Impacts of invasive exotic plants on reptile and amphibian assemblages

Leigh Martin

School of the Environment

Thesis submitted for the degree of

Doctor of Philosophy

University of Technology, Sydney

June 2013

Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Acknowledgements

I wish to express my thanks to all those who assisted me over the course of this project. I owe a profound debt of gratitude to my Principal Supervisor Dr Brad Murray who took a risk on a cold calling, prospective student. Thank you for your invaluable encouragement, advice and support on every aspect of my project. Thanks for your boundless optimism and enthusiasm for my project, for always challenging me and for providing a stimulating environment to work in. Thanks also to my Alternate Supervisor Dr Paul Gribben for valuable advice and assistance with statistical analysis.

This project could not have been completed without the help of people and organisations who facilitated access to fieldwork sites. Thank you to Kaiya Donovan, Michael Hand, Peta Norris and Tiffany Knott of the NSW National Parks and Wildlife Service, Paul Price of Sutherland Shire Council, Hugh Cross, John Hughson and Cr Daniel Wallace of Lake Macquarie City Council, Nethan Kana and Damian Vella of Breen Holdings Pty Ltd, and Barbara Bell of the NSW Rifle Association.

I would have been unable to complete this project without the help of UTS Technical Staff. Thank you to Andrew Malecki, Gemma Armstrong, Sue Fenech, Peter Jones and Hilary McNamara.

I am grateful to my good friend Gavin Ayre for providing invaluable assistance with fieldwork and production of the maps in this thesis. I also express my gratitude to Alex Gale for assistance in the field and the laboratory.

Thank you to Sue Wood, Dr Lachlan Mairs and Prof Graham Nicholson of UTS for advice and assistance with animal ethics applications and to Julie McInnes of NSW NPWS for assistance with Scientific Licences. Thanks also to Professor Michael Mahony of the University of Newcastle for helpful advice at the start of my project and to Kien Nguyen and Matt Hingee for providing an incurable Luddite with advice and assistance on the PRIMER statistical software package.

iii

Thanks also to my fellow postgraduate students and occupants of room 4.5.64, Megan Phillips, Ashley Fowler, Gwenael Cadiou, Paul York, Melanie Lewis, Cybelle Shorter, Renee Dowse, Hayden Beck and Nikki Bramwell for helpful advice, friendship and support throughout my project.

I owe a special thank you to my wife Julia Finn, who encouraged me to pursue my passion and tolerated my long hours, poverty and mood swings. This is your work too.

This work was supported by funding from the University of Technology, Sydney School of the Environment, Climate Change Cluster. I received financial assistance from an Australian Postgraduate Award scholarship. Thank you to all those involved.

Finally, I wish to dedicate this thesis to my late and greatly missed pet blue-tongue lizard (*Tiliqua scincoides scincoides*) (1987-2011) who helped maintain a passion for herpetology for almost a quarter of a century.

Abstract

The invasive spread of exotic plants into native vegetation can pose serious threats to native faunal assemblages. This is of particular concern for reptiles and amphibians because they form a significant component of the world's vertebrate fauna, play a pivotal role in ecosystem functioning and are often neglected in biodiversity research. A framework to predict how exotic plant invasion will affect reptile and amphibian assemblages is imperative for conservation, management and the identification of research priorities.

In this thesis I present and test the first predictive framework to describe the impacts of exotic plant invasions on reptiles and amphibians. Central to the framework is the identification of exotic plant and native reptile and amphibian life-history traits that influence the response of reptiles and amphibians to exotic plant invasion. These traits are integrated into three mechanistic models based on exotic plant invasion altering: (1) habitat structure; (2) herbivory and predator-prey interactions; (3) the reproductive success of reptile and amphibian species and assemblages. With this framework, I identified novel growth forms and structural features of exotic plants and small body size of reptiles and amphibians as life-history traits most likely to be linked to strong and readily detectible impacts of invasion.

A test of framework predictions against available empirical evidence in the literature provided support for predictions from each of the three mechanisms of the framework. I performed field-work to test predictions relating to differential effects of exotic plant growth forms and the susceptibility of small-bodied native reptile and amphibian species to invasion. I compared the impacts of Lantana (*Lantana camara*), which differs strongly in growth form to the dominant native vegetation in the dry sclerophyll forest it invades, and Bitou Bush (*Chrysanthemoides monilifera* ssp. *rotundata*) which provides a similar growth form replacement in the coastal heathland it invades. Lantana significantly altered habitat structure by increasing understorey cover, creating cooler and shadier conditions. Lantana invasion was associated with lower reptile abundance, particularly of the scincid lizard *Lampropholis delicata*, the

v

smallest reptile species present. In contrast, Bitou Bush did not significantly alter habitat structure, insolation or habitat temperature and was not associated with significant changes in reptile abundance.

