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Abstract

Acute Lymphoblastic Leukaemia (ALL) is the most common childhood malignancy.

Nowadays, ALL is diagnosed by a full blood count and a bone marrow biopsy. With

microarray technology, it is becoming more feasible to look at the problem from a

genetic point of view and to perform assessment for each patient. This thesis proposes

a case-base retrieval framework for ALL using a nearest neighbour classifier that can

retrieve previously treated patients based on their gene expression data. However,

the wealth of gene expression values being generated by high throughout microar-

ray technologies leads to complex high dimensional datasets, and there is a critical

need to apply data-mining and computational intelligence techniques to analyse these

datasets efficiently. Gene expression datasets are typically noisy and have very high

dimensionality. Moreover, gene expression microarray datasets often consist of a lim-

ited number of observations relative to the large number of gene expression values

(thousands of genes). These characteristics adversely affect the analysis of microarray

datasets and pose a challenge for building an efficient gene-based similarity model.

Four problems are associated with calculating the similarity between cancer patients

on the basis of their gene expression data: feature selection, dimensionality reduction,

feature weighting and imbalanced classes.

The main contributions of this thesis are: (i) a case-base retrieval framework, (ii) a

1



Abstract

Balanced Iterative Random Forest algorithm for feature selection, (iii) a Local Prin-

cipal Component algorithm for dimensionality reduction and visualization and (iv) a

Weight Learning Genetic algorithm for feature weighting.

This thesis introduces Balanced Iterative Random Forest (BIRF) algorithm for select-

ing the most relevant features to the disease and discarding the non-relevant genes.

Balanced iterative random forest is applied on four cancer microarray datasets: Child-

hood Leukaemia dataset, Golub Leukaemia dataset, Colon dataset and Lung cancer

dataset. Childhood Leukaemia dataset represents the main target of this project and

it is collected from The Children’s Hospital at Westmead. Patients are classified based

on the cancer’s risk type (Medium, Standard and High risk); Colon cancer (cancer vs.

normal); Golub Leukaemia dataset (acute lymphoblastic leukaemia vs. acute myeloid

leukaemia) and Lung cancer (malignant pleural mesothelioma or adenocarcinoma).

The results obtained by BIRF are compared to those of Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) and Naive Bayes (NB) classifiers. The

BIRF approach results are competitive with these state-of-art methods and better in

some cases. The Local Principal Component (LPC) algorithm introduced in this the-

sis for visualization is validated on three datasets: Childhood Leukaemia, Swiss-roll

and Iris datasets. Significant results are achieved with LPC algorithm in comparison

to other methods including local linear embedding and principal component analysis.

This thesis introduces a Weight Learning Genetic algorithm based on genetic algo-

rithms for feature weighting in the nearest neighbour classifier. The results show that

a weighted nearest neighbour classifier with weights generated from the Weight Learn-

ing Genetic algorithm produces better results than the un-weighted nearest neighbour

algorithm.

2
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This thesis also applies synthetic minority over sampling technique (SMOTE) to in-

crease the number of points in the minority classes and reduce the effect of imbalanced

classes. The results show that the minority class becomes recognised by the nearest

neighbour classifier. SMOTE also reduces the effect of imbalanced classes in predict-

ing the class of new queries especially if the query sample should be classified to the

minority class.

3



Chapter 1. Introduction

Chapter 1

Introduction

Gene expression similarity measurement has received significant attention in the field

of cancer diagnosis and treatment [52] [61]. However, a trustworthy and precise

similarity measurement is essential for successful diagnosis and treatment of cancer.

The ability to successfully distinguish between patients based on their gene expres-

sion data and to look in the neighbourhood space of patients to see how patients

are similar or dissimilar to others requires numerous data mining and computational

intelligence techniques to be incorporated into the similarity measurement process.

The huge number of gene expression values generated by microarray technology leads

to very complex datasets and raises numerous statistical and data mining questions.

Gene expression datasets are typically noisy and have very high dimensionality [8].

Moreover, gene expression microarray datasets often consist of a limited number of

observations (hundreds) relative to the large number of gene expression values (thou-

sands of genes). These characteristics adversely affect the analysis of microarray

datasets and pose a challenge for building effective similarity measurements. These

characteristics also result in difficulties in working with standard machine learning

techniques, which must be modified to deal with the complexities of gene expression

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data
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Chapter 1. Introduction

data.

The main objective of this thesis is to develop a case-base retrieval framework able

to retrieve similar patients from a case base of ALL patients based on their gene

expression data. Four problems are associated with calculating similarity between

patients based on their gene expression data: feature selection, dimensionality reduc-

tion, feature weighting and imbalanced classes.

Feature selection involves identification of bio-markers that are strongly associated

with the disease and that can be used to distinguish classes of patients. Too many

features or genes in a dataset adversely affect similarity measurement as many of

these genes are irrelevant to a specific trait of interest.

Dimensionality reduction is the transformation of a high-dimensional dataset into

a lower dimensional one by extracting new features using a mapping (either linear

or non-linear). This transformation of the dataset into a lower dimensional form is

required due to the curse of dimensionality which adversely affects the distance mea-

surement in such highly dimensional data [9].

Feature weighting is the estimation of the relative influence of individual features with

respect to classification performance. The relative importance of feature plays a sig-

nificant role in similarity measurement as the distance function can be very sensitive

to the relative importance of features.

Imbalanced data is where the number of patients belonging to each class is not the

same. Imbalanced classes is a common problem in the biomedical field [35] [3] [36].

For example, the main experiments of this thesis are performed on a real Child-

hood Leukaemia gene expression dataset collected from The Children’s Hospital at

Westmead and is composed of 110 patients. Each patient has more than twenty two

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data
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Chapter 1. Introduction

thousand gene expression values. Patients are classified into three categories based

on the cancer’s risk type: Medium, Standard and High risk. The majority of patients

(78 patients) are classified as a Medium risk, 21 patients are classified as a Standard

risk where the minority of patients (11 patients) are classified as High risk. This

imbalanced classes problem adversely affects the case-base retrieval process and the

classification performance in the feature selection process as it can results in a trivial

classifier that classifies all patients as the majority class.

1.1 Motivation

Acute Lymphoblastic Leukaemia is the most common childhood malignancy [69]. It

is a type of cancer that affects the blood and bone marrow. The causes of ALL are

still unknown but are likely thought to result from mutations of genes [73].

Nowadays, ALL is diagnosed by a full blood count and a bone marrow biopsy. Based

on these examinations, an ALL patient’s risk of relapse and appropriate treatment

are identified. Most children achieve an initial remission, yet approximately 20% of

children with ALL suffer a relapse [29]. This relapse problem is considered as one of

the major obstacles and difficulties where the cancer recurs facing clinicians in curing

ALL patients. One reason for relapse is for incorrect therapy due to misclassification

of risk factors of ALL patients [29]. Consequently, accurate risk assessment of pa-

tients is crucial for successful treatment.

The motivation of this thesis is to develop a point-of-care clinical software for better

diagnosis and treatment of childhood leukaemia sufferers. This thesis develops a case-

base retrieval framework with the eventual aim of supporting clinicians and biologists

in predicting how paediatric cancer sufferers will react to treatment by comparing

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data
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current to previous patients on the basis of their gene expression data.

1.2 Objective and Aims

The objective of this thesis is to develop a case-base retrieval framework for childhood

leukaemia patients. By observing neighbouring patient treatment and outcome, more

reliable decisions about this new patient can be made. The assumption is made

that patients with similar gene expression profiles will react similarly to therapy and

should be treated similarly.

In order to achieve this objective, this thesis has four aims.

1. The first aim is to develop an algorithm for selecting features from gene ex-

pression datasets. Gene expression datasets have a huge number of genes but

only a small set of these genes is related to the desired output and can be used

in prediction and classification [38]. This thesis aims to select the most rele-

vant features that play a major role in discriminating between patients. Many

learning algorithms developed before the advent of microarray analysis do not

effectively handle data with high dimensionality and small sample size. Microar-

ray analysis raises the need for a special feature selection process. This aim is

achieved by developing an algorithm for feature selection with the consideration

of the difficulties that accompany these datasets such as the low number of ob-

servations, high amount of noise, correlation between features and imbalanced

classes.

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data
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Chapter 1. Introduction

2. The second aim is to reduce the dimensionality of the dataset in order to en-

hance distance measurements which are affected by the curse of dimensionality.

Feature selection on its own is not sufficient to reduce the dimensionality for

accurate similarity measurement. Although feature selection reduces the di-

mensionality, the dataset may still exist in a high dimensional space. Therefore,

further dimensionality reduction is needed.

3. The third aim is to develop a weight learning algorithm for feature weight-

ing. Distance measurement aims to calculate the distance between two patients

based on their associated gene expression. However, genes are not equally im-

portant as some genes are more significant and important than others [88] [84]

and they should attract a higher weight. On the other hand, features with less

influence should receive a low weight.

4. The fourth aim handles the problem of imbalanced classes and the small number

of observations in the minority class, which affects classification performance

and the case retrieval.

1.3 Contributions

This thesis makes the following contributions to knowledge:

1. A Case-Base Retrieval Framework

The framework is a combination of different computational intelligence and data

mining techniques for pre-processing the data before measuring the similarity

between ALL patients. It is composed of two modules: module 1 pre-processes

the training dataset in order to handle the complexities of the gene expression

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data
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Chapter 1. Introduction

datasets, module 2, on the other hand, processes the new query data using the

outcomes of module 1.

2. The Balanced Iterative Random Forest algorithm

This is an embedded feature selection algorithm with the capability of deal-

ing with imbalanced microarray datasets. Performance comparisons show that

BIRF out perform other gene selection methods tested particularly on class-

imbalanced data.

3. The Local Principal Component algorithm

This is a non-linear dimensionality reduction algorithm which maps high di-

mensional data to a lower dimensional space. The algorithm is based on the

first principal component of the local neighbourhood of each data point. Perfor-

mance comparisons show that LPC out perform Principal Component Analysis

and competitive to local linear embedding algorithm.

4. A Weight Learning Genetic algorithm

This algorithm is for feature weighting in the nearest neighbour classifier. Wrap-

per feature weighting method based on Genetic Algorithms is proposed to seek

the genes encoding weights for the similarity measurement. Performance com-

parisons show that the weighted nearest neighbour classifier using the gener-

ated weights from the Weight Learning Genetic algorithm out performs the

un-weighted nearest neighbour algorithm.

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data
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1.4 Organization of this Thesis

This thesis is presented as follows. Chapter 2 presents background concepts and

literature review related to the topic of microarray data, case-based reasoning, fea-

ture selection, dimensionality reduction, feature weighting and imbalanced classes.

Chapter 3 presents the proposed case-base retrieval framework. Chapter 4 introduces

the Balanced Iterative Random Forest algorithm for gene selection from microarray

data. Chapter 5 presents the dimensionality reduction and visualisation of gene ex-

pression datasets using Local Principal Component algorithm. Chapter 6 introduces

the Weight Learning Genetic algorithm for feature weighting and the method to han-

dle the problems of imbalanced classes and low number of observations. Chapter 7

concludes the thesis and outlines future research directions.

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data
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Chapter 2

Literature Review

This chapter provides the necessary background information for this thesis. Section

2.1 presents the description of the case-based reasoning systems and the difficulties

of case base retrieval process in the microarray domain. Section 2.2 introduces the

techniques for feature selection with the focus on the strengths and weakness of these

techniques. Section 2.3 gives an overview of dimensionality reduction techniques and

how they relate to this thesis. Section 2.4 presents the methodologies that can be used

for feature weighting. Section 2.5 presents the approaches to solve the imbalanced

classes problem. Section 2.6 introduces measures used in this thesis for evaluating

classifier performance for imbalanced data.

2.1 Case-Based Reasoning

Case-based reasoning (CBR) [93] is a methodology for building intelligent systems

for the storage and retrieval of past experiences to solve new problems. The main

idea of CBR is that a new problem can be solved by adapting solutions that were

used to solve previously encountered problems [49]. A case-based reasoning system

is composed of four processes: retrieve, reuse, revise and retain (see Figure 2.1). The

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data
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Figure 2.1: Case-base reasoning stages

retrieval process aims to retrieve the most similar previously experienced cases to the

new problem. Each case is characterised by multiple features or attributes. When

a new case is presented to the CBR system, the system measures the similarity be-

tween features for this query case with those of other cases in the case base in order

to retrieve the most similar cases from the case base to the query. Usually, the CBR

system is unlikely to retrieve an identical case, so it retrieves the most similar cases.

Reusing the cases is the second process where copying or integrating the solutions

from the retrieved cases is done. The revising process adapts the retrieved solution

to solve the new problem. The last process is to retain the new solution once it has

been confirmed or validated.

Case-based reasoning has been extensively used in the biomedical field and it is suc-

cessfully applied in many applications. For instance, Fernando Diaz and et al [23]

use a case-based reasoning system for cancer classification based on microarray data.

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data
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They employ a case-based reasoning model that incorporates a set of fuzzy proto-

types, a growing cell structure network and a set of rules to provide an accurate

diagnosis. This model is implemented and tested with microarray data belonging

to bone marrow cases from 43 adult patients with cancer plus a group of six cases

corresponding to healthy persons. The authors report that their case base reasoning

system outperforms specific classification techniques such as Prediction Analysis of

Microarrays (PAM).

Marling and Whitehouse [66] use case-based reasoning in the care of patients with

Alzheimers disease. The authors report that case-based reasoning finds effective treat-

ment by matching patients to treatments that were effective for similar patients in the

past. Similarly, Lieber and Bresson [62] propose a CASIMIR/CBR system for breast

cancer treatment and they claim that their system suggests appropriate solutions for

new patients. Althoff et al [4] develop a knowledge-based medical decision support

system using case-based reasoning for diagnosing intoxication by drugs. The authors

claim that this system has potential use in the Russian Toxicology Information and

Advisory Center in Moscow and in many Russian hospital ambulances.

2.1.1 Case-Based Retrieval For Gene Expression Data

The case base retrieval process is usually considered as the most important step

within the case-based reasoning cycle and it gains a lot of interest from researchers

[83] [65] [94]. Various techniques have been proposed to retrieve similar cases from the

case base. The similarity measures used have a great influence on the performance

of retrieval. The reason for this is that one of the most important assumptions in
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case-based reasoning is that similar experiences can guide future reasoning, problem

solving, and learning [82]. Most of today’s case matching and retrieval algorithms

are based on this assumption, and this leads to the development of various case clus-

tering and classification techniques. Among these techniques, weighted feature-based

similarity is the most common method used to compute relatedness among cases [55].

