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Abstract 

1

ABSTRACT 

This study focuses on the development of novel model predictive control method for 

PMSM drive system. The aims of the proposed control method are flux and torque 

ripples reduction. The performances of the proposed model predictive control method 

and conventional direct torque control (DTC) are comparatively studied in both 

simulation and experimental tests. 

 

In recent years, various variable speed drive strategies and structures for PMSMs have 

been widely investigated and reported. Among these control strategies, the six-step 

control, field oriented control (FOC) and DTC are the most popular ones. Among them, 

the conventional DTC, which selects the desired voltage vector based on hysteresis 

comparators and switching table, features a fast dynamic response and very simple 

structure. The major demerits of DTC are large torque and flux ripples, variable 

switching frequency, and acoustic noises. Recently, the model based predictive control 

(MPC) was introduced to overcome these problems. However, the improvement was 

limited for the purposes of torque and flux ripple reduction and the MPC still suffered 

from variable switching frequency. 

 

The conventional DTC and MPC are similar in that they both select only one voltage 

vector per sampling period. This may result in overregulation, which is the key issue for 

torque and flux ripples and excessive acoustic noise. In this thesis, an improved MPC 

method with duty ratio optimization was proposed for PMSMs. The proposed method 

features low torque and flux ripples and relatively stable switching frequency. It is of 

most benefit when the drive system is working at a low sampling frequency because in 

the low frequency range, the proposed MPC drive system can achieve much lower 

torque and flux ripples than the original MPC and DTC, which is a very desirable 

feature for high power applications (e.g. electric vehicles). Finally, the numerical 

simulation and experimental test results of the conventional DTC, MPC, and improved 

MPC were presented to verify its effectiveness. 
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