
P _{in}	Total input power of a motor (W)
P _{em}	Electromagnetic power obtained by subtracting the mechanical
	loss from the input power (W)
ω_r	Rotor mechanical speed
ω_e	Electrical speed
C_T	Torque constant gain
$C_{oldsymbol{\psi}}$	Flux constant gain

LIST OF FIGURES

Fig. 2.1 Structure of PM machines	7
Fig. 2.2 Cross sectional view of (a) PM hysteresis hybrid machine, (b) 4-layer	8
hybrid winding machine, and (c) double rotor synchronous PM machine	
Fig. 2.3 Cross sectional view of (a) the first proposed DSPM and (b) stator	9
doubly fed DSPM	
Fig. 2.4 Structure of SHEDS-PM	10
Fig. 2.5 Structure of (a) 4/2 pole flux-switch alternator, (b) 4/6 pole flux-switch	10
alternator, and (c) FSPM proposed by E. Hoang in 1997	
Fig. 2.6 Topologies of modern FSPM, (a) conventional FSPM, (b) fault-tolerant	12
FSPM, (c) E-core FSPM, (d) C-core FSPM, (e) multi-tooth FSPM, (f)	
segmental rotor FSPM, (g) hybrid excited FSPM, and (h) axial laminated	
structure FSPM	
Fig. 2.7 Back emf waveform of BLDC and PMSM	14
Fig. 2.8 Disassembled view of a BLDC motor: PM rotor, winding and Hall	14
elements	
Fig. 2.9 Feedback signals generated by Hall elements	15
Fig. 2.10 Inverter diagram and conduction modes for six-step control	16
Fig. 2.11 Torque generation under different conduction modes	17
Fig. 2.12 Diagram of vector control drive system	18
Fig. 2.13 Diagram of direct torque control drive system	21
Fig. 2.14 Development of DTC scheme	22
Fig. 2.15 Finite control set MPC scheme	25
Fig. 2.16 Voltage and current vectors	28
Fig. 2.17 Block diagram of PMSM VC drive system	30
Fig. 2.18 Block diagram of PMSM DTC drive system	31
Fig. 2.19 Voltage vector and spatial sector definition	31

Fig. 3.1 Per phase equivalent circuit diagram for SM	41
Fig. 3.2 Relationship between different reference frames	43
Fig. 3.3 PMSM equivalent circuits in (a) <i>d</i> -, and (b) <i>q</i> -axes	45
Fig. 3.4 Block diagram of MPC drive system	50
Fig. 3.5 One-step delay in digital control systems	52
Fig. 3.6 Combined load test for DTC at 500 rpm	55
Fig. 3.7 Combined load test for MPC at 500 rpm	56
Fig. 3.8 Combined load test for MPC with one-step delay compensation at 500	56
rpm	
Fig. 3.9 Combined load test for MPC with linear multiple horizon prediction at	57
500 rpm	
Fig. 3.10 Combined load test for MPC with both linear multiple horizon	57
prediction and one-step delay compensation at 500 rpm	
Fig. 3.11 Combined load test for DTC at 1000 rpm	59
Fig. 3.12 Combined load test for MPC at 1000 rpm	60
Fig. 3.13 Combined load test for MPC with one-step delay compensation at	60
1000 rpm	
Fig. 3.14 Combined load test for MPC with linear multiple horizon prediction	61
at 1000 rpm	
Fig. 3.15 Combined load test for MPC with both linear multiple horizon	61
prediction and one-step delay compensation at 1000 rpm	
Fig. 3.16 Combined load test for DTC at 1500 rpm	63
Fig. 3.17 Combined load test for MPC at 1500 rpm	64
Fig. 3.18 Combined load test for MPC with one-step delay compensation at	64
1500 rpm	
Fig. 3.19 Combined load test for MPC with linear multiple horizon prediction	65
at 1500 rpm	
Fig. 3.20 Combined load test for MPC with both linear multiple horizon	65
prediction and one-step delay compensation at 1500 rpm	

67
58
58
59
59
71
72
72
73
73
75
75
76
76
78
78
80
80
82
82
84
85
85
86
5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