This technique is based on the computation of distance between cases, where the

most similar case is determined by evaluation of a similarity measure.

However, simple feature-based similarity cannot be studied in an isolated manner,

and there are many possible assumptions and constraints that could affect similarity

measurements among cases. For example, similarity may be interpreted as relat-

edness among problem features (i.e., the problem space) which represents the main

problem in this research project. Consequently, this thesis will deal with data mining

and computational intelligence techniques to enhance the feature-based similarity for

gene expression data, and to handle the complexities underlying these datasets.

Gene expression datasets are noisy with many irrelevant attributes and highly bal-

anced classes. These characteristics raise difficulties in measuring the similarity

between cases and in building an effective nearest neighbour classifier. Nearest-

neighbour classifiers based on distance measures, tend to fare badly in situations

where there are many features and where only a few are informative. Moreover, sim-

ilarity measurement must also consider the relative importance of each feature and

the effect of imbalanced classes on retrieving similar cases.

Accordingly, the main problem with a CBR system dealing with gene expression data,

is the high number of attributes compared to the small number of cases. However,

most of the reviewed papers deal with a large number of cases and the problem of
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having a rapid case retrieval process [7]. Few papers deal with high dimensional data.

In this sense, the work of Arshadi and Jurisica [7] propose a maintenance technique

that integrates an ensemble of CBR classifiers with spectral clustering and logistic

regression to improve the classification accuracy of CBR classifiers on (ultra) high-

dimensional biological data sets. The authors apply spectral clustering followed by

feature selection to pre-process the data. The authors evaluate the system on two

publicly available microarray datasets that cover leukaemia and lung cancer samples.

They report improvements in classification accuracy of approximately 20% from 65%

to 79% for leukaemia and from 60% to 70% for lung cancer.

Stottler et al [83] propose three algorithms for rapid retrieval of cases from a case base.

They claim that these algorithms can deal with up to a million cases but they didn’t

address the problem of the high dimensionality of the cases. Ma et al [65] propose a

case retrieval algorithm based on ant colony clustering. They report improvements in

the efficiency of case retrieval when there are many cases in the case base, but they

didn’t consider the problem of cases having many attributes.

This thesis explores problems of CBR where the case base has relatively few cases

each having many features.

2.1.2 k-Nearest Neighbour Classifier

k nearest neighbour (kNN) [21] classifiers are based on similarity measurements and

are considered as one of the most straightforward types of classifier in the machine

learning techniques. This classifier is very useful and effective in situations where an

explanation of the result is required as the process is transparent, easy to implement

and to debug. kNN classifies query sample by identifying the k nearest neighbours
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using a distance measure such as the Euclidean distance given in equation (2.1.1).

Using those neighbours, the class of the query sample is determined based on the

majority class among the nearest neighbours. If cp = (fp1, fp2, · · · , fpn) and cq =

(fq1, fq2, · · · , fqn) are two cases in the case base, then the distance between cp and cq

is defined as

d(cp, cq) =
√

(fp1 − fq1)2 + (fp2 − fq2)2 + · · ·+ (fpn − fqn)2 (2.1.1)

Although the kNN algorithm is simple, it suffers from some disadvantages especially

in gene expression datasets. These include problems dealing with irrelevant features,

high dimensionality, importance of features and imbalanced classes.

k nearest neighbour (kNN) classifier is sensitive to irrelevant or redundant features

because all features equally contribute to the similarity and thus to the classification.

Therefore, feature selection is required in order to select the relevant features.

The second disadvantage is the effect of the high dimensionality on the distance mea-

surement. This is known as the curse of dimensionality [56]. In order to handle this

problem, dimensionality reduction algorithms are required to reduce the number of

attributes of the dataset.

The third disadvantage is related to the relative importance of each feature and plays

a significant role in instance-based learning algorithms such as kNN where the dis-

tance function is very sensitive to the relative importance of features. Consequently,

un-weighted features may result in a weak similarity measurement and hinder the clas-

sification task. Accordingly, relevant features which play a major role in similarity

measurement should be treated more importantly than other features. Based on the

above scenario, weighted Euclidean distance is appropriate. Let CB = c1, c2, · · · , cn
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represent a case base having n cases. Each case in this memory has m features de-

noted as cp = (fp1, fp2, · · · , fpm) where 1 ≤ j ≤ m the number of features for each

case. Each feature fj, is assigned a weight wj to indicate the importance of that

feature. Then, for any pair of cases cp and cq in the case base, a weighted distance

can be defined as

dpq = d(cp − cq) =

[
m∑
j=1

wj(fpj − fqj)2
]1/2

(2.1.2)

The last disadvantage which also affects prediction is that class frequencies are im-

balanced with a small number of samples in the case base [63]. Imbalanced classes

affect prediction of the new query class especially if this query sample should be clas-

sified as the minority class. Another important factor is the parameter k, the number

of similar patients to be retrieved. This parameter plays a major role in classifying

query sample.

This thesis uses the k-nearest neighbour classifier for retrieving cases from the case

base and explores the problem of the feature-based similarity in gene expression

datasets.

2.2 Feature Selection

Feature selection is a critical technique in the field of bioinformatics [37] and it has

been used in various domains for large and complex data such as gene expression

datasets. Feature selection techniques are applied to select genes or proteins asso-

ciated with a trait of interest [53] and to classify different types of samples in gene

expression microarray data [2] or mass spectrometry data [1], to identify disease-

associated genes and gene-gene interactions.
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Feature selection provides a way for analysing high dimensional datasets such as gene

expression microarray data. With this large number of genes, only a small number of

them is strongly associated with the desired classification and relevant to the disease

while other genes are irrelevant [78]. Consequently, feature selection becomes a big

challenge and represents a real prerequisite for selecting the most informative genes

from the original data.

Four benefits can be achieved in feature selection. The first one is removing the

noise and irrelevant features which affect similarity measurement. Second, reducing

the effect of the curse of dimensionality and enhancing the quality of dimensionality

reduction algorithms. The third advantage is increasing the speed of learning algo-

rithms such as classification, similarity measurement and prediction. The last benefit

is in providing better understanding and interpretation for biologists and assisting

them in identifying and monitoring the target disease or function types [25].

2.2.1 Feature Selection Techniques

Saeys et al [78] define a taxonomy of feature selection techniques which divides the

feature selection into three approaches: filter methods, wrapper methods and embed-

ded methods.

Filter based algorithms are independent of the classifiers. That is, the gene selection

process and the classification process are separated. Examples are χ2-statistics [92],

t-statistic [43], RelieF [76], Information Gain [85]. With the filter approach, genes

are selected based on an evaluation criterion regardless of the classifier as shown in

Figure 2.2(a). The advantages of these algorithms are that they are fast, scalable

and the selected genes generalize to unseen data [96]. However, the disadvantages are
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Figure 2.2: Selection methods. (a) Filter approach (b) Wrapper approach (c) Em-
bedded approach [78]

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data

Page 19 of 127



Chapter 2. Literature Review

that they ignore of feature interactions. The univariate filter method treats genes as

independent of one another. This drawback of uni-variate filter methods can lead to

poor classification performance. Thus, a multivariate filter methods were introduced

to handle this problem but not fully. Another disadvantage of filter methods is that

they ignore interaction to the classifier which also may lead to a loss of information

for features that play a good role in discrimination [48].

The wrapper approach, on the other hand, selects a gene subset at each step and

evaluates it based on the classification performance [48], as shown in Figure 2.2(b).

This interaction between the features and the classifier is considered as an advantage

of the wrapper approach in addition to consideration of correlation between features.

However, the disadvantages of these approaches are that they have a high risk of over

fitting and are computationally intensive. Examples includes the use of genetic algo-

rithms, sequential forward selection and sequential backward elimination. Evolution-

ary based algorithms such as the Genetic Algorithm (GA) [40] have been introduced

as wrapper algorithms for the analysis of microarray datasets [59] [71] [45]. Unlike

classical wrappers which select genes incrementally [42], GA selects genes non-linearly

by creating gene subsets randomly. Nevertheless, wrapper approaches like GA have

long been criticized for suffering from over fitting [78]. Moreover, the use of a given

inductive algorithm as the sole optimization guide often leads the system to pursue

high classification accuracy on training data at the expense of poor generalization on

unseen data.

Embedded methods, the third approach to feature selection, consider the interaction

between the classifier and feature selection but with less computational cost and with
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a lower risk of over-fitting. As illustrated in Figure 2.2(c), feature selection is a by-

product of the classification process. Examples include classification trees such as

ID3 [74] and C4.5 [75]. However, the drawback of embedded methods is that they

are often greedy search-based algorithm [13], using only the top ranked features to

perform sample classification in each step while an alternative split may perform bet-

ter. Furthermore, additional steps are needed to extract the selected features from

the embedded algorithms.

Feature selection in an essential approach in this thesis and it is important to identify

a selection method suited to gene expression data and case base retrieval.

2.2.2 Adaptation of Ensemble Methods in Feature Selection

Ensemble methods [24] are effective learning techniques that have been introduced to

improve overall prediction and feature selection accuracy. In this approach, several

feature selection methods are combined to make the decision for elimination of fea-

tures instead of choosing one particular classifier. Moreover, ensemble techniques have

the advantage of handling the problems of small sample size and high-dimensionality

associated with gene expression datasets. They also reduce the potential of over fit-

ting the training data. With ensemble methods, the training dataset may be used

more efficiently. Some ensemble methods such as random forests are particularly

useful in this thesis as they deal with very high-dimensional datasets. Higher classifi-

cation accuracy can be achieved by generating multiple prediction models each with

a different feature subset. Moreover, ensemble methods are effective in dealing with

data with small sample sizes such as gene expression data.
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2.2.3 Random Forest For Feature Selection

The random forest algorithm was developed by Breiman [16], and is known as one of

the most robust classification algorithms developed to date. It is an ensemble clas-

sifier consisting of many decision trees. Many classification trees are grown during

training. A training set is created for each tree by random sampling with replacement

from the original dataset. During the construction of each tree about one-third of

the cases are left out of the selection and this becomes the out-of-bag cases which are

used as a test set. The classification performance of the test set is evaluated based

on the out-of-bag error rates.

Random forest has been used extensively in the biomedical domain [23] [6] because

it is well suited for microarray data. Features will not be deleted based on one de-

cision or one tree, but many trees will decide and confirm elimination of features.

Another positive characteristic of random forest is that it is applicable to very high

dimensional data with a low number of observations, a large amount of noise and high

correlated variables. Moreover, random forest can handle the problem of imbalanced

classes. All these characteristics make this algorithm an appropriate choice for gene

expression datasets.

Diaz-Uriarte and Alvarez de Andres [23] applied random forests on a number of

different microarray datasets and compare performance with many other algorithms

such as k-nearest neighbours and support vector machine. They report that the

classification accuracy of random forests is similar to those of the best algorithms that

are already in use. Moreover, they explore the potential of random forest for attribute

selection and propose a method for gene selection using the out-of-bag error rates.
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The authors state that because of the algorithm’s ability to perform well as a classifier

while also allowing for excellent attribute selection, this algorithm should become an

essential part of the tool-box for prediction and gene selection with microarray data.

Archer and Kimes [6] perform a similar evaluation of the random forests algorithm

and came to many of the same conclusions about its effectiveness of the algorithm.

They apply the algorithm to Acute Lymphoblastic Leukaemia microarray data as a

means of trying to discover the genes which are responsible for the difference between

subtypes of the disease.

2.2.3.1 Algorithm of Random Forest

Random forest consists of four main steps

1. Choose t trees to grow.

2. Choose m potential variables as candidate to split each node, where m << M ,

and M is the number of input variables. The parameter m is hold constant

while growing the forest.

3. Grow t trees. When growing each tree the following is done.

(a) Construct a bootstrap sample of size n with replacement and grow a tree

from this bootstrap sample.

(b) When growing a tree at each node select m variables at random and use

them to find the best split.

(c) Grow the tree to the maximal extent.

4. To classify a point x collect votes from every tree in the forest and then use

majority voting to decide on the class label.
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2.3 Dimensionality Reduction

Dimensionality reduction is a significant technology in this thesis. In contrast to fea-

ture selection, dimensionality reduction aims to extract new features from the original

set of features. The purpose of dimensionality reduction is to reduce, understand and

visualize the structure of complex datasets with the high dimensionality and a low

number of observations found in microarray data. Analysis and visualization is diffi-

cult in practice and becomes an obstacle for diagnosis and treatment of patients [47].

Lee and Verleysen [56] propose a taxonomy of dimensionality reduction. There are

two main types of dimensionality reduction: linear dimension reduction such as Prin-

cipal Component Analysis, and Non-Linear Dimensionality Reduction (NLDR) such

as Sammon mapping [80], locally linear embedding [77], and ISOMAP [86]. There are

two main approaches for NLDR: methods to preserve distances between the high and

low dimensional spaces and methods to preserve the topology (or neighbourhoods).

Methods can be further subdivided into those using Euclidian distance like Multi

dimensional scaling [50] and those using geodesic distance (graph distance) such as

ISOMAP. They identified two types of topology preservation methods, those using a

predefined lattice( e.g Sammons mapping) and those using model-driven lattice (e.g

locally linear embedding ).

2.3.1 Linear Dimensionality Reduction

Linear dimensionality reduction approaches are the traditional methods for dimen-

sionality reduction. However, their effectiveness is limited by its global linearity. Prin-

cipal Component Analysis (PCA), introduced by Pearson [32], is one of the oldest

and best known methods in data mining and analysis. This method is characterized
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by its simplicity and it is a non-parametric method. It aims to extract the latent

variables from a high dimensional dataset. It can act as a step to reduce complex

datasets in a very dimensional space into a lower dimension in order to reveal the

latent variables and simplified structures that often underlie it [56]. The goal of PCA

is to find the directions or components where the data has maximum variance. This

is achieved by finding the eigenvalues and eigenvectors of the covariance matrix of

the data.

Several mathematical and statistical steps are followed in order to solve the eigen-

vector problem. The first step is to center the original data by subtracting the mean

of each attribute. The next step is to calculate the covariance matrix which is the

d × d matrix where d is the dimensionality of the data. Then the eigenvalues and

eigenvectors of the covariance matrix are calculated by solving the following equation.

A− λI = 0 (2.3.1)

where A is the covariance matrix, I is an identity matrix and λ is the eigenvalues and

eigenvectors of the covariance matrix.