The findings of this thesis confirm the importance of plant and animal lifehistory traits in determining responses of reptiles and amphibians to exotic plant invasions. The trait-based approach employed in this thesis offers considerable benefits to assessing the impacts of exotic plant invasion on native biodiversity. In particular, my framework provides a basis for predicting impacts and determining future research and management priorities.

Table of Contents

Certificate of Authorship/Originalityii				
Acknowledgementsiii				
Abstractv				
Table of Contentsvii				
List of Figuresxi				
List of Tablesxv				
Acronymsxviii				
Chapter 1: General Introduction1				
1.1 Biological invasions1				
1.2 Exotic plant invasions2				
1.3 Impacts of invasive exotic plants on vertebrates3				
1.4 Importance of reptiles and amphibians to biodiversity4				
1.5 Research significance and objectives5				
1.6 Thesis objectives6				
1.7 Thesis structure7				
Chapter 2: A predictive framework and review of the ecological impacts of exotic plant invasions on reptiles and amphibians10				
2.1 Introduction10				
2.2 Conceptual framework and mechanisms of impact12				
2.2.1 Model 1: changes to habitat structure quality and heterogeneity14				
2.2.2 Model 2: alteration of herbivory and predator-prey interactions26				
2.2.3 Model 3: modification of reproductive success				
2.3 Management implications and future research opportunities				
2.4 Conclusions				

Chapter 3: How do native reptile assemblages respond to invasion b species of differing growth form	oy exotic plant 39
3.1 Introduction	
3.2 Methods	40
3.2.1 Site descriptions and experimental design	41
3.2.1.1 Lantana study	41
3.2.1.2 Bitou study	44
3.2.1.3 Study sites	46
3.2.2 Reptile and amphibian sampling	47
3.2.3 Statistical analyses	50
3.2.4 Amphibian species richness and abundance	50
3.3 Results	51
3.3.1 Lantana study	51
3.3.2 Bitou study	55
3.4 Discussion	59
Chapter 4: Response of a native reptile assemblage to spot-spraying <i>Chrysanthemoides monilifera</i> ssp. <i>rotundata</i> , with glyphosate herbic	of Bitou Bush, ide63
Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction	of Bitou Bush, ide63
Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction 4.2 Methods	of Bitou Bush, ide63 63
 Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction	of Bitou Bush, ide63 63 64 64
 Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction	of Bitou Bush, ide63 64 64 64 64
 Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction	of Bitou Bush, ide63 64 64 64 65
 Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction	of Bitou Bush, ide63 64 64 64 65 65 65
Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction 4.2 Methods 4.2.1 Site descriptions and experimental design 4.2.2 Statistical analyses 4.3 Results 4.4 Discussion Chapter 5: Impacts of Lantana (Lantana camara) and Bitou Bush (Ch monilifera ssp. rotundata) on reptile habitat	of Bitou Bush, ide63 64 64 64 65 65 65 68 <i>rysanthemoides</i> 71
Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction 4.2 Methods 4.2.1 Site descriptions and experimental design 4.2.2 Statistical analyses 4.3 Results 4.4 Discussion Chapter 5: Impacts of Lantana (Lantana camara) and Bitou Bush (Ch monilifera ssp. rotundata) on reptile habitat	of Bitou Bush, ide63 64 64 64 65 65 65 68 <i>rysanthemoides</i> 71
Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction 4.2 Methods 4.2.1 Site descriptions and experimental design 4.2.2 Statistical analyses 4.3 Results 4.4 Discussion Chapter 5: Impacts of Lantana (Lantana camara) and Bitou Bush (Ch monilifera ssp. rotundata) on reptile habitat 5.1 Introduction 5.2 Methods	of Bitou Bush, ide63 64 64 65 65 65 68 <i>rysanthemoides</i> 71 71
Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction	of Bitou Bush, ide63 64 64 65 65 65 68 <i>rysanthemoides</i> 71 71 72
Chapter 4: Response of a native reptile assemblage to spot-spraying Chrysanthemoides monilifera ssp. rotundata, with glyphosate herbic 4.1 Introduction 4.2 Methods 4.2.1 Site descriptions and experimental design 4.2.2 Statistical analyses 4.3 Results 4.4 Discussion Chapter 5: Impacts of Lantana (Lantana camara) and Bitou Bush (Ch monilifera ssp. rotundata) on reptile habitat 5.1 Introduction 5.2 Methods 5.2.1 Site descriptions and experimental design 5.2.2 Habitat structure and leaf-litter characteristics	of Bitou Bush, ide63 64 64 65 65 65 65 68 rysanthemoides 71 71 72 72 72