х

multiple horizon prediction

Fig. 3.45 Start-up response from standstill to 2000 rpm for MPC with both	86
linear multiple horizon prediction and one-step delay compensation	
Fig. 3.46 Deceleration test for DTC	87
Fig. 3.47 Deceleration test for MPC	88
Fig. 3.48 Deceleration test for MPC with one-step delay compensation	88
Fig. 3.49 Deceleration test for MPC with both linear multiple horizon	89
prediction	
Fig. 3.50 Deceleration test for MPC with both linear multiple horizon	89
prediction and one-step delay compensation	
Fig. 3.51 Response to external load for DTC	90
Fig. 3.52 Response to external load for MPC	91
Fig. 3.53 Response to external load for MPC with one-step delay compensation	91
Fig. 3.54 Response to external load for MPC with linear multiple horizon	92
prediction	
Fig. 3.55 Response to external load for MPC with both linear multiple horizon	92
prediction and one-step delay compensation	
Fig. 4.1 Diagram of a MPC drive system with duty ratio optimization	107
Fig. 4.2 Combined load test for MPC with duty ratio optimization at 500 rpm	108
Fig. 4.3 Combined load test for MPC with duty ratio optimization at 1000 rpm	109
Fig. 4.4 Combined load test for MPC with duty ratio optimization at 1500 rpm	109
Fig. 4.5 Combined load test for MPC with duty ratio optimization at 2000 rpm	110
Fig. 4.6 Reversing test for MPC with duty ratio optimization	111
Fig. 4.7 Steady-state response at 500 rpm	112
Fig. 4.8 Steady-state response at 1000 rpm	113
Fig. 4.9 Steady-state response at 1500 rpm	113
Fig. 4.10 Steady-state response at 2000 rpm	114
Fig. 4.11 Start-up response from standstill to 2000 rpm for MPC with duty ratio	115

Fig. 4.12 Reversing test for MPC with duty ratio optimization	115
Fig. 4.13 Response to 2 Nm external load at 500 rpm for MPC with duty ratio	116
optimization	
Fig. 4.14 Response to 1 Nm external load at 1000 rpm for MPC with duty ratio	116
optimization	
Fig. 4.15 Torque ripple vs. sampling frequency (simulation)	121
Fig. 4.16 Flux ripple vs. sampling frequency (simulation)	122
Fig. 4.17 Torque ripple vs. switching frequency (simulation)	122
Fig. 4.18 Flux ripple vs. switching frequency (simulation)	123
Fig. 4.19 Torque ripple vs. sampling frequency (exprimental)	124
Fig. 4.20 Flux ripple vs. sampling frequency (exprimental)	125
Fig. 4.21 Torque ripple vs. switching frequency (exprimental)	125
Fig. 4.22 Flux ripple vs. switching frequency (exprimental)	126

LIST OF TABLES

Table 2-1 Qualitative comparison of control methods	27
Table 2-2 Switching table of classic DTC scheme for PMSM drive	31
Table 3-1 Motor parameters	54
Table 3-2a Steady-state response at 500 rpm (simulation)	93
Table 3-2b Steady-state response at 500 rpm (experimental)	93
Table 3-3a Steady-state response at 1000 rpm (simulation)	93
Table 3-3b Steady-state response at 1000 rpm (experimental)	93
Table 3-4a Steady-state response at 1500 rpm (simulation)	94
Table 3-4b Steady-state response at 1500 rpm (experimental)	94
Table 3-5a Steady-state response at 2000 rpm (simulation)	94
Table 3-5b Steady-state response at 2000 rpm (experimental)	94
Table 4-1 Motor and control system parameters	107
Table 4-2a Steady-state response at 500 rpm (simulation)	117
Table 4-2b Steady-state response at 500 rpm (experimental)	117
Table 4-3a Steady-state response at 1000 rpm (simulation)	117
Table 4-3b Steady-state response at 1000 rpm (experimental)	117
Table 4-4a Steady-state response at 1500 rpm (simulation)	118
Table 4-4b Steady-state response at 1500 rpm (experimental)	118
Table 4-5a Steady-state response at 2000 rpm (simulation)	118
Table 4-5b Steady-state response at 2000 rpm (experimental)	118

ABSTRACT

This study focuses on the development of novel model predictive control method for PMSM drive system. The aims of the proposed control method are flux and torque ripples reduction. The performances of the proposed model predictive control method and conventional direct torque control (DTC) are comparatively studied in both simulation and experimental tests.

In recent years, various variable speed drive strategies and structures for PMSMs have been widely investigated and reported. Among these control strategies, the six-step control, field oriented control (FOC) and DTC are the most popular ones. Among them, the conventional DTC, which selects the desired voltage vector based on hysteresis comparators and switching table, features a fast dynamic response and very simple structure. The major demerits of DTC are large torque and flux ripples, variable switching frequency, and acoustic noises. Recently, the model based predictive control (MPC) was introduced to overcome these problems. However, the improvement was limited for the purposes of torque and flux ripple reduction and the MPC still suffered from variable switching frequency.

The conventional DTC and MPC are similar in that they both select only one voltage vector per sampling period. This may result in overregulation, which is the key issue for torque and flux ripples and excessive acoustic noise. In this thesis, an improved MPC method with duty ratio optimization was proposed for PMSMs. The proposed method features low torque and flux ripples and relatively stable switching frequency. It is of most benefit when the drive system is working at a low sampling frequency because in the low frequency range, the proposed MPC drive system can achieve much lower torque and flux ripples than the original MPC and DTC, which is a very desirable feature for high power applications (e.g. electric vehicles). Finally, the numerical simulation and experimental test results of the conventional DTC, MPC, and improved MPC were presented to verify its effectiveness.