After determining the eigenvalues and corresponding eigenvectors, the eigenvec-

tors are sorted in decreasing order based on their eigenvalues. The highest eigenvalue

represents the first principal component and so on. If the centred data is projected

onto the first principal component, the dimensionality of the original data is reduced

into just one dimension. With this simple dimensionality reduction algorithm, the

question is how many principal components should be selected.

Principal Component Analysis has been successfully used in many applications in data
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mining and pattern recognition. One paper has been published where PCA was used

in graph mining in order to reduce the dimensionality and identify a smaller number

of characteristic patterns [79]. Another paper used PCA for face recognition together

with a radial basis function neural network. The role of PCA here was not only for

dimensionality reduction of the image, but also to retain some of the variations in

the image data [87]. Another paper used PCA and fractional-step linear discriminate

analysis for face recognition. PCA successfully reduced the computational complex-

ity of the algorithm and the dimensionality of the data [64]. Principal component

analysis is an important tool in this thesis and is used to reduce the dimensionality

of the dataset.

2.3.2 Non-Linear Dimensionality Reduction

This area has received increasing attention for researchers due to the increasing num-

ber of applications in the field of microarray data. Non-linear dimensionality re-

duction techniques have been regularly used for visualization of high-dimensional

datasets [22]. Many non-linear techniques for dimensionality reduction have been

proposed since 2000 including ISOMAP [86] and Locally Linear Embedding (LLE)

[77]. These methods try to preserve the local neighbourhood of each point for the

high dimensional space in the low dimensional space. They have been used for vi-

sualization of high dimensional data and perform well when the data is composed of

one cluster and fail when the data has multi clusters [90]. Many papers have been

published using non-linear dimensionality reduction. Cho and Park [20] use ISOMAP

for NLDR with some additions to the base algorithm in order to take into consid-

eration the class information when the data is clustered. Another paper proposed
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a continuous ISOMAP that is able to compute the low dimension for out-of sample

points [97]. That is it can project data points unseen by the original algorithm into

the lower dimensional space. A neural network-based ISOMAP algorithm was pro-

posed to efficiently achieve a robust and stable ISOMAP [17]. The benefits of the

proposed method are that the time complexity is linear and the space complexity

is constant. Another paper modifies LLE with the addition of a kernel function in

bioinformatics [60]. It aims to reduce the dimensionality of a Lymphoma data set

in order to classify samples as cancer or not through the analysis of microarray gene

expression. The author claims an improved result with the kernel extension compared

to the original LLE. Another paper uses LLE for text dimensionality reduction [39]

and demonstrates the computational time of LLE is less compared to other methods.

LLE has also been used for speech visualization where it enables deaf people to dif-

ferentiate between different speech to improve and train their oral ability [95].

In contrast to traditional linear techniques, the non-linear techniques have the ability

to deal with complex non-linear data such as microarray data. However and also

in contrast to PCA, non-linear techniques have the problem of dealing with out-of-

sample point [11]. That is, a new data point cannot be embedded into an existing

low-dimensional data. In this thesis, non-linear dimensionality reduction algorithms

will be used only for visualization purposes.

2.3.3 Trustworthiness

The Trustworthiness measurement is proposed by Kaski et al [46] for error estimation

and quality measurement of non linear dimensionality reduction algorithms. One ap-

proach for evaluating dimensionality reduction methods is to compare neighbours in
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input and output dimensional spaces. The Trustworthiness measurement compares

the neighbourhood of the points in the input and output spaces. For example if point

x is close to points w and z in the input space X, then point x should be also close to

points w and z in the output reduced space Y otherwise an error arises after reduc-

tion. For example, in Figure 2.3, there is a point xi in the input space (Figure 2.3a)

with nearest neighbours points represented in red (point w and z ). These points are

transformed and mapped into lower dimensional space. The point xi transformed into

another point yi. The red points are still the nearest neighbors for the point yi except

for point z which is lost from the nearest neighbors. On the other hand, a blue point

becomes a new nearest point for the point yi when it was not in the input space. In

this case, we do not have complete trustworthiness because the neighborhood of the

point xi has changed between the input and output spaces.

Trustworthiness finds to which extent neighbors in the input space also have corre-

Figure 2.3: Neighbours problem in dimensionality reduction: a) high dimensional
space and b) low dimensional space

sponding neighbors in the output space by ranking the neighborhoods of point sets
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in the input and output spaces. Trustworthiness can be defined as follows: let N

be the number of data samples and r(i, j) be the rank of the data sample j in the

ordering according to the distance from i in the original data space. Denote by Uk(i)

the set of those data samples that are in the neighborhoods of size ktrust of the sample

i in the visualization display but not in the original data space [89]. The measure of

trustworthiness Mtrust(k) of the dimensionality reduction is

Mtrust(ktrust) = 1− A(Ktrust)
N∑
i=1

∑
jεUKtrust (i)

(r(i, j)−Ktrust) (2.3.2)

Trustworthiness measure is important in this thesis because it provides error estima-

tion and quality measurement for dimensionality reduction algorithms.

2.4 Genetic Algorithms

Genetic algorithm [40] is a global search technique used to solve optimization prob-

lems which do not already have a well defined efficient solution. Genetic algorithms

(GA) have received a great deal of attention regarding their potential as optimization

techniques for optimization problems and are often used to solve real-world prob-

lems [70]. Genetic algorithms have been applied in many applications with multi

objectives, such as feature weighting [44], transportation problems [33], the minimum

spanning tree problems [100] and the production process planning problems [99]. As

a result, GA is an important tool in this thesis and can be used to weight the features.

Four main steps are involved in GA: evaluation, selection, crossover and mutation.

Figure 2.4 shows the different processes of GA.

1. The evaluation procedure measures the fitness of each individual solution in the
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Figure 2.4: Genetic algorithm process based on [70]

population and assigns it a relative value based on the defining optimisation (or

search) criteria. Typically in a non-linear programming scenario, this measure

reflects the objective value of the given model.

2. The selection procedure randomly selects individuals of the current population

for development of the next generation. Various methods have been proposed

but all follow the idea that the fittest individuals have a greater chance of

survival.

3. The crossover procedure takes two selected individuals and combines them

about a crossover point thereby creating two new individuals. Simple (asex-

ual) reproduction can also occur which replicates a single individual into the

new population.

4. The mutation procedure randomly modifies the genes of an individual subject

by a small mutation factor, introducing further randomness into the population.
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2.5 Imbalanced Data

Many gene expression datasets have the imbalanced classes problem. That is, at

least one of the classes constitutes only a very small minority of the data. For such

problems, the effect is on the practical classification where the interest usually leans

towards correct classification of the minor class. Generally, most of the classifiers

used in selecting features suffer from the imbalanced classes and many have poor

performance because they are biased to the large samples and pay less attention to

the rare class. These algorithms do not work well for such problems because they

aim to minimize the overall error rate. Consequently, unsatisfactory classification

performance results and most of the rare class features are not recognized. Several

researchers have tried to address the problem in many applications such as fraudulent

telephone call detection [31], information retrieval and filtering [57], diagnosis of rare

thyroid deceases [12] and detection of oil spills from satellite images [51].

The main dataset of this thesis is imbalanced data and has a small number of obser-

vations. Therefore, ignoring this critical characteristic of the data may result in very

poor feature selection and case retrieval.

2.5.1 Approaches to Handle Imbalanced Classes

Two different approaches have been proposed to overcome this problem [27]. One

is based on a sampling technique: either down-sampling the majority class or over-

sampling the minority class, or both. The other approach is to use cost sensitive

learning: assigning a high cost to misclassification of the minority class, and trying

to minimize the overall cost [101].
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2.5.2 Sampling Technique

This approach alters the distribution of the classes to be more balanced. This can be

done either by over sampling or by down sampling and sometimes both [51].

Down sampling removes a number of observations from the majority class. It aims

to attain the same number of samples in the majority class as in the minority class.

SHRINC, proposed by [51], is used for down sampling by reducing the number of

samples of the majority class. This method has some drawbacks because it can elimi-

nate some useful information. Moreover, as was shown in the above discussion about

the gene expression data set, a very small number of observations are available in the

gene expression data. Consequently, elimination of observations is not justified with

this kind of data.

On the other hand, over sampling increases the number of samples in the minority

class by replicating minority samples so that they reach the same number as in the

majority class. The synthetic minority over sampling technique (SMOTE) [18] is an

approach used to form new minority class examples by interpolating between several

minority classes examples that lie together. This method is based on the k-nearest

neighbours and it is based on the distance measure. Consequently, it may not work

well on a very high dimensional datasets like gene expression datasets due to the curse

of dimensionality.

In this thesis, oversampling technique will be adopted in order to increase the number

of samples in the minority class and reduce the effect of imbalanced classes.
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2.5.3 Cost Sensitive Learning

The second approach to tackle the problem of imbalanced data is cost sensitive learn-

ing [26] [72] [30]. This approach assigns a high cost to misclassification of the minority

class and low cost to misclassification of the majority class. Based on the above dis-

cussion about sampling technique, this method is more suitable to apply on the gene

expression datasets for learning extremely imbalanced data. As random forest pro-

duces votes from each generated tree in the forest and these votes are then used to

classify a new point, cost sensitive learning will be used in this thesis and applied on

these votes by assigning a weight for each class. A higher misclassification error cost

is given to the minority class by assigning a larger weight. These weights will play a

role in calculating the votes at the terminal nodes. The weighted vote of a class is

the weight for that class multiplied by the number of cases for that class.

2.6 Evaluation Measures of Imbalanced Classes

As gene expression datasets often have the problem of imbalanced classes, the minor

class can have very little impact on the accuracy measurement. This leads to a fact

that the traditional accuracy measure may be not adequate for extremely imbalanced

classes. Other measures have been proposed for imbalanced class classification eval-

uation. Most of these measurement rules are based on the data obtained from the

confusion matrix. Confusion matrix represents the outcome of the actual predicted

classification obtained by the classifier. Table 2.1 illustrates a confusion matrix for a

two-class classification. Conventionally, the majority class is represented as a negative

class label and the minority class is represented as a positive class label. The actual
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class label of the examples is presented in the first column, and their predicted class

label presented in the first row. The numbers of positive and negative examples that

are classified correctly are denoted by TP and TN, while the misclassified examples

are denoted by FN and FP. In order to measure the performance of the classifier, the

Table 2.1: A confusion matrix for a two-class classification
Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)
Actual negative False Positive (FP) True Negative (TN)

accuracy should be determined for each class separately. That is, the true negative

rate and the true positive rate shown in equations (2.6.1) and (2.6.2) respectively.

These two estimated values also known as Recall.

Recall+ = TrueNegativeRate =
TN

TN + FP
(2.6.1)

Recall− = FalsePositiveRate =
TP

TP + FN
(2.6.2)

Another interesting measure is the precision of the predicted positive and negative

cases which is the proportion of the correctly predicted positive cases and negative

cases, respectively. This can be determined using equations (2.6.3) and (2.6.4).

Precision+ =
TP

TP + FP
(2.6.3)

Precision− =
TN

TN + FN
(2.6.4)

Another evaluation measure that works well with imbalanced dataset is the Receiver

Operating Characteristic (ROC) curve [14]. Receiver Operating Characteristic curve

presents the trade-off between the true positive rate and the false positive rate. A

ROC curve is considered to be good if it is closer to the top left corner, and the
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straight line connecting (0,0) and (1,1) represents a random classifier with even odds.

The area under the ROC curve (AUC) is often used to summarise a classifier per-

formance into a single quantity, which represents the performance of a learner in

general across different prediction costs, and the larger the AUC the better. These

presented evaluation measures will be adopted in this thesis in order to evaluate the

performance of the classification.

2.7 Summary

Many researchers have applied case base reasoning to biomedical applications. How-

ever, the case retrieval for gene expression data is still an active area of research.

Moreover, feature-based similarity, in the microarray domain, still requires a lot of

research studies to be done in order to have an accurate similarity measurement be-

tween patients due to the complexities that underlie gene expression datasets.

Feature selection has been extensively used in the microarray domain. However, the

complexities of our dataset, obtained from The Children’s Hospital at Westmead,

requires development of a new algorithm for feature selection. As can be seen from

this review, each feature selection method has advantages and disadvantages and no

one algorithm is universally optimal. However, for feature selection, random forest

has been shown to be well suited for microarray data. With respect to dimensional-

ity reduction, although NLDR algorithms are designed to handle complex datasets,

principal component analysis is preferable to be used in this thesis because the out-

of-sample problem does not exist and new points can be accurately embedded in the

existing low dimensional space. For feature weighting, genetic algorithms are effective
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global search technique and have been extensively used to solve optimization prob-

lems. The imbalanced classes problem has been solved with two approaches which

will be both used in this thesis in different situations.
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Chapter 3

Case-Base Retrieval Framework
For Gene Expression Datasets

This chapter presents a case-base retrieval framework for similarity measurement and

case-base retrieval for gene expression datasets. The rest of this chapter is organised as

follows. Section 3.1 presents the effects of irrelevant features, high dimensional space

and low numbers of observations on the distance measurement and case retrieval

process in gene expression data. Section 3.2 introduces a high level view of the case-

based retrieval framework to show the different modules of the framework before going

to discuss in detail about each module of the framework.

3.1 Case Base Retrieval in Gene Expression Datasets

The process of retrieving similar cases from a case base to a query case is regarded

as a primary and fundamental step in case-based reasoning (CBR) [54] [65] [94],

and the similarity measurement between cases plays a very important role in this

process. Case-based reasoning systems are unable to function properly without em-

ploying effective case retrieval to retrieve the similar cases from the case base. As
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a result, similarity measurement has a strong influence on the case retrieval process

and has great value in providing better solutions for new problems. The most widely

used methods for similarity measures are distance-based functions which calculate

the distance between cases using some or all of the attributes constituting the cases.

However, distance measurement is not applicable on cases with many attributes such

as gene expression datasets. The reason for this is that distance measurement is very

sensitive to irrelevant or redundant features because all features equally contribute

to the similarity. As a result, similarity measurement is considered as a big challenge

with gene expression datasets which contain a massive number of attributes for each

case. With this kind of data, pre-processing steps such as feature selection, dimen-

sionality reduction and feature weighting are required to prepare the data for a useful

similarity measurement task.

Feature selection and dimensionality reduction are two essential techniques in the

microarray domain. In feature selection, a subset of features that are strongly as-

sociated with a specific trait of interest are selected. It acts as an initial step for

cleaning gene expression datasets by selecting the relevant features, enhancing the

quality of machine learning, and providing a better understanding of gene expression

datasets. In some cases, feature selection might not be enough on its own to reduce

high dimensional datasets as the data may still exist in a high dimensional space. Ac-

cordingly, dimensionality reduction methods are required in the microarray domain

and will also be involved in the case base retrieval process. In contrast to feature

selection, dimensionality reduction aims to extract new features from the original set

of features using some linear or non-linear mapping methods.