5.2.4 Leaf-litter temperature	76
5.2.5 Statistical analyses	77
5.3 Results	78
5.3.1 Lantana study	78
5.3.1.1 Habitat structure and leaf-litter characteristics	78
5.3.1.2 Direct solar radiation reaching the ground	82
5.3.1.3 Leaf-litter temperature	82
5.3.2 Bitou study	82
5.3.2.1 Habitat structure and leaf-litter characteristics	82
5.3.2.2 Direct solar radiation reaching the ground	87
5.3.2.3 Leaf-litter temperature	87
5.4 Discussion	87

Chapter 6: Impacts of Lantana (*Lantana camara*) and Bitou Bush (*Chrysanthemoides monilifera* ssp. *rotundata*) on the availability of invertebrate prey for reptiles.......93

6.1 Introduction	93
6.2 Methods	94
6.2.1 Site descriptions and experimental design	94
6.2.2 Invertebrate sampling and identification	94
6.2.3 Statistical analyses	97
6.3 Results	98
6.3.1 Lantana study	98
6.3.2 Bitou study	102
6.4 Discussion	105

7.4 Discussion	
Chapter 8: General discussion	
8.1 Were the objectives of this thesis met?	115
8.2 Research significance and management implications	119
8.3 Future research directions	121
8.4 Conclusion	123
Appendix 1. GLM results for modified analysis of reptile abundance and species	
richness in relation to invasion of dry sclerophyll forest by Lantana camara125	
References126	

List of Figures

Figure 2.1 Three mechanisms determining the impacts of exotic plants on reptiles and amphibians and the role of plant reptile/amphibian traits. Intensity of response to invasion increases from right to left in relation to plant reptile/amphibian traits (top arrow). The timeframe for detectable impacts increases from left to right (bottom arrow)......13 Figure 3.1 Dry sclerophyll forest and invasion of Lantana camara. Uninvaded vegetation (a), invaded vegetation (b)......42 Figure 3.2 Coastal heathland and invasion of *Chrysanthemoides monilifera* ssp. rotundata. Uninvaded vegetation (a), invaded vegetation (b)......42 Figure 3.3 Location of Lantana study sites in the Newcastle/Lake Macquarie area of Figure 3.4 Location of Bitou study sites in the Botany Bay and Kurnell Peninsula area of NSW......45 Figure 3.6 Schematic representation of small (50 m x 20 m) study plots......48 Figure 3.7 Mean abundance/100 m² (\pm SE) of (a) all reptiles, (b) Lampropholis delicata, (c) all reptile species excluding Lampropholis delicata compared between sites of dry **Figure 3.8** Mean reptile species richness/100 m² (\pm SE) compared between sites of dry Figure 3.9 Mean abundance/100 m² (\pm SE) of (a) all reptiles, (b) *Lampropholis* spp., (c) all reptile species excluding Lampropholis spp. compared between sites of coastal heathland invaded by *Chrysanthemoides monilifera* ssp. rotundata and uninvaded sites......56

Figure 5.3 Mean understorey projected foliage cover (\pm SE) compared between sites of dry sclerophyll forest invaded by *Lantana camara* and uninvaded sites......70

Figure 6.3 Invertebrate pitfall trap (a) and wooden cover to exclude vertebrates (b).97

List of Tables

XV

Table 4.1 Reptile species found in Bitou Bush (*Chrysanthemoides monilifera* ssp.*rotundata*) before and after herbicide spraying ('Sprayed') in autumn 2010 comparedwith 'Unsprayed' Bitou Bush and 'Uninvaded' vegetation. + = present; - = absent.......67

Table 5.2 Results of GLMMs for average leaf-litter temperature during reptile sampling hours (0900-1100 and 1500-1700) in relation to invasion of dry sclerophyll forest by *Lantana camara*. Significant *P* values are in bold. Condition = invaded or uninvaded, 'Site' is nested within 'Condition'; $^{1} = F_{1,26}$, $^{2} = F_{1,24}$, "-" = non-significant interaction removed from the model as its inclusion led to over-parameterisation of the model...84

Acronyms & Abbreviations

ANOSIM	Analysis of Similarity
ANOVA	Analysis of Variance
С	Carbon
CI	Confidence Interval
DBH	Diameter at Breast Height
ESD	Environmental Sex Determination
EST	Eastern Standard Time
GLM	General Linear Model
GenLMM	Generalised Linear Model
GLMM	Generalised Linear Mixed Model
GSD	Genotypic Sex Determination
HSD	Honestly Significant Difference
LSD	Least Significant Difference
M-BARCI	Multiple Before-After Reference Control-Impact
PAR	Photosynthetically Active Radiation
Ν	Nitrogen
nMDS	Non-metric Multidimensional Scaling
NSW	New South Wales
Р	Phosphorus
SE	Standard Error
SL	Shell Length
SVL	Snout-Vent Length
TL	Total Length
TSD	Temperature-dependent Sex determination
UV	Ultraviolet