Feature weighting, which aims to find the most important genes by determining how
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useful they are in distinguishing categories, is also required in similarity measurement.

The reason for this is because feature-based similarity, which is used in this thesis,

is very sensitive to the quality of features. Feature-based similarity suffers from the

equal treatment of features where some features may be more significant than others

and play a major role in discriminating categories. These features should be treated

more importantly than other features and they should attract high weights. On the

other hand, low weights are given to low impact features. Accordingly, feature weight-

ing is required in order to enhance the calculation of the similarity between patients

and to achieve more accurate results.

Furthermore, gene expression microarray datasets often have a low number of obser-

vations compared to the large number of genes. Oversampling techniques are used in

this thesis in order to increase the number of samples of the minority classes. This

leads to improvements in the classification and retrieval performance of test samples

in the minority class. Moreover, oversampling techniques also reduce the effect of

imbalanced classes.

Consequently, the acquisition of a huge number of genes with the complexities under-

lying gene expression datasets has given rise to the development of a framework for

case base retrieval process. The motivation of building this framework is to process

these kinds of datasets before measuring the similarity between patients.

3.2 Case-Base Retrieval Framework

Based on the characteristics and problems of gene expression datasets, this thesis

presents a novel framework that involves several computational intelligence tech-

niques. This framework is composed of two modules: module 1 for training processes
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and module 2 for test processes (see Figure 3.1).

Figure 3.1: Case-base retrieval framework

Module 1 concerns the pre-processing steps of the training dataset. The purpose

of this module is to pre-process the training dataset and handling the complexities of

the gene expression datasets such as feature selection, dimensionality reduction and

feature weighting.

Module 2, on the other hand, concerns a test process for a new query case. The

purpose of this module is to use the outputs of the training process such as a list
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of the selected features in order to pre-process the query before retrieving, from the

case base, the similar previous cases. Detailed descriptions of each module in the

case-base retrieval framework are given in the next sections.

3.2.1 Module 1: Pre-processing the Training Dataset

The first module of the case base retrieval framework pre-processes the training

dataset and is composed of four steps: feature selection, dimensionality reduction

and visualisation, feature weighting and oversampling (see figure 3.2). The first step

aims to select a subset of genes that represent the most relevant features to a specific

output. The second step applies dimensionality reduction algorithms on the dataset

in order to reduce the impact of the curse of dimensionality on the similarity measure

and to visualise the dataset. Once the dataset is processed by the dimensionality

reduction algorithm and is transformed to a lower dimensional space, the dataset

is presented to the feature weighting process to identify the relative importance of

each feature for similarity and classification optimization. The last step applies an

oversampling technique to increase the number of samples of the minority classes and

to reduce the effect of the imbalanced classes. Figure 3.2 shows the steps of training

process.

• Step 1.1: Feature Selection

Feature selection algorithms are initially applied to the dataset. The training

cases are presented to feature selection algorithms to select relevant features.

The output of this step is the training dataset with a subset of genes that are

strongly associated with the output of interest. The selected genes are stored
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Figure 3.2: Pre-processing the training dataset in the framework

as a list of genes, labelled "Feature list" in Figure 3.2, to be used later for

processing the test data samples.

Detailed description of this step such as the proposed algorithm, validation and

number of selected attributes are given in chapter 4 "Feature Selection"

• Step 1.2: Dimensionality Reduction and Visualisation

Linear dimensionality reduction algorithms are applied after feature selection in

order to reduce the dimensionality of the dataset. Although the features of the
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dataset are reduced after removing the irrelevant features, the dataset may still

exist in a high dimensional space and similarity measurement may still suffer

from the curse of dimensionality [56]. This transformation of the dataset into

a lower dimensional form is required in order to enhance the distance measure-

ment. Kernel Principal Component Analysis (KPCA) is applied to the training

set samples. The output of this step is the training dataset in a low dimensional

space and a vector, labelled "Low dimensional vector" in Figure 3.2, to be used

later in processing the test data samples.

This step involves another procedure that aims to visualise the gene expression

dataset. Biologists and clinicians may be able to better understand the struc-

ture of complex microarray datasets when visualised in two or three dimensions.

Figure 3.3 shows the feature selection, dimensionality reduction and visualisa-

tion steps in the case base retrieval framework and how the dimensionality of

the dataset is modified from one step to another. Further description of the

number of selected components in KPCA and the validation process are given

in Chapter 5 "Dimensionality Reduction and Visualisation".

• Step 1.3: Feature Weighting

Once the training dataset is projected to a low dimensional space, the next step

is to weight the features. The output of this step is a weight vector which is

stored as a list of weights, labelled the "Weight list" in Figure 3.2, to be used

in the distance measurement formula. Feature weighting is needed for instance-

based learning algorithms such as nearest neighbourhood. Giving weights to

the features based on their quality and usefulness has the potential to lead

to more accurate distance measurement. Genetic algorithms are involved in
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Figure 3.3: Modification of the data in the dimensionality reduction and visualisation
section

this step in order to find the relative importance of each feature and assign

it a corresponding weight. Detailed description of this step and the proposed

technique are given in Chapter 6 "Similarity Measurement"

• Step 1.4: Oversampling

Oversampling techniques are involved in this step to increase the number of sam-

ples in the gene expression dataset. Synthetic minority oversample technique

(SMOTE) [19], which is considered as an intelligent oversampling method, is

applied in this framework in order to add new artificial minority examples by

interpolating between original minority class examples that lie together rather

than duplicating the pre-existing examples. Figure 3.4 shows the feature weight-

ing and oversampling steps in the case base retrieval framework. Further de-

scription about this step are given in Chapter 6 "Similarity Measurement".
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Figure 3.4: Modification of the data in the feature weighting and sampling techniques
section

3.2.2 Module 2: Pre-processing the test dataset

The second module of the framework is related to the query samples (see Figure 3.5).

A new query sample comes in the high dimensional space with irrelevant features.

These features are filtered based on the determined relevant features obtained from

the feature selection step 1.1 of module 1. The next step is to transform the new

sample into a lower dimensional space by projecting the filtered features onto the

dimensionality reduction vector obtained from the dimensionality reduction step 1.2
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of module 1. Once the new sample is passed through the pre-processing steps of the

Figure 3.5: Pre-processing the test sample in the framework and retrieving the similar
cases

test samples, the new sample is presented to the retrieving process in order to retrieve

the old similar cases from the case base using the feature’s weight obtained from the

feature weighting step 1.3 of module 1.
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3.3 Summary

A case base retrieval framework for gene expression data is presented in this chapter.

This framework is contribution 1 of this thesis listed in section 1.3. It provides ori-

entation to the important technologies of this research and the relationships among

these technologies. The process of developing this conceptual framework brought out

a number of significant realizations: that feature selection and linear dimensionality

reduction have several positive effects on the gene expression datasets in terms of al-

leviating the curse of dimensionality and enhancing the similarity measurement; that

the effectiveness of weighting the features is important in the distance measurement;

and that one improvement in case base retrieval process is adopted by applying over-

sampling techniques on gene expression datasets.

The methods and steps forming part of the framework are described in more detail

and validated in later chapters.
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Chapter 4

Balanced Iterative Random Forest
for Gene Selection from
Microarray Data

This chapter proposes a feature selection method called Balanced Iterative Random

Forest (BIRF) to select genes that are relevant to a specific trait of interest from

gene expression datasets. Too many features or genes in a dataset adversely affect

similarity measurement and classification performance as many of these genes are ir-

relevant to specific trait of interest [38]. Moreover, the huge number of features leads

to the problem of high dimensionality which in turn affects the distance measurement.

Hence, selection of a subset of genes that are relevant to a trait of interest is crucial

and plays a vital role for building a successful gene expression similarity measurement

model.

Based on the literature review of feature selection approaches presented in chapter

2 and the characteristics of gene expression datasets, there is no one algorithm or

technique that is optimal for feature selection of gene expression datasets. However,

random forest [16] has been found to handle most of the problems that accompany

these kinds of datasets. Random forest is an ensemble classifier which can work with
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high-dimensional data with a low number of observations, can handle the correlation

between features and is robust on noise. The rest of this chapter is organised as

follows.

Section 4.1 introduces the Balanced Iterative Random Forest algorithm with the pseu-

docode and the methods to handle the imbalanced classes and approach to validate.

Section 4.2 describes datasets used for validations. Section 4.3 describes experiments

validating the approach and results achieved on different gene expression datasets.

Section 4.4 compares the proposed algorithm with other methods. Finally, section

4.5 gives a brief conclusion to summarize and bring together the main areas covered

in this chapter.

4.1 Balanced Iterative Random Forest for Feature

Selection

This thesis introduces a new method for feature selection based on random forest

called Balanced Iterative Random Forest (BIRF). Balanced Iterative random forest

is an embedded gene selector that follows a backward elimination approach. The base

learning algorithm is random forest which is involved in the process of determining

which features are removed at each step. The algorithm starts with the entire set of

features in the dataset. At every iteration, the number of the attributes is reduced by

removing those attributes which have zero importance value. After discarding those

genes, a new random forest is built again with the selected set of genes that yields

the smallest out-of-bag (OOB) error rate.
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The R package randomForest is used in this thesis. The two main parameters of ran-

dom forest are mtry, the number of input variables randomly chosen at each split

and ntree, the number of trees in the forest. These two parameters are set to their

default values (ntree = 500; ; mtry =
√
d). Two other parameters are very impor-

tant in this thesis due to the problem of imbalanced classes and ignoring them may

result in poor feature selection. The two parameters are cutoff, a vector weight for

each class, and sampsize, the number of cases to be drawn to grow each tree. These

two parameters are carefully tuned in order to achieve a successful feature selection

process without ignoring the minority classes. Explanation about these parameters

and how to handle the imbalanced classes are given in the next section before going

to describe the BIRF algorithm.

4.1.1 Handling Imbalanced Classes Effect on Feature Selec-

tion

Balanced Iterative Random Forest algorithm also takes in consideration the problem

of imbalanced classes and its effect on the classification process. Standard classifiers

may have poor performance on datasets with imbalanced classes because they are

biased to the class with a large number of samples and pay less attention to the rare

class. This may result in poor accuracy for the minority class. Similar to standard

classifiers, random forest also suffers from learning of extremely imbalanced classes

dataset but random forest allows us to mitigate this problem. Two solutions are

applied on the BIRF to alleviate this problem: balanced sample and cost sensitive

learning. Balanced sample solution is based on the parameter sampsize which aims
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to induce random forest to build trees from a balanced bootstrap sample, that is a

bootstrap sample is drawn from the minority class with the same number of samples

from the majority class. In the case of imbalanced data, there is a high probability

that random forest will build a tree from a bootstrap sample that contains only a

few samples from the minority class, resulting in poor performance for predicting the

minority class.

The second solution aims to apply a cost sensitive learning technique through the

parameter cutoff in order to make random forest more suitable to learn extremely

imbalanced data. The idea of cost sensitive learning is to assign a high cost for

misclassification of the minority class and trying to minimize the cost of the major

class. As random forest generates votes to classify the input case, cost weights are

applied on those votes in order to make the calculation of the votes as a proportion

rather than whole. This solution aims to balance the distribution of classes without

altering the semantics of the dataset neither by down-sampling nor over-sampling the

dataset. This is because the down sampling technique aims to remove samples from

the majority class in order to attain the same number of samples in the minority

class. This method may result in losing some useful information from the dataset.

Moreover, only a small number of observations are available in the gene expression

datasets. Oversampling, on the other hand, is where the number of samples in the

minority class is increased to attain the same number of samples in the majority class.

However, increasing the number of samples using SMOTE [19] which was reviewed in

section 2.5.2, cannot be applied on very high dimensional datasets due to the curse

of dimensionality.
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A Cost Weight Finder (CWF) algorithm is proposed to tune the parameter cutoff

with the best weights required to balance the distribution of classes. This algorithm

uses random forest with the default settings as a base classifier for classification

measurement performance for different randomly generated weights.

Given an input data matrix XεRn×g where n is the number of samples and g is

the number of genes, iterative random forest takes a random sample YεRn×f where

f << g from the input data matrix and initializes a random cost weight for each

class in the range [0,1]. In every iteration, classification performance of the classes

is evaluated by measuring the area under the receiver operating characteristic curve

(AUC). If this evaluation measure (i.e AUC) is less than one, new random values are

generated again until the evaluation measure reaches the maximum value of one. The

algorithm is run for a predefined number of iterations in order to avoid an infinite loop.

When the algorithm reaches the predefined number of iterations, the algorithm then

chooses the highest evaluation measure found with the corresponding cost weights.

The proposed algorithm to find these weights is presented in algorithm 4.1.1.
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Algorithm 4.1.1: CostWeightFinder( )

itr ← numberofiterations

g ← numberofgenes

n← numberofpatients

currentOOB.error ← 1

data←

{
f features with n Patients uniformly randomly selected

from the dataset where f << g

for i← 0 to itr

do



costWeight.vector ← Assign stratified randomly in [0, 1] an error cost for each class

REPEAT

Run random forest on this sample

previousOOB.error ← currentOOB.error

currentOOB.error ← Read the outOfBag(OOB) error

F ind the importance value for each feature

Delete features with importancevalue <= 0

UNTIL currentOOB.error > previousOOB.error

if evaluationMeasure of AUC = 1

then

{
Save the costWeight.vector

exit

else

{
array[]← Store the assigned error cost values (costWeight)

continue with the For loop

costWeight.vector ← Find the best obtained error cost values in array

Save costWeight.vector

return (costWeight.vector)
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4.1.2 Algorithm of Balanced Iterative Random Forest

A balanced iterative random forest algorithm is proposed to select the most relevant

genes to the disease and can be used in the classification and prediction process. The

algorithm uses the cost weights obtained from the Cost Weight Finder (CWF) algo-

rithm and the balanced sample solution to handle the imbalanced classes.

Due to the large size of gene expression datasets and the limitation of current hard-

ware, it was not possible to run BIRF algorithm on all genes of the dataset. Con-

sequently, the first stage in this algorithm is to divide the dataset, by the number

of genes, randomly into different datasets. Then the BIRF algorithm is run on each

dataset to select the informative genes. The selected genes from each dataset are then

combined to form a new gene expression dataset with fewer attributes. With this ob-

tained dataset, BIRF then starts with an iterative attribute elimination process. The

developed algorithm is presented in algorithm 4.1.2
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Algorithm 4.1.2: BIRF(dataset)

currentOOB.error ← 1

randSamples←

{
Divide the dataset randomly into different samples

by the number of features (without replacing)

for i← 1 to number(randSamples)

do



Run random forest on randSamples[i] using the cost weights found by CWF

Find the importance value for each feature

tempRandSamples[i]← Delete features with importance value <= 0

Store randSamples[i] with the selected features

Accumulate the selected features in the dataset reducedDataset

reducedDataset← reducedDataset+ tempRandSamples[i]

REPEAT

Run random forest on the reducedDataset

F ind the importance value for each feature

reducedDataset← Delete feature with importance value <= 0

previousOOB.error ← currentOOB.error

currentOOB.error ← Calculate the OOB error

UNTIL

if currentOOB.error >= previousOOB.error

return (reducedDataSet)

4.1.3 Validation of Over-Fitting

Over-fitting occurs in statistics and machine learning algorithms especially when these

algorithms are dealing with complex datasets such as gene expression datasets (many

attributes relative to small number of samples) [38]. It was also established in the
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literature review that one of the characteristics of random forest is that it less prone

to over-fitting. Nevertheless, to further support the process of feature selection, ad-

ditional experiments are performed to ensure that there is no over fitting in the gene

selection process. In each iteration, after removing the irrelevant genes from the train-

ing dataset, the same genes are eliminated from the test dataset and classification

performance is evaluated. Once the classification error rate of the test dataset starts

to increase after reaching a minimum value, it is assumed that the training dataset

is over trained and that the algorithm should stop at this stage. Experiments about

this technique are given in section 4.4.

4.1.4 Validation of the Selected Genes

The decision about how many attributes to select in feature selection process is crit-

ical and has two effects. Selecting too many attributes from the original dataset

makes it difficult to analyse these genes in terms of their effect on the disease. On the

other hand, in order to build a generalizable gene expression similarity measurement

model, it is important to incorporate as much information as possible. Therefore, it

is possible to make a principled decision by testing the effect of the selected number

of attributes on the classification performance to know whether more genes provide

new information or not.

Although the out-of-bag error rate of the training dataset with the selected genes may

reach a minimum value and provides a good classification performance, these selected

genes may still require further exploration to determine whether they are globally

informative or they are just selected by chance and may be only predictive to that

particular dataset. In order to support the gene selection process and to distinguish
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between predictive attributes and those that only appear to be predictive, this the-

sis proposes a methodology to decide which genes best describe the original dataset.

The methodology repeats experiments training the BIRF algorithm several times and

reduces the training dataset into several subsets (resultant attribute lists). The resul-

tant attributes in each subset are then compared to see which attributes are selected

in multiple executions and which attributes are once selected. The assumption is that

the attributes which appear in multiple subsets are more informative than attributes

that appear in a single subset. The subset that contains the most common attributes

with the minimum out-of-bag error is the one that best describes the original dataset.

4.2 Datasets

The experiments of this thesis are performed on a Childhood Leukaemia gene ex-

pression dataset which is collected from The Children’s Hospital at Westmead. The

dataset was normalized by the Distance Weighted Discrimination (DWD) algorithm

[67]. The entire childhood leukaemia gene expression dataset is composed of 110

patients with expression values for 22,678 genes. However, stratified random sam-

pling is applied on the gene expression dataset and it is divided into training and

test datasets. The training dataset is composed of 70 patients who are classified as

follows;

• Medium risk (53 patients)

• Standard risk (11 patients)

• High risk (6 patients)
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The test dataset is composed of 40 patients and they are classified as follows;

• Medium risk (25 patients)

• Standard risk (10 patients)

• High risk (5 patients)

Other datasets have been used in this research project for evaluation of BIRF. Three

publicly available microarray datasets: Golub Leukaemia cancer, Colon cancer and

Lung cancer datasets were used in this chapter. All these datasets are characterized

by a relatively small number of samples with a high dimensional space. For these

three datasets, the same training and test data reported in the previous studies are

used in these experiments, without changing the sample sizes, so that the obtained

results can be objectively compared with earlier methods.

• Golub Leukaemia dataset is a well-studied publicly available microarray bench-

mark collected by Golub and colleagues and is produced with an Affymetrix

oligonucleotide microarray [35]. This dataset consists of gene expression pro-

files for two acute types of leukaemia: acute lymphoblastic leukaemia (ALL)

and acute myeloblastic leukaemia (AML). The dataset is normalized by z-score

[68] and consists of 72 samples: 23 of AML, and 49 of ALL. Each sample is

measured over 7,129 genes. These samples are broken into two datasets: a

training dataset and a test dataset composed of 38 and 34 samples respectively

(see Table 4.1).

• Colon dataset is another publicly available microarray dataset which was ob-

tained with an Affymetrix oligonucleotide microarray [3]. The Colon dataset
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Table 4.1: Microarray gene expression datasets

Datasets
Number of

classes
Number of

features
Number of

training samples
Number of

testing samples
Childhood Leukaemia 3 22,678 70 40

Golub Leukaemia 2 7,129 38 34
Colon cancer 2 2,000 38 34
Lung cancer 2 12,533 32 149

contains 62 samples, with each sample containing the expression values for 2000

genes. Each sample indicates whether it came from a tumour biopsy or not.

This dataset is used in many different research papers on feature selection of

gene expression datasets [10] [15] [34]. The dataset is quite noisy but the real

challenge is the shape of the data matrix where the dimensionality of the fea-

ture space is very high compared to the number of cases. It is important to

avoid over fitting in this dataset. Although the number of cases is very low,

the dataset is split into two datasets: a training dataset and a test dataset

composed of 38 and 34 samples respectively (see Table 4.1).

• Lung cancer dataset is also used in the experiments and it was generated with

an Affymetrix oligonucleotide microarrays and normalized by z-score [36]. For

each sample it is indicated whether it came from a malignant pleural mesothe-

lioma (MPM) or adenocarcinoma (ADCA). There are 181 tissue samples (31

MPM and 150 ADCA) which already have been broken into training and testing

samples. The training dataset contains 32 of samples, 16 MPM and 16 ADCA.

The remaining 149 samples are used for test. Each sample is described by 12533

genes. Similar to the Colon dataset, the Lung cancer dataset is also noisy but

with more samples and genes. These samples are broken into two datasets: a
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training dataset and test dataset composed of 32 and 149 samples respectively

(see Table 4.1).

4.3 Experiments

Several experiments are performed on the balanced iterative random forest algorithm

in order to demonstrate the validity of the proposed algorithm, to evaluate the algo-

rithm on different datasets and to compare our achieved results to other algorithms

by using the same datasets.

4.3.1 Experiments on Childhood Leukaemia Dataset

Balanced Iterative Random Forest is validated with the Childhood Leukaemia gene

expression dataset collected from The Children’s Hospital at Westmead. It is impor-

tant to note that the main purpose of these experiments is to find a subset of genes

most closely correlated with the leukaemia risk type distinction. Also it is important

to incorporate as much data as possible without including so much data that may

result in losing interesting separations between patients. The set of informative genes

to be used in the prediction of risk type was chosen to be the 107 genes selected at

a lowest out-of-bag error rate 0.04. The confusion matrix on the training dataset

for this 107 genes dataset is shown in Table 4.2. As can be seen from this matrix,

patients with high risk are fully predicted. Forty nine patients with standard risk

are predicted correctly. However, two patients are predicted as high risk and two

patients as standard risk. With respect to the standard risk patients, ten patients are

predicted correctly and only one patient is predicted as a medium risk. In order to
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validate the results we have obtained from this experiment, test dataset is processed

by random forest to see the classification performance of the selected genes. Table

4.3 shows the confusion matrix for classification of the test dataset and demonstrates

that the classifier generalised reasonably well. Precision and accuracy are computed

Table 4.2: A confusion matrix for the childhood leukaemia training dataset

Predicted High Predicted Medium Predicted Standard

Actual High 6 0 0
Actual Medium 2 49 2
Actual Standard 0 1 10

Table 4.3: A confusion matrix for the childhood leukaemia test dataset
Predicted High Predicted Medium Predicted Standard

Actual High 3 1 1
Actual Medium 0 20 5
Actual Standard 0 3 7

on the test dataset in order to evaluate the classification performance of the selected

genes. The precision of the high, medium and standard classes are 100%, 83.3% and

53.8% respectively. However, the accuracy of the high, medium and standard are

60%, 80% and 70% respectively.

4.3.1.1 Validation of Results in terms of Over-Fitting

It is important to be able to validate results and prove that they are not due to over-

fitting the training data. A sophisticated technique is used in these experiments and it

is described in section 4.2.3. The iterative random forest is run again on the training

dataset for selecting the relevant bio-markers. Simultaneously, the test dataset is

involved in this process to validate that the training process doesn’t over train. The
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training process of the iterative random forest on the Childhood Leukaemia dataset

is shown in Figure 4.1.

Figure 4.1: Variations of Out-of-bag error during selecting the features

As can be seen from the graph and based on the training dataset, the out-of-

bag error decreases as the number of irrelevant features and noise is eliminated at

each iteration. After several iterations, the out-of-bag error becomes stable in a

range between 0.1 and 0.04. With respect to the test dataset, the classification

performance is quite similar to the training dataset but with less accuracy. Moreover,

it is important to note that there is no over-training of the dataset in the first eight
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iterations and with the number of features is greater than 100. The out-of-bag error

of the test dataset consistently decreases in the first eight iterations. After the eighth

iteration, the out-of-bag error of the test dataset is increased again and becomes

unstable for several iterations. The training stops at the eighth iteration with the

lowest out-of-bag errors are achieved for the test and training datasets.

4.3.1.2 Analysis of Selected Genes

To further evaluate the attribute-selection process, experiments training the balanced

iterative random forest algorithm are repeated three times. The resultant attribute

lists from each repetition are then compared to the attributes obtained from the initial

experiment where 107 genes have been selected. The goal of that is to see whether

the 107 selected attributes appear in the three resultant attribute lists or not. It is

interesting to note that 80% of the top 20 genes consistently appear in the three lists,

and the top 20 genes remain near the top in the other three lists. 64% of the top 100

selected genes from each list are the same. This supports the fact that the top selected

genes are globally predictive and have not been selected by chance. Moreover, it also

indicates that the the feature selection process was not over-trained.

Classification performance of the three resultant attribute lists are also compared to

see whether the list that contains the most common attributes provides good separa-

tion between the patients. Table 4.4, 4.5 and 4.6 show the classification performance

of the first, second and third list respectively. The out-of-bag errors of the three

lists are 17.27%, 14.55% and 16.73% respectively. It can be clearly noticed from this

analysis that the selected 107 genes (obtained in section 4.3.1) contains the most

common attributes, it provides the minimum out-of-bag error (4%) and it is the best
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one describes the original dataset.

Table 4.4: A confusion matrix for the childhood leukaemia test dataset (first list)

Predicted High Predicted Medium Predicted Standard

Actual High 3 1 1
Actual Medium 1 18 6
Actual Standard 1 3 6

Table 4.5: A confusion matrix for the childhood leukaemia test dataset (second list)

Predicted High Predicted Medium Predicted Standard

Actual High 2 2 1
Actual Medium 0 20 5
Actual Standard 1 2 7

Table 4.6: A confusion matrix for the childhood leukaemia test dataset (third list)

Predicted High Predicted Medium Predicted Standard

Actual High 3 1 1
Actual Medium 2 18 5
Actual Standard 1 3 6

4.3.2 Experiments on the Three Public Microarray Datasets

One of the most important aspects of any experiment is validating the algorithm. In

this thesis, validation is done by applying the proposed algorithm on the three pub-

licly available microarray datasets described in section 4.3. If the algorithm performs

well then the feature selection process is done correctly.

Balanced Iterative Random Forest is initially validated on the Golub Leukaemia

dataset [35]. The minimal out-of-bag error rate of zero is achieved at 50 features

which are selected as the most important features in classification. This result is
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Table 4.7: A confusion matrix for the Golub training dataset

Predicted ALL Predicted AML

Actual ALL 25 0
Actual AML 0 13

Table 4.8: A confusion matrix for the Golub test dataset
Predicted ALL Predicted AML

Actual ALL 24 0
Actual AML 0 10

also validated in order to make sure that the feature selection process has not over-

fitted to that training dataset. With the selected 50 features, 100% accuracy has

been achieved on both the training and test datasets. Tables 4.7 and 4.8 show the

obtained results.

The same procedure is applied to the Colon dataset [3]. Sixty nine features are se-

lected as the most important features in classification with a minimal out-of-bag error

rate of zero. For the test data, an accuracy of 96% has been achieved where only one

patient is wrongly classified. Tables 4.9 and 4.10 show the obtained results.

With respect to the Lung cancer dataset [36], 57 features are selected from the train-

ing dataset with zero error rates. With the test data, however, 97% accuracy have

been achieved with only one patient is wrongly classified. Tables 4.11 and 4.12 show

the obtained results.

These results suggest that BIRF works well for several gene expression datasets.
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Table 4.9: A confusion matrix for the Colon training dataset

Predicted cancerous Predicted normal

Actual cancerous 27 0
Actual normal 0 13

Table 4.10: A confusion matrix for the Colon test dataset
Predicted cancerous Predicted normal

Actual cancerous 12 1
Actual normal 0 9

4.4 Comparison With Other Algorithms

In the previous section, we performed experiments on three different public gene

expression datasets that have been analysed by researchers using various gene selec-

tion methods. We report the results achieved by Support Vector Machine-Recursive

Feature Elimination (SVM-RFE), Multiple SVM-RFE (MSVM-RFE) and Optimal

Bayes (OB) as shown in Table 4.13. It can be seen that a very high accuracy is

achieved on most of the datasets studied here. For instance, on the Golub Leukemia

dataset, BIRF, SVM-RFE and MSVM-RFE [28] have a perfect prediction on the test

dataset. The best obtained accuracy for NB was by Inza et al [41] at 95%. The best

performance on the Colon dataset is achieved at 96% obtained by BIRF. On the other

hand, the accuracy of SVM-RFE, MSVM-RFE and NB is 83.71% [28], 83.57% [28]

and 87% [41] respectively. With respect to the Lung cancer dataset, 81% and 88%

accuracies are reported (not shown in Table 4.13) using the bagging and boosting

methods [58] where 97% is achieved by BIRF.
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Table 4.11: A confusion matrix for the Lung cancer training dataset

Predicted ADCA Predicted MPM

Actual ADCA 16 0
Actual MPM 0 16

Table 4.12: A confusion matrix for the Lung cancer test dataset

Predicted ADCA Predicted MPM

Actual ADCA 134 0
Actual MPM 1 14

4.5 Summary

This chapter proposes a method called balanced iterative random forest for selecting

features in imbalanced gene expression datasets. This algorithm represents contribu-

tion 2 listed in section 1.3. It is un-realistic to assume that the attribute-selection

algorithm, in this case the balanced iterative random forest algorithm, will be able to

pinpoint which attributes can describe the risk type of the patient and identify all of

the biologically significant attributes with a such large complex dataset. Nevertheless,

the attribute selection process is done carefully by validating the results, and eventu-

ally, it produces a small subset which contains the most informative genes. This result

was validated and supported through two different experiments: over-fitting valida-

tion and analysis of the selected genes. The experiments showed that the classifier

did not over-fit the training dataset. Also, the analysis of attributes to distinguish

between predictive attributes and those that only appear to be predictive (over-fitted

attributes) showed that most of these attributes appeared in multiple repeats of the

algorithm runs. Balanced Iterative Random Forest is also applied to three other mi-

croarray datasets: Golub, Colon cancer and Lung cancer datasets. Overall, BIRF
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Table 4.13: Accuracy results for Colon and Leukaemia datasets

Datasets Measurements BIRF
SVM-RFE
from [28]

MSVM-RFE
from [28]

NB
from [41]

Golub
Number of genes 50 95 37 4

Accuracy 1 1 1 0.95

Colon
Number of genes 69 7 3 2

Accuracy 0.96 0.83 0.83 0.87

Lung
Number of genes 57 31 33 NA

Accuracy 0.97 0.96 0.96 NA

resulted in classifiers comparable or superior in accuracy to SVM-RFE, MSVM-RFE

and Naive Bayes on the Colon, Golub and Lung datasets.
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Chapter 5

Dimensionality Reduction and
Visualization

This chapter discusses the dimensionality reduction and visualization step in the case

base retrieval framework. Section 5.1 gives a brief introduction about the importance

of dimensionality reduction and data visualization in the microarray domain. Section

5.1.1 presents a methodology to reduce the dimensionality of the dataset by choosing

a number of components in kernel principal components analysis (KPCA) to represent

the data in fewer dimensions. Section 5.1.2 proposes a new algorithm for non-linear

dimensionality reduction and visualization of gene expression datasets called Local

Principal Component(LPC). Section 5.2 describes datasets used for validation be-

fore presenting experiments comparing results to other state-of-the-art algorithms.

Section 5.3 gives a conclusion and summary of the contributions for this chapter.
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5.1 Dimensionality Reduction of Gene Expression

Datasets

Dimensionality reduction is the second stage in the case base retrieval framework

illustrated in Figure 3.2. It aims to reduce the dimensionality of the data by trans-

forming a high-dimensional dataset into a lower dimensional one which represents the

most important variables that underlie the original data. Both linear dimensional-

ity reduction and non-linear dimensionality reduction algorithms are involved in this

thesis for two different purposes: dimensionality reduction and visualization. Linear

dimensionality reduction (LDR) algorithm is applied on the Childhood Leukaemia

gene expression dataset to reduce the number of attributes of the dataset and to

enhance the quality of distance measurement. Non-linear dimensionality reduction,

on the other hand, is applied for visualization of gene expression dataset once it is

processed by LDR algorithm.

5.1.1 Linear Dimensionality Reduction Approach

Kernel Principal Components Analysis is involved in this work in order to reduce the

dimensionality of the dataset. Kernel methods [81] are employed along with PCA

to save considerable amounts of computation time in finding the effective principal

components. This is because the number of attributes or features is very large in

gene expression datasets and is much higher than the number of samples. In normal

PCA, the size of covariance matrix is m ×m where m is the number of attributes.

However, by employing kernel methods, the size of the kernel matrix is n× n where

n is the number of observations or samples. The idea behind KPCA is to find the
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directions or components where the data has maximum variance. This is achieved

by finding the eigenvalues with the corresponding eigenvectors for the kernel matrix

of the dataset. Dimensionality reduction is then achieved by choosing the largest

eigenvalues obtained by KPCA in order to represent the data in fewer dimensions.

Dimensionality reduction based on KPCA takes as input XεRn×m and produces out-

put YεRn×d where d < m is the dimensionality of the low dimensional space. The

question in this process is: what is the minimum dimension that can be achieved?

or which components of KPCA should be selected to represent the dataset in fewer

dimensions?

This thesis proposes a wrapper method approach for choosing the best value of d < m

where m and d is the dimensionality of the input and output datasets respectively.

The concept of this wrapper method is to use a nearest neighbourhood (NN) classifier

to evaluate the classification performance on different low dimensionality representa-

tions of the data so as to choose the most appropriate value of d. Due to the small

number of observations in the training dataset and in order to have a result that

can generalise well, k-fold cross validation technique is used in order to determine

the classification accuracy of the classifier. The accuracy is evaluated on different

low dimensionality representation of the data in order to find the value of d that

best describes the data. The training dataset is randomly partitioned into k sub-

samples. Each fold is taken from the training data for validation and the remaining

data is processed by KPCA. For each low dimensional vector obtained by KPCA,

the validatation fold is projected onto this vector and presented to the NN classifier

to evaluate the classification accuracy. This process is repeated k times and the low

dimensionality representation of the data that performs the best on each fold is then
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selected. Experiments using this approach to choose d are given in section 5.2.1.

5.1.2 Non-Linear Dimensionality Reduction and Visualiza-

tion of Gene Expression Datasets

This thesis proposes a non-linear dimensionality reduction algorithm called Local

Principal Component (LPC) for dimensionality reduction and visualization of gene

expression datasets. The algorithm is based on the first principal component of the

local neighbourhoods of each data point. This algorithm overcomes a drawback of

PCA when it is applied on non-linear data. This algorithm takes as input XεRd×n

and produces output YεRq×n where q < d is the dimensionality of the embedding

input vector X in the low dimensional space Y (see Figure 5.1). Note that the order

Figure 5.1: Structure of the input and output dataset of LPC

of coordinates differs from that presented in the last section. Four steps are involved

in this algorithm. Step 1 computes the neighbors for each data point. For that, we
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determine the k-nearest neighbours for each data point xi. After computing the k

nearest neighbours for each data point, a matrix Ci is created of size d× k. Column

vectors of each Ci are the column vectors of X for the k nearest neighbours of each

point xi ordered by increasing distance with the point xi itself excluded. Step 2

determines the first principal component for each matrix Ci by solving the eigenvalue

problem for the kernel matrix. Step 3 calculates the orthogonal projection of the

first eigenvector and stores it in a square matrix MεRn×n based on the indexes of the

neighbourhood indices obtained from the first step. Step 4 calculates the embedding

coordinates Y using the M matrix by solving the global eigenvalues and eigenvectors

of the squared matrix M.

These steps are accomplished using the following algorithm:
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Algorithm 5.1.1: LPC(inputDataset)

d← dimensionality of the input dataset X

q ← dimensionality of the output dataset Y

n← number of samples

k ← number of nearest neighbours

C[n]← Empty matrix of size d× k
I← Identity matrix of size k × k
M← Identity matrix of size n× n
IND← Empty matrix of size k × 1

for i← 1 to n

do



C[i]← k nearest neighbors to pointXi

IND← Indexes for the k nearest neighbors to pointXi

P (size k × 1)← First Principal component of C[i]

O (size k × k)← Orthogonal project of P× t(P)− I

M[ind[i], ind[i]]←M[ind[i], ind[i]] + O
eigenvalues← Solve the eigenvalue problem for the matrix M

sortedEigenvalues← Sort eigenvalues in decreasing order

selectedEigenvalues← Top q eigenvalues.

outputDatset← Corresponding eigenvectors for the selectedEigenvalues

return (outputDataset)

5.2 Experiments

Three datasets have been used in this study for validation, error estimation and exper-

iments. The Swiss-roll dataset, which was created to explore various dimensionality

reduction algorithms, has been used in this study for validation of LPC. It is gener-

ated randomly by sampling a 3D Swiss-roll surface with no class label information.
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The second one is the famous Iris dataset provided by Anderson [5]. The dataset has 4

features and 150 samples consisting of three species of Iris flower (Setosa, Versicolour

and Virginica) with 50 samples of each species. A Childhood Leukaemia gene ex-

pression dataset provided by The Children’s Hospital at Westmead and described in

chapter 4 is visualized with LPC. This gene expression dataset has been preprocessed

by applying a feature selection and linear dimensionality reduction algorithm in order

to remove the noise and irrelevant features which affect the result of dimensionality

reduction algorithm.

5.2.1 Choosing number of Components in KPCA

Kernel principal components analysis algorithm is applied on the Childhood Leukaemia

gene expression dataset which has been pre-processed by the balanced iterative ran-

dom forest to select the relevant bio-markers as described in section 4.4. The dataset

now has 107 features and it is composed of 70 patients who are classified as follows:

• Medium risk (53 patients)

• Standard risk (11 patients)

• High risk (6 patients)

Cross validation is used in training in order to avoid over fitting and to achieve better

generalized results. Many applications use ten-fold cross validation, but because there

are not many samples in our dataset, and in order to have a reasonable number of

training and test samples (especially for high risk patients), the value of d (the target

dimensionality) is determined using 8-fold cross validation.
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Eight-fold Cross validation is applied to evaluate classifications on the dataset. The

main consideration of this process is to achieve the maximum possible data reduction

that is compatible with accurate classification for training and test samples. As there

is no definitive rule for choosing the number of eigenvectors to retain, the decision

in this work is based on the classification performance plus the amount of the total

variance accounted for by d, the number dimensions selected.

The training Childhood Leukaemia gene expression dataset, as described in Section

4.3, is randomly partitioned into eight sub-samples. Each sample is taken from the

training data for validation and the remaining data is processed by KPCA and re-

duced into different values of d. After each reduction, the test sample is projected into

the space of the reduced data and classification accuracy is evaluated. This process

is repeated eight times and the eight results are averaged for each value of d so that

we have a single estimate at each value of d for the eight validations. Classification

accuracy of the obtained reduced dataset is evaluated for each value of d which is de-

termined based on the classification performance. Figure 5.2 shows the classification

results for different values of d. As can be seen, the best average value is realized at

d=50. Moreover, the accuracy values of different folds are more stable at the value

50. The variance accounted for the chosen d represents 95% of the total variance.

An important reduction is achieved in the data size since the dataset will be in

a low dimensional space and distance measurements can be applied on the dataset

to compute the similarity between the patients in the case base and new patients.

New samples can be projected into low dimensional space without re-computing the

eigenvectors since the out-of-sample problem does not exist in KPCA.
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Figure 5.2: Accuracy according to the different dimensionality reduction process using
8-fold cross-validation

5.2.2 Performance Evaluation of LPC

In order to demonstrate the validity of the proposed algorithm, experiments are per-

formed using the Iris dataset and the artificial Swiss roll data set for validation before

testing the algorithm on the Childhood Leukaemia gene expression dataset.
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5.2.2.1 Error Estimation of LPC

This thesis uses Trustworthiness measurement, which is proposed by Kaski et al [46]

and described in Section 2.3.3, for error estimation and quality measurement of LPC

algorithm. The aims of this error estimation is to find to which extent neighbors in

the input space also have corresponding neighbors in the output space. Two data

sets have been examined by trustworthiness; the first dataset is the Swiss-roll data

set and the second is the Childhood Leukaemia dataset. The two data sets have been

reduced several times with different values of the parameter k. Figure 5.3 and 5.4

show the obtained result of the trustworthiness of LPC applied on Swiss-roll data

set and hospital gene expression dataset respectively. As can be seen from Figure

5.3, the trustworthiness is quite stable around the value of 0.98 for different values of

parameter k. In Figure 5.4, the trustworthiness dramatically changes based on k, but

it can be noticed that the trustworthiness has highest values for k > 10 and especially

at k = 14.

5.2.2.2 Validation of LPC on the Iris Dataset

The algorithm is tested on the Iris dataset described in Section 5.2. Figure 5.5

represents the scattering of the original data set projected onto the 2D space of the

first two principal components. Figure 5.6 shows the data reduced to two dimensions

by LPC with k=14. The trustworthiness measurement of this reduction is 0.995 which

means that the neighborhoods of the data set are preserved with a very small error

in the low dimensional space.
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Figure 5.3: Trustworthiness of LPC on Swiss-roll data set

5.2.2.3 Validation of LPC on the Swiss Roll Dataset

The Swiss Roll data set was created to validate various dimensionality reduction

algorithms. The LPC algorithm is tested on this data. In this experiment, we have

generated 1000 points for the Swiss-roll distribution.

Figure 5.7 represents the original data set in 3D space. As can be seen, the data

is folded to have the Swiss-roll form. Figure 5.8 shows that the data, reduced to

two dimensions data by PCA, lacking the quality of visualization performance and

dimensionality reduction as reported by Lee and Verleysen [56]. Results of projection

of data using LPC for k=14 are given in Figure 5.9. In Figure 5.9, the data has

better visualization than PCA and it shows that better embedding preserving the

shape of the manifold can be achieved by LPC. In order to quantify the comparison
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Figure 5.4: Trustworthiness of LPC on Childhood Leukaemia gene expression dataset

between the two outputs, we have measured the trustworthiness of dimensionality

reduction performed by PCA and LPC. The trustworthiness of LPC for Swiss-roll is

0.997 compared to 0.848 for PCA which suggests that the LPC embedding is better

than PCA for maintaining neighborhood relationships.

5.2.2.4 Visualization of Childhood Leukaemia Dataset By LPC

As our target from this algorithm is to visualize gene expression datasets, the Child-

hood Leukaemia gene expression dataset collected from The Children’s Hospital at
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Figure 5.5: Original Iris data set

Westmead has been used to demonstrate this algorithm. This dataset represents the

main target for this project. It has been pre-processed by the Balanced Iterative Ran-

dom Forest to select the relevant bio-markers and kernel principal component analysis

for reducing the dimensionality. The dataset has 50 features and is composed of 70

patients who are classified as follows:

• Medium risk (53 patients)

• Standard risk (11 patients)

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data

Page 81 of 127



Chapter 5. Dimensionality Reduction and Visualization

Figure 5.6: Iris data set processed by LPC

• High risk (6 patients)

Figure 5.10 and Figure 5.11 show the result of the obtained data set after applying

PCA algorithm and LPC algorithm respectively with k again equal to 14. The trust-

worthiness of PCA is 0.80. On the other hand, LPC has a trustworthiness of 0.86

which suggests better preserving of neighbourhoods in the lower dimensional space.
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Figure 5.7: Swiss roll data set

5.2.2.5 Comparison With Other Methods

Local principal component is a technique that is similar to locally embedding algo-

rithms (Local Tangent Space Alignment [98] and Local Linear Embedding [77]) in

that it constructs a local linear embedding of the k nearest neighbors. The motiva-

tion behind LPC is to have good trustworthiness. The algorithm LPC aims to find

local principal components around a data point xi based on the k nearest neighbors of

that point. This is followed by another step to extract the first principal component

and then to construct the square matrix from these principal components.

Several experiments have been done to make sure that LPC has good dimensionality
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Figure 5.8: Swiss roll data reduced to 2D by PCA

reduction in terms of preserving the neighborhoods of the points in the low dimen-

sional space as in the high dimensional space. As our algorithm is similar to LLE, we

present some experiments comparing LPC to LLE. Consequently, we have compared

the trustworthiness of LPC to LLE on the Swiss-roll and The Children’s Hospital

dataset (Childhood Leukaemia dataset). Figures 5.12 and 5.13 present the result of

these measurements.

As can be seen from Figure 5.12, the trustworthiness of LPC applied on Swiss-roll

dataset is quite stable around the value of 0.98 for different values of parameter k
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Figure 5.9: Swiss roll data reduced to 2D by LPC

where the trustworthiness of LLE dramatically changes with values of k.

With respect to the Childhood Leukaemia dataset, the trustworthiness of LPC is

better than LLE at different values of k especially for k > 10. However, the trustwor-

thiness of LPC is less than LLE at k = 6. For example at k = 14 the trustworthiness

of LPC is 0.89 which represents the maximum value. On the other hand, the trust-

worthiness of LLE is 0.85 at k = 9 which represents the maximum value as well.
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Figure 5.10: Leukaemia data reduced to 2D by PCA

5.3 Summary

This chapter proposed a methodology to reduce the dimensionality of dataset based

on KPCA. KPCA reduces the dimensionality of the Childhood Leukaemia dataset by

choosing fifty attributes from the dataset. The dataset is reduced into more easily

low dimensional space for better quality distance measurement. This chapter also

proposed LPC algorithm, contribution 3 in this thesis listed in section 1.3, for high

dimensional data reduction and visualization. This algorithm is tested and validated
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Figure 5.11: Leukaemia data reduced to 2D by LPC

on Iris and Swiss-roll datasets. Good trustworthiness values are achieved with LPC

through these experiments. Moreover, LPC is applied on the Childhood Leukaemia

gene expression dataset for visualization in two dimensional space. This algorithm

provides a way to visualize the data in order to see the position of a patient with

respect to other patients.
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Figure 5.12: Trustworthiness of LPC Vs. LLE using Swiss-roll data set
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Figure 5.13: Trustworthiness of LPC Vs. LLE using Microarray data set
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Chapter 6

Similarity Measurement

This chapter proposes a methodology for similarity measurement and classification

in the case base retrieval process. Section 6.1 gives a brief introduction about the

nearest neighbour classifier and the factors to be considered in the similarity mea-

surement. Section 6.2 presents the experiments and proposes a Weight Learning

Genetic algorithm for feature weighting and the methodology applied to handle the

effect of imbalanced classes. Section 6.3 gives a brief conclusion to summarize the

achievements and contributions of this chapter.

6.1 Similarity Measurement Approach

The similarity measurement task is one of the major challenges and the key process

in the case-base retrieval framework. Accurate similarity measurement has a great

value in providing better treatment and diagnosis in the field of patient classification.

This thesis uses k Nearest Neighbor(kNN) classifier which is considered as one of the

most popular classifier in the machine learning techniques.

According to the literature review, kNN has some disadvantages that already have
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been addressed and solved in the previous chapters. kNN is very sensitive to irrele-

vant features because all features equally contribute to the similarity. This problem

is handled in chapter 4 through selecting the relevant features by the Balanced It-

erative Random Forest algorithm. Another disadvantage is the effect of the high

dimensionality on the distance measurement which is known as the curse of dimen-

sionality problem. This problem also has been addressed in chapter 5 by employing

Kernel Principal Components Analysis (KPCA) to transform the data into a lower

dimension.

Other two disadvantages of kNN relate to feature weighting and imbalanced classes

will be addressed in this chapter. Although the problem of irrelevant features is

handled, some features may be much more discriminative than other features. Ac-

cordingly, relevant features which play a major role in the similarity measurement

should be treated more importantly than other features; i.e. high weight should be

given. On the other hand, features with less significance and influence, low weights

should be given. In practice, those important features should be weighted more than

other features during the calculation of the distance between cases in order to achieve

a high accurate retrieval process.

The other disadvantage which also may affect the result of retrieval process is the

imbalanced classes with a small number of samples in the case base [63]. This prob-

lem is also addressed in this chapter since it affects the prediction of the new query

especially if this query sample should be classified to a minority class.
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6.2 Experiments

Four experiments are done in this chapter: distance metric selection, determination of

parameter k, feature weighting and oversampling the data. Experiments are executed

on the basis of the real gene expression dataset collected from The Children’s Hospital

at Westmead and described in chapter 4. To recall this dataset, initially it has more

than 22000 gene expression values for 70 patients. This dataset is processed by the

Balanced Iterative Random Forest in chapter 4 for selecting the relevant bio-markers

and by KPCA in chapter 5 for dimensionality reduction. The training dataset of

patients now has 50 attributes and they are classified as follow:

• Medium risk (53 patients)

• Standard risk (11 patients)

• High risk (6 patients)

However, the test dataset composed of 40 patients and they are classified as follow:

• Medium risk (25 patients)

• Standard risk (10 patients)

• High risk (5 patients)

6.2.1 Distance Metric Selection

The identification of the nearest neighbours in kNN is based on the computation of

distances between the query case and cases in the case base, where the most similar

cases are determined by evaluating a similarity measure (i.e metric). The performance
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of the similarity function is sensitive to the choice of the similarity metric. Therefore,

experiments are performed on four similarity metrics: Euclidean, Hamming, Jaccard

and Cosine distance to choose the one that provides the better accuracy.

Due to the small number of samples and in order to generalize the results, experiments

are performed using c-fold cross validation. It is usually called k-cross validation but

c is used here to differentiate it from the parameter k of the nearest neighbour clas-

sifier. Most of the applications use the ten-fold cross validation, but because there

are not many samples in our dataset, 8-fold cross validation is used to compare the

performance of the four similarity metrics. The training dataset is randomly parti-

tioned into 8 sub-samples. Each fold is taken from the training data and treated as

a test fold for validation. Each similarity metric is used to calculate the similarity of

each test sample with other training samples. This process is repeated for each fold

and the eight results from the folds are averaged for each type of similarity metric so

that we have a single estimate of accuracy for each similarity metric.

As the training dataset is imbalanced data, the minor class has a very little impact

on the measurement of accuracy. This leads to a fact that the traditional accuracy

measures cannot be adequate in a situation of extremely imbalanced classes. There-

fore, another measurement of accuracy that is Area Under Curve (AUC), presented

in section 2.6, is used to determine the accuracy of the classifier.

Based on these experiments, it is found that Euclidean distance consistently per-

formed better and provides the best similarity measurement results than a number

of other popular functions such as Hamming, Jaccard and Cosine distance (see Table

6.1).
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Table 6.1: Performance comparison of the distance metrics for the nearest neighbour
classifier.

Average accuracy of the eight folds
Euclidean 0.87
Cosine 0.83
Hamming 0.77
Jaccard 0.75

6.2.2 Determination of Parameter k

Based on the literature review, it is readily perceived that the value of k affects the

performance of the nearest neighbour classifier. This is very obvious in the case of gene

expression dataset, since it has a small number of samples with imbalanced classes.

The same cross validation procedure, used in the selection of the distance metric,

is used here to determine the optimal value of k. The training dataset is randomly

partitioned into 8 sub-samples. Each fold is taken from the training data and treated

as a test fold for validation. Euclidean distance is used to calculate the similarity of

each test sample with other training samples. This process is repeated for each fold at

different values of k to find the one that gives the highest accuracy and can be used in

classification of query samples. The eight results from the folds are averaged for each

value of k so that we have a single estimate at each value of k for the eight validations.

As the dataset has three different classes and in order to avoid the equal voting

of kNN, experiments are performed on different values of k where k is indivisible by

them i.e (4, 5, 7, 8, 10 and 11). The highest value of k is evaluated at k=11 because

the number of the training cases in the minority class is six. The best results were

achieved at k=5. The accuracy does not improve as k further increases (see Table 6.2

). This result can be justified by looking at the nature of the dataset and how the
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three classes are distributed. It can be noticed that a new high risk patient is hard

to classify correctly if k is large. All the results reported in the next experiments

were obtained based on the k=5. The initial classification performance of the 5NN

classifier is presented in the confusion matrix Table 6.3.

Table 6.2: Performance comparison of the kNN for different values of k.

k Average accuracy of the eight folds
4 0.84
5 0.87
7 0.8
8 0.75
10 0.66
11 0.66

Table 6.3: Classification performance results of the test dataset

Predicted High Predicted Medium Predicted Standard
Actual High 1 2 2
Actual Medium 0 23 2
Actual Standard 2 3 5

As can be seen from Table 6.3, the classification results were not good as most of

the patients are predicted incorrectly, especially the high risk patients. As discussed

before, the NN classifier is very sensitive to the relative importance of each feature.

Therefore feature weighting may be required to enhance the classification task.

6.2.3 Feature Weighting

Feature weighting is a technique used to estimate the relative influence of individual

feature with respect to the classification performance. When successfully weighted,

high impact feature would receive a high value weight, whereas low weight should be
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assigned to low impact features. Consequently, a weighted feature-based similarity

(weighted Euclidean distance) is used in this thesis to compute the similarity between

cases. However, the main issue is how to find the relative importance of each feature.

Two hypotheses are proposed to address this issue. Details for these hypotheses will

be discussed in the following sections.

6.2.3.1 Hypothesis 1: Eigenvalues can be used as weights for features

The first hypothesis for feature weighting is based on KPCA eigenvalues. As seen

in the previous chapter, the dimensionality of the dataset is reduced by applying

KPCA. Also has been observed that the dimensionality is achieved by discarding fea-

tures with a low eigenvalue and keeping only those features with a high eigenvalue.

One idea is to employ these eigenvalues in the 5NN as a vector weight and then use

it in the Euclidean distance formula. Eight-fold cross validation is applied on the

training dataset to compute the accuracies of the unwiehted k-NN classifier. Eight

accuracies are obtained from this experiment for the eight test folds. The same pro-

cedure is applied on the weighted k-NN with the eigenvalues and eight accuracies

are computed for the eight test folds. t-test was conducted to determine whether

accuracy differences between the eigenvalues approach and un-weighted 5NN are sig-

nificant or not. The p-values of the presented t-test is also used to judge the degree

of the performance improvement. The paired t-test generates a p-value 0.0283, which

indicates that eigenvalues-weighted 5NN and un-weighted 5NN doesn’t have the same

accuracy. The results of the one-tailed t-test indicates that eigenvalues approach re-

ports accuracy improvements over the un-weightd 5NN. The accuracy increases from

0.74 to 0.82 which represents the highest value that achieved from the eight-fold cross
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validation and from 0.53 to 0.61 which represents the lowest value that achieved from

the cross validation. In spite of these improvements, the evaluation of the 5NN clas-

sifier using these weights was not efficient and the desired results are not achieved.

Consequently, hypothesis 1 is not supported in this thesis.

6.2.3.2 Hypothesis 2: Genetic algorithm can be used to seek the weights

for features

Genetic algorithm (GA) [40] is considered as a general purpose search process for

optimization problems. The key feature of a genetic algorithm is the fitness function

which contains the optimization search problem. Consequently, a fitness function

is developed for optimization of classification performance by searching for the best

genes encoding weights for the similarity measurement. The goal of the GA is to

minimize the classification error of the training dataset. Wrapper feature weighting

method based on Genetic Algorithms is used to propose a Weight Learning Genetic

algorithm to seek the genes encoding weights for the similarity measurement. The

concept of this wrapper method is to use a GA to seek the best weights of features

with the 5NN classifier providing the GA’s fitness function (see figure 6.1). The fit-

ness measure is computed by subtracting accuracy from one (see Equation (6.2.1)).

The accuracy is computed by averaging the accuracies of the eight-folds for the 5NN

classifier using the generated weights in its Euclidean distance measure.

fitness = 1− Accuracy (6.2.1)

The training dataset is randomly partitioned into 8 sub-samples. Each fold is taken

from the training data for validation and the remaining data is processed by GA. For

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data

Page 97 of 127



Chapter 6. Similarity Measurement

each generated feature weights by GA, the validation fold is presented to the 5NN

classifier and the classification accuracy is evaluated by calculating the AUC of the

obtained confusion matrix. This process is repeated eight times and the eight results

from each fold are averaged for each set of weight so that we have a single estimate

at each set of weight for the eight folds.

Figure 6.1: Weight Learning GA and 5NN

The methodology is implemented using the Matlab Global Optimization Toolbox.
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The parameters for the Genetic Algorithm for this task are:

1. Number of Variables: 50

2. Aeq: ones(1,50)

3. Beq: 1

4. Lower: zeros(1,50)

5. Upper: ones(1,50)

6. Population Size: 100

7. Number of Generations: 50

8. Probability of Crossover: 0.8

9. Crossover Function: Scattered

10. Other Parameters: Default

The program runs for 50 generations with a population size of 100 individuals.

Solutions from one population are taken and used to form a new population. In

each iteration, if the selected population forms a solution with a better fitness value,

population will be converged to be the relevant weights of feature. Figure 6.2 shows

the running process of the GA by plotting the fitness value of each generation with

the best weight for each individual. The program stops at the 50th iteration and the

best individual is then selected as an encoding weight for the feature.

t-test also was conducted to determine whether accuracy differences between GA

approach and the un-weighted 5NN are significant or not. The p-value (3.53E− 008)
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of the presented t-test indicates a significant performance improvement in the ac-

curacy. The results of the one-tailed t-test indicates that GA approach outperform

un-weighted 5NN. The average accuracy for the eight-fold cross validation increases

from 0.7 to 0.96. Table 6.4 shows classification performance of the test dataset ap-

plied on the weighted 5-nearest neighbour classifier.

Obviously, this hypothesis is supported in this thesis as it leads to a significant en-

hancement in the classification process. The GA wrapper method provided good

feature weights that substantially improve the performance of the nearest-neighbor

classifier. These results outlined in Table 6.4 indicate that assigning different weights

to features in the domain of gene expression datasets improves the classification ac-

curacy of the nearest neighbour algorithm.

Table 6.4: Classification performance results of the test data applied on the weighted-
5NN classifier

Predicted High Predicted Medium Predicted Standard
Actual High 4 0 1
Actual Medium 0 25 0
Actual Standard 0 1 9

As the nearest neighbor is considered as a white box classifier that allows the

user to look deeply in the classification outputs. The analysis of the obtained result

reveals that the classification probability for some patients is not stable enough as

some patients have two classifications with the same probabilities but they are clas-

sified correctly based on the score voting of its similarity to the neighbours samples.

Classification probabilities for each patient are calculated and presented in Table 6.5.

The probabilities are computed for each patient in the test dataset based on the five

retrieved patients. For example, if the five retrieved patients for a such high risk pa-

tient in the test dataset are as follows: two medium, one standard and two high risk,
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then the classification probabilities for this patient are 0.4 , 0.2 and 0.4 respectively.

As can be seen from this table, some patients and especially patients in the minority

class are hardly classified with the actual category. These results indicate that the im-

balanced classes problem affects the classification performance of the minority class.

Therefore oversampling may be required to enhance the classification performance of

the minority class.

6.2.4 Oversampling

Most of the classification techniques assume that training samples are evenly dis-

tributed among different categories. However, in practical applications, datasets often

exist in an unbalanced form. In addition to that, gene expression datasets also have

low number of samples. With these kinds of datasets, a poor classification perfor-

mance is achieved and it results trivial classifiers that completely ignore the minority

class. Based on the literature review in chapter 2, there are two different methods to

address this problem: sampling techniques and cost sensitive learning. With feature

selection process, cost sensitive learning is employed to solve the imbalanced class

problem because sampling techniques were not applicable during feature selection

process due to the large number of irrelevant features and their effect on the distance

measurement. However, at this stage, these problems have been resolved in chapter

4 and 5. Consequently, sampling techniques become very useful to be applied on the

gene expression datasets in order to solve the problem of imbalanced classes and low

number of samples.
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Synthetic Minority Over-sampling Technique (SMOTE) [19] is used in this the-

sis to oversample the minority class by introducing synthetic samples. Generally,

SMOTE is solely applied on the minority classes in order to increase their sample

size to attain the same number of samples in the majority class. According to the

results reported in the confusion matrix (Table 6.6), this technique of oversampling

results intersection between classes boundaries so that some samples in the majority

class become inside the decision region of the minority class. All patients in the mi-

nority class are predicted correctly but some patients from the majority class, which

used to be correctly recognized by the classifier, fall in the wrong decision region (see

Table 6.6). This might be because SMOTE is sensitive to complex datasets such as

multi-classes and more than one minority class [91].

An approach is suggested to avoid the intersection between different classes. Minor-

ity classes are over-sampled at 30%, 50%, 100%, 200%, 300% and 400%. The best

accuracy is achieved at 100%. The accuracy becomes stable if the minority classes

are over-sampled at greater than 100% (Table 6.7). This methodology significantly

increases the performance of the classification especially for the minority samples (see

Table 6.8).

Oversampling the training dataset consistently provides an improvement in classifica-

tion of test data. Moreover, it provides a more stable classifier in case of imbalanced

classes. The confusion matrix and probabilities of the 5NN classifier are presented in

Table 6.8 and Table 6.9 respectively.

For instance, SMOTE does not shows a major improvements in the classification

performance. However, the results become more stable as the classification probabil-

ity becomes higher than before when the weighed nearest neighbor classifier is used

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data

Page 102 of 127



Chapter 6. Similarity Measurement

without oversampling the training dataset (see Table 6.9).
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6.3 Summary

A nearest neighbour classifier is proposed in this chapter for gene expression simi-

larity measurements and case base retrieval. A Weight Learning Genetic Algorithm,

contribution 4 of this thesis listed in section 1.3, is proposed for feature weighting in

the nearest neighbour classifier. The weighted nearest neighbour classifier is success-

fully applied and enhances the classification performance. The results show that the

a Weight Learning Genetic algorithm improved the un-weighted nearest neighbour

algorithm. Introducing weights to the features in the nearest neighbour algorithm

leads to improvement in the classification performance. SMOTE approach also pro-

vides an improvement in the classification of imbalanced class datasets. with 100%

oversampled, minority and majority classes are fully recognized by the classifier and

the intersections between the classes regions are avoided.
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Figure 6.2: Fitness value for each generation
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Table 6.5: Classification probability results of the test dataset

Actual Predicted High Predicted Medium Predicted Standard
1 High 0.4 0.2 0.4
2 High 0.4 0.4 0.2
3 High 0.4 0.4 0.2
4 High 0.8 0.2 0
5 High 0.2 0 0.8
6 Medium 0 1 0
7 Medium 0 1 0
8 Medium 0 0.6 0.4
9 Medium 0 0.8 0.2
10 Medium 0 1 0
11 Medium 0 0.6 0.4
12 Medium 0 1 0
13 Medium 0 0.6 0.4
14 Medium 0 0.6 0.4
15 Medium 0 0.6 0.4
16 Medium 0 0.8 0.2
17 Medium 0 1 0
18 Medium 0 0.8 0.2
19 Medium 0 1 0
20 Medium 0 0.8 0.2
21 Medium 0 1 0
22 Medium 0 0.6 0.4
23 Medium 0 1 0
24 Medium 0 1 0
25 Medium 0 1 0
26 Medium 0 0.6 0.4
27 Medium 0 0.6 0.4
28 Medium 0 0.8 0.2
29 Medium 0 0.8 0.2
30 Medium 0 0.8 0.2
31 Standard 0 0.2 0.8
32 Standard 0 0 1
33 Standard 0 0 1
34 Standard 0 0 1
35 Standard 0.2 0.2 0.6
36 Standard 0.2 0.2 0.6
37 Standard 0.2 0.2 0.6
38 Standard 0.2 0.2 0.6
39 Standard 0.2 0.4 0.4
40 Standard 0.2 0.4 0.4
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Table 6.6: Classification performance of the one-side over-sampled

Predicted High Predicted Medium Predicted Standard
Actual High 53 0 0
Actual Medium 7 33 13
Standard 0 0 53

Table 6.7: Classification performance of 100% over-sampled training dataset

Predicted High Predicted Medium Predicted Standard
Actual High 18 0 0
Actual Medium 0 53 0
Actual Standard 0 0 33

Table 6.8: Classification performance results of the test dataset after 100% over-
sampled the training dataset

Predicted High Predicted Medium Predicted Standard
Actual High 4 0 1
Actual Medium 0 25 0
Actual Standard 0 0 10
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Table 6.9: Classification probability results of the test dataset after SMOTE

Actual Predicted High Predicted Medium Predicted Standard
1 High 0.8 0.2 0
2 High 1 0 0
3 High 1 0 0
4 High 0.8 0.2 0
5 High 0.4 0 0.6
6 Medium 0 1 0
7 Medium 0 1 0
8 Medium 0 0.8 0.2
9 Medium 0 0.8 0.2
10 Medium 0 1 0
11 Medium 0 0.6 0.4
12 Medium 0 1 0
13 Medium 0 0.8 0.2
14 Medium 0 1 0
15 Medium 0 0.6 0.4
16 Medium 0 0.8 0.2
17 Medium 0 1 0
18 Medium 0 0.8 0.2
19 Medium 0 1 0
20 Medium 0 0.8 0.2
21 Medium 0 1 0
22 Medium 0 0.6 0.4
23 Medium 0 1 0
24 Medium 0 1 0
25 Medium 0 1 0
26 Medium 0 0.6 0.4
27 Medium 0 0.6 0.4
28 Medium 0 1 0
29 Medium 0 1 0
30 Medium 0 0.8 0.2
31 Standard 0 0.2 0.8
32 Standard 0 0 1
33 Standard 0 0 1
34 Standard 0 0 1
35 Standard 0.2 0 0.8
36 Standard 0 0.2 0.8
37 Standard 0.1 0.1 0.8
38 Standard 0.2 0.2 0.6
39 Standard 0.2 0.2 0.6
40 Standard 0.4 0 0.6
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Chapter 7

Conclusion

The goal of this research was to develop a clinical tool that will help biologists in how

they can predict the risk of relapse for childhood leukaemia sufferers by comparing

them to previous patients based on the patient’s gene expression data. In order to

achieve this goal, this thesis proposed a case-base retrieval framework for retrieval

process which represents the main challenge and the key process for a successful case-

based reasoning system.

The main data used for this study was collected from The Children’s Hospital at

Westmead. The data was produced from microarray analysis of childhood leukaemia

gene expression values (22678) for 110 patients and it is obtained on the Affymetrix

U133 platform. These kinds of data are complex and highly dimensional, which raises

many challenges in terms of the analysis, similarity measurement and classification

tasks. Five main research questions have been addressed in this thesis: (i) how to

build a framework for similarity measurement and case base retrieval for gene ex-

pression datasets; (ii) how to select the bio-markers that are strongly associated with

the cancer disease; (iii) how to transform the data into lower dimensional space and

visualize it; (iv) how to estimate the relative influence of each feature with respect

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data

Page 109 of 127



Chapter 7. Conclusion

to the classification performance and (v) how to handle the problems of imbalanced

classes and low number of observations.

7.1 Contribution 1: Case-Base Retrieval Frame-

work

An innovative case-base retrieval framework for gene expression data, introduced in

section 3.2, is presented to address the first research question. Two modules are

presented in this framework: module 1 pre-processes the training dataset to select

the relevant features, to reduce the dimensionality, to weight the features and to

oversample the training dataset. Module 2 processes the new query data using the

outputs of the training steps in module 1 such as feature list, low dimensional vector

and weight list.

7.2 Contribution 2: Balanced Iterative Random

Forest for Feature Selection

Data mining techniques are used to develop a Balanced Iterative Random Forest algo-

rithm, introduced in section 4.2, to address the second research question that related

to feature selection. Feature selection, as one of the most important processes, has

been considered carefully in this study. It is unrealistic to assume that the feature se-

lection algorithm, in this case the balanced iterative random forest algorithm, would

be able to identify all of the biologically significant genes with such a large complex
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and imbalanced dataset. This thesis shows that feature selection process is done in an

intelligent way especially the way the imbalanced and over-fitting problems are han-

dled and when the feature selection process is evaluated through reducing the dataset

into several subsets of varying sizes to see whether the feature selection process was

over-fitted or not. In this thesis, attributes which appeared in multiple subsets are

considered as the most informative and predictive genes. Although feature selection

process was unable to identify which genes are particularly responsible to define the

patient’s risk category, a small subset, containing the most informative genes, results

from this process.

Balanced Iterative Random Forest is validated on four microarray datasets: childhood

Leukaemia, Golub, Colon cancer and Lung cancer datasets. Overall, BIRF resulted

in a classifier comparable or superior in accuracy to SVM-RFE, MSVM-RFE and

Naive Bayes on the Colon, Golub and Lung datasets.

7.3 Contribution 3: Local Principal Component

Analysis for Dimensionality Reduction and Vi-

sualisation

The third research question is addressed by introducing Local Principal Component

algorithm, introduced in section 5.3.1, for visualization of gene expression datasets

and by using kernel principal components analysis to transform the dataset into lower

dimensional space. This thesis shows that the effect of highly dimensional data on

the similarity measurement is avoided by transferring a high dimensional data into a
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lower dimensional space through choosing components with high eigenvalues.

7.4 Contribution 4: Weight Learning Genetic Al-

gorithm for Feature Weighting

This thesis also has used machine learning techniques to develop a weight learning

genetic algorithm to address the fourth research question relates to feature weighting.

A wrapper method based genetic algorithm, introduced in section 6.2.2.2, is proposed

to tune feature weights for accurate nearest-neighbour retrieval. Basic settings of ge-

netic algorithm with efficient fitness function achieved significant improvements with

feature weighting.

Furthermore, SMOTE approach is used in this thesis to improve the accuracy

of nearest-neighbour classifiers for minority class. SMOTE is used in this thesis in

order to address the last research question of this thesis by solving the problems of

imbalanced classes and low number of observations. SMOTE was tested on a variety of

number of extra samples in the minority classes. Oversampling the minority classes

at 100% provides improvement in the decision regions of the classes and performs

better than oversampling the minority classes to attain the same number of samples

in the majority class.

Case-Base Retrieval of Childhood Leukaemia Patients Using
Gene Expression Data

Page 112 of 127



Chapter 7. Conclusion

7.5 Future Work

The ultimate goal of this thesis is to be able to create a clinical tool which can be

used to assist clinicians in how to predict the cancer sufferers will react to treatment

by comparing them to other previous classified patients. Based on the retrieved

similar patients, appropriate risk category is then assigned to the new patient so that

successful treatment which applied on the previous patients will be targeted to a new

patient. If the similar patients received a particular treatment and survived, then it

would make sense to clinicians prescribe this treatment for the new patient otherwise

it may be wise to explore another treatment for the new patient.

This study is a step in a new direction of using case-based reasoning system for

diagnosis of ALL patient’s based on their gene expression data. Data mining, machine

learning and statistical techniques have proved to be useful and powerful in this

research. Although case-base retrieval was able to identify the similarity between the

previous patients and new patients, future work is required on this research project in

order to create a domain knowledge for cancer patients. Firstly, this project needs to

incorporate other genetic and clinical information in the case-based reasoning system

so that more informed decisions about a new patient can be made. It is important to

include other datasets such as single-nucleotide polymorphism data in the case base

retrieval process. Thus we can have an ensemble datasets classifier for more trusted

prediction in the cancer field. Also it is important to include clinical data in the case

base reasoning and make comparison between the patients based on their clinical data

along with their genetic data.

Secondly, it is also important to do gene selection based on another specific trait of

output such as relapse and non-relapse patients. In this project genes are selected
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based on the patient’s risk of relapse. Moreover, it is good idea to complete the four

processes of case-based reasoning system and develop a methodology for case base

revising and maintenance.

This research project can be applied to many other types of diseases. As we have

seen, feature selection process is applied on different microarray datasets with different

diseases. It is important to take advantage of the wealth of knowledge hidden in these

datasets and create a domain knowledge which will lead to more informed treatment

decisions resulting in a higher percentage of individuals who survive cancer disease.